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Abstract
Reconfigurable Logic (FPGA)-based System Architecture for the

Acceleration of Federated Learning in Neural Networks

by Emmanouil PETRAKOS

Federated Learning (FL) is a decentralized training method for Machine Learn-
ing applications which can exploit data that are inaccessible to conventional
centralized approaches, due to privacy and security concerns. FL literature
has refined and evaluated most of its aspects, but generally few works have
taken into consideration the underlying hardware, where the training actu-
ally takes place.

This thesis demonstrates that, in the on-edge FL setting, the clients can effec-
tively utilize FPGAs to accelerate their local training and the overall FL pro-
cess. First, an FL system, agnostic of the underlying training method and its
implementation, is developed. With that, an in-depth analysis of the effects
of each FL parameter is conducted. According to its findings, an FPGA-based
implementation of a Convolutional Neural Network (CNN), optimized for
the parameter space where the FL is most efficient, is developed and incor-
porated into the FL system.

Through actual runs on real hardware, the FPGA-based solution presents a
modest speedup of the local training (1.27×-1.44×) and the overall FL pro-
cess (1.08×-1.20×) in comparison to a GPU-based one, depending on data
distribution. More impressively, it consumes (16.35×-18.18×) less energy.
Thus, this thesis provides more than a feasibility study of combining FL and
FPGAs, and it can be used as a starting point for future works or as a bench-
marking reference.
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ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Περίληψη

Αρχιτεκτονική Συστημάτων βασισμένων σε Αναδιατασσόμενη Λογική (FPGA)
για Επιτάχυνση Συνεργατικής Μάθησης

από τον Εμμανουήλ Πετράκο

Το Federated Learning (FL) είναι μια αποκεντρωμένη μέθοδος εκπαίδευσης για
εφαρμογές Μηχανικής Μάθησης, που μπορεί να εκμεταλλευτεί δεδομένα τα οποία

είναι μη προσβάσιμα από συμβατικές κεντρικοποιημένες μεθόδους, λόγω ανησυχι-

ών περί προσωπικού απορρήτου και κυβερνοασφάλειας. Σχετικές έρευνες έχουν

βελτιώσει και αξιολογήσει τις περισσότερες πτυχές του, αλλά γενικά λίγες από

αυτές λαμβάνουν υπόψη το υποκείμενο υλικό, όπου λαμβάνει χώρα η εκπαίδευση.

Αυτή η εργασία αποδεικνύει ότι, στο on-edge FL, οι πελάτες μπορούν να χρησιμο-
ποιήσουν αποτελεσματικά FPGAs για να επιταχύνουν την τοπική εκπαίδευση και
τη συνολική FL διαδικασία. Καταρχάς, υλοποιήθηκε ένα FL σύστημα, ανεξάρτη-
το της υποκείμενης μεθόδου εκπαίδευσης και της υλοποίησής της. Μέσω αυτού,

έγινε εις βάθος ανάλυση των επιδράσεων κάθε παραμέτρου του FL. Σύμφωνα με
τα ευρήματα της, υλοποιήθηκε ένα Συνελυκτικό Νευρωνικό Δίκτυο σε FPGA,
βελτιστοποιημένο για τον χώρο παραμέτρων όπου το FL είναι πιο αποτελεσματικό,
και συνδέθηκε στο FL σύστημα.

Μέσω μετρήσεων σε πραγματικό υλικό, η υλοποίηση βασισμένη σε FPGA εμ-
φανίζει μια μέτρια επιτάχυνση στην τοπική εκπαίδευση (1,27×-1,44×) και στην
συνολική FL διαδικασία (1,08×-1,20×), σε σύγκριση με αντίστοιχη υλοποίηση
βασισμένη σε GPU, συναρτήσει της διασποράς των δεδομένων. Πιο εντυπωσιακά,
καταναλώνει (16,35×-18,18×) λιγότερη ενέργεια. Τοιουτοτρόπως, η παρούσα ερ-
γασία παρέχει παραπάνω από μια μελέτη σκοπιμότητας συνδυασμού FL & FPGAs,
και μπορεί να χρησιμοποιηθεί ως αφετηρία για μελλοντικές εργασίες ή ως μέτρο

σύγκρισης.

https://www.tuc.gr/
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Chapter 1

Introduction

In recent years, edge devices with advanced computing and data collection
capabilities are becoming commonplace. As a result, massive volumes of
new and useful data are generated, which can be exploited in Machine Learn-
ing (ML). When combined with recent advances and techniques in ML, new
opportunities emerge in a variety of fields, including self-driving automo-
biles and medical applications.

Traditional ML approaches demand the data to be consolidated in a single
entity where learning takes place. However, due to unacceptable latency and
storage requirements of centralizing huge amounts of raw data, this may be
undesirable. To address the inefficiency of data silos, cloud computing archi-
tectures such as Multi-access edge computing (MEC) [1] have been proposed
in order to transfer the learning closer to where the data is produced. Un-
fortunately, these techniques still require raw data to be shared between the
edge devices and intermediate servers.

Due to growing privacy concerns, recent legislation like General Data Pro-
tection Regulation (GDPR) [2] and California Consumer Privacy Act (CCPA)
[3] have severely limited the usage of technologies that transfer private data.
To continue leveraging the increasing real-world data while adhering to such
regulations, the concept of Federated Learning (FL) [4] has been introduced.

FL is a collaboratively decentralized privacy-preserving technology, in which
learning takes place at the data collection point, i.e. the edge device. The edge
devices train a ML model provided by the server and share model updates
instead of raw data. As a result, collaborative and distributed ML is possible
while maintaining the privacy of the participating devices.
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FIGURE 1.1: Simplified topology of an FL system [5]: URL.

1.1 Motivation

Most FL research, to our knowledge, focuses on simulations and treats edge
devices as black boxes; generally ignoring their nature and constrains. Tak-
ing in consideration the complexities of implementing ML on hardware, re-
cent advancements in FL might be diminished or invalidated. The main mo-
tivation of this thesis is to identify, explore and possibly overcome the in-
trinsic conflicts that exist between FL and Artificial Neural Network (ANN)
training in Field Programmable Gate Arrays (FPGA)s.

Instead of being incompatible, these two technologies may complement each
other, which is worth investigating. Frequently in FL, transformations are ap-
plied on the generated ANN variables to reduce network utilization and en-
hance privacy. These transformations, which include quantization [6], adding
Gaussian noise [7] and others, tend to be spatially independent and could be
implemented highly efficiently in hardware accelerators like FPGAs.

Finally, FL literature is almost devoid of wall-clock time examples. This the-
sis aims to provide a real world FL implementation that may be considered
as a benchmark for future research. Furthermore, in order to be extendable
and utilized in future works, the FL implementation is modular and platform
independent.

https://arxiv.org/abs/1912.04977
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1.2 Scientific Contributions

The main aim of this thesis is to explore the feasibility and efficiency of FL
systems that employ FPGAs for the underlying training, focused on the edge
setting. To achieve this, such a system was developed, thoroughly tested
and benchmarked. Its components that can be utilized as starting points,
examples or benchmarks of future works are as follows:

• An FL system that is agnostic of the underlying ML model and train-
ing method. In the context of this work, it is employed with multiple
ANNs of various types that are trained on CPU, GPU and FPGA. It can
be easily modified to encompass other models and training implemen-
tations.

• A robustness analysis which focuses on the mostly unexplored FL set-
ting of small client pools and its inherent difficulties.

• An FPGA-based implementation of training a CNN, that is optimized
for the parameter space where the FL process is most efficient.

• Wall-clock timings of the CNN implementation and overall FL system,
compared with equivalent implementations based on other technolo-
gies.

Finally, the aforementioned analyses and benchmarks are analyzed to pro-
vide apt suggestions for future works.

1.3 Thesis Approach

As the thesis moves forward, conflicts in terms of design and implementation
are anticipated to arise between the two technologies. Furthermore, this is
an mostly unexplored field. As such, a conservative and steady approach is
expected to work best.

Initially, a FL implementation that is agnostic and independent of the un-
derlying training implementation, is developed. Its robustness is thoroughly
validated, using TensorFlow to facilitate the local training. Subsequently, an
FPGA-based CNN training implementation is created.

Furthermore, an intermediate layer that connects the networking code of the
FL clients with the FPGA driver is developed. With this approach, the FL
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implementation is combined with the FPGA-based implementation, and the
overall system can be thoroughly tested and validated.

Finally, to benchmark the system, CPU and GPU implementation are devel-
oped and compared with it.

1.4 Thesis Outline

• Chapter 2 - Theoretical Background: Description of the theoretical
background of ML and FL.

• Chapter 3 - Related Work: Related works on FL, optimization tech-
niques and hardware implementations of it.

• Chapter 4 - FL architecture & design: Description of the FL architec-
ture, design and implementation developed.

• Chapter 5 - Robustness Analysis: Analysis of the quality and perfor-
mance of the FL implementation.

• Chapter 6 - FPGA Implementation: Description of the ANN architec-
ture, design and implementation on FPGA developed.

• Chapter 7 - Results: Analysis of the quality and performance of the
complete system. Comparisons with other technologies.

• Chapter 8 - Conclusions and Related Work: Conclusions and propos-
als for related future works.
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Chapter 2

Theoretical Background

2.1 Artificial Intelligence & Machine Learning

Various researchers and textbooks may provide different definitions of Artifi-
cial Intelligence (AI). Depending the school of though, AI is an artificial actor
that thinks or acts, rationally or human-like, depending on what it knows.
Generally, AI can be described as the study of intelligence agents. It is a
modern science that encompasses a large variety of sub-fields, ranging from
general-purpose areas, such as learning, to specific tasks like playing chess
and giving medical diagnoses. AI can be relevant to any intellectual field, as
it systematizes and automates intellectual tasks. [8]

Machine learning (ML) is an AI field in which agents, in addition to the per-
formance element, include a learning element that utilises their past experi-
ences to enhance their behaviour. The core idea behind ML is that perception
should be used to improve the ability to act in the future, not simply react
in the present. Designing a learning element is a multi-facet problem that is
affected by three major issues. [9]

2.1.1 Information Management

The first issue is determining what information what information is useful
and how it should be utilized. Different components of the input and out-
put data should be learnt depending on the context in which the learning
actor operates. One method is to directly link the current state of the actor
or the world to their actions. Sometimes it can be more appropriate to in-
fer relevant patterns from the data while ignoring unnecessary information.
Another way is to collect action-value information indicating the desirability
of actions based on their effect in the world state. These and other options
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may need to be combined in order to extract the most meaningful knowledge
from the available data.

A common case is feature extraction. In ML, a feature [10] is an individ-
ual measurable property or characteristic of a phenomenon being observed.
They can be generic, such as edges in an image, or specialized, such as wheels
and animal height. Feature extraction is the process of transforming such raw
data into numerical features that can be processed. A classing example of this
is edge detection in image processing applications, as shown in figure 2.1.

FIGURE 2.1: Edge detection in greyscale images [11]: URL.

Another key factor when designing learning systems is the availability of
prior knowledge. Researchers have extensively looked into the issue where
the agent uses only information that they encounter, but ways for transfer-
ring prior knowledge have been devised to speed up learning and improve
decision-making.[12]

2.1.2 Feedback Mechanism

The type of feedback available has a significant impact on the design and
is perhaps the most crucial aspect of the learning problem. Usually three
major types are distinguished: supervised, unsupervised, and reinforcement
learning.

https://aryamansharda.medium.com/how-image-edge-detection-works-b759baac01e2
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Supervised learning problems involve learning functions between sets of in-
puts and outputs. This is the case of a fully observable environments where
the effects of the actors actions are immediately visible or the existence of a
third party providing the correct solutions.

Unsupervised learning problems, on the other hand, do not supply output
values and learning patterns are solely based on the input. As it has no
knowledge of what constitutes a correct action or a desired state, an unsu-
pervised learning agent cannot learn what to do. The hope is that through
mimicry, the algorithm will generate imaginative content from it. This is
a common scenario for probabilistic reasoning systems or when generating
output data is prohibitively expensive. For the last case, a semi-supervised
learning setting, in which only a subset of the outputs is generated, might be
useful.

In the reinforcement learning setting there is no correct output provided, in-
stead a reward is given to actor appropriate to the desirability of their actions.
This is common when the world which the actor take part in continuously
change according to their actions, or a desirable or undesirable state may be
reached after a series of actions.

2.1.3 Representation of the learned information

The representation of the learned information is another important factor in
establishing how the learning algorithm should operate. Common schemes
include linear weighted polynomials for utility functions, propositional or
first order logic, probabilistic representations like Bayesian Networks[13] and
ANNs[14], and other methods have all been created.

2.2 Deep Learning

Deep learning is a sub-field of ML, partially overlapping with big data sci-
ence. Their associaton is illustrated in figure 2.2. It consists of algorithms
that use the perceptron as their basic building block, which is a mathemati-
cal function based on the McCulloch-Pitts model of biological neurons. They
typically have hundreds of thousands to millions of perceptors with a variety
of designs and topologies. Deep learning architectures include Deep Neu-
ral Networks (DNN)s, Convolutional Neural Networks (CNN)s, Recurrent
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Neural Networks (RNN)s and others, each one offering different capabilities
and options.

FIGURE 2.2: AI, ML, DL, Data Mining, Data Science, and Big
Data [15]: URL.

Deep learning applications have demonstrated human-like or superior ca-
pabilities in several scientific and commercial fields such as image[16] and
speech[17] recognition, natural language processing[18], climatology[19] and
biotechnology[20]. Due to these exceptional capabilities and wide range of
applications, deep learning has attracted a large number of researchers from
various scientific domains, resulting in its tremendous expansion. However,
the science is still young and there are a number of challenges to be over-
come. Expecting deep learning combined with improved data processing
being a solution to computers gaining generic human-like intelligence (hu-
man equivalent AI) is still a distant dream.[21]

Historically, the field of deep learning emerged in 1943 with the inception
of the aforementioned McCulloch-Pitts perceptron, shown in figure 2.3. In
1949, Donald Hebb noted out in his book "The Organization of Behavior" that
neural pathways are strengthened each time they are utilized, a principle that
is crucial to how humans learn. He claimed that when two nerves fire at the
same moment, the link between them is strengthened. This progress resulted
in the creation of the first real-world application of ANNs, "MADALINE"
an adaptive filter that eliminates echoes on phone lines. In 1962, Widrow

https://whatsthebigdata.com/2016/10/17/visually-linking-ai-machine-learning-deep-learning-big-data-and-data-science/
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& Hoff developed a learning procedure that distributed the error across the
ANN, resulting in its eventual elimination. Despite these advances, deep
learning research plummeted due to a variety of internal and external factor,
including the widespread use of fundamentally faulty learning function and
the adoption of von Neumann architecture across computer science.

FIGURE 2.3: The McCulloch-Pitts Neuron [22]: URL.

Deep learning research stagnated until 1975, when developments such as
Werbos’ backpropagation and the building of the first multilayered network
reignited interest in the field. Since then, the field continues to expand with
innovations like hybrid models and ANN pooling layers. The current fo-
cus is on developing deep learning-specific hardware, as fast and efficient
ANNs rely on it being defined for their use. Generally, architectures based
on accelerators such as GPUs and FPGAs, or VLSI hardware-based designs,
outperform CPU-based architectures. [23]

2.2.1 Artificial Neuron

As previously stated, the perceptron, also known as the artificial neuron, is
the fundamental building element of the deep learning algorithms. In its
simplest form, the artificial neuron receives one a set of inputs and sums it to
produce an output. In practice, each input is weighted, then summed with a
bias variable that acts as a threshold value, and the output is produced using
an activation function.

https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
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The mathematical formula of the artificial neuron is defined as:

y = Φ(b +
I

∑
i=1

xi ∗ wi) (2.1)

Where:

y = output
b = bias
I = number of inputs
Φ = activation function
w = weight

2.2.2 Activation Functions 1

The activation function[24] of the artificial neuron is arguably its most impor-
tant feature. It specifies how the weighted total of the inputs is transformed
into an output (a target variable, class label, or score). Sometimes they limit
their output range and are called squashing functions. There are various
functions that are used as activation functions, with different properties and
use cases each.

Most activation function are usually nonlinear so that the output varies non-
linearly with the inputs. With a linear activation function, regardless of how
many layers a ANN has, it would behave just like a single-layer perceptron,
as stacking linear functions creates just another linear function. Nonlinearity
is, arguably, the most important aspect of the activation functions.

Activation functions are usually differentiable, which means that for a given
input value, the first-order derivative can be determined. This is necessary
because ANNs are mostly trained using the backpropagation of error algo-
rithm, which requires the derivative of prediction error to update the model’s
parameters.

Binary Step

This is arguably the most basic activation function, as it was originally used
in the McCulloch-Pitts Neuron and operates like a simple threshold. It acti-
vates the output of the perceptron when a certain value is exceeded, else the

1Also called transfer functions.
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output is set as zero.

f (x) =

{
0 x ≤ threshold
1 x > threshold

(2.2)

Sigmoid

Also known as the logistic function, it normalizes and squashes the output of
the neuron between 0 and 1. Its most important properties are that the output
is barely affected by extreme values and the derivative is easily calculated.

f (x) =
1

1 + e−x (2.3)

ReLU

Because of its simple implementation, non-linearity, and high performance,
the Recti-Linear Unit or ReLU function is arguably the most commonly uti-
lized function in ANNs. It combines the binary step function for negative
values and the identity function for positive values.

f (x) =

{
0 x ≤ 0
x x > 0

(2.4)

Softmax

Softmax ensures that all the outputs sums to 1 by normalizing them to a
probability distribution. As such, it is mostly used as the final activation
function in multi-decision ANN models.

f (x)i =
exi

∑K
k=1 exj

(2.5)

2.2.3 Artificial Neural Network Architectures

ANNs are collections of artificial neurons, typically organized in layers. Dif-
ferent layers may utilize different activation functions and/or apply different
transformations to their inputs. Generally, the outputs of one layer’s neurons
are connected with the inputs of the following layer’s neurons. If this holds
true for all neurons in the ANN, the ANN is "fully connected". Alternatively,
connections can be sparser, or loops between one or more layers can be cre-
ated, giving the ANN different traits and capabilities.
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When designing a layer, its position in the ANN is probably one of the most
important variables. The input layer is the layer that accepts external data
and is significantly dependent on the structure of the input; text input re-
quires quite different management than visual input. The output layer is the
layer that generates the final result, and its primary design factor is the na-
ture of the output, which can be a yes or no answer, a classification or a set of
probabilities. Usually, in order to have a human-readable output, specialized
activation functions like Softmax are used.

Deep Neural Network (DNN)

Between the input and output layers, there can be zero or more "hidden" lay-
ers, as shown in figure 2.4. Typically, the majority of the network’s computa-
tion takes place in these layers, and their design is influenced by a variety of
criteria such as the nature of the problem and the input, available processing
resources, and the required minimum capabilities. A DNN is defined as a
ANN that has multiple hidden layers.[25]

FIGURE 2.4: DNN with 5 hidden layers [26]: URL.

