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Abstract

This diploma thesis explores the application of machine learning techniques to time-
series analysis, focusing on the yearly number of sunspots dataset. The introduction
begins with a presentation of fundamental concepts in time-series analysis, encompassing
stochastic processes, correlation, stationarity, heteroscedasticity, and time-series decom-
position methods. The thesis then delves into crucial aspects of time-series forecasting
including dataset splitting, cross-validation, evaluation metrics, and various forecasting
strategies, emphasizing both one-step and multi-step forecasting.

A key focus of this research is the examination of non-linear data transformations and
their role in enhancing model predictive performance by achieving desirable properties of
the transformed dataset, such as normality and stationarity. The study also investigates
advanced machine learning methods, such as Gaussian Processes (GPs), Gradient Boost-
ing Decision Trees (GBDT), and Long Short-Term Memory (LSTM) neural networks in
the context of time-series forecasting.

This thesis contains a case study which involves the analysis and forecasting of the
yearly number of sunspots. First, we take advantage of GPs, which constitute a proba-
bilistic non-parametric regression framework. We use a constant mean function and an
exponential multiplied by a periodic covariance kernel, while assuming i.i.d. Gaussian
noise, and Gaussian likelihood of the data. To square with these assumptions, we apply
the κ-logarithmic transformation (Kaniadakis G., 2009), that accounts for the skewness,
heteroscedasticity, and non-negativity of the sunspot data. Then, we train the model on
the transformed data. We optimized the model’s hyperparameters using maximum like-
lihood estimation (MLE). Next, we utilize the algorithm of LightGBM (Light Gradient
Boosting Machine), which is a gradient-boosting framework of regression trees, that is
well-known for its efficiency and accuracy in regression tasks. The tuning of hyperparam-
eters is carried out using Bayesian optimization with the goal to minimize the validation
loss. Finally, we use an especial form of recurrent neural network (RNN), the LSTM, which
comprise a deep learning architecture, capable of capturing long-term dependencies and
complex patterns. It consists of cells, each of which is connected to three gates (input,
forget, and output) responsible for information flow. We implemented an LSTM model
with multiple layers capable of forecasting the yearly number of sunspots, and optimized
its hyperparameters using grid search with the objective of minimizing the validation loss.
All in all, this real-world example illustrates the effectiveness of the discussed machine
learning techniques in modeling time-series data and producing competitive predictions.

A comparative analysis which examines the strengths and weaknesses of each of these
methods is presented. GP regression excels in interpretability, delivers uncertainty es-
timates along with point estimates, and can capture complex patterns using different
kernels, but it requires the computationally intensive inversion of large covariance ma-
trices (large dataset). LSTM performs well in capturing long-term dependencies, but it
needs large amounts of data, time, and resources for tuning and training, and it suf-
fers from error accumulation on long-term predictions. LightGBM can capture complex
patterns as well, and it is more computationally efficient, making its training faster.

All in all, this thesis provides insights into the performance and characteristics of
three powerful machine learning methods for sunspot number prediction. Our findings
collectively mark a significant stride in the application of advanced machine learning
techniques to forecast and analyze time-series data across diverse disciplines.
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1 Introduction

1.1 The growth of time-series data in the contemporary era

In today’s rapidly evolving world, data has become the lifeblood of decision-making
and innovation across various domains. Among the myriad forms of data that have
emerged as invaluable assets, time-series data stands out as a particularly crucial compo-
nent in understanding phenomena and navigating the complex landscape of contemporary
challenges. Time-series data, as the name suggests, refers to a sequence of data points
collected or recorded at successive intervals over time. These data sets are omnipresent,
ranging from financial market prices, weather measurements, and sensor data from in-
dustrial machinery to healthcare records, social media interactions, and beyond. What
makes time-series data distinctive is its inherent temporal dimension, allowing us to ana-
lyze how variables change over time, detect patterns, and uncover hidden insights. As a
result, time-series data has evolved from being merely a tool for retrospective analysis to
a critical resource for predictive and prescriptive analytics, aiding in forecasting, anomaly
detection, and decision support across numerous domains.

In parallel with the rise of time-series data, the advent of big data has revolutionized
the way we collect, store, process, and utilize information. Big data is characterized
not only by its sheer volume but also by its velocity, variety, and veracity. Massive
datasets, generated from diverse sources, have become available at an unprecedented
scale. Technologies like cloud computing, distributed storage systems, advanced analytics
tools, machine learning, and artificial intelligence have empowered scientists to harness
the potential of big data to uncover valuable insights, gain competitive advantages, and
drive innovation.

The fusion of time-series data with big data has introduced new dimensions to our
understanding of complex phenomena. By integrating historical trends with real-time
information, scientists can make more informed decisions and adapt to changing circum-
stances with greater agility. For instance, financial institutions use time-series data to
monitor market fluctuations and predict trading opportunities, while healthcare providers
leverage it to enhance patient care through predictive diagnostics. In the realm of smart
cities, time-series data helps optimize traffic management and energy consumption, im-
proving the quality of urban life. Moreover, researchers and scientists rely on time-series
data analysis to explore climate patterns, track disease outbreaks, and even study the
behavior of subatomic particles.

The importance of time-series data and big data in today’s world cannot be over-
stated. It is very important to develop new methods, utilizing state-of-the-art machine
learning algorithms, capable of capturing relationships between data, modeling their be-
havior, and producing accurate forecasts of them. To demonstrate the application of these
methodologies, this thesis includes a case study on the yearly mean total sunspot number
time-series. Solar activity has various implications on satellite communications, naviga-
tion systems, power distribution systems, and climate change, while it has direct relation
to space weather forecasting. Sunspots, the fundamental indicators of solar activity, are
cooler dark areas that appear on the surface of the Sun, caused by a concentration of
magnetic field lines. The solar, or sunspot, cycle is a quasi-periodic change in the Sun’s
activity, measured in terms of variations in the number of observed sunspots on the Sun’s
surface. The dominant 11-year period is presumably induced by the electromagnetic solar
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dynamo mechanism, and based on that, we can build physics-informed models.
How are the aforementioned machine learning algorithms built and how can they be

used to model time-series data? How accurately can we predict the occurrence and behav-
ior of sunspots? In our data-driven era, can advanced machine learning algorithms provide
a novel and effective means to enhance our understanding and prediction of sunspot activ-
ity? In this thesis, we aim to address these questions and enhance our understanding of all
the underlying procedures. In Section 2, we present fundamental principles of time-series
analysis, including stochastic processes, stationarity, heteroscedasticity, and time-series
decomposition methods. In Section 3, essential concepts under machine learning and
time-series forecasting are introduced, while in Section 4 we highlight the significance of
applying non-linear transformations to the data in order to achieve desired properties
and enhance the performance of the underlying models. Next, in Sections 5, 6, and 7,
the algorithms of “Gaussian Process Regression”, “Gradient Boosting Decision Trees”, and
“Long Short-Term Memory” neural networks are presented. In Section 9, we get an idea
of Heliophysics and solar activity, and in Section 10, we make an exploratory analysis
of the time-series of both, yearly and monthly, sunspot numbers. Finally, in Section 11,
we focus on the forecasting of the yearly mean total sunspot number using the presented
machine learning methods.

