TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Reconfigurable Logic (FPGA)-based System Architecture for the Acceleration of Federated Learning in Neural Networks

Author: Emmanouil PETRAKOS Thesis Committee: Prof. Apostolos DOLLAS Prof. Michail G. LAGOUDAKIS Asst. Prof. Grigorios TSAGKATAKIS (University of Crete)

A thesis submitted in fulfillment of the requirements for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering Microprocessor and Hardware Laboratory

June 13, 2023

TECHNICAL UNIVERSITY OF CRETE

School of Electrical and Computer Engineering

Abstract

Reconfigurable Logic (FPGA)-based System Architecture for the Acceleration of Federated Learning in Neural Networks

by Emmanouil PETRAKOS

Federated Learning (FL) is a decentralized training method for Machine Learning applications which can exploit data that are inaccessible to conventional centralized approaches, due to privacy and security concerns. FL literature has refined and evaluated most of its aspects, but generally few works have taken into consideration the underlying hardware, where the training actually takes place.

This thesis demonstrates that, in the on-edge FL setting, the clients can effectively utilize FPGAs to accelerate their local training and the overall FL process. First, an FL system, agnostic of the underlying training method and its implementation, is developed. With that, an in-depth analysis of the effects of each FL parameter is conducted. According to its findings, an FPGA-based implementation of a Convolutional Neural Network (CNN), optimized for the parameter space where the FL is most efficient, is developed and incorporated into the FL system.

Through actual runs on real hardware, the FPGA-based solution presents a modest speedup of the local training $(1.27 \times -1.44 \times)$ and the overall FL process $(1.08 \times -1.20 \times)$ in comparison to a GPU-based one, depending on data distribution. More impressively, it consumes $(16.35 \times -18.18 \times)$ less energy. Thus, this thesis provides more than a feasibility study of combining FL and FPGAs, and it can be used as a starting point for future works or as a benchmarking reference.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Περίληψη

Αρχιτεκτονική Συστημάτων βασισμένων σε Αναδιατασσόμενη Λογική (FPGA) για Επιτάχυνση Συνεργατικής Μάθησης

από τον Εμμανουήλ Πετράκο

To Federated Learning (FL) είναι μια αποκεντρωμένη μέθοδος εκπαίδευσης για εφαρμογές Μηχανικής Μάθησης, που μπορεί να εκμεταλλευτεί δεδομένα τα οποία είναι μη προσβάσιμα από συμβατικές κεντρικοποιημένες μεθόδους, λόγω ανησυχιών περί προσωπικού απορρήτου και κυβερνοασφάλειας. Σχετικές έρευνες έχουν βελτιώσει και αξιολογήσει τις περισσότερες πτυχές του, αλλά γενικά λίγες από αυτές λαμβάνουν υπόψη το υποκείμενο υλικό, όπου λαμβάνει χώρα η εκπαίδευση.

Αυτή η εργασία αποδειχνύει ότι, στο on-edge FL, οι πελάτες μπορούν να χρησιμοποιήσουν αποτελεσματικά FPGAs για να επιταχύνουν την τοπική εκπαίδευση και τη συνολική FL διαδικασία. Καταρχάς, υλοποιήθηκε ένα FL σύστημα, ανεξάρτητο της υποκείμενης μεθόδου εκπαίδευσης και της υλοποίησής της. Μέσω αυτού, έγινε εις βάθος ανάλυση των επιδράσεων κάθε παραμέτρου του FL. Σύμφωνα με τα ευρήματα της, υλοποιήθηκε ένα Συνελυκτικό Νευρωνικό Δίκτυο σε FPGA, βελτιστοποιημένο για τον χώρο παραμέτρων όπου το FL είναι πιο αποτελεσματικό, και συνδέθηκε στο FL σύστημα.

Μέσω μετρήσεων σε πραγματικό υλικό, η υλοποίηση βασισμένη σε FPGA εμφανίζει μια μέτρια επιτάχυνση στην τοπική εκπαίδευση (1,27×-1,44×) και στην συνολική FL διαδικασία (1,08×-1,20×), σε σύγκριση με αντίστοιχη υλοποίηση βασισμένη σε GPU, συναρτήσει της διασποράς των δεδομένων. Πιο εντυπωσιακά, καταναλώνει (16,35×-18,18×) λιγότερη ενέργεια. Τοιουτοτρόπως, η παρούσα εργασία παρέχει παραπάνω από μια μελέτη σκοπιμότητας συνδυασμού FL & FPGAs, και μπορεί να χρησιμοποιηθεί ως αφετηρία για μελλοντικές εργασίες ή ως μέτρο σύγκρισης.

Acknowledgements

First and foremost, I want to express my gratitude to Prof. Apostolos Dollas, my supervisor, for enabling me to work on this intriguing thesis and for his insightful advice and support throughout the entire process. This work allowed me to dabble in multiple fields of computer engineering, helping me to grow as a professional and as a person.

Also, I want to especially acknowledge Asst. Prof. Grigorios Tsagkatakis for suggesting the subject of this thesis, as well as providing instructive guidance during its implementation. Furthermore, I would like to thank them again, in addition with the final member of the thesis committee, Prof. Michail G. Lagoudakis, for evaluating my work.

Moreover, I would like to thank all the members of the Microprocessor and Hardware Lab (MHL) and colleagues that offered me crucial advice when requested. In addition, I would like to specially mention my colleague Manolis Perakis for assisting me with remotely operating the hardware required to complete this work.

Last but not least, I would like to thank my family from the bottom of my heart for their unwavering understanding and support.

Manolis Petrakos, Chania 2023

Contents

A	bstra	ct		iii
П	ερίληψ	νη		v
A	cknov	wledge	ments	vii
C	onten	its		ix
Li	st of	Figure	5	xv
Li	st of	Tables		xvii
Li	st of	Algori	hms	xix
Li	st of	Abbrev	viations	xxi
1	Intr	oducti	on	1
	1.1	Motiv	vation	. 2
	1.2	Scient	tific Contributions	. 3
	1.3	Thesis	s Approach	. 3
	1.4	Thesis	s Outline	. 4
2	The	oretica	l Background	5
	2.1	Artifi	cial Intelligence & Machine Learning	. 5
		2.1.1	Information Management	. 5
		2.1.2	Feedback Mechanism	. 6
		2.1.3	Representation of the learned information	. 7
	2.2	Deep	Learning	. 7
		2.2.1	Artificial Neuron	. 9
		2.2.2	Activation Functions	. 10
			Binary Step	. 10
			Sigmoid	. 11
			ReLU	. 11

		Softmax	11
	2.2.3	Artificial Neural Network Architectures	11
		Deep Neural Network (DNN)	12
		Convolutional Neural Network (CNN)	12
2.3	Traini	ng Artificial Neural Networks	14
	2.3.1	Initialization	15
	2.3.2	Loss Functions	16
		Regression Loss Functions	17
		Classification Loss Functions	17
	2.3.3	Backpropagation	18
	2.3.4	Gradient Descent	20
		Challenges	21
		Variations	22
	2.3.5	Model Overfitting	23
2.4	Federa	ated Learning	25
	2.4.1	Typical Federated Training Process	26
		Task Initialization	26
		Local Training	26
		Model Aggregation	27
	2.4.2	Federated Learning Settings	27
	2.4.3	Unique Characteristics & Challenges of FL	29
		System Heterogeneity	29
		Statistical Heterogeneity	29
		Expensive Communication	30
		Privacy and Security Concerns	30
	2.4.4	Systems Heterogeneity	30
	2.4.5	Data Distribution	31
		Non-Identical Client Distributions	32
		Dealing with non-IID Distributions	33
	2.4.6	Communication Cost Reduction	34
		Edge and End Computation	34
		Model Compression	35
		Importance-based Updating	36
	2.4.7	Privacy and Security	36
		Types of Attacks	36
		Countermeasures	38

	3.1	Training Dataset	41
	3.2	ANN Architectures	42
		3.2.1 LeNet-5	42
		3.2.2 AlexNet	42
		3.2.3 ResNet	43
		3.2.4 Inception Module	44
	3.3	Federated Learning Algorithms	45
		3.3.1 Distributed SGD	45
		3.3.2 FederatedAveraging	46
	3.4	The FPGA Perspective	47
4	FL a	rchitecture & design	49
	4.1	Software	49
		4.1.1 Tensorflow & Keras	49
		4.1.2 Python/C API	50
		4.1.3 POSIX Sockets	50
	4.2	Data Preparation	51
		4.2.1 Normalization	51
		4.2.2 Distribution	52
		IID	52
		non-IID	52
		4.2.3 Pipeline	52
	4.3	Embedding the Python Interpreter	53
	4.4	FL Architecture developed in this Thesis	54
		4.4.1 Process & Memory Layout	54
		4.4.2 Server	55
		Overview	55
		Operation	56
		4.4.3 Client	57
		Overview	57
		Operation	58
		4.4.4 Synchronization	58
		4.4.5 Communication Scheme	60
		4.4.6 Model Library	61
5	Rob	ustness Analysis	63
	5.1	Distributed SGD with IID Data	64
	5.2	Distributed SGD with non-IID Data	65
	5.3	Client Selection	66

	5.4	Greater data per GE consumption	• •		 •	68
	5.5	Client Fault Tolerance			 •	69
	5.6	Neural Network Initialization			 •	70
	5.7	Learning Rate (LR) Decay Strategies			 •	71
	5.8	Federated Averaging (FedAvg)	• •		 •	72
	5.9	Client Participation and Increasing Parallelism			 •	74
	5.10	Increasing Computation per Client	• •		 •	75
	5.11	Conclusions			 •	76
6	FPG	A Design & Implementation				77
	6.1	Tools Used		•••	 •	78
		6.1.1 Vitis Unified Software Platform		•••	 •	78
		6.1.2 Xilinx Runtime library (XRT)		•••	 •	79
		6.1.3 Vitis High Level Synthesis (HLS)		•••	 •	80
	6.2	FPGA Platform		•••	 •	81
		6.2.1 Xilinx Zynq UltraScale+ MPSoC		•••	 •	81
		6.2.2 ZCU102 Evaluation Board		•••	 •	81
	6.3	CPU-based C++ CNN implementation		•••	 •	82
	6.4	FPGA-based CNN architecture	• •		 •	83
		6.4.1 2D Convolutional Layers	• •		 •	83
		6.4.2 2D Max-Pooling Layers	• •		 •	91
		6.4.3 Dense & Softmax Layers		•••	 •	91
		6.4.4 Gradients Calculation Pipeline		•••	 •	92
		6.4.5 Hardware Streams		•••	 •	94
		6.4.6 Batching Inputs		•••	 •	95
		6.4.7 Updating Variables		•••	 •	96
		6.4.8 Data Movement & Storage		•••	 •	96
		6.4.9 Top Function			 •	97
	6.5	Host Program		•••	 •	98
		6.5.1 Driver Architecture		•••	 •	98
		6.5.2 Memory Management		•••	 •	98
		6.5.3 Incorporating the Driver in the FL Client .			 •	99
7	Resu	ults				101
		Latency		•••	 •	101
		Throughput		•••	 •	101
	7.1	FPGA Implementation Analysis			 •	102
		7.1.1 Resource Utilization Analysis			 •	102
		7.1.2 Timing Analysis			 •	103

			Overall Latency	103
			Accelerator's Latency	103
			Constrains	104
		7.1.3	Power Consumption Analysis	106
	7.2	Comp	parison with Other Technologies	106
		7.2.1	Specification of Compared Platforms	107
			Intel Core i7-9750H	107
			Nvidia GTX 1660 Ti	107
		7.2.2	Latency Comparison	108
		7.2.3	Throughput Comparison	109
		7.2.4	Power Consumption Comparison	109
	7.3	FL & 1	FPGA Interaction Analysis	110
		7.3.1	Methodology	110
		7.3.2	IID	111
		7.3.3	Non-IID	113
	7.4	Summ	nary	116
8	Con	clusio	ns and Future Work	119
	8.1	Concl	lusions	119
	8.2	Futur	e Work	119
		8.2.1	Quantization	120
		8.2.2	Encryption & Privacy	120
		8.2.3	Platforms	120
		8.2.4	Scale	121
		8.2.5	Models	121
Re	eferei	nces		123

List of Figures

1.1	FL system, simplified topology	2
2.1	Edge detection in greyscale images	6
2.2	AI Venn Diagram	8
2.3	McCulloch-Pitts Neuron	9
2.4	Deep neural network	12
2.5	A CNN sequence to classify handwritten digits	13
2.6	2D convolution	14
2.7	2D max pooling	14
2.8	Effect of learning rate in Gradient Descent	20
2.9	Local minimum and saddle point	21
2.10	Model overfitting	23
2.11	Overfitting/Underfitting	24
2.12	FL topology	26
2.13	FL protocol	29
2.14	Data distribution	31
2.15	GAN attack	38
2.16	GAN attack under Differential Privacy	39
3.1	Examples of Fashion MNIST Dataset	41
3.2	Comparing LeNet-5 and AlexNet	43
3.3	Comparing ResNet and plain architectures	43
3.4	Variety of distribution of information.	44
3.5	Inception Module	44
4.1	C++/Python Integration	54
	Process & Memory layout	55
4.3	Server - Client Activity Diagram	59
5.1	Experiment 1 results	65
5.2	Experiment 2 results	66
5.3	Experiment 3 results	67
5.4	Experiment 4 results	68

5.5	Experiment 5 results	69
5.6	Experiment 6 results	70
5.7	Experiment 7 results	72
5.7	Experiment 7 results	72
5.8	Experiment 8 results	73
5.9	Experiment 9 results	75
6.1	ZCU102 FL client	77
6.2	Vitis	78
6.3	Vitis	79
6.4	Xilinx Runtime Library	80
6.5	ZCU102	81
6.6	CNN dataflow	83
6.7	convolution access pattern	84
6.8	Line Buffers, Convolution	85
6.9	Conv2D order of calculations	86
6.10	Conv2D forward propagation block diagram	87
6.11	Conv2D back propagation block diagram	90
6.12	Line Buffers, Max-Pool	91
6.13	Gradients Calculation Pipeline Block Diagram	93
6.14	Pipeline with batching latency	95
6.15	Top function	97
7.1	Accelerator's latency per batch size	105
7.2	Power Estimation	106
7.3	FPGA, GPU, CPU latency comparison	108
7.4	FPGA, GPU, CPU throughput comparison	109
7.5	IID distribution, GEs per batch size	112
7.6	IID distribution, total time per GE	113
7.7	non-IID distribution, GEs per batch size	114
7.8	non-IID distribution, total time per GE	115
7.9	GEs per batch size, IID and nonIID distribution	116

List of Tables

2.1	FL scenarios in comparison with data center distributed learn-	
	ing	28
4.1	Communication Scheme	60
5.1	Experiment 1 Parameters	64
5.2	Experiment 2 Parameters	66
5.3	Experiment 3 Parameters	67
5.4	Experiment 4 parameters	68
5.5	Experiment 5 parameters	69
5.6	Experiment 6 parameters	70
5.7	Experiment 7 parameters	71
5.8	Experiment 8 parameters	73
5.9	Experiment 8 results	74
5.10	-	74
5.11	Experiment 9 results	75
	Experiment 10 results	76
6.1	HLS responsibilities	80
7.1	Resource Utilization	102
7.2	i7-9750H specifications	107
7.3	GTX 1660 Ti specifications	107
7.4	Power Consumption	109
7.5	IID experiment parameters	111
7.6	Non-IID experiment parameters	114
7.7	Best Results - Timing	117
7.8		117

List of Algorithms

Distributed SGD	45
FederatedAveraging	47
Conv2d Software implementation.	87
Conv2d Software to HLS Transformation	88
Conv2d HLS implementation	89
	Distributed SGDFederatedAveragingConv2d Software implementation.Conv2d Software to HLS Transformation.Conv2d HLS implementation.

List of Abbreviations

AI	Artificial Intelligence
ANN	Artificial Neural Network
API	Application Programming Interface
CCPA	California Consumer Privacy Act
CNN	Convolutional Neural Network
CPU	Central Processor Unit
DNN	Deep Neural Network
DL	Distributed Learning
DP	Differential Privacy
FedAvg	FederatedAveraging
FL	Federated Learning
FLP	Flushable Pipeline
FRP	Free Running Pipeline
FPGA	Field Programmable Gate Array
GAN	Generative Adversarial Network
GDPR	General Data Protection Regulation
GPU	Graphics Processing Unit
GE	Global Epoch
HLS	High Level Synthesis
II	Iteration Interval
IID	Independent and Identically Distributed
LR	Learning Rate
MEC	Multi-access Edge Computing
ML	Machine Learning
MSE	Mean Square Error
MPC	Multi-Party Computation
PL	Programmable Logic
RNN	Recurrent Neural Network
SoC	System On Chip
VDT	Viliny Puntima Library

XRT Xilinx Runtime Library

Dedicated to my family and friends...

Chapter 1

Introduction

In recent years, edge devices with advanced computing and data collection capabilities are becoming commonplace. As a result, massive volumes of new and useful data are generated, which can be exploited in Machine Learning (ML). When combined with recent advances and techniques in ML, new opportunities emerge in a variety of fields, including self-driving automobiles and medical applications.

Traditional ML approaches demand the data to be consolidated in a single entity where learning takes place. However, due to unacceptable latency and storage requirements of centralizing huge amounts of raw data, this may be undesirable. To address the inefficiency of data silos, cloud computing architectures such as Multi-access edge computing (MEC) [1] have been proposed in order to transfer the learning closer to where the data is produced. Unfortunately, these techniques still require raw data to be shared between the edge devices and intermediate servers.

Due to growing privacy concerns, recent legislation like General Data Protection Regulation (GDPR) [2] and California Consumer Privacy Act (CCPA) [3] have severely limited the usage of technologies that transfer private data. To continue leveraging the increasing real-world data while adhering to such regulations, the concept of Federated Learning (FL) [4] has been introduced.

FL is a collaboratively decentralized privacy-preserving technology, in which learning takes place at the data collection point, i.e. the edge device. The edge devices train a ML model provided by the server and share model updates instead of raw data. As a result, collaborative and distributed ML is possible while maintaining the privacy of the participating devices.

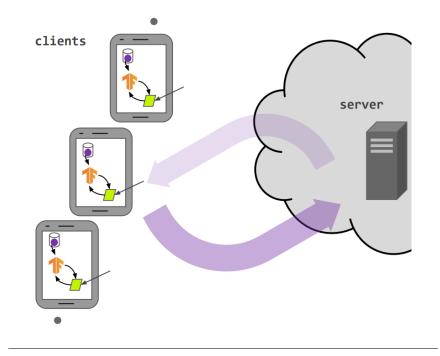


FIGURE 1.1: Simplified topology of an FL system [5]: URL.

1.1 Motivation

Most FL research, to our knowledge, focuses on simulations and treats edge devices as black boxes; generally ignoring their nature and constrains. Taking in consideration the complexities of implementing ML on hardware, recent advancements in FL might be diminished or invalidated. The main motivation of this thesis is to identify, explore and possibly overcome the intrinsic conflicts that exist between FL and Artificial Neural Network (ANN) training in Field Programmable Gate Arrays (FPGA)s.

Instead of being incompatible, these two technologies may complement each other, which is worth investigating. Frequently in FL, transformations are applied on the generated ANN variables to reduce network utilization and enhance privacy. These transformations, which include quantization [6], adding Gaussian noise [7] and others, tend to be spatially independent and could be implemented highly efficiently in hardware accelerators like FPGAs.

Finally, FL literature is almost devoid of wall-clock time examples. This thesis aims to provide a real world FL implementation that may be considered as a benchmark for future research. Furthermore, in order to be extendable and utilized in future works, the FL implementation is modular and platform independent.

1.2 Scientific Contributions

The main aim of this thesis is to explore the feasibility and efficiency of FL systems that employ FPGAs for the underlying training, focused on the edge setting. To achieve this, such a system was developed, thoroughly tested and benchmarked. Its components that can be utilized as starting points, examples or benchmarks of future works are as follows:

- An FL system that is agnostic of the underlying ML model and training method. In the context of this work, it is employed with multiple ANNs of various types that are trained on CPU, GPU and FPGA. It can be easily modified to encompass other models and training implementations.
- A robustness analysis which focuses on the mostly unexplored FL setting of small client pools and its inherent difficulties.
- An FPGA-based implementation of training a CNN, that is optimized for the parameter space where the FL process is most efficient.
- Wall-clock timings of the CNN implementation and overall FL system, compared with equivalent implementations based on other technologies.

Finally, the aforementioned analyses and benchmarks are analyzed to provide apt suggestions for future works.

1.3 Thesis Approach

As the thesis moves forward, conflicts in terms of design and implementation are anticipated to arise between the two technologies. Furthermore, this is an mostly unexplored field. As such, a conservative and steady approach is expected to work best.

Initially, a FL implementation that is agnostic and independent of the underlying training implementation, is developed. Its robustness is thoroughly validated, using TensorFlow to facilitate the local training. Subsequently, an FPGA-based CNN training implementation is created.

Furthermore, an intermediate layer that connects the networking code of the FL clients with the FPGA driver is developed. With this approach, the FL

implementation is combined with the FPGA-based implementation, and the overall system can be thoroughly tested and validated.

Finally, to benchmark the system, CPU and GPU implementation are developed and compared with it.

1.4 Thesis Outline

- **Chapter 2 Theoretical Background:** Description of the theoretical background of ML and FL.
- Chapter 3 Related Work: Related works on FL, optimization techniques and hardware implementations of it.
- **Chapter 4 FL architecture & design:** Description of the FL architecture, design and implementation developed.
- **Chapter 5 Robustness Analysis:** Analysis of the quality and performance of the FL implementation.
- **Chapter 6 FPGA Implementation:** Description of the ANN architecture, design and implementation on FPGA developed.
- **Chapter 7 Results:** Analysis of the quality and performance of the complete system. Comparisons with other technologies.
- Chapter 8 Conclusions and Related Work: Conclusions and proposals for related future works.

Chapter 2

Theoretical Background

2.1 Artificial Intelligence & Machine Learning

Various researchers and textbooks may provide different definitions of Artificial Intelligence (AI). Depending the school of though, AI is an artificial actor that thinks or acts, rationally or human-like, depending on what it knows. Generally, AI can be described as the study of intelligence agents. It is a modern science that encompasses a large variety of sub-fields, ranging from general-purpose areas, such as learning, to specific tasks like playing chess and giving medical diagnoses. AI can be relevant to any intellectual field, as it systematizes and automates intellectual tasks. [8]

Machine learning (ML) is an AI field in which agents, in addition to the performance element, include a learning element that utilises their past experiences to enhance their behaviour. The core idea behind ML is that perception should be used to improve the ability to act in the future, not simply react in the present. Designing a learning element is a multi-facet problem that is affected by three major issues. [9]

2.1.1 Information Management

The first issue is determining what information what information is useful and how it should be utilized. Different components of the input and output data should be learnt depending on the context in which the learning actor operates. One method is to directly link the current state of the actor or the world to their actions. Sometimes it can be more appropriate to infer relevant patterns from the data while ignoring unnecessary information. Another way is to collect action-value information indicating the desirability of actions based on their effect in the world state. These and other options may need to be combined in order to extract the most meaningful knowledge from the available data.

A common case is feature extraction. In ML, a feature [10] is an individual measurable property or characteristic of a phenomenon being observed. They can be generic, such as edges in an image, or specialized, such as wheels and animal height. Feature extraction is the process of transforming such raw data into numerical features that can be processed. A classing example of this is edge detection in image processing applications, as shown in figure 2.1.

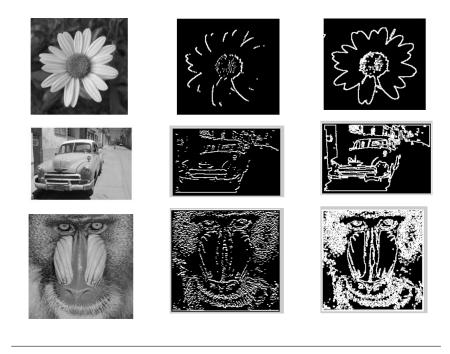


FIGURE 2.1: Edge detection in greyscale images [11]: URL.

Another key factor when designing learning systems is the availability of prior knowledge. Researchers have extensively looked into the issue where the agent uses only information that they encounter, but ways for transferring prior knowledge have been devised to speed up learning and improve decision-making.[12]

2.1.2 Feedback Mechanism

The type of feedback available has a significant impact on the design and is perhaps the most crucial aspect of the learning problem. Usually three major types are distinguished: supervised, unsupervised, and reinforcement learning. Supervised learning problems involve learning functions between sets of inputs and outputs. This is the case of a fully observable environments where the effects of the actors actions are immediately visible or the existence of a third party providing the correct solutions.

Unsupervised learning problems, on the other hand, do not supply output values and learning patterns are solely based on the input. As it has no knowledge of what constitutes a correct action or a desired state, an unsupervised learning agent cannot learn what to do. The hope is that through mimicry, the algorithm will generate imaginative content from it. This is a common scenario for probabilistic reasoning systems or when generating output data is prohibitively expensive. For the last case, a semi-supervised learning setting, in which only a subset of the outputs is generated, might be useful.

In the reinforcement learning setting there is no correct output provided, instead a reward is given to actor appropriate to the desirability of their actions. This is common when the world which the actor take part in continuously change according to their actions, or a desirable or undesirable state may be reached after a series of actions.

2.1.3 Representation of the learned information

The representation of the learned information is another important factor in establishing how the learning algorithm should operate. Common schemes include linear weighted polynomials for utility functions, propositional or first order logic, probabilistic representations like Bayesian Networks[13] and ANNs[14], and other methods have all been created.

2.2 Deep Learning

Deep learning is a sub-field of ML, partially overlapping with big data science. Their associaton is illustrated in figure 2.2. It consists of algorithms that use the perceptron as their basic building block, which is a mathematical function based on the McCulloch-Pitts model of biological neurons. They typically have hundreds of thousands to millions of perceptors with a variety of designs and topologies. Deep learning architectures include Deep Neural Networks (DNN)s, Convolutional Neural Networks (CNN)s, Recurrent Neural Networks (RNN)s and others, each one offering different capabilities and options.

