
Citation: Kapellos, G.E.; Eberl, H.J.;

Kalogerakis, N.; Doyle, P.S.;

Paraskeva, C.A. Impact of Microbial

Uptake on the Nutrient Plume

around Marine Organic Particles:

High-Resolution Numerical Analysis.

Microorganisms 2022, 10, 2020.

https://doi.org/10.3390/

microorganisms10102020

Academic Editor: Télesphore

Sime-Ngando

Received: 9 August 2022

Accepted: 21 September 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Impact of Microbial Uptake on the Nutrient Plume around
Marine Organic Particles: High-Resolution Numerical Analysis
George E. Kapellos 1,2,*, Hermann J. Eberl 3, Nicolas Kalogerakis 4, Patrick S. Doyle 1 and Christakis A. Paraskeva 2

1 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
3 Department of Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada
4 School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
* Correspondence: kapellos@mit.edu

Abstract: The interactions between marine bacteria and particulate matter play a pivotal role in the
biogeochemical cycles of carbon and associated inorganic elements in the oceans. Eutrophic plumes
typically form around nutrient-releasing particles and host intense bacterial activities. However,
the potential of bacteria to reshape the nutrient plumes remains largely unexplored. We present a
high-resolution numerical analysis for the impacts of nutrient uptake by free-living bacteria on the
pattern of dissolution around slow-moving particles. At the single-particle level, the nutrient field is
parameterized by the Péclet and Damköhler numbers (0 < Pe < 1000, 0 < Da < 10) that quantify the
relative contribution of advection, diffusion and uptake to nutrient transport. In spite of reducing
the extent of the nutrient plume in the wake of the particle, bacterial uptake enhances the rates of
particle dissolution and nutrient depletion. These effects are amplified when the uptake timescale is
shorter than the plume lifetime (Pe/Da < 100, Da > 0.0001), while otherwise they are suppressed by
advection or diffusion. Our analysis suggests that the quenching of eutrophic plumes is significant
for individual phytoplankton cells, as well as marine aggregates with sizes ranging from 0.1 mm to
10 mm and sinking velocities up to 40 m per day. This microscale process has a large potential impact
on microbial growth dynamics and nutrient cycling in marine ecosystems.

Keywords: ocean carbon cycle; nutrient uptake; marine snow aggregates; biological carbon pump;
biodegradation; mass transfer; mathematical modeling

1. Introduction

The oceanic carbon cycle is modulated by the interactions between marine microbes
and particulate organic matter (POM) via a multistep process known as the biological
carbon pump [1–3]. In the euphotic zone, phytoplankton converts atmospheric CO2 to
organic polymers that coagulate and form composite hydrogel particles called marine
snow [4–6]. The polymeric matrix of marine snow hosts diverse microbial populations,
embeds mineral particles, and concentrates metabolites, lysate and essential inorganic
nutrients (N, P, Fe, Si) [6–8]. Being heavier than seawater, marine snow sinks and carries
carbon to the seabed [9,10]. On the way, heterotrophic bacteria consume and mineralize a
significant part, up to 60–80%, of the sinking marine snow back to CO2 [11]. Any change
in the rates of these interlinked processes may disrupt the ecosystem’s balance. Global
warming and elevated seawater temperature, for instance, may enhance the uptake of
marine snow, increase the microbial abundance and, in turn, upregulate all levels of the
marine food webs. However, this may also trigger a cascade of adverse effects, such as
the reduction of carbon storage to the seabed, the expansion of oxygen minimum zones,
and the acidification of seawater [12–16]. Improved mechanistic understanding of the
bacteria-POM interactions across multiple spatial and temporal scales is key to a more
sustainable management of our marine ecosystems.
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Marine snow, phytoplankton cells and fecal pellets are the main indigenous sources of
POM. Secondary exogenous sources are atmospheric and terrestrial depositions [17], as
well as freshwater and estuarine particulates transferred by rivers into the sea [6,18]. Of
emerging importance are oil droplets released by natural seeps or accidental spills [19–21]
and microplastics stemming from anthropogenic pollution [22]. All such particles may
serve as hotspots for the activities of both surface-attached [21,23] and free-living bacte-
ria [8]. Biofilm-forming bacteria colonize the particle surface and affect the rates of POM
degradation and solubilization in multiple ways (Figure 1). First, the extracellular poly-
meric matrix of the biofilm acts as a diffusive barrier and regulates the transport of solutes
from the particle surface to ambient water, and vice versa [24]. Second, biofilm formers use
exoenzymes and biosurfactants to transform refractory POM compounds into dissolved
organic matter, part of which is taken up in the biofilm and the rest leaks out in ambient
water [21,25–31]. Finally, the intense and highly diverse activity, typically established
within natural multispecies biofilms, creates a rich stream of metabolic products that is also
discharged into ambient water [32–34].
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Figure 1. Conceptual illustration of nutrient plume quenching. The sinking particle (POM) creates 
a comet-shaped eutrophic plume of dissolved organic matter (DOM) with products from the enzy-
matic hydrolysis of particulate ingredients and the metabolic activities of surface-attached bacteria 
(red). Free-living bacteria (green) may act as point sinks, harvest useful solutes and reshape the 
nutrient field around the particle. The reduction in the extent and intensity of the plume is referred 
to as plume quenching and affects microbial foraging processes in the oceans. The plume length is 
critical in the detection of the organic particle by zooplankton [35] and the volume of the plume 
supports elevated growth rates for bacterioplankton [36]. 