Convolutional Neural Network (CNN)

The introduction of CNNs[27] is arguably one of the most significant achieve-
ments in the field of Deep Learning. They excibit great performance in image
and video recognition, recommender systems, image classification, image
segmentation, medical image analysis, natural language processing, brain-
computer interfaces, and computer vision, among other applications. They

http://www.gabormelli.com/RKB/Multi_Hidden-Layer_(Deep)_Neural_Network


2.2. Deep Learning 13

perform best when the input is an image or a succession of images, but they
are also effective in other scenarios.

CNNs are distinguished by their use of convolutional and subsampling lay-
ers, shown in figure 2.5, which enable the creation of multiple filters that can
be trained in parallel. These filters are utilized to isolate and extract features
from input data that would be undetectable by simpler DNNs. Subsequently,
in order to get a result, the output of these filters is fed to fully connected
layers. The design and depth of these filters are directly responsible for the
network’s feature extraction capabilities.

FIGURE 2.5: A CNN sequence that classifies handwritten digits
using 2 convolutional layers [28]: URL.

Convolutional layers carry out the convolution process with the help of small
matrices known as kernels. The kernel is the beating heart of a layer, and its
type and dimensionality determine how the layer functions. Typically, two-
dimensional kernels are used, while their size is mainly depended on the size
of the input and their position on the network. Figure fig:2D 2.6 shows the
operation of such a kernel.

A single convolutional layer can usually only produce filters that detect generic
low-level features, such as edges and color. In order to create more special-
ized filters that can detect high-level features, multiple layers are used.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


14 Chapter 2. Theoretical Background

FIGURE 2.6: 2D convolution: URL.

The subsampling layers is the second distinguishing innovation of CNNs.
Their primary task is to enable the network to recognize features without
relying on their exact location. Furthermore, they simplify the network by
reducing its number of parameters. Typically, they immediately follow con-
volutional layers in order to decrease the size of the features. Common sub-
sambling layers include max pooling, mean pooling and others. A max pool-
ing layer can be seen in figure 2.7.

FIGURE 2.7: 2D max pooling: URL.

2.3 Training Artificial Neural Networks

As previously stated, ANNs are made up of neurons, which contain multi-
ple parameters known as weights and biases, which are generally referred
simply as weights. Training2 is an iterative process that aims to improve the
ANN’s performance by optimizing these parameters. To accomplish this,
three key elements are required: a loss function, an optimization algorithm
such as gradient descent and a training algorithm like backpropagation.

In supervised learning, input-output examples are fed to the ANN. It pro-
duces predictions based on the inputs and then uses the loss function to

2Also called fitting.

https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/2d-convolution
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/max-pooling-2d
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compare these predictions to the intended outputs. The loss function cal-
culates the ANN’s error, which is a quantifiable difference between the ex-
pected and actual output. The error gradients of the ANN’s weights are then
determined, commonly using the backpropagation process. Finally, the op-
timization algorithm uses the error gradients to generate new values for the
weights that should perform better.

In unsupervised learning, only input examples are given. The ANN attempts
to mimic the data it is given and optimizes itself using the mistake in its out-
put. Instead of a loss function, the error is represented as the likelihood of
an incorrect output. The error gradients can be computed using a variety of
learning algorithms, such as Maximum Likelihood, Maximum A Posteriori,
and others, rather than the predominantly used backpropagation in super-
vised learning. Finally, to generate new values for the ANN’s weights, any
optimization algorithm may be employed.

In reinforcement learning, the ANN produces a prediction and subsequently
receives a feedback3, usually numerical, regarding its performance. The loss
function uses this feedback and prediction, and like in the supervised learn-
ing, the error gradients are calculated through backpropagation. Finally, the
ANN’s weights are updated using a optimization algorithm.

The training technique varies greatly depending on the problem, the ANN
architecture, and numerous other factors, but it is always iterative. An epoch
is typically defined as using all of the data points in the training set once.

2.3.1 Initialization

The initialization of the ANN’s weights has a significant impact on the ANN’s
final performance and training time. Naive methods, such as zeroing all
weights or assigning them fully random values, might produce detrimen-
tal effects. If the weights in a ANN start out too small, the signal will shrink
as it passes through each layer, eventually becoming too small to be useful.
Likewise, if the weights in an ANN start out too large, the signal grows too
huge as it goes through the layers, eventually overwhelming all other sig-
nals. As a result, the ANN may require a significant amount of training time
or possibly become stuck in its initial state and not converge to a solution.

3Feedback is frequently given after a series of predictions.
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One common ANN initialization scheme used to solve this problem is called
Glorot4 Initialization[30, 31]. The idea is to initialize each variable with a
small Gaussian value with mean of 0 and variance based on its fan-in and
fan-out5. The Glorot Initialization not only outperforms uniform random
initialization (in most circumstances), but it also eliminates the need to deter-
mine appropriate fixed limit values. There are actually two versions of Glorot
initialization, Glorot uniform and Glorot normal, with different distribution
and variance.

The variance of the Glorot Initialization is defined as:

V [Wi] =
2

ni + ni+1
(2.6)

Uniform distribution

V [Wi] =

√
6√

ni + ni+1
(2.7)

Normal distribution
Where:

V = variance
i = layer
W = weights
n = fan-in of a layer

The Glorot initialization makes the assumption that the activations immedi-
ately after initialization are linear, as the initialized values are close to zero
and their gradients close to 1. While this holds true for the traditional ac-
tivation function its development was based on6, it is invalid for the more
modern rectifying nonlinearities7 in which the non-linearity is at zero. As
such, the He Initialization [32, 33] was proposed, with Gaussian distribution
and the following variance:

V [Wi] =
2
ni

(2.8)

2.3.2 Loss Functions 8

A loss function[34] provides a real number that represents the error a func-
tion associated with an event. In Deep Learning, it quantifies the inaccuracy
of a ANN. The training algorithm tries to minimize this number by altering

4also known as Xavier. [29]
5In a fully connected ANN, the fan-out of a layer equals the fan-in of the next layer.
6Sigmoid, tanh and softsign.
7ReLU and PReLU.
8Also called cost or error functions.
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the ANN’s weights, in hopes that it improves the network’s accuracy. The
choice of loss function is influenced by the nature of the input, as well as by
the nature of the output. Some of the most common loss functions are listed
below.

Regression Loss Functions

Regression problems involve predicting numerical values, a number or set
of numbers. This is a usual problem in supervised learning. The appropri-
ate loss functions measure the distance between the prediction and the ideal
values.

The most frequent regression loss function is Mean Squared Error (MSE).
This method is utilized when the prediction belong to a continuous plane.
The MSE is the mean of the squared distances between the predicted values
and the target variables.

Loss =
∑n

i=1

(
ytarget

i − ypred.
i

)2

n
(2.9)

When the data are discrete values, the Poisson loss function is more appropri-
ate. Under the assumption that the target comes from a Poisson distribution,
minimizing the Poisson loss is equivalent of maximizing the likelihood of the
data.

Loss =
1
N

N

∑
i=0

(
ypred.

i − ytarget
i log ypred.

i

)
(2.10)

Classification Loss Functions

In classification problems, the examples must be classified into one or more
classes, which may or may not be preset. The ANN generates a probability
distribution that represents its confidence in the example’s classification.

Binary cross-entropy is a loss function that is used in binary classification
tasks with predefined classes. These are tasks that answer a question with
only two choices.

Loss = − 1
output

size

output
size

∑
i=1

ytarget
i · log ypred.

i +
(

1− ytarget
i

)
· log

(
1− ypred.

i

)
(2.11)
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In problems with more than one classes, the categorical cross-entropy loss
function, a generalization of binary cross-entropy loss function, is most com-
monly used. The ytarget

i is the probability that event i occurs and the sum of
all these probabilities is 1, meaning that exactly one event may occur.

Loss = −

output
size

∑
i=1

ytarget
i · log ypred.

i (2.12)

Classification problems in unsupervised learning is quite different, as the de-
sired output is not provided to the ANN. The most commonly used training
algorithm is k-means clustering. It aims to partition the examples into a pre-
defined number of clusters. To achieve this it tries to minimize the pairwise
squared deviations of points in the same cluster. The equivalent to a loss
function is defined as:

arg min
S

∑
i=1

k
1
|Si|∑

x, y ∈ Si ∥x− y∥2 (2.13)

Where:

S = clusters
x, y = points in cluster

2.3.3 Backpropagation

Backpropagation[35, 36] is a training algorithm for feedforward ANNs un-
der supervised learning9. Feedforward ANNs refers to fully connected net-
works with no cyclical connections, most DNNs and CNNs adhere this stan-
dard. For a single example, backpropagation computes the gradient of the
loss function with respect to the network weights. The gradient[37] repre-
sent the direction and rate of fastest rise. If a function’s gradient is non-zero
at a point, the gradient’s direction is the direction in which the function in-
creases the fastest, and the magnitude of the gradient is the rate of growth in
that direction, in respect of that point.

Backpropagation is sometimes misconstrued to mean the entire learning al-
gorithm for ANNs. Backpropagation is merely the method for computing the
gradient; another algorithm, such as stochastic gradient descent, is needed
to accomplish learning using this gradient. Furthermore, backpropagation

9Generalizations of the algorithm can be used for other network architectures and differ-
ent training schemes.
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is frequently misinterpreted as being limited to ANNs while, in fact, it may
compute derivatives of any function. Its use to ANNs is critical because it
enables efficient training, especially when using hardware accelerators.

The ANN can be mathematically expressed as:

g (x) := f L
(

WL f L−1
(

WL−1 · · · f 1
(

W1x
)
· · ·

))
(2.14)

Where:

x = input
g(x) = prediction
f l = activation functions at layer l
W l = weights at layer l
L = number of layers

Then the error function C with desired output y is:

C
(

y, f L
(

WL f L−1
(

WL−1 · · · f 1
(

W1x
)
· · ·

)))
(2.15)

By using the chain rule the total derivative of the loss function is:

dC
dy
◦
(

f L
)′
·WL ◦

(
f L−1

)′
·WL−1 · · ·

(
f 1
)′
·W1 (2.16)

Given that the gradient ∇ in respect to the input is the transpose of the
derivative in respect to the output, the total gradient can be determined as:

∇xC =
(

W1
)T
·
(

f 1
)′
· · · ◦

(
WL−1

)T
·
(

f L−1
)′
◦
(

WL
)T
·
(

f L
)′
◦ ∇yC

(2.17)

The partial gradients at each layer δl, which represent the effect of the weights
in the corresponding layers on the error function, may be easily determined
by eliminating the effect of the previous ones:

δ1 =
(

f 1
)′
◦
(

W2
)T
·
(

f 2
)′
· · · ◦

(
WL−1

)T
·
(

f L−1
)′
◦
(

WL
)T
·
(

f L
)′
◦ ∇yC

δ2 =
(

f 2
)′
· · · ◦

(
WL−1

)T
·
(

f L−1
)′
◦
(

WL
)T
·
(

f L
)′
◦ ∇yC

δL−1 =
(

f L−1
)′
◦
(

WL
)T
·
(

f L
)′
◦ ∇yC

δL =
(

f L
)′
◦ ∇yC

(2.18)



20 Chapter 2. Theoretical Background

A naive approach would be to compute these derivatives forward. Back-
propagation, on the other hand, eliminates duplicate multiplications by em-
ploying dynamic programming, as the derivative of one layer can be used
to calculate the derivative of the previous one. Furthermore, by going back-
wards, a vector δl is multiplied by exactly one matrix

(
W l)T ◦

(
f L−1)′ at each

step. When calculating forwards, however, each multiplication multiplies a
matrix with L− l matrices, which is a far more expensive operation.

2.3.4 Gradient Descent

Gradient descent[38, 39] is an optimization algorithm which is commonly
used to train ANNs. Gradients generated by training algorithms such as
backpropagation are used to alter the network’s weights, in order to produce
the minimal possible error. Its basis is that a differentiable function F de-
creases fastest at a point an, in the direction of the negative gradient of that
point −∇F (an). Mathematically it is defined as:

an+1 = an − γ∇F (an) (2.19)

The learning rate parameter γ is the size of the step taken each time the al-
gorithm is executed. It has a significant impact on the overall performance
of the training procedure and should be fine-tuned. If it is too large, there is
a high risk of overshooting the minimum of the function. If it is too small,
more iterations are needed, and there is a risk too end up in a suboptimal
local minimum. The effect of its value is shown in figure 2.8.

FIGURE 2.8: Effect of different learning rate values in Gradient
Descent [38]: URL.

https://www.ibm.com/cloud/learn/gradient-descent
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Challenges

Gradient descent faces challenges with local minima and saddle points, such
as those in figure 2.9, where the gradient gets close to zero and the algorithm
is unable to accurately re-adjust the weights of the ANN. Local minima re-
semble the global minimum in shape, trapping the algorithm. Saddle points
are stable positions with no relative maximum or minimum, making it diffi-
cult for the algorithm to decide what to do.

FIGURE 2.9: Local minimum and saddle point [38]: URL.

To address this issue, a number of enhancements have been developed cul-
minating in the Nesterov Momentum[40] extension. To accelerate the pro-
cess, the first adjustment is to add a momentum variable, a percentage β

of the previous iterations’ change m. Simply adding that tends to result in
overshooting. To mitigate this, the calculation of the gradient takes the mo-
mentum of the previous steps into account. With Nesterov momentum, the
gradient descent is defined as:

mn+1 = βmn − γ∇F (an + βmn)

an+1 = an + mn+1
(2.20)

In deep ANNs with numerous or repeating hidden layers, training with back-
propagation and gradient descend introduce the phenomenon of vanishing
gradients. As the algorithm travels backwards through the layers, the gradi-
ents get smaller and smaller, eventually becoming insignificant and unable to
alter the weights of the network. Non monotonic activation functions, such

https://www.ibm.com/cloud/learn/gradient-descent
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as ReLU, and more complex topologies, such as residual ANNs, are preva-
lent but not exclusive solution.

Another problem, especially frequent in RNNs, is exploding gradients. This
occurs when a gradient gets too large, turning the model unstable. To address
this, techniques such as dimensionality reduction have been developed, with
the goal of reducing the model’s overall complexity.

Variations

In vanilla Gradient Descent, each example’s error is assessed, the gradients
are produced and then the weights of the ANN are updated. In order to
calculate the error of an example, the update of the prior one must be applied
first. Since this process cannot be parallelized and must be repeated for each
example, it is computationally inefficient.

Furthermore, the dataset is often used multiple times during the training of
a model. In vanilla Gradient Descent, the examples are used in order. This
pattern is often recognized by the models, which then introduce biases that
lead to less-than-ideal solutions.

To address these inefficiencies, three key variations have been developed:

• Batch Gradient Descent

Batch gradient descent performs backpropagation and updates the network
only after calculating the loss function for all the examples in the training
dataset. The expensive operations of calculating the gradients and new weights
occur just once per epoch, resulting in a computationally more efficient algo-
rithm. Furthermore, the loss function can be parallelized indefinitely.

This method yields a stable error gradient and convergence, but it frequently
leads to local minima. Furthermore, in order to calculate the loss, all of the
data must be in memory, making the approach unsuitable for huge datasets.
Finally, more passes through the dataset are needed, as updates are infre-
quent.

• Stochastic Gradient Descent (SGD)

SGD works similarly to vanilla Gradient Descent, with the exception that the
training examples are chosen at random. This eliminates the bias produced
by consuming the examples in a particular order. Furthermore, its frequent
updates produce noisy gradients, which aid in avoiding local minima.
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• Mini-batch Stochastic Gradient Descent

Mini-batch SGD builds on the ideas of the previous variations by splitting
the training dataset randomly into small batches and performing updates on
each one of them. This method achieves a balance between the computa-
tional efficiency of batch gradient descent and the randomness of SGD. This
is by far the most popular variation, and it is commonly abbreviated just as
SGD.

2.3.5 Model Overfitting

The goal of training ANNs is to improve their performance on real-world
data, i.e. to generalize its knowledge. When training, the model10 may some-
times fit exactly against training data, severely limiting its effectiveness with
previously unseen data and negating its objective.

Training is typically conducted with a sample dataset. If the model trains
on this for too long, or if the model is overly sophisticated, it may memorize
irrelevant information, the "noise" within the training dataset. This is known
as overfitting[41], and the most common signs are unusually high accuracy
on the training dataset and high variance within the predictions of the net-
work. I visual representation of overfitting is shown in diagram 2.10.

FIGURE 2.10: Model overfitting and its opposite, model under-
fitting [41]: URL.

Multiple methods to avoid or suppress overfitting have been developed,
some common ideas are listed below:

10Most statistical models, not just ANNs, exhibit this phenomenon.

https://www.ibm.com/cloud/learn/overfitting
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• Early stopping

This method aims to stop the training before the model starts learning the
noise within the model. To achieve this, a portion of the training dataset is
held aside for testing rather than being used during training. This dataset
is used to evaluate the ANN after each epoch, and if the accuracy is lower
than before, training is terminated. There is a risk of stopping too soon and
underfitting the model; a middle ground should be sought, like in diagram
2.11.

FIGURE 2.11: Border between overfitting and underfitting [41]:
URL.

• Data manipulation

A common way to reduce overfitting is through manipulating the input data.
Expanding the training dataset with real-world or machine-generated data
can assist the model in identifying patterns between the input and output
variables. When using clean and relevant data, this strategy is effective; oth-
erwise, the model may grow too complex and overfit even more. Another
technique is augmenting already existing data by adding noise to them. The
goal is to help the model discern between useful and irrelevant patterns.

• Model simplification

Multiple methods attempt to enhance the model’s performance by simplify-
ing it and the problem that is called to solve. Feature selection refers to a
class of methods that enhance the training dataset by removing examples.
Such methods include removing highly correlated features and incomplete
examples, selecting the best features through statistical methods and others.

https://www.ibm.com/cloud/learn/overfitting
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Another family of methods, such as the Principle Component Analysis, seek
to transform the features by reducing their dimension.

The preceding methods necessitate some level of domain knowledge, which
is not always available. In this scenario, regularization methods are partic-
ularly helpful, as they aim to reduce complexity by altering the model. In
general they try to penalize input parameters with large coefficients, typical
in examples with significant noise, in order to minimize the variance in the
model. Such methods include L1 regularization, dropout and others.

2.4 Federated Learning

Federated Learning [4, 42] (FL) is a ML setting in which multiple clients,
ranging from big enterprises to personal mobile devices, collaborate to train
a model under the supervision of a central server. The goal of this is to alle-
viate many of the systemic privacy problems associated with centralization
by decentralizing the training data. Under FL, any model that employs SGD-
like approaches can be trained. ANNs, linear regression, Support Vector Ma-
chines, and other models fall into this category. FL acts as a wrapper for ML;
what is true for a model when trained locally tends to hold true when trained
in a FL context.

In general, the FL setting has two basic entities: data owners (participating
clients) and model owners (orchestrating server). Participants never share
their datasets, instead use them to locally train a model sent by the orches-
trating server. The generated weights are shared, which the server aggre-
gates them in order to construct a global model. The models trained by the
clients are referred as local models whereas the aggregated model is referred
as global model.

