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Abstract: The urgent demand for pollution protection of monuments and buildings forced the interest
towards specific preservation methods, such as the application of photocatalytic coatings with self-
cleaning and protective activity. TiO2 photocatalysts without and with a variety of carbon dots loading
(TC0, TC25–75) were synthesized via a green, simple, low cost and large-scale hydrothermal method
using citric acid, hydroxylamine and titanium isopropoxide (TTIP) and resulted in uniform anatase
phase structures. In photocatalysis experiments, TC25 and TC50 composites with 1:3 and 1:1 mass
ratio of C-dots solution to TTIP, respectively, showed the best degradation efficiency for methyl orange
(MO) under UV-A light, simulated solar light and sunlight compared to TiO2, commercial Au/TiO2

(TAu) and catalysts with higher C-dot loading (TC62.5 and TC75). Treatment of cement mortars
with a mixture of photocatalyst and a consolidant (FX-C) provided self-cleaning activity under UV-A
and visible light. This study produced a variety of new, durable, heavy metal-free C-dots/TiO2

photocatalysts that operate well under outdoor weather conditions, evidencing the C-dot dosage-
dependent performance. For the building protection against pollution, nanostructured photocatalytic
films were proposed with consolidation and self-cleaning ability under solar irradiation, deriving
from combined protective silica-based agents and TiO2 photocatalysts free or with low C-dot content.

Keywords: self-cleaning; TiO2/Cdots; protective films; cultural heritage conservation; photocatalysts;
sunlight irradiation

1. Introduction

Air pollution, the fourth greatest fatal health risk so far, is accounting for serious
danger to human health, causing millions of premature deaths annually [1]. There is a
demanding need to combat climate change as far as the global population grows; thus,
highly efficient technologies can serve as the key to improving air quality and protecting the
environment [2,3]. Moreover, air pollution and climate change cause physical and aesthetic
damage to buildings and cultural heritage constructions, accelerating the decay process [4].
For the protective treatment of several types of building substrates, advanced coatings with
self-cleaning ability have been developed throughout the years [5]. The main advantage of
photocatalytic air and wastewater purification is that chemicals or external energy input
are not requisite, except for ambient light or sunlight, which is not costly. Despite the strong
effort for the development of various novel active materials, titanium dioxide (TiO2) is by
far the most promising and widely employed technology in photocatalysis among them [6].

TiO2 was introduced in the field of photocatalysis in 1972 [7], and since then, it has
become the most investigated compound for air purification due to its excellent physico-
chemical stability and oxidation properties, as well as cost-effectiveness, high availability
and eco-friendliness [8]. Photoinduced processes begin with the absorption of electromag-
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netic radiation (UV-light) by TiO2, which cause an electron to be promoted from the valence
band (VB) to the conduction band (CB), leaving a positively charged hole in the VB [9]:

TiO2 + hv → e−CB + h+
VB (1)

introducing the energy gap (Eg), one of the most useful characteristics in semiconductor
field (Equation (1)). Afterward, electron and hole separately may take part in reduction
and oxidation reactions, respectively, with species such as H2O, O2 and OH− adsorbed on
the TiO2 surface. These species can be oxidized to OH radical or reduced to O2•, which can
react with the pollutant, leading to decomposition of the latter. Since the ideal photocatalyst
offers a combination of low Eg and efficient charge separation, TiO2, when solely used, has
limited performance in outdoor conditions. TiO2 appears in three crystalline phases: rutile
and anatase are both tetragonal, and brookite is orthorhombic [10]. Although anatase has a
larger bandgap (3.2 eV) compared to rutile and brookite (3.0 eV), its photocatalytic activity
is apparently superior to that of rutile, while synthesis of pure brookite is a demanding
challenge. Most research is focused on anatase due to the high surface adsorption capacity
and the indirect bandgap, which leads to a much longer lifetime of photogenerated holes
and electrons compared to the larger grain size and direct bandgap of rutile [11]. Even
in the form of anatase, the bandgap of TiO2 can be approached by UV light irradiation
(λ ≤ 380 nm, 5% of sunlight), but the low photoenergy of visible light is not sufficient for
the excitation of electrons. Thus, in order to increase the photocatalytic activity and take
advantage of solar light, modified TiO2 photocatalysts, such as TiO2 loaded with Carbon
Dots (TiO2/C-dots, TC), is necessary.

C-dots, byproducts of carbon nanotubes purification accidentally isolated in 2004 [12],
have attracted intense attention in photocatalytic applications due to their low toxicity,
good photostability, small size and low synthetic cost even on a large scale [13]. Moreover,
their strong and tunable photoluminescence enables their application in biomedicine,
optoelectronic devices and biosensing [14]. A typical C-dot is a small carbon nanoparticle
functionalized on its surface by organic molecules, typically acids or amines, using various
chemical reactions. This functionalization plays an important role in the characteristic
properties of C-dots due to the defects of the organic groups on the surface of each C-dot,
which can cause efficient charge separation, leading to radiative recombination of holes
and electrons with subsequent fluorescence emission [15].