1.2 Motivation for studying sunspots

Next, we will focus on the various aspects of solar activity in order to clarify the
motivation behind studying them. The effects of sunspots become even more pronounced
during periods of higher activity. Increased sunspot activity correlates with a higher
frequency of solar flares and coronal mass ejections, which in turn intensify geomagnetic
storm activity on Earth. These storms affect satellites in space, causing loss of data or
operation. Furthermore, during sunspot maximums, we witness a surge in the Northern
and Southern Lights, and increased risk of disruptions in radio transmissions and power
grids. Below, we will refer to another aspect of interest in solar activity that has direct
relation with Earth’s climate and environment.

Beyond the aforementioned significant implications of sunspots, it is worth referring
to a recently published paper by Liang et al. [8], which discusses the relationship between
solar activity—specifically sunspot number—and the El Niño Modoki events. The El Niño
Southern Oscillation (ENSO) is a climate phenomenon characterized by the warming of
the sea surface temperatures in the central and eastern equatorial Pacific Ocean. It
occurs irregularly every 2 to 7 years and can have significant impacts on weather patterns
around the world. During El Niño, there is a weakening of the trade winds, which leads
to a reduction in upwelling of cold water and a decrease in the strength of the eastern
Pacific Ocean’s cold tongue. This results in changes in atmospheric circulation patterns
and can lead to droughts, floods, and other extreme weather events in different regions.
El Niño Modoki is a specific type of El Niño that is characterized by a different pattern
of sea surface temperature anomalies in the equatorial Pacific. Unlike the traditional El
Niño, which is characterized by warm anomalies in the eastern Pacific, El Niño Modoki is
characterized by warm anomalies in the central Pacific and cooler anomalies in the eastern
and western Pacific. This different pattern of sea surface temperature anomalies leads to
distinct climate impacts compared to the traditional El Niño. For example, during El
Niño Modoki, the western coast of the United States may experience drought conditions,
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while during traditional El Niño events, it is typically wetter.
Liang et al. suggest that information flowing from solar activity 45 years ago can

influence sea surface temperatures and result in a causal structure resembling the El Niño
Modoki mode. This information flow, which represents the transfer of predictability, is
computed using a multidimensional system constructed from sunspot number series with
time delays of 22-50 years. The paper highlights that the predictability of El Niño Modoki
events can be achieved by using the sunspot numbers as predictors. Specifically, the first
25 principal components of the sunspot number series are taken as predictors, and through
causal AI based on the information flow, the events can be accurately reproduced up to 12
years in advance. This research provides valuable insights into the potential predictability
of climate phenomena, such as El Niño Modoki, by studying sunspot time-series.

1.3 Peak solar activity is arriving sooner than expected

Several articles are written continuously regarding the solar activity and the prediction
of the current cycle’s peak. Sarah Scoles [9] states in a recent Science article that “scientists
tackle a burning question; when will our quiet sun turn violent?”. In her article, she
makes clear that scientists are working to predict when the sun will reach its peak of
violent bursts of magnetic activity, known as solar maximum, and the potential impact
on technology. Emphasis is given on the potential consequences of a major solar storm,
similar to the Carrington Event of 1859, which caused disruptions in telegraph lines and
could have dire consequences for modern infrastructure. The publication further asserts
the efforts of a panel of scientists sponsored by NASA and NOAA to analyze various
models and come to a consensus about the next solar cycle. There is a debate among
scientists regarding the best approach to predict solar activity. Some scientists question
the use of sunspots as a proxy for predicting the Sun’s behavior, considering them as
symptoms rather than causes of solar activity. They argue that sunspots are just one
aspect of a larger, still mysterious story playing out inside the sun. Given that, the article
discusses different models and approaches being used to predict solar activity, including
physics-based simulations and statistical correlations. It acknowledges that some models
lack a strong connection to solar physics and rely on correlations found through statistical
analysis. However, it also mentions the work of scientist Scott McIntosh, who proposes
an alternative theory suggesting that “bright spots” in the Sun’s outer atmosphere may
be better markers for predicting solar activity.

Also reporting in Science, Zack Savitsky [10] points out that “the peak of solar activity
is arriving sooner than expected and the Sun’s flare-ups can threaten satellites and electric
grids, highlighting the need for better forecasts”. His article highlights the potential
implications of the earlier and more intense peak solar activity. It mentions that the Sun’s
upcoming cycle is expected to be stronger than the previous one, which was relatively
mild. The increased solar activity can lead to particle storms that pose risks to various
technological systems, including satellites, radio transmissions, and power grids. The
publication refers to the process of predicting solar activity. Scientists typically track
solar cycles by counting sunspots, which are flares of activity caused by magnetic field
loops. The prediction panel analyzed around 60 different forecast models in 2019, ranging
from statistical models to advanced computer models that simulate the Sun’s dynamo
and magnetic fields. The panel’s consensus was that the monthly sunspot count would
peak at around 115 in July 2025, making it a relatively weak cycle. However, the Sun
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has already shown more activity than expected, with 159 sunspots in July and 115 in
August. The discrepancy between the panel’s prediction and the actual solar activity
raises the need for better observations of the Sun and a deeper understanding of the
factors influencing its magnetic field. The article also mentions the importance of the
polar magnetic field in predictions and the limitations of current observations from the
Wilcox Solar Observatory. Equally important, the source indicates ongoing research, such
as the observations of “bright points” by Scott McIntosh and his colleagues, which suggest
the interaction of magnetic field bands and their potential influence on solar activity.
Savitsky concludes by emphasizing the need for continuous research and the readiness to
revise predictions in the field of solar activity forecasting. He acknowledges the progress
made in understanding the Sun’s dynamo, but also highlights the work that still needs
to be done to improve predictions and mitigate the potential impacts of increased solar
activity on Earth.

In light of the above introduction, the study of the time series of sunspots by means of
machine learning methods provides an exciting combination of new methodologies coupled
with a very interesting physical application.
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2 Fundamentals in Time-Series Analysis

2.1 Stochastic processes and time-series

A stochastic process, often referred to as a random process, constitutes a fundamental
mathematical concept applied within the realms of probability theory and related fields. It
can be conceptualized as a sequence of random variables, wherein the index of the sequence
typically represents the concept of time [11]. The utility of stochastic processes extends
across a wide spectrum of disciplines, including biology, chemistry, ecology, neuroscience,
physics, image processing, signal processing, control theory, information theory, computer
science, and telecommunications. In the domain of finance, stochastic processes have
found extensive use, primarily driven by the need to capture and model the seemingly
random movements observed in financial markets.

2.1.1 Probability space

A probability space is a triple (Ω,A, P ), where [12]:

• Ω is a non-empty set, which is called the sample space.

• A is a σ-algebra of subsets of Ω, i.e., a family of subsets closed with respect to
countable union and complement with respect to Ω.

• P is a probability measure defined for all members of A. That is a function P : A →
[0, 1] such that P (A) ≥ 0 for all A ∈ A, P (Ω) = 1, P (∪∞i=1Ai) =

∑∞
i=1 P (Ai), for all

sequences Ai ∈ A such that Ak ∩ Aj = ∅ for k ̸= j.