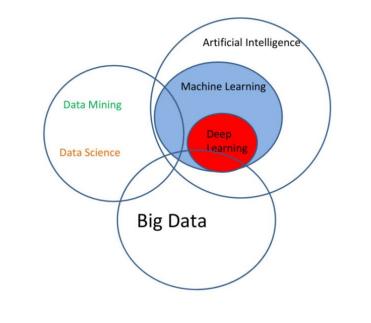


FIGURE 2.2: AI, ML, DL, Data Mining, Data Science, and Big Data [15]: URL.

Deep learning applications have demonstrated human-like or superior capabilities in several scientific and commercial fields such as image[16] and speech[17] recognition, natural language processing[18], climatology[19] and biotechnology[20]. Due to these exceptional capabilities and wide range of applications, deep learning has attracted a large number of researchers from various scientific domains, resulting in its tremendous expansion. However, the science is still young and there are a number of challenges to be overcome. Expecting deep learning combined with improved data processing being a solution to computers gaining generic human-like intelligence (human equivalent AI) is still a distant dream.[21]

Historically, the field of deep learning emerged in 1943 with the inception of the aforementioned McCulloch-Pitts perceptron, shown in figure 2.3. In 1949, Donald Hebb noted out in his book "The Organization of Behavior" that neural pathways are strengthened each time they are utilized, a principle that is crucial to how humans learn. He claimed that when two nerves fire at the same moment, the link between them is strengthened. This progress resulted in the creation of the first real-world application of ANNs, "MADALINE" an adaptive filter that eliminates echoes on phone lines. In 1962, Widrow & Hoff developed a learning procedure that distributed the error across the ANN, resulting in its eventual elimination. Despite these advances, deep learning research plummeted due to a variety of internal and external factor, including the widespread use of fundamentally faulty learning function and the adoption of von Neumann architecture across computer science.

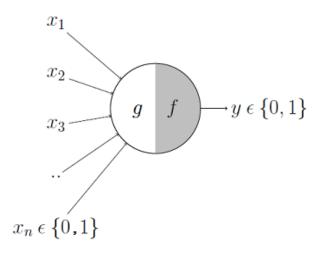


FIGURE 2.3: The McCulloch-Pitts Neuron [22]: URL.

Deep learning research stagnated until 1975, when developments such as Werbos' backpropagation and the building of the first multilayered network reignited interest in the field. Since then, the field continues to expand with innovations like hybrid models and ANN pooling layers. The current focus is on developing deep learning-specific hardware, as fast and efficient ANNs rely on it being defined for their use. Generally, architectures based on accelerators such as GPUs and FPGAs, or VLSI hardware-based designs, outperform CPU-based architectures. [23]

2.2.1 Artificial Neuron

As previously stated, the perceptron, also known as the artificial neuron, is the fundamental building element of the deep learning algorithms. In its simplest form, the artificial neuron receives one a set of inputs and sums it to produce an output. In practice, each input is weighted, then summed with a bias variable that acts as a threshold value, and the output is produced using an activation function. The mathematical formula of the artificial neuron is defined as:

$$y = \Phi(b + \sum_{i=1}^{l} x_i * w_i)$$
(2.1)

Where:

y =output b =bias I =number of inputs

 $\Phi = activation function$

w = weight

2.2.2 Activation Functions¹

The activation function[24] of the artificial neuron is arguably its most important feature. It specifies how the weighted total of the inputs is transformed into an output (a target variable, class label, or score). Sometimes they limit their output range and are called squashing functions. There are various functions that are used as activation functions, with different properties and use cases each.

Most activation function are usually nonlinear so that the output varies nonlinearly with the inputs. With a linear activation function, regardless of how many layers a ANN has, it would behave just like a single-layer perceptron, as stacking linear functions creates just another linear function. Nonlinearity is, arguably, the most important aspect of the activation functions.

Activation functions are usually differentiable, which means that for a given input value, the first-order derivative can be determined. This is necessary because ANNs are mostly trained using the backpropagation of error algorithm, which requires the derivative of prediction error to update the model's parameters.

Binary Step

This is arguably the most basic activation function, as it was originally used in the McCulloch-Pitts Neuron and operates like a simple threshold. It activates the output of the perceptron when a certain value is exceeded, else the

¹Also called transfer functions.

output is set as zero.

$$f(x) = \begin{cases} 0 & x \le threshold \\ 1 & x > threshold \end{cases}$$
(2.2)

Sigmoid

Also known as the logistic function, it normalizes and squashes the output of the neuron between 0 and 1. Its most important properties are that the output is barely affected by extreme values and the derivative is easily calculated.

$$f(x) = \frac{1}{1 + e^{-x}}$$
(2.3)

ReLU

Because of its simple implementation, non-linearity, and high performance, the Recti-Linear Unit or ReLU function is arguably the most commonly utilized function in ANNs. It combines the binary step function for negative values and the identity function for positive values.

$$f(x) = \begin{cases} 0 & x \le 0\\ x & x > 0 \end{cases}$$
(2.4)

Softmax

Softmax ensures that all the outputs sums to 1 by normalizing them to a probability distribution. As such, it is mostly used as the final activation function in multi-decision ANN models.

$$f(x)_{i} = \frac{e^{x_{i}}}{\sum_{k=1}^{K} e^{x_{j}}}$$
(2.5)

2.2.3 Artificial Neural Network Architectures

ANNs are collections of artificial neurons, typically organized in layers. Different layers may utilize different activation functions and/or apply different transformations to their inputs. Generally, the outputs of one layer's neurons are connected with the inputs of the following layer's neurons. If this holds true for all neurons in the ANN, the ANN is "fully connected". Alternatively, connections can be sparser, or loops between one or more layers can be created, giving the ANN different traits and capabilities. When designing a layer, its position in the ANN is probably one of the most important variables. The input layer is the layer that accepts external data and is significantly dependent on the structure of the input; text input requires quite different management than visual input. The output layer is the layer that generates the final result, and its primary design factor is the nature of the output, which can be a yes or no answer, a classification or a set of probabilities. Usually, in order to have a human-readable output, specialized activation functions like Softmax are used.

Deep Neural Network (DNN)

Between the input and output layers, there can be zero or more "hidden" layers, as shown in figure 2.4. Typically, the majority of the network's computation takes place in these layers, and their design is influenced by a variety of criteria such as the nature of the problem and the input, available processing resources, and the required minimum capabilities. A DNN is defined as a ANN that has multiple hidden layers.[25]

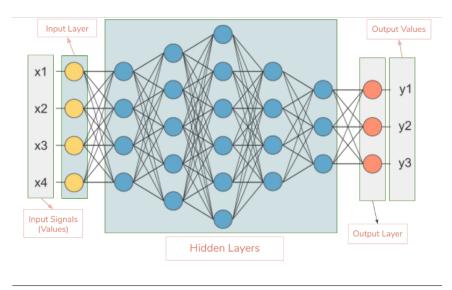


FIGURE 2.4: DNN with 5 hidden layers [26]: URL.

Convolutional Neural Network (CNN)

The introduction of CNNs[27] is arguably one of the most significant achievements in the field of Deep Learning. They excibit great performance in image and video recognition, recommender systems, image classification, image segmentation, medical image analysis, natural language processing, braincomputer interfaces, and computer vision, among other applications. They perform best when the input is an image or a succession of images, but they are also effective in other scenarios.

CNNs are distinguished by their use of convolutional and subsampling layers, shown in figure 2.5, which enable the creation of multiple filters that can be trained in parallel. These filters are utilized to isolate and extract features from input data that would be undetectable by simpler DNNs. Subsequently, in order to get a result, the output of these filters is fed to fully connected layers. The design and depth of these filters are directly responsible for the network's feature extraction capabilities.

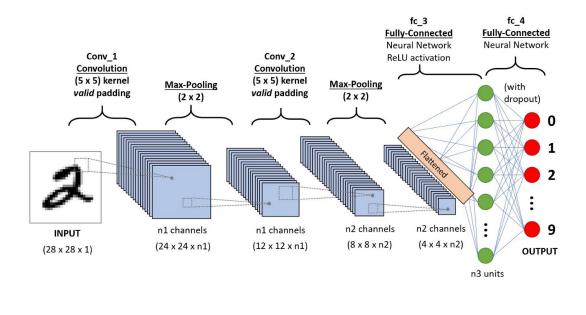


FIGURE 2.5: A CNN sequence that classifies handwritten digits using 2 convolutional layers [28]: URL.

Convolutional layers carry out the convolution process with the help of small matrices known as kernels. The kernel is the beating heart of a layer, and its type and dimensionality determine how the layer functions. Typically, two-dimensional kernels are used, while their size is mainly depended on the size of the input and their position on the network. Figure fig:2D 2.6 shows the operation of such a kernel.

A single convolutional layer can usually only produce filters that detect generic low-level features, such as edges and color. In order to create more specialized filters that can detect high-level features, multiple layers are used.

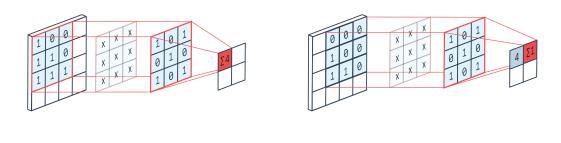


FIGURE 2.6: 2D convolution: URL.

The subsampling layers is the second distinguishing innovation of CNNs. Their primary task is to enable the network to recognize features without relying on their exact location. Furthermore, they simplify the network by reducing its number of parameters. Typically, they immediately follow convolutional layers in order to decrease the size of the features. Common subsambling layers include max pooling, mean pooling and others. A max pooling layer can be seen in figure 2.7.

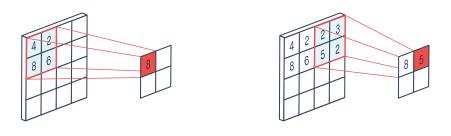


FIGURE 2.7: 2D max pooling: URL.

2.3 Training Artificial Neural Networks

As previously stated, ANNs are made up of neurons, which contain multiple parameters known as weights and biases, which are generally referred simply as weights. Training² is an iterative process that aims to improve the ANN's performance by optimizing these parameters. To accomplish this, three key elements are required: a loss function, an optimization algorithm such as gradient descent and a training algorithm like backpropagation.

In supervised learning, input-output examples are fed to the ANN. It produces predictions based on the inputs and then uses the loss function to

²Also called fitting.

compare these predictions to the intended outputs. The loss function calculates the ANN's error, which is a quantifiable difference between the expected and actual output. The error gradients of the ANN's weights are then determined, commonly using the backpropagation process. Finally, the optimization algorithm uses the error gradients to generate new values for the weights that should perform better.

In unsupervised learning, only input examples are given. The ANN attempts to mimic the data it is given and optimizes itself using the mistake in its output. Instead of a loss function, the error is represented as the likelihood of an incorrect output. The error gradients can be computed using a variety of learning algorithms, such as Maximum Likelihood, Maximum A Posteriori, and others, rather than the predominantly used backpropagation in supervised learning. Finally, to generate new values for the ANN's weights, any optimization algorithm may be employed.

In reinforcement learning, the ANN produces a prediction and subsequently receives a feedback³, usually numerical, regarding its performance. The loss function uses this feedback and prediction, and like in the supervised learning, the error gradients are calculated through backpropagation. Finally, the ANN's weights are updated using a optimization algorithm.

The training technique varies greatly depending on the problem, the ANN architecture, and numerous other factors, but it is always iterative. An epoch is typically defined as using all of the data points in the training set once.

2.3.1 Initialization

The initialization of the ANN's weights has a significant impact on the ANN's final performance and training time. Naive methods, such as zeroing all weights or assigning them fully random values, might produce detrimental effects. If the weights in a ANN start out too small, the signal will shrink as it passes through each layer, eventually becoming too small to be useful. Likewise, if the weights in an ANN start out too large, the signal grows too huge as it goes through the layers, eventually overwhelming all other signals. As a result, the ANN may require a significant amount of training time or possibly become stuck in its initial state and not converge to a solution.

³Feedback is frequently given after a series of predictions.

One common ANN initialization scheme used to solve this problem is called Glorot⁴ Initialization[30, 31]. The idea is to initialize each variable with a small Gaussian value with mean of 0 and variance based on its fan-in and fan-out⁵. The Glorot Initialization not only outperforms uniform random initialization (in most circumstances), but it also eliminates the need to determine appropriate fixed limit values. There are actually two versions of Glorot initialization, Glorot uniform and Glorot normal, with different distribution and variance.

The variance of the Glorot Initialization is defined as:

$$V[W_i] = \frac{2}{n_i + n_{i+1}}$$
 (2.6) $V[W_i] = \frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}$ (2.7)

Uniform distribution

Normal distribution

Where:

V = variance i = layer W = weights n = fan-in of a layer

The Glorot initialization makes the assumption that the activations immediately after initialization are linear, as the initialized values are close to zero and their gradients close to 1. While this holds true for the traditional activation function its development was based on⁶, it is invalid for the more modern rectifying nonlinearities⁷ in which the non-linearity is at zero. As such, the He Initialization [32, 33] was proposed, with Gaussian distribution and the following variance:

$$V\left[W_i\right] = \frac{2}{n_i} \tag{2.8}$$

2.3.2 Loss Functions⁸

A loss function[34] provides a real number that represents the error a function associated with an event. In Deep Learning, it quantifies the inaccuracy of a ANN. The training algorithm tries to minimize this number by altering

⁴also known as Xavier. [29]

⁵In a fully connected ANN, the fan-out of a layer equals the fan-in of the next layer. ⁶Sigmoid, tanh and softsign.

⁷ReLU and PReLU.

⁸Also called cost or error functions.

the ANN's weights, in hopes that it improves the network's accuracy. The choice of loss function is influenced by the nature of the input, as well as by the nature of the output. Some of the most common loss functions are listed below.

Regression Loss Functions

Regression problems involve predicting numerical values, a number or set of numbers. This is a usual problem in supervised learning. The appropriate loss functions measure the distance between the prediction and the ideal values.

The most frequent regression loss function is Mean Squared Error (MSE). This method is utilized when the prediction belong to a continuous plane. The MSE is the mean of the squared distances between the predicted values and the target variables.

$$Loss = \frac{\sum_{i=1}^{n} \left(y_i^{target} - y_i^{pred.} \right)^2}{n}$$
(2.9)

When the data are discrete values, the Poisson loss function is more appropriate. Under the assumption that the target comes from a Poisson distribution, minimizing the Poisson loss is equivalent of maximizing the likelihood of the data.

$$Loss = \frac{1}{N} \sum_{i=0}^{N} \left(y_i^{pred.} - y_i^{target} \log y_i^{pred.} \right)$$
(2.10)

Classification Loss Functions

In classification problems, the examples must be classified into one or more classes, which may or may not be preset. The ANN generates a probability distribution that represents its confidence in the example's classification.

Binary cross-entropy is a loss function that is used in binary classification tasks with predefined classes. These are tasks that answer a question with only two choices.

$$Loss = -\frac{1}{\underset{size}{output}} \sum_{i=1}^{output} y_i^{target} \cdot \log y_i^{pred.} + \left(1 - y_i^{target}\right) \cdot \log \left(1 - y_i^{pred.}\right)$$
(2.11)

In problems with more than one classes, the categorical cross-entropy loss function, a generalization of binary cross-entropy loss function, is most commonly used. The y_i^{target} is the probability that event *i* occurs and the sum of all these probabilities is 1, meaning that exactly one event may occur.

$$Loss = -\sum_{i=1}^{output} y_i^{target} \cdot \log y_i^{pred.}$$
(2.12)

Classification problems in unsupervised learning is quite different, as the desired output is not provided to the ANN. The most commonly used training algorithm is k-means clustering. It aims to partition the examples into a predefined number of clusters. To achieve this it tries to minimize the pairwise squared deviations of points in the same cluster. The equivalent to a loss function is defined as:

$$\arg\min_{S} \sum_{i=1}^{N} k \frac{1}{|S_i|} \sum x, y \in S_i ||x - y||^2$$
(2.13)

Where:

S =clusters x, y =points in cluster

2.3.3 Backpropagation

Backpropagation[35, 36] is a training algorithm for feedforward ANNs under supervised learning⁹. Feedforward ANNs refers to fully connected networks with no cyclical connections, most DNNs and CNNs adhere this standard. For a single example, backpropagation computes the gradient of the loss function with respect to the network weights. The gradient[37] represent the direction and rate of fastest rise. If a function's gradient is non-zero at a point, the gradient's direction is the direction in which the function increases the fastest, and the magnitude of the gradient is the rate of growth in that direction, in respect of that point.

Backpropagation is sometimes misconstrued to mean the entire learning algorithm for ANNs. Backpropagation is merely the method for computing the gradient; another algorithm, such as stochastic gradient descent, is needed to accomplish learning using this gradient. Furthermore, backpropagation

⁹Generalizations of the algorithm can be used for other network architectures and different training schemes.

is frequently misinterpreted as being limited to ANNs while, in fact, it may compute derivatives of any function. Its use to ANNs is critical because it enables efficient training, especially when using hardware accelerators.

The ANN can be mathematically expressed as:

$$g(x) \coloneqq f^{L} \left(W^{L} f^{L-1} \left(W^{L-1} \cdots f^{1} \left(W^{1} x \right) \cdots \right) \right)$$
(2.14)

Where:

 $\begin{array}{ll} x &= \mathrm{input} \\ g(x) &= \mathrm{prediction} \\ f^l &= \mathrm{activation} \ \mathrm{functions} \ \mathrm{at} \ \mathrm{layer} \ l \\ W^l &= \mathrm{weights} \ \mathrm{at} \ \mathrm{layer} \ l \\ L &= \mathrm{number} \ \mathrm{of} \ \mathrm{layers} \end{array}$

Then the error function *C* with desired output *y* is:

$$C\left(y, f^{L}\left(W^{L}f^{L-1}\left(W^{L-1}\cdots f^{1}\left(W^{1}x\right)\cdots\right)\right)\right)$$
(2.15)

By using the chain rule the total derivative of the loss function is:

$$\frac{\mathrm{d}C}{\mathrm{d}y} \circ \left(f^{L}\right)' \cdot W^{L} \circ \left(f^{L-1}\right)' \cdot W^{L-1} \cdots \left(f^{1}\right)' \cdot W^{1} \tag{2.16}$$

Given that the gradient ∇ in respect to the input is the transpose of the derivative in respect to the output, the total gradient can be determined as:

$$\nabla_{x}C = \left(W^{1}\right)^{T} \cdot \left(f^{1}\right)' \cdots \circ \left(W^{L-1}\right)^{T} \cdot \left(f^{L-1}\right)' \circ \left(W^{L}\right)^{T} \cdot \left(f^{L}\right)' \circ \nabla_{y}C$$
(2.17)

The partial gradients at each layer δ^l , which represent the effect of the weights in the corresponding layers on the error function, may be easily determined by eliminating the effect of the previous ones:

$$\delta^{1} = \left(f^{1}\right)' \circ \left(W^{2}\right)^{T} \cdot \left(f^{2}\right)' \cdots \circ \left(W^{L-1}\right)^{T} \cdot \left(f^{L-1}\right)' \circ \left(W^{L}\right)^{T} \cdot \left(f^{L}\right)' \circ \nabla_{y}C$$

$$\delta^{2} = \left(f^{2}\right)' \cdots \circ \left(W^{L-1}\right)^{T} \cdot \left(f^{L-1}\right)' \circ \left(W^{L}\right)^{T} \cdot \left(f^{L}\right)' \circ \nabla_{y}C$$

$$\delta^{L-1} = \left(f^{L-1}\right)' \circ \left(W^{L}\right)^{T} \cdot \left(f^{L}\right)' \circ \nabla_{y}C$$

$$\delta^{L} = \left(f^{L}\right)' \circ \nabla_{y}C$$
(2.18)

A naive approach would be to compute these derivatives forward. Backpropagation, on the other hand, eliminates duplicate multiplications by employing dynamic programming, as the derivative of one layer can be used to calculate the derivative of the previous one. Furthermore, by going backwards, a vector δ^l is multiplied by exactly one matrix $(W^l)^T \circ (f^{L-1})'$ at each step. When calculating forwards, however, each multiplication multiplies a matrix with L - l matrices, which is a far more expensive operation.

2.3.4 Gradient Descent

Gradient descent[38, 39] is an optimization algorithm which is commonly used to train ANNs. Gradients generated by training algorithms such as backpropagation are used to alter the network's weights, in order to produce the minimal possible error. Its basis is that a differentiable function *F* decreases fastest at a point a_n , in the direction of the negative gradient of that point $-\nabla F(a_n)$. Mathematically it is defined as:

$$a_{n+1} = a_n - \gamma \nabla F\left(a_n\right) \tag{2.19}$$

The learning rate parameter γ is the size of the step taken each time the algorithm is executed. It has a significant impact on the overall performance of the training procedure and should be fine-tuned. If it is too large, there is a high risk of overshooting the minimum of the function. If it is too small, more iterations are needed, and there is a risk too end up in a suboptimal local minimum. The effect of its value is shown in figure 2.8.

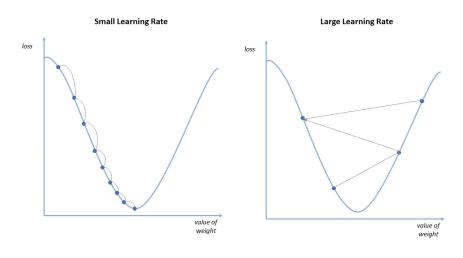


FIGURE 2.8: Effect of different learning rate values in Gradient Descent [38]: URL.

Challenges

Gradient descent faces challenges with local minima and saddle points, such as those in figure 2.9, where the gradient gets close to zero and the algorithm is unable to accurately re-adjust the weights of the ANN. Local minima resemble the global minimum in shape, trapping the algorithm. Saddle points are stable positions with no relative maximum or minimum, making it difficult for the algorithm to decide what to do.

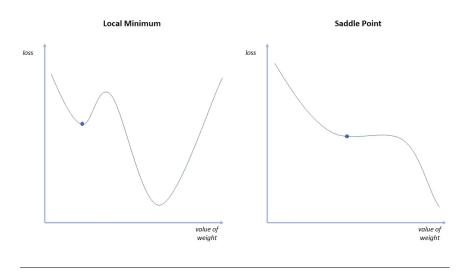


FIGURE 2.9: Local minimum and saddle point [38]: URL.

To address this issue, a number of enhancements have been developed culminating in the Nesterov Momentum[40] extension. To accelerate the process, the first adjustment is to add a momentum variable, a percentage β of the previous iterations' change *m*. Simply adding that tends to result in overshooting. To mitigate this, the calculation of the gradient takes the momentum of the previous steps into account. With Nesterov momentum, the gradient descent is defined as:

$$m_{n+1} = \beta m_n - \gamma \nabla F \left(a_n + \beta m_n \right)$$

$$a_{n+1} = a_n + m_{n+1}$$
(2.20)

In deep ANNs with numerous or repeating hidden layers, training with backpropagation and gradient descend introduce the phenomenon of vanishing gradients. As the algorithm travels backwards through the layers, the gradients get smaller and smaller, eventually becoming insignificant and unable to alter the weights of the network. Non monotonic activation functions, such as ReLU, and more complex topologies, such as residual ANNs, are prevalent but not exclusive solution.

Another problem, especially frequent in RNNs, is exploding gradients. This occurs when a gradient gets too large, turning the model unstable. To address this, techniques such as dimensionality reduction have been developed, with the goal of reducing the model's overall complexity.

Variations

In vanilla Gradient Descent, each example's error is assessed, the gradients are produced and then the weights of the ANN are updated. In order to calculate the error of an example, the update of the prior one must be applied first. Since this process cannot be parallelized and must be repeated for each example, it is computationally inefficient.

Furthermore, the dataset is often used multiple times during the training of a model. In vanilla Gradient Descent, the examples are used in order. This pattern is often recognized by the models, which then introduce biases that lead to less-than-ideal solutions.

To address these inefficiencies, three key variations have been developed:

• Batch Gradient Descent

Batch gradient descent performs backpropagation and updates the network only after calculating the loss function for *all* the examples in the training dataset. The expensive operations of calculating the gradients and new weights occur just once per epoch, resulting in a computationally more efficient algorithm. Furthermore, the loss function can be parallelized indefinitely.

This method yields a stable error gradient and convergence, but it frequently leads to local minima. Furthermore, in order to calculate the loss, all of the data must be in memory, making the approach unsuitable for huge datasets. Finally, more passes through the dataset are needed, as updates are infrequent.

• Stochastic Gradient Descent (SGD)

SGD works similarly to vanilla Gradient Descent, with the exception that the training examples are chosen at random. This eliminates the bias produced by consuming the examples in a particular order. Furthermore, its frequent updates produce noisy gradients, which aid in avoiding local minima.

• Mini-batch Stochastic Gradient Descent

Mini-batch SGD builds on the ideas of the previous variations by splitting the training dataset randomly into small batches and performing updates on each one of them. This method achieves a balance between the computational efficiency of batch gradient descent and the randomness of SGD. This is by far the most popular variation, and it is commonly abbreviated just as SGD.

2.3.5 Model Overfitting

The goal of training ANNs is to improve their performance on real-world data, i.e. to generalize its knowledge. When training, the model¹⁰ may sometimes fit exactly against training data, severely limiting its effectiveness with previously unseen data and negating its objective.

Training is typically conducted with a sample dataset. If the model trains on this for too long, or if the model is overly sophisticated, it may memorize irrelevant information, the "noise" within the training dataset. This is known as overfitting[41], and the most common signs are unusually high accuracy on the training dataset and high variance within the predictions of the network. I visual representation of overfitting is shown in diagram 2.10.

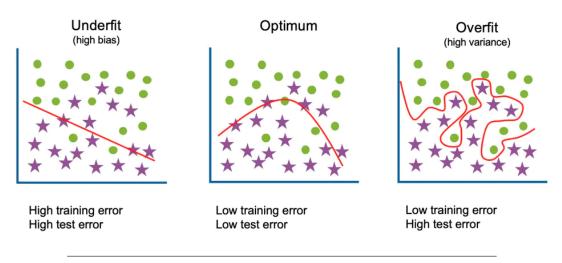


FIGURE 2.10: Model overfitting and its opposite, model underfitting [41]: URL.