There are several reports regarding the synthesis of C-dots, or nitrogen-doped C-dots,
and TiO2 nanocomposites with applications in the photocatalytic degradation of organic
dyes [16–25]. The synthetic process of these methodologies required either prolonged
heating time for C-dots preparation [16,17] or calcination at 400–500 ◦C [18,19] and even
at 700 ◦C [20] in the TiO2/C-dots’ step of the synthesis. In another study, a one-step
solvothermal route was proposed, showing remarkable photocatalytic degradation of
methylene blue (MB) under UV light [21]. However, for the successful degradation of
methyl orange (MO) and Rhodamine B (RB) under UV, calcination of catalyst at 400 ◦C was
inevitable. Other studies used specialized equipment, such as high-pressure Teflon-lined
sealed autoclave containers [22,23] or a combination with spin coating method [24] for
the controlled synthesis of C-dots, making large-scale production prohibitive. Finally, in
all cases, the cycling performance of the synthesized photocatalysts exhibited moderate
degradation (≤70% after six cycles) [23,25].

Recently, we developed an efficient, simple and low-cost method for the synthesis
of pure TiO2 and TiO2/C-dots and studied comparatively into the photodegradation of
MO under UV-A and visible light, with promising results [26]. MO was used as a model
compound because it is a common, highly toxic dye that exhibits good photostability upon
light irradiation under different conditions [27] and resistance to complete biodegradation.
In this study, using a similar methodology, five TiO2-based compounds were synthesized
containing different C-dot loading, namely TC0, TC25, TC50, TC62.5 and TC75, and
analyzed by several techniques, such as X-Ray diffraction (XRD), scanning and transmission
electron microscopies (SEM, TEM) and UV-Vis/near-IR diffuse reflectance. These TiO2/C-
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dots nanocomposites were used as model photocatalysts to investigate the effect of the
C-dot content in photocatalytic degradation of MO under UV-A and visible light, but also
direct sunlight radiation, showing remarkable results compared to pure TiO2 (TC0), as well
as commercially available Au/TiO2 (TAu) and this is the first innovative result of this study.
The most suitable photocatalysts were found to be TC25 and TC50, evidencing that this
range of C-dot loading is superior for the decomposition of organic pollutants, another
interesting finding that correlates Cdots amount and efficiency. Another innovation of this
study, apart from the rapid and excellent photocatalytic activity of these catalysts under
solar light irradiation, is the almost eternal nature, as they can be recycled and reused up to
ten times without losing their catalytic ability (~90% degradation after 3 h of irradiation
into the 10th cycle, >99% after 6 h).

Furthermore, based on the tetraethoxysilane (TEOS) effectiveness as a strengthen-
ing agent for Portland cement mortars [28], we synthesized an advanced hydrophobic
consolidant, designated as FX-C, using a sol–gel process that combines TEOS, PDMS
and nano-calcium oxalate (nano-CaOx) for the preservation of cultural heritage [29,30].
It was found that silicon in TEOS/PDMS copolymer can form strong Si–O bonds with
hydroxyl groups of the material for preservation [31]. It is well-established that among
other useful properties of TiO2-based catalysts [32–34], coating application of nano-TiO2
or SiO2@TiO2 [35–38] in mortars provides restoration and self-cleaning ability in building
materials [39–41], while TEOS-PDMS-TiO2 hybrid nanomaterials in limestone and marbles
enhance these properties [42,43]. Our previous work that studied the self-cleaning ability
of the composite coating FX-C with TiO2/C-dots in concrete, limestones and lime mortars
showed a moderate photocatalytic activity of this protective agent under visible light irra-
diation [26]. The fourth innovative result of this work refers to the accomplishment of a
self-cleaning coating of FX-C and TC0–TC25 activated under visible light irradiation, ready
to be applied onto cementitious mortars.

2. Materials and Methods
2.1. Materials

The citric acid (monohydrate, ≥99%) and hydroxylamine hydrochloride (99%) were
employed from Sigma-Aldrich (St. Louis, MI, USA) as C-dots precursors and used as
received. Titanium (IV) isopropoxide (TTIP, ≥97%) and hydrochloric acid (~37%) were
purchased from Sigma-Aldrich (St Louis, MI, USA) and used as received for the synthesis of
TC0–75 powders. Methyl Orange (for microscopy, Hist.) was obtained from Sigma Aldrich
(St Louis, MI, USA) and utilized as the model compound for the degradation of organic
pollutants. Gold 1% on titanium dioxide extrudates was employed from Strem Chemicals
(Newburyport, MA, USA) and used as received. Commercially available solvents were
used as received without further purification.