Solubilized POM and metabolites of the biofilm formers spread by diffusion and ad-
vection to form a nutrient-rich plume around the particle. The volume of the plume core 
may be 10−100 times the particle volume [37], with nutrient concentrations from one to 
three orders of magnitude higher than ambient levels (Table 5 in [6], [26,27]), thereby of-
fering a unique nutritional opportunity to planktonic microbes [8,38–40]. Theoretical and 

Figure 1. Conceptual illustration of nutrient plume quenching. The sinking particle (POM) creates a
comet-shaped eutrophic plume of dissolved organic matter (DOM) with products from the enzymatic
hydrolysis of particulate ingredients and the metabolic activities of surface-attached bacteria (red).
Free-living bacteria (green) may act as point sinks, harvest useful solutes and reshape the nutrient
field around the particle. The reduction in the extent and intensity of the plume is referred to as plume
quenching and affects microbial foraging processes in the oceans. The plume length is critical in the
detection of the organic particle by zooplankton [35] and the volume of the plume supports elevated
growth rates for bacterioplankton [36].

Solubilized POM and metabolites of the biofilm formers spread by diffusion and
advection to form a nutrient-rich plume around the particle. The volume of the plume
core may be 10–100 times the particle volume [37], with nutrient concentrations from one
to three orders of magnitude higher than ambient levels (Table 5 in [6], [26,27]), thereby
offering a unique nutritional opportunity to planktonic microbes [8,38–40]. Theoretical and
experimental studies suggest that the utilization of nutrient plumes by free-living bacteria
can substantially contribute to the global dynamics of microbial growth and carbon cycling
in the oceans [36,40]. However, most analyses rely on the undisturbed nutrient field (i.e.,
zero-consumption) and the potential of free-living bacteria to reshape plumes has been
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overlooked. In principle, the contribution of bacterial uptake in shaping chemical fields
is expected to be maximal in low flow microenvironments [41–44] and vanishing under
strong turbulent mixing [45–47]. For sinking particles under moderate flow conditions,
the extent of plume reshaping remains questionable [48]. To address this knowledge gap,
we investigated numerically the impact of nutrient uptake by free-living bacteria on the
dissolution pattern around slow-moving particles in a water column.

2. Materials and Methods
2.1. Nutrient Transport and Consumption at the Particle Scale

We consider a biofilm-coated organic particle as a rigid sphere that moves with
constant velocity through an unbounded fluid domain (Figure 1). The moving particle
generates a eutrophic trailing plume, which is quenched by free-living bacteria. In the
particle frame of reference, the steady-state pattern of dissolution around the particle
is described by the advection-diffusion equation coupled to non-homogeneous nutrient
uptake, as expressed in the following dimensionless form:

PeAυvυ · ∇CAυ = ∇2CAυ −DaAυ fsatCAυ (1)

For the non-dimensionalization, the particle radius R̃P is the reference length, the
average concentration C̃re f at the particle surface is the reference concentration, and the
ambient water velocity ṽ∞ is the reference velocity. The tilde (~) over a symbol denotes a
dimensional quantity, whereas its absence denotes a dimensionless one. In Equation (1),
CAυ is the nutrient concentration, vυ is the fluid velocity, fsat is the uptake saturation
factor, PeAυ = ṽ∞R̃P/D̃Aυ is the radius-based Péclet number, DaAυ = k̃∞R̃2

P/D̃Aυ is the
Damköhler number, k̃∞ is the uptake coefficient, and D̃Aυ is the nutrient diffusivity.

The uptake saturation factor is defined as fsat = 1 for linear unsaturated uptake,
fsat = umax/(KS + CAυ) for Michaelis-Menten kinetics, and fsat = min{Csat/CAυ, 1} for
Blackman’s bilinear kinetics [49], where Csat is the saturation threshold and umax, KS are
microbial kinetic parameters. For the presented Results, we used Blackman’s kinetics
because it is simpler, monoparametric, and maintains consistency with previous relevant
works, as all have considered linear kinetics [41–47].

2.2. Boundary Conditions on the Nutrient Field

Far from the particle, the nutrient concentration obtains a constant ambient value:

CAυ(|x| → ∞) = CA∞ (2)

At the particle surface, two alternative boundary conditions are considered [37]. For
transport-limited dissolution, typically associated with partition equilibrium between the
particulate and aqueous phases (e.g., oil-water), the solute concentration is prescribed over
the particle surface:

CAυ(|x| = 1) = CAs (3)

For reaction-limited dissolution, as for example associated with active exudation of
metabolites by phytoplankton cells, the solute flux is prescribed over the particle surface:

− ∂CAυ

∂r

∣∣∣∣
|x|=1

= qAs (4)

where qAs = q̃As/q̃re f and q̃re f = C̃re f D̃Aυ/R̃P is the reference flux.
By comparison, the concentration is constant and the flux varies with the Péclet and

Damköhler numbers in transport-limited dissolution, whereas the flux is constant and the
concentration varies over the particle surface in reaction-limited dissolution. Results in
Section 3.4 were obtained for transport-limited dissolution with partition equilibrium at the
particle-water interface (CAs = 1), and complementary results in Section 3.5 were obtained
for reaction-limited dissolution. Far from the particle, the ambient nutrient concentration
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is considered much smaller than the concentration on the particle surface (CA∞ = 0). In
eutrophic coastal and upwelling waters, even when the average nutrient concentration
in ambient water is appreciable on the ocean sampling scale, microscale advection and
elevated consumption sustain sharp nutrient gradients at the particle scale and hence it is
reasonable to consider that CA∞ � CAs in most cases.