Multiple methods to avoid or suppress overfitting have been developed, some common ideas are listed below:

¹⁰Most statistical models, not just ANNs, exhibit this phenomenon.

• Early stopping

This method aims to stop the training before the model starts learning the noise within the model. To achieve this, a portion of the training dataset is held aside for testing rather than being used during training. This dataset is used to evaluate the ANN after each epoch, and if the accuracy is lower than before, training is terminated. There is a risk of stopping too soon and underfitting the model; a middle ground should be sought, like in diagram 2.11.

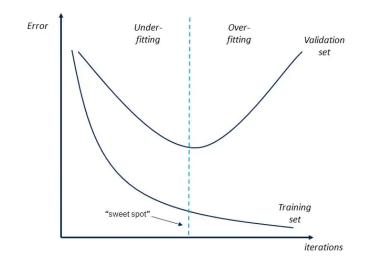


FIGURE 2.11: Border between overfitting and underfitting [41]: URL.

• Data manipulation

A common way to reduce overfitting is through manipulating the input data. Expanding the training dataset with real-world or machine-generated data can assist the model in identifying patterns between the input and output variables. When using clean and relevant data, this strategy is effective; otherwise, the model may grow too complex and overfit even more. Another technique is augmenting already existing data by adding noise to them. The goal is to help the model discern between useful and irrelevant patterns.

Model simplification

Multiple methods attempt to enhance the model's performance by simplifying it and the problem that is called to solve. Feature selection refers to a class of methods that enhance the training dataset by removing examples. Such methods include removing highly correlated features and incomplete examples, selecting the best features through statistical methods and others. Another family of methods, such as the Principle Component Analysis, seek to transform the features by reducing their dimension.

The preceding methods necessitate some level of domain knowledge, which is not always available. In this scenario, regularization methods are particularly helpful, as they aim to reduce complexity by altering the model. In general they try to penalize input parameters with large coefficients, typical in examples with significant noise, in order to minimize the variance in the model. Such methods include L1 regularization, dropout and others.

2.4 Federated Learning

Federated Learning [4, 42] (FL) is a ML setting in which multiple clients, ranging from big enterprises to personal mobile devices, collaborate to train a model under the supervision of a central server. The goal of this is to alleviate many of the systemic privacy problems associated with centralization by decentralizing the training data. Under FL, any model that employs SGD-like approaches can be trained. ANNs, linear regression, Support Vector Machines, and other models fall into this category. FL acts as a wrapper for ML; what is true for a model when trained locally tends to hold true when trained in a FL context.

In general, the FL setting has two basic entities: data owners (participating clients) and model owners (orchestrating server). Participants never share their datasets, instead use them to locally train a model sent by the orchestrating server. The generated weights are shared, which the server aggregates them in order to construct a global model. The models trained by the clients are referred as local models whereas the aggregated model is referred as global model.

The entities are typically configured in a hub-and-spoke topology, as shown in figure 2.12, with the hub representing the coordinating server and the spokes connecting to the clients. The server organizes the training but never access the training data.

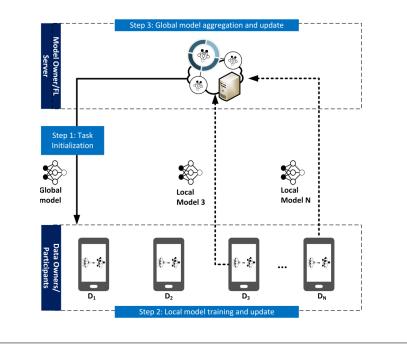


FIGURE 2.12: Typical FL topology [42]: URL.

2.4.1 Typical Federated Training Process

FL training is a continuous process. Each iteration is referred as a global epoch (GE) and can be broken down into three main steps:

Task Initialization

Before any training can begin, the server has to complete a series of necessary tasks. It must first determine whether training should continue; if the target accuracy has been met or there are no available clients, there is no point to do. Furthermore, the server must specify any parameters or hyperparameters that are under its responsibility. FL design is flexible; factors such as learning rate may be controlled centrally by the server or by the clients.

After deciding how the training will proceed, the server must select *N* clients to participate. Clients may be chosen at random, based on eligibility requirements, etc. Finally, the server broadcasts the weights of the global model, together with any relevant metadata such as training parameters or a training program.

Local Training

Upon receiving the global model, each selected client locally computes an update to it using their private data. This update is referred to as a local

model. Training is carried out in accordance with any training parameters or programs that are provided. The objective f of a selected client n is to minimize its loss function L depending on the weights of the global model w_g and the local data d_i :

$$f_n\left(w_g\right) = \operatorname*{arg\,min}_{n \in N} L\left(w_g; d_n\right) \tag{2.21}$$

Subsequently, any required transformation may be applied to the local model. Such transformations include quantization and compression to reduce communication time, adding differential noise to increase privacy, and others. The finalized local model weights are sent to the server, together with any relevant statistics, and the client waits till it is selected once more.

Model Aggregation

The server collects and aggregates the local models to generate a new global model. The aggregation is implementation dependent; it might simply be averaging the models, or it could be biased toward some based on their statistics, how many times they have participated, and so on. The global model can be evaluated using server-accessible public data. The objective of the server is to minimize the global loss function:

$$F\left(w_{g}\right) = \frac{1}{N} \sum_{n=1}^{N} f_{n}\left(w_{g}\right)$$
(2.22)

This process is repeated until the global loss function converges.

2.4.2 Federated Learning Settings

FL can be used in a broad array of applications with significantly diverse contexts and constraints [5, 43]. An example of FL across data centers could be hospitals that cooperatively train a cancer recognition model utilizing data from their patient diagnoses. Moreover, a real-world application of IoT FL is the training of a next-word prediction model for Google's Gboard [44] utilizing users' personal text messages. Table 2.1 seeks to describe two generalized FL scenarios and compare them with data center Distributed Learning (DL).

Data center DL	Data center FL	IoT FL
Training is distributed among nodes in a data center. A centralized dataset is used.	Organizations collaborate to train a model utilizing data in their data centers.	A large number of IoT de- vices are utilized to train model with their private data.
Data is balanced across nodes. Clients can access the whole dataset.	Data is created locally and is kept decentralized. A client cannot access other clients' data. Generally, data is not independently or identically distributed.	
Flexible, data can be repar- titioned arbitrarily during training.	Fixed, partition axis can be by example or by feature.	Fixed partitioning by ex- ample.
Centrally orchestrated.	The training is organized by no access to the training dat	
Fully connected nodes in a cluster.	Typically hub-and-spoke.	
Typically 1 to 1000 nodes.	From a couple to a few hundred data centers.	Massively parallel, up to millions of clients.
Almost always available.		Only a fraction of the IoT devices is available at any single time.
Few to no failures.		Unreliable, a part of the participating clients is ex- pected to disconnect due to power or network is- sues.
Clients are identifiable and can be addressed explicitly.		Generally unaddressable to enhance privacy.
Statefull, nodes can partic- ipate in every epoch, car- rying state from one to the next.	Any, design depended.	Mostly stateless, clients will most likely participate in only one epoch before being replaced.
Computation. In a data center, a very fast network between nodes can be as- sumed.	Can be either computation or communication, prob- lem depended.	Both, IoT tend to have low processing power and op- erate on slow connections (e.g. wifi).
	Training is distributed among nodes in a data center. A centralized dataset is used. Data is balanced across nodes. Clients can access the whole dataset. Flexible, data can be repar- titioned arbitrarily during training. Centrally orchestrated. Fully connected nodes in a cluster. Typically 1 to 1000 nodes. Almost alwa Few to no Clients are identifiable and Statefull, nodes can partic- ipate in every epoch, car- rying state from one to the next. Computation. In a data center, a very fast network between nodes can be as-	Training is distributed Organizations collaborate to train a model utilizing data in their data centers. A centralized data in their data centers. dataset is used. Data is balanced across Data is created locally and is cannot access other clients' independently or identically flexible, data can be repartitioned arbitrarily during by example or by feature. Training. Centrally orchestrated. The training is organized by no access to the training data cluster. Typically 1 to 1000 nodes. From a couple to a few hundred data centers. Almost always available. Few to no failures. Clients are identifiable and can be addressed explicitly. Statefull, nodes can participate in every epoch, carrying state from one to the next. Computation. In a data can be either computation or communication, problem of the additional center, a very fast network between nodes can be as-

TABLE 2.1: FL scenarios in comparison with data center distributed learning.

2.4.3 Unique Characteristics & Challenges of FL

Aside from the standard challenges associated with ML development, there are a number of obstacles specific to FL. These issues distinguish the federated setting from more traditional problems such as private data analysis and data center DL. [42, 5, 45, 43, 46]

System Heterogeneity

Client computational and communication capabilities can vary greatly in FL. They may differ in architecture (CPU, GPU, FPGA) and resources. Furthermore, they may be networked using different technologies (e.g., 4G, 5G, wifi) with varying reliability and bandwidth. Finally, some of them may be less eager to participate. All this leads to random and unpredictable client disconnections, as well as the appearance of "stragglers" [47], clients who take substantially longer to provide their updates than the rest and impede the entire process. Figure 2.13 exhibits the unreliability of clients in on-edge FL.

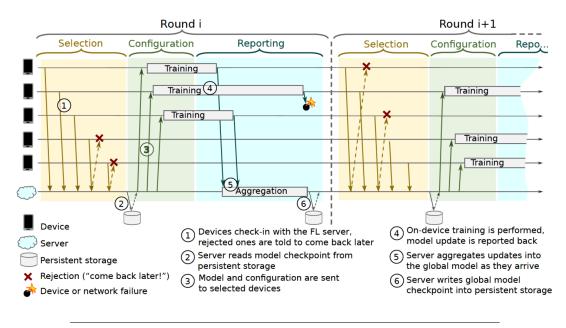


FIGURE 2.13: FL with unreliable clients [42]: URL.

Statistical Heterogeneity

It is frequently assumed in distribution optimization problems that the data are independent and identically distributed (IID). This is commonly violated in the federated setting, adding complexity to problem modeling, analysis, and solution evaluation. Data generation and collection are frequently uneven between clients, and the server is unable to collect or check the quality and distribution of their data due to privacy issues.

Expensive Communication

Communication is a critical bottleneck in many FL applications. In traditional data center DL, the communication environment is assumed to be perfect, with low latency, high bandwidth and negligible to no packet loss. This assumption is not appropriate to FL training, as clients are expected to be in different locations and with varying amounts of resources. This is especially true in edge FL, where the on-device datasets are small and connections are slow and unreliable, resulting to a high communication to computation ratio.

Privacy and Security Concerns

The primary concern of FL applications is to protect the privacy of the participating clients. However, malicious participants or third parties may be able to infer sensitive information from shared parameters, defeating the main goal of FL. Furthermore, it is mostly assumed that all participants are wellintentioned, yet this is not always the case. Malicious clients may try to undermine the accuracy of the model or install backdoors into it by utilizing poisonous datasets.

2.4.4 Systems Heterogeneity

The previously discussed systemic characteristics of FL aggravate issues like straggler mitigation and fault tolerance. The slowest participating client has a significant impact on the duration of a GE. They can substantially impede training speed, thus removing them from the process is generally considered. Furthermore, if the server waits indefinitely for the client updates and a client disconnects without notifying, the entire system would hang. These issues are especially prevalent in on-edge setting where there is little information or control over the clients' resources.

FL algorithms must be able to handle heterogeneous hardware and resist against random and unpredictable client drops. A frequent option is to disconnect clients who have not responded within a predetermined amount of time. Additionally, using more clients per epoch than necessary and accepting updates from those who respond first can help to eliminate stragglers. While effective, such strategies can induce biases in favour of the datasets of the fastest clients, reducing the overall accuracy of the model.

More sophisticated proposed solutions include intelligent client selection by only accepting clients that report their resources prior participating or tracking statistics on their overall performance. Such methods are not always feasible since they may jeopardize the privacy of the clients. A major portion of FL research employs simulations and avoid these problems, letting these challenges the least explored.

2.4.5 Data Distribution

A dataset is Independent and Identically Distributed (IID) if each example in it has the same probability distribution as the others and all are mutually independent. Models' accuracy, convergence rate, and fairness can all be degraded by training with non-IID datasets. Traditional ML avoids these issues by using a single, massive dataset that the designer is allowed to manipulate.

On the other hand, as shown in figure 2.14, FL encompasses a set of smaller datasets that may statistically differ from one another, and the designer may not be in control of or even aware of that. Ideally, a global dataset could be established by aggregating all of these small local datasets, however in reality this is impossible because the data cannot be centralized.

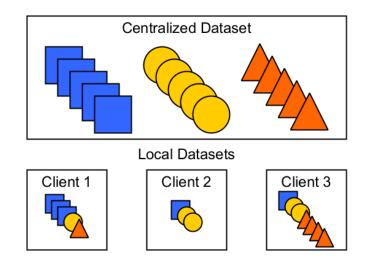


FIGURE 2.14: Centralized Dataset vs. Local Datasets. An IID dataset may transform to non-IID when distributed between clients.

Non-Identical Client Distributions

A global dataset used during FL may not be IID for a variety of reasons. First of all, a client's private dataset may locally violate independence, but this can usually be fixed via local shuffling. The statistical variations between the local datasets are more significant.

The distribution of a local dataset $P_i(x, y)$ can be rewritten as $P_i(y|x)P(x)$ and $P_i(x|y)P(y)$, where x and y are the input-output pairs. To classify the overall data as non-IID, the distributions of at least two clients, i and j, must differ; that is $P_i \neq P_j$. There are several causes for this, including:

- *Feature distribution skew* (covariate shift), P_i(x) ≠ P_j(x):
 Even if P_i(y|x) = P_j(y|x), the marginal distributions P(x) may differ.
 This is frequent in the domain of handwriting recognition, where two clients may write the same text in a different writing style.
- *Label distribution skew* (prior probability shift), P_i(y) ≠ P_j(y): Even if P_i(x|y) = P_j(x|y), the marginal distributions P(y) may differ. This is common when clients are bound to specific locations. Clients from different areas may use different terms and phrases depending on their local accent and lingo.
- Same label, different features (concept drift), P_i(x|y) ≠ P_j(x|y): Even if P_i(y) = P_j(y), the marginal distributions P(x|y) may differ. The same label y can have different meaning for different users based on their culture and standard of leaving. Images of clothes, for example, can vary greatly according on location.
- Same features, different label (concept shift):, P_i(y|x) ≠ P_j(y|x):
 Even if P_i(x) = P_j(x), the marginal distributions P(y|x) may differ.
 This is very common with labels that reflect sentiment. As an example, clients living in cold climates may describe the same weather phenomena differently than clients lining in warm or temperate climates.
- *Quantity skew*:

Clients can generate and save different amounts of data. This is dependent on a variety of factors, including available data storage, local data retention laws, and the habits of their users.

• Violations of independence:

Throughout training, the distribution may change at any time. Clients may connect or disconnect, or their local datasets may be exhausted.

Furthermore, if clients are available at specific times of day due to solstice, a strong regional bias is imposed. Finally, because the clients own their own datasets, they can modify them at any time during training.

• Dataset shift:

The FL participants might not be indicative of the end users. For instance, clients with inferior devices may be underrepresented as a result of any eligibility criteria used during client selection.

A real-world FL dataset may have any combination of these effects. Due to the difficulties of generating such datasets and examining algorithms built on them, most research tends to concentrate on one or two of them. Depending on the Fl scenario under training, different distribution skew effects may aplly and different mitigation strategies may be required. The figure 2.14 presents label distribution and quantity skew.

Dealing with non-IID Distributions

Existing algorithms can be modified, either by altering their parameters and hyperparameters or by sophisticating features like client selection. While adjusting other parameters, reducing batch size and increasing local epochs can be increase model accuracy, but excessive use may hurt convergence rate and lengthen training time. Metalearning approaches could be used to discover an ideal equilibrium.

It has been demonstrated that system heterogeneity and data heterogeneity interplay. By discarding straggles, unique and useful data could be wasted, degrading the model's fairness and accuracy. Stragglers can partially work, by personalizing parameters or reparameterizing on the fly, according to their resources. In this way, their local datasets can be exploited without slowing down the overall process.

Another approach is for the server to request data distribution statistics from the clients. With this information, the server can select those that will result in a balanced distribution. In addition, the server may be able to share some relevant publicly available data with the clients in order to rebalance their datasets. If no such data are available, willing clients may, if practical, provide their datasets to aid in the overall training process. These techniques can alleviate non-IID distribution problems, but they require additional communication and bandwidth. Additionally, they have the potential to compromise privacy, which would undermine one of FL's main goals. Similarly, frameworks for multitask learning may be employed. Clients can train their local personalized models concurrently with the global model and share knowledge between them. Such techniques may not always be available as they demand greater processing and memory resources from the clients.

2.4.6 Communication Cost Reduction

To achieve a satisfactory model in FL, multiple rounds of training and communication between the server and the clients are required. Communication can be a big bottleneck if the ANN being trained is massive and has millions of parameters, or if the clients are under slow connections. As a result, a series of techniques for improving communication efficiency have been developed, which can be classified into three groups: increasing computation, decreasing communication size, and decreasing communication frequency.

Edge and End Computation

Increasing parallelism by selecting more clients each GE is an obvious technique to increase computation in edge devices. In general, client-wise parallelism is desirable, but it provides diminishing returns as the number of participating clients increases. Furthermore, if all of the connected clients are participating, this strategy is no longer applicable. Finally, there is the risk of rapidly exhausting the available datasets.

The most typical technique to increase computation is to have clients perform more local model updates per GE. This can be achieved in two ways, more local epochs, i.e. more passes through the local dataset, or smaller batch size, i.e. more updates per pass through the local dataset. In traditional DL, such techniques tends to produce negative effects like overfitting. On the other hand, FL algorithms, due to their model averaging, produce regularization effects equivalent to dropout, ultimately increasing the accuracy of the model under training.

While such techniques are effective, too many local updates between communication rounds can create a negative impact. Local models may diverge too much from each other, especially when under non-IID data distribution, significantly decreasing the convergent rate of the global model. As a result, additional training is required, defeating the aim of these techniques. Another concern is that the likelihood of stragglers occurring is greatly increased due to client heterogeneity. Clients with fewer resources take disproportionately longer to complete the additional computations, widening the gap between them and the faster ones. Since simulations are most often used when developing FL algorithms, researchers frequently overlook this issue.

Model Compression

These techniques, which are extensively employed in DL, attempt to decrease the amount of the communicated updates. The weights of the model under training make up the majority of the updates; applying transformations like sparification, quantization, and subsambling to them can reduce the size of the updates. In general, they are classified into two types: structured updates, which attempt to select what information is sent, and sketched updates, which attempt to compress the communicated information.

Structured updates require that updates adhere to a set, reduced format. This is possible in multiple ways, like putting a predermined per-client mask on the model after training to sparsify it. Another method is to instruct a client to train and communicate only specific layers or pieces of them. A more complex alternative is for the server to apply dropout to the global model in order to create a submodel, which the clients train, and the server maps back to the global model during aggregation. In general, these methods try to shift the responsibility of compression to the server, with the aim to make it more predictable and correct its error.

Sketched updates refer to techniques that encode the update in one side and decode in the other. One such method is probabilistic quantization [48], in which the update matrices are vectorized and quantized for each scalar. Another option is to use a random mask like in a structure update, with the difference that it is randomly generated by the client and communicated to the server together with the encoded local model.

All these methods can be lossy and introduce error as a result of information loss. This error can be characterized as noise, which in most cases has a mean value of zero due to the nature of the compression algorithms commonly used. As such, the averaging of the FL algorithms can reduce it or even eliminate it from the accumulation of the local updates. For this to be true in practice, a large number of clients must be participating, which that is not always achievable. Moreover, as there is only one global model at any given time, any error in server-to-client communication cannot be reduced.

Importance-based Updating

By sending only what seems important, importance-based updating aims to reduce the volume of communication. Based on the observation that most parameters in an ANN are close to zero or hardly vary [49], this can be done in a fine-grained manner by sending to the server only a small percentage of the model parameters. It can also be applied in a coarse-grained way by asking clients to review their updates and send them only if they think they would help the overall model. These techniques have demonstrated that, when applied properly, they can occasionally reduce communication while also increasing accuracy and convergence rate. In contrast, they may produce the opposite effects if used excessively.

2.4.7 Privacy and Security

One of FL's key goals is to protect participants' privacy by simply requesting them to share model parameters and not any of their personal information. Additionally, FL wants to improve the model's fairness and accuracy by incorporating personal data. However, if any FL participant is malicious, these goals could be defeated. Model updates obtained from them can be used to reconstruct data, and poisoning attacks can corrupt the model.

Types of Attacks

• Data poisoning attacks

In order to lower the accuracy of the model and add biases, these attacks introduce tainted data that violate the dataset's integrity. Model skew attacks [50] and feedback weaponization[51] fall within this group. The goal of model skew attacks is to decrease the model's accuracy by obfuscating or distorting the boundaries between the classifiers. Feedback weaponization, on the other hand, tricks the model into misclassifying certain labels to introduce biases against them.

• Adversarial attacks ¹¹

¹¹Also called model poisoning.

Adversarial attacks [52] involve specially crafted data that have designed to be consistently misclassified by the model. They can be subdivided to non-targeted and targeted. Non-targeted attacks try to evade being correctly classification during inference, any incorrect result is acceptable. Targeted attacks aim to incorporate backdoors into the model, that means manipulate the network to give specific erroneous inference for certain inputs.

Inferring Attacks

Attacks of this kind aim to gain information about the participants and their data, and can be classified into two categories. The first one is tracing attacks, which aim to detect whether a client is actively participating into training. The second one reconstruction attacks, which aim to recreate examples used in training, or features of them.

Such attack can perpetrated using model extraction algorithms and Generative Adversarial Networks [53] (GANs). GANs is a ML technique where two competing ANNs are trained, a generator network and a discriminator network. The generator tries to create fake data while the discriminator tries to discern real data from the fake by analyzing the output of the discriminator. After some training, the generator can create data that closely resembles the real ones using the statistics learned by the classifier.

A GAN attack, as shown in figure 2.15, seeks to infer as much useful information as possible about elements in a target class that are not under its possession. The GAN tries to mimic samples of that class, mislabels them and feeds them to the ANN under federated training. The rest of the participants must then work harder to discriminate between the target class and the mislabeled class, resulting in additional knowledge about the target class in the global model. This process is repeated until convergence, and the GAN has enough information to reliably reconstruct samples from the target class that approximate the original examples.

This attack can be generalized to any number of classes and users, as well as any type of collaborative learning. If the server or another entity with access to the victim's communications is the malicious actor, it can be made more efficient by using the victim's local updates rather than the global model.

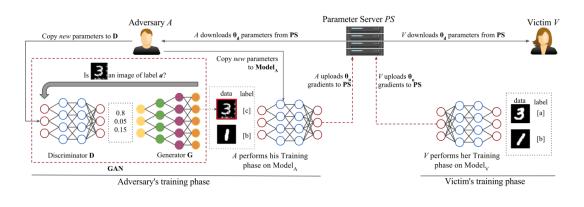


FIGURE 2.15: GAN attack. The adversary mimics images of class *a*, labels them as class *c* and uses them to train the collaborative model. To distinguish between these two classes, the model will require more information from the victim. The adversary does not need to have any true samples. [53]: URL.

Countermeasures

FL algorithms are somewhat resistant to the aforementioned attacks due to the regularization effect of averaging local models. Data poisoning and adversarial attacks require a sizable portion of the dataset to be tainted in order to succeed. Additionally, inferring attacks demand that the malicious actor go through numerous training epochs. In an IoT environment since most clients, if they are even chosen, will only participate once. Even when several malicious clients collude, the is a very small probability of achieving their goals.

Such scale is quite challenging to achieve in an environment closer to the datacenter, making it much more vulnerable. Furthermore, clients might seek stronger privacy guarantees as the server might not always trustworthy. For these reasons, further measures for protecting privacy and security are necessary.

An additional level of security can be provided with minimal adjustments to the FL protocol, by scanning the clients' updates for unusual patterns. Repeated updates with outlandish values could be a sign that a client is attempting to corrupt the model. Furthermore, the updates of clients that try to inject backdoors frequently resemble one another, which is rare, especially in a non-IID dataset. Such methods can improve the security of the model, but require plain-text access to the local updates, which is not always available due to privacy enhancements based on cryptography. Clients might request further privacy protections, particularly if they don't trust the server or the connection between them. Secure Multi-Party Computation (MPC) [54], a subfield of cryptography, can be utilized to accomplish that. MPC simulate a trustworthy third party between two or more collaborating parties. Its homomorphic encryption techniques, which allow mathematical operations to be performed directly on cyphertexts and enable the server to aggregate the local models without having access to their plain-text contents, are particularly helpful. As a result, privacy can be ensured, albeit at a high computational cost that comes with cryptographic operations.

The state of the art method to enhance model security and restrict information exposure is differential privacy (DP) [53]. The fundamental tenet of DP is that by blurring a model's weights, they can not be associated with the data they were produced with. In FL, clients add random noise¹²,with a mean value zero, to their local updates prior sharing them with the server. In addition of concealing the clients, this technique hinders dackdoor injections to the model, as the malicious clients need to send a precise set of parameters to achieve their goals.

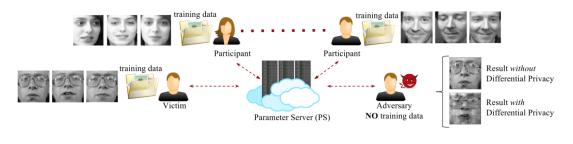


FIGURE 2.16: Effect of Differential Privacy on a GAN attack. [53]: URL.

Theoretically, under DP transformation, the accuracy of the model and its convergence rate won't be impacted as the noise presented in figure 2.16 should vanish during aggregation. In practice, several samples are necessary to generate a distribution with a mean value close to zero, thus FL must be scaled appropriately. Finally, as attacks get more sophisticated, these countermeasures might not be effective and combinations of them or new ones are required.

¹²Usually Gaussian.

Chapter 3

Related Work

3.1 Training Dataset

The training dataset is the most important element of the training process, as ML models directly extract knowledge from it. Regardless of the training algorithm, using inadequate data can only result in underperforming models. A well-known adage still holds brutally true when it comes to training data for ML: garbage in, garbage out.