2.1.2 Random variables

A real-valued random variable X is a function that maps from a sample space Ω, which
contains all possible outcomes of a random experiment, to the real numbers R. Formally,
it is

X : Ω→ R

Random variables can be classified into two main categories:

• Discrete random variables: These can take on a countable number of distinct
values. An example is the number of heads in three coin tosses.

• Continuous random variables: These can take on an infinite number of possible
values over a continuum. An example is the amount of time a bus takes to arrive.
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2.1.3 PDF, PMF, and CDF

The probability density function (PDF) describes the likelihood of a continuous ran-
dom variable X taking on a specific value x, and it is denoted as fX(x). Note that the
value of the PDF at a specific point indicates the probability density, not the probabil-
ity itself. The probability mass function (PMF) describes the probability of a discrete
random variable X taking on a specific value x from the set RX , and it is denoted as
PX(X = x) or just PX(x). The cumulative distribution function (CDF) describes the
probability that a random variable (continuous or discrete) will take on a value less than
or equal to a certain value x, PX(X ≤ x), and it is denoted as FX(x). It is

P (X ≤ x) = FX(x)

=

{∫ x

−∞ fX(u)du , if X is continuous∑
xi≤x PX(xi) , if X is discrete with range RX = {xi, i ∈ I}

(2.1)

P (a ≤ X ≤ b) = FX(b)− FX(a)

=

{∫ b

a
fX(u)du , if X is continuous∑
a≤xi≤b PX(xi) , if X is discrete with range RX = {xi, i ∈ I}

(2.2)

fX(x) =
d

dx
FX(x), if X is continuous (2.3)

The integral of the PDF across the entire range of the random variable is equal to 1.
Likewise, the summation of the PMF over all feasible values of the random variable also
equals 1. As the random variable ranges from negative infinity to positive infinity, the
CDF attains lower and upper limits of 0 and 1 respectively.

2.1.4 Expected value

In informal terms, the expectation of a discrete random variable, characterized by
a countable set of potential outcomes, is defined in a manner analogous to a weighted
average of all conceivable outcomes. In this context, the weights are determined by the
probabilities associated with each specific outcome. This is to say that

E[X] =
∑
i∈I

xipi (2.4)

where RX = {xi, i ∈ I} are the possible outcomes of the random variable X and PX =
{pi = P (X = xi), i ∈ I} are their corresponding probabilities.

Now consider a continuous random variable X which has a probability density function
given by a function fX on the real number line. This means that the probability of X
taking on a value in any given open interval is given by the integral of f over that interval.
The expectation of X is then given by the integral

E[X] =

∫ ∞

−∞
xfX(x)dx (2.5)
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2.1.5 Variance and standard deviation

Variance is the squared deviation from the mean of a random variable X. It is repre-
sented by Var(X) or σ2

X as it is often defined as the square of the standard deviation σX .
Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is
spread out from their average value. The variance of a random variable X is the expected
value of the squared deviation from the mean of X, which is µ = E[X]. Formally, it is

Var(X) = E[(X − µ)2] = E[X2]− (E[X])2 (2.6)

More specific, for each case of random variable X, we have

Var(X) =

{∫∞
−∞ (x− µ)2fX(x)dx , if X is continuous∑
i∈I (xi − µ)2pi , if X is discrete

(2.7)

Figure 2.1: Probability Mass Function (PMF) and Cumulative Distribution Function
(CDF) for a fair die roll with squared values on each side. In the PMF, the probabilities
of each outcome (from 12 to 62) are plotted, each having an equal probability of 1/6. The
CDF illustrates the cumulative probability of obtaining a value less than or equal to the
given squared outcome. As expected for a fair die, the CDF increases linearly with each
additional outcome, reaching a probability of 1 at 62.

2.1.6 Covariance

Covariance serves as a metric for quantifying the joint variability exhibited by two
random variables. When the higher values of one variable predominantly align with the
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Figure 2.2: Probability Density Function (PDF) and Cumulative Distribution Function
(CDF) for a standard normal distribution. The PDF illustrates the familiar bell-shaped
curve, centered at 0, which represents the likelihood of each value in the continuous
random variable. The CDF provides the cumulative probability of obtaining a value less
than or equal to a given outcome. For the standard normal distribution, the CDF curve
starts from 0, increases gradually in a sigmoidal shape, passing through 0.5 at the mean
(which is 0), and asymptotically approaches 1 as the value goes towards positive infinity.

higher values of the other variable, and similarly, the lower values correspond, resulting
in both variables displaying similar behavior, the covariance is positive. Conversely, when
the greater values of one variable predominantly coincide with the lower values of the
other, indicating opposite behavior between the variables, the covariance is negative. In
essence, the sign of the covariance reflects the tendency in the linear relationship between
these variables. The magnitude of the covariance is determined by the geometric mean of
the variances that both random variables share in common.

For two jointly distributed real-valued random variables X and Y with finite second
moments, the covariance is defined as the expected value (or mean) of the product of their
deviations from their individual expected values. Formally, it is

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ] (2.8)

where E[X] is the expected value of X, also known as the mean of X. It is often to deal
with sample populations and not with random variables. The covariance formula, when
applied to a sample of N observations for the values of X and Y , takes the following form:

Cov(X, Y ) =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) (2.9)
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Figure 2.3: Scatter plots demonstrating covariances between two random variables X and
Y under different relationships. Left plot: Represents a positive relationship between
X and Y . As values of X increase, values of Y tend to also increase, suggesting a
positive covariance. Middle plot: Illustrates a negative relationship between X and Y .
An increase in values of X typically corresponds to a decrease in values of Y , implying
a negative covariance. Right plot: Depicts no clear relationship between X and Y . The
spread of data points is fairly uniform, suggesting that the covariance is close to zero or
very minimal.

2.1.7 Pearson correlation coefficient

The Pearson correlation coefficient (PCC) serves as a correlation metric designed to
assess the linear correlation between two sets of data. It quantifies the relationship by
calculating the ratio between the covariance of these two variables and the product of
their respective standard deviations. This computation normalizes the measurement of
covariance, ensuring that the resulting value always falls within the range of −1 to 1.
Similar to covariance, the Pearson correlation coefficient is exclusively capable of indicat-
ing linear correlations between variables. It does not account for or capture other forms
of relationships or correlations that may exist between them.

Given a pair of random variables (X, Y ), the PCC is given by

ρX,Y =
Cov(X, Y )

σXσY

(2.10)

Pearson correlation coefficient can, also, be applied to a sample of N observations for
the values of X and Y . Given paired data {(x1, y1), . . . , (xN , yN)} consisting of N pairs,
then the formula of PCC is

ρX,Y =

∑N
i=1 (xi − x̄)(yi − ȳ)√∑N

i=1 (xi − x̄)2
√∑N

i=1 (yi − ȳ)2
(2.11)
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2.1.8 Stochastic processes

A real-valued stochastic process is a sequence of random variables indexed by t ∈ I
on the probability space (Ω,A, P ):

I × Ω→ R
(t, ω)→ X(t, ω) = Xt(ω)

where Ω is the sample space, ω ∈ Ω is a state of the nature such that xt = X(t, ω), A is
a σ-algebra, and P is a probability measure [13].