2.3. Flow Field around the Particle

For slow-moving microparticles, the flow around the particle is laminar with low
Reynolds number, Re = ρ̃υ ṽ∞R̃P/µ̃υ < 1, where ρ̃υ is the density of ambient water, µ̃υ is
the dynamic viscosity of ambient water, and ṽ∞ is the average velocity of ambient water
relative to the particle. Thus, the radial and angular components of the dimensionless
velocity vector, vυ, are given by Stokes’ solution [24]:

vυ,r(r, θ) = −
(

1− 3
2r

+
1

2r3

)
cos θ (5a)

vυ,θ(r, θ) =

(
1− 3

4r
− 1

4r3

)
sin θ (5b)

2.4. Plume Metrics

The ratio of the plume volume over the particle volume is defined as

Vplm ≡
Ṽplm

ṼP
=

3
4π

∫
Vυ

H(c)dV (6)

where H(c) is the Heaviside function, with H(c) = 1 if c > 0 and nil otherwise, c =
CAυ − Cdet and Cdet is the threshold concentration that defines the detectable plume. The
integration in Equation (6) is carried out over the entire volume of ambient fluid with the
dimensionless differential volume dV = r2 sin θdrdθdϕ in spherical coordinates. The plume
length is defined as the distance from the particle center at which the nutrient concentration
in the wake of the particle (θ = π) is equal to the detection threshold:

CAυ

(
Lplm, π

)
= Cdet (7)

Analytical correlations, which are useful for engineering applications, have been
established for the plume length and volume by representing the nutrient-releasing particle
as a point source [35,48]:

L∗plm =
ShR

Cdet
exp

(
−Da

Pe
L∗plm

)
(8)

V∗plm =
3L∗2plm

4Pe

(
1 +

2
3

Da
Pe

L∗plm

)
(9)

For Da > 0, Equation (8) is nonlinear and can be solved either graphically or by using
a root finding method. Compared with our numerical results, Equation (9) underestimates
the plume volume by less than 30% for Pe > max{1, Da}.

2.5. Efficiencies of Dissolution and Degradation

The total nutrient flux through a spherical surface with radius r from the center of the
particle is defined as:

QAs(r) ≡
Q̃As(r̃)
q̃re f R̃2

P
=
∫

S
qA · erdS (10)

where q̃re f = C̃re f D̃Aυ/R̃P is the reference flux, qA = PeAυvυCAυ −∇CAυ is the combined
nutrient flux that accounts for both advection and diffusion, and dS = r2 sin θdθdϕ is
the differential area on the spherical surface. In the engineering literature, the overall
dissolution rate at the particle surface is usually expressed as Q̃As = k̃AsS̃PC̃re f , where
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S̃P = 4πR̃2
P is the particle surface area and k̃As =

(
D̃Aυ/R̃P

)
QAs/4π is the mass transfer

coefficient. In turn, the radius-based Sherwood number is defined as:

ShR ≡
k̃AsR̃P

D̃Aυ

=
QAs(1)

4π
(11)

and represents the dimensionless speed of dissolution. The Sherwood number may equiv-
alently be expressed as ShR = Q̃As/

(
4πR̃PD̃AυC̃re f

)
and represent the ratio of the total

nutrient flux, inclusive of advection and consumption effects, over the diffusive nutri-
ent flux alone. The dissolution enhancement that is caused by nutrient consumption is
calculated as:

Edis =
ShR

ShR0
(12)

where ShR0 is the Sherwood number in the absence of uptake (Da = 0). The degradation
efficiency is the fraction of released nutrient that is consumed within a spherical shell of
outer radius r:

Edeg(r) = 1− QAs(r)
QAs(1)

(13)

2.6. Description of the High-Resolution Numerical Scheme

The advection-diffusion-bioreaction equation given in Equation (1) is solved numeri-
cally with a finite difference method in spherical coordinates. As there is no driving force
for a change in the concentration along the azimuthal direction, the solution is axisymmetric
and suffices to discretize the partial differential equation on the (r, θ) plane. The first and
second-order partial derivatives in the diffusion operator are discretized with the central
difference scheme of Sundqvist & Veronis [50]. The first-order derivatives in the advec-
tion operator are discretized with the third-order upwind scheme of Liu et al. [51]. This
combination successfully suppresses numerical diffusion at low Péclet numbers and non-
physical oscillations at high Péclet numbers. To further enhance the stability of the scheme,
the Dirichlet boundary condition given in Equation (2) is replaced by a non-reflecting
Neumann condition, dCAυ/dr = 0, on the outflow part (vυ,r > 0) of the outer boundary
for Pe ≥ 0.1. Finite differences transform Equation (1) into a sparse system of nonlinear
algebraic equations, which is solved with the Picard iterative method. At each iteration, a
linearized system is solved with the BiCGstab method [52].

The computational domain is discretized with a body-conforming non-uniform grid,
which consists of concentric circles and perpendicular rays. In the polar direction, the grid
spacing dθ is constant in the upstream region (0 < θ < θg) and decreases geometrically
in the downstream region (θg < θ < π). In the radial r-direction, the grid spacing dr
increases geometrically for 1 < r < Rg and then increases linearly up to the outer boundary
(Rg < r < R∞). This grid design provides high spatial resolution both around the particle
and also far downstream, thereby capturing the fine features of the boundary layer on the
particle surface and of the plume’s tail in the wake of the particle.

For the calculations presented in the Results, the grid parameters were optimized
to achieve high accuracy at reasonable computational time (Figure 2). For Pe ≥ 0.1, the
outer boundary was set at R∞ = 101 and the grid consisted of 621 × 253 computational
elements along the radial and polar directions, respectively. The angle of transition in the
polar spacing was θg = π/2, and the radius of transition in the radial spacing was Rg = 15.
In the polar direction, the spacing was maximum dθ = π/72 at the upstream pole (θ = 0)
and minimum dθ = 10−4 at the downstream pole (θ = π). In the radial direction, the grid
spacing was minimum dr = 5× 10−4 at the particle surface (r = 1) and maximum dr = 0.375
at the outer boundary (r = R∞). The thickness of the boundary layer scales with Pe1/3. The
grid contains 85 elements in a layer of thickness 0.1 (Pe = 1000) around the particle. For
the resolution of the plume’s tip at a distance of r = 60 in the wake of the particle, the grid
contains 60 elements within a chord of length 0.1 (Pe = 1000). For Pe < 0.1 and Pe > 1000,
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the outer boundary was set at R∞ = 201. To ensure that the results are grid-independent,
computations were also made with coarser and finer grids.
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Figure 2. Representative computational grid and detail of the trailing plume for Pe = 1000. The
computational grid is dense around and behind the particle so as to capture both the boundary layer
and the plume tail with sufficiently high numerical resolution.