In the context of this work, the Fashion-MNIST [55] dataset is utilized. It consists of 28×28 grayscale images of 70,000 fashion items from 10 equally sized categories, split into a training set of 60,000 images and a testing set of 10,000 images. It is designed as a direct drop-in replacement of the original MNIST dataset [56] that provides a more challenging classification problem. Some of its images are shown in figure 3.1.

The major factor of its popularity is its small size which enables DL researchers to swiftly prototype and test their algorithms. Furthermore, it is highly accessible due to its strait-forward encoding and its permissive license. Finally, DL frameworks (e.g TensorFlow) provide auxiliary functions and convenient examples that use it right out of the box, makes it highly compelling.

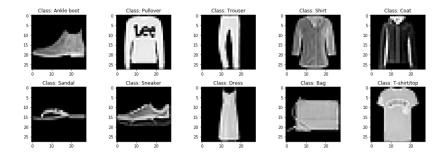


FIGURE 3.1: Examples of Fashion MNIST Dataset [57]: URL.

3.2 ANN Architectures

Any DL model that can be trained locally should be possible to be trained in FL, since FL is essentially another DL training method. To demonstate that the FL impementation in this work is accurate, multiple models of different architectures have been implemented and incorporated into the FL training loop.

3.2.1 LeNet-5

LeNet-5 [58], one of the first CNNs to describe its fundamental form, was proposed in 1989. Its original use was for handwritten digit recognition, a task in which it performed greatly and piqued academics' interest in the development and use of ANNs. It possesses the fundamental building blocks of CNNs, interconnected convolutional and pooling layers, followed by fully connected layers. Across all these layers it uses the tanh activation function, and to make the computation less difficult maintains sparse connections between them.

3.2.2 AlexNet

AlexNet [16] is a CNN architecture designed to compete in the ImageNet Large Scale Visual Recognition Challenge of 2012. The depth of the network's model, five convolutional layers, some of which were followed by max-pooling layers, and then three fully connected layers, allowed it to outperform its competition in terms of accuracy. Furthermore, it used the nonsaturating ReLU activation function, which shows better performance than prior activation functions like tanh. A visual comparison with LeNet-5 is done in diagram 3.2.

Training such a large network on a CPU, which was the standard at that time, is computationally prohibitive, but was made possible by training it on graphics processing units (GPUs). That novelty spurred huge interest in CNNs and training them with accelerators, making it one of the most influential ANN architectures.

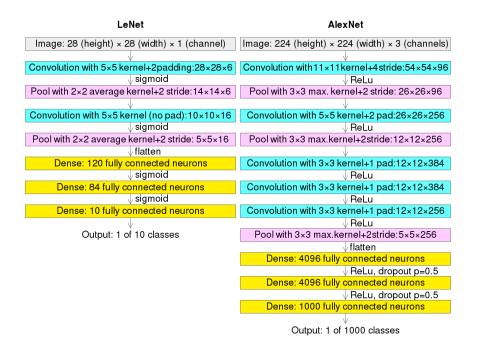


FIGURE 3.2: Comparing the LeNet and AlexNet architectures [59]: URL.

3.2.3 ResNet

An ANN known as a residual neural network is distinguished by its shortcut connections that skip several layers, as shown in diagram 3.3. In this manner, it is possible to build ANNs that have hundreds of layers and are very deep without experiencing the vanishing gradients phenomenon. Additionally, it reduces the accuracy saturation issue, in which adding additional layers to a complex model causes the training error to increase.

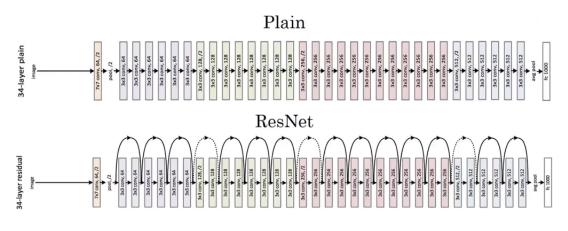


FIGURE 3.3: Comparing a ResNet and a plain model [60]: URL.

3.2.4 Inception Module

In CNNs, the size of the filters depends on how the important information is located in the inputs. Filters with small kernels are better in detecting information with a local distribution, while large kernels are preferred when dealing with a global distribution. Each sample may have a different distribution, as in diagram 3.4, making it challenging to select an ideal filter.

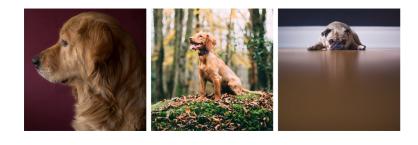


FIGURE 3.4: The dog, which is the important information, can occupy differently sized portions of the picture [61]: URL.

The inception module [62], diagram 3.5, addresses this issue by providing multiple filters of various sizes that operate in parallel. These filters seek after the same information but in differently sized parts of the input. Consolidating their outputs is sufficient to determine whether the sought-after information is found, the filter that identified it overshadows the rest.

In its original form, it consists of three convolutional layers, with sizes of 1×1 , 3×3 , 5×5 , as well as one 1×1 max pooling layer. To reduce computation, prior to the 3×3 , 5×5 convolutions, and after the max pooling, additional 1×1 convolutionals are added. These layers are dual-purposed, as they apply dimension reduction and an extra layer of ReLU activations.

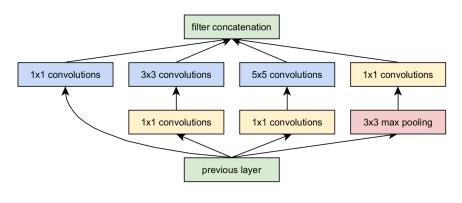


FIGURE 3.5: Architecture of the Inception module with dimension reductions. [62]: URL.

3.3 Federated Learning Algorithms

3.3.1 Distributed SGD

Due to their iterative structure, conventional learning algorithms like SGD are inherently serial. Parallelism can only be applied over an example, e.g. pixels in a CNN, or over a mini-batch, where each example in it can be used in parallel. Synchronous SGD [63], a variation of mini-batch SGD, aims to enable cross-batch parallelism to reduce training time.

Before training starts, the dataset is distributed between *N* workers. In every iteration, each worker processes a mini-batch independently of the others, as follows:

- it fetches the up-to-date model parameters;
- it then computes new parameters¹ using a local mini-batch;
- finally, these parameters are sent to a synchronization service, generally a chief thread², that computes the new model parameters. When this is done, a new iteration begins.

Algorithm 1 Distributed SGD. The *N* workers are indexed by *n*; *B* is the local mini-batch size, w are the model weights, and η is the learning rate.

Synchronization service executes: initialize w_0 $D_{1...N} \leftarrow (\text{distribute data to } N \text{ workers})$ for each round t = 1, 2, ... do for each worker $n \in N$ in parallel do $w_{t+1}^n \leftarrow \text{WorkerUpdate}(n, w_t)$ $w_{t+1} \leftarrow \frac{1}{N} \sum_{n=1}^N w_{t+1}^n$ WorkerUpdate(n, w) //Run on worker n

 $b \leftarrow (1 \text{ batch of size } B \text{ from dataset } D_n)$

$$w \leftarrow w - \eta \nabla l(w; b)$$

return *w* to synchronization service

¹Instead of parameters, it can calculate and send gradients, letting the synchronization service do the backpropagation. This is true for most distributed or federated algorithms.

²As the workers are usually in a shared memory environment, this can also be done by one of them.

While initially intended for training in datacenters or localized clusters, it can easily be generalized for the federated setting by swapping out the workers for clients, the synchronization service with a server, and the distributed datasets with client generated ones. As a result, it became a major source of inspiration for FL.

3.3.2 FederatedAveraging

Many successful implementation of DL have relied on variations of SGD for optimization. As a matter of fact, they can be regarded as adaptations of the models and their loss functions to be more susceptible to optimization through simple gradient-based methods. Thus, it is natural that building FL algorithms begins with SGD.

Distributed SGD could naively be used in the federated setting, with each client computing the gradients of a single batch, a few samples, for each communication round. Although this method may be computationally efficient, it takes tens of thousands of training rounds to converge in a solution. This is prohibitive in a federated setting as communication costs are much higher than in a datacenter.

A straightforward method to reduce communication is expanding the batch until it includes the client's whole dataset. Thus, every client performs one full-batch (non-stochastic) gradient descent calculation per round. Furthermore, each client may have a different amount of examples, since in the federated setting, they are independently generated by the clients instead of being distributed by the server. As such, aggregation is weighted by the number of examples in each client. This approach is typically called FederatedSGD.

While FederatedSGD improves the computation-to-communication ratio, a number of other problems emerge. First of all, clients might not be able to meet the very high memory requirements of full-batch gradient descent. Furthermore, when under non-iid data distribution, convergence of the global model is not guaranteed due to high divergence between the local models. A more sophisticated approach, that overcomes these issues, is maintaining a more balanced batch size while performing several updates to the local models before sharing them with the server. This method is referred as Federate-dAveraging (FedAvg) [4] and is the cornerstone of FL, as most FL algorithms are its derivatives.

Algorithm 2 FederatedAveraging. The *N* client are indexed by *n*; k is the size of the local datasets, while K is their total size; E is the number of local epochs, *B* is the local mini-batch size, *w* are the model weights, and η is the learning rate.

Server executes:	
initialize w_0	
for each round $t = 1, 2, \dots$ do	
$S_t \leftarrow (\text{set of selected clients})$	
for each client $n \in S_t$ in parallel do	
$w_{t+1}^n \leftarrow \text{ClientUpdate}(n, w_t)$	
$w_{t+1} \leftarrow \sum_{n=1}^{N} \frac{k_n}{K} w_{t+1}^n$	
ClientUpdate (<i>n</i> , <i>w</i>): //Run on client n	
$S_b \leftarrow (\text{split local dataset into batches of size } B)$	
for each local epoch <i>i</i> from <i>i</i> to <i>E</i> do	
for each $b \in S_b$ do	
$w \leftarrow w - \eta \nabla l(w; b)$	
return <i>w</i> to server	

3.4 The FPGA Perspective

Centralized training has been implemented with FPGAs multiple times in the past. The training part of the FL shouldn't be substantially different from it, in terms of design and implementation. In contrast, the driver of the reprogrammable hardware will differ, as it must facilitate the FL procedure. The FL algorithm itself is not computationally demanding and may be conveniently offloaded to a CPU.

Modern system-on-chip (SoC) FPGAs contain all the tools required to implement FL, including running on an operating system and having an Ethernet adaptor. With those, connecting the two technologies is feasible, for both the datacenter and the on-edge settings.

Recent works have attempted to merge FL and FPGAs. Most notably, Zixiao Wang et al. have a developed PipeFL [64], a generic architecture to accelerate ANN training in FL with FPGAs. This work is fully focused to the datacenter settings and completely ignores problems specific with on-edge FL. Furthermore, the system is not compared with an equivalent GPU implementation. Other works have shown that FPGAs are able to efficiently implement complementary systems for FL, such as homomorphic encryption [65].

Chapter 4

FL architecture & design

This chapter contains everything relevant regarding the FL system developed in this thesis. Section 4.1 lists the software tools used, as well as how they were utilized. The following section, 4.2, describes the prepossessing and distribution applied to the utilized Fashion-MNIST dataset.

To facilitate the deployment of the FL system in platforms like an FPGA SoC, C++ is deemed as the most fitting programming language, due to the fact that most hardware vendors provide dedicated compilers for it. In contrast, during the robustness analysis phase, the underlying training is carried out using the Python API of the TF library, as its great malleability makes it easier to experiment and test with different ANNs and training settings. To connect these two component, the Python Interpreter is embedded into the C++ codebase, and that is the subject of the section 4.3.

The final section 4.4 details the developed FL system itself. First, the layout of its processes and their memory is shown. Furthermore, it explain in depth the structure and operation of the individual processes that compose it, as well as how they are synchronized. Moreover, the communication scheme that is used to facilitate any communication between them, is also shown. Finally, the library of models utilized to test the FL system is presented.

4.1 Software

4.1.1 Tensorflow & Keras

TensorFlow [66] is an interface for expressing ML algorithms and an implementation for executing such algorithms. It offers a complete, flexible ecosystem of tools, libraries and community resources that that facilitates the development and deployment of ML powered applications. Its main advantage is the ability to use high-level APIs like Keras with eager execution, enabling immediate model iteration and easy debugging.

Tesnorflow & Keras were used in all experiments during modelization. It is chosen due to its simple, flexible architecture, which turns new ideas into code quickly. In addition, due to the existence of TensorFlow Federated (TFF) [67] framework, there are many compatible theoretical resources and tutorials. TFF is simulating FL to facilitate research and experimentation with FL algorithms, thus it is incompatible with this work which aims to implement real-world FL with hardware accelerators.

4.1.2 Python/C API

As the goal is to integrate FL with FPGA accelerators, the majority of the codebase is developed in C++. This include all the networking, communication, model aggregation and any required model transformations. Tensor-Flow on Python is utilized for model evaluation and, throughout the modelization phase, for training. To connect these two components, the Python interpreter is embedded to the core program using the Python/C API [68, 69].

With the TensorFlow C API [70], TensorFlow could be used directly in C++, however several capabilities, like the Neural Network library, are not supported. Furthermore, quickly rotating among ANN architectures, training techniques, etc. is quite usual in FL development. With the C API that becomes tedious and slow, since it is geared more toward uniformity and simplicity than convenience, and C++ needs to be recompiled after every change. Due to these factors, integrating the Python interpreter and using TensorFlow in Python is considered as a more appropriate solution.

4.1.3 POSIX Sockets

POSIX sockets [71] is an application programming interface (API) for Internet and Unix domain sockets, used for inter-process communication (IPC). A socket is an abstract representation for the local endpoint of a network communication path. According to the Unix philosophy, the POSIX sockets API defines it as a file descriptor that offers a standard interface for input and output to data streams.

The 4.2 Berkeley Software Distribution [72] Unix operating system, which was introduced in 1983, is where the API originates from. POSIX sockets

transitioned mostly unchanged from a de facto standard to a POSIX specification component. They are commonly referred to as "Berkeley sockets" or "BSD sockets" to acknowledge the Berkeley Software Distribution, where they were first implemented.

In FL, entities possess their own private data. This is best implemented through processes with private data space that communicate using sockets. Therefore, the POSIX socket API implementation provided by the LINUX operating system is used for all inter-entity communication.

POSIX sockets can be configured for blocking or non-blocking operation. In blocking operation, the program halts until the entire message is sent or received. In contrast, during non-blocking operation they only retrieve or send data that is immediately available. Thus, the program does not stall on straggler connections and many deadlock situations are avoided, but there is no guarantees that the messages will be send or received in one piece, especially when said messages are large ¹.

4.2 Data Preparation

4.2.1 Normalization

Dataset normalization [73], as part of data preparation, is a standard practice in ML. Normalization transforms the features of a dataset to a common scale, without distorting discrepancies in the ranges of values or losing information. This technique prevents large scaled characteristics to dominate during training. Furthermore, many algorithms, such as ReLU non-linearities, exhibit better performance when fed with data of floating-point format.

In this work, the Fashion-MNIST dataset provided by TensorFlow Datasets [74] collection is utilized. It is consisted of gray-scale images, where each pixel is represented by an integer in the range [0, 255]. They are normalized to floating-point format in the range [0, 1] with the script prepare_dataset.py. Furthermore, to avoid repeating this procedure for every experiment, the processed dataset is saved on disk.

¹This is due to limited sized socket buffers set up by the operating systems.

4.2.2 Distribution

In FL, each client is meant to have their own unique, individualized dataset. Given that the provided Fashion-MNIST dataset is a single, concentrated collection, it must be distributed among the clients in order for federated training to be possible. According to the theory presented in section 2.4.5 Two approaches of partitioning the data among the clients are explored:

IID

The data are randomly partitioned in equally sized shards, one for every client. For example, if there are 10 clients, each will receive a shard containing 6000 examples. Although this distribution is not IID in the strictest sense², it is closer to a real-world scenario and many issues, such as class underrepresentation, can be easily avoided.

non-IID

Although statistical challenges are not the focus of this study, some testing with non-IID data has been done for sake of completeness. The dataset is broken up into shards, each of which includes examples from only one label. Each client receives two shards of different labels. If there are 10 clients, for instance, twenty shards will be produced, and each client will receive 3000 examples from two labels for a total of 6000 examples. Despite such a pathological non-IID distribution being atypical of a real-world scenario, it will assist investigate how severely the algorithms fail on extremely non-IID data.

4.2.3 Pipeline

The input pipeline that feeds the training data to the models is constructed using the tf.data API provided by TensorFlow. More specifically, before training begins, each client optimizes the use of its dataset by transforming it through caching, shuffling, batching, prefetching, and repeating. Additionally, this process is parameterized for flexibility and enable experimentation with different local dataset and batch sizes.

²Due the shards being mutually exclusive, knowing that an example belongs to one of them indicates that it does not exist in others shards. Thus, knowledge about the other local datasets can be inferred and independence is violated.

4.3 Embedding the Python Interpreter

As mentioned in section 4.1.2, the Python Interpreter is embedded on top of the C++ codebase. To make this integration as seamless as possible from both sides, an integration layer that operates as a wrapper for the C/Python API, has been developed. The C++ codebase can call Python code with simple function calls, while the Python code can access data from the C++ space like it would access data from its own space.

To achieve this, A number of steps need to be completed. First of all, a straitforward abstract class is defined, which specifies a train and an evaluate function, as well as an input and an output model. The C++ codebase is interfacing with an implementation of this class. Its tasks include initializing the Python interpreter, loading the appropriate Python module, passing the necessary data and creating C++ function wrappers for the Python function.

Moving data from one side to the other can be trickier than it first appears. Using the appropriate API calls, such as PyModule_AddIntConstant, simple constants and macros can be passed by copy to the Python module in a straitforward manner. This approach fails when dealing with large amounts of data, such as the model parameters. Instead, by constructing NumPy array metadata over them and copying them, they can be passed by reference. In this manner, both ends observe the same memory space and there is no significant data copy.

After exposing the parameters to the Python code, one more step is necessary to enable the TesnorFlow library to be able to use them. In order to assign the received parameters to the model under training, they must be first transformed into TesnorFlow tensors with dimensions and shapes that match its layers. Likewise, to extract parameters from a model and expose them to the C++ codebase, its layers must be concated in a NumPy array.

Figure 4.1 illustrates all the parts required to integrate training and evaluating with TF on Python, and the developed FL system. Blue squares represent the C++ side, while the yellow and orange ones represent the Python/TF side. All elements over the horizontal line and the Python API wrappers (C++) are developed in this thesis, while the rest represent the tools used.

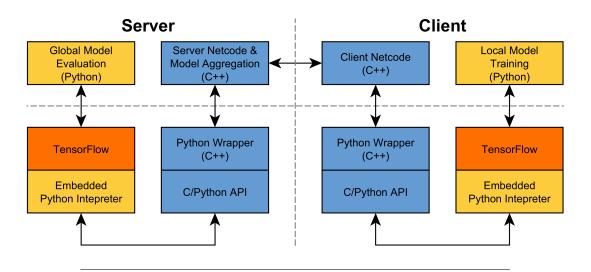


FIGURE 4.1: Overview of the C++/Python Integration. The FL implementation components are represented in the top half, while the required libraries, APIs, and wrappers are shown in the bottom half.

4.4 FL Architecture developed in this Thesis

The architecture aims to offer a generalized FL loop that enables the implementation of various FL algorithms. To achieve this, it is designed to be flexible and modular, with each FL operation, such as client selection and aggregation, having its own specialized function. Additionally, all relevant training parameters and hyper-parameters, such as local epochs or participating clients per epoch, are compiled in the definitions.hpp file. Since the entire codebase accesses them from there, testing and experimentation are streamlined and less prone to mistakes.

4.4.1 Process & Memory Layout

In FL, multiple entities are present, the orchestrating server and the clients training the global model. As the aim of this work is to implement FL with clients operating on separate devices, it is essential that each entity is a distinct process with its own private data-space. This data-space contains its private training or testing dataset, as well as its local or global models.

All required communication is facilitated through POSIX sockets. Furthermore, the TCP protocol is utilized to ensure robustness against communication faults, random disconnections and erroneous messages. Such problems are common in edge environments, where the clients are not always in their best possible state or their connection with the server is fickle.

Each client holds their private data, the global model and the models they produced. Meanwhile, the server holds the testing dataset, the global model and the most recent local model it received. All communication goes through dedicated sockets. This process and memory layout is illustrated in figure 4.2.

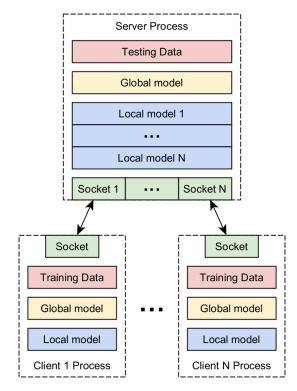


FIGURE 4.2: Process & Memory layout of the developed FL system.

4.4.2 Server

Overview

The server adheres to the event-driven server paradigm. The process, while sleeping, listens for events such as new connections or messages from the clients, and reacts according to their context. This is very similar to FL in that the server receives local models, aggregates them, and then, after accumulating a sufficient number of them, creates a new global model and announces it to the clients. All these actions are triggered by client updates. It should be noted that the event scheduler is also the the event handler. As the handling of these is events is almost instant, there is no need for worker threads. The server process is the focal point of FL and is responsible for several tasks, which can be distinguished between algorithmic, systemic and auxiliary. Algorithmic tasks are the components of the FL algorithm, such as model aggregation. Systemic tasks are necessary operations to implement the FL algorithm, such as connecting sockets. In addition, some tasks that are not required to implement the algorithm are included in order to enhance its utility and ease development.

Operation

The server's first action is to load a pre-trained model, if one exists. While not a prerequisite to facilitate FL, this is done to enable transfer learning and experimenting with retraining a model under different settings.

After that, the server completes a series of initializations. First of all, a listening socket is set-up in non-blocking operation, and the event-driven structure is established. Furthermore, the Python environment, where the global models are evaluated, is embedded and initialized. Finally, any structures or variables required by the FL algorithm are initialized.

After the initializations, the server enters a waiting state. To achieve this the poll(2) system call, which puts the process to sleep until an event occurs, is used. Four types of events may happen:

- The listening socket encounters a new connection, meaning a new client requests to join in the federated training. The socket is cloned, the clone establish the connection with the client, and any necessary data structures are created.
- A connected socket encounters an error, such as an sudden disconnection. Unreliable clients are expected to continue being unreliable, thus the most prudent course of action is discarding them.
- A connected socket receives new data. As a message can consist of millions of weights, it may be received across multiple events and a collection mechanism is needed to fully retrieve it. To achieve this, it is necessary to track the size of the received data per client and ensure that there is always adequate memory available to store a message from each connected client. If the message is complete and valid, its local model is aggregated to next global model, and the related client is considered as non-working.

• A connected socket can send new data. This indicates that a socket designated to send the global model to its connected client, is available to do so. As mentioned before, the messages can be quite large, thus multiple events may be required to fully send them. To achieve this, tracking of the amount of transmitted data per connection is necessary. When a message is fully send, the related client is considered as working. Furthermore, as there no more data to send, the POLLOUT flag of the socket is disabled.

Following any event, the server determines whether a new epoch should begin. It takes in consideration how many local models were successfully received this epoch, how many clients are connected, and how many clients are still working. If the current epoch requires further work, the process returns to the waiting state and sleeps until a new event occurs.

If the contrary is true, the new global model is created by dividing the aggregated local models by the number of received local models during the current epoch. This new model is evaluated, and then shared with clients that where randomly selected using the Durstenfeld-Fisher-Yates shuffle algorithm [75, 76]. The only action needed to share the model with a client is enabling the POLLOUT flag of the corresponding socket; the event loop will handle sending the message.

The event loop's final step is to determine whether any further training is required. If the target accuracy is achieved or a predetermined number of GEs have been completed, the server shows any relevant statistics, stores the final global model to disk, and shuts down.

4.4.3 Client

Overview

During an epoch, a participating client receives a global model, goes through a few local training rounds, and then sends the updated local model back to the server. Training cannot begin until the global model is fully received. Furthermore, after sending the local model, nothing further needs to be done until a new global model is received.

As a result, the client is controlled by its communication with the server, and a master-slave relationship is formed between them. To effectively implement this, client-side communication is blocking, meaning a client can not take any action until it has fully received or send its messages.

Operation

At startup, the client creates a socket and connects to the server. Additionally, it embeds and initializes the Python environment that is used for training. Following these initializations, the process moves into its main loop.

The main loop contains three major operation. First, it receives the global model shared by the server. Then, it is trained with the local private data, creating a new local model. Finally, any required transformations, such as quantization and compression, are applied to the new model, which is then send to the server. This process is repeated until the server informs that there will be no more training with that client.

4.4.4 Synchronization

Figure 4.3 illustrates the operation of a server-client pair. The server sleeps in the poll() system call until an event is raised as described in section 4.4.2. The client is either training its local model, or wait the server to receive or send data. This typical master-slave synchronization system.

In practice, more than one client is connected to server at any time. Nevertheless, the activity diagram and synchronization of both components remain the same. The server is capable to send messages to one client while receiving from another one. Furthermore, connectivity issues with a particular client, do not affect the communication with the rest.

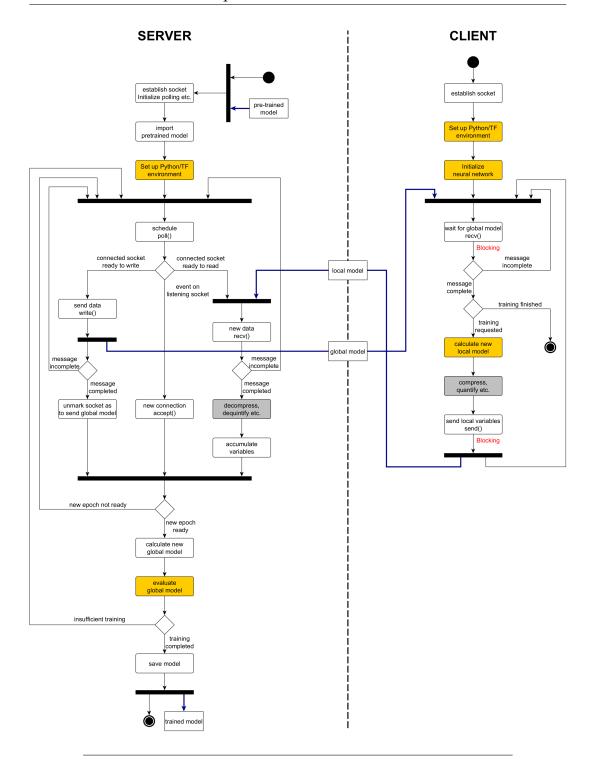


FIGURE 4.3: Server - Client Activity Diagram: Yellow states are modelled with TensorFlow, while grey states are not essential for FL. Blue arrows represent data movements. Error conditions and states are not displayed.