The entities are typically configured in a hub-and-spoke topology, as shown
in figure 2.12, with the hub representing the coordinating server and the
spokes connecting to the clients. The server organizes the training but never
access the training data.
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FIGURE 2.12: Typical FL topology [42]: URL.

2.4.1 Typical Federated Training Process

FL training is a continuous process. Each iteration is referred as a global
epoch (GE) and can be broken down into three main steps:

Task Initialization

Before any training can begin, the server has to complete a series of necessary
tasks. It must first determine whether training should continue; if the target
accuracy has been met or there are no available clients, there is no point to do.
Furthermore, the server must specify any parameters or hyperparameters
that are under its responsibility. FL design is flexible; factors such as learning
rate may be controlled centrally by the server or by the clients.

After deciding how the training will proceed, the server must select N clients
to participate. Clients may be chosen at random, based on eligibility require-
ments, etc. Finally, the server broadcasts the weights of the global model,
together with any relevant metadata such as training parameters or a train-
ing program.

Local Training

Upon receiving the global model, each selected client locally computes an
update to it using their private data. This update is referred to as a local

https://ieeexplore.ieee.org/document/9060868
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model. Training is carried out in accordance with any training parameters
or programs that are provided. The objective f of a selected client n is to
minimize its loss function L depending on the weights of the global model
wg and the local data di:

fn
(
wg

)
= arg min

n∈N
L
(
wg; dn

)
(2.21)

Subsequently, any required transformation may be applied to the local model.
Such transformations include quantization and compression to reduce com-
munication time, adding differential noise to increase privacy, and others.
The finalized local model weights are sent to the server, together with any
relevant statistics, and the client waits till it is selected once more.

Model Aggregation

The server collects and aggregates the local models to generate a new global
model. The aggregation is implementation dependent; it might simply be av-
eraging the models, or it could be biased toward some based on their statis-
tics, how many times they have participated, and so on. The global model
can be evaluated using server-accessible public data. The objective of the
server is to minimize the global loss function:

F
(
wg

)
=

1
N

N

∑
n=1

fn
(
wg

)
(2.22)

This process is repeated until the global loss function converges.

2.4.2 Federated Learning Settings

FL can be used in a broad array of applications with significantly diverse con-
texts and constraints [5, 43]. An example of FL across data centers could be
hospitals that cooperatively train a cancer recognition model utilizing data
from their patient diagnoses. Moreover, a real-world application of IoT FL is
the training of a next-word prediction model for Google’s Gboard [44] utiliz-
ing users’ personal text messages. Table 2.1 seeks to describe two generalized
FL scenarios and compare them with data center Distributed Learning (DL).
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Data center DL Data center FL IoT FL

Setting Training is distributed

among nodes in a data

center. A centralized

dataset is used.

Organizations collaborate

to train a model utilizing

data in their data centers.

A large number of IoT de-

vices are utilized to train

model with their private

data.

Data

Distribution

Data is balanced across

nodes. Clients can access

the whole dataset.

Data is created locally and is kept decentralized. A client

cannot access other clients’ data. Generally, data is not

independently or identically distributed.

Data

Partition

Flexible, data can be repar-

titioned arbitrarily during

training.

Fixed, partition axis can be

by example or by feature.

Fixed partitioning by ex-

ample.

Orchestration Centrally orchestrated. The training is organized by a central server, which has

no access to the training data.

Topology Fully connected nodes in a

cluster.

Typically hub-and-spoke.

Scale Typically 1 to 1000 nodes. From a couple to a few

hundred data centers.

Massively parallel, up to

millions of clients.

Availability Almost always available. Only a fraction of the IoT

devices is available at any

single time.

Client

Reliability

Few to no failures. Unreliable, a part of the

participating clients is ex-

pected to disconnect due

to power or network is-

sues.

Addressability Clients are identifiable and can be addressed explicitly. Generally unaddressable

to enhance privacy.

Client

Statefulness

Statefull, nodes can partic-

ipate in every epoch, car-

rying state from one to the

next.

Any, design depended. Mostly stateless, clients

will most likely participate

in only one epoch before

being replaced.

Primary

Bottleneck

Computation. In a data

center, a very fast network

between nodes can be as-

sumed.

Can be either computation

or communication, prob-

lem depended.

Both, IoT tend to have low

processing power and op-

erate on slow connections

(e.g. wifi).

TABLE 2.1: FL scenarios in comparison with data center dis-
tributed learning.
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2.4.3 Unique Characteristics & Challenges of FL

Aside from the standard challenges associated with ML development, there
are a number of obstacles specific to FL. These issues distinguish the feder-
ated setting from more traditional problems such as private data analysis and
data center DL. [42, 5, 45, 43, 46]

System Heterogeneity

Client computational and communication capabilities can vary greatly in FL.
They may differ in architecture (CPU, GPU, FPGA) and resources. Further-
more, they may be networked using different technologies (e.g., 4G, 5G, wifi)
with varying reliability and bandwidth. Finally, some of them may be less
eager to participate. All this leads to random and unpredictable client dis-
connections, as well as the appearance of "stragglers" [47], clients who take
substantially longer to provide their updates than the rest and impede the
entire process. Figure 2.13 exhibits the unreliability of clients in on-edge FL.

FIGURE 2.13: FL with unreliable clients [42]: URL.

Statistical Heterogeneity

It is frequently assumed in distribution optimization problems that the data
are independent and identically distributed (IID). This is commonly violated
in the federated setting, adding complexity to problem modeling, analysis,

https://ieeexplore.ieee.org/document/9060868
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and solution evaluation. Data generation and collection are frequently un-
even between clients, and the server is unable to collect or check the quality
and distribution of their data due to privacy issues.

Expensive Communication

Communication is a critical bottleneck in many FL applications. In tradi-
tional data center DL, the communication environment is assumed to be per-
fect, with low latency, high bandwidth and negligible to no packet loss. This
assumption is not appropriate to FL training, as clients are expected to be in
different locations and with varying amounts of resources. This is especially
true in edge FL, where the on-device datasets are small and connections are
slow and unreliable, resulting to a high communication to computation ratio.

Privacy and Security Concerns

The primary concern of FL applications is to protect the privacy of the partic-
ipating clients. However, malicious participants or third parties may be able
to infer sensitive information from shared parameters, defeating the main
goal of FL. Furthermore, it is mostly assumed that all participants are well-
intentioned, yet this is not always the case. Malicious clients may try to un-
dermine the accuracy of the model or install backdoors into it by utilizing
poisonous datasets.

2.4.4 Systems Heterogeneity

The previously discussed systemic characteristics of FL aggravate issues like
straggler mitigation and fault tolerance. The slowest participating client has
a significant impact on the duration of a GE. They can substantially impede
training speed, thus removing them from the process is generally considered.
Furthermore, if the server waits indefinitely for the client updates and a client
disconnects without notifying, the entire system would hang. These issues
are especially prevalent in on-edge setting where there is little information or
control over the clients’ resources.

FL algorithms must be able to handle heterogeneous hardware and resist
against random and unpredictable client drops. A frequent option is to dis-
connect clients who have not responded within a predetermined amount of
time. Additionally, using more clients per epoch than necessary and accept-
ing updates from those who respond first can help to eliminate stragglers.
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While effective, such strategies can induce biases in favour of the datasets of
the fastest clients, reducing the overall accuracy of the model.

More sophisticated proposed solutions include intelligent client selection by
only accepting clients that report their resources prior participating or track-
ing statistics on their overall performance. Such methods are not always fea-
sible since they may jeopardize the privacy of the clients. A major portion
of FL research employs simulations and avoid these problems, letting these
challenges the least explored.

2.4.5 Data Distribution

A dataset is Independent and Identically Distributed (IID) if each example
in it has the same probability distribution as the others and all are mutually
independent. Models’ accuracy, convergence rate, and fairness can all be de-
graded by training with non-IID datasets. Traditional ML avoids these issues
by using a single, massive dataset that the designer is allowed to manipulate.

On the other hand, as shown in figure 2.14, FL encompasses a set of smaller
datasets that may statistically differ from one another, and the designer may
not be in control of or even aware of that. Ideally, a global dataset could be
established by aggregating all of these small local datasets, however in reality
this is impossible because the data cannot be centralized.

FIGURE 2.14: Centralized Dataset vs. Local Datasets. An IID
dataset may transform to non-IID when distributed between

clients.
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Non-Identical Client Distributions

A global dataset used during FL may not be IID for a variety of reasons. First
of all, a client’s private dataset may locally violate independence, but this
can usually be fixed via local shuffling. The statistical variations between the
local datasets are more significant.

The distribution of a local dataset Pi(x, y) can be rewritten as Pi(y|x)P(x) and
Pi(x|y)P(y), where x and y are the input-output pairs. To classify the overall
data as non-IID, the distributions of at least two clients, i and j, must differ;
that is Pi ̸= Pj. There are several causes for this, including:

• Feature distribution skew (covariate shift), Pi(x) ̸= Pj(x):
Even if Pi(y|x) = Pj(y|x), the marginal distributions P(x) may differ.
This is frequent in the domain of handwriting recognition, where two
clients may write the same text in a different writing style.

• Label distribution skew (prior probability shift), Pi(y) ̸= Pj(y):
Even if Pi(x|y) = Pj(x|y), the marginal distributions P(y) may differ.
This is common when clients are bound to specific locations. Clients
from different areas may use different terms and phrases depending on
their local accent and lingo.

• Same label, different features (concept drift), Pi(x|y) ̸= Pj(x|y):
Even if Pi(y) = Pj(y), the marginal distributions P(x|y) may differ. The
same label y can have different meaning for different users based on
their culture and standard of leaving. Images of clothes, for example,
can vary greatly according on location.

• Same features, different label (concept shift):, Pi(y|x) ̸= Pj(y|x):
Even if Pi(x) = Pj(x), the marginal distributions P(y|x) may differ.
This is very common with labels that reflect sentiment. As an example,
clients living in cold climates may describe the same weather phenom-
ena differently than clients lining in warm or temperate climates.

• Quantity skew:
Clients can generate and save different amounts of data. This is depen-
dent on a variety of factors, including available data storage, local data
retention laws, and the habits of their users.

• Violations of independence:
Throughout training, the distribution may change at any time. Clients
may connect or disconnect, or their local datasets may be exhausted.
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Furthermore, if clients are available at specific times of day due to sol-
stice, a strong regional bias is imposed. Finally, because the clients own
their own datasets, they can modify them at any time during training.

• Dataset shift:
The FL participants might not be indicative of the end users. For in-
stance, clients with inferior devices may be underrepresented as a result
of any eligibility criteria used during client selection.

A real-world FL dataset may have any combination of these effects. Due to
the difficulties of generating such datasets and examining algorithms built
on them, most research tends to concentrate on one or two of them. Depend-
ing on the Fl scenario under training, different distribution skew effects may
aplly and different mitigation strategies may be required. The figure 2.14
presents label distribution and quantity skew.

Dealing with non-IID Distributions

Existing algorithms can be modified, either by altering their parameters and
hyperparameters or by sophisticating features like client selection. While ad-
justing other parameters, reducing batch size and increasing local epochs can
be increase model accuracy, but excessive use may hurt convergence rate and
lengthen training time. Metalearning approaches could be used to discover
an ideal equilibrium.

It has been demonstrated that system heterogeneity and data heterogeneity
interplay. By discarding straggles, unique and useful data could be wasted,
degrading the model’s fairness and accuracy. Stragglers can partially work,
by personalizing parameters or reparameterizing on the fly, according to
their resources. In this way, their local datasets can be exploited without
slowing down the overall process.

Another approach is for the server to request data distribution statistics from
the clients. With this information, the server can select those that will result
in a balanced distribution. In addition, the server may be able to share some
relevant publicly available data with the clients in order to rebalance their
datasets. If no such data are available, willing clients may, if practical, pro-
vide their datasets to aid in the overall training process. These techniques can
alleviate non-IID distribution problems, but they require additional commu-
nication and bandwidth. Additionally, they have the potential to compro-
mise privacy, which would undermine one of FL’s main goals.
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Similarly, frameworks for multitask learning may be employed. Clients can
train their local personalized models concurrently with the global model
and share knowledge between them. Such techniques may not always be
available as they demand greater processing and memory resources from the
clients.

2.4.6 Communication Cost Reduction

To achieve a satisfactory model in FL, multiple rounds of training and com-
munication between the server and the clients are required. Communication
can be a big bottleneck if the ANN being trained is massive and has millions
of parameters, or if the clients are under slow connections. As a result, a
series of techniques for improving communication efficiency have been de-
veloped, which can be classified into three groups: increasing computation,
decreasing communication size, and decreasing communication frequency.

Edge and End Computation

Increasing parallelism by selecting more clients each GE is an obvious tech-
nique to increase computation in edge devices. In general, client-wise par-
allelism is desirable, but it provides diminishing returns as the number of
participating clients increases. Furthermore, if all of the connected clients are
participating, this strategy is no longer applicable. Finally, there is the risk of
rapidly exhausting the available datasets.

The most typical technique to increase computation is to have clients perform
more local model updates per GE. This can be achieved in two ways, more
local epochs, i.e. more passes through the local dataset, or smaller batch size,
i.e. more updates per pass through the local dataset. In traditional DL, such
techniques tends to produce negative effects like overfitting. On the other
hand, FL algorithms, due to their model averaging, produce regularization
effects equivalent to dropout, ultimately increasing the accuracy of the model
under training.

While such techniques are effective, too many local updates between com-
munication rounds can create a negative impact. Local models may diverge
too much from each other, especially when under non-IID data distribution,
significantly decreasing the convergent rate of the global model. As a result,
additional training is required, defeating the aim of these techniques.
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Another concern is that the likelihood of stragglers occurring is greatly in-
creased due to client heterogeneity. Clients with fewer resources take dispro-
portionately longer to complete the additional computations, widening the
gap between them and the faster ones. Since simulations are most often used
when developing FL algorithms, researchers frequently overlook this issue.

Model Compression

These techniques, which are extensively employed in DL, attempt to decrease
the amount of the communicated updates. The weights of the model under
training make up the majority of the updates; applying transformations like
sparification, quantization, and subsambling to them can reduce the size of
the updates. In general, they are classified into two types: structured up-
dates, which attempt to select what information is sent, and sketched up-
dates, which attempt to compress the communicated information.

Structured updates require that updates adhere to a set, reduced format. This
is possible in multiple ways, like putting a predermined per-client mask on
the model after training to sparsify it. Another method is to instruct a client
to train and communicate only specific layers or pieces of them. A more
complex alternative is for the server to apply dropout to the global model in
order to create a submodel, which the clients train, and the server maps back
to the global model during aggregation. In general, these methods try to shift
the responsibility of compression to the server, with the aim to make it more
predictable and correct its error.

Sketched updates refer to techniques that encode the update in one side and
decode in the other. One such method is probabilistic quantization [48], in
which the update matrices are vectorized and quantized for each scalar. An-
other option is to use a random mask like in a structure update, with the
difference that it is randomly generated by the client and communicated to
the server together with the encoded local model.

All these methods can be lossy and introduce error as a result of information
loss. This error can be characterized as noise, which in most cases has a mean
value of zero due to the nature of the compression algorithms commonly
used. As such, the averaging of the FL algorithms can reduce it or even
eliminate it from the accumulation of the local updates. For this to be true
in practice, a large number of clients must be participating, which that is not
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always achievable. Moreover, as there is only one global model at any given
time, any error in server-to-client communication cannot be reduced.

Importance-based Updating

By sending only what seems important, importance-based updating aims to
reduce the volume of communication. Based on the observation that most
parameters in an ANN are close to zero or hardly vary [49], this can be done
in a fine-grained manner by sending to the server only a small percentage
of the model parameters. It can also be applied in a coarse-grained way by
asking clients to review their updates and send them only if they think they
would help the overall model. These techniques have demonstrated that,
when applied properly, they can occasionally reduce communication while
also increasing accuracy and convergence rate. In contrast, they may produce
the opposite effects if used excessively.

2.4.7 Privacy and Security

One of FL’s key goals is to protect participants’ privacy by simply requesting
them to share model parameters and not any of their personal information.
Additionally, FL wants to improve the model’s fairness and accuracy by in-
corporating personal data. However, if any FL participant is malicious, these
goals could be defeated. Model updates obtained from them can be used to
reconstruct data, and poisoning attacks can corrupt the model.

Types of Attacks

• Data poisoning attacks
In order to lower the accuracy of the model and add biases, these at-
tacks introduce tainted data that violate the dataset’s integrity. Model
skew attacks [50] and feedback weaponization[51] fall within this group.
The goal of model skew attacks is to decrease the model’s accuracy by
obfuscating or distorting the boundaries between the classifiers. Feed-
back weaponization, on the other hand, tricks the model into misclas-
sifying certain labels to introduce biases against them.

• Adversarial attacks 11

11Also called model poisoning.
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Adversarial attacks [52] involve specially crafted data that have de-
signed to be consistently misclassified by the model. They can be subdi-
vided to non-targeted and targeted. Non-targeted attacks try to evade
being correctly classification during inference, any incorrect result is ac-
ceptable. Targeted attacks aim to incorporate backdoors into the model,
that means manipulate the network to give specific erroneous inference
for certain inputs.

• Inferring Attacks
Attacks of this kind aim to gain information about the participants and
their data, and can be classified into two categories. The first one is
tracing attacks, which aim to detect whether a client is actively partici-
pating into training. The second one reconstruction attacks, which aim
to recreate examples used in training, or features of them.

Such attack can perpetrated using model extraction algortihms and Gen-
erative Adversarial Networks [53] (GANs). GANs is a ML technique
where two competing ANNs are trained, a generator network and a
discriminator network. The generator tries to create fake data while the
discriminator tries to discern real data from the fake by analyzing the
output of the discriminator. After some training, the generator can cre-
ate data that closely resembles the real ones using the statistics learned
by the classifier.

A GAN attack, as shown in figure 2.15, seeks to infer as much useful
information as possible about elements in a target class that are not
under its possession. The GAN tries to mimic samples of that class,
mislabels them and feeds them to the ANN under federated training.
The rest of the participants must then work harder to discriminate be-
tween the target class and the mislabeled class, resulting in additional
knowledge about the target class in the global model. This process is
repeated until convergence, and the GAN has enough information to
reliably reconstruct samples from the target class that approximate the
original examples.

This attack can be generalized to any number of classes and users, as
well as any type of collaborative learning. If the server or another entity
with access to the victim’s communications is the malicious actor,it can
be made more efficient by using the victim’s local updates rather than
the global model.
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FIGURE 2.15: GAN attack. The adversary mimics images of
class a, labels them as class c and uses them to train the collab-
orative model. To distinguish between these two classes, the
model will require more information from the victim. The ad-

versary does not need to have any true samples. [53]: URL.

Countermeasures

FL algorithms are somewhat resistant to the aforementioned attacks due to
the regularization effect of averaging local models. Data poisoning and ad-
versarial attacks require a sizable portion of the dataset to be tainted in order
to succeed. Additionally, inferring attacks demand that the malicious actor
go through numerous training epochs. In an IoT environment since most
clients, if they are even chosen, will only participate once. Even when sev-
eral malicious clients collude, the is a very small probability of achieving
their goals.