We will always assume that the cardinality of I is infinite, either countable or un-
countable. If the cardinality of I is finite, then X is not considered a stochastic process,
but rather a random vector. It will be useful to consider separately the cases of discrete
time and continuous time. If I = Z+, then we call X = {Xn, n = 0, 1, 2, . . .} a discrete
time stochastic process, and it is a countable collection of random variables indexed by
the non-negative integers. If I = R+, then X = {Xt, 0 ≤ t < ∞} is said to be a
continuous time stochastic processes, and it is an uncountable collection of random
variables indexed by the non-negative real numbers.

2.1.9 Time-series

A realization of a stochastic process for a given ω ∈ Ω, (Xt)t∈Z+ , is the mapping
defined by

Z+ → R
t→ xt(ω)

The realization of a stochastic process is said to be a time-series or a chronological se-
ries [13].

In a more intuitive way, a time-series can be seen as a variable that is observed at
different regular periods, t = t1, t2, . . . , tk. The time elapsed between two observations is
constant, e.g., daily, monthly, quarterly or yearly. There are many datasets available in
the form of such time-series. In that case, often, it is useful to calculate the sample mean
and variance of the data. Assume that we have N real-valued observations, then

µ̂ = x̄ =
1

N

N∑
i=1

xi (2.12)

σ̂2 =
1

N − 1

N∑
i=1

(xi − x̄)2 (2.13)

Also, we can identify the type of the distribution of our data by drawing the histogram
and experiment with fitting various probability distributions until we find the one that
fits our data the best.



2 Fundamentals in Time-Series Analysis 35

Figure 2.4: Let X(t, s) be a stochastic process. At the first plot, we see five realizations
of the stochastic process for different values of s. Each realization can be seen as a time-
series. At the rest three plots we see the probability density function (PDF) of the random
variables that result for three different values of t.

2.1.10 The auto-correlation and auto-covariance functions

We will introduce the auto-correlation function by first defining the auto-covariance
function [14]. The auto-covariance function of a series (Xt)t∈Z+ is defined as

γX(t, t+ h) ≡ Cov(Xt, Xt+h) (2.14)

where the definition of covariance is given by

Cov(Xt, Xt+h) ≡ E[XtXt+h]− E[Xt]E[Xt+h]

Similarly, the above expectations are defined as

E[Xt] ≡
∫ ∞

−∞
xft(x)dx

E[XtXt+h] ≡
∫ ∞

−∞

∫ ∞

−∞
x1x2ft,t+h(x1, x2)dx1dx2

where ft(x) and ft,t+h(x1, x2) denote, respectively, the density of Xt and the joint density
of the pair (Xt, Xt+h). Considering the notation used above, it should be clear that Xt

is assumed to be a continuous random variable. Since we generally consider stochastic
processes with constant zero mean, we often have

γX(t, t+ h) = E[XtXt+h]
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In addition, in the context of this book we will normally drop the subscript referring to
the time series (i.e. X in this case) if it is clear from the context which time series the
auto-covariance refers to. For example, we generally use γ(t, t+h) instead of γX(t, t+h).
Moreover, the notation is even further simplified when the covariance of Xt and Xt+h is
the same as that of Xt+j and Xt+h+j (for all j), i.e. the covariance depends only on the
time between observations and not on the specific time t. This is a consequence of an
important property called stationarity that was mentioned earlier and will be discussed
in the next section. In this case, we simply use the notation

γ(h) = Cov(Xt, Xt+h) (2.15)

This is the definition of auto-covariance that will be used from this point on-wards and
therefore this notation will generally be used throughout the text, thereby implying certain
properties for the process (Xt)t∈Z+ (i.e. stationarity). With this in mind, several remarks
can be made on the auto-covariance function:

1. The auto-covariance function is symmetric. That is, γ(h) = γ(−h) since Cov(Xt, Xt+h) =
Cov(Xt+h, Xt)

2. The auto-covariance function “contains” the variance of the process as Var(Xt) =
γ(0)

3. We have that |γ(h)| ≤ γ(0) for all h. The proof of this inequality is direct and
follows from the Cauchy-Schwarz inequality, i.e.,

(|γ(h)|)2 = (γ(h))2 = (E[(Xt − E[Xt])(Xt+h − E[Xt+h])])
2

≤ E[(Xt − E[Xt])
2]E[(Xt+h − E[Xt+h])

2] = (γ(0))2

4. Just as any covariance, γ(h) is “scale dependent” since γ(h) ∈ R. We therefore have:

• if |γ(h)| is “close” to zero, then Xt and Xt+h are “weakly” (linearly) dependent.
• if |γ(h)| is “far” from zero, then the two random variables present a “strong”

(linear) dependence.

However, it is generally difficult to assess what “close” and “far” from zero means in
this case.

5. γ(h) = 0 does not imply that Xt and Xt+h are independent, but simply that they are
uncorrelated. The independence is only implied by γ(h) = 0 in the jointly Gaussian
case.

As hinted in the introduction, an important related statistic is the correlation of Xt

with Xt+h or auto-correlation [14], which is defined as

ρ(h) = Corr(Xt, Xt+h) =
Cov(Xt, Xt+h)

σXtσXt+h

=
γ(h)

γ(0)
(2.16)

Similarly to γ(h), it is important to note that the above notation implies that the auto-
correlation function is only a function of the lag h between observations. Thus, auto-
covariances and auto-correlations are one possible way to describe the joint distribution
of a time series. Indeed, the correlation of Xt with Xt+h is an obvious measure of how
persistent a time-series is. Remember that just as with any correlation:
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1. ρ(h) is “scale free” so it is much easier to interpret than γ(h).

2. |ρ(h)| ≤ 1 since |γ(h)| ≤ γ(0).

3. Causation and correlation are two very different things.

2.1.11 Univariate and multivariate time-series

A univariate time-series, as the name suggests, is a series with a single time-dependent
variable. This type of time-series consists of scalar observations recorded sequentially over
equal time increments. On the other hand, a multivariate time-series has more than one
time-series variable. Each variable depends not only on its past values but also has some
dependency on the other variables. This dependency is generally used for forecasting
future values. In that type of time-series, particularly, we are interested to identify the
degree of dependency between these variables. Granger’s causality test can be used to
identify the relationship between variables prior to model building. This is important
because if there is no relationship between variables, they can be excluded and modeled
separately. Conversely, if a relationship exists, the variables must be considered in the
modeling phase.