2.2. Analytical Techniques

High-resolution TEM micrographs of C-dots and TC0–75 were obtained using a JEM-
2100 transmission electron microscope and a JEM-100C microscope (JEOL Ltd., Tokyo,
Japan), operating at an accelerating voltage of 200 kV and 80 kV, respectively. The samples
for TEM were prepared by drop-casting 8 µL of the diluted aqueous solution of each
sample onto Formvar/carbon–copper-coated grids supplied by Agar Scientific (Essex, UK)
and then left to dry at room temperature for 2 h. A transmission electron microscope
was also used for statistical size-distribution histograms by counting and measuring the
diameter size distribution via ImageJ software. SEM images were recorded on a JSM
6390LV scanning electron microscope (JEOL Ltd., Tokyo, Japan) operated at 20 kV electron
voltage. TC nanoparticles were dried on a two-sided carbon tape and sputter-coated with
ca. 100 Å of gold (Au), using an SCD 050 sputter coater (BAL-TEC, Los Angeles, CA, USA).
UV-Vis spectra of samples were obtained on a Cary 1E UV-Vis spectrophotometer (Varian,
Palo Alto, CA, USA), in the wavelength range between 200 and 700 nm, using a quartz
cuvette with 10 mm path length and 3.5 mL chamber volume. UV-Vis/near-IR diffuse
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reflectance spectra were recorded on a UV-2600 spectrophotometer (Shimadzu, Kyoto,
Japan) using BaSO4 as the 100% reflectance reference. Powder X-ray diffraction data (XRD)
of the TC0–75 catalysts were obtained from a D8 Advance X-ray diffractometer (Bruker,
Billerica, MA, USA) equipped with a Lynx Eye strip silicon detector (Bruker, Billerica, MA,
USA). Measurements were applied at room temperature, using Cu Ka radiation at 35 mA
and 35 kV. Fourier Transform Infrared spectroscopy (FT-IR) in powdered samples was
performed with an iS50 FT-IR spectrometer (Thermo Fischer Scientific, Waltham, MA, USA)
in the spectral range between 4000 and 400 cm−1. For Attenuated Total Reflection (ATR)
measurements, a built-in, all-reflective diamond was used as the internal reflection element.
The measurement of the color change via photocatalytic degradation was performed with
a CM-2600d spectrophotometer (Konica Minolta, Tokyo, Japan) with a D65 illuminant at
8-degree viewing, in the wavelength range between 360 and 740 nm. A 36 W UV EBN001W
LED curing lamp (340–380 nm, maximum emission at 365 nm, Esperanza sp. j. Poterek,
Ożarów Mazowiecki, Poland) provided the UV-A irradiation source, while a laboratory
constructed stimulated solar box equipped with two L15W/840 tubular fluorescent lamps
(400–630 nm, maximum emission at 540 nm, OSRAM, Munich, Germany) was used as
the solar simulator. A GM3120 (BENETECH, Shenzhen, China) electromagnetic radiation
tester was used to measure light irradiance.

2.3. Synthesis of Carbon Dots

Regarding the C-dots preparation, the procedure was slightly modified from an already
published process [44]. A solution of citric acid (1.65 g) and hydroxylamine hydrochloride
(1.65 g) in deionized water (16.5 mL) was heated at 300 ◦C for 12 min. The resulting dark
brown, sticky solid was dissolved in water, sonicated via ultrasonic agitation for 10 min to
separate the aggregates and filtered through a 7–12 µm Whatman filter paper to remove
undissolved byproducts. A final 2.5% w/v C-dots solution was collected as an opaque liquid
(Figure 1).
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Figure 1. Hydrothermal synthesis of C-Dots.

2.4. Synthesis of TiO2 (TC0) and TC25–75 Photocatalysts

For the preparation of TiO2 with different loading of C-dots, an already published
method was followed [26], employing slight modifications (Figure 2). Briefly, a 2.5% w/v
aqueous C-dots solution, specifically 1.5 g for TC25 up to 13.5 g for TC75, was dissolved in
a 1:1 mixture of ethanol and deionized water (50 mL). For this solution, a solution of TTIP
(4.5 g) in ethanol (20 mL) was added dropwise, and the pH of the resulting mixture was
adjusted to 2.5 by the addition of concentrated HCl (~5 drops) to facilitate the hydrolysis
of TTIP. The mixture was allowed to stir at ambient temperature overnight, followed
by heating at 80 ◦C for 8 h to facilitate titania polymerization and C-dots incorporation.
Afterward, the mixture was cooled to ambient temperature, centrifuged for 10 min at
3000 rpm, and the wet solid was dried at 80 ◦C and ground using a mortar. Finally, the
catalyst was calcinated at 200 ◦C for 2 h to produce the crystalline material as a yellow
(TC25) to brown solid (TC50–75) in 85%–98% yield.



Coatings 2022, 12, 587 5 of 18Coatings 2022, 12, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 2. Synthesis of (a) TiO2 enriched with C-dots (TC25–75) and (b) TiO2 (TC0). 

The same process, in the absence of the aqueous C-dots solution, was applied for the 
synthesis of TiO2 as a control substance (Figure 2). It is worth mentioning that a crucial 
factor in this experiment is the adjustment of pH at 2.5 since lower pH leads to a reduction 
in the isolated yield of the catalyst. For example, at pH 1.5, the isolated yield of TC50 drops 
to 46%. Furthermore, in the process of synthesis of the control substance TC0, acidification 
up to pH 1.5 leads to a mixture of brookite and anatase phases of TiO2, whereas at pH 2.5, 
only the anatase phase is present, as indicated in the XRD analysis. 

2.5. Incorporation of Photocatalysts into the Protective Agent 
Consolidant FX-C was prepared in the laboratory by an already published method 

[29]. Each solid catalyst (4% w/w) was added to the sol FX-C, and the mixture was soni-
cated via ultrasonic agitation for 10 min to ensure homogeneity (Figure S1). 

2.6. Application of the Protective/Photocatalytic Film onto Cementitious Mortars 
The performance of the photocatalytic films in the conservation of cement-based ma-

terials was evaluated using cement mortars prepared in the laboratory, with a binder/sand 
ratio of 1:3, based on local 0–3 mm of grain size standard sand of carbonaceous nature. 
Further information on the mix design of the treated mortars can be found in Table S1. 
The synthesized photocatalytic films were brushed three times on the cement mortar sub-
strates. Control experiments were also performed by measuring the untreated cement 
mortar and by brushing the cementitious material with FX-C in the absence of a photo-
catalyst. 