4.4.5 Communication Scheme

As stated in section 4.4, the server and the clients are separate processes that communicate over sockets. A concrete, predefined communication system is needed to accomplish this in a reliable manner. The server holds the barest amount of information on the clients, just what is necessary to stay in connection and communicate, to adhere to the cross-device FL setting. As such, the server can not address clients directly and messages must be generic. Furthermore, each message must be independent from the rest and self sufficient. As a result, messages sent by the server to clients must be general and self-sufficient.

Algorithmic solutions can reduce communication, but communication must be kept to a minimum in systemic level too. The messages, to be as compact as possible, only include their model and a few bytes of metadata required by the FL algorithm. Furthermore, they are C-aligned arrays, which means there are no delimiters between their values, or hidden metadata from predefined protocols of higher abstraction, such as Protobuf.

Minimizing communication frequency is another strategy used for cutting down on communication time. Any message send by the server that contains the global model, can be interpreted as an request to train it. Furthermore, if a client sends its local model, it can be presumed that it completed its task. As a result, each epoch only these two messages are required, and any synchronization or confirmation messages are unnecessary. With this approach, it is necessary for every party to interpret the messages in a same predefined way.

Server to client message	Client to server message
flags	GE
GE	local loss
global model variables	local accuracy
	model variables / deltas

TABLE 4.1: The format of the communication between theserver and the clients.

The format of the messages is shown in Table 4.1. The flags field is intended to communicate particular instructions to clients, such as the message is the final one and no more communication will be accepted or that the client should initialize the model. The GE field is used to discard stragglers, as the server can quickly reject any messages from an earlier GE. The local loss and accuracy fields are used to facilitate complex algorithms, such as ignoring local models with poor accuracy or higher loss than the prior GE. The global and local model parameters are the last part of the format and make up the bulk of the messages.

4.4.6 Model Library

Most ML models, if not all of them, are meant to be trainable in a federated environment. To demonstrate the accuracy of the developed FL environment, a library of ten typical models has been created. As the training problem is image recognition, the majority of the models are CNNs. However, models of different architectures, such as deep and residual ANNs, are also included.

- 1. The simplest model in the library is a DNN architecture. It consists of three fully connected ReLU activated layers with 128, 1024 and 128 neurons respectively, followed by a Softmax layer. In total, it contains 365,066 weights for an approximate size of 1.46 MBytes.
- 2. The first CNN model follows the original LeNet-5 architecture. It has two convolutional layers of 6 and 16 5×5 kernels, each one accompanied by an average pooling layer with 2×2 pool size. They are followed by two fully connected layers of 120 and 84 neurons, and a Softmax layer. All layers, except the final one, are activated with the hyperbolic tangent function. In total, it contains 61,706 weights for an approximate size of 0.25 MBytes.
- 3. For the following experiments, the model most used is a CNN architecture consisting of two convolutional ReLU activated layers of 32 and 64 3 × 3 kernels, each accompanied by a max pooling layer with 2 × 2 pool size. They are followed a 128-neuron fully connected ReLU activated layer, and a Softmax layer. It contains 421,642 weights for an approximate size of 1.69 MBytes. This architecture is compact enough to enable rapid experimentation and testing while being sufficiently sophisticated to provide an acceptable level of accuracy and necessitate several training epochs.
- 4. The CNN used in the original FL work [4] is also included in the model library. Its architecture is fairly similar with the previous one, but with

larger 5×5 kernels, and a fully connected layer of 512 neurons. In total, it contains 1,663,370 weights for an approximate size of 6.65 MBytes.

- 5. The next model included in the library aims to evaluate the FL environment with more sophisticated layers and combinations between them. It employs six convolutional layers, applies batch normalization on their outputs, and uses max pooling every two convolutions. There are 803,240 weights in it, giving it an approximate size of 3.2 MBytes.
- 6. To test the FL environment with extremely large models, the AlexNet architecture have been implemented. The model consists of 46,764,746 weights for a message size of 187 MBytes. As a result, it is unfeasible to train it repeatedly, as the FL operation needs, with the current available resources. Instead, it was trained for a single epoch with a few training data and conservative hyperparameters, just to demonstrate that the FL environment has no model size constraints.
- 7. For similar reasons the OverFeat-AlexNet architecture is included. This model is the largest one in the library, with 56,906,954 weights and a total size of 227 MBytes. The same constrains apllies.
- 8. The inception module detailed in section 3.2.4 is the foundation for two of the included models. The first one comprises of two such modules of different sizes and a Softmax layer. It has a total of 4,275,914 parameters and is about 17.1 MBytes in size.
- 9. The second inception architecture includes a module sandwiched between two convolutional layers, and max pools the outputs of all three. The output of the module is also subjected to the dropout transformation. Furthermore, they are followed by two fully connected layers and then a Softmax layer. In total, there are 277,082 weights for a size of 1.1 MBytes.
- 10. The final model is based on the residual architecture. It is consisted of two convolutional layers and a Softmax layers. The input of the network feeds the convolutional layers, but it also skips them and is directly connected to the Softmax layer. Furthermore, the dropout transformation is applied to the input of the Softmax layer. It has 539,466 parameters and is about 2.16 MBytes in size.

Chapter 5

Robustness Analysis

In this chapter a number of experiments are presented, with two goals. First, to prove the algorithmic soundness and demonstrate the robustness of the developed FL system. Second, to identify the parameter space where it is most efficient, by exploring the effects of its parameters on its behaviour and performance. This is instrumental for developing an FPGA-based accelerator that is designed to be optimal for the FL system.

These experiments are carried out on a single machine. As a result, the participating processes are competing for computing resources, and communication takes place on the operating system's loopback. Thus, it is impossible to draw any meaningful real-time inferences from these experiments; instead the communication frequency is used as the benchmark value.

Although more experiments have been carried out, for the sake of brevity, the ten with the most significant findings are presented. Furthermore, many of those have been repeated with different ANNs to check if their results are model specific. When this is true, it is highlighted in the conclusion of the chapter. In more detail, the experiments presented and their aims are:

- The first experiment tests the fundamental functionality of the developed FL system by using the most straightforward possible FL case, distributed SGD with IID data.
- The second one uses the same algorithm but with non-IID data, to demonstrate that the FL system can handle such a distribution.
- The next one is quite similar to the first, but introduces and tests the client selection, a core FL feature.
- The fourth experiment, building on the previous one, increases the computation to communication ratio by raising the data consumed per GE.

It serves as a transitional stage between the earlier experiments and the subsequent FedAvg ones.

- The fifth experiment tests the fault tolerance of the FL system. Early in the training, one of the clients is abruptly disconnected while communicating with the server. It is crucial to prove robustness against such situations when dealing with on-edge FL scenarios.
- The sixth experiment increases data consumption per GE even further, but more importantly it compares a FL system where each client initializes its local model independently from the rest, with one where all clients have the same initialization. According to FL theory initialization has a great impact of the overall system, and thus is investigated.
- The LR decay is another parameter that is well-known to have a significant impact. On experiment 7, several LR decay strategies are put to the test.
- The eighth experiment finally introduces the state of the art FL algorithm, FedAvg. It utilizes the LR decay deemed best in the previous experiment with different values.
- Experiment 9 builds on the previous one, and tests the importance of the number of participating clients per GE.
- The final experiment increases computation per client by training multiple times over the local datasets each GE.

5.1 Distributed SGD with IID Data

The first experiment focuses on the most straitforward case, distributed SGD with IID data. The training dataset is split equally between the participating clients. The third model in the collection is used, and for simplicity's sake, the Adam optimizer with default parameters is employed.

parameters		
participating clients 4		
local epochs 1		
steps per epoch 3		
batch size 10		

TABLE 5.1: Parameters of the first experiment.

Using the aforementioned parameters, each client consumes 30 examples per GE. Considering that all four clients participate in each GE, 500 GEs are necessary to exhaust all training data.

The FL trained model is compared to a centrally trained one with same parameters. To do this properly, a common scale is required. As such, the number of times the training dataset is repeated is used.

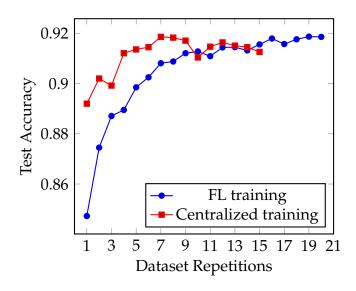


FIGURE 5.1: Experiment 1 results

The aforementioned findings demonstrate that training the model via FL yields the same accuracy as training it centrally, albeit at a slower rate. This is understandable given that the model in the first case is updated every 150 examples, whereas in the second case it is updated every 10 examples.

Another observation is the re-balancing effect of the FL algorithm. In centralized training, due to overfitting, the accuracy of the model degrades after peaking. This is not true when trained under the federated setting, as overfitted parameters are regularized when averaging multiple local models.

5.2 Distributed SGD with non-IID Data

In this experiment, the third model is trained with distributed SGD and a pathological non-IID dataset. It is interesting to see how the batch size affects the performance of Distributed SGD, given that it is notorious for being unable to handle non-IID datasets. Thus, the test was repeated with three distinct combinations of parameters.

case		2	3
participating clients	5	5	5
local epochs	1	1	1
steps per epoch		1	1
batch size	1	2	4

TABLE 5.2: Parameters of the second experiment.

The dataset is split between 5 clients, with each one getting all the examples of two labels. The first client holds all the examples with labels 0 or 1, the second client holds all the examples with labels 2 or 3 etc. As clients holds no knowledge on the other classes, self-training the model can only achieve a maximum accuracy of 20%. Therefore, it is required to either centralize the dataset or use a decentralized training method.

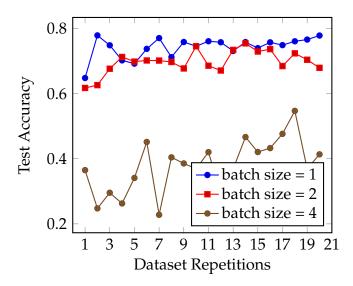


FIGURE 5.2: Experiment 2 results

Distributed SGD appears to struggle with non-IID data. With a batch size of just one example, it achieves accuracy consistent with prior works[4], but it is unable to converge with bigger batch sizes. This observation is consistent with FL theory, and in order to improve outcomes, additional techniques such as data rebalancing or expanding the client pool are needed.

5.3 Client Selection

In FL, it is frequently preferable to use a portion of the clients in each GE when there are several of them. In this method, data efficiency and model

performance are improved since the global model can be updated more times before the training data run out. This experiment aims to test this functionality.

Eight clients are participating in training the Lenet-5 model. Every GE, only three clients are used. The dataset is split into 8 identically sized, mutually exclusive random shards, each of which is given to a client.

parameters		
total clients 8		
clients per GE	3	
local epochs	1	
steps per epoch	2	
batch size	20	

TABLE 5.3: The parameters of the third experiment.

Data reshuffling is also incorporated in FL and centralized training. When all of the examples of a dataset have been used, it is resuffled and rebatched. Overfitting is thereby expected to diminish in both scenarios.

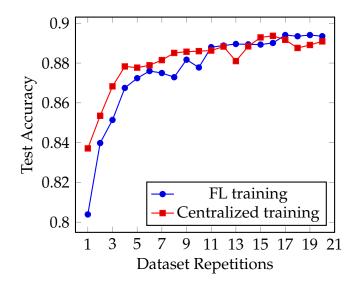


FIGURE 5.3: Experiment 3 results

In comparison to the first trial, where there was no client selection, FL training produces results that are comparable to those of centralized training more quickly. Furthermore, overfitting is decreased in both scenarios.

5.4 Greater data per GE consumption

The primary objective of this experiment is to assess the impact of increasing the consumption of local data per GE, prior migrating to the Federated Averaging algorithm. Furthermore, the FL environment is tested with a more complex architecture by using the ninth model that contains an inception module and a dropout layer.

The data is distributed randomly to 5 clients, with 3 of them used in each GE. Two sets of parameters are used, with different number of local updates per GE.

parameters	FL set 1	FL set 2	Centralized training
total clients	5	5	1
clients per GE	3	3	1
steps per GE	1	2	examples/batch size
batch size	20	20	20
examples per GE	60	120	all
GEs to use all examples	1000	500	-

 TABLE 5.4: Experiment 4 parameters

It is important to note that, compared to the first set of parameters, the second one needs only half as many communication rounds to exhaust the dataset.

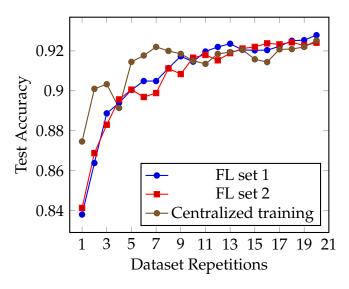


FIGURE 5.4: Experiment 4 results

Both FL scenarios reach comparable accuracy with centralized training. Although the second one appears to progress at a slower pace than the first, it only updates the global model half as often and needs half as much communication. This results in double the computation to communication ratio and being a more viable target for parallelization.

5.5 Client Fault Tolerance

In an edge environment, the clients may be unreliable and any algorithm must be resilient to random faults. This experiment aims to simulate such a case. To achieve this, 6 clients are initially participating in training the third model, but around 1/10 into training one of them abruptly disconnects while sending a message to server. That means for 90% of the training, 1/6 of the data are inaccessible.

parameters	normal op	faulty op
total clients	5	6
clients per GE	3	3
steps per GE	1	1
batch size	20	20

TABLE 5.5: Experiment 5 parameters

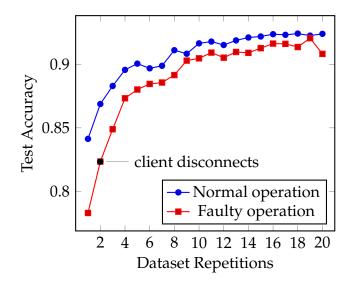


FIGURE 5.5: Experiment 5 results

Although the model's final accuracy drops, the effect is manageable as training continues and accuracy is still within acceptable bounds. In a real-world scenario, this issue can be resolved by postponing a portion of the training until after lost data resurfaces or new data becomes available. This is achieved through proper usage of the TCP protocol. The server understands that the faulty client disconnected, discards its erroneous message and continues training without him. As a result, there are no stalls and the global model does not get corrupted.

5.6 Neural Network Initialization

The initialization of an ANN can have a significant impact on the final accuracy, convergence rate, and training time, according to FL theory. It is generally accepted that the best course of action is to use the same initialization for all clients [4]. This major objective of this experiment is to assess this convention.

parameters	FL seeded init	FL random init	centralized training
total clients	5	5	1
clients per GE	3	3	1
steps per GE	5	5	examples/batch
batch size	20	20	20
examples per GE	300	300	all
GEs to use all examples	200	200	-

TABLE 5.6: Experiment 6 parameters

The third model is used and initialized with the Glorot initializer. The model is trained twice, once using the same seed across all clients, and once using different seeds.

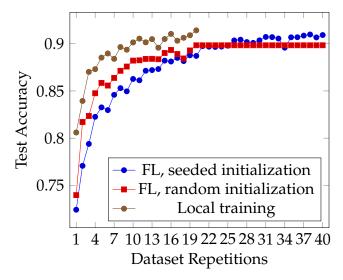


FIGURE 5.6: Experiment 6 results

The model with a random initialization quickly approaches and settles in a suboptimal local minimum. Both centralized training and FL with seeded initialization surpass its accuracy. This behaviour is consistent with FL theory.

5.7 Learning Rate (LR) Decay Strategies

Another aspect of FL worth investigating is learning rate (LR) decay strategies. The following three of them are implemented:

- Decay the LR every set number of GEs. All clients have the same LR at every moment.
- Decay the LR of a client based on the number of participated GEs. If a subset of the clients is used every GE, some clients may have been selected more times than others and as a result they will have a lower LR.
- The final strategy is to reduce a client's LR each time its dataset is repeated. This is an extension of the second strategy, where instead of decaying slowly the LR every few rounds, there is a big drop every ∑local data
 ∑local data used per GE
 rounds of training.

parameters	FL, no decay	FL strategy 1	FL strategy 2	FL strategy 3
total clients	5	5	5	5
clients per GE	3	3	3	3
steps per GE	5	5	5	5
batch size	20	20	20	20
initial LR	1e-2	1e-2	1e-2	1e-2
LR decay	-	0.999	0.999	$\frac{0.999 * \sum local \ data}{\sum local \ data \ used \ per \ GE}$
decay interval x = decay period	-	x GEs	x participated GEs	$\frac{x \text{ participated GEs} * \sum local \text{ data}}{\sum local \text{ data used per GE}}$

TABLE 5.7: Experiment 7 parameters

Each strategy is tested three times with different decay periods. The decay period dictates how often the decay applies. E.g. the second strategy with the a decay period of three means that LR decays every three participated rounds. A FL trained model without LR decay is used as a baseline.

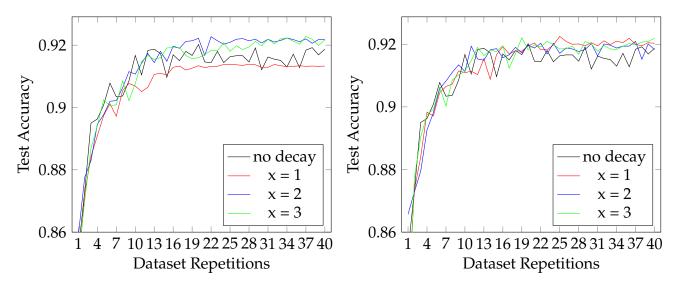


FIGURE 5.7: Experiment 7 results, strategies 1 and 2.

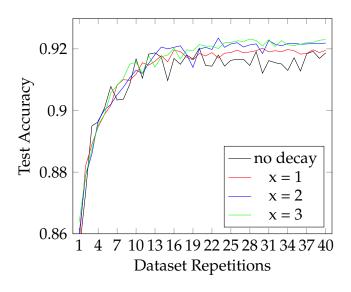


FIGURE 5.7: Experiment 7 results, strategy 3.

All strategies seems to to perform slightly better than the baseline, except the first one with decay period = 1. In that case, the decay is too fast and the LR degenerates in a state that cannot substantially alter the weights of the NN. The last strategy appears to be the most promising, which while outperforming the others is the most straightforward.

5.8 Federated Averaging (FedAvg)

In FedAvg, a client, when participating in a training round, uses all of its data and executes multiple SGD iterations. In the prior experiment, for a client to consume all of its data 200 GEs were necessary; whereas with FedAvg, only one GE (at most) is needed. The main objective of this experiment is to demonstrate the algorithm's compatibility with the developed FL environment.

parameters	FedAvg
total clients	5
clients per GE	3
local epochs	1
steps per epoch	600
batch size	20
initial LR	1e-2

TABLE 5.8: Experiment 8 parameters

The LR decay needs to be corrected to account for the reduced number of decay events, thus the model is trained multiple times to identify its ideal values. The prior experiment's LR decay is utilized for the first run of training, and each additional training reduces the descent slope by half. The model is also trained without LR decay.

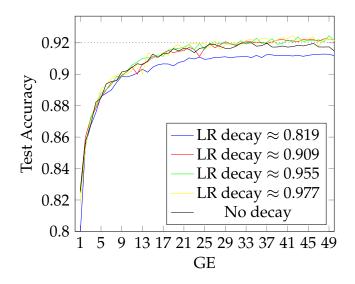


FIGURE 5.8: Experiment 8 results

The maximum accuracy of this model when trained locally is 92%. This is now regarded as the minimum baseline. In addition of showing maximum accuracy, the GE where that baseline was reached is also presented.

LR decay	Max accuracy	0.92 @GE
0.819	0.913	-
0.909	0.9232	30
0.955	0.9245	32
0.977	0.9245	27
No decay	0.9224	34

TABLE 5.9: Experiment 8 results

In comparison to the previous experiment, FedAvg requires $\times 100-200$ less communication and the same computation to reach the target accuracy. However, there is a hidden cost in that less averaging occurs and the rebalancing effect is diminished. This becomes quite clear when training without LR decay, where overfitting is apparent.

Considering the different LR decay values, the more conservative options appear to perform best; decaying the LR too quickly causes the ANN to set in sub-optimal minima.

5.9 Client Participation and Increasing Parallelism

This experiment explores the amount of multi-client parallelism that can be exploited and its effect on training. The dataset is split between 10 clients, each one holding 6000 training examples. The third model is trained with different number of participating clients per GE.

Test	A	В	С	D
total clients	10	10	10	10
clients per GE	1	3	5	10
local epochs	1	1	1	1
steps per epoch	300	300	300	300
batch size	20	20	20	20
initial LR	1e-2	1e-2	1e-2	1e-2
LR decay	0.977	0.977	0.977	0.977

TABLE 5.10: Experiment 9 parameters

Training with one client per epoch serves as the baseline. The relative reduction in communication is calculated for the other training runs.

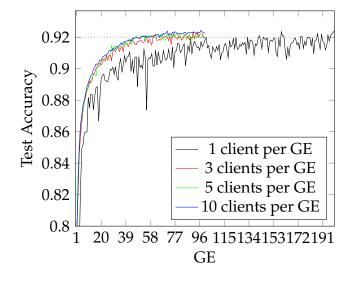


FIGURE 5.9: Experiment 9 results

client per GE	0.92 @GE
1	159
3	61 (2.6×)
5	46 (3.4×)
10	51 (3.1×)

TABLE 5.11: Experiment 9 results, with relative reduction in GEs.

Using more clients per GE substantially lowers the rounds of communication needed to achieve the target accuracy. This is consistent with others works, which show even on simulations of hundreds of clients with a small dataset each, using a bit more than half of the clients in each GE yields the best results. If all the clients are used every GE, especially when under non-IID data, the model may not converge in an acceptable solution.

5.10 Increasing Computation per Client

To further reduce communication, clients can perform more local updates per GE. This may be accomplished by increasing the number of local epochs (LE), reducing the batch size (B), or both. The third model is trained by 5 clients, with 3 of them participating each GE. LR and its decay are amortized to maintain a consistent LR at each GE, regardless of the number of local updates. The goal of this experiment is to identify the behavior of the algorithm across different sets of parameters.

	Local epochs = 1		Local epochs = 3	
В	updates/GE	0.92 @GE	updates/GE	0.92 @GE
600	20	309	60	-
300	40	212	120	67
100	120	72	360	36
80	150	54	450	25
40	300	31	900	13
20	600	25	1800	7
10	1200	18	3600	15

TABLE 5.12: Experiment 10 results

According to the results of the experimental, increasing local updates directly decreases the required global updates. Unlike most works, this one concentrates on small groups of clients with large local datasets. As a result, increasing the number of local epochs produces inconsistent results due to the introduction of overfitting in the local models. Regarding the batch size, there is no cost in reducing it, providing that it is large enough to completely utilize the client's hardware parallelism.

5.11 Conclusions

From the above experiments, a number of observations can be made:

- FedAvg require a lot less communication rounds than Distributed SGD.
- By far the most important parameter is the batch size. The convergence of the training as well as the required communication rounds are directly dictated by it.
- The learning rate and its decay greatly impacts convergence rate and final accuracy. They have to be tuned up depending on other parameters, such as the sizes of the training batches and the local datasets.
- At least half of the clients should participate each epoch.
- Increasing the number of local epochs seems to be beneficial, however it should be noted that this is heavily depended on other parameters. If the model being trained is small or the local datasets are large, then the clients overfit their local models. As a result, any benefits are negated.

Chapter 6

FPGA Design & Implementation

This chapter presents the architecture and design of the FPGA-based CNN accelerator developed in this thesis, as well as the important parts of its implementation and integration into the overall FL system.

In more detail, sections 6.1 and 6.2 contain the relevant parts of the tools and platforms used, respectively. Section 6.3 describes a CPU-based CNN implementation developed in this thesis, which served as the starting point of the ensuing FPGA-based implementation.

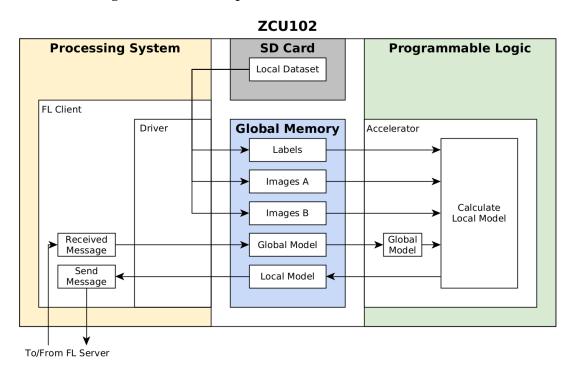


FIGURE 6.1: Top-down view of the FL client on the ZCU102.

Although the accelerator was developed and is explained in a bottom-up manner, showing here the top-down view of figure 6.1 makes the rest of the

chapter easier to navigate. Section 6.4 covers in depth the design and implementation of the accelerator in the PL, starting with the individual layers of the CNN, continuing with the developed pipelines and ending with the top function that interfaces with the Processing System (PS).

The final section 6.5 presents the remaining developed design elements. These include the PL driver in the PS, the management of the global memory used to transfer data from the PS to PL and vice versa, and how the driver is incorporated in the FL client described in chapter 4.

6.1 Tools Used

6.1.1 Vitis Unified Software Platform

The Vitis unified software platform[77] is a collection of tools, libraries and environments designed to ease the development of accelerated applications tailored for AMD Xilinx FPGA and Versal® ACAP hardware platforms. It includes graphical and command-line compilers, analyzers, and debuggers to build applications, analyze performance bottlenecks, and debug accelerated algorithms, developed in C, C++, or OpenCL APIs. Furthermore, it offers numerous advantages such as effortless application portability, complete simulation of hardware systems, and an open source runtime that handles host-device communication.