2.1.12 Granger causality

Granger defined the causality relationship based on two principles [15]:

1. The cause happens prior to its effect.

2. The cause has unique information about the future values of its effect.

G-causality is normally tested in the context of linear regression models. For illustration,
consider a bivariate linear autoregressive model of two variables, X1 and X2. It is

X1(t) =

p∑
j=1

A11,jX1(t− j) +

p∑
j=1

A12,jX2(t− j) + E1(t) (2.17)

X2(t) =

p∑
j=1

A21,jX1(t− j) +

p∑
j=1

A22,jX2(t− j) + E2(t) (2.18)

where p is the maximum number of lagged observations included in the model (the model
order), the matrix A contains the coefficients of the model (i.e., the contributions of each
lagged observation to the predicted values of X1(t) and X2(t), and E1 and E2 are residuals
(prediction errors) for each time-series. If the variance of E1 (or E2) is reduced by the
inclusion of the X2 (or X1) terms in the first (or second) equation, then it is said that X2

(or X1) Granger-(G)-causes X1 (or X2). In other words, X2 G-causes X1 if the coefficients
in A12 are jointly significantly different from zero. This can be tested by performing an
F-test of the null hypothesis that A12 = 0, given assumptions of covariance stationarity
on X1 and X2. The magnitude of a G-causality interaction can be estimated by the
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logarithm of the corresponding F-statistic [16]. Note that model selection criteria, such
as the Bayesian Information Criterion or the Akaike Information Criterion, can be used
to determine the appropriate model order p [17].

2.2 Decomposition of time-series

Time-series data can display a multitude of distinctive patterns, and it proves advan-
tageous to dissect a time series into multiple components, each representing a distinct
underlying pattern category. In the context of this subsection, we explore several preva-
lent techniques used for extracting these components from time series data. Frequently,
this decomposition process is undertaken to enhance comprehension of the time-series it-
self, but it also serves the purpose of refining forecast accuracy by isolating and modeling
specific patterns or trends [18].

2.2.1 Components of a time-series

In describing a time-series, we use words such as “trend” and “seasonal”, which need
to be defined more carefully. A time-series is usually decomposed into[18]:

• Trend component: A trend exists when there is a long-term increase or decrease in
the data. It does not have to be linear. Sometimes we will refer to a trend as “changing
direction”, when it might go from an increasing trend to a decreasing trend.

• Seasonal component: A seasonal pattern occurs when a time series is affected by
seasonal factors, such as the time of the year or the day of the week. Seasonality is
always of a fixed and known frequency.

• Cyclic component: A cycle occurs when the data exhibit rises and falls that are not
of a fixed frequency. These fluctuations are repeated but non-periodic. The duration
of these fluctuations depend on the nature of the time series.

• Remainder component: It describes random, irregular influences or “noise”. It
represents the residuals or remainder of the time series after all the other components
have been removed.

Sometimes the trend and cyclical components are grouped into one, called the trend-
cycle component [18]. The trend-cycle component can just be referred to as the “trend”
component, even though it may contain cyclical behavior.

Seasonal behavior and cyclical behavior are frequently confused, but they are really
quite different. If the fluctuations are not of a fixed frequency, then they are cyclic; if
the frequency is unchanging and associated with some aspect of the calendar, then the
pattern is seasonal. In general, the average length of cycles is longer than the length
of a seasonal pattern, and the magnitudes of cycles tend to be more variable than the
magnitudes of seasonal patterns.

Many time series include trend, cycles and seasonality. When choosing a forecasting
method, we will first need to identify the time series patterns in the data, and then
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choose a method that is able to capture the patterns properly. If we assume an additive
decomposition, then we can write [18]

yt = St + Tt +Rt (2.19)

where yt is the data, St is the seasonal component, Tt is the trend-cycle component, and
Rt is the remainder component, all at time t. Alternatively, a multiplicative decom-
position would be written as [18]

yt = St · Tt ·Rt (2.20)

An alternative to using a multiplicative decomposition is to first transform the data
until the variation in the series appears to be stable over time, then use an additive
decomposition. When a log transformation has been used, this is equivalent to using a
multiplicative decomposition because [18]

yt = St · Tt ·Rt is equivalent to log (yt) = log (St) + log (Tt) + log (Rt) (2.21)

An additive model would be used when the variations around the trend do not vary with
the level of the time series whereas a multiplicative model would be appropriate if the
trend is proportional to the level of the time series.

2.2.2 Moving averages

The classical method of time series decomposition originated in the 1920s and was
widely used until the 1950s. It still forms the basis of many time series decomposition
methods, so it is important to understand how it works. The first step in a classical
decomposition is to use a moving average method to estimate the trend-cycle [18].

Let yt be a time series where t = 0, 1, . . . , n, and yt represents the observation at time
t. A simple moving average (SMA) of order m at time t can be written as

SMAt =
1

m

m−1∑
i=0

yt−i (2.22)

where m ∈ Z is the window size or the number of periods over which we are averaging.
The summation runs over the most recent m data points up to time t. Observations that
are nearby in time are also likely to be close in value. Therefore, the average eliminates
some of the randomness in the data, leaving a smooth trend-cycle component. We call
this an m-MA, meaning a moving average of order m. The SMA provides a smoothed line
which can help to identify the direction (upward or downward) of the underlying trend
of the data. If the SMA line is rising, it suggests an upward trend, while a falling SMA
line suggests a downward trend. By choosing an appropriate window size, you can filter
out the higher-frequency fluctuations (like seasonal or irregular variations) to focus on
the underlying cycle. For example, in monthly data with a yearly cycle, an SMA with a
window size of 12 (i.e., 12 months) can help highlight the cyclical pattern.

In a cumulative moving average (CMA), the data arrive in an ordered datum
stream, and the user would like to get the average of all of the data up until the current
datum. The CMA at time t is

CMAt =
1

t

t∑
i=0

yi (2.23)
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CMA focuses on long-term behavior since it considers all prior data. While it is less
commonly used than SMA for trend-cycle decomposition, CMA can provide insights into
the overall trajectory or growth pattern of a series. Since CMA considers all past data,
it’s less suited for cycle identification, especially for longer time series where you might
be interested in more recent cycles.

A weighted moving average (WMA) is an average that has multiplying factors to
give different weights to data at different positions in the sample window. Mathematically,
the weighted moving average is the convolution of the data with a fixed weighting function.
The WMA at time t is

WMAt =

∑m−1
i=0 wiyt−i∑m−1

i=0 wi

(2.24)

Here wi is the weight assigned to the data point yt−i within the moving window. Typically,
weights decrease as data points get older. WMA can be more responsive to recent changes
than SMA because of the weighting scheme. If recent data points are given higher weights,
WMA will adjust more quickly to changes in the trend. Similar to the SMA, selecting
an appropriate window size and weight distribution in WMA can help filter out high-
frequency noise and highlight underlying cyclical patterns.

An exponential moving average (EMA), also known as an exponentially weighted
moving average (EWMA), is a first-order infinite impulse response filter that applies
weighting factors which decrease exponentially. The weighting for each older datum de-
creases exponentially, never reaching zero. The EMA at time t is

EMAt = α · yt + (1− α) · EMAt−1 (2.25)

where α is the smoothing factor, a number between 0 and 1. Larger values of α mean
that the EMA will be more responsive to recent values. For the first calculation of the
EMA (i.e., at t = 1), you can either use the first data point itself or an SMA as a starting
value. EMA is particularly useful for trend identification in data with more volatility.
Because it assigns exponentially decreasing weights to older data, it can react faster to
recent changes in the trend than SMA. Adjusting the smoothing factor α can fine-tune
its responsiveness. EMA can help identify cycles, especially if the cycles are somewhat
irregular or if the amplitude of the cycle changes over time. Its sensitivity to recent data
allows it to track more adaptive cycles.