2.7. Photodegradation of MO Using Photocatalysts and Their Reusability 
The activity of a series of TC nanocomposites on the photodegradation of MO was 

initially evaluated under UV-A light, using a 36 W LED curing lamp (maximum emission 
at 365 nm) with a light irradiance of approximately 33.6 mW/cm2 and artificial solar light, 
using a solar box equipped with two 15 W tubular fluorescent lamps (maximum emission 
at 540 nm) with a light irradiance of approximately 13.6 mW/cm2. For both irradiation 
types, the distance of each sample from the lamps was set to 7 cm. 

The photocatalytic activity of TC25, TC50, TC62.5 and TC75 catalysts, compared to 
TC0, was evaluated by studying the photodegradation of MO solution in the presence of 
the appropriate catalyst under UV-A light, simulated solar light, as well as sunlight in 
outdoor weather conditions. For this purpose, the solid photocatalyst (40 mg, 0.08% w/v) 
was dispersed to a 5 ppm MO aqueous solution (50 mL), and the mixture was allowed to 
stir in darkness for 30 min in order to reach adsorption–desorption equilibrium of dye on 

(b) 

(a) 

Figure 2. Synthesis of (a) TiO2 enriched with C-dots (TC25–75) and (b) TiO2 (TC0).

The same process, in the absence of the aqueous C-dots solution, was applied for the
synthesis of TiO2 as a control substance (Figure 2). It is worth mentioning that a crucial
factor in this experiment is the adjustment of pH at 2.5 since lower pH leads to a reduction
in the isolated yield of the catalyst. For example, at pH 1.5, the isolated yield of TC50 drops
to 46%. Furthermore, in the process of synthesis of the control substance TC0, acidification
up to pH 1.5 leads to a mixture of brookite and anatase phases of TiO2, whereas at pH 2.5,
only the anatase phase is present, as indicated in the XRD analysis.

2.5. Incorporation of Photocatalysts into the Protective Agent

Consolidant FX-C was prepared in the laboratory by an already published method [29].
Each solid catalyst (4% w/w) was added to the sol FX-C, and the mixture was sonicated via
ultrasonic agitation for 10 min to ensure homogeneity (Figure S1).

2.6. Application of the Protective/Photocatalytic Film onto Cementitious Mortars

The performance of the photocatalytic films in the conservation of cement-based mate-
rials was evaluated using cement mortars prepared in the laboratory, with a binder/sand
ratio of 1:3, based on local 0–3 mm of grain size standard sand of carbonaceous nature.
Further information on the mix design of the treated mortars can be found in Table S1. The
synthesized photocatalytic films were brushed three times on the cement mortar substrates.
Control experiments were also performed by measuring the untreated cement mortar and
by brushing the cementitious material with FX-C in the absence of a photocatalyst.

2.7. Photodegradation of MO Using Photocatalysts and Their Reusability

The activity of a series of TC nanocomposites on the photodegradation of MO was
initially evaluated under UV-A light, using a 36 W LED curing lamp (maximum emission
at 365 nm) with a light irradiance of approximately 33.6 mW/cm2 and artificial solar light,
using a solar box equipped with two 15 W tubular fluorescent lamps (maximum emission
at 540 nm) with a light irradiance of approximately 13.6 mW/cm2. For both irradiation
types, the distance of each sample from the lamps was set to 7 cm.

The photocatalytic activity of TC25, TC50, TC62.5 and TC75 catalysts, compared to
TC0, was evaluated by studying the photodegradation of MO solution in the presence of
the appropriate catalyst under UV-A light, simulated solar light, as well as sunlight in
outdoor weather conditions. For this purpose, the solid photocatalyst (40 mg, 0.08% w/v)
was dispersed to a 5 ppm MO aqueous solution (50 mL), and the mixture was allowed
to stir in darkness for 30 min in order to reach adsorption–desorption equilibrium of dye
on the catalyst surface. Thereafter, the mixture was irradiated with the appropriate light
source for a period of 120 min, with a sample removal (4 mL) every 15 min for reaction
monitoring. Analytical determination of the reduction in MO concentration during the
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photocatalytic degradation process was carried out spectrophotometrically at 465 nm. A
commercially available catalyst Au (1%)/TiO2 (TAu) was also used in the MO degradation
under sunlight conditions for comparison. Under the same conditions, MO degradation
was tested in the absence of a catalyst, where no decomposition was observed.

Furthermore, the reusability of TC50 was tested under simulated sunlight irradiation.
In this case, TC50 (0.16 g) was added into a 5 ppm aqueous MO solution (80 mL) and
irradiated with visible light for 180 min. After each cycle, the solution was decanted, and
the catalyst was washed with water and ethanol (30 mL each), dried at 60 ◦C overnight, and
then reused in the next cycle. This process was repeated 9 times, while at the end of the 10th
cycle, the catalyst was recycled (0.08 g) and could be further used in the next experiment.

2.8. Self-Cleaning Performance of Treated Cementitious Mortars

In order to determine the self-cleaning and air depolluting capabilities of the protective
films enhanced with TiO2/C-dots, the protective coating was brushed onto the cement
mortar substrates, and the photodegradation of a drop of MB under UV-A and visible light
was determined using a portable CM-2600d spectrophotometer (Konica Minolta, Tokyo,
Japan). Control experiments were performed by exposing the untreated cement mortar and
the cementitious material with FX-C, covered with the same amount of MB. The total color
difference (∆E) can be calculated using the following equation [45]:

∆E =
√

∆L∗2 + ∆a∗2 + ∆b∗2 (2)

where the differences in color (∆) with time, for the treated with a protective coating and
spotted with MB cement mortars, were expressed as L*, a* and b* values of the CIELab
color space. The L* values range from 0 for black to +100 for white, while the negative and
positive a* values represent green and red, respectively. As for the negative and positive b*
values, these represent blue and yellow, respectively.