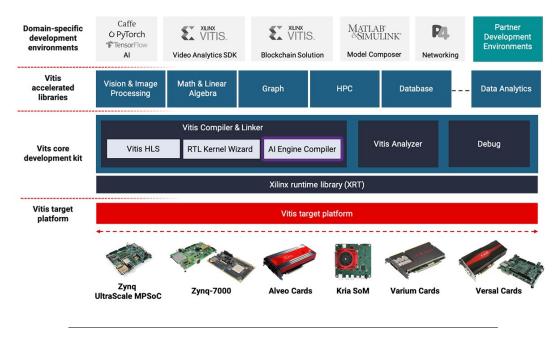


FIGURE 6.2: Vitis overview [77]: URL.

Vitis supports hardware acceleration kernels controlled by PS or x86 kernels. The Vitis application acceleration development flow provides a framework for developing and delivering FPGA-accelerated applications using standard programming languages for both software and hardware components. The kernels can be developed through traditional RTL, C/C++ with Vitis HLS, the Vitis model composer and the AI Engine compiler.

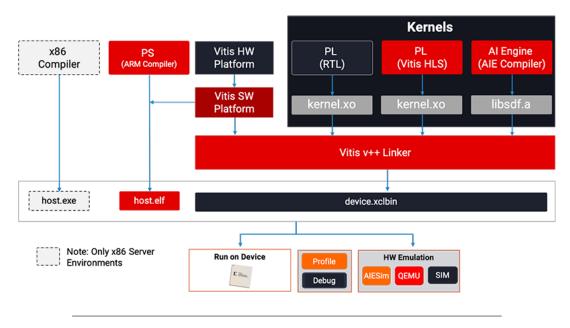


FIGURE 6.3: Vitis kernel architecture [77]: URL.

6.1.2 Xilinx Runtime library (XRT)

The Xilinx Runtime library[78] (XRT) facilitates communication between the application code (running on an embedded Arm or x86 host) and the accelerators deployed on the reconfigurable portion of PCIe interface-based AMD Xilinx accelerator cards, MPSoC-based embedded platforms, or ACAPs. It is flexible with modifiable libraries and drivers, enabling different levels of abstractions, from high-level Python bindings to low-level C++ APIs. These APIs are common across all platforms and eliminate the need to implement hardware communication layers from scratch.

A widely used alternative are the OpenCL libraries. TBy abstracting the underlying implementations of numerous APIs, including the XRT, they offer a standard interface for managing heterogeneous devices. As a result, they enable portability across multiple devices from various providers, albeit with increased complexity due to the extra layer of abstraction. As this work is not indented to transition to other devices, the XRT is preferred.

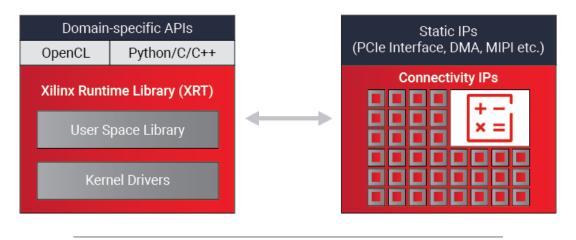


FIGURE 6.4: Xilinx Runtime Library overview [78]: URL.

6.1.3 Vitis High Level Synthesis (HLS)

The Vitis HLS tool can synthesize a C/C++ function into RTL code for implementation in the programmable logic (PL) region of a Xilinx FPGA device. Its kernels can be easily integrated into a design utilizing OpenCL[79] code. It provides support of complex data types, math functions and AXI4-Stream interfaces for data exchange between IPs in the PL and/or Processing Subsystem (PS).

HLS is an automated design process that takes an abstract behavioral specification of a digital system and generates a register-transfer level structure that implements the given behavior. The designer is working on a high abstraction level, while the tool takes care of mechanical RTL implementation tasks.

Macro Architecture Design Intent
Design Intent
Constrains

HLS tool automation
FSM Generation
Operation Scheduling
Clock
Register Pipelining
Resource Sharing
Timing
Verification

TABLE 6.1: Distribution of work during HLS design.

6.2 FPGA Platform

6.2.1 Xilinx Zynq UltraScale+ MPSoC

The Zynq[®] UltraScale+[™] MPSoC is a family of Xilinx products that integrates a feature-rich 64-bit quad-core or dual-core Arm® Cortex®-A53 and dual-core Arm Cortex-R5F based processing system (PS) and Xilinx programmable logic (PL) UltraScale architecture in a single device. In addition, on-chip memory, multiport external memory interfaces, and a rich set of peripheral connectivity interfaces are included. [80]

6.2.2 ZCU102 Evaluation Board

The ZCU102 Evaluation Board features a Zynq[®] UltraScale+[™] MPSoC with a quad-core Arm[®] Cortex[®]-A53, dual-core Cortex-R5F real-time processors, and a Mali[™]-400 MP2 graphics processing unit based on Xilinx's 16nm Fin-FET+ programmable logic fabric. It supports all major peripherals and interfaces, enabling development for a wide range of applications. Furthermore, its high speed DDR4 memory interfaces, variety of communication interfaces and FMC expansion ports makes it ideal for rapid prototyping.

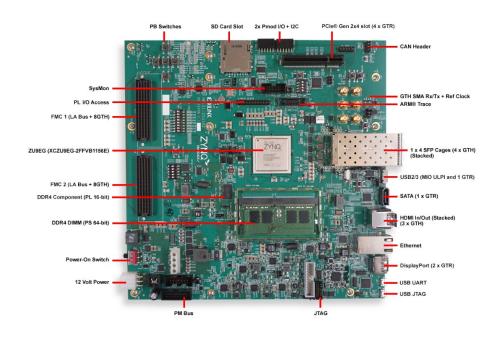


FIGURE 6.5: ZCU102 Features [81]: URL.

Given that the thesis is based on an edge application, this platform seems to be an ideal fit for it. During the hardware design phase, the constrains and resource limitation were placed according to the specifications of this board. Nevertheless, transferring the final design to devices of similar families should require minimal effort.

6.3 CPU-based C++ CNN implementation

In the preceding phase, TF with Python was utilized to implement all ANNs and training. As the Vitis Kernel Toolchain is aimed to C/C++ code, these implementations can not be synthesized to hardware by the aforementioned tools. As such, a simplified version of the most used CNN, the third in the model library, has been re-implemented with C++.

Migrating from TF to a hardware synthesizable CNN is a fairly challenging task riddled with pitfalls. This implementation is not optimized for hardware, but rather serves as a stepping stone between TF and synthesizable code. Certain practices are adopted to facilitate future transition to hardware targeted code:

- Implementation is modular and re-configurable. The code is build around template functions, each of which performs a specified task. Layers can effortlessly added, removed, or altered in size, shape and parameters.
- All data, whether input, output or internal, are produced and consumed serially and only once. This behavior is similar to the stream data format, which is widely utilized in hardware design.
- All feature maps, input gradients, variable gradients, and updated variables are logged and compared with those generated by the existing TF implementation. This approach not only evaluates functionality, but also produces test benches for future hardware implementation.

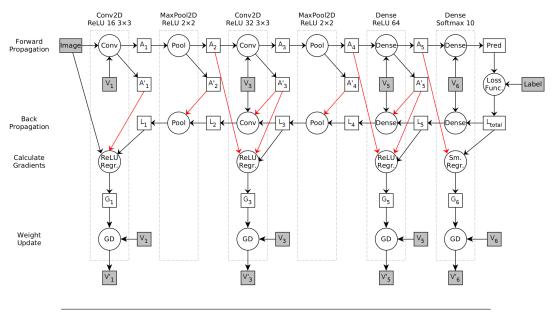


FIGURE 6.6: Dataflow diagram of the implemented CNN model.

Figure 6.6 depicts the basic structure of the implementation. Tasks are represented by cycles, whereas data are represented by squares. Inputs, labels, weights and any other data that must to be saved in memory have greyed-out squares. The majority of internal data are consumed immediately after being produced. Some of them, marked by red arrows, skip parts of the chain and must be temporally stored.

6.4 FPGA-based CNN architecture

Even with the aforementioned techniques, adapting the code to be compatible with FPGAs is not a trivial task. To build an efficient implementation, resource usage, data access patterns, and other factors must be taken into account. All parts of the CNN are modified accordingly.

6.4.1 2D Convolutional Layers

Due to their non-serial data access patterns, multi-dimensional filter algorithms frequently conflict with FPGA design; 2-D convolution is no exception. At its core, it carries out some form of data averaging around a pixel, necessitating the access of nearby input values as seen in figure 6.7. Additionally, when calculating the adjacent outputs, some inputs are accessed again.

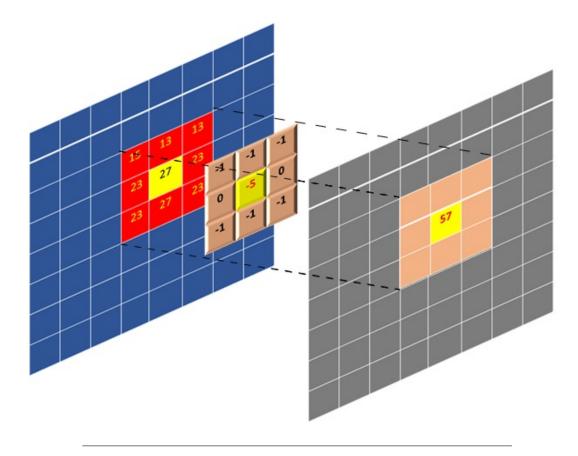


FIGURE 6.7: Convolution access pattern: Input (Blue) pixels are accessed in a non-serial pattern [82]: URL

In a CPU-focused implementation this would be a non issue, as data caching and pre-fetching can ensure that the majority of accesses will be cache hits. Implementing this on an FPGA would produce numerous small non-burst accesses on the global memory, resulting in unacceptable performance. Thus, a different approach is required.

A unique data mover, specifically designed for the given algorithm, has been developed to reduce the number of global memory accesses. Its key concept is to construct two-dimensional input windows that are the same size as the filters and then compute the dot product of those. Its main components are buffers that store lines of the input, and a sliding window on top of them.

	1	2	3	4	5	6	7	8
	9	10	11	12	13	14	15	16
A	17	18	19					
~		→	_					
	1	2	3	4	5	6	7	8
	9	10	11	12	13	14	15	16
B	17	18	19	?				
	1	2	3	4	5	6	7	8
	9	10	11	12	13	14	15	16
C	17	18	19	20	?			

FIGURE 6.8: Line Buffers: Shifting a 3x3 window [82]: URL

Figure 6.8 illustrates the operation of the line and window buffering scheme. A continuous stream of 3x3 windows is produced by sifting a window buffer over the top of the line buffers. Since the masked elements of the top line are already present in the window, only two line buffers are needed. Furthermore, only one new input pixel is required to produce a window, and thus an output pixel. Finally, zero padding is applied to maintain correct data with edge windows.

To complete the 2D convolution, a processing element is required. In the simplest scenario, a single channel input, the dot products between the windows and the filters are calculated and activated with the ReLU function. If there are additional input channels, the dot products are calculated in respect of each channel, which are aggregated and then activated to produce the feature map of the layer. This is done to allow computing of multiple channels in parallel, while using a data streaming paradigm.

Two output streams are produced, one float and one bool. The first one consists of the activations and is connected to the next layer. The second one indicates whether or not the kernels have activated the ReLU function. As only activated neurons convey their error backwards, this is necessary information for the back-propagation.

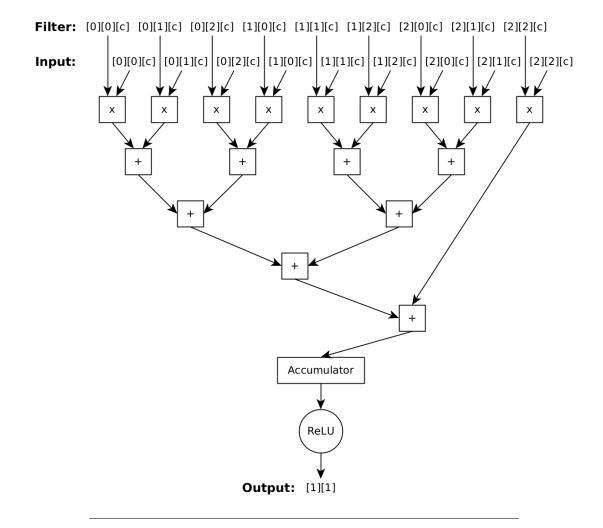


FIGURE 6.9: Order of calculations when computing the pixel [1][1] of a single filter. Iterates through all channels of the input (c).

Figures 6.9 and 6.10 illustrate the same operation, from a different point of view. The first focus on the flow of the algorithm, while the second considers the structure of the hardware functions. The additions and multiplications tree corresponds to the dot product function, the accumulator represent the sum channels function, and the ReLU is the activation function. In figure 6.9, the input is already windowed and padded.

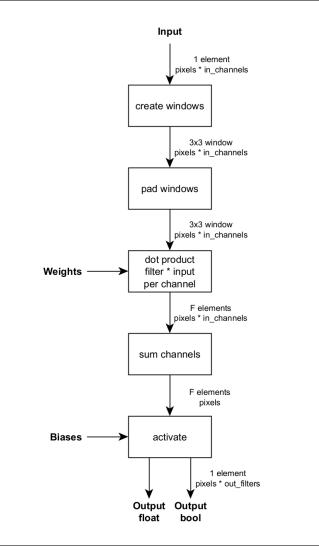


FIGURE 6.10: Block diagram of the 2D convolution forward propagation. F is the number of filters. The data types of the internal streams with the total data passed are shown.

The transformation from software to HLS hardware implementation is shown in the following pseudocode:

Algorithm 3 2D Convolution: Software imp			n: Software implementation.
	1		

SW Implementation: for p in pixels do for o in output channels do for i in input channels do out[p][o] += filter[o][i] * in[p][i]out[p][o] = activate(out[p][o])

out[p][o], filter[o][i] & in[p][i] have the dimensions of the filter. They can be multiple dimension arrays.

Algorithm 4 2D Convolution: Software to HLS Hardware Transformation.

```
Step 1: Transpose output channels dimension from time to space.
   for p in pixels do
      for i in input channels do
          out[p][0] += filter[0][i] * in[p][i]
          out[p][1] += filter[1][i] * in[p][i]
                                                      output channel times
          . . .
      out[p][0] = activate(out[p][0])
      out[p][1] = activate(out[p][1])
                                                      ▷ output channel times
      . . .
Step 2: Split multiplications, additions & activations in distinct functions.
Func A:
   for p in pixels do
      for i in input channels do
          A[0] = filter[0][i] * in[p][i]
          A[1] = filter[1][i] * in[p][i]
                                                      ▷ output channel times
          . . .
          Write (A[0], A[1], \cdots) to stream A
Func B:
   for p in pixels do
      for i in input channels do
          Read (A[0], A[1], \cdots) from streamA
          B[0] += A[0]
          B[1] += A[1]
                                                      ▷ output channel times
          . . .
      Write (B[0], B[1], \cdots) to streamB
```

Func C:

```
for p in pixels do
```

```
Read (B[0], B[1], \cdots) from streamB

out[p][0] = activate(B[0])

out[p][1] = activate(B[1])

...
```

▷ output channel times

Algorithm 5 2D Convolution: HLS implementation.

Step 3: Make output channels dimension flexible between time & space using HLS tools.

Func A:

for <i>p</i> in pixels do	
for <i>i</i> in input channels do	
<pre>#pragma HLS PIPELINE II=flexible</pre>	
for <i>o</i> in output channels do	▷ If II=1 loop is flattened
A[o] = filter[o][i] * in[p][i]	
Write $(A[0], A[1], \cdots)$ to <i>streamA</i>	
Func B:	
for <i>p</i> in pixels do	
for <i>i</i> in input channels do	
<pre>#pragma HLS PIPELINE II=flexible</pre>	
Read $(A[0], A[1], \cdots)$ from <i>streamA</i>	
for <i>o</i> in output channels do	▷ If II=1 loop is flattened
B[o] += A[o]	
Write $(B[0], B[1], \cdots)$ to <i>streamB</i>	
Func C:	
for <i>p</i> in pixels do	
Read $(B[0], B[1], \cdots)$ from <i>streamB</i>	
for <i>o</i> in output channels do	
out[p][o] = activate(B[o])	

The overall scheme is designed to maximize the data reuse providing maximum parallel data to the processing element, with minimum use of memory. Back propagation and gradient calculation follow the same logic with a few minor differences:

In back propagation, the input is the activated output gradients. To activate them, the system need to remember which neurons fired during forward propagation, as shown in figure 6.6. Furthermore, the biases are not used, and the channel/filter dimensions are reversed. Finally the output are the gradients of the layer's input.

The processing element of the gradient calculation differs more. Instead of using the weights to calculate the outputs, the outputs are used to calculate

the weight gradients. Furthermore, finding the bias gradients is trivial, as they are equal with the sum of all output gradients of their filter.

Figure 6.11 shows the structure of the backpropagation and gradient calculation elements. Common hardware functions are shared by duplicating their output streams.

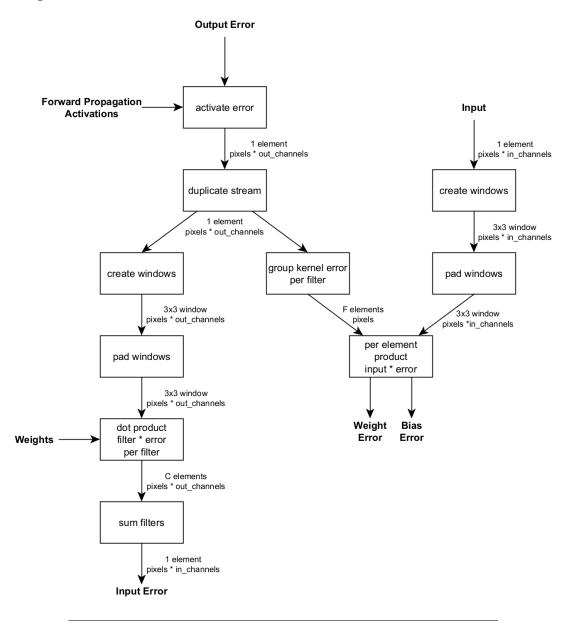


FIGURE 6.11: Block diagram of the 2D convolution back propagation. F is the number of filters, C is the number of input channels. The data types of the internal streams with the total data passed are shown.

90

6.4.2 2D Max-Pooling Layers

The 2D Max-Pooling layers are implemented using the same logic as the 2D convolutional layers, albeit with a few major differences. First of all the window is 2x2 is size, and with a stride of 2. As a result, each window contains exclusive data, and an output can only be obtained with four inputs.

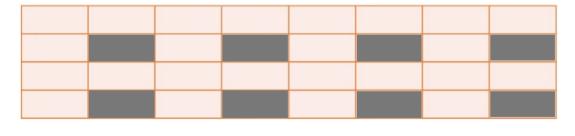


FIGURE 6.12: Line Buffers, Max-Pool: Grey pixels represent which inputs will trigger an output generation.

Figure 6.12 demonstrates the Max-Pool layer's uneven output generation, an unavoidable issue of any algorithm with stride greater than one. Following hardware does not operate while there are no data available, which is a problem in a FPGA design, as idle hardware indicates wasted hardware space. By raising the Iteration Interval (II) of the following hardware functions and properly calibrating the size of internal FIFO streams, the constant operation of the entire system is ensured.

The processing component of forward propagation is quite simple, as the output is the highest value in each window. It is important to note that the output's spatial dimensions are two times smaller than those of the input. Even more straightforward is back-propagation, in which the error back-propagates towards the maximum of each window. All other connections are assigned zero error gradients.

6.4.3 Dense & Softmax Layers

The implementations of the dense and Softmax layers are simple and fairly similar. They are made up of two components: matrix multiplication of their inputs and weights and their respective activation function. In backpropagation and gradient calculation, the output error is activated before used as the input, with the input and variable gradients being the outputs.

The most crucial aspect of their design is ensuring that the hardware functions are constantly operating. To accomplish this, a streaming architecture, that reads and writes inputs and outputs serially and only once, is used. Important to note is that the Softmax activation requires all the inputs to be received before calculating any output, meaning that for an example backpropagation can not start until forward propagation is fully completed.

6.4.4 Gradients Calculation Pipeline

A major advantage of FPGA accelerators is that multiple hardware functions operate simultaneously, if the implemented algorithm allows. This holds true for most of the design. As an example, The first maxpool layer requires four inputs to generate the first output. These inputs have being generated by the first convolutional layer before a training data-point is fully loaded and processed. Thus the first two layers can operate simultaneously.

On the other hand, the Softmax layer, which is the last step of the forward propagation, operates like a barrier. Due to the nature of the algorithm, to produce its feature map, all inputs must first be collected. As a result, for a single training data-point, the forward propagation must be completed before the back propagation begins.

As such, the sequential semantics must be preserved, and the pipeline is implemented with a dataflow region that follows the control-driven task-level parallelism paradigm. This means that a subsequent function can start before the previous finishes and multiple functions can start and operate simultaneously. All tasks and channels are instantiated and connected explicitly. Furthermore, the inputs and outputs of the tasks are of stream type or stable memory arrays.

In this paradigm, the task with the highest latency typically determines the overall latency. Due to the existence of the Softmax barrier, for a single data input, forward propagation tasks can not operate simultaneously with tasks after it. As a result, the minimum overall latency equals the highest task latency before the barrier plus the highest task latency after it.

Figure 6.13 shows in detail the developed dataflow region that generates the weight and bias gradients. The heavy use of auxiliary data transformation functions, such as create windows and stream, is evident. These functions consume almost no hardware when synthesized, and add near zero latency.

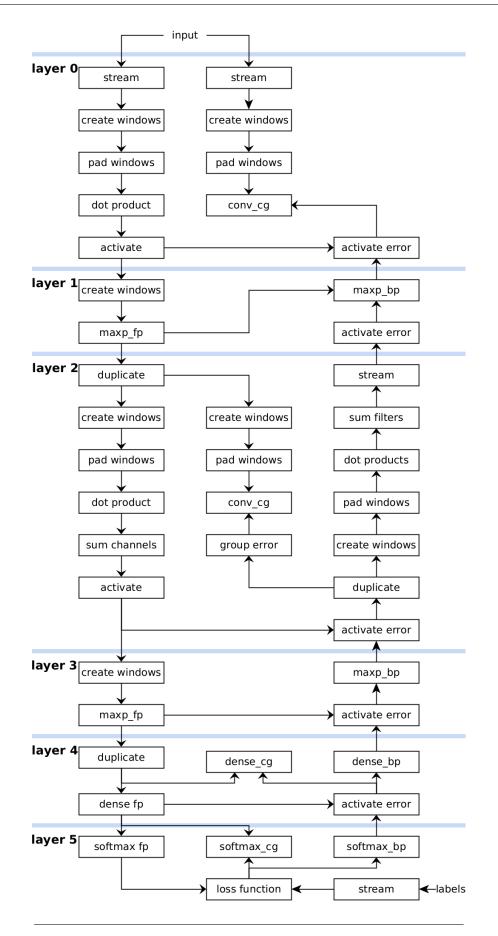


FIGURE 6.13: Block diagram of the pipeline that generates the gradients. Inputs/Outpouts are not shown. Arrows represent data streams.

Several data streams skip hardware functions and layers. This could introduce stalls and ultimately deadlocks. To address this issue, hardware functions are implemented as free running pipelines (FRPs), when possible. Such implementations significantly reduce the possibility of a stall, by continuing to operate even when no input data are available or the output streams are full.

Using FRPs comes with multiple restrictions, a strict coding style is required, and MAXI ports are not supported. For hardware functions that read or write data from MAXI ports or can not adhere to other restrictions, flushable pipelines (FLPs) are used instead. They achieve the same goal as FRPs, but by instantiating multiple copies of the pipeline and executing them independently. As a result, the design is robust against any unpredictable stalls that MAXI ports may introduce.

6.4.5 Hardware Streams

All communication between the hardware functions is facilitated with the stream implementation provided by the Vitis HLS library "hls_stream.h". Hardware functions stall when an output stream is full, making the overall architecture inefficient. It is crucial to prevent this by determining the proper depth of the streams.

In most cases, this is trivial as they link sequential functions in a dataflow region where the consumer can instantly begin utilizing any data written by the producer. Then the major factor of the depth is the II of the connected functions. For most stream, a depth of two is sufficient.

More consideration is required about the streams that skip parts of the function chain. Due to the Softmax barrier, forward propagation of a sample is completed before its back propagation begins, thus all their data are produced before any of them is consumed. As such, their minimum depth is equal with the data produced by a single input sample.

To determine the ideal depths, an iterative optimization approach has typically been used. The Vitis HLS environment offers a variety of simulation tools that generate a number of useful statistics, such as the amount of clock cycles that each function stalls and whether or not a stream becomes full. Monitoring these when testing, enables calibrating the depths to ensure the stable flow of the pipeline, while not wasting hardware space in unnecessarily large streams.

6.4.6 Batching Inputs

As already explained, not all hardware functions can run concurrently for a single input sample. This issue is mitigated through batching input samples, where while an input runs through back-propagation, the next one is used in forward propagation, as shown in figure 6.14.

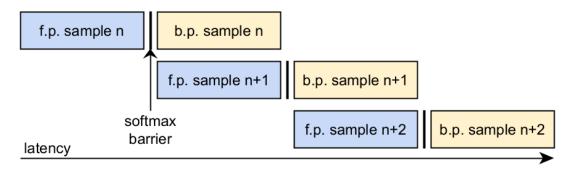


FIGURE 6.14: Latency of the pipeline under batching.

With both sub-regions of the pipeline having the same latency, the expected overall latency for a dataset without batching is defined as:

$$L_{dataset} = \sum^{samples} (L_{fp} + L_{bp}) = 2 \cdot samples \cdot L_{fp/bp}$$
(6.1)

With batching enabled, the latency of the dataset is transformed as:

$$L_{dataset} = \sum_{per \ dataset} \sum_{per \ batch}^{samples} (L_{fp/bp} + 1) = \frac{samples}{size_{batch}} \cdot size_{batch} \cdot (L_{fp/bp} + 1) = samples \cdot (L_{fp/bp} + 1)$$
(6.2)

With Vitis HLS, implementing batching on each individual hardware function is quite trivial. Encapsulating their C++ definitions in a loop of the same size as the desired batch, is sufficient.