Such scale is quite challenging to achieve in an environment closer to the dat-
acenter, making it much more vulnerable. Furthermore, clients might seek
stronger privacy guarantees as the server might not always trustworthy. For
these reasons, further measures for protecting privacy and security are nec-
essary.

An additional level of security can be provided with minimal adjustments
to the FL protocol, by scanning the clients’ updates for unusual patterns.
Repeated updates with outlandish values could be a sign that a client is at-
tempting to corrupt the model. Furthermore, the updates of clients that try to
inject backdoors frequently resemble one another, which is rare, especially in
a non-IID dataset. Such methods can improve the security of the model, but
require plain-text access to the local updates, which is not always available
due to privacy enhancements based on cryptography.

https://arxiv.org/abs/1702.07464
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Clients might request further privacy protections, particularly if they don’t
trust the server or the connection between them. Secure Multi-Party Compu-
tation (MPC) [54], a subfield of cryptography, can be utilized to accomplish
that. MPC simulate a trustworthy third party between two or more collabo-
rating parties. Its homomorphic encryption techniques, which allow math-
ematical operations to be performed directly on cyphertexts and enable the
server to aggregate the local models without having access to their plain-text
contents, are particularly helpful. As a result, privacy can be ensured, albeit
at a high computational cost that comes with cryptographic operations.

The state of the art method to enhance model security and restrict informa-
tion exposure is differential privacy (DP) [53]. The fundamental tenet of DP is
that by blurring a model’s weights, they can not be associated with the data
they were produced with. In FL, clients add random noise12,with a mean
value zero, to their local updates prior sharing them with the server. In ad-
dition of concealing the clients, this technique hinders dackdoor injections to
the model, as the malicious clients need to send a precise set of parameters
to achieve their goals.

FIGURE 2.16: Effect of Differential Privacy on a GAN attack.
[53]: URL.

Theoretically, under DP transformation, the accuracy of the model and its
convergence rate won’t be impacted as the noise presented in figure 2.16
should vanish during aggregation. In practice, several samples are necessary
to generate a distribution with a mean value close to zero, thus FL must be
scaled appropriately. Finally, as attacks get more sophisticated, these coun-
termeasures might not be effective and combinations of them or new ones
are required.

12Usually Gaussian.

https://arxiv.org/abs/1702.07464




41

Chapter 3

Related Work

3.1 Training Dataset

The training dataset is the most important element of the training process, as
ML models directly extract knowledge from it. Regardless of the training al-
gorithm, using inadequate data can only result in underperforming models.
A well-known adage still holds brutally true when it comes to training data
for ML: garbage in, garbage out.

In the context of this work, the Fashion-MNIST [55] dataset is utilized. It
consists of 28 × 28 grayscale images of 70,000 fashion items from 10 equally
sized categories, split into a training set of 60,000 images and a testing set of
10,000 images. It is designed as a direct drop-in replacement of the original
MNIST dataset [56] that provides a more challenging classification problem.
Some of its images are shown in figure 3.1.

The major factor of its popularity is its small size which enables DL researchers
to swiftly prototype and test their algorithms. Furthermore, it is highly ac-
cessible due to its strait-forward encoding and its permissive license. Finally,
DL frameworks (e.g TensorFlow) provide auxiliary functions and convenient
examples that use it right out of the box, makes it highly compelling.

FIGURE 3.1: Examples of Fashion MNIST Dataset [57]: URL.

https://www.bouvet.no/bouvet-deler/understanding-convolutional-neural-networks-part-2
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3.2 ANN Architectures

Any DL model that can be trained locally should be possible to be trained in
FL, since FL is essentially another DL training method. To demonstate that
the FL impementation in this work is accurate, multiple models of different
architectures have been implemented and incorporated into the FL training
loop.

3.2.1 LeNet-5

LeNet-5 [58], one of the first CNNs to describe its fundamental form, was
proposed in 1989. Its original use was for handwritten digit recognition, a
task in which it performed greatly and piqued academics’ interest in the de-
velopment and use of ANNs. It possesses the fundamental building blocks
of CNNs, interconnected convolutional and pooling layers, followed by fully
connected layers. Across all these layers it uses the tanh activation function,
and to make the computation less difficult maintains sparse connections be-
tween them.

3.2.2 AlexNet

AlexNet [16] is a CNN architecture designed to compete in the ImageNet
Large Scale Visual Recognition Challenge of 2012. The depth of the net-
work’s model, five convolutional layers, some of which were followed by
max-pooling layers, and then three fully connected layers, allowed it to out-
perform its competition in terms of accuracy. Furthermore, it used the non-
saturating ReLU activation function, which shows better performance than
prior activation functions like tanh. A visual comparison with LeNet-5 is
done in diagram 3.2.

Training such a large network on a CPU, which was the standard at that
time, is computationally prohibitive, but was made possible by training it
on graphics processing units (GPUs). That novelty spurred huge interest in
CNNs and training them with accelerators, making it one of the most influ-
ential ANN architectures.



3.2. ANN Architectures 43

FIGURE 3.2: Comparing the LeNet and AlexNet architectures
[59]: URL.

3.2.3 ResNet

An ANN known as a residual neural network is distinguished by its shortcut
connections that skip several layers, as shown in diagram 3.3. In this manner,
it is possible to build ANNs that have hundreds of layers and are very deep
without experiencing the vanishing gradients phenomenon. Additionally, it
reduces the accuracy saturation issue, in which adding additional layers to a
complex model causes the training error to increase.

FIGURE 3.3: Comparing a ResNet and a plain model [60]: URL.

https://en.wikipedia.org/wiki/AlexNet#/media/File:Comparison_image_neural_networks.svg
https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8
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3.2.4 Inception Module

In CNNs, the size of the filters depends on how the important information
is located in the inputs. Filters with small kernels are better in detecting in-
formation with a local distribution, while large kernels are preferred when
dealing with a global distribution. Each sample may have a different distri-
bution, as in diagram 3.4, making it challenging to select an ideal filter.

FIGURE 3.4: The dog, which is the important information, can
occupy differently sized portions of the picture [61]: URL.

The inception module [62], diagram 3.5, addresses this issue by providing
multiple filters of various sizes that operate in parallel. These filters seek
after the same information but in differently sized parts of the input. Con-
solidating their outputs is sufficient to determine whether the sought-after
information is found, the filter that identified it overshadows the rest.

In its original form, it consists of three convolutional layers, with sizes of
1× 1, 3× 3, 5× 5, as well as one 1× 1 max pooling layer. To reduce com-
putation, prior to the 3× 3, 5× 5 convolutions, and after the max pooling,
additional 1× 1 convolutionals are added. These layers are dual-purposed,
as they apply dimension reduction and an extra layer of ReLU activations.

FIGURE 3.5: Architecture of the Inception module with dimen-
sion reductions. [62]: URL.

https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://arxiv.org/abs/1409.4842
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3.3 Federated Learning Algorithms

3.3.1 Distributed SGD

Due to their iterative structure, conventional learning algorithms like SGD
are inherently serial. Parallelism can only be applied over an example, e.g.
pixels in a CNN, or over a mini-batch, where each example in it can be used
in parallel. Synchronous SGD [63], a variation of mini-batch SGD, aims to
enable cross-batch parallelism to reduce training time.

Before training starts, the dataset is distributed between N workers. In every
iteration, each worker processes a mini-batch independently of the others, as
follows:

• it fetches the up-to-date model parameters;

• it then computes new parameters1 using a local mini-batch;

• finally, these parameters are sent to a synchronization service, generally
a chief thread2, that computes the new model parameters. When this is
done, a new iteration begins.

Algorithm 1 Distributed SGD. The N workers are indexed by n; B is the
local mini-batch size, w are the model weights, and η is the learning rate.

Synchronization service executes:
initialize w0

D1...N ← (distribute data to N workers)
for each round t = 1, 2, . . . do

for each worker n ∈ N in parallel do
wn

t+1 ←WorkerUpdate(n, wt)

wt+1 ← 1
N ∑N

n=1 wn
t+1

WorkerUpdate(n, w) //Run on worker n
b← (1 batch of size B from dataset Dn)
w← w− η∇l(w; b)
return w to synchronization service

1Instead of parameters, it can calculate and send gradients, letting the synchronization
service do the backpropagation. This is true for most distributed or federated algorithms.

2As the workers are usually in a shared memory environment, this can also be done by
one of them.
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While initially intended for training in datacenters or localized clusters, it
can easily be generalized for the federated setting by swapping out the work-
ers for clients, the synchronization service with a server, and the distributed
datasets with client generated ones. As a result, it became a major source of
inspiration for FL.

3.3.2 FederatedAveraging

Many successful implementation of DL have relied on variations of SGD for
optimization. As a matter of fact, they can be regarded as adaptations of
the models and their loss functions to be more susceptible to optimization
through simple gradient-based methods. Thus, it is natural that building FL
algorithms begins with SGD.

Distributed SGD could naively be used in the federated setting, with each
client computing the gradients of a single batch, a few samples, for each com-
munication round. Although this method may be computationally efficient,
it takes tens of thousands of training rounds to converge in a solution. This
is prohibitive in a federated setting as communication costs are much higher
than in a datacenter.

A straightforward method to reduce communication is expanding the batch
until it includes the client’s whole dataset. Thus, every client performs one
full-batch (non-stochastic) gradient descent calculation per round. Further-
more, each client may have a different amount of examples, since in the feder-
ated setting, they are independently generated by the clients instead of being
distributed by the server. As such, aggregation is weighted by the number of
examples in each client. This approach is typically called FederatedSGD.

While FederatedSGD improves the computation-to-communication ratio, a
number of other problems emerge. First of all, clients might not be able to
meet the very high memory requirements of full-batch gradient descent. Fur-
thermore, when under non-iid data distribution, convergence of the global
model is not guaranteed due to high divergence between the local models. A
more sophisticated approach, that overcomes these issues, is maintaining a
more balanced batch size while performing several updates to the local mod-
els before sharing them with the server. This method is referred as Federate-
dAveraging (FedAvg) [4] and is the cornerstone of FL, as most FL algorithms
are its derivatives.
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Algorithm 2 FederatedAveraging. The N client are indexed by n; k is the
size of the local datasets, while K is their total size; E is the number of local
epochs, B is the local mini-batch size, w are the model weights, and η is the
learning rate.

Server executes:
initialize w0

for each round t = 1, 2, . . . do
St ← (set of selected clients)
for each client n ∈ St in parallel do

wn
t+1 ← ClientUpdate(n, wt)

wt+1 ← ∑N
n=1

kn
K wn

t+1

ClientUpdate(n, w): //Run on client n
Sb ← (split local dataset into batches of size B)
for each local epoch i from i to E do

for each b ∈ Sb do
w← w− η∇l(w; b)

return w to server

3.4 The FPGA Perspective

Centralized training has been implemented with FPGAs multiple times in
the past. The training part of the FL shouldn’t be substantially different from
it, in terms of design and implementation. In contrast, the driver of the re-
programmable hardware will differ, as it must facilitate the FL procedure.
The FL algorithm itself is not computationally demanding and may be con-
veniently offloaded to a CPU.

Modern system-on-chip (SoC) FPGAs contain all the tools required to imple-
ment FL, including running on an operating system and having an Ethernet
adaptor. With those, connecting the two technologies is feasible, for both the
datacenter and the on-edge settings.

Recent works have attempted to merge FL and FPGAs. Most notably, Zixiao
Wang et al. have a developed PipeFL [64], a generic architecture to accelerate
ANN training in FL with FPGAs. This work is fully focused to the datacenter
settings and completely ignores problems specific with on-edge FL. Further-
more, the system is not compared with an equivalent GPU implementation.
Other works have shown that FPGAs are able to efficiently implement com-
plementary systems for FL, such as homomorphic encryption [65].
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Chapter 4

FL architecture & design

This chapter contains everything relevant regarding the FL system devel-
oped in this thesis. Section 4.1 lists the software tools used, as well as how
they were utilized. The following section, 4.2, describes the prepossessing
and distribution applied to the utilized Fashion-MNIST dataset.

To facilitate the deployment of the FL system in platforms like an FPGA SoC,
C++ is deemed as the most fitting programming language, due to the fact
that most hardware vendors provide dedicated compilers for it. In contrast,
during the robustness analysis phase, the underlying training is carried out
using the Python API of the TF library, as its great malleability makes it eas-
ier to experiment and test with different ANNs and training settings. To
connect these two component, the Python Interpreter is embedded into the
C++ codebase, and that is the subject of the section 4.3.

The final section 4.4 details the developed FL system itself. First, the layout
of its processes and their memory is shown. Furthermore, it explain in depth
the structure and operation of the individual processes that compose it, as
well as how they are synchronized. Moreover, the communication scheme
that is used to facilitate any communication between them, is also shown.
Finally, the library of models utilized to test the FL system is presented.

4.1 Software

4.1.1 Tensorflow & Keras

TensorFlow [66] is an interface for expressing ML algorithms and an imple-
mentation for executing such algorithms. It offers a complete, flexible ecosys-
tem of tools, libraries and community resources that that facilitates the devel-
opment and deployment of ML powered applications. Its main advantage is
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the ability to use high-level APIs like Keras with eager execution, enabling
immediate model iteration and easy debugging.

Tesnorflow & Keras were used in all experiments during modelization. It
is chosen due to its simple, flexible architecture, which turns new ideas into
code quickly. In addition, due to the existence of TensorFlow Federated (TFF)
[67] framework, there are many compatible theoretical resources and tutori-
als. TFF is simulating FL to facilitate research and experimentation with FL
algorithms, thus it is incompatible with this work which aims to implement
real-world FL with hardware accelerators.

4.1.2 Python/C API

As the goal is to integrate FL with FPGA accelerators, the majority of the
codebase is developed in C++. This include all the networking, communi-
cation, model aggregation and any required model transformations. Tensor-
Flow on Python is utilized for model evaluation and, throughout the mod-
elization phase, for training. To connect these two components, the Python
interpreter is embedded to the core program using the Python/C API [68,
69].

With the TensorFlow C API [70], TensorFlow could be used directly in C++,
however several capabilities, like the Neural Network library, are not sup-
ported. Furthermore, quickly rotating among ANN architectures, training
techniques, etc. is quite usual in FL development. With the C API that be-
comes tedious and slow, since it is geared more toward uniformity and sim-
plicity than convenience, and C++ needs to be recompiled after every change.
Due to these factors, integrating the Python interpreter and using TensorFlow
in Python is considered as a more appropriate solution.

4.1.3 POSIX Sockets

POSIX sockets [71] is an application programming interface (API) for Inter-
net and Unix domain sockets, used for inter-process communication (IPC). A
socket is an abstract representation for the local endpoint of a network com-
munication path. According to the Unix philosophy, the POSIX sockets API
defines it as a file descriptor that offers a standard interface for input and
output to data streams.

The 4.2 Berkeley Software Distribution [72] Unix operating system, which
was introduced in 1983, is where the API originates from. POSIX sockets
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transitioned mostly unchanged from a de facto standard to a POSIX spec-
ification component. They are commonly referred to as "Berkeley sockets"
or "BSD sockets" to acknowledge the Berkeley Software Distribution, where
they were first implemented.

In FL, entities possess their own private data. This is best implemented
through processes with private data space that communicate using sockets.
Therefore, the POSIX socket API implementation provided by the LINUX
operating system is used for all inter-entity communication.

POSIX sockets can be configured for blocking or non-blocking operation. In
blocking operation, the program halts until the entire message is sent or re-
ceived. In contrast, during non-blocking operation they only retrieve or send
data that is immediately available. Thus, the program does not stall on strag-
gler connections and many deadlock situations are avoided, but there is no
guarantees that the messages will be send or received in one piece, especially
when said messages are large 1.

4.2 Data Preparation

4.2.1 Normalization

Dataset normalization [73], as part of data preparation, is a standard practice
in ML. Normalization transforms the features of a dataset to a common scale,
without distorting discrepancies in the ranges of values or losing informa-
tion. This technique prevents large scaled characteristics to dominate during
training. Furthermore, many algorithms, such as ReLU non-linearities, ex-
hibit better performance when fed with data of floating-point format.

In this work, the Fashion-MNIST dataset provided by TensorFlow Datasets
[74] collection is utilized. It is consisted of gray-scale images, where each
pixel is represented by an integer in the range [0, 255]. They are normalized to
floating-point format in the range [0, 1] with the script prepare_dataset.py.
Furthermore, to avoid repeating this procedure for every experiment, the
processed dataset is saved on disk.

1This is due to limited sized socket buffers set up by the operating systems.
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4.2.2 Distribution

In FL, each client is meant to have their own unique, individualized dataset.
Given that the provided Fashion-MNIST dataset is a single, concentrated col-
lection, it must be distributed among the clients in order for federated train-
ing to be possible. According to the theory presented in section 2.4.5 Two
approaches of partitioning the data among the clients are explored:

IID

The data are randomly partitioned in equally sized shards, one for every
client. For example, if there are 10 clients, each will receive a shard con-
taining 6000 examples. Although this distribution is not IID in the strictest
sense2, it is closer to a real-world scenario and many issues, such as class
underrepresentation, can be easily avoided.

non-IID

Although statistical challenges are not the focus of this study, some testing
with non-IID data has been done for sake of completeness. The dataset is
broken up into shards, each of which includes examples from only one label.
Each client receives two shards of different labels. If there are 10 clients,
for instance, twenty shards will be produced, and each client will receive
3000 examples from two labels for a total of 6000 examples. Despite such a
pathological non-IID distribution being atypical of a real-world scenario, it
will assist investigate how severely the algorithms fail on extremely non-IID
data.

4.2.3 Pipeline

The input pipeline that feeds the training data to the models is constructed
using the tf.data API provided by TensorFlow. More specifically, before
training begins, each client optimizes the use of its dataset by transforming it
through caching, shuffling, batching, prefetching, and repeating. Addition-
ally, this process is parameterized for flexibility and enable experimentation
with different local dataset and batch sizes.

2Due the shards being mutually exclusive, knowing that an example belongs to one of
them indicates that it does not exist in others shards. Thus, knowledge about the other local
datasets can be inferred and independence is violated.
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4.3 Embedding the Python Interpreter

As mentioned in section 4.1.2, the Python Interpreter is embedded on top of
the C++ codebase. To make this integration as seamless as possible from both
sides, an integration layer that operates as a wrapper for the C/Python API,
has been developed. The C++ codebase can call Python code with simple
function calls, while the Python code can access data from the C++ space like
it would access data from its own space.

To achieve this, A number of steps need to be completed. First of all, a strait-
forward abstract class is defined, which specifies a train and an evaluate
function, as well as an input and an output model. The C++ codebase is
interfacing with an implementation of this class. Its tasks include initializing
the Python interpreter, loading the appropriate Python module, passing the
necessary data and creating C++ function wrappers for the Python function.