3. Results and Discussion
3.1. Structure and Morphology of C-Dots and TC0-75 Photocatalysts

Figure 3 illustrates the XRD patterns of the pure synthesized TiO2 (TC0) and TC25–75,
evidencing the crystalline phases present in the samples.
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Figure 3. X-ray diffraction patterns of (a) TiO2 (TC0) and (b) TiO2 with different C-dot loading
(TC25–75).

The diffractograms reveal the formation of anatase phase (JCPDS card no. 00-021-1272)
exclusively in all the synthesized materials, excluding other possible phases of titania, such



Coatings 2022, 12, 587 7 of 18

as rutile or brookite. The anatase crystalline phase is commonly accepted as a more efficient
photocatalyst, compared to rutile and brookite, due to its high photocatalytic activity [46].
Crystallite average size of the TC0–75 nanoparticles was estimated using the following
Scherrer equation [47]:

D =
Kλ

β cos θ
(3)

where D is the crystallite particle size (in nm), K is the Scherrer constant equal to ~0.9 in the
case of spherical shapes, λ is the wavelength of the X-ray’s radiation (0.15406 nm), β is the
full width at half maximum (FWHM) height of the diffraction peaks and θ is the Bragg’s
diffraction angle. The diffraction peaks at 25.2◦, 37.9◦, 47.9◦ and 62.7◦ correspond to phases
(101), (004), (200) and (213), respectively, while the peak appearing at 2θ 54.3◦ is attributed
to both (105) and (211) phases. The crystallite size of the photocatalysts was calculated
using the (101) peak and found to be 4.53, 6.06, 5,36, 6.35 and 5.07 nm for samples TC0,
TC25, TC50, TC62.5 and TC75, respectively, showing only a slight increase in crystallite
size with C-dot incorporation. The results are in good agreement with previous findings,
showing the correlation between the low calcination temperature and the small crystal size
of TiO2 [48–50], as well as the stability of anatase when the particle size is below 14 nm [51].

TEM images of the as-synthesized C-dots (Figure S3) were similar to that observed in
our previous work [26]. The average size of C-dots was 1.9 nm, ranging from 1.2 to 2.6 nm,
and the shape appeared to be uniform and quasi-spherical (Figure S3c). TEM analysis of
the TC50 and TC75 photocatalysts can be seen in Figure 4a,b. TC50 exhibited relatively
uniform size nanoparticles, with an average size of 20–21 nm and the size distribution
ranging approximately from 14 to 32 nm. In a previous work, a similar size distribution
ranging from 10 to 40 nm for the TC25 photocatalyst was observed [26]. Agglomeration
of crystallites resulting in nanocluster formation was observed in previous works for
TiO2 [52,53] and TiO2 doped with C-dots [10] or with other species [54,55]. TEM images
of TC75 nanoparticles in Figure 4c,d show a non-uniform but quasi-spherical shape in
an average size of 64–68 nm and wide size distribution of 40 to 100 nm (Figure S4) due
to the high C-dot loading in the TiO2 surface. The XRD results and the crystal planes
observed in the TEM images of our previous work for TC25 [26] were both attributed to
the crystalline structure of the TiO2/C-dots nanoparticles, further evidenced in the SEM
images in Figure 4. Even though the synthesis of pure anatase requires calcinations at
500 ◦C within several hours [56], nevertheless, in our case, TEM images indicated that at a
relatively low temperature, a C-dots-assisted crystalline TiO2 could be formed [26].

Indeed, SEM was used to display the surface morphology of TC25 and TC62.5
nanocomposites (Figure 5). Both nanohybrids consist of nearly spherical in shape, rough
and compact aggregates with crystal structures and various diameters. The spherical-like
shape is typical for anatase crystallite structure [10].

The mineralogical and microstructural characterization of the studied photocatalysts
revealed that anatase was formed in the presence of different C-dot loading upon a heating
process up to 200 ◦C. By increasing the C-dot loading, as in the case of the TC75, the average
size of the photocatalysts was also increased due to agglomeration phenomena.

The FTIR spectrum of C-dots (Figure 6) confirms the presence of polar groups de-
rived from the incorporation of hydroxylamine into the carbon core. This observation
is in accordance with the good dispersion properties that C-dots exhibit in water. More
specifically, the broad peaks at 3450 and 3200 cm−1 correspond to the symmetric stretching
vibration of O–H and N–H, respectively [23], while the peaks at 1605 and 1399 cm−1 can be
attributed to the asymmetric and symmetric stretching vibration of COO− [57]. The stretch-
ing vibration of C=O at 1697 cm−1 along with the bending vibration of N–H in amides at
1584 cm−1 [26,58] and the stretching vibration of C-O in carboxylates at 1183 cm−1 are also
present in the C-dots spectrum. Other characteristic peaks of the main core in carbon dots
can be considered: (a) the asymmetric and symmetric stretching vibration of C–H bonds
with the broad peaks at 3041 and 2807 cm−1, and (b) the stretching and bending vibrations
of C=C at 1630 and 746 cm−1. Finally, it is important to highlight that in the FTIR spectra
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of the TC25–75 photocatalysts (Figure 6), characteristic bands of C-dots at 1698, 1605 and
1183 cm−1 were shifted to higher and lower wavenumbers (e.g., 1630, 1552 and 1223 cm−1,
respectively), due to the C-dots’ incorporation in the TiO2 surface. In the sample TC75, the
higher intensity of the C–H asymmetric and symmetric stretching vibrations at 2921 and
2852 cm−1 is directly correlated with the higher C-dots content.
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(1800–1000 cm−1) of C-dots and TC75 photocatalyst.