3. Results and Discussion
3.1. Validation of the Numerical Methodology

The accuracy of our numerical scheme was verified by comparing our calculations
for the Sherwood number with available data from the literature. For zero consump-
tion (Da = 0), excellent agreement is observed with published data and correlations. The
correlation of Clift et al. [53] works perfectly over the entire range of Péclet:

ShR0 =
1
2

[
1 + (1 + 2PeR)

1/3
]

(14)

Furthermore, for zero consumption, mass conservation demands that Edeg = 0 for
1 ≤ r ≤ R∞. This constraint was also used to assess the overall performance and ability of
our numerical scheme to preserve the mass balance. A maximum deviation of

∣∣∣Edeg

∣∣∣ < 10−3

was achieved in all simulations. For finite consumption (Da > 0), our calculations are
in excellent agreement with the Yuge approximation [54] and available numerical data
(Figure 3). The planar film theory, ShR =

√
Da/tanh(2/ω) with ω = 1.26Pe1/3

R /
√

Da, is
applicable only if PeR > 100 or Da > 100, while the spherical film theory [55]:

ShR = 1 +
√

Da/tanh(2/ω) (15)

is acceptable over the entire range of Péclet and Damköhler for engineering applications.
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number, as a function of the Péclet and Damköhler numbers within the range defined in Table 1.
For zero consumption (Da = 0), our calculations are in excellent agreement with numerical data and
correlations from the literature [53,56–59]. For finite consumption (Da > 0), our calculations (circles)
are in good agreement with the Yuge approximation (colored lines), numerical data (stars) [54,60],
the planar film theory (black line) and the spherical film theory (black dotted lines) [55]. In addition
to the correlations given in the main text, we have: ShR0 = 1 + 0.6245Pe1/3

R (dashed line [56]),
ShR0 = 0.461 + 0.6245Pe1/3

R for Pe > 0.5 (green line [57]), and ShR0 = 1 + 0.5PeR + 0.5Pe2
R ln(Pe) for

Pe < 0.5 (cyan line [58]).

Table 1. Model parameters.

Symbol Range Units Description

R̃P 0.05–5 mm particle radius
ṽ∞ 0–100 m/d reference velocity (1)

D̃Aυ 10−5–10−7 cm2/s nutrient diffusivity (2)

B̃∞
υ 104–107 cells/mL bacterial abundance (3)

α̃S 0.01–10 pL/(cell·s) nutrient affinity (4)

Pe 0–1000 − Péclet number
Da 0–10 − Damköhler number (5)

1 see Section 3.6 and references therein; 2 Smriga et al. [43]; 3 Azam et al. [61]; 4 see Section 3.3; and 5 the uptake
coefficient is estimated as k̃∞ = α̃S B̃∞

υ [43,45–48].

3.2. Fundamental Timescales and Dimensionless Numbers

The nutrient field around marine organic particles is shaped by the interplay between
advection, diffusion and uptake by microorganisms. The relative importance of these
processes is quantified by the dimensionless Péclet and Damköhler numbers. In particular,
the Péclet number, Pe = ṽ∞R̃P/D̃Aυ, is the ratio of advective over diffusive transport
rates and captures the combined effect of the particle size, the particle velocity, and the
nutrient diffusivity. Similarly, the Damköhler number, Da = k̃∞R̃2

P/D̃Aυ, is the ratio of
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the uptake rate over the diffusive transport rate. In terms of fundamental timescales,
the Péclet and Damköhler numbers can be expressed as Pe = τ̃D/τ̃A and Da = τ̃D/τ̃U ,
respectively, where τ̃D = R̃2

P/D̃Aυ is the diffusion timescale, τ̃A = R̃P/ ṽ∞ is the advection
timescale, and τ̃U = k̃−1

∞ is the uptake timescale. Table 1 lists the physically relevant range
of values for the key system parameters engaged in timescale relations. The Péclet number
is suitable for slow-moving microparticles, and the Damköhler number is on the high end
for heterotrophic bacteria.

3.3. Nutrient Uptake Kinetics, Affinity and Timescale

The uptake timescale and, thus, the Damköhler number depend on the mechanisms of
nutrient uptake. Bacteria acquire nutrients in a two-step process that involves the physical
transport of solute molecules from the surroundings to the cell surface and, thereafter,
the trans-membrane transport from the extracellular to the intracellular space. Physical
transport is dominated by molecular diffusion, while advection is usually very weak at
the bacterial length scale [62]. Trans-membrane transport relies on three main mechanisms:
(1) passive diffusion through the lipid bilayer of small non-polar molecules, like oxygen
and carbon dioxide; (2) facilitated diffusion through channel proteins (porins) of water and
selected ions, like sodium and potassium; and (3) active intake by carrier proteins (porters)
of large or polar molecules, like amino acids and sugars. Uptake of most organic nutrients
is mediated by porters and the uptake rate per single-cell, ũA, is typically described by
Michaelis−Menten kinetics ũA = ũmaxC̃Aυ/

(
K̃S + C̃Aυ

)
, where ũmax is the maximum

uptake rate and K̃S is the half-saturation constant. The kinetic parameters, ũmax and K̃S,
depend on microbial traits (i.e., cell size and shape, number of porters, handling time of
nutrients by porters), as well as on the extracellular flow, the nutrient diffusivity, and the
temperature [63–65].