Further though must be given to the size of the streams connecting functions of the forward propagation with functions after the barrier. The producer functions will block until the consumer functions clear some space in the stream if the minimal depth is used as mentioned in the preceding section. Depending on the minimal latency between the producer and the consumer, this can be avoided by increasing the depth by 0.5 to 1 times.

6.4.7 Updating Variables

Based on the produced gradients, the variables of the ANN are updated in a second dataflow region. Due to the independence of all weights and gradients, this process is relatively straightforward. The classic SGD with momentum optimization algorithm is used and the learning rate is supplied by the driver program. Thus, latency and hardware usage are the only criteria for the applied parallelism in this specific region.

6.4.8 Data Movement & Storage

Under the Vitis flow, AXI streams are unavailable for the ZCU102, thus memory mapping is used to transfer data from general memory to the PL and vice versa. That data consists of the input samples and labels, as well as the variables of the ANN. Appropriate data mover functions have been developed.

In Vitis HLS, arrays are implemented as continuous memory spaces with one or two ports, and only a limited amount of data can be read or written per cycle. To increase data accesses per cycle, the arrays are partitioned with the appropriate HLS directive *ARRAY_PARTITION*. The HLS tool splits the initial arrays to smaller ones, whose size and shape depend on the parameters of the corresponding directives.

The weights of the ANN are accessed in multiple functions of the first dataflow region and require special treatment. These arrays must be designated as shared using the directive *STREAM* with the type parameter set to *SHARED* in order for the design to be syntesizable. The tool then recognizes there are numerous consumers and multiplies the ports accordingly, without duplicating the array data.

For the weights of the second convolutional layer, this is insufficient. They are accessed by two functions with different access patterns. To resolve this, both access patterns could be satisfied by increasing the partition factor and dimensions. This solution generate a huge amount of access ports, increasing hardware consumption unacceptably. More appropriate solution is creating two arrays with unique partitioning each. Albeit more memory is needed, the overall hardware usage is lower. To generate the gradients, the ANN's inputs, data and labels, are sent from global memory to the PL via AXI Master Adapter ports. In a dataflow region, each channel must have a single consumer, thus two ports are needed to propagate the input data to the two hardware functions that consume it. All ports are independent from one another by having their own dedicated bundles, thus enabling the simultaneous reading of all inputs.

The gradients are produced in the first dataflow region and consumed in the second, thus persistent saving in on-chip memory is necessary. This memory is not shared, as its producers and consumers are in different regions, and is implemented as streams or arrays, whichever is more convenient. The same applies for the momenta of the gradients, as they may be produced and consumed in same dataflow region, but in different iterations of it.

6.4.9 Top Function

To hold everything together, the top level function of figure 6.15 has been developed. Its signature operates as the API between PL and PS. Furthermore, it contains all the definitions of the memory structures, as well as the instantiations of the data movers & initializers and dataflow regions. Finally, to train on multiple batches, the dataflow regions are enclosed in a loop.

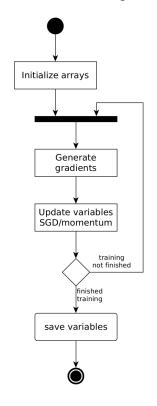


FIGURE 6.15: Block diagram of the accelerator's top function.

6.5 Host Program

6.5.1 Driver Architecture

The overall application uses Linux system calls, such as socket read and write. Thus a bare metal implementation is inadequate and a host program in the PS is required to drive the developed hardware design in the PL. This is achieved with the use of the XRT native C++ APIs [83].

The flow of the driver code is as follows:

- Open the device.
- Load the compiled and linked binary (XCLBIN) onto the device.
- Open the kernel loaded to the device with the XCLBIN.
- Create buffer objects to transfer data to and from the kernel.
- Write data to the input buffers.
- Execute the kernel.
- Read data from the outputs buffers.

6.5.2 Memory Management

Since the target device is a SoC, both host and kernel programs can read and write in the same memory space. By facilitating data transfers between PL and PS through the map API provided by the XRT library, no data movements are necessary other than filling the global buffers. The training dataset is stored in binary files and is directly transferred in global memory; no intermediately buffers are used in the user space of the host program.

The same methodology is used to move the ANN's weights and biases. As they are a part of a byte-stream that is received from the socket connected to the FL server, it is required to write that directly to the global memory. Similarly the outgoing bytestream is read directly from the global memory.

The previous solution is acceptable when the server and client processes operate on the same architecture, but it may introduce endianess and alignment issues over heterogeneous ecosystems. Thus, a more conservative and robust implementation is also created, in which intermediary buffers contains the incoming and outgoing byte-streams, and are appropriately copied to and from the global memory using the write API of the XRT library. Diagram 6.13 demonstrates how the image inputs are needed twice. They are stored twice in global memory, in two distinct memory banks, to prevent any bus or AXI conflicts. As a result, both hardware functions can read them concurrently without experiencing any additional latency.

6.5.3 Incorporating the Driver in the FL Client

Uniting the Federated Learning and the driver codebases is trivial. First off, the server is, by design, agnostic to the implementation of the training. As it does not interface with any hardware kernel, there is no need for any code changes when compiled for another device, such as the ZCU102.

In the case of the client with the write API, all that is required is swapping the calls to the integrated Python interpreter with those to the aforementioned driver. Figure 6.1 shows the architecture of that FL client on the ZCU102, with an emphasis on data transfers. For the client using the map API, a tighter integration of the driver is required. The received and send messages buffers are allocated in the global memory and the socket output is written directly there.

Chapter 7

Results

This chapter has three aims. First, to quantify the performance of the FPGA implementation of the ANN and analyze its resource consumption and timing. Second, to compare it will equivalent implementations on other technologies. Final and main goal, to study the interaction and discover any possible synergies or conflicts between the two technologies under focus, namely FL and FPGA.

It should be noted that the following timings were produced through actual runs in a real FPGA. In the following subsections it is explained in detail how they were generated and what they actually mean.

Performance Metrics

Latency

Latency, is the required time to complete a single task. In this work, latency can be the time taken to process a single image, a batch of images, a dataset of images, etc.

Throughput

Throughput is generally referred to as the quantity of tasks completed in a given amount of time. The rate at which something is processed increases with throughput. Throughput in this work is referred to as the number of images processed per second.

$$Throughput := \frac{Images}{Time(sec)}$$
(7.1)

7.1 FPGA Implementation Analysis

7.1.1 Resource Utilization Analysis

Although consisting of only \sim 105000 variables and 6 layers, the implemented ANN consume a lot of resources. It has full floating point accuracy, back-propagation is employed for training, and the SGD optimization algorithm makes use of momenta. When applied in programmable logic, all of these techniques are known to significantly increase resource usage. Table 7.1 depicts the utilization of the major resources after synthesis, place and route; according to the Vitis IDE.

Resource	Utilization	Available	Utilization %
LUT	161274	274080	58.84
LUTRAM	14270	144000	9.91
FF	260050	548160	47.44
BRAM	573	912	62.83
DSP	854	2520	33.89

TABLE 7.1: Post place & route resource utilization.

The highest use rate is observed on the BRAM. It is intrinsically tied to the size of the ANN due to three key factors. Firstly, to enable the quickest access to the ANN's variables, they are stored in on-chip memory. Furthermore, the back-propagation algorithm demands the temporary storage of all data that bypass hardware functions. Lastly, between each batch update, the SGD algorithms' momenta must be saved.

The utilization of the rest of the PL is affected mostly on the desired accuracy and the applied parallelism. Using single precision floating points is more resource demanding than using half precision and less than using double precision. Although it appears there is space to improve parallelism, the benefits diminish the more that this is done. Most crucially, timing-based constraints rather than resource-based constraints are the biggest barriers to it.

7.1.2 Timing Analysis

A thorough analysis of the implementation's timings is required to to assess its performance, identify delays and limitations, as well as enable future improvements. This section provides a breakdown of the relevant latencies. The following formulas and results have been confirmed by experiments on the ZCU102.

Overall Latency

From the point of view of the host program, the overall latency of training can be broken down as follows; writing the variables in global memory, calling the accelerator, waiting for the accelerator to return, and finally read the produced variables from the global memory.

$$Host_{latency} = GMEM_{write} + Accel_{call} + Accel_{wait} + GMEM_{read}$$
(7.2)

Important to note, all parts involve system calls to the operating system, which can introduce a small variance in their latency. Additionally, in the case of the FL client with the map API, the latency of accessing the global memory is hidden under the FL operation, as the socket reads and writes there directly.

Accelerator's Latency

Accountable for the majority of the overall latency is waiting for the accelerator to finish running. As observed in figure 6.15, its operation consists of initializing its on-chip local memory, calculating the gradients, updating the variables, and finally writing the final variables to the global memory.

The first and the last segments are executed only once and they are independent of any variable such as the size of the dataset used for training. In contrast, the two dataflow regions, generating the gradients and updating the trainable variables, are repeated multiple times depending on the number of training epochs and the number of batches in the dataset. in more detail:

$$Accel_{latency} = I + e \cdot \frac{d}{b}[G(b) + U] + S$$
(7.3)

Where:

I =initialize inputs

- e =training epochs
- d = dataset size
- b = batch size

G = calculate the gradients

U = update trainable variables

S = Save final variables

Calculating the gradients is done using the long and complex pipeline depicted in figure 6.13. It has significant wind-up and wind-down latencies and its total run-time is dependent on the batch size.

$$G(b) = G_{up} + b \cdot E + G_{down} \tag{7.4}$$

Where:

 G_{up} = latency to wind-up the pipeline G_{down} = latency to wind-down the pipeline E = latency added by one example

Thus, the latency of the accelerator can better be described as:

$$Accel_{latency} = I + S + e \cdot d[E + \frac{G_{up} + G_{down} + U}{b}]$$
(7.5)

U, as described in section 6.4.7, is completely elastic and the main target when optimizing for small batches.

Through analyzing the Vitis reports, exact numbers can be assigned on each constant. For a single pass through the whole dataset (e = 1, d = 60000) and a clock speed of $4.08ns(\sim 245MHz)$, the equation transforms to:

$$Accel_{latency} = 8.157 + \frac{14.794}{b}(sec)$$
 (7.6)

Constrains

According to equation 7.5, the latency introduced by each example (E) is the most important constant. Accountable for that is the dataflow region shown in figure 6.13, thus received most of the optimization attention. Better performance is restricted mostly by a single issue caused by the HLS tool, affecting clock speed and the total operating clock cycles.

The slowest function of a dataflow region determines its overall latency. In this case, it is the *sum filters* in the back-propagation of the second convolutional layer. Per example, it has 14×14 inputs with 32 input and 16 output channels. The outputs are independent from each other and are calculated in parallel. Thus, 16 accumulators that reset every 32 cycles are needed.

Unfortunately, in the latest versions of the Vitis HLS, the tool can not deduce that the *facc* operator is the optimal choice if its accuracy has not been set to low. Instead, when normal accuracy is requested, it implements the slower *fadd* operator, which forces an II of 5 cycles and a clock speed of 245MHz. As a result, the latency of a single example is at least 31360 cycles.

The next slowest functions are the *create windows* hardware functions in the convolutional and maxpool layers (layers 0 to 3). While they are simple data transformation, the HLS tool encounters some difficulty in implementing them efficiently, as they are composed mostly of control logic. Still, it is able to synthesize them with a clock of over 300 MHz.

Both cases are byproducts of using HLS tools. If just the *facc* bug is avoided, the clock can be immediately increased by 55MHz. Without trying to improve the II of the function, the latency equation transforms to:

$$Accel_{latency} = 6.664 + \frac{12.086}{b}(sec)$$
(7.7)

Visualizing the equations 7.6 & 7.7 in the diagram 7.1, shows that their second part is insignificant for batches of over 100 images. In contrast, the first part is unavoidable and sets a base latency regardless of the batch size.

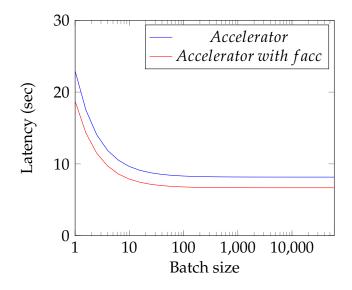


FIGURE 7.1: Latency with and without the facc module.

7.1.3 Power Consumption Analysis

The average power consumption of the design can be reliably estimated by the Xilinx tools. This report was generated post-implementation and is shown in figure 7.2. A breakdown of the consumption per PL element can be seen.

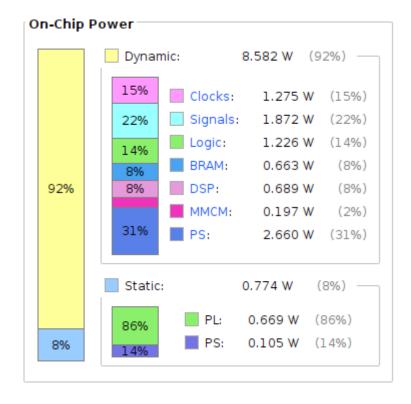


FIGURE 7.2: Post-implementation power estimation of the accelerator.

The average consumption is stated as 9.356 W, with the PL accountable for the majority of it. This is to be expected, as the PS part of the accelerator mostly does nothing while waiting for the PL part to finish. In practice, most of the PS consumption is sourced from the of-chip memory used.

7.2 Comparison with Other Technologies

To form an opinion on the efficiency of the FPGA implementation, a proper comparison is required. Thus, the ANN is also trained on CPU and GPU using TensorFlow. As metrics, the latency of a training epoch and the overall throughput are used.

7.2.1 Specification of Compared Platforms

Intel Core i7-9750H

Released in mid 2019, the i7-9750H is a high end CPU for laptops. Based on the Coffee Lake architecture and manufactured with the 14nm++ process, it provides a wide array of technologies such as Hyper-Treading and SIMD Instruction Set Extensions, making it suitable for training the ANN under consideration. Furthermore, TensorFlow has been compiled with AVX instructions enabled.

Core / Threads	6 / 12		
Clock Frequency	2.6 - 4.5 GHz		
Cache	12 MB Intel Smart Cache		
Supplied Memory	16GB DDR4-2666		
Max Memory Bandwidth	41.8 GB/s \times 2 channels		
Instruction Set Extensions	SSE4.1, SSE4.2, AVX2		
Average Power Consumption	45 W		

TABLE 7.2: i7-9750H specifications [84].

Nvidia GTX 1660 Ti

While released in early 2019 as mobile platform (laptops, tablets, etc.) GPU, is more than capable for training ANNs like the one under investigation. Its relevant specifications are shown on the following table.

CUDA cores	1536
Clock Speed	1500 - 1770 MHz
Memory Configuration	6GB GDDR6, 1500 MHz
Memory Interface	192-bit
Memory Bandwidth	288 GB/s
Single Precision Compute Power	5437.44 GFLOPS
Compute Capability	7.5
Average Power Consumption	120 W

TABLE 7.3: GTX 1660 Ti specifications [85].

7.2.2 Latency Comparison

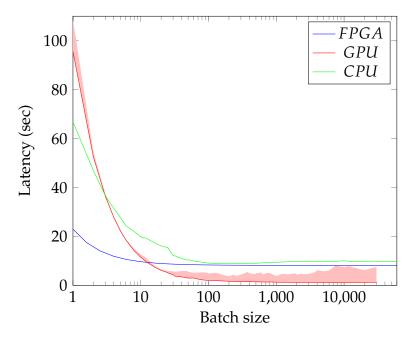


FIGURE 7.3: Latency of training for a single epoch on FPGA, GPU and CPU

Due to the CPU's fluctuating clock speed and caching architecture, training latency has a slight variance. This effect is considerably more pronounced on the GPU, as it also copy the training dataset and the ANN's variables to its dedicated memory, during the first epoch.

On the FPGA, however, training latency is practically deterministic. The only variance that it encounters, is produced by the system calls and is less than 10 ms. Such effects should be noted as this work also considers on-edge devices, where the training algorithm may not have complete control over them and their environment is not always in an ideal state.

Performance wise, according to figure 7.3, the FPGA implementation outperforms in training with small batches, but is overtaken by the GPU when their size is larger than or equal to 15 examples. Training on CPU is consistently slower than the other technologies.

It should be noted that the GPU is unable to perform non-Stochastic Gradient Descent, where the whole dataset is concatenated in a batch. Tensor-Flow can not obtain enough GPU dedicated memory and crashes. Due to non-determinism in memory management, this can also occur for SGD with batches of more than 15000 samples. In on-edge devices, such effects are expected to become more noticeable, due to the FL algorithm's limited control.

7.2.3 Throughput Comparison

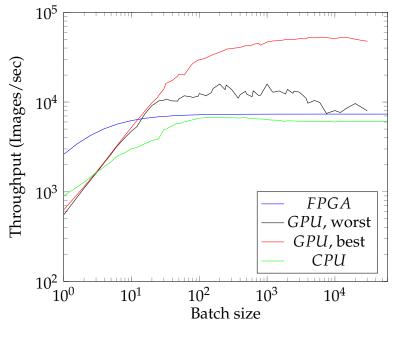


FIGURE 7.4: Throughput of FPGA, GPU and CPU implementations

Similar observations can be made by comparing the throughput of the implementations in figure 7.4. Although the FPGA starts from more than 2600 images per second, its performance plateaus at around 7500. In contrast, the GPU can only achieve 600 images per second with single image batches, but reaches a maximum throughput of 50000 when using huge batches.

7.2.4 Power Consumption Comparison

Table 7.4 presents the power consumption of the three implementation. An actual system with the CPU or GPU implementation, would require other components to operate, e.g. a motherboard. In contrast, the FPGA-based implementation is aimed for the ZCU102, which is an SoC, and requires no other components. This is a gross comparison, and aims to give a general idea of their differences.

CPU	GPU	FPGA	
53 W	120 W	9.356 W	

TABLE 7.4: Power consumption of the three implementations.

Although the CPU's average power usage is listed as 45 W, during actual runs it rises to 53 W due to clock frequency boosting. The FPGA consumes $5.67 \times$ less power than the CPU and $12.83 \times$ less power than the GPU.

7.3 FL & FPGA Interaction Analysis

7.3.1 Methodology

The main objective of this study, to investigate how FL and FPGAs interact, is explored in this section. Merely comparing the throughput of the implementations is inadequate since, as demonstrated in chapter 5, the number of global epochs depends on a multitude of factors. The batch size is the element that has the greatest impact on both FL and local training. As a result, it is the central factor of the experiments.

Another factor that has a significant impact is the LR degradation. Through experimentation, the most effective tactic was determined to be decreasing a client's LR for each epoch it participates. Depending on the batch size, different rates of that decrease were the most efficient. To ensure fairness on the following experiments, they were repeated with various LR decay constants. In this section, the best results for each are presented.

Having access to a single FPGA and a single GPU, makes running the algorithm in real time impossible, as it requires several devices. Instead, all processes, server and clients, run on the CPU to discover the number of required global epochs to reach a target accuracy, and then their training latency is replaced with that of the desired device. As all clients operate in parallel, the training latency is not depended on how many are used.

The communication delay between server and clients is handled similarly. It is determined by multiplying the size of the messages with an expected communication speed. Generally, servers have high speed connections, up to 1 Gbps upload and download. In contrast, the connection speed of onedge devices is multiple order of magnitude slower, and the deciding factor of the overall communication latency.

Additional latencies, caused by synchronization or the computational part on the server, amount to just a few milliseconds per epoch and are consistent across all platforms. Therefore, they can conveniently be ignored. For the following tests, clients are configured with a download speed of 10Mbps and a upload speed of 1Mbps. Furthermore, the messages between client and server have a size of 3387808 bits. Considering that clients are operating in parallel, the latency of a Global Epoch can be described as:

$$GE_{latency} \simeq StoC_{latency} + LT_{latency} + CtoS_{latency}$$

$$= \frac{StoC_msg_{bits}}{C_down_{bps}} + LT_{latency} + \frac{CtoS_msg_{bits}}{C_up_{bps}}$$

$$= LT_{latency} + 3.7266 (sec)$$
(7.8)

Where:

LT = Local Training StoC = Server to Client CtoS = Client to Server

It should be noted that the results of the previous section can not be used in place of $LT_{latency}$. The size of the local datasets differs, depending on how the data are distributed across the clients. Thus, the latency of the local training has been re-measured for every platform.

7.3.2 IID

In the first experiment, the Fashion-MNIST dataset is split randomly and evenly across 10 clients. This is an IID distribution, in the sense that is used in relevant bibliography. All random factors, such as dataset distribution and client selection, have been seeded to remove their effects from the final results.

The model is trained with the FedAvg algorithm multiple times, once for each batch size that perfectly divides the local datasets. Out of the 10 clients, 5 of them are randomly selected to participate in each GE. The constant parameters of the experiment are listed in table 7.5.

parameters	FedAvg
total clients	10
clients per GE	5
local epochs	1
initial LR	1e-2

TABLE 7.5: Constant parameters of the IID FL experiment.

Each training run consists of 200 GEs or until it reaches the target accuracy of 91%. In each GE, selected clients train their local models with their local datasets for 1 epochs. Figure 7.5 shows the elapsed GEs to reach the target accuracy for every batch size.

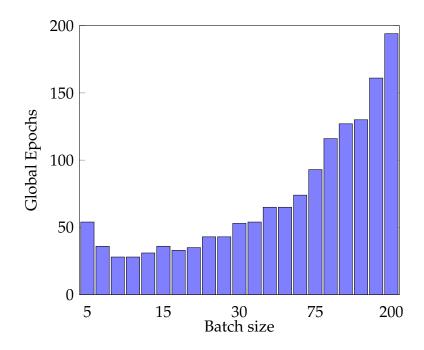


FIGURE 7.5: GEs required to reach 91% accuracy, when under IID distribution.

Training with batch sizes of 4 or less, produces overfitted local models and renders the target accuracy unattainable. This problem could be alleviated by using a more sophisticated LR decay strategy or by distributing the dataset among more clients, but both are outside the scope of this work.

More interesting is the range of batch sizes from 5 to 50, where the target accuracy is reached in 30 to 60 GEs. Larger sizes increase the required number of GEs in a parabolic manner, and regardless how fast is the local training, the increase in communication most likely prohibits their use.

Figure 7.6 shows, per batch size, how much time is required to reach the target accuracy. The FPGA design is benchmarked with the best case of the GPU, where the dataset is already cached in its dedicated memory.

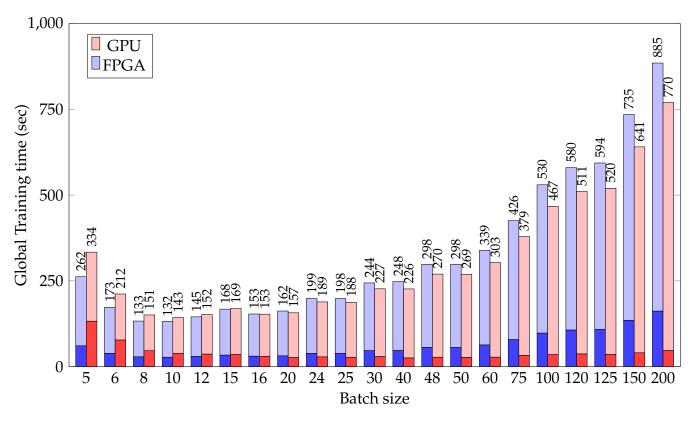


FIGURE 7.6: Total wall-clock time to train with IID dataset distribution over 10 clients, per batch size. Darker colors = local training time, lighter colors = communication time.

It is apparent that communication, across all batch sizes, is the main contributor to overall latency. Considering that the dataset is split over 10 clients, 6000 examples for each one, there in not much training to be done per GE, rendering maximum throughput a secondary characteristic. Instead, the most important variables are the number of GEs and the minimum latency per GE.

Batch sizes of 8 to 20 appear to be the sweet spot. In that range, either the FPGA has similar latency with the GPU, or it is slightly more efficient. With larger batches the GPU requires significantly less computing but, due to additional communication, the overall latency is abysmal.

7.3.3 Non-IID

Given that in real-world FL scenarios clients have different data collection and storage biases, it is exceptionally rare for the local datasets to be IID distributed. Every FL system should therefore be evaluated using non-IID data distributions. For this experiment, the FedAvg algorithm is employed, with all clients participating in every GE.

The Fashion-MNIST dataset is divided among 5 clients, each of which is the exclusive owner of two labels. The first client owns all the examples with the first two labels, the second client has those with the next two labels, etc. This is a pathological non-IID distribution, arguably more unbalanced than real scenarios, but it is a great option to test the limits of the system.

Like in the previous experiment, results are obtained with every batch size that perfectly divides the local datasets. Constant parameters are listed in table 7.6. Furthermore, no countermeasures for non-IID datasets, such as data rebalancing, have been utilized.

parameters	FedAvg
total clients	5
clients per GE	5
local epochs	1
initial LR	1e-2

TABLE 7.6: Constant parameters of the non-IID FL experiment.

The model is trained for 200 epochs or until it reaches 85% accuracy. In each GE, one local epoch of training is conducted. The batch sizes that manage to reach the target accuracy are shown in figure 7.7.

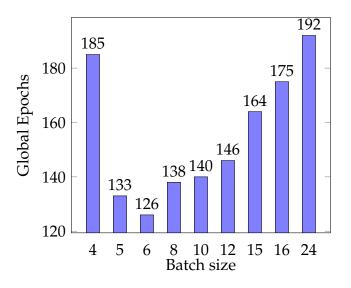


FIGURE 7.7: GEs required to reach an accuracy of 85%, when under non-IID distribution.

Training with batch sizes under 4 would generally end-up with the model diverging. Moreover, sizes greater than 15 would rarely reach the target accuracy. In terms of both accuracy and training speed, the best results were observed with sizes from 5 to 15. Other works have observed similar size ranges where FL training with non-IID data is most efficient.

The following figure 7.8 displays the total training time required to achieve the desired accuracy per batch size. As with the previous experiment, the FPGA implementation is compared with the best GPU case, where the dataset is already cached in its dedicated memory.