In Figure 2.5, there is a synthetic time-series with all the aforementioned types of
moving averages drawn on it.

2.2.3 Classical decomposition

The classical decomposition method originated in the 1920s. It is a relatively simple
procedure, and forms the starting point for most other methods of time series decompo-
sition. There are two forms of classical decomposition: an additive decomposition and
a multiplicative decomposition [18]. These are described below for a time series with
seasonal period m (e.g., m = 4 for quarterly data, m = 12 for monthly data, m = 7
for daily data with a weekly pattern). In classical decomposition, we assume that the
seasonal component is constant from year to year. For multiplicative seasonality, the m
values that form the seasonal component are sometimes called the “seasonal indices”.
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Figure 2.5: Synthetic time-series alongside its various moving averages: Simple (SMA),
Cumulative (CMA), Weighted (WMA), and Exponential (EMA).

We will get through the basic steps of the classical decomposition method, for both,
additive and multiplicative models. Classical additive decomposition includes the
following steps [18]:

1. Compute the trend component T̂t. For example, we can use any of the moving aver-
age variants (e.g., m-SMA), or a linear regression based on ordinary least squares.

2. Calculate the detrended series by yt − T̂t.

3. To estimate the seasonal component for each season, simply average the detrended
values for that season. For example, with monthly data, the seasonal component
for March is the average of all the detrended March values in the data. These
seasonal component values are then adjusted to ensure that they add to zero. The
seasonal component is obtained by stringing together these monthly values, and
then replicating the sequence for each year of data. This gives Ŝt.

4. The remainder component is calculated by subtracting the estimated seasonal and
trend-cycle components: R̂t = yt − T̂t − Ŝt.

In Figure 2.6, there is a synthetic time-series, which is decomposed into trend, seasonality,
and remainder, using the classical additive decomposition.

A classical multiplicative decomposition is similar, except that the subtractions
are replaced by divisions. It includes the following steps [18]:

1. Compute the trend component T̂t. For example, we can use any of the moving aver-
age variants (e.g., m-SMA), or a linear regression based on ordinary least squares.
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2. Calculate the detrended series by yt
T̂t

.

3. To estimate the seasonal component for each season, simply average the detrended
values for that season. For example, with monthly data, the seasonal index for
March is the average of all the detrended March values in the data. These seasonal
indices are then adjusted to ensure that they add to m. The seasonal component
is obtained by stringing together these monthly indices, and then replicating the
sequence for each year of data. This gives Ŝt.

4. The remainder component is calculated by subtracting the estimated seasonal and
trend-cycle components: R̂t =

yt
T̂t·Ŝt

.

In Figure 2.7, there is a synthetic time-series, which is decomposed into trend, seasonality,
and remainder, using the classical multiplicative decomposition.

Figure 2.6: Decomposition of a synthetic time-series using an additive model comprising
trend, seasonality, and remainder. Column 1: Original time-series along with its true
components. Column 2: Classical decomposition using linear regression to estimate the
trend. Column 3: Classical decomposition utilizing Simple Moving Average (SMA) for
trend estimation. Both decomposition methods aim to isolate and represent the inherent
trend, seasonality, and noise characteristics of the original series.

2.2.4 STL decomposition

Seasonal and Trend decomposition using Loess (STL) is a versatile, robust and widely-
used time series decomposition technique that aids in the analysis of temporal data,
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Figure 2.7: Decomposition of a synthetic time-series using a multiplicative model com-
prising trend, seasonality, and remainder. Column 1: Original time-series along with its
true components. Column 2: Classical decomposition using linear regression to estimate
the trend. Column 3: Classical decomposition utilizing Simple Moving Average (SMA) for
trend estimation. Both decomposition methods aim to isolate and represent the inherent
trend, seasonality, and noise characteristics of the original series.

while Loess is a method for estimating nonlinear relationships developed by Cleveland,
McRae, and Terpenning (1990) [19], STL is particularly useful for decomposing time series
data into its constituent components: the seasonal, trend, and remainder (or residual)
components. This technique is valuable for various applications, including economics,
environmental science, and epidemiology, where understanding underlying patterns is
crucial.

STL offers several advantages for time-series analysis:

• Robustness: STL is robust to outliers and can handle data with irregular or non-
uniform seasonal patterns.

• Flexibility: By adjusting the smoothing parameters, users can control the degree of
smoothing applied to the seasonal and trend components, allowing for fine-tuning to
the specific characteristics of the data. In addition, the seasonal component is allowed
to change over time, and the rate of change can be controlled by the user.

• Interpretability: The decomposition into seasonal, trend, and remainder compo-
nents makes it easier to interpret the underlying patterns and identify changes over
time.
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• Prediction: Once the components are separated, forecasting models can be applied
to each component separately, which often leads to more accurate predictions.

The two main parameters to be chosen when using STL are the trend-cycle window
(t.window) and the seasonal window (s.window). These control how rapidly the trend-
cycle and seasonal components can change. Smaller values allow for more rapid changes.
Both t.window and s.window should be odd numbers; t.window is the number of consec-
utive observations to be used when estimating the trend-cycle; s.window is the number
of consecutive years to be used in estimating each value in the seasonal component. The
user must specify s.window as there is no default. Setting it to be infinite is equivalent
to forcing the seasonal component to be periodic (i.e., identical across years). Specifying
t.window is optional, and a default value will be used if it is omitted. We will not get
further into the STL decomposition here.

2.3 Stationarity

Stationarity is one of the most important concepts when working with time-series data.
A stationary series is one in which the properties, i.e., mean, variance and covariance, do
not vary with time. Let us understand this using an intuitive example. Consider the three
plots shown in Figure 2.8 [20]:

• In the first plot, we can clearly see that the mean varies (increases) with time which
results in an upward trend. Thus, this is a non-stationary series. For a series to be
classified as stationary, it should not exhibit a trend.

• Moving on to the second plot, we certainly do not see a trend in the series, but the
variance of the series is a function of time. As mentioned previously, a stationary
series must have a constant variance.

• If we look at the third plot, the spread becomes closer as the time increases, which
implies that the covariance is a function of time.

The three first examples shown in Figure 2.8 represent non-stationary time series. Now
we look at the fourth plot in Figure 2.8. In this case, the mean, variance and covariance
are constant with time. This is what a stationary time series looks like. Most statistical
models require the series to be stationary to make effective and precise predictions.

2.3.1 Types of stationarity

A stochastic process (or a time-series (Xt)t∈Z is said to be strongly or strictly sta-
tionary if the joint distribution of (Xt1 , . . . , Xtk) is identical to that of (Xt1+t, . . . , Xtk+t)
for all t, where k is an arbitrary positive integer and (t1, t2, . . . , tk) is a collection of k
positive integers. An equivalent definition is given as follows. A stochastic process (or
a time-series) (Xt)t∈Z is said to be strongly or strictly stationary if the distribution of
(Xt)t∈Z is identical to that of (Xt)t∈Z with Yt = Xt + h. Strong stationarity is equiva-
lent to say that the distribution is invariant over time. Strong stationarity is often too
restrictive since it requires that the time-series is completely invariant over time, i.e., all
moments are constant over time [13].
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Figure 2.8: Various types of time-series. The first three are non-stationary. The fourth is
stationary.