At high nutrient levels, C̃Aυ � K̃S, the membrane transport system is saturated and
the uptake rate obtains its maximum value ũA = ũmax. At low nutrient levels, C̃Aυ � K̃S,
the uptake rate becomes ũA = α̃SC̃Aυ where α̃S = ũmax/K̃S is the nutrient affinity, or
clearance rate, and stands for the fluid volume that is swept of nutrients by porters per
unit time. An upper bound for the nutrient affinity is α̃S,max = 4πR̃cell D̃Aυ [64] and has
been established for spherical cells that act as perfect absorbers (i.e., efficiently uptake any
nutrient molecules reaching their surface). For bacteria with an equivalent spherical radius
of R̃cell = 1µm and nutrients with diffusivity of D̃Aυ = 10−5cm2/s, the maximum affinity
is α̃S,max ∼ 12pL/(cell·s). Reported data for the bacterial affinity are tabulated below and
range from tenths of femtoliters up to a few picoliters per second per cell. The experimental
values are between 10% to 60% of the corresponding theoretical estimates, with acclimated
bacteria showing better performance.

The uptake timescale is estimated by the inverse uptake coefficient, τ̃U = k̃−1
∞ , and

relates to the nutrient affinity as τ̃U =
(

α̃S B̃∞
υ

)−1
, where B̃∞

υ is the average concentration

of free-living bacteria in ambient water and ranges from 104 cells/mL in the deep ocean
to 107 cells/mL in coastal waters [6,61]. In the presence of organic particles, the bacterial
concentration is expected on the high end of pertinent data, B̃∞

υ ∼ 106 − 107cells/mL,
because the elevated nutrient concentrations upregulate microbial growth rates [36] and
the hydrodynamic interactions trap microbes in close proximity to the particles [66]. For
particles with sizes in the range of R̃P = 0.1 − 1 mm, small nutrient molecules with
diffusivities on the order of D̃Aυ = 10−5 cm2/s, and bacteria with affinities in the range of
α̃S = 1− 10 pL/(cell·s), both of the uptake and diffusion timescales are on the order of
τ̃U , τ̃D ~ 10− 103 s, and the Damköhler number falls in the range of Da ∼ 0.01− 100. The
Damköhler number is generally invariant to the diffusion coefficient, because α̃S ∝ D̃Aυ

and any change in the diffusivity is cancelled out by a concomitant change in the uptake
affinity (see Table 2). For example, large solutes with diffusivities on the the order of
D̃Aυ = 10−6 cm2/s are uptaken by bacteria with lower affinities, α̃S = 0.1− 1 pL/(cell·s),
and the Damköhler range remains unchanged.
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Table 2. Literature review for experimental data delineating the range of the bacterial affinity for
organic and inorganic nutrients. Symbols: ũmax is the maximum uptake rate per cell, K̃S is the
half-saturation constant, α̃Sb is the per-biomass affinity, and α̃S is the per-cell affinity.

Bacteria Substrate ~
umax

~
KS

~
αSb

~
αS Reference[ nmol

(mg−cell)·h
] [

nM
] [ L

(mg−cell)·h
] [ pL

cell·s
]

Vibrio splendidus a phosphate 1330 100 d 13.3 4.27 [67]
Vibrio splendidus b phosphate 455 100 d 4.55 0.72 [68]
Roseobacter algicola phosphate 364 100 d 3.64 2.37 [68]

Nesjøen lake mixed culture phosphate 310 96 3.23 0.79 [69]
N. maritimus SCM1 ammonium 5231 134 39.04 0.63 [70]
Nitrospira inopinata ammonium 2596 840 3.09 0.11 [71]

Escherichia coli ML308 a glucose 2349 597 3.93 1.72 [49]
Escherichia coli ML308 b glucose 5390 13,000 0.41 0.27 [49]
Spirillum sp. DSM 1109 lactate 397 5800 0.07 0.010 [72]

Cycloclasticus oligotrophus toluene 13,132 651 20.17 1.40 [73]
Pseudomonas putida mt2 m-xylene 3750 340 11.03 1.01 [74]

p-xylene 4710 1300 3.62 0.33 [74]
toluene 4230 7700 0.55 0.050 [74]

Burkholderia sp. PS14 TCB c 667 2883 0.23 0.026 [75]
Pelagibacter HTCC1062 GBT c 12.63 0.89 14.19 0.141 [76]
Pelagibacter HTCC7211 GBT c 14.92 1.85 8.06 0.080 [76]

Vibrio sp. strain S14 leucine 35.70 760 0.05 0.033 [77]
Marinobacter arcticus leucine 53.36 198 0.27 0.025 [78]

a acclimated chemostat-grown cells, b non-acclimated batch-grown cells, c abbreviations for TCB = 1,2,4-
trichlorobenzene, GBT = glycine betaine, d based on Vadstein et al. [69].

With regard to the data listed in Table 2, most sources provide the maximum uptake
rate, ũmax, per milligrams of wet cell weight. Where necessary, the following conversion
factors were used: 0.3 (g dry cell weight) per (g wet cell weight), 5.7 (g wet cell weight)
per (g protein) [79], 0.17 pg-carbon per µm3 [69], and 0.1 fmol-phosphorus per µm3 [67].
The per-biomass affinity was calculated as α̃Sb = ũmax/K̃S and the per-cell affinity as
α̃S = α̃Sbm̃cell , where the single-cell wet mass, m̃cell , was estimated from the cell density
and volume upon assuming an average cell density of 1.1 g/mL [80].