Moving data from one side to the other can be trickier than it first appears.
Using the appropriate API calls, such as PyModule_AddIntConstant, simple
constants and macros can be passed by copy to the Python module in a strait-
forward manner. This approach fails when dealing with large amounts of
data, such as the model parameters. Instead, by constructing NumPy array
metadata over them and copying them, they can be passed by reference. In
this manner, both ends observe the same memory space and there is no sig-
nificant data copy.

After exposing the parameters to the Python code, one more step is necessary
to enable the TesnorFlow library to be able to use them. In order to assign the
received parameters to the model under training, they must be first trans-
formed into TesnorFlow tensors with dimensions and shapes that match its
layers. Likewise, to extract parameters from a model and expose them to the
C++ codebase, its layers must be concated in a NumPy array.

Figure 4.1 illustrates all the parts required to integrate training and evaluat-
ing with TF on Python, and the developed FL system. Blue squares represent
the C++ side, while the yellow and orange ones represent the Python/TF
side. All elements over the horizontal line and the Python API wrappers
(C++) are developed in this thesis, while the rest represent the tools used.
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FIGURE 4.1: Overview of the C++/Python Integration. The
FL implementation components are represented in the top half,
while the required libraries, APIs, and wrappers are shown in

the bottom half.

4.4 FL Architecture developed in this Thesis

The architecture aims to offer a generalized FL loop that enables the imple-
mentation of various FL algorithms. To achieve this, it is designed to be
flexible and modular, with each FL operation, such as client selection and
aggregation, having its own specialized function. Additionally, all relevant
training parameters and hyper-parameters, such as local epochs or partici-
pating clients per epoch, are compiled in the definitions.hpp file. Since the
entire codebase accesses them from there, testing and experimentation are
streamlined and less prone to mistakes.

4.4.1 Process & Memory Layout

In FL, multiple entities are present, the orchestrating server and the clients
training the global model. As the aim of this work is to implement FL with
clients operating on separate devices, it is essential that each entity is a dis-
tinct process with its own private data-space. This data-space contains its
private training or testing dataset, as well as its local or global models.

All required communication is facilitated through POSIX sockets. Further-
more, the TCP protocol is utilized to ensure robustness against communica-
tion faults, random disconnections and erroneous messages. Such problems
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are common in edge environments, where the clients are not always in their
best possible state or their connection with the server is fickle.

Each client holds their private data, the global model and the models they
produced. Meanwhile, the server holds the testing dataset, the global model
and the most recent local model it received. All communication goes through
dedicated sockets. This process and memory layout is illustrated in figure
4.2.

FIGURE 4.2: Process & Memory layout of the developed FL sys-
tem.

4.4.2 Server

Overview

The server adheres to the event-driven server paradigm. The process, while
sleeping, listens for events such as new connections or messages from the
clients, and reacts according to their context. This is very similar to FL in that
the server receives local models, aggregates them, and then, after accumulat-
ing a sufficient number of them, creates a new global model and announces
it to the clients. All these actions are triggered by client updates. It should be
noted that the event scheduler is also the the event handler. As the handling
of these is events is almost instant, there is no need for worker threads.
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The server process is the focal point of FL and is responsible for several tasks,
which can be distinguished between algorithmic, systemic and auxiliary. Al-
gorithmic tasks are the components of the FL algorithm, such as model ag-
gregation. Systemic tasks are necessary operations to implement the FL al-
gorithm, such as connecting sockets. In addition, some tasks that are not re-
quired to implement the algorithm are included in order to enhance its utility
and ease development.

Operation

The server’s first action is to load a pre-trained model, if one exists. While
not a prerequisite to facilitate FL, this is done to enable transfer learning and
experimenting with retraining a model under different settings.

After that, the server completes a series of initializations. First of all, a listen-
ing socket is set-up in non-blocking operation, and the event-driven struc-
ture is established. Furthermore, the Python environment, where the global
models are evaluated, is embedded and initialized. Finally, any structures or
variables required by the FL algorithm are initialized.

After the initializations, the server enters a waiting state. To achieve this the
poll(2) system call, which puts the process to sleep until an event occurs, is
used. Four types of events may happen:

• The listening socket encounters a new connection, meaning a new client
requests to join in the federated training. The socket is cloned, the clone
establish the connection with the client, and any necessary data structures
are created.

• A connected socket encounters an error, such as an sudden disconnection.
Unreliable clients are expected to continue being unreliable, thus the most
prudent course of action is discarding them.

• A connected socket receives new data. As a message can consist of mil-
lions of weights, it may be received across multiple events and a collection
mechanism is needed to fully retrieve it. To achieve this, it is necessary to
track the size of the received data per client and ensure that there is always
adequate memory available to store a message from each connected client.
If the message is complete and valid, its local model is aggregated to next
global model, and the related client is considered as non-working.
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• A connected socket can send new data. This indicates that a socket des-
ignated to send the global model to its connected client, is available to do
so. As mentioned before, the messages can be quite large, thus multiple
events may be required to fully send them. To achieve this, tracking of the
amount of transmitted data per connection is necessary. When a message
is fully send, the related client is considered as working. Furthermore, as
there no more data to send, the POLLOUT flag of the socket is disabled.

Following any event, the server determines whether a new epoch should
begin. It takes in consideration how many local models were successfully
received this epoch, how many clients are connected, and how many clients
are still working. If the current epoch requires further work, the process
returns to the waiting state and sleeps until a new event occurs.

If the contrary is true, the new global model is created by dividing the aggre-
gated local models by the number of received local models during the current
epoch. This new model is evaluated, and then shared with clients that where
randomly selected using the Durstenfeld-Fisher-Yates shuffle algorithm [75,
76]. The only action needed to share the model with a client is enabling the
POLLOUT flag of the corresponding socket; the event loop will handle sending
the message.

The event loop’s final step is to determine whether any further training is
required. If the target accuracy is achieved or a predetermined number of
GEs have been completed, the server shows any relevant statistics, stores the
final global model to disk, and shuts down.

4.4.3 Client

Overview

During an epoch, a participating client receives a global model, goes through
a few local training rounds, and then sends the updated local model back
to the server. Training cannot begin until the global model is fully received.
Furthermore, after sending the local model, nothing further needs to be done
until a new global model is received.

As a result, the client is controlled by its communication with the server, and
a master-slave relationship is formed between them. To effectively imple-
ment this, client-side communication is blocking, meaning a client can not
take any action until it has fully received or send its messages.
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Operation

At startup, the client creates a socket and connects to the server. Additionally,
it embeds and initializes the Python environment that is used for training.
Following these initializations, the process moves into its main loop.

The main loop contains three major operation. First, it receives the global
model shared by the server. Then, it is trained with the local private data,
creating a new local model. Finally, any required transformations, such as
quantization and compression, are applied to the new model, which is then
send to the server. This process is repeated until the server informs that there
will be no more training with that client.

4.4.4 Synchronization

Figure 4.3 illustrates the operation of a server-client pair. The server sleeps
in the poll() system call until an event is raised as described in section 4.4.2.
The client is either training its local model, or wait the server to receive or
send data. This typical master-slave synchronization system.

In practice, more than one client is connected to server at any time. Never-
theless, the activity diagram and synchronization of both components remain
the same. The server is capable to send messages to one client while receiving
from another one. Furthermore, connectivity issues with a particular client,
do not affect the communication with the rest.



4.4. FL Architecture developed in this Thesis 59

FIGURE 4.3: Server - Client Activity Diagram: Yellow states are
modelled with TensorFlow, while grey states are not essential
for FL. Blue arrows represent data movements. Error condi-

tions and states are not displayed.
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4.4.5 Communication Scheme

As stated in section 4.4, the server and the clients are separate processes that
communicate over sockets. A concrete, predefined communication system is
needed to accomplish this in a reliable manner. The server holds the barest
amount of information on the clients, just what is necessary to stay in con-
nection and communicate, to adhere to the cross-device FL setting. As such,
the server can not address clients directly and messages must be generic.
Furthermore, each message must be independent from the rest and self suffi-
cient. As a result, messages sent by the server to clients must be general and
self-sufficient.

Algorithmic solutions can reduce communication, but communication must
be kept to a minimum in systemic level too. The messages, to be as compact
as possible, only include their model and a few bytes of metadata required by
the FL algorithm. Furthermore, they are C-aligned arrays, which means there
are no delimiters between their values, or hidden metadata from predefined
protocols of higher abstraction, such as Protobuf.

Minimizing communication frequency is another strategy used for cutting
down on communication time. Any message send by the server that contains
the global model, can be interpreted as an request to train it. Furthermore, if
a client sends its local model, it can be presumed that it completed its task. As
a result, each epoch only these two messages are required, and any synchro-
nization or confirmation messages are unnecessary. With this approach, it is
necessary for every party to interpret the messages in a same predefined way.

Server to client message

flags

GE

global model variables
...

Client to server message

GE

local loss

local accuracy

model variables / deltas
...

TABLE 4.1: The format of the communication between the
server and the clients.

The format of the messages is shown in Table 4.1. The flags field is intended
to communicate particular instructions to clients, such as the message is the
final one and no more communication will be accepted or that the client
should initialize the model. The GE field is used to discard stragglers, as
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the server can quickly reject any messages from an earlier GE. The local loss
and accuracy fields are used to facilitate complex algorithms, such as ignor-
ing local models with poor accuracy or higher loss than the prior GE. The
global and local model parameters are the last part of the format and make
up the bulk of the messages.

4.4.6 Model Library

Most ML models, if not all of them, are meant to be trainable in a feder-
ated environment. To demonstrate the accuracy of the developed FL envi-
ronment, a library of ten typical models has been created. As the training
problem is image recognition, the majority of the models are CNNs. How-
ever, models of different architectures, such as deep and residual ANNs, are
also included.

1. The simplest model in the library is a DNN architecture. It consists
of three fully connected ReLU activated layers with 128, 1024 and 128
neurons respectively, followed by a Softmax layer. In total, it contains
365,066 weights for an approximate size of 1.46 MBytes.

2. The first CNN model follows the original LeNet-5 architecture. It has
two convolutional layers of 6 and 16 5 × 5 kernels, each one accom-
panied by an average pooling layer with 2 × 2 pool size. They are
followed by two fully connected layers of 120 and 84 neurons, and a
Softmax layer. All layers, except the final one, are activated with the
hyperbolic tangent function. In total, it contains 61,706 weights for an
approximate size of 0.25 MBytes.

3. For the following experiments, the model most used is a CNN archi-
tecture consisting of two convolutional ReLU activated layers of 32 and
64 3× 3 kernels, each accompanied by a max pooling layer with 2× 2
pool size. They are followed a 128-neuron fully connected ReLU ac-
tivated layer, and a Softmax layer. It contains 421,642 weights for an
approximate size of 1.69 MBytes. This architecture is compact enough
to enable rapid experimentation and testing while being sufficiently so-
phisticated to provide an acceptable level of accuracy and necessitate
several training epochs.

4. The CNN used in the original FL work [4] is also included in the model
library. Its architecture is fairly similar with the previous one, but with



62 Chapter 4. FL architecture & design

larger 5× 5 kernels, and a fully connected layer of 512 neurons. In total,
it contains 1,663,370 weights for an approximate size of 6.65 MBytes.

5. The next model included in the library aims to evaluate the FL en-
vironment with more sophisticated layers and combinations between
them. It employs six convolutional layers, applies batch normalization
on their outputs, and uses max pooling every two convolutions. There
are 803,240 weights in it, giving it an approximate size of 3.2 MBytes.

6. To test the FL environment with extremely large models, the AlexNet
architecture have been implemented. The model consists of 46,764,746
weights for a message size of 187 MBytes. As a result, it is unfeasible to
train it repeatedly, as the FL operation needs, with the current available
resources. Instead, it was trained for a single epoch with a few training
data and conservative hyperparameters, just to demonstrate that the FL
environment has no model size constraints.

7. For similar reasons the OverFeat-AlexNet architecture is included. This
model is the largest one in the library, with 56,906,954 weights and a
total size of 227 MBytes. The same constrains apllies.

8. The inception module detailed in section 3.2.4 is the foundation for two
of the included models. The first one comprises of two such modules of
different sizes and a Softmax layer. It has a total of 4,275,914 parameters
and is about 17.1 MBytes in size.

9. The second inception architecture includes a module sandwiched be-
tween two convolutional layers, and max pools the outputs of all three.
The output of the module is also subjected to the dropout transforma-
tion. Furthermore, they are followed by two fully connected layers and
then a Softmax layer. In total, there are 277,082 weights for a size of 1.1
MBytes.

10. The final model is based on the residual architecture. It is consisted of
two convolutional layers and a Softmax layers. The input of the net-
work feeds the convolutional layers, but it also skips them and is di-
rectly connected to the Softmax layer. Furthermore, the dropout trans-
formation is applied to the input of the Softmax layer. It has 539,466
parameters and is about 2.16 MBytes in size.
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Chapter 5

Robustness Analysis

In this chapter a number of experiments are presented, with two goals. First,
to prove the algorithmic soundness and demonstrate the robustness of the
developed FL system. Second, to identify the parameter space where it is
most efficient, by exploring the effects of its parameters on its behaviour and
performance. This is instrumental for developing an FPGA-based accelerator
that is designed to be optimal for the FL system.

These experiments are carried out on a single machine. As a result, the par-
ticipating processes are competing for computing resources, and communi-
cation takes place on the operating system’s loopback. Thus, it is impossible
to draw any meaningful real-time inferences from these experiments; instead
the communication frequency is used as the benchmark value.

Although more experiments have been carried out, for the sake of brevity,
the ten with the most significant findings are presented. Furthermore, many
of those have been repeated with different ANNs to check if their results are
model specific. When this is true, it is highlighted in the conclusion of the
chapter. In more detail, the experiments presented and their aims are:

• The first experiment tests the fundamental functionality of the devel-
oped FL system by using the most straightforward possible FL case,
distributed SGD with IID data.

• The second one uses the same algorithm but with non-IID data, to
demonstrate that the FL system can handle such a distribution.

• The next one is quite similar to the first, but introduces and tests the
client selection, a core FL feature.

• The fourth experiment, building on the previous one, increases the com-
putation to communication ratio by raising the data consumed per GE.
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It serves as a transitional stage between the earlier experiments and the
subsequent FedAvg ones.

• The fifth experiment tests the fault tolerance of the FL system. Early in
the training, one of the clients is abruptly disconnected while commu-
nicating with the server. It is crucial to prove robustness against such
situations when dealing with on-edge FL scenarios.

• The sixth experiment increases data consumption per GE even further,
but more importantly it compares a FL system where each client ini-
tializes its local model independently from the rest, with one where all
clients have the same initialization. According to FL theory initializa-
tion has a great impact of the overall system, and thus is investigated.

• The LR decay is another parameter that is well-known to have a signif-
icant impact. On experiment 7, several LR decay strategies are put to
the test.

• The eighth experiment finally introduces the state of the art FL algo-
rithm, FedAvg. It utilizes the LR decay deemed best in the previous
experiment with different values.

• Experiment 9 builds on the previous one, and tests the importance of
the number of participating clients per GE.

• The final experiment increases computation per client by training mul-
tiple times over the local datasets each GE.

5.1 Distributed SGD with IID Data

The first experiment focuses on the most straitforward case, distributed SGD
with IID data. The training dataset is split equally between the participating
clients. The third model in the collection is used, and for simplicity’s sake,
the Adam optimizer with default parameters is employed.

parameters

participating clients 4

local epochs 1

steps per epoch 3

batch size 10

TABLE 5.1: Parameters of the first experiment.
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Using the aforementioned parameters, each client consumes 30 examples per
GE. Considering that all four clients participate in each GE, 500 GEs are nec-
essary to exhaust all training data.

The FL trained model is compared to a centrally trained one with same pa-
rameters. To do this properly, a common scale is required. As such, the
number of times the training dataset is repeated is used.
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FIGURE 5.1: Experiment 1 results

The aforementioned findings demonstrate that training the model via FL
yields the same accuracy as training it centrally, albeit at a slower rate. This
is understandable given that the model in the first case is updated every 150
examples, whereas in the second case it is updated every 10 examples.

Another observation is the re-balancing effect of the FL algorithm. In cen-
tralized training, due to overfitting, the accuracy of the model degrades after
peaking. This is not true when trained under the federated setting, as over-
fitted parameters are regularized when averaging multiple local models.

5.2 Distributed SGD with non-IID Data

In this experiment, the third model is trained with distributed SGD and a
pathological non-IID dataset. It is interesting to see how the batch size af-
fects the performance of Distributed SGD, given that it is notorious for being
unable to handle non-IID datasets. Thus, the test was repeated with three
distinct combinations of parameters.
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case 1 2 3

participating clients 5 5 5

local epochs 1 1 1

steps per epoch 1 1 1

batch size 1 2 4

TABLE 5.2: Parameters of the second experiment.

The dataset is split between 5 clients, with each one getting all the examples
of two labels. The first client holds all the examples with labels 0 or 1, the
second client holds all the examples with labels 2 or 3 etc. As clients holds
no knowledge on the other classes, self-training the model can only achieve
a maximum accuracy of 20%. Therefore, it is required to either centralize the
dataset or use a decentralized training method.
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FIGURE 5.2: Experiment 2 results

Distributed SGD appears to struggle with non-IID data. With a batch size of
just one example, it achieves accuracy consistent with prior works[4], but it
is unable to converge with bigger batch sizes. This observation is consistent
with FL theory, and in order to improve outcomes, additional techniques
such as data rebalancing or expanding the client pool are needed.

5.3 Client Selection

In FL, it is frequently preferable to use a portion of the clients in each GE
when there are several of them. In this method, data efficiency and model
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performance are improved since the global model can be updated more times be-
fore the training data run out. This experiment aims to test this functionality.

Eight clients are participating in training the Lenet-5 model. Every GE, only
three clients are used. The dataset is split into 8 identically sized, mutually
exclusive random shards, each of which is given to a client.

parameters

total clients 8

clients per GE 3

local epochs 1

steps per epoch 2

batch size 20

TABLE 5.3: The parameters of the third experiment.

Data reshuffling is also incorporated in FL and centralized training. When
all of the examples of a dataset have been used, it is resuffled and rebatched.
Overfitting is thereby expected to diminish in both scenarios.
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FIGURE 5.3: Experiment 3 results

In comparison to the first trial, where there was no client selection, FL train-
ing produces results that are comparable to those of centralized training more
quickly. Furthermore, overfitting is decreased in both scenarios.
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5.4 Greater data per GE consumption

The primary objective of this experiment is to assess the impact of increasing
the consumption of local data per GE, prior migrating to the Federated Av-
eraging algorithm. Furthermore, the FL environment is tested with a more
complex architecture by using the ninth model that contains an inception
module and a dropout layer.

The data is distributed randomly to 5 clients, with 3 of them used in each GE.
Two sets of parameters are used, with different number of local updates per
GE.

parameters FL set 1 FL set 2 Centralized training

total clients 5 5 1

clients per GE 3 3 1

steps per GE 1 2 examples/batch size

batch size 20 20 20

examples per GE 60 120 all

GEs to use all examples 1000 500 -

TABLE 5.4: Experiment 4 parameters

It is important to note that, compared to the first set of parameters, the second
one needs only half as many communication rounds to exhaust the dataset.
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FIGURE 5.4: Experiment 4 results

Both FL scenarios reach comparable accuracy with centralized training. Al-
though the second one appears to progress at a slower pace than the first, it
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only updates the global model half as often and needs half as much commu-
nication. This results in double the computation to communication ratio and
being a more viable target for parallelization.