The optical properties of the TC0–75 photocatalysts were studied by UV-Vis/NIR
diffuse reflectance spectroscopic (DRS) measurement (Figure 7a). It is obvious that the
absorption edge of TC25–75 was shifted towards the visible light region compared to
TC0, suggesting significant absorption ability for solar light. The energy band gaps (Eg)
of photocatalysts TC0–75 were determined from UV-Vis/NIR diffuse reflectance spectra
(Figure 7b), using Tauc plot analysis for indirect allowed transition [59], due to the anatase
crystallite form of TC structures. In this case, (f hv)1/2 is expressed as a function of photon
energy (hv), where f is the Kubelka–Munk function [60] of the measured reflectance (R), as
shown in the following equation:

f(R) =
(1− R)2

2R
(4)
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and TC75 photocatalysts.

This analysis led to Eg values of 3.10 eV for TC0, which is close to the bandgap of
anatase. On the contrary, the bandgaps of TC25 and TC50 were measured at 2.97 eV
each, while TC75 exhibited a bandgap of 3.18 eV. The findings are in correlation with
the photocatalysis results, suggesting that the Eg of the nanocomposites appears to be an
important parameter that accounts for the efficiency of the photocatalytic process. Thus,
C-dots can reduce the energy bandgap of TiO2 up to a point where C-dots dominate the
structure of the photocatalyst, leading to an even higher Eg than TiO2, as in the case of
TC75 with higher C-dot content.

3.2. Photocatalytic Performance of TC25–75 Compared to TCO and TAu

The results of the UV-A irradiation process were shown in Figure 8a, where TC25–62.5
composites provided a much higher photodegradation rate for MO compared to TiO2 (TC0)
and TC75, with both TC25 and TC50 photocatalysts showing the best performance. The
light irradiance of the 36 W LED curing lamp used in our experiments, based on the sample
distance, was approximately 33.6 mW/cm2. The area of a 50 mL beaker that was used in
the experiments can be defined as half the curved surface area of the cylinder, πrh, where
r is the base radius, and h is the height of the cylinder. Therefore, the average continual
radiation was ~1.42 W. After 60 min of UV-A light irradiation, the MO degradation rates in
the presence of TC0, TC25, TC50, TC62.5 and TC75 were 20.8, 91.4, 92.0, 56.9 and 48.7%,
respectively. C-dots had almost no photocatalytic ability for MO, as only a 4.6% of the
dye was degraded after 60 min. The UV-Vis spectrum and macroscopic evaluation of MO
degradation using TC50 under UV-A light are displayed in Figures S5 and S6. Similar
results, in a slower degradation rate, were found during the simulated solar light irradiation,
as shown in Figure 8b. The light irradiance of the two 15 W fluorescent lamps, based on the
sample distance, was measured at 13.6 mW/cm2; thus, the average continual radiation was
~0.58 W. It is evident that all of the TC25–75 composites exhibited higher photocatalytic
activity for MO compared to TC0, whereas both TC25 and TC50 provided the highest
degradation rate. More specifically, after 120 min of irradiation, the MO degradation rates
in the presence of TC0, TC25, TC50, TC62 and TC75 were 45.4, 96.2, 90.9, 62.9 and 46.1%,
respectively. The UV-Vis spectrum and macroscopic evaluation of MO degradation using
TC50 under visible light are reported in Figures S7 and S8.
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Figure 8. MO degradation rates in the presence of TC0–75 photocatalysts under (a) UV-A and
(b) simulated solar irradiation.

In all photocatalytic experiments, the concentration of MO was fixed at 5 ppm. It is
worth mentioning that for concentrations ranging from 5 to 25 ppm, the highest photo-
catalytic activity was found to be 20 ppm in an anatase titania suspension system, with
5 ppm being the least suitable MO concentration [61]. MO exhibits the lowest degradation
rate compared to RhB and MB because an electron is more difficult to be transferred to
TiO2, as the Highest Occupied Molecular Orbital (HOMO) energy gap of MO is −5.624 eV,
compared to −10.128 eV for RhB and −10.494 for MB [62]. For those reasons, the high pho-
tocatalytic activity of nanocomposites TC25 and TC50 in MO degradation can be described
as a remarkable result.

Furthermore, the same photocatalytic group of TC nanocomposites was tested on
the photodegradation of MO under solar light in outdoor weather conditions. According
to accurate weather station data [63], during the days that the experiments took place
in our department area, the daily all-sky surface shortwave downward irradiance was
in the range of 2.46–7.49 KWh/m2/day (102.5–312.1 W/m2). Thus, in our process, the
average continual radiation was in the range of 0.43–1.32 W, and the degradation rates can
be summarized in Figure 9. In this case, in the presence of the photocatalysts, TC25 and
TC50 MO rapidly becomes degraded, as the rate increases to 96.0% and 90.2% for the first
30 min of irradiation (Figures S9 and S10). It must be pointed out that control experiments
performed under the conditions of irradiation in the absence of the photocatalyst did not
show any change in the azo-dye solution absorbance. It can also be noted that under
similar reaction conditions, a lower degradation rate (similar to TC75) was obtained with a
commercially available gold catalyst, supported by TiO2 (TAu).