3.4. Visualization and Metrics of Plume Quenching

Given the physically relevant range of Péclet and Damköhler, we now examine the
effects of advection (Pe) and uptake (Da) on the pattern and characteristic metrics of the
nutrient field around slow-sinking particles. Figure 4 shows that isotropic diffusion, at
a low Péclet number, spreads the nutrients into a spheroidal plume around the particle.
Enhanced advection, at a higher Péclet number, entrains the nutrients into an elongated
plume in the wake of the particle. The diffusive flux field, −∇CAυ, displays an intriguing
bunny-face pattern (Figure 5), in which advection stretches out the bunny ears along the
downstream direction. In all cases, nutrient uptake reduces the extent of the eutrophic
trailing plume and smoothes out the delicate features of the concentration gradient, with
increasing impact as the ratio of Pe/Da decreases. This combination of Damköhler with
Péclet, Pe/Da = ṽ∞τ̃U/R̃P, defines a new critical parameter that represents the ratio of the
advective transport rate over the uptake rate and captures the combined effects of particle
velocity, particle size and uptake timescale.
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shown at selected values of CAυ (0.1, 0.15, and 0.2–1.0 with step 0.1). The z- and x-axes measure the
dimensionless distance from the particle center.
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Figure 5. Effect of uptake (Da) on the diffusive flux field, −∇CAυ, around a slow-sinking particle
with Pe = 5 (top) and Pe = 50 (bottom). The grayscale represents the magnitude of the flux vector,
normalized by the maximum flux in each case. Black isoflux lines are shown at selected values (0.05,
0.1, 0.2, 0.3, 0.5, 0.7 and 0.9). Red fluxlines start at θ = kπ/6, with k = 0, . . . , 11 and specify the
direction of the flux field. In analogy to fluid streamlines, nutrient fluxlines are tangent to the flux
vector and define the paths followed by nutrient parcels leaving from the particle surface. The z- and
x-axes measure the dimensionless distance from the particle center.
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Figure 6 presents the effects of advection (Pe) and uptake (Da) on characteristic metrics
of the nutrient field. Under partition equilibrium, both advection and uptake sharpen the
nutrient distribution adjacent to the particle, especially at the upstream part, and increase
the speed of dissolution. Consequently, fast uptake may cause a several-fold increase in
the dissolution rate (Edis), but the effect is suppressed as advection gets stronger. A similar
trend is observed for the degradation efficiency (Edeg). At low Pe/Da ratios, elevated
consumption in the vicinity of the particle (Edeg~1) implies that the global degradation
rate is limited by the dissolution rate. On the other hand, negligible degradation efficiency
(Edeg~0), at high Pe/Da ratios, means that the global degradation rate is limited by the
uptake kinetics and nutrients dissipate into ambient water.
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Figure 6. Effects of advection (Pe), uptake (Da) and saturation (Csat) on characteristic metrics of the
nutrient field: dissolution enhancement (Edis), degradation efficiency at r = 3 (Edeg), plume length
(Lplm), and plume volume (Vplm). The detection threshold is Cdet = 0.1, and the saturation threshold
is Csat = 1 for filled circles (unsaturable uptake) and Csat = 0.1 for open circles. The color shading
highlights the saturation impact on each metric for three Damkohler numbers: Da = 0.1 (yellow),
Da = 1 (green), and Da = 10 (cyan).
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Compared to the plume metrics at low-Péclet numbers, strong advection may increase
the plume length by an order of magnitude and decrease the plume volume by two orders.
Concurrent nutrient uptake results in quenching of the plume extent, with significant
impact for Pe/Da < 100. The phenomenon of saturation is also important and, as expected,
mitigates the impacts of uptake. As shown in Figure 6, the saturation effect becomes more
pronounced with increasing Damköhler number. The dependence of the plume metrics on
saturation is nonlinear because the saturation threshold affects both the maximum uptake
rate and the volume in which the rate is limited.

3.5. Regulation of Plume Formation by Particle-Associated Bacteria

For biofilm-coated particles, the enzymatic and metabolic activities of the surface-
attached bacteria modulate the extent, intensity and composition of the eutrophic plume
around the particle (Figure 7). Experimental studies with marine aggregates suggest
that readily bioavailable nutrients, like amino and fatty acids, are enzymatically cleaved
from the extracellular biopolymer matrix much faster than utilized by bacteria on the
particle [6,25–29,39]. This phenomenon is known as uncoupled hydrolysis [6,25] and
may result in particles fully saturated with solubilized nutrients. Under such conditions,
partition equilibrium reasonably applies at the particle-water interface and plume formation
is determined by transport in ambient water. Furthermore, in a recent experimental study,
Alcolombri et al. [31] investigated the degradation of alginate microparticles by surface-
attached bacteria and found that the release of solubilized oligo-alginate increases with
increasing flow velocity (i.e., Péclet number). This trend is also captured by transport-
limited dissolution, which inherently features a Péclet-dependent release rate (Figure 2).
In this regard, the results presented in the previous section are most suitable for fresh
aggregates enriched with bioavailable nutrients and high enzymatic capacity.
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Figure 7. Effects of controlled release on the length (Lplm) and volume (Vplm ) of the eutrophic
plume around a nutrient-releasing particle. Higher release rate (qAs ) represents elevated activities
of particle-associated bacteria. The orange line with filled circles corresponds to transport-limited
dissolution and represents the uncoupled hydrolysis concept set forth by Azam and coworkers [6,25,39],
in which the enzymatic capacity significantly exceeds intraparticle uptake and leakage to ambient
water. The orange line also delimits the domains of supersaturated (CAs > 1) and undersaturated
particles (CAs < 1). Plume metrics were calculated for Da = 0.1 and Cdet = 0.1 in all cases. The
reference state (qAs = 1 ) corresponds to a saturated particle in equilibrium with the surrounding
water (Pe = 0, Da = 0 ).
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However, the microbiological and chemical composition of biofilm-coated particles
changes with time, on the order of hours to days, due to microbial activities, succession
dynamics, cell lysis, zooplankton grazing, absorption and desorption of cells, solutes and
elementary particles from and to the surrounding water [6–8,23,38,81–83]. Intraparticle
enzymatic activities also change [28,29]. For example, proteins and organic phosphorus are
preferentially hydrolyzed in fresh marine aggregates, whereas polysaccharides are released
in later stages by mature aggregates [28]. In conditions of limited enzymatic capacity, the
nutrient release rate is tightly coupled to the intraparticle bacterial activities and basic
insight into plume formation can be obtained through the boundary condition given in
Equation (4) for reaction-limited dissolution. As shown in Figure 7, the interplay between
nutrient release and advection may result in either supersaturated particles with large
plumes or undersaturated particles with small plumes, as compared to the standard set by
transport-limited dissolution. Interestingly, under controlled nutrient release, the eutrophic
plume attenuates non-linearly with lowering release rate. For aggregates with marked
spatial heterogeneity of bacterial activities, full resolution of the biochemical coupling
between particle-associated and free-living bacteria would require to combine the present
model formulation with models of intraparticle transport [24,44] and the concomitant
biofilm dynamics [84,85].