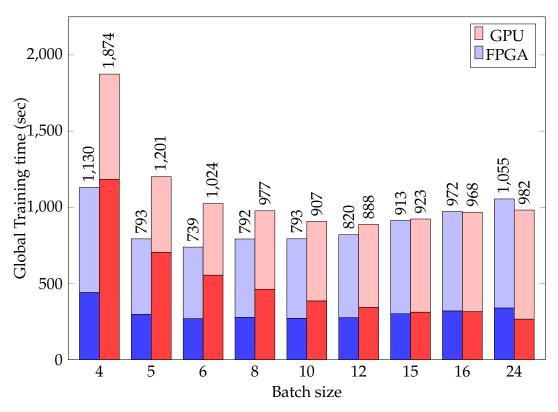


FIGURE 7.8: Total wall-clock time to train with non-IID dataset distribution over 5 clients, per batch size. Darker colors = local training time, lighter colors = communication time.

The FPGA shows better overall performance, due to a number of reasons. First of all, the tight range of batch sizes where the FL algorithm can achieve an acceptable solution mostly coincides with that where the FPGA is more efficient than the GPU. Where the GPU is more effective, at sizes greater than 15, if a solution is found at all, an excessive number of GEs is required.

Additionally, in most cases the majority of the training time is attributed to communication latency. In contrast with local training latency, it is not reduced by increasing the batch size. As a result, sizes that require the fewest

GEs are clearly advantageous. This can be clearly observed when training on the GPU with a batch size of 24. Although it has the least amount of training time, due to increased communication it ends up with an average total latency.

Comparing with the previous experiment, the computation to communication ratio is higher. Due to splitting the dataset over 5 clients instead of 10, there are more examples per clients, and more training is done per local epoch.

7.4 Summary

In a vacuum, the GPU appears to be the superior option, as when operating with large batches it achieves an order of magnitude higher throughput than the other platforms. Nevertheless, this is not an accurate representation of which is the better choice, as in FL algorithms a communication latency is added for every GE. As visualized in figure 7.9, the number of GEs depends on the batch size.

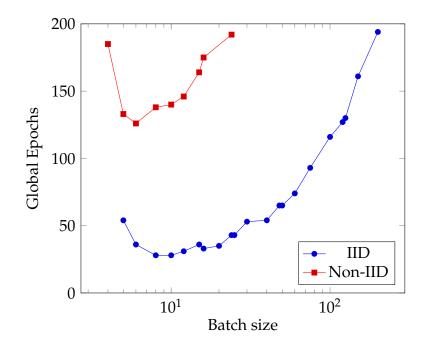


FIGURE 7.9: GEs required to reach target accuracy for both distributions.

The performance of the FPGA is superior or comparable to that of the GPU in the valleys where the FedAvg algorithm is more effective. The best results

Dataset	T	Training time (s)			Total time (s)		
Distribution	GPU	FPGA	speedup	GPU	FPGA	speedup	
IID	39	27	$1.44 \times$	143	132	$1.08 \times$	
non-IID	343	269	$1.27 \times$	888	739	$1.2 \times$	

of both platforms, for each dataset distributions, are summarized in the table below.

TABLE 7.7: Timing comparison of both platforms, for each set-
ting with relative speedup.

Last but not least, as these scenarios try to emulate on-edge FL, the computation to communication ratio is quite low. This is typical in such environments, as on-edge devices tend to have small datasets and are used to train small networks.

There is a significant difference in the energy consumption of the two implementations, as indicated in table 7.8. It is calculated as the power usage times the amount of training time, which both favor the FPGA-based implementation. Comparing it with the GPU-based one, it requires $(18.18 \times)$ and $(16.35 \times)$ less energy for the IID and non-IDD datasets respectively.

Dataset	Total Energy (J)			
Distribution	GPU	FPGA	improvement	
IID	4637	255	$18.18 \times$	
non-IID	41.16k	2.57k	$16.35 \times$	

TABLE 7.8: Energy comparison of both platforms, for each setting with relative improvement.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This study conducted an in-depth analysis of the behaviour of an FL system under training. It revealed that the batch size is its most important parameter, as it significantly impacts most characteristics of the training, including its convergence rate and the local training time. In more detail, it showed that, depending on data distribution, there is only a small range of small batch sizes where the algorithm can provide an acceptable solution in a reasonable time.

The vast re-configuration abilities provided by FPGAs can be exploited to create an accelerator that specifically targets that narrow range. Other technologies, like the GPU, can show superior overall throughput, but they are ineffectual if they cannot provide it with the right batch sizes. While flawed, as explained in section 7.1.2, the implemented architecture managed to outperform its comparisons with both IID and non-IID data distributions.

Last but not least, the benchmarks presented in chapter 7 may make the choice of the underlying platform appear inconsequential. It is quite common in on-edge settings that responsible for most of the training latency is the communication between server and clients. However, in chapter 5, it was demonstrated that this is not always the case. Therefore, we can conclude that FPGAs are more than appropriate for accelerating Federated Learning.

8.2 Future Work

This work sheds light on how FL and FPGA-based architectures interact with each other and cooperate. However, there is still room for improvement and additional synergies are available to be explored and exploited.

8.2.1 Quantization

The majority of studies on quantization in FL have focused on communication compression, e.g. [86], and recent works have tried to expand it to local training [87]. FPGAs have been proven that they can provide efficient and robust implementations of quantized ANNs [88]. In our opinion, implementing FL with quantized ANNs or ANNs robust to quantization on FPGA accelerators, is the most promising area to expand this work.

8.2.2 Encryption & Privacy

FL systems often utilize homomorphic encryption to improve security and privacy. It has been demonstrated that it can be efficiently implemented in FPGAs [65]. Attaching it to an FPGA-design that accelerates training, like the one developed in this work, can present interesting challenges such resource management, efficient pipelinining between the two components etc.

Techniques like differential privacy are frequently used to increase the privacy of the participating clients [7], with the cost of extra computation. These methods typically entail element-wise transformations on the generated local models, such as adding random Gaussian noise to each variable and clipping those that exceed a predetermined threshold. As there are no inner dependencies, an FPGA implementation can completely parallelize them and virtually eliminate their latency.

8.2.3 Platforms

The technology dissimilarities between the benchmarked platforms should be noted. The CPU and GPU, while consumer products, were released four years later after the FPGA. To have a more thorough understanding of the system, it is important to test with other platforms, in addition to different technologies such as TPUs.

Regarding the design on the FPGA, a number of improvements can be made. Implementing it with RTL, completely or just certain of its hardware functions, can greatly increase its performance by avoiding the inefficiencies and bugs of the HLS tools.

8.2.4 Scale

This work mostly experimented with around 2 to 20 clients. It is highly likely that FL will behave differently in scenarios involving hundreds or thousands of clients. Furthermore, compared to the CPU and GPU, the FPGA-based design performed relatively better with small datasets and batches. Hence, exploring FPGA-based solutions in FL settings with a large number of clients is an intriguing direction for future development.

8.2.5 Models

As shown in chapter 5, the behaviour of the FL algorithm heavily depends on the size and architecture of the model being trained. Furthermore, the model implemented in this work, can not be called representative of all ANNs. Thus, more experiments should be conducted, with ANNs of different sizes and types.

Bibliography

- [1] Yun Chao Hu et al. Mobile Edge Computing A key technology towards 5G. Tech. rep. 11. 06921 Sophia Antipolis CEDEX, France: European Telecommunications Standards Institute, Sept. 2015. URL: https:// www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_ a_key_technology_towards_5g.pdf.
- [2] European Parliament and Council of the European Union. REGULA-TION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). May 2016. URL: http: //data.europa.eu/eli/reg/2016/679/oj (visited on 05/25/2022).
- [3] Chau A., Hertzberg S., and Dodd S. The California Consumer Privacy Act of 2018. June 2018. URL: https://leginfo.legislature.ca.gov/ faces/billTextClient.xhtml?bill_id=201720180AB375 (visited on 05/25/2022).
- [4] H. Brendan McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data". In: (2016). DOI: 10.48550/ARXIV. 1602.05629. URL: https://arxiv.org/abs/1602.05629.
- [5] Peter Kairouz et al. Advances and Open Problems in Federated Learning.
 2019. DOI: 10.48550/ARXIV.1912.04977. URL: https://arxiv.org/ abs/1912.04977.
- [6] Jed Mills, Jia Hu, and Geyong Min. "Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT". In: *IEEE Internet* of Things Journal 7.7 (Aug. 2020), pp. 5986–5994. DOI: 10.1109/jiot. 2019.2956615. URL: https://doi.org/10.1109/jiot.2019.2956615.
- [7] Kang Wei et al. "Federated Learning With Differential Privacy: Algorithms and Performance Analysis". In: *IEEE Transactions on Information Forensics and Security* 15 (2020), pp. 3454–3469. DOI: 10.1109/tifs.2020.2988575. URL: https://doi.org/10.1109/tifs.2020.2988575.

- [8] Stuart J. Russell and Peter Norvig. "Introduction". In: Artificial Intelligence: A modern approach. 2nd ed. Pearson Education, Inc., 2003, pp. 31–32. ISBN: 0137903952; 9780137903955; 0130803022; 9780130803023.
- [9] Stuart J. Russell and Peter Norvig. "Learning from Observations". In: *Artificial Intelligence: A modern approach*. 2nd ed. Pearson Education, Inc., 2003, pp. 649–651. ISBN: 0137903952; 9780137903955; 0130803022; 9780130803023.
- [10] Mohamed Elgendy. "Feature extraction". In: *Deep learning for vision systems*. 1st ed. New York, NY: Manning Publications, Dec. 2020, p. 27. ISBN: 1617296198; 9781617296192.
- [11] Aryaman Sharda. How Image Edge Detection Works. Sept. 2018. URL: h ttps://aryamansharda.medium.com/how-image-edge-detectionworks-b759baac01e2 (visited on 05/13/2023).
- Fuzhen Zhuang et al. A Comprehensive Survey on Transfer Learning. 2019.
 DOI: 10.48550/ARXIV.1911.02685. URL: https://arxiv.org/abs/ 1911.02685.
- [13] Dan Geiger and David Heckerman. Advances in Probabilistic Reasoning.
 2013. DOI: 10.48550/ARXIV.1303.5718. URL: https://arxiv.org/abs/ 1303.5718.
- [14] Warren S. McCulloch and Walter Pitts. "A logical calculus of the ideas immanent in nervous activity". In: *The Bulletin of Mathematical Biophysics* 5.4 (Dec. 1943), pp. 115–133. DOI: 10.1007/bf02478259. URL: https://doi.org/10.1007/bf02478259.
- [15] Visually Linking AI, Machine Learning, Deep Learning, Big Data and Data Science. Oct. 2016. URL: whatsthebigdata.com/2016/10/17/visuallylinking-ai-machine-learning-deep-learning-big-data-anddata-science/ (visited on 06/04/2022).
- [16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet Classification with Deep Convolutional Neural Networks". In: Advances in Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–1105. URL: http://papers.nips. cc/paper/4824-imagenet-classification-with-deep-convolution al-neural-networks.pdf.
- [17] Yu Zhang et al. Pushing the Limits of Semi-Supervised Learning for Automatic Speech Recognition. 2020. DOI: 10.48550/ARXIV.2010.10504. URL: https://arxiv.org/abs/2010.10504.

- [18] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. A Survey of the Usages of Deep Learning in Natural Language Processing. 2018. DOI: 10.
 48550/ARXIV.1807.10854. URL: https://arxiv.org/abs/1807.10854.
- [19] Jonathan A. Weyn, Dale R. Durran, and Rich Caruana. "Can Machines Learn to Predict Weather? Using Deep Learning to Predict Gridded 500-hPa Geopotential Height From Historical Weather Data". In: *Journal of Advances in Modeling Earth Systems* 11.8 (Aug. 2019), pp. 2680– 2693. DOI: 10.1029/2019ms001705. URL: https://doi.org/10.1029/ 2019ms001705.
- [20] Jason Riordon et al. "Deep Learning with Microfluidics for Biotechnology". In: Trends in Biotechnology 37.3 (Mar. 2019), pp. 310–324. DOI: 10.1016/j.tibtech.2018.08.005. URL: https://doi.org/10.1016/ j.tibtech.2018.08.005.
- [21] Ritika Wason. "Deep learning: Evolution and expansion". In: *Cognitive Systems Research* 52 (Dec. 2018), pp. 701–708. DOI: 10.1016/j.cogsys. 2018.08.023. URL: https://doi.org/10.1016/j.cogsys.2018.08.023.
- [22] Akshay L Chandra. McCulloch-Pitts Neuron Mankind's First Mathematical Model Of A Biological Neuron. July 2018. URL: https://towards datascience.com/mcculloch-pitts-model-5fdf65ac5dd1 (visited on 05/13/2023).
- [23] History of Neural Networks. URL: https://cs.stanford.edu/people/e roberts/courses/soco/projects/neural-networks/History/index. html (visited on 06/01/2022).
- [24] Jason Brownlee. How to Choose an Activation Function for Deep Learning. Jan. 2021. URL: https://machinelearningmastery.com/choose-anactivation-function-for-deep-learning/ (visited on 06/04/2022).
- [25] IBM Cloud Education. Neural Networks. Aug. 2020. URL: https://www. ibm.com/cloud/learn/neural-networks (visited on 06/04/2022).
- [26] Multi Hidden-Layer (Deep) Neural Network. Apr. 2023. URL: http://www.gabormelli.com/RKB/Multi%5C_Hidden-Layer%5C_(Deep)%5C_Neural %5C_Network (visited on 05/13/2023).
- [27] Convolutional Neural Networks for Visual Recognition. URL: https://cs 231n.github.io/convolutional-networks/ (visited on 06/05/2022).
- [28] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks the ELI5 way. Dec. 2018. URL: https://towardsdatascience.com/acomprehensive-guide-to-convolutional-neural-networks-theeli5-way-3bd2b1164a53 (visited on 05/13/2023).

- [29] James D. McCaffrey. Neural Network Glorot Initialization. June 2017. URL: https://jamesmccaffrey.wordpress.com/2017/06/21/neuralnetwork-glorot-initialization/ (visited on 06/11/2022).
- [30] Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks". In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9. Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR, pp. 249–256. URL: https://proceedings.mlr.press/v9/glorot10a. html.
- [31] James D. McCaffrey. Neural Network Glorot Initialization. Visual Studio Magazine. May 2019. URL: https://visualstudiomagazine.com/ articles/2019/09/05/neural-network-glorot.aspx (visited on 06/11/2022).
- [32] Kaiming He et al. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification". In: *CoRR* (2015). arXiv: 1502.01852. URL: http://arxiv.org/abs/1502.01852.
- [33] Andrew Jones. An Explanation of Xavier Initialization. Feb. 2015. URL: https://andyljones.tumblr.com/post/110998971763/an-explanati on-of-xavier-initialization (visited on 06/11/2022).
- [34] Loss functions. Peltarion. URL: https://peltarion.com/knowledgecenter/documentation/modeling-view/build-an-ai-model/lossfunctions (visited on 06/11/2022).
- [35] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating errors". In: *Nature* 323.6088 (Oct. 1986), pp. 533–536. DOI: 10.1038/323533a0. URL: https://doi.org/10.1038/323533a0.
- [36] Backpropagation. Wikipedia. Mar. 2022. URL: https://en.wikipedia. org/wiki/Backpropagation (visited on 06/13/2022).
- [37] Gradient. Wikipedia. May 2022. URL: https://en.wikipedia.org/ wiki/Gradient (visited on 06/13/2022).
- [38] Gradient Descent. IBM Cloud Education. Oct. 2020. URL: https://www. ibm.com/cloud/learn/gradient-descent (visited on 06/14/2022).
- [39] Gradient descent. Wikipedia. June 2022. URL: https://en.wikipedia. org/wiki/Gradient_descent (visited on 06/14/2022).
- [40] Ilya Sutskever et al. "On the importance of initialization and momentum in deep learning". In: *Proceedings of the 30th International Conference* on Machine Learning. Ed. by Sanjoy Dasgupta and David McAllester.

Vol. 28. Proceedings of Machine Learning Research 3. Atlanta, Georgia, USA: PMLR, Jan. 2013, pp. 1139–1147. URL: https://proceedings. mlr.press/v28/sutskever13.html.

- [41] Overfitting. IBM Cloud Education. Mar. 2021. URL: https://www.ibm. com/cloud/learn/overfitting (visited on 06/17/2022).
- [42] Wei Yang Bryan Lim et al. "Federated Learning in Mobile Edge Networks: A Comprehensive Survey". In: *IEEE Communications Surveys & Tutorials* 22.3 (2020), pp. 2031–2063. DOI: 10.1109/COMST.2020.2986024.
- [43] Li Li et al. "A review of applications in federated learning". In: Computers & Industrial Engineering 149 (2020), p. 106854. ISSN: 0360-8352. DOI: https://doi.org/10.1016/j.cie.2020.106854. URL: https://www.sciencedirect.com/science/article/pii/S0360835220305532.
- [44] Andrew Hard et al. Federated Learning for Mobile Keyboard Prediction.
 2018. DOI: 10.48550/ARXIV.1811.03604. URL: https://arxiv.org/ abs/1811.03604.
- [45] Qiang Yang et al. "Federated Machine Learning: Concept and Applications". In: (2019). DOI: 10.48550/ARXIV.1902.04885. URL: https: //arxiv.org/abs/1902.04885.
- [46] Tian Li et al. "Federated Learning: Challenges, Methods, and Future Directions". In: *IEEE Signal Processing Magazine* 37.3 (May 2020), pp. 50–60. DOI: 10.1109/msp.2020.2975749. URL: https://doi.org/10.1109/msp.2020.2975749.
- [47] Michael Sprague et al. "Asynchronous Federated Learning for Geospatial Applications". In: Mar. 2019, pp. 21–28. ISBN: 978-981-10-0665-4.
 DOI: 10.1007/978-3-030-14880-5_2.
- [48] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. 2015. DOI: 10.48550/ARXIV.1510.00149. URL: https: //arxiv.org/abs/1510.00149.
- [49] Nikko Strom. "Scalable distributed DNN training using commodity GPU cloud computing". In: *INTERSPEECH*. 2015.
- [50] Nikhil Joshi. Model Skewing Attacks on Machine Learning Models. Payatu. Feb. 2021. URL: https://payatu.com/blog/nikhilj/sec4ml-machinelearning-model-skewing-data-poisoning (visited on 06/27/2022).
- [51] Elie Bursztein. Attacks against machine learning an overview. May 2018. URL: https://elie.net/blog/ai/attacks-against-machine-lear ning-an-overview/#:~:text=impacted%5C%20your%5C%20users.-

,Feedback % 5C % 20weaponization, this % 5C % 20fact % 5C % 20to % 5C % 20their % 5C % 20advantage. (visited on 06/27/2022).

- [52] Christian Szegedy et al. Intriguing properties of neural networks. 2013.
 DOI: 10.48550/ARXIV.1312.6199. URL: https://arxiv.org/abs/ 1312.6199.
- [53] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning.
 2017. DOI: 10.48550/ARXIV.1702.07464. URL: https://arxiv.org/abs/1702.07464.
- [54] What is Secure Multiparty Computation? Inpher. URL: https://inpher. io/technology/what-is-secure-multiparty-computation/ (visited on 07/01/2022).
- [55] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. 2017. DOI: 10.48550/ARXIV.1708.07747. arXiv: 1708.07747. URL: http://arxiv. org/abs/1708.07747.
- [56] Yann LeCun and Corinna Cortes. *MNIST handwritten digit database*. 2010. URL: http://yann.lecun.com/exdb/mnist/.
- [57] Mark West. Convolutional Neural Networks : An Implementation. URL: htt ps://www.bouvet.no/bouvet-deler/understanding-convolutionalneural-networks-part-2 (visited on 05/13/2023).
- [58] Y. Lecun et al. "Gradient-based learning applied to document recognition". In: *Proceedings of the IEEE* 86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.
- [59] AlexNet. Wikipedia. URL: https://en.wikipedia.org/wiki/AlexNet? useskin=vector# (visited on 07/01/2022).
- [60] Sik-Ho Tsang. Review: ResNet Winner of ILSVRC 2015 (Image Classification, Localization, Detection). Sept. 2018. URL: https://towardsdat ascience.com/review-resnet-winner-of-ilsvrc-2015-imageclassification-localization-detection-e39402bfa5d8 (visited on 05/13/2023).
- [61] Bharath Raj. A Simple Guide to the Versions of the Inception Network. May 2018. URL: https://towardsdatascience.com/a-simple-guide-tothe-versions-of-the-inception-network-7fc52b863202 (visited on 05/13/2023).
- [62] Christian Szegedy et al. Going Deeper with Convolutions. 2014. DOI: 10.
 48550/ARXIV.1409.4842. URL: https://arxiv.org/abs/1409.4842.

- [63] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of DNNs with Natural Gradient and Parameter Averaging. 2014. DOI: 10.
 48550/ARXIV.1410.7455. URL: https://arxiv.org/abs/1410.7455.
- [64] Zixiao Wang et al. "PipeFL: Hardware/Software co-Design of an FPGA Accelerator for Federated Learning". In: IEEE Access 10 (2022), pp. 98649– 98661. DOI: 10.1109/access.2022.3206785. URL: https://doi.org/ 10.1109/access.2022.3206785.
- [65] Zhaoxiong Yang, Shuihai Hu, and Kai Chen. FPGA-Based Hardware Accelerator of Homomorphic Encryption for Efficient Federated Learning. 2020.
 DOI: 10.48550/ARXIV.2007.10560. URL: https://arxiv.org/abs/2007.10560.
- [66] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org. 2015. URL: https://www.tensorflow.org/.
- [67] TensorFlow Federated: Machine Learning on Decentralized Data. URL: http s://www.tensorflow.org/federated (visited on 07/08/2022).
- [68] Python/C API Reference Manual. Python Software Foundation. July 2022. URL: https://docs.python.org/3/c-api/index.html (visited on 07/11/2022).
- [69] Embedding Python in Another Application. Python Software Foundation. July 2022. URL: https://docs.python.org/3/extending/embedding. html (visited on 07/11/2022).
- [70] TensorFlow in other languages. Google Inc. Aug. 2019. URL: https://github.com/tensorflow/docs/blob/master/site/en/r1/guide/ extend/bindings.md (visited on 07/11/2022).
- [71] socket(2) Linux manual page. man7.org. Mar. 2021. URL: https://man 7.org/linux/man-pages/man2/socket.2.html (visited on 07/08/2022).
- [72] Berkeley Software Distribution. Wikipedia. May 2022. URL: https://en. wikipedia.org/wiki/Berkeley_Software_Distribution (visited on 07/08/2022).
- [73] Li Blanca and Lu Peter. Normalize Data component. Microsoft. Apr. 2021. URL: https://docs.microsoft.com/en-us/azure/machine-learning /component-reference/normalize-data (visited on 07/09/2022).
- [74] *TensorFlow Datasets, A collection of ready-to-use datasets*. TensorFlow. (Visited on 07/09/2022).
- [75] Richard Durstenfeld. "Algorithm 235: Random Permutation". In: *Commun. ACM* 7.7 (July 1964), p. 420. ISSN: 0001-0782. DOI: 10.1145/364520.
 364540. URL: https://doi.org/10.1145/364520.364540.

- [76] Fisher-Yates shuffle wiki. Wikipedia. Apr. 2022. URL: https://en.wikip edia.org/wiki/Fisher%5C%E2%5C%80%5C%93Yates_shuffle (visited on 08/08/2022).
- [77] Vitis unified software platform. AMD Xilinx. 2022. URL: https://www. xilinx.com/products/design-tools/vitis/vitis-platform.html# overview (visited on 10/20/2022).
- [78] Xilinx Runtime Library. AMD Xilinx. 2022. URL: https://www.xilinx.c om/products/design-tools/vitis/xrt.html (visited on 10/20/2022).
- [79] OpenCL overview. The Khronos® Group Inc. 2022. URL: https://www. khronos.org/opencl/ (visited on 11/14/2022).
- [80] Zynq UltraScale+ MPSoC Data Sheet: Overview. Xilinx Inc. May 2021. URL: https://docs.xilinx.com/v/u/en-US/ds891-zynq-ultrascale -plus-overview (visited on 11/14/2022).
- [81] Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. Xilinx Inc. URL: https: //www.xilinx.com/products/boards-and-kits/ek-u1-zcu102g.html#information (visited on 05/13/2023).
- [82] Vitis-Tutorials. Xilinx Inc. URL: https://github.com/Xilinx/Vitis-Tutorials/tree/2022.1 (visited on 02/13/2023).
- [83] XRT Native APIs. Xilinx Inc. Oct. 2022. URL: https://xilinx.github. io/XRT/master/html/xrt_native_apis.html (visited on 02/13/2023).
- [84] Intel® Core™ i7-9750H Processor. Intel Corporation. URL: https://ark. intel.com/content/www/us/en/ark/products/191045/intel-corei79750h-processor-12m-cache-up-to-4-50-ghz.html (visited on 03/24/2023).
- [85] Compare GeForce Graphics Cards. NVIDIA Corporation. 2022. URL: htt ps://www.nvidia.com/en-eu/geforce/graphics-cards/compare/ ?section=compare-16 (visited on 03/24/2023).
- [86] Mohammad Mohammadi Amiri et al. Federated Learning With Quantized Global Model Updates. 2020. DOI: 10.48550/ARXIV.2006.10672. URL: https://arxiv.org/abs/2006.10672.
- [87] Kartik Gupta et al. Quantization Robust Federated Learning for Efficient Inference on Heterogeneous Devices. 2022. DOI: 10.48550/ARXIV.2206.
 10844. URL: https://arxiv.org/abs/2206.10844.

[88] Pascal Bacchus, Robert Stewart, and Ekaterina Komendantskaya. "Accuracy, Training Time and Hardware Efficiency Trade-Offs for Quantized Neural Networks on FPGAs". In: *Applied Reconfigurable Computing. Architectures, Tools, and Applications*. Springer International Publishing, 2020, pp. 121–135. DOI: 10.1007/978-3-030-44534-8_10. URL: https://doi.org/10.1007/978-3-030-44534-8_10.