The results demonstrate that in all cases, the photocatalytic performance of the com-
posite materials strongly depends on the C-dots percentage in TiO2. A remarkable pho-
tocatalytic result in the case of low to moderate C-dot loading turns to reduced activity
when the C-dot loading increases in the TiO2 core. This could be attributed to the excess
of C-dots on the surface of TiO2 in TC75, which cause blockage of the pore channels, thus
hindering light-harvesting and charge transfer [23,64].
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Figure 9. MO degradation rates in the presence of TAu and TC0–75 photocatalysts under sunlight
irradiation.

Based on the heterogeneity of the catalytic system, the TC catalysts can be easily
separated from the reaction mixture by careful decantation of the aqueous solution or, more
accurately, via centrifugation, followed by washing with water and ethanol. Thus, the
stability of the TC50 catalyst was examined by performing ten consecutive catalytic tests
by irradiating 5 ppm of MO in the presence of 0.2% w/v photocatalyst for 180 min under
simulated solar light. As it can be seen in Figure 10, even after 10 cycles, 89.3% of MO was
degraded within 180 min, leading to complete degradation after 360 min in the 10th cycle.
The UV-Vis spectra and macroscopic evaluation before and after ten consecutive cycles
of MO degradation using TC50 under visible light are illustrated in Figures S11 and S12.
To the best of our knowledge, this result is far superior compared to already published
works on TiO2/C-dots [23,25], showing a robust, almost eternal photocatalytic system for
continuous pollution protection.
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Figure 10. Reusability of TC50 photocatalyst in the MO degradation under simulated solar irradiation.

Since the photodegradation of MO in the presence of TiO2/Cdots follows a pseudo-
first-order kinetic model, photocatalytic efficiency of all TC25–75 nanocomposites, com-
pared to TC0 and TAu, under different radiation sources can be summarized in Table 1. In
all cases, the rate constants were obtained by plotting ln(C0/C) to irradiation time. As it
can be seen, the degradation rate of MO for TC25 and TC50 under visible light irradiation is
12.5 times higher than that of pure TiO2 (TC0), while under UV-A and solar light irradiation,
a 3.4–4.6 and 4.4–5.7 times higher rate was observed. Moreover, upon solar light irradiation,
TC25 and TC50 provided a 3.3–4.3 higher degradation rate compared to commercially
available Au/TiO2 (TAu) catalyst.



Coatings 2022, 12, 587 13 of 18

Table 1. Comparison of photocatalytic efficiency between TC0–75 and TAu using the first order fitting
kinetic data of MO degradation under different radiation sources.

Type of Irradiation Photocatalyst Kapp (min−1) R2 Degradation
Rate (%)/min

UV-A light

TC0 1.10 × 10−2 0.997 45.4/60
TC25 5.07 × 10−2 0.982 96.2/60
TC50 3.79 × 10−2 0.997 90.9/60

TC62.5 1.72 × 10−2 0.999 62.9/60
TC75 1.21 × 10−2 0.991 46.1/60

Visible light

TC0 0.18 × 10−2 0.984 20.8/120
TC25 2.28 × 10−2 0.991 91.4/120
TC50 2.29 × 10−2 0.991 92.0/120

TC62.5 0.74 × 10−2 0.998 56.9/120
TC75 0.49 × 10−2 0.980 48.7/120

Solar light

TC0 1.59 × 10−2 0.971 48.1/60
TC25 9.13 × 10−2 0.983 96.0/30
TC50 6.96 × 10−2 0.992 90.2/30

TC62.5 2.41 × 10−2 0.994 78.2/60
TC75 2.06 × 10−2 0.993 71.0/60
TAu 2.14 × 10−2 0.998 70.6/60

3.3. Photocatalytic Activity of Multifunctional Protective Films

The photocatalytic ability of the catalysts was also tested after their incorporation into
the silica-based consolidant FX-C and their application onto cementitious mortars. Mix-
tures containing 4% w/w of TC0, TC25 and TAu into the FX-C were prepared (Figure S1)
and brushed until saturation onto the surface of the cementitious specimens, which were
previously cleaned with isopropanol. TC25 was selected on the grounds of its bests photo-
catalytic activity both under solar and UV irradiation, as it was proved in the experiments
with the MO degradation. For comparison, a part of the surface of the samples was left
untreated, and another one was brushed with the consolidant without a catalyst. In order
to explore the most favorable application method, another testing surface was created by
first applying a layer of the FX-C until saturation and, afterward, a layer of the mixture of
the consolidant with TC25.

In order to study the self-cleaning properties of the specimens with the different
protective films, two drops (around 0.025 mL each) of methylene blue (MB) were released
on each coating, and its degradation was evaluated by comparing the color difference of
the stained surface with the color of the surface before the MB application (Figure S2), using
a spectrophotometer. The goal is to observe a decline in this color difference (∆E), reaching,
in the best case, a value below 5. The macroscopic evaluation of MB degradation on
treated and untreated cement mortars is reported in Figure S2. The specimens were tested
under UV-A and visible light irradiation for 48 h, and the results do not significantly differ
regarding the type of radiation used. As shown in Figure 11 and Table 2, the protective
films containing TC0 and TAu were those with the best performance, reaching the desired
value within 48 h.