5.5 Client Fault Tolerance

In an edge environment, the clients may be unreliable and any algorithm
must be resilient to random faults. This experiment aims to simulate such a
case. To achieve this, 6 clients are initially participating in training the third
model, but around 1/10 into training one of them abruptly disconnects while
sending a message to server. That means for 90% of the training, 1/6 of the
data are inaccessible.

parameters normal op faulty op

total clients 5 6

clients per GE 3 3

steps per GE 1 1

batch size 20 20

TABLE 5.5: Experiment 5 parameters
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FIGURE 5.5: Experiment 5 results

Although the model’s final accuracy drops, the effect is manageable as train-
ing continues and accuracy is still within acceptable bounds. In a real-world
scenario, this issue can be resolved by postponing a portion of the training
until after lost data resurfaces or new data becomes available.
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This is achieved through proper usage of the TCP protocol. The server un-
derstands that the faulty client disconnected, discards its erroneous message
and continues training without him. As a result, there are no stalls and the
global model does not get corrupted.

5.6 Neural Network Initialization

The initialization of an ANN can have a significant impact on the final ac-
curacy, convergence rate, and training time, according to FL theory. It is
generally accepted that the best course of action is to use the same initializa-
tion for all clients [4]. This major objective of this experiment is to assess this
convention.

parameters FL seeded init FL random init centralized training

total clients 5 5 1

clients per GE 3 3 1

steps per GE 5 5 examples/batch

batch size 20 20 20

examples per GE 300 300 all

GEs to use all examples 200 200 -

TABLE 5.6: Experiment 6 parameters

The third model is used and initialized with the Glorot initializer. The model
is trained twice, once using the same seed across all clients, and once using
different seeds.
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FIGURE 5.6: Experiment 6 results
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The model with a random initialization quickly approaches and settles in a
suboptimal local minimum. Both centralized training and FL with seeded
initialization surpass its accuracy. This behaviour is consistent with FL the-
ory.

5.7 Learning Rate (LR) Decay Strategies

Another aspect of FL worth investigating is learning rate (LR) decay strate-
gies. The following three of them are implemented:

• Decay the LR every set number of GEs. All clients have the same LR at
every moment.

• Decay the LR of a client based on the number of participated GEs. If
a subset of the clients is used every GE, some clients may have been
selected more times than others and as a result they will have a lower
LR.

• The final strategy is to reduce a client’s LR each time its dataset is re-
peated. This is an extension of the second strategy, where instead of
decaying slowly the LR every few rounds, there is a big drop every

∑ local data
∑ local data used per GE

rounds of training.

parameters FL, no decay FL strategy 1 FL strategy 2 FL strategy 3

total clients 5 5 5 5

clients per GE 3 3 3 3

steps per GE 5 5 5 5

batch size 20 20 20 20

initial LR 1e-2 1e-2 1e-2 1e-2

LR decay - 0.999 0.999
0.999 ∗∑ local data

∑ local data used per GE
decay interval

x = decay period
- x GEs

x participated
GEs

x participated GEs ∗∑ local data
∑ local data used per GE

TABLE 5.7: Experiment 7 parameters

Each strategy is tested three times with different decay periods. The decay
period dictates how often the decay applies. E.g. the second strategy with
the a decay period of three means that LR decays every three participated
rounds. A FL trained model without LR decay is used as a baseline.
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FIGURE 5.7: Experiment 7 results, strategies 1 and 2.
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FIGURE 5.7: Experiment 7 results, strategy 3.

All strategies seems to to perform slightly better than the baseline, except
the first one with decay period = 1. In that case, the decay is too fast and
the LR degenerates in a state that cannot substantially alter the weights of
the NN. The last strategy appears to be the most promising, which while
outperforming the others is the most straightforward.

5.8 Federated Averaging (FedAvg)

In FedAvg, a client, when participating in a training round, uses all of its data
and executes multiple SGD iterations. In the prior experiment, for a client
to consume all of its data 200 GEs were necessary; whereas with FedAvg,
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only one GE (at most) is needed. The main objective of this experiment is to
demonstrate the algorithm’s compatibility with the developed FL environ-
ment.

parameters FedAvg

total clients 5

clients per GE 3

local epochs 1

steps per epoch 600

batch size 20

initial LR 1e-2

TABLE 5.8: Experiment 8 parameters

The LR decay needs to be corrected to account for the reduced number of de-
cay events, thus the model is trained multiple times to identify its ideal val-
ues. The prior experiment’s LR decay is utilized for the first run of training,
and each additional training reduces the descent slope by half. The model is
also trained without LR decay.
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FIGURE 5.8: Experiment 8 results

The maximum accuracy of this model when trained locally is 92%. This is
now regarded as the minimum baseline. In addition of showing maximum
accuracy, the GE where that baseline was reached is also presented.
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LR decay Max accuracy 0.92 @GE

0.819 0.913 -

0.909 0.9232 30

0.955 0.9245 32

0.977 0.9245 27

No decay 0.9224 34

TABLE 5.9: Experiment 8 results

In comparison to the previous experiment, FedAvg requires ×100-200 less
communication and the same computation to reach the target accuracy. How-
ever, there is a hidden cost in that less averaging occurs and the rebalancing
effect is diminished. This becomes quite clear when training without LR de-
cay, where overfitting is apparent.

Considering the different LR decay values, the more conservative options
appear to perform best; decaying the LR too quickly causes the ANN to set
in sub-optimal minima.

5.9 Client Participation and Increasing Parallelism

This experiment explores the amount of multi-client parallelism that can be
exploited and its effect on training. The dataset is split between 10 clients,
each one holding 6000 training examples. The third model is trained with
different number of participating clients per GE.

Test A B C D

total clients 10 10 10 10

clients per GE 1 3 5 10

local epochs 1 1 1 1

steps per epoch 300 300 300 300

batch size 20 20 20 20

initial LR 1e-2 1e-2 1e-2 1e-2

LR decay 0.977 0.977 0.977 0.977

TABLE 5.10: Experiment 9 parameters

Training with one client per epoch serves as the baseline. The relative reduc-
tion in communication is calculated for the other training runs.
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FIGURE 5.9: Experiment 9 results

client per GE 0.92 @GE

1 159

3 61 (2.6×)

5 46 (3.4×)

10 51 (3.1×)

TABLE 5.11: Experiment 9 results, with relative reduction in
GEs.

Using more clients per GE substantially lowers the rounds of communication
needed to achieve the target accuracy. This is consistent with others works,
which show even on simulations of hundreds of clients with a small dataset
each, using a bit more than half of the clients in each GE yields the best re-
sults. If all the clients are used every GE, especially when under non-IID
data, the model may not converge in an acceptable solution.

5.10 Increasing Computation per Client

To further reduce communication, clients can perform more local updates
per GE. This may be accomplished by increasing the number of local epochs
(LE), reducing the batch size (B), or both. The third model is trained by 5
clients, with 3 of them participating each GE. LR and its decay are amortized
to maintain a consistent LR at each GE, regardless of the number of local up-
dates. The goal of this experiment is to identify the behavior of the algorithm
across different sets of parameters.
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Local epochs = 1 Local epochs = 3

B updates/GE 0.92 @GE updates/GE 0.92 @GE

600 20 309 60 -
300 40 212 120 67
100 120 72 360 36
80 150 54 450 25
40 300 31 900 13
20 600 25 1800 7
10 1200 18 3600 15

TABLE 5.12: Experiment 10 results

According to the results of the experimental, increasing local updates di-
rectly decreases the required global updates. Unlike most works, this one
concentrates on small groups of clients with large local datasets. As a result,
increasing the number of local epochs produces inconsistent results due to
the introduction of overfitting in the local models. Regarding the batch size,
there is no cost in reducing it, providing that it is large enough to completely
utilize the client’s hardware parallelism.

5.11 Conclusions

From the above experiments, a number of observations can be made:

• FedAvg require a lot less communication rounds than Distributed SGD.

• By far the most important parameter is the batch size. The convergence
of the training as well as the required communication rounds are di-
rectly dictated by it.

• The learning rate and its decay greatly impacts convergence rate and fi-
nal accuracy. They have to be tuned up depending on other parameters,
such as the sizes of the training batches and the local datasets.

• At least half of the clients should participate each epoch.

• Increasing the number of local epochs seems to be beneficial, however
it should be noted that this is heavily depended on other parameters. If
the model being trained is small or the local datasets are large, then the
clients overfit their local models. As a result, any benefits are negated.
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Chapter 6

FPGA Design & Implementation

This chapter presents the architecture and design of the FPGA-based CNN
accelerator developed in this thesis, as well as the important parts of its im-
plementation and integration into the overall FL system.

In more detail, sections 6.1 and 6.2 contain the relevant parts of the tools
and platforms used, respectively. Section 6.3 describes a CPU-based CNN
implementation developed in this thesis, which served as the starting point
of the ensuing FPGA-based implementation.

FIGURE 6.1: Top-down view of the FL client on the ZCU102.

Although the accelerator was developed and is explained in a bottom-up
manner, showing here the top-down view of figure 6.1 makes the rest of the
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chapter easier to navigate. Section 6.4 covers in depth the design and imple-
mentation of the accelerator in the PL, starting with the individual layers of
the CNN, continuing with the developed pipelines and ending with the top
function that interfaces with the Processing System (PS).

The final section 6.5 presents the remaining developed design elements. These
include the PL driver in the PS, the management of the global memory used
to transfer data from the PS to PL and vice versa, and how the driver is in-
corporated in the FL client described in chapter 4.

6.1 Tools Used

6.1.1 Vitis Unified Software Platform

The Vitis unified software platform[77] is a collection of tools, libraries and
environments designed to ease the development of accelerated applications
tailored for AMD Xilinx FPGA and Versal® ACAP hardware platforms. It
includes graphical and command-line compilers, analyzers, and debuggers
to build applications, analyze performance bottlenecks, and debug acceler-
ated algorithms, developed in C, C++, or OpenCL APIs. Furthermore, it of-
fers numerous advantages such as effortless application portability, complete
simulation of hardware systems, and an open source runtime that handles
host-device communication.

FIGURE 6.2: Vitis overview [77]: URL.

https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html#overview
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Vitis supports hardware acceleration kernels controlled by PS or x86 kernels.
The Vitis application acceleration development flow provides a framework
for developing and delivering FPGA-accelerated applications using standard
programming languages for both software and hardware components. The
kernels can be developed through traditional RTL, C/C++ with Vitis HLS,
the Vitis model composer and the AI Engine compiler.

FIGURE 6.3: Vitis kernel architecture [77]: URL.

6.1.2 Xilinx Runtime library (XRT)

The Xilinx Runtime library[78] (XRT) facilitates communication between the
application code (running on an embedded Arm or x86 host) and the accel-
erators deployed on the reconfigurable portion of PCIe interface-based AMD
Xilinx accelerator cards, MPSoC-based embedded platforms, or ACAPs. It
is flexible with modifiable libraries and drivers, enabling different levels of
abstractions, from high-level Python bindings to low-level C++ APIs. These
APIs are common across all platforms and eliminate the need to implement
hardware communication layers from scratch.

A widely used alternative are the OpenCL libraries. TBy abstracting the un-
derlying implementations of numerous APIs, including the XRT, they offer a
standard interface for managing heterogeneous devices. As a result, they en-
able portability across multiple devices from various providers, albeit with
increased complexity due to the extra layer of abstraction. As this work is
not indented to transition to other devices, the XRT is preferred.

https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html#development


80 Chapter 6. FPGA Design & Implementation

FIGURE 6.4: Xilinx Runtime Library overview [78]: URL.

6.1.3 Vitis High Level Synthesis (HLS)

The Vitis HLS tool can synthesize a C/C++ function into RTL code for imple-
mentation in the programmable logic (PL) region of a Xilinx FPGA device.
Its kernels can be easily integrated into a design utilizing OpenCL[79] code.
It provides support of complex data types, math functions and AXI4-Stream
interfaces for data exchange between IPs in the PL and/or Processing Sub-
system (PS).

HLS is an automated design process that takes an abstract behavioral spec-
ification of a digital system and generates a register-transfer level structure
that implements the given behavior. The designer is working on a high ab-
straction level, while the tool takes care of mechanical RTL implementation
tasks.

Designer’s Responsibilities

Macro Architecture
Design Intent

Constrains

HLS tool automation

FSM Generation
Operation Scheduling

Clock
Register Pipelining
Resource Sharing

Timing
Verification

TABLE 6.1: Distribution of work during HLS design.

https://www.xilinx.com/products/design-tools/vitis/xrt.html
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6.2 FPGA Platform

6.2.1 Xilinx Zynq UltraScale+ MPSoC

The Zynq® UltraScale+™ MPSoC is a family of Xilinx products that inte-
grates a feature-rich 64-bit quad-core or dual-core Arm® Cortex®-A53 and
dual-core Arm Cortex-R5F based processing system (PS) and Xilinx programmable
logic (PL) UltraScale architecture in a single device. In addition, on-chip
memory, multiport external memory interfaces, and a rich set of peripheral
connectivity interfaces are included. [80]

6.2.2 ZCU102 Evaluation Board

The ZCU102 Evaluation Board features a Zynq® UltraScale+™ MPSoC with
a quad-core Arm® Cortex®-A53, dual-core Cortex-R5F real-time processors,
and a Mali™-400 MP2 graphics processing unit based on Xilinx’s 16nm Fin-
FET+ programmable logic fabric. It supports all major peripherals and inter-
faces, enabling development for a wide range of applications. Furthermore,
its high speed DDR4 memory interfaces, variety of communication interfaces
and FMC expansion ports makes it ideal for rapid prototyping.

FIGURE 6.5: ZCU102 Features [81]: URL.

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html#information
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Given that the thesis is based on an edge application, this platform seems
to be an ideal fit for it. During the hardware design phase, the constrains
and resource limitation were placed according to the specifications of this
board. Nevertheless, transferring the final design to devices of similar fami-
lies should require minimal effort.

6.3 CPU-based C++ CNN implementation

In the preceding phase, TF with Python was utilized to implement all ANNs
and training. As the Vitis Kernel Toolchain is aimed to C/C++ code, these
implementations can not be synthesized to hardware by the aforementioned
tools. As such, a simplified version of the most used CNN, the third in the
model library, has been re-implemented with C++.

Migrating from TF to a hardware synthesizable CNN is a fairly challenging
task riddled with pitfalls. This implementation is not optimized for hard-
ware, but rather serves as a stepping stone between TF and synthesizable
code. Certain practices are adopted to facilitate future transition to hardware
targeted code:

• Implementation is modular and re-configurable. The code is build around
template functions, each of which performs a specified task. Layers can
effortlessly added, removed, or altered in size, shape and parameters.

• All data, whether input, output or internal, are produced and consumed
serially and only once. This behavior is similar to the stream data format,
which is widely utilized in hardware design.

• All feature maps, input gradients, variable gradients, and updated vari-
ables are logged and compared with those generated by the existing TF
implementation. This approach not only evaluates functionality, but also
produces test benches for future hardware implementation.
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FIGURE 6.6: Dataflow diagram of the implemented CNN
model.

Figure 6.6 depicts the basic structure of the implementation. Tasks are rep-
resented by cycles, whereas data are represented by squares. Inputs, labels,
weights and any other data that must to be saved in memory have greyed-
out squares. The majority of internal data are consumed immediately after
being produced. Some of them, marked by red arrows, skip parts of the chain
and must be temporally stored.

6.4 FPGA-based CNN architecture

Even with the aforementioned techniques, adapting the code to be compat-
ible with FPGAs is not a trivial task. To build an efficient implementation,
resource usage, data access patterns, and other factors must be taken into
account. All parts of the CNN are modified accordingly.

6.4.1 2D Convolutional Layers

Due to their non-serial data access patterns, multi-dimensional filter algo-
rithms frequently conflict with FPGA design; 2-D convolution is no excep-
tion. At its core, it carries out some form of data averaging around a pixel,
necessitating the access of nearby input values as seen in figure 6.7. Ad-
ditionally, when calculating the adjacent outputs, some inputs are accessed
again.
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FIGURE 6.7: Convolution access pattern: Input (Blue) pixels are
accessed in a non-serial pattern [82]: URL

In a CPU-focused implementation this would be a non issue, as data caching
and pre-fetching can ensure that the majority of accesses will be cache hits.
Implementing this on an FPGA would produce numerous small non-burst
accesses on the global memory, resulting in unacceptable performance. Thus,
a different approach is required.

A unique data mover, specifically designed for the given algorithm, has been
developed to reduce the number of global memory accesses. Its key concept
is to construct two-dimensional input windows that are the same size as the
filters and then compute the dot product of those. Its main components are
buffers that store lines of the input, and a sliding window on top of them.

https://github.com/Xilinx/Vitis-Tutorials/blob/2022.1/Hardware_Acceleration/Design_Tutorials/01-convolution-tutorial/lab1_app_introduction_performance_estimation.md
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FIGURE 6.8: Line Buffers: Shifting a 3x3 window [82]: URL

Figure 6.8 illustrates the operation of the line and window buffering scheme.
A continuous stream of 3x3 windows is produced by sifting a window buffer
over the top of the line buffers. Since the masked elements of the top line are
already present in the window, only two line buffers are needed. Further-
more, only one new input pixel is required to produce a window, and thus
an output pixel. Finally, zero padding is applied to maintain correct data
with edge windows.

To complete the 2D convolution, a processing element is required. In the sim-
plest scenario, a single channel input, the dot products between the windows
and the filters are calculated and activated with the ReLU function. If there
are additional input channels, the dot products are calculated in respect of
each channel, which are aggregated and then activated to produce the fea-
ture map of the layer. This is done to allow computing of multiple channels
in parallel, while using a data streaming paradigm.

Two output streams are produced, one float and one bool. The first one con-
sists of the activations and is connected to the next layer. The second one
indicates whether or not the kernels have activated the ReLU function. As
only activated neurons convey their error backwards, this is necessary infor-
mation for the back-propagation.

https://github.com/Xilinx/Vitis-Tutorials/blob/2022.1/Hardware_Acceleration/Design_Tutorials/01-convolution-tutorial/lab2_conv_filter_kernel_design.md
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FIGURE 6.9: Order of calculations when computing the pixel
[1][1] of a single filter. Iterates through all channels of the input

(c).

Figures 6.9 and 6.10 illustrate the same operation, from a different point of
view. The first focus on the flow of the algorithm, while the second considers
the structure of the hardware functions. The additions and multiplications
tree corresponds to the dot product function, the accumulator represent the
sum channels function, and the ReLU is the activation function. In figure 6.9,
the input is already windowed and padded.
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FIGURE 6.10: Block diagram of the 2D convolution forward
propagation. F is the number of filters. The data types of the

internal streams with the total data passed are shown.

The transformation from software to HLS hardware implementation is shown
in the following pseudocode:

Algorithm 3 2D Convolution: Software implementation.