3.6. Ecological Significance of Nutrient Plume Quenching

Plume quenching is plausible when the nutrient uptake rate is faster than the plume
dissipation rate by advection and diffusion. In terms of fundamental timescales, the uptake
timescale, τ̃U , must be shorter than the lifetime of the plume, τ̃plm. For advection dominated
transport (Pe > 1), the plume lifetime is on the order of τ̃plm = L̃plm/ ṽ∞ [48] and, thus,
the timescale condition τ̃U < τ̃plm can be expressed in terms of the particle- based Péclet
and Damköhler numbers as Pe/Da < Lplm. This is a nonlinear relation as the plume
length also depends on the Péclet and Damköhler numbers. However, for the parameter
range of interest, our numerical analysis has shown that it suffices to set Pe/Da < 100
(Figure 6). Back-substitution of dimensional quantities, results in an upper bound for
the applicable particle velocity, ṽ∞ < (100/τ̃U)R̃P, in relation to the particle size and the
uptake timescale.

For diffusion-dominated transport (Pe < 1), the plume lifetime is on the order of
τ̃plm = L̃2

plm/D̃Aυ and the timescale condition τ̃U < τ̃plm can be expressed as Da > L−2
plm. In

practice, a measurable change (>5%) of the plume metrics is achieved when Da > 10−4 and

sets a lower bound on the applicable particle size, R̃P > 0.01
√

τ̃U D̃Aυ. For reasonably fast
uptake (τ̃U = 100 s) of small nutrient molecules (D̃Aυ = 10−5 cm2/s), plume quenching
is expected to be substantial when the particle radius is over 3 µm. For larger nutrient
molecules (D̃Aυ = 10−6 cm2/s), the radius limit falls to 1 µm. Therefore, the competition
between uptake and diffusion is of relevance to individual phytoplankton cells [62,86].

Another constraint is set upon the applicable particle types by the low Reynolds
condition, Re = ρ̃υ ṽ∞R̃P/µ̃υ < 1. In the marine environment, the hypothesis of laminar
flow regime with Re < 1 is suitable for slowly drifting, sinking or rising particles in deep
waters, but also in the epipelagic zone of calm open ocean with low energy dissipation
rate (< 10−5 cm2/s3) [42]. However, an upper bound is set on the applicable particle size
and velocity, ṽ∞ < (µ̃υ/ρ̃υ)R̃−1

P . Considering that the kinematic viscosity of seawater is
about µ̃υ/ρ̃υ ∼ 10−2 cm2/s [37], the low Reynolds condition is satisfied by individual
phytoplankton cells (Table 1 in [62]), as well as marine snow microparticles.

As shown in Figure 8, the above timescale conditions are satisfied by sinking marine
aggregates with size (diameter) in the range of 0.1 mm to 10 mm and velocity less than
40 m per day. For larger particles or higher velocity, the nutrient field is dominated by
advection. For smaller particles, like individual phytoplankton cells, molecular diffusion
also becomes important (Figure 9). In agreement with Jackson’s [48] analysis, a large
fraction of marine aggregates generates short-lived plumes with lifetime below 100 s
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(cyan-shaded and non-shaded areas in Figure 8). However, there also exists a significant
fraction of marine aggregates with longer plume lifetime, τ̃plm > 100 s, for which uptake by
microbes contributes significantly in shaping the nutrient field (green and yellow shaded
areas in Figure 8). Consequently, plume quenching is impactful for slow-sinking large
particles with small solutes (e.g., marine snow releasing hydrolyzed amino acids [25]), and
for small particles with large solutes (e.g., phytoplankton cells excreting polysaccharides of
high molecular weight [87]).
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Figure 8. Phase diagram in the velocity–size space delineating the domain of prevalence for the
fundamental transport processes that shape the nutrient field around sinking marine aggregates.
The symbols represent experimental data for the sinking velocity (SV) and the equivalent sphere
diameter (ESD) of individual aggregates (circles) or populations of aggregates (stars). The lines
represent theoretical boundaries established by timescale conditions. The black lines correspond to
Re = 1 (solid) and Re = 10 (dashed), with a kinematic viscosity of µ̃υ/ρ̃υ = 10−2 cm2/s for seawater.
The solid grey line corresponds to Pe = 1 with D̃Aυ = 10−5 cm2/s. The colored lines correspond to
Pe/Da=100 with uptake timescale τ̃U = 10 s for dark cyan, τ̃U = 100 s for dark green, and τ̃U = 1000 s
for orange. The plume lifetime is in the range of >1000 s in the yellow-shaded area, 100–1000 s in the
green-shaded area, 10–100 s in the cyan-shaded area, and <10 s in the non-shaded area. Microbial
uptake and plume quenching are important for data falling in the green-yellow areas, modest in the
cyan area, and negligible in the non-shaded area. Figure citations: [22,86–97].
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Figure 9. Phase diagram in the velocity-size space delineating the domain of prevalence for the
fundamental transport processes that shape the nutrient field around individual phytoplankton
cells. The symbols correspond to experimental data (Table 1 in [86]). The lines represent theoretical
boundaries estimated by timescale conditions. The grey lines correspond to Pe = 1. The dark green
lines correspond to Pe/Da = 100 with uptake timescale τ̃U = 100s. The arrowheads point at critical
diameters corresponding to Da = 10−4. The nutrient diffusivity is D̃Aυ = 10−5cm2/s for small
solutes (black arrow, solid lines) and D̃Aυ = 10−6cm2/s for large solutes (blue arrow, dashed lines).