In addition to the above-mentioned photocatalysts, the surface treated with a double
layer consisting of FX-C and FX-C/TC25 also demonstrated considerable self-cleaning
properties both under UV-A and visible light irradiation, reaching a value of 7.21 and
5.76, respectively. Moreover, in the case of the protective films containing TC25, the
degradation of the pigment was also notable after 48 h of irradiation. The untreated
surfaces and the surface treated with solely FX-C showed an insignificant decline in the
color difference that can be attributed to the degradation of the dye because of the action
of the irradiation. It should be mentioned that, despite the fact that the FX-C/TAu film
demonstrated substantial photocatalytic properties, it cannot be proposed as a viable
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protective option for monumental surfaces, as it changes the color of the surface radically
after its application (Figure S2).
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Figure 11. Variation graphs of the specimens’ color difference (∆E*) as a function of time for MB
degradation under (a) UV-A and (b) simulated solar light irradiation.

Table 2. Comparison of the specimens’ color difference (∆E*) as a function of time for MB degradation
under different radiation sources.

Light
Irradiation Time (h) ∆E*

Untreated FX-C FX-C +
TC0 FX-C + TC25 FX-C + TAu FX-C + (FX-C +

TC25)

UV-A light
0 18.41 37.60 38.62 34.88 24.08 35.02

24 16.48 24.20 5.62 12.04 5.39 8.64
48 15.21 19.43 4.67 10.16 3.54 7.21

0 28.07 40.24 43.14 46.97 31.28 41.95
Visible light 24 21.67 30.39 7.00 18.85 7.24 10.88

48 16.17 22.14 4.40 9.50 4.87 5.77

These in situ experiments clearly pointed out that significant differences arose in the
efficiency of the pure photocatalysts and the subsequent incorporation within protective
coatings [65,66]. Regardless of the best performed TC25 and TC50 photocatalysts compared
to TC0 and TAu under UV-A and solar irradiation, however, the nanocomposites that faster
degraded the MB resulted in being those without C-dot loading into TiO2. Therefore, self-
cleaning coatings applied to building materials require individual experiments, including a
treatment process with both protective and self-cleaning agents. It was demonstrated that
for cementitious surfaces, FX-C with pure TiO2 and a double layer treatment of FX-C along
with FX-C + TC25 could be considered promising solutions against pollutant decay. This
study highlighted the need for in situ testing of the nanostructured protective coatings,
in which the well-established photocatalysts were integrated for multifunctional building
protection.

4. Conclusions

TiO2/C-dots composites with different C-dot loading were synthesized using citric
acid, hydroxylamine and titanium isopropoxide (TTIP) by a facile, green and large-scale
hydrothermal strategy. The different mass ratios of C-dots solution to TTIP produced TiO2
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functionalized photocatalysts that were characterized by the anatase structure, formed
at a low calcination temperature of 200 ◦C. The C-dot modified TiO2 showed efficient
photocatalytic MO and MB degradation activity under UV-A and, more specifically, under
visible light and sunlight radiation. Under UV-A, visible and solar light irradiation, the
degradation rate of MO for TC25 and TC50 is 3.4–12.5 times higher compared to pure TiO2
(TC0), while solar light provides a 3.3–4.3 higher degradation rate of MO for TC25 and TC50
than commercially available Au/TiO2 (TAu) catalyst. Additionally, the photocatalysts can
be recycled at least 10 times without losing their activity, showing the potentiality of these
nanocomposites for continuous pollution protection. Finally, it was demonstrated that the
application of multifunctional coatings on the cementitious matrix played a significant
role. In the in situ applications of the self-cleaning coatings onto cementitious materials,
the protective film of the silica-based FX-C with the pure TiO2 and the double layer
treatment with FX-C and FX-C + TC25 resulted in being the best-performing coatings
against pollutant degradation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings12050587/s1, Table S1: Mix design of cement mortars
treated with the nanocomposites of FX-C with catalysts; Figure S1: Sols of FX-C and nanocomposites
of FX-C with catalysts; Figure S2: Macroscopical evaluation of the gradual MB degradation on
treated and untreated cement mortars, before and after MB application, under (a) UV-A and (b)
visible irradiation; Figure S3: (a,b) TEM images and (c) diameter distribution histogram of C-dots;
Figure S4: (a) TEM image and (b) diameter distribution histogram of TC75; Figure S5: UV-Vis spectra
of gradual MO degradation using TC50 upon UV-A irradiation; Figure S6: Macroscopic image of
gradual MO degradation using TC50 upon UV-A irradiation; Figure S7: UV-Vis spectra of gradual
MO degradation using TC50 upon simulated solar light irradiation; Figure S8: Macroscopic image
of gradual MO degradation using TC50 upon simulated solar light irradiation; Figure S9: UV-Vis
spectra of gradual MO degradation using TC50 under sunlight irradiation; Figure S10: Macroscopic
image of gradual MO degradation using TC50 under sunlight irradiation; Figure S11: UV-Vis spectra
before (0 min) and after ten consecutive cycles (1–10) of MO degradation using TC50 upon simulated
solar light irradiation; Figure S12: Macroscopic image before (0 min) and after ten consecutive cycles
(1–10) of MO degradation using TC50 upon simulated solar light irradiation.
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