SW Implementation:
for p in pixels do

for o in output channels do
for i in input channels do

out[p][o] += f ilter[o][i] ∗ in[p][i]

out[p][o] = activate(out[p][o])

out[p][o], f ilter[o][i] & in[p][i] have the dimensions of the filter. They can be
multiple dimension arrays.
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Algorithm 4 2D Convolution: Software to HLS Hardware Transformation.

Step 1: Transpose output channels dimension from time to space.
for p in pixels do

for i in input channels do
out[p][0] += f ilter[0][i] ∗ in[p][i]
out[p][1] += f ilter[1][i] ∗ in[p][i]
. . . ▷ output channel times

out[p][0] = activate(out[p][0])
out[p][1] = activate(out[p][1])
. . . ▷ output channel times

Step 2: Split multiplications, additions & activations in distinct functions.

Func A:
for p in pixels do

for i in input channels do
A[0] = f ilter[0][i] ∗ in[p][i]
A[1] = f ilter[1][i] ∗ in[p][i]
. . . ▷ output channel times
Write (A[0], A[1], · · · ) to streamA

Func B:
for p in pixels do

for i in input channels do
Read (A[0], A[1], · · · ) from streamA
B[0] += A[0]
B[1] += A[1]
. . . ▷ output channel times

Write (B[0], B[1], · · · ) to streamB

Func C:
for p in pixels do

Read (B[0], B[1], · · · ) from streamB
out[p][0] = activate(B[0])
out[p][1] = activate(B[1])
. . . ▷ output channel times
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Algorithm 5 2D Convolution: HLS implementation.

Step 3: Make output channels dimension flexible between time & space
using HLS tools.

Func A:
for p in pixels do

for i in input channels do
#pragma HLS PIPELINE II=flexible
for o in output channels do ▷ If II=1 loop is flattened

A[o] = f ilter[o][i] ∗ in[p][i]

Write (A[0], A[1], · · · ) to streamA

Func B:
for p in pixels do

for i in input channels do
#pragma HLS PIPELINE II=flexible
Read (A[0], A[1], · · · ) from streamA
for o in output channels do ▷ If II=1 loop is flattened

B[o] += A[o]

Write (B[0], B[1], · · · ) to streamB

Func C:
for p in pixels do

Read (B[0], B[1], · · · ) from streamB
for o in output channels do

out[p][o] = activate(B[o])

The overall scheme is designed to maximize the data reuse providing maxi-
mum parallel data to the processing element, with minimum use of memory.
Back propagation and gradient calculation follow the same logic with a few
minor differences:

In back propagation, the input is the activated output gradients. To activate
them, the system need to remember which neurons fired during forward
propagation, as shown in figure 6.6. Furthermore, the biases are not used,
and the channel/filter dimensions are reversed. Finally the output are the
gradients of the layer’s input.

The processing element of the gradient calculation differs more. Instead of
using the weights to calculate the outputs, the outputs are used to calculate
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the weight gradients. Furthermore, finding the bias gradients is trivial, as
they are equal with the sum of all output gradients of their filter.

Figure 6.11 shows the structure of the backpropagation and gradient calcula-
tion elements. Common hardware functions are shared by duplicating their
output streams.

FIGURE 6.11: Block diagram of the 2D convolution back prop-
agation. F is the number of filters, C is the number of input
channels. The data types of the internal streams with the total

data passed are shown.
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6.4.2 2D Max-Pooling Layers

The 2D Max-Pooling layers are implemented using the same logic as the 2D
convolutional layers, albeit with a few major differences. First of all the win-
dow is 2x2 is size, and with a stride of 2. As a result, each window contains
exclusive data, and an output can only be obtained with four inputs.

FIGURE 6.12: Line Buffers, Max-Pool: Grey pixels represent
which inputs will trigger an output generation.

Figure 6.12 demonstrates the Max-Pool layer’s uneven output generation, an
unavoidable issue of any algorithm with stride greater than one. Following
hardware does not operate while there are no data available, which is a prob-
lem in a FPGA design, as idle hardware indicates wasted hardware space.
By raising the Iteration Interval (II) of the following hardware functions and
properly calibrating the size of internal FIFO streams, the constant operation
of the entire system is ensured.

The processing component of forward propagation is quite simple, as the
output is the highest value in each window. It is important to note that the
output’s spatial dimensions are two times smaller than those of the input.
Even more straightforward is back-propagation, in which the error back-
propagates towards the maximum of each window. All other connections
are assigned zero error gradients.

6.4.3 Dense & Softmax Layers

The implementations of the dense and Softmax layers are simple and fairly
similar. They are made up of two components: matrix multiplication of
their inputs and weights and their respective activation function. In back-
propagation and gradient calculation, the output error is activated before
used as the input, with the input and variable gradients being the outputs.

The most crucial aspect of their design is ensuring that the hardware func-
tions are constantly operating. To accomplish this, a streaming architecture,
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that reads and writes inputs and outputs serially and only once, is used. Im-
portant to note is that the Softmax activation requires all the inputs to be
received before calculating any output, meaning that for an example back-
propagation can not start until forward propagation is fully completed.

6.4.4 Gradients Calculation Pipeline

A major advantage of FPGA accelerators is that multiple hardware functions
operate simultaneously, if the implemented algorithm allows. This holds true
for most of the design. As an example, The first maxpool layer requires four
inputs to generate the first output. These inputs have being generated by
the first convolutional layer before a training data-point is fully loaded and
processed. Thus the first two layers can operate simultaneously.

On the other hand, the Softmax layer, which is the last step of the forward
propagation, operates like a barrier. Due to the nature of the algorithm, to
produce its feature map, all inputs must first be collected. As a result, for a
single training data-point, the forward propagation must be completed be-
fore the back propagation begins.

As such, the sequential semantics must be preserved, and the pipeline is im-
plemented with a dataflow region that follows the control-driven task-level
parallelism paradigm. This means that a subsequent function can start before
the previous finishes and multiple functions can start and operate simultane-
ously. All tasks and channels are instantiated and connected explicitly. Fur-
thermore, the inputs and outputs of the tasks are of stream type or stable
memory arrays.

In this paradigm, the task with the highest latency typically determines the
overall latency. Due to the existence of the Softmax barrier, for a single data
input, forward propagation tasks can not operate simultaneously with tasks
after it. As a result, the minimum overall latency equals the highest task
latency before the barrier plus the highest task latency after it.

Figure 6.13 shows in detail the developed dataflow region that generates the
weight and bias gradients. The heavy use of auxiliary data transformation
functions, such as create windows and stream, is evident. These functions
consume almost no hardware when synthesized, and add near zero latency.
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FIGURE 6.13: Block diagram of the pipeline that generates the
gradients. Inputs/Outpouts are not shown. Arrows represent

data streams.
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Several data streams skip hardware functions and layers. This could intro-
duce stalls and ultimately deadlocks. To address this issue, hardware func-
tions are implemented as free running pipelines (FRPs), when possible. Such
implementations significantly reduce the possibility of a stall, by continuing
to operate even when no input data are available or the output streams are
full.

Using FRPs comes with multiple restrictions, a strict coding style is required,
and MAXI ports are not supported. For hardware functions that read or
write data from MAXI ports or can not adhere to other restrictions, flush-
able pipelines (FLPs) are used instead. They achieve the same goal as FRPs,
but by instantiating multiple copies of the pipeline and executing them inde-
pendently. As a result, the design is robust against any unpredictable stalls
that MAXI ports may introduce.

6.4.5 Hardware Streams

All communication between the hardware functions is facilitated with the
stream implementation provided by the Vitis HLS library "hls_stream.h".
Hardware functions stall when an output stream is full, making the overall
architecture inefficient. It is crucial to prevent this by determining the proper
depth of the streams.

In most cases, this is trivial as they link sequential functions in a dataflow
region where the consumer can instantly begin utilizing any data written by
the producer. Then the major factor of the depth is the II of the connected
functions. For most stream, a depth of two is sufficient.

More consideration is required about the streams that skip parts of the func-
tion chain. Due to the Softmax barrier, forward propagation of a sample is
completed before its back propagation begins, thus all their data are pro-
duced before any of them is consumed. As such, their minimum depth is
equal with the data produced by a single input sample.

To determine the ideal depths, an iterative optimization approach has typ-
ically been used. The Vitis HLS environment offers a variety of simulation
tools that generate a number of useful statistics, such as the amount of clock
cycles that each function stalls and whether or not a stream becomes full.
Monitoring these when testing, enables calibrating the depths to ensure the
stable flow of the pipeline, while not wasting hardware space in unnecessar-
ily large streams.
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6.4.6 Batching Inputs

As already explained, not all hardware functions can run concurrently for a
single input sample. This issue is mitigated through batching input samples,
where while an input runs through back-propagation, the next one is used in
forward propagation, as shown in figure 6.14.

FIGURE 6.14: Latency of the pipeline under batching.

With both sub-regions of the the pipeline having the same latency, the ex-
pected overall latency for a dataset without batching is defined as:

Ldataset =
samples

∑ (L f p + Lbp) = 2 · samples · L f p/bp (6.1)

With batching enabled, the latency of the dataset is transformed as:

Ldataset =

batches
per dataset

∑

samples
per batch

∑ (L f p/bp + 1) =
samples
sizebatch

· sizebatch · (L f p/bp + 1) =

samples · (L f p/bp + 1)

(6.2)

With Vitis HLS, implementing batching on each individual hardware func-
tion is quite trivial. Encapsulating their C++ definitions in a loop of the same
size as the desired batch, is sufficient.

Further though must be given to the size of the streams connecting functions
of the forward propagation with functions after the barrier. The producer
functions will block until the consumer functions clear some space in the
stream if the minimal depth is used as mentioned in the preceding section.
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Depending on the minimal latency between the producer and the consumer,
this can be avoided by increasing the depth by 0.5 to 1 times.

6.4.7 Updating Variables

Based on the produced gradients, the variables of the ANN are updated in
a second dataflow region. Due to the independence of all weights and gra-
dients, this process is relatively straightforward. The classic SGD with mo-
mentum optimization algorithm is used and the learning rate is supplied by
the driver program. Thus, latency and hardware usage are the only criteria
for the applied parallelism in this specific region.

6.4.8 Data Movement & Storage

Under the Vitis flow, AXI streams are unavailable for the ZCU102, thus mem-
ory mapping is used to transfer data from general memory to the PL and vice
versa. That data consists of the input samples and labels, as well as the vari-
ables of the ANN. Appropriate data mover functions have been developed.

In Vitis HLS, arrays are implemented as continuous memory spaces with one
or two ports, and only a limited amount of data can be read or written per
cycle. To increase data accesses per cycle, the arrays are partitioned with the
appropriate HLS directive ARRAY_PARTITION. The HLS tool splits the ini-
tial arrays to smaller ones, whose size and shape depend on the parameters
of the corresponding directives.

The weights of the ANN are accessed in multiple functions of the first dataflow
region and require special treatment. These arrays must be designated as
shared using the directive STREAM with the type parameter set to SHARED
in order for the design to be syntesizable. The tool then recognizes there are
numerous consumers and multiplies the ports accordingly, without duplicat-
ing the array data.

For the weights of the second convolutional layer, this is insufficient. They
are accessed by two functions with different access patterns. To resolve this,
both access patterns could be satisfied by increasing the partition factor and
dimensions. This solution generate a huge amount of access ports, increasing
hardware consumption unacceptably. More appropriate solution is creating
two arrays with unique partitioning each. Albeit more memory is needed,
the overall hardware usage is lower.
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To generate the gradients, the ANN’s inputs, data and labels, are sent from
global memory to the PL via AXI Master Adapter ports. In a dataflow re-
gion, each channel must have a single consumer, thus two ports are needed
to propagate the input data to the two hardware functions that consume it.
All ports are independent from one another by having their own dedicated
bundles, thus enabling the simultaneous reading of all inputs.

The gradients are produced in the first dataflow region and consumed in the
second, thus persistent saving in on-chip memory is necessary. This memory
is not shared, as its producers and consumers are in different regions, and
is implemented as streams or arrays, whichever is more convenient. The
same applies for the momenta of the gradients, as they may be produced
and consumed in same dataflow region, but in different iterations of it.

6.4.9 Top Function

To hold everything together, the top level function of figure 6.15 has been
developed. Its signature operates as the API between PL and PS. Further-
more, it contains all the definitions of the memory structures, as well as the
instantiations of the data movers & initializers and dataflow regions. Finally,
to train on multiple batches, the dataflow regions are enclosed in a loop.

FIGURE 6.15: Block diagram of the accelerator’s top function.
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6.5 Host Program

6.5.1 Driver Architecture

The overall application uses Linux system calls, such as socket read and
write. Thus a bare metal implementation is inadequate and a host program
in the PS is required to drive the developed hardware design in the PL. This
is achieved with the use of the XRT native C++ APIs [83].

The flow of the driver code is as follows:

• Open the device.

• Load the compiled and linked binary (XCLBIN) onto the device.

• Open the kernel loaded to the device with the XCLBIN.

• Create buffer objects to transfer data to and from the kernel.

• Write data to the input buffers.

• Execute the kernel.

• Read data from the outputs buffers.

6.5.2 Memory Management

Since the target device is a SoC, both host and kernel programs can read and
write in the same memory space. By facilitating data transfers between PL
and PS through the map API provided by the XRT library, no data move-
ments are necessary other than filling the global buffers. The training dataset
is stored in binary files and is directly transferred in global memory; no in-
termediately buffers are used in the user space of the host program.

The same methodology is used to move the ANN’s weights and biases. As
they are a part of a byte-stream that is received from the socket connected
to the FL server, it is required to write that directly to the global memory.
Similarly the outgoing bytestream is read directly from the global memory.

The previous solution is acceptable when the server and client processes op-
erate on the same architecture, but it may introduce endianess and alignment
issues over heterogeneous ecosystems. Thus, a more conservative and robust
implementation is also created, in which intermediary buffers contains the
incoming and outgoing byte-streams, and are appropriately copied to and
from the global memory using the write API of the XRT library.
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Diagram 6.13 demonstrates how the image inputs are needed twice. They
are stored twice in global memory, in two distinct memory banks, to prevent
any bus or AXI conflicts. As a result, both hardware functions can read them
concurrently without experiencing any additional latency.

6.5.3 Incorporating the Driver in the FL Client

Uniting the Federated Learning and the driver codebases is trivial. First off,
the server is, by design, agnostic to the implementation of the training. As it
does not interface with any hardware kernel, there is no need for any code
changes when compiled for another device, such as the ZCU102.

In the case of the client with the write API, all that is required is swapping the
calls to the integrated Python interpreter with those to the aforementioned
driver. Figure 6.1 shows the architecture of that FL client on the ZCU102,
with an emphasis on data transfers. For the client using the map API, a
tighter integration of the driver is required. The received and send messages
buffers are allocated in the global memory and the socket output is written
directly there.
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Chapter 7

Results

This chapter has three aims. First, to quantify the performance of the FPGA
implementation of the ANN and analyze its resource consumption and tim-
ing. Second, to compare it will equivalent implementations on other tech-
nologies. Final and main goal, to study the interaction and discover any pos-
sible synergies or conflicts between the two technologies under focus, namely
FL and FPGA.

It should be noted that the following timings were produced through actual
runs in a real FPGA. In the following subsections it is explained in detail how
they were generated and what they actually mean.

Performance Metrics

Latency

Latency, is the required time to complete a single task. In this work, latency
can be the time taken to process a single image, a batch of images, a dataset
of images, etc.

Throughput

Throughput is generally referred to as the quantity of tasks completed in a
given amount of time. The rate at which something is processed increases
with throughput. Throughput in this work is referred to as the number of
images processed per second.

Throughput :=
Images

Time(sec)
(7.1)
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7.1 FPGA Implementation Analysis

7.1.1 Resource Utilization Analysis

Although consisting of only∼105000 variables and 6 layers, the implemented
ANN consume a lot of resources. It has full floating point accuracy, back-
propagation is employed for training, and the SGD optimization algorithm
makes use of momenta. When applied in programmable logic, all of these
techniques are known to significantly increase resource usage. Table 7.1 de-
picts the utilization of the major resources after synthesis, place and route;
according to the Vitis IDE.

Resource Utilization Available Utilization %

LUT 161274 274080 58.84
LUTRAM 14270 144000 9.91
FF 260050 548160 47.44
BRAM 573 912 62.83
DSP 854 2520 33.89

TABLE 7.1: Post place & route resource utilization.

The highest use rate is observed on the BRAM. It is intrinsically tied to the
size of the ANN due to three key factors. Firstly, to enable the quickest access
to the ANN’s variables, they are stored in on-chip memory. Furthermore,
the back-propagation algorithm demands the temporary storage of all data
that bypass hardware functions. Lastly, between each batch update, the SGD
algorithms’ momenta must be saved.

The utilization of the rest of the PL is affected mostly on the desired accuracy
and the applied parallelism. Using single precision floating points is more
resource demanding than using half precision and less than using double
precision. Although it appears there is space to improve parallelism, the
benefits diminish the more that this is done. Most crucially, timing-based
constraints rather than resource-based constraints are the biggest barriers to
it.
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7.1.2 Timing Analysis

A thorough analysis of the implementation’s timings is required to to assess
its performance, identify delays and limitations, as well as enable future im-
provements. This section provides a breakdown of the relevant latencies.
The following formulas and results have been confirmed by experiments on
the ZCU102.

Overall Latency

From the point of view of the host program, the overall latency of training
can be broken down as follows; writing the variables in global memory, call-
ing the accelerator, waiting for the accelerator to return, and finally read the
produced variables from the global memory.

Hostlatency = GMEMwrite + Accelcall + Accelwait + GMEMread (7.2)

Important to note, all parts involve system calls to the operating system,
which can introduce a small variance in their latency. Additionally, in the
case of the FL client with the map API, the latency of accessing the global
memory is hidden under the FL operation, as the socket reads and writes
there directly.

Accelerator’s Latency

Accountable for the majority of the overall latency is waiting for the accel-
erator to finish running. As observed in figure 6.15, its operation consists of
initializing its on-chip local memory, calculating the gradients, updating the
variables, and finally writing the final variables to the global memory.

The first and the last segments are executed only once and they are indepen-
dent of any variable such as the size of the dataset used for training. In con-
trast, the two dataflow regions, generating the gradients and updating the
trainable variables, are repeated multiple times depending on the number of
training epochs and the number of batches in the dataset. in more detail:

Accellatency = I + e · d
b
[G(b) + U] + S (7.3)

Where:
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I = initialize inputs
e = training epochs
d = dataset size
b = batch size
G = calculate the gradients
U = update trainable variables
S = Save final variables

Calculating the gradients is done using the long and complex pipeline de-
picted in figure 6.13. It has significant wind-up and wind-down latencies
and its total run-time is dependent on the batch size.

G(b) = Gup + b · E + Gdown (7.4)

Where:

Gup = latency to wind-up the pipeline
Gdown = latency to wind-down the pipeline
E = latency added by one example

Thus, the latency of the accelerator can better be described as:

Accellatency = I + S + e · d[E +
Gup + Gdown + U

b
] (7.5)

U, as described in section 6.4.7, is completely elastic and the main target
when optimizing for small batches.