A stochastic process (Xt)t∈Z is weakly stationary, if it satisfies the following prop-
erties:

1. E[Xt] = m is time-invariant

2. Var(Xt) is time-invariant

3. Cov(Xt, Xt+h) = E[(Xt −m)(Xt+h −m)] = γX(h) is time-invariant

Weak stationarity exploits the “stability” of the first two moments, whereas strong sta-
tionarity implies the stability of all the moments (among others). Strong stationarity
implies weak stationarity as long as the first two moments exist. The converse is not true
in general [13].

The aim is to convert a non-stationary series into a strict stationary series for making
predictions. Another type of stationarity is trend stationarity. A series that has no unit
root but exhibits a trend is referred to as a trend stationary series [20]. Once the
trend is removed, the resulting series will be strict stationary. The KPSS test classifies a
series as stationary on the absence of unit root. This means that the series can be strict
stationary or trend stationary. One more type of stationarity is difference stationarity.
A time series that can be made strict stationary by differencing falls under difference
stationary [20]. ADF test is also known as a difference stationarity test.
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2.3.2 Dickey-Fuller test

The Dickey-Fuller (DF) test in statistics tests the null hypothesis that an autoregres-
sive (AR) time series model contains a unit root. Depending on the test version being
utilized, the alternative hypothesis may vary, but it is typically stationarity or trend-
stationarity. The test is named after the statisticians David Dickey and Wayne Fuller,
who developed it in 1979 [21].

A simple AR model is

yt = ρyt−1 + ut (2.26)

where yt is the variable of interest, t is the time index, ρ is a coefficient, and ut is the
error term (assumed to be white noise). A unit root is present if ρ = 1. The model would
be non-stationary in this case. The regression model can be written as

∆yt = (ρ− 1)yt−1 + ut = δyt−1 + ut (2.27)

where ∆ is the first difference operator and δ ≡ ρ − 1. This model is estimable, and
checking for a unit root is the same as checking that δ = 0. Standard t-distribution
cannot be used to provide critical values since the test is conducted over the residual
term rather than the raw data. As a result, the Dickey-Fuller table, which is a special
distribution for this statistic t, was created. There are three main versions of the test [22]:

1. Test for a unit root:

∆yt = δyt−1 + ut (2.28)

2. Test for a unit root with constant:

∆yt = α0 + δyt−1 + ut (2.29)

3. Test for a unit root with constant and deterministic time trend:

∆yt = α0 + α1t+ δyt−1 + ut (2.30)

Each version of the test has its own critical value which depends on the size of the
sample. In each case, the null hypothesis is that there is a unit root, δ = 0. The tests
have low statistical power in that they often cannot distinguish between true unit-root
processes (δ = 0) and near unit-root processes (δ is close to zero). This is called the “near
observation equivalence” problem [22].

The test is conceptualized as follows. It tends to go back to a fixed (or deterministically
trending) mean if the series y is stationary (or trend-stationary). This means that small
values will typically be followed by bigger values (positive changes), and large values by
smaller values (negative changes). In light of this, the level of the series will have a
negative coefficient and be a major predictor of the change in the following period. On
the other hand, if the series is integrated, then positive changes and negative changes will
happen with probabilities that are independent of the series’ current level, much as how
where you are at any one moment in a random walk has no bearing on which way you
will move next [22].
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2.3.3 Augmented Dickey-Fuller test

In statistics, an augmented Dickey–Fuller test (ADF) tests the null hypothesis that a
unit root is present in a time series sample [23]. The alternative hypothesis is different
depending on which version of the test is used, but is usually stationarity or trend-
stationarity. It is an augmented version of the Dickey–Fuller test for a larger and more
complicated set of time series models. The augmented Dickey–Fuller (ADF) statistic,
used in the test, is a negative number. The more negative it is, the stronger the rejection
of the hypothesis that there is a unit root at some level of confidence [24].

The testing procedure for the ADF test is the same as for the Dickey–Fuller test, but
it is applied to the model

∆yt = α + βt+ γyt−1 +

p−1∑
i=1

δi∆yt−i + ut (2.31)

where α is a constant, β the coefficient on a time trend and p the lag order of the au-
toregressive process. Imposing the constraints α = 0 and β = 0 corresponds to modelling
a random walk, and using the constraint β = 0 corresponds to modeling a random walk
with a drift. Consequently, there are three main versions of the test, analogous to the
ones discussed on Dickey–Fuller test [25].

By including lags of the order p the ADF formulation allows for higher-order autore-
gressive processes. This means that the lag length p has to be determined when applying
the test. One possible approach is to test down from high orders and examine the t-
values on coefficients. An alternative approach is to examine information criteria such
as the Akaike information criterion, Bayesian information criterion or the Hannan–Quinn
information criterion [25].

The unit root test is then carried out under the null hypothesis γ = 0 against the
alternative hypothesis of γ < 0. Once a value for the test statistic

DFτ =
γ̂

SE(γ̂)
(2.32)

is computed, it can be compared to the relevant critical value for the Dickey–Fuller test.
As this test is asymmetrical, we are only concerned with negative values of our test statistic
DFτ . If the calculated test statistic is less (more negative) than the critical value, then
the null hypothesis of γ = 0 is rejected, and no unit root is present [25].

The intuition behind the test is that if the series is characterised by a unit root process,
then the lagged level of the series (yt−1) will provide no relevant information in predicting
the change in yt besides the one obtained in the lagged changes (∆yt−k). In this case,
γ = 0 and null hypothesis is not rejected. In contrast, when the process has no unit root,
it is stationary and hence exhibits reversion to the mean - so the lagged level will provide
relevant information in predicting the change of the series and the null hypothesis of a
unit root will be rejected [25].

2.3.4 Augmented Dickey-Fuller Generalized Least Squares test

The ADF-GLS test (or DF-GLS test) is a test for a unit root in a time-series sample.
It was developed by Elliott, Rothenberg and Stock (ERS) in 1992 [26] as a modification
of the augmented Dickey–Fuller test (ADF).
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No constant, No trend Constant, No trend Constant, Trend
N 0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10
25 -2.661 -2.273 -1.955 -1.609 -3.724 -3.318 -2.986 -2.633 -4.375 -3.943 -3.589 -3.238
50 -2.612 -2.246 -1.947 -1.612 -3.568 -3.213 -2.921 -2.599 -4.152 -3.791 -3.495 -3.181
100 -2.588 -2.234 -1.944 -1.614 -3.498 -3.164 -2.891 -2.582 -4.052 -3.722 -3.452 -3.153
250 -2.575 -2.227 -1.942 -1.616 -3.457 -3.136 -2.873 -2.573 -3.995 -3.683 -3.427 -3.137
500 -2.570 -2.224 -1.942 -1.616 -3.443 -3.127 -2.867 -2.570 -3.977 -3.670 -3.419 -3.132

> 500 -2.567 -2.223 -1.941 -1.616 -3.434 -3.120 -2.863 -2.568 -3.963 -3.660 -3.413 -3.128

Table 2.1: Critical values for Dickey–Fuller t-distribution [2].