The morphology and composition of marine aggregates strongly affect their sinking
behavior [89,96], and underpin the significant scatter of data observed in Figure 8. Marine
aggregates consist of exopolymer substances (EPS), microorganisms, mineral particles and
detritus [4–8]. The EPS matrix, inclusive of transparent exopolymer particles (TEP), acts as
a glue and provides cohesion and structural stability to the aggregate. High EPS content is
typically correlated with large, slow-sinking aggregates. For example, the sinking velocity
of diatom aggregates [88,98], biomass-associated minerals [99] and microplastics [22] was
found to decrease with increasing EPS content. This interesting trend is partly attributed
to the interstitial water, which is physico-chemically absorbed by the EPS matrix dur-
ing aggregate formation. Marine gels, the precursors of aggregates [5], usually form in
low salinity waters of the epipelagic layer or freshwater rivers, hence binding interstitial
water of low excess density. Thereafter, as the aggregates sink through denser seawater,
they slow down and increase their residence time or even get trapped in strong pycno-
clines [83,100,101]. Mineral particles also affect the mechanics and settling behavior of the
aggregates [18,99], with higher mineral content resulting in stiffer aggregates of high excess
density and sinking velocity. For example, aggregates affected by turbid estuarine waters
of the Mississippi river were rich in clay and sank faster than similarly sized aggregates
formed in offshore waters of the Black Sea [96]. Based on the above, plume formation
and quenching is expected to be more pronounced for aggregates with high EPS and low
mineral content.

The aggregate morphology is another key determinant of particle transport in the
sea. A wide range of aggregate shapes has been observed in situ with underwater video
cameras and microscopes [83,102]. In modeling studies, marine aggregates are typically
represented by spherical particles [37,43,44,66,101], because nearly spherical aggregates
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exist in situ [97] and the sphere is the simplest shape that can serve as a reference for
comparisons between different studies. What is more important, recent experimental
work demonstrated that the rigid sphere model provides satisfactory agreement with the
measured dissolution pattern around individual aggregates, either synthetic or natural
(see, for instance, Figure 1d in [31], Figure 6 in [44], and Figure 9 in [88]). Furthermore,
McDonnell & Buesseler [93] successfully described the observed variability for the velocity
of sinking aggregates by combining the rigid sphere model for small particles of high
sphericity with the rigid cylinder model for elongated particles of low sphericity. Based on
the above information, the rigid sphere model is a reasonable first approximation towards
capturing salient features of plume formation and quenching in marine waters. Subsequent
modeling studies could investigate the process for marine aggregates with soft material
behavior [103] and fractal geometry [22].

3.7. Further Perspective on Plume Quenching Implications

Ocean-level models of the biological carbon pump rely on the dichotomy between fast-
and slow-sinking particles [1]. In contrast to rapidly sinking, slow-sinking particles have
low density, high porosity and negligible mineral content. Over the entire spectrum of sink-
ing rates, the particulate flux declines with depth [9]. Fast-sinking particles are susceptible
to fragmentation [104], whereas slow-sinking ones are consumed by surface- attached mi-
crobes [11,31] and zooplankton [35]. Recent lines of evidence leverage the high abundance
and strong control of slow-sinking particles over biogeochemical cycles [11,105–108]. For
instance, in situ measurements revealed that slow-sinking particles (<30 m/d) prevail in
the vertical POM flux in the Atlantic Ocean [107], and small particles (128–512 µm) control
the rate of anaerobic ammonium oxidation in the hypoxic zone of the Southeast Pacific
Ocean [108]. In this context, the microscale process of plume feeding and quenching by
free-living bacteria underpins a large potential impact on the rates of particle degradation
and nutrient depletion and, optimally, should be incorporated in ocean-level models of
POM and DOM transport.

In this work, we investigated the base effects of plume quenching by considering
uniformly distributed bacteria around the particle. This setup is reasonable because the
oceanic microbiome is typically dominated by non-motile bacteria, like Pelagibacters of
the SAR11 clade [76,109], for which there is no driving force to significantly disrupt a
uniform spatial distribution [46,47]. The fraction of motile chemosensing bacteria, which
are able to respond to nutrient gradients and cluster around particles [40,110], is usually
low (<10%) [111]. However, chemotactic bacterial clustering is expected to be important in
eutrophic coastal waters, after episodic terrestrial runoffs and algal blooms [42,43]. Under
conditions of such particulate blooms, the effects of plume quenching may be further
amplified and deserve to be examined separately. Future research should also address the
impacts of finite Reynolds number and irregularly shaped particles.

4. Conclusions

Our computational analysis shows that microbial uptake can significantly quench the
extent and intensity of the nutrient plume in the wake of slow-moving particles when the
uptake timescale is shorter than the plume lifetime or, equivalently, when Pe/Da < 100.
In the context of marine ecosystems, plume quenching is expected to be substantial for
individual phytoplankton cells as well as marine snow aggregates with sizes in the range
of 0.1–10 mm and velocities up to 40 m/d. Our single-particle analysis could be used to
parameterize ocean-level models [15,16] and, ultimately, lead to improved predictions of
POM transport, nutrient transformations and microbial growth dynamics.
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