Through analyzing the Vitis reports, exact numbers can be assigned on each
constant. For a single pass through the whole dataset (e = 1, d = 60000) and
a clock speed of 4.08ns(∼ 245MHz), the equation transforms to:

Accellatency = 8.157 +
14.794

b
(sec) (7.6)

Constrains

According to equation 7.5, the latency introduced by each example (E) is the
most important constant. Accountable for that is the dataflow region shown
in figure 6.13, thus received most of the optimization attention. Better perfor-
mance is restricted mostly by a single issue caused by the HLS tool, affecting
clock speed and the total operating clock cycles.
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The slowest function of a dataflow region determines its overall latency. In
this case, it is the sum filters in the back-propagation of the second convolu-
tional layer. Per example, it has 14×14 inputs with 32 input and 16 output
channels. The outputs are independent from each other and are calculated in
parallel. Thus, 16 accumulators that reset every 32 cycles are needed.

Unfortunately, in the latest versions of the Vitis HLS, the tool can not deduce
that the facc operator is the optimal choice if its accuracy has not been set to
low. Instead, when normal accuracy is requested, it implements the slower
fadd operator, which forces an II of 5 cycles and a clock speed of 245MHz. As
a result, the latency of a single example is at least 31360 cycles.

The next slowest functions are the create windows hardware functions in the
convolutional and maxpool layers (layers 0 to 3). While they are simple data
transformation, the HLS tool encounters some difficulty in implementing
them efficiently, as they are composed mostly of control logic. Still, it is able
to synthesize them with a clock of over 300 MHz.

Both cases are byproducts of using HLS tools. If just the facc bug is avoided,
the clock can be immediately increased by 55MHz. Without trying to im-
prove the II of the function, the latency equation transforms to:

Accellatency = 6.664 +
12.086

b
(sec) (7.7)

Visualizing the equations 7.6 & 7.7 in the diagram 7.1, shows that their second
part is insignificant for batches of over 100 images. In contrast, the first part
is unavoidable and sets a base latency regardless of the batch size.
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FIGURE 7.1: Latency with and without the facc module.
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7.1.3 Power Consumption Analysis

The average power consumption of the design can be reliably estimated by
the Xilinx tools. This report was generated post-implementation and is shown
in figure 7.2. A breakdown of the consumption per PL element can be seen.

FIGURE 7.2: Post-implementation power estimation of the ac-
celerator.

The average consumption is stated as 9.356 W, with the PL accountable for
the majority of it. This is to be expected, as the PS part of the accelerator
mostly does nothing while waiting for the PL part to finish. In practice, most
of the PS consumption is sourced from the of-chip memory used.

7.2 Comparison with Other Technologies

To form an opinion on the efficiency of the FPGA implementation, a proper
comparison is required. Thus, the ANN is also trained on CPU and GPU
using TensorFlow. As metrics, the latency of a training epoch and the overall
throughput are used.
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7.2.1 Specification of Compared Platforms

Intel Core i7-9750H

Released in mid 2019, the i7-9750H is a high end CPU for laptops. Based
on the Coffee Lake architecture and manufactured with the 14nm++ process,
it provides a wide array of technologies such as Hyper-Treading and SIMD
Instruction Set Extensions, making it suitable for training the ANN under
consideration. Furthermore, TensorFlow has been compiled with AVX in-
structions enabled.

Core / Threads 6 / 12
Clock Frequency 2.6 - 4.5 GHz
Cache 12 MB Intel Smart Cache
Supplied Memory 16GB DDR4-2666
Max Memory Bandwidth 41.8 GB/s × 2 channels
Instruction Set Extensions SSE4.1, SSE4.2, AVX2
Average Power Consumption 45 W

TABLE 7.2: i7-9750H specifications [84].

Nvidia GTX 1660 Ti

While released in early 2019 as mobile platform (laptops, tablets, etc.) GPU,
is more than capable for training ANNs like the one under investigation. Its
relevant specifications are shown on the following table.

CUDA cores 1536
Clock Speed 1500 - 1770 MHz
Memory Configuration 6GB GDDR6, 1500 MHz
Memory Interface 192-bit
Memory Bandwidth 288 GB/s
Single Precision Compute Power 5437.44 GFLOPS
Compute Capability 7.5
Average Power Consumption 120 W

TABLE 7.3: GTX 1660 Ti specifications [85].
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7.2.2 Latency Comparison
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FIGURE 7.3: Latency of training for a single epoch on FPGA,
GPU and CPU

Due to the CPU’s fluctuating clock speed and caching architecture, training
latency has a slight variance. This effect is considerably more pronounced on
the GPU, as it also copy the training dataset and the ANN’s variables to its
dedicated memory, during the first epoch.

On the FPGA, however, training latency is practically deterministic. The only
variance that it encounters, is produced by the system calls and is less than 10
ms. Such effects should be noted as this work also considers on-edge devices,
where the training algorithm may not have complete control over them and
their environment is not always in an ideal state.

Performance wise, according to figure 7.3, the FPGA implementation outper-
forms in training with small batches, but is overtaken by the GPU when their
size is larger than or equal to 15 examples. Training on CPU is consistently
slower than the other technologies.

It should be noted that the GPU is unable to perform non-Stochastic Gra-
dient Descent, where the whole dataset is concatenated in a batch. Tensor-
Flow can not obtain enough GPU dedicated memory and crashes. Due to
non-determinism in memory management, this can also occur for SGD with
batches of more than 15000 samples. In on-edge devices, such effects are ex-
pected to become more noticeable, due to the FL algorithm’s limited control.
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7.2.3 Throughput Comparison
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FIGURE 7.4: Throughput of FPGA, GPU and CPU implementa-
tions

Similar observations can be made by comparing the throughput of the im-
plementations in figure 7.4. Although the FPGA starts from more than 2600
images per second, its performance plateaus at around 7500. In contrast, the
GPU can only achieve 600 images per second with single image batches, but
reaches a maximum throughput of 50000 when using huge batches.

7.2.4 Power Consumption Comparison

Table 7.4 presents the power consumption of the three implementation. An
actual system with the CPU or GPU implementation, would require other
components to operate, e.g. a motherboard. In contrast, the FPGA-based
implementation is aimed for the ZCU102, which is an SoC, and requires no
other components. This is a gross comparison, and aims to give a general
idea of their differences.

CPU GPU FPGA

53 W 120 W 9.356 W

TABLE 7.4: Power consumption of the three implementations.
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Although the CPU’s average power usage is listed as 45 W, during actual
runs it rises to 53 W due to clock frequency boosting. The FPGA consumes
5.67× less power than the CPU and 12.83× less power than the GPU.

7.3 FL & FPGA Interaction Analysis

7.3.1 Methodology

The main objective of this study, to investigate how FL and FPGAs interact,
is explored in this section. Merely comparing the throughput of the imple-
mentations is inadequate since, as demonstrated in chapter 5, the number of
global epochs depends on a multitude of factors. The batch size is the ele-
ment that has the greatest impact on both FL and local training. As a result,
it is the central factor of the experiments.

Another factor that has a significant impact is the LR degradation. Through
experimentation, the most effective tactic was determined to be decreasing
a client’s LR for each epoch it participates. Depending on the batch size,
different rates of that decrease were the most efficient. To ensure fairness
on the following experiments, they were repeated with various LR decay
constants. In this section, the best results for each are presented.

Having access to a single FPGA and a single GPU, makes running the algo-
rithm in real time impossible, as it requires several devices. Instead, all pro-
cesses, server and clients, run on the CPU to discover the number of required
global epochs to reach a target accuracy, and then their training latency is
replaced with that of the desired device. As all clients operate in parallel, the
training latency is not depended on how many are used.

The communication delay between server and clients is handled similarly.
It is determined by multiplying the size of the messages with an expected
communication speed. Generally, servers have high speed connections, up
to 1 Gbps upload and download. In contrast, the connection speed of on-
edge devices is multiple order of magnitude slower, and the deciding factor
of the overall communication latency.

Additional latencies, caused by synchronization or the computational part
on the server, amount to just a few milliseconds per epoch and are consistent
across all platforms. Therefore, they can conveniently be ignored.
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For the following tests, clients are configured with a download speed of
10Mbps and a upload speed of 1Mbps. Furthermore, the messages between
client and server have a size of 3387808 bits. Considering that clients are
operating in parallel, the latency of a Global Epoch can be described as:

GElatency ≃ StoClatency + LTlatency + CtoSlatency

=
StoC_msgbits
C_downbps

+ LTlatency +
CtoS_msgbits

C_upbps

= LTlatency + 3.7266 (sec)

(7.8)

Where:

LT = Local Training
StoC = Server to Client
CtoS = Client to Server

It should be noted that the results of the previous section can not be used in
place of LTlatency. The size of the local datasets differs, depending on how the
data are distributed across the clients. Thus, the latency of the local training
has been re-measured for every platform.

7.3.2 IID

In the first experiment, the Fashion-MNIST dataset is split randomly and
evenly across 10 clients. This is an IID distribution, in the sense that is used
in relevant bibliography. All random factors, such as dataset distribution
and client selection, have been seeded to remove their effects from the final
results.

The model is trained with the FedAvg algorithm multiple times, once for
each batch size that perfectly divides the local datasets. Out of the 10 clients,
5 of them are randomly selected to participate in each GE. The constant pa-
rameters of the experiment are listed in table 7.5.

parameters FedAvg

total clients 10

clients per GE 5

local epochs 1

initial LR 1e-2

TABLE 7.5: Constant parameters of the IID FL experiment.
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Each training run consists of 200 GEs or until it reaches the target accuracy
of 91%. In each GE, selected clients train their local models with their local
datasets for 1 epochs. Figure 7.5 shows the elapsed GEs to reach the target
accuracy for every batch size.
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FIGURE 7.5: GEs required to reach 91% accuracy, when under
IID distribution.

Training with batch sizes of 4 or less, produces overfitted local models and
renders the target accuracy unattainable. This problem could be alleviated by
using a more sophisticated LR decay strategy or by distributing the dataset
among more clients, but both are outside the scope of this work.

More interesting is the range of batch sizes from 5 to 50, where the target ac-
curacy is reached in 30 to 60 GEs. Larger sizes increase the required number
of GEs in a parabolic manner, and regardless how fast is the local training,
the increase in communication most likely prohibits their use.

Figure 7.6 shows, per batch size, how much time is required to reach the
target accuracy. The FPGA design is benchmarked with the best case of the
GPU, where the dataset is already cached in its dedicated memory.
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FIGURE 7.6: Total wall-clock time to train with IID dataset dis-
tribution over 10 clients, per batch size. Darker colors = local

training time, lighter colors = communication time.

It is apparent that communication, across all batch sizes, is the main contribu-
tor to overall latency. Considering that the dataset is split over 10 clients, 6000
examples for each one, there in not much training to be done per GE, ren-
dering maximum throughput a secondary characteristic. Instead, the most
important variables are the number of GEs and the minimum latency per
GE.

Batch sizes of 8 to 20 appear to be the sweet spot. In that range, either the
FPGA has similar latency with the GPU, or it is slightly more efficient. With
larger batches the GPU requires significantly less computing but, due to ad-
ditional communication, the overall latency is abysmal.

7.3.3 Non-IID

Given that in real-world FL scenarios clients have different data collection
and storage biases, it is exceptionally rare for the local datasets to be IID
distributed. Every FL system should therefore be evaluated using non-IID



114 Chapter 7. Results

data distributions. For this experiment, the FedAvg algorithm is employed,
with all clients participating in every GE.

The Fashion-MNIST dataset is divided among 5 clients, each of which is the
exclusive owner of two labels. The first client owns all the examples with the
first two labels, the second client has those with the next two labels, etc. This
is a pathological non-IID distribution, arguably more unbalanced than real
scenarios, but it is a great option to test the limits of the system.

Like in the previous experiment, results are obtained with every batch size
that perfectly divides the local datasets. Constant parameters are listed in
table 7.6. Furthermore, no countermeasures for non-IID datasets, such as
data rebalancing, have been utilized.

parameters FedAvg

total clients 5

clients per GE 5

local epochs 1

initial LR 1e-2

TABLE 7.6: Constant parameters of the non-IID FL experiment.

The model is trained for 200 epochs or until it reaches 85% accuracy. In each
GE, one local epoch of training is conducted. The batch sizes that manage to
reach the target accuracy are shown in figure 7.7.
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FIGURE 7.7: GEs required to reach an accuracy of 85%, when
under non-IID distribution.
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Training with batch sizes under 4 would generally end-up with the model
diverging. Moreover, sizes greater than 15 would rarely reach the target ac-
curacy. In terms of both accuracy and training speed, the best results were
observed with sizes from 5 to 15. Other works have observed similar size
ranges where FL training with non-IID data is most efficient.

The following figure 7.8 displays the total training time required to achieve
the desired accuracy per batch size. As with the previous experiment, the
FPGA implementation is compared with the best GPU case, where the dataset
is already cached in its dedicated memory.
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FIGURE 7.8: Total wall-clock time to train with non-IID dataset
distribution over 5 clients, per batch size. Darker colors = local

training time, lighter colors = communication time.

The FPGA shows better overall performance, due to a number of reasons.
First of all, the tight range of batch sizes where the FL algorithm can achieve
an acceptable solution mostly coincides with that where the FPGA is more
efficient than the GPU. Where the GPU is more effective, at sizes greater than
15, if a solution is found at all, an excessive number of GEs is required.

Additionally, in most cases the majority of the training time is attributed to
communication latency. In contrast with local training latency, it is not re-
duced by increasing the batch size. As a result, sizes that require the fewest
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GEs are clearly advantageous. This can be clearly observed when training on
the GPU with a batch size of 24. Although it has the least amount of train-
ing time, due to increased communication it ends up with an average total
latency.

Comparing with the previous experiment, the computation to communica-
tion ratio is higher. Due to splitting the dataset over 5 clients instead of
10, there are more examples per clients, and more training is done per lo-
cal epoch.

7.4 Summary

In a vacuum, the GPU appears to be the superior option, as when operating
with large batches it achieves an order of magnitude higher throughput than
the other platforms. Nevertheless, this is not an accurate representation of
which is the better choice, as in FL algorithms a communication latency is
added for every GE. As visualized in figure 7.9, the number of GEs depends
on the batch size.
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FIGURE 7.9: GEs required to reach target accuracy for both dis-
tributions.

The performance of the FPGA is superior or comparable to that of the GPU
in the valleys where the FedAvg algorithm is more effective. The best results
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of both platforms, for each dataset distributions, are summarized in the table
below.

Dataset
Distribution

Training time (s) Total time (s)
GPU FPGA speedup GPU FPGA speedup

IID 39 27 1.44× 143 132 1.08×
non-IID 343 269 1.27× 888 739 1.2×

TABLE 7.7: Timing comparison of both platforms, for each set-
ting with relative speedup.

Last but not least, as these scenarios try to emulate on-edge FL, the compu-
tation to communication ratio is quite low. This is typical in such environ-
ments, as on-edge devices tend to have small datasets and are used to train
small networks.

There is a significant difference in the energy consumption of the two im-
plementations, as indicated in table 7.8. It is calculated as the power usage
times the amount of training time, which both favor the FPGA-based imple-
mentation. Comparing it with the GPU-based one, it requires (18.18×) and
(16.35×) less energy for the IID and non-IDD datasets respectively.

Dataset
Distribution

Total Energy (J)

GPU FPGA improvement

IID 4637 255 18.18×
non-IID 41.16k 2.57k 16.35×

TABLE 7.8: Energy comparison of both platforms, for each set-
ting with relative improvement.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This study conducted an in-depth analysis of the behaviour of an FL system
under training. It revealed that the batch size is its most important parameter,
as it significantly impacts most characteristics of the training, including its
convergence rate and the local training time. In more detail, it showed that,
depending on data distribution, there is only a small range of small batch
sizes where the algorithm can provide an acceptable solution in a reasonable
time.

The vast re-configuration abilities provided by FPGAs can be exploited to
create an accelerator that specifically targets that narrow range. Other tech-
nologies, like the GPU, can show superior overall throughput, but they are
ineffectual if they cannot provide it with the right batch sizes. While flawed,
as explained in section 7.1.2, the implemented architecture managed to out-
perform its comparisons with both IID and non-IID data distributions.

Last but not least, the benchmarks presented in chapter 7 may make the
choice of the underlying platform appear inconsequential. It is quite com-
mon in on-edge settings that responsible for most of the training latency is
the communication between server and clients. However, in chapter 5, it was
demonstrated that this is not always the case. Therefore, we can conclude
that FPGAs are more than appropriate for accelerating Federated Learning.

8.2 Future Work

This work sheds light on how FL and FPGA-based architectures interact with
each other and cooperate. However, there is still room for improvement and
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additional synergies are available to be explored and exploited.

8.2.1 Quantization

The majority of studies on quantization in FL have focused on communi-
cation compression, e.g. [86], and recent works have tried to expand it to
local training [87]. FPGAs have been proven that they can provide efficient
and robust implementations of quantized ANNs [88]. In our opinion, imple-
menting FL with quantized ANNs or ANNs robust to quantization on FPGA
accelerators, is the most promising area to expand this work.

8.2.2 Encryption & Privacy

FL systems often utilize homomorphic encryption to improve security and
privacy. It has been demonstrated that it can be efficiently implemented in
FPGAs [65]. Attaching it to an FPGA-design that accelerates training, like the
one developed in this work, can present interesting challenges such resource
management, efficient pipelinining between the two components etc.

Techniques like differential privacy are frequently used to increase the pri-
vacy of the participating clients [7], with the cost of extra computation. These
methods typically entail element-wise transformations on the generated lo-
cal models, such as adding random Gaussian noise to each variable and clip-
ping those that exceed a predetermined threshold. As there are no inner de-
pendencies, an FPGA implementation can completely parallelize them and
virtually eliminate their latency.

8.2.3 Platforms

The technology dissimilarities between the benchmarked platforms should
be noted. The CPU and GPU, while consumer products, were released four
years later after the FPGA. To have a more thorough understanding of the
system, it is important to test with other platforms, in addition to different
technologies such as TPUs.

Regarding the design on the FPGA, a number of improvements can be made.
Implementing it with RTL, completely or just certain of its hardware func-
tions, can greatly increase its performance by avoiding the inefficiencies and
bugs of the HLS tools.
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8.2.4 Scale

This work mostly experimented with around 2 to 20 clients. It is highly likely
that FL will behave differently in scenarios involving hundreds or thousands
of clients. Furthermore, compared to the CPU and GPU, the FPGA-based
design performed relatively better with small datasets and batches. Hence,
exploring FPGA-based solutions in FL settings with a large number of clients
is an intriguing direction for future development.

8.2.5 Models

As shown in chapter 5, the behaviour of the FL algorithm heavily depends on
the size and architecture of the model being trained. Furthermore, the model
implemented in this work, can not be called representative of all ANNs.
Thus, more experiments should be conducted, with ANNs of different sizes
and types.
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