A unit root test determines whether a time series variable is non-stationary using
an autoregressive model. For series featuring deterministic components in the form of
a constant or a linear trend, then ERS developed an asymptotically point optimal test
to detect a unit root. This testing procedure dominates other existing unit root tests in
terms of power. It locally de-trends data series to efficiently estimate the deterministic
parameters of the series, and use the transformed data to perform a usual ADF unit root
test. This procedure helps to remove the means and linear trends for series that are not
far from the non-stationary region [26].

Consider a simple time-series model yt = dt + ut with ut = ρut−1 + et where dt is the
deterministic part and ut is the stochastic part of yt. When the true value of ρ is close to
1, estimation of the model, i.e. dt will pose efficiency problems, because yt will be close
to non-stationarity. In this setting, testing for the stationarity features of the given times
series will also be subject to general statistical problems. To overcome such problems,
ERS suggested to locally difference the time series [27].

Consider the case where closeness to 1 for the autoregressive parameter is modelled as
ρ = 1− c

T
where T is the number of observations. Now consider filtering the series using

1− c̄
T
L with L being a standard lag operator, i.e. ȳt = yt− c̄

T
yt−1. Working with ȳt would

result in power gain, as ERS show, when testing the stationarity features of yt using the
augmented Dickey-Fuller test. This is a point optimal test for which c̄ is set in such a
way that the test would have a 50 percent power when the alternative is characterized by
ρ = 1− c

T
for c = c̄. Depending on the specification of dt, c̄ will take different values [27].

2.3.5 Kwiatkowski–Phillips–Schmidt–Shin test

In econometrics, Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [28] tests are used for
testing a null hypothesis that an observable time series is stationary around a deterministic
trend (i.e. trend-stationary) against the alternative of a unit root.

Contrary to most unit root tests, the presence of a unit root is not the null hypothesis
but the alternative. Additionally, in the KPSS test, the absence of a unit root is not a
proof of stationarity but, by design, of trend-stationarity. This is an important distinction
since it is possible for a time series to be non-stationary, have no unit root yet be trend-
stationary. In both unit root and trend-stationary processes, the mean can be growing or
decreasing over time; however, in the presence of a shock, trend-stationary processes are
mean-reverting (i.e. transitory, the time series will converge again towards the growing
mean, which was not affected by the shock) while unit-root processes have a permanent
impact on the mean (i.e. no convergence over time) [29].
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Later, Denis Kwiatkowski, Peter C. B. Phillips, Peter Schmidt and Yongcheol Shin
(1992) [28] proposed a test of the null hypothesis that an observable series is trend-
stationary (stationary around a deterministic trend). The series is expressed as the sum
of deterministic trend, random walk, and stationary error, and the test is the Lagrange
multiplier test of the hypothesis that the random walk has zero variance. KPSS-type
tests are intended to complement unit root tests, such as the Dickey–Fuller tests. By
testing both the unit root hypothesis and the stationarity hypothesis, one can distinguish
series that appear to be stationary, series that appear to have a unit root, and series for
which the data (or the tests) are not sufficiently informative to be sure whether they are
stationary or integrated [30].

ADF Test KPSS Test Result
Non-Stationary Non-Stationary Series is not stationary
Stationary Stationary Series is stationary
Non-Stationary Stationary Trend stationary, remove trend to make series strict stationary
Stationary Non-Stationary Difference stationary, use differencing to make series stationary

Table 2.2: In general, it is always better to apply both tests, ADF and KPSS, so that
we are sure that the series is truly stationary. This table shows the possible outcomes of
applying these stationary tests.

2.3.6 Phillips–Perron test

In statistics, the Phillips–Perron test (PP), named after Peter C. B. Phillips and Pierre
Perron, is a unit root test [31]. It is used in time-series analysis to test the null hypothesis
that a time series is integrated of order 1. It builds on the Dickey–Fuller test of the
null hypothesis ρ = 1 in ∆yt = (ρ − 1)yt−1 + ut, where ∆ is the first difference opera-
tor [32]. Like the augmented Dickey–Fuller test, the Phillips–Perron test addresses the
issue that the process generating data for yt might have a higher order of autocorrelation
than is admitted in the test equation-making yt−1 endogenous and thus invalidating the
Dickey–Fuller t-test. Whilst the augmented Dickey–Fuller test addresses this issue by
introducing lags of ∆yt as regressors in the test equation, the Phillips–Perron test makes
a non-parametric correction to the t-test statistic. The test is robust with respect to
unspecified autocorrelation and heteroscedasticity in the disturbance process of the test
equation.

Davidson and MacKinnon (2004) [33] report that the Phillips–Perron test performs
worse in finite samples than the augmented Dickey–Fuller test.

2.4 Homoscedasticity and heteroscedasticity

In statistics, a sequence or vector of random variables is considered homoscedastic
if all its constituent random variables possess the same finite variance. This property
is also referred to as homogeneity of variance. Conversely, the complementary concept
is termed heteroscedasticity, which signifies a condition where the random variables
exhibit varying variances. Assuming that a variable is homoscedastic when it is, in reality,
heteroscedastic can lead to unbiased but inefficient point estimates and biased estimates of
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standard errors. Such a misjudgment may also result in an overestimation of the goodness
of fit, as quantified by the Pearson correlation coefficient.

In regression analysis, we talk about heteroscedasticity in the context of the residuals
or error term. We are assuming a linear regression model applied on time-series data. The
time-series is considered to be heteroscedastic if there is a systematic change in the spread
of the residuals over the range of measured values. In other words, heteroscedasticity is
a condition where the error variance is not constant on the independent variable. on
the other hand, homoscedasticity is a condition where a variance error is constant in any
condition of the independent variable. Time series with non-constant variance often have
a long-tailed distribution. The data is left- or right-skewed.

The presence of heteroscedasticity poses a significant challenge in regression analysis
and the analysis of variance. It undermines the validity of statistical significance tests that
presuppose all modeling errors to have identical variances. In addition, many statistical
methods for time-series analysis assume homoscedasticity. Consequently, it is crucial to
mitigate this phenomenon. One way to do that, is by applying an appropriate transfor-
mation on the data. Such transformations are the logarithmic, the k-logarithmic, or the
Box-Cox (see Section 4).

(a) Plot with random data showing ho-
moscedasticity. At each value of x, the y-value
of the dots has about the same variance.

(b) Plot with random data showing het-
eroscedasticity. The variance of the y-values of
the dots increase with increasing values of x.

Figure 2.9: Illustration of homoscedasticity and heteroscedasticity.
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3 Time-Series Forecasting

Time-series forecasting is an important component of data analysis that aims to predict
future values based on historical observations. As data collection becomes larger and more
sophisticated, the demand for accurate forecasts to support decision-making processes has
led to the integration of machine learning techniques into time-series analysis.

3.1 Machine learning in time-series analysis

Machine learning techniques have found widespread application in time-series analysis
due to their ability to capture complex patterns and relationships in time data. These
applications can perform extensive classification and regression tasks.

In classification, a label or category is assigned to a given data point. Chronologically,
the classification task may include the identification of events, anomalies, or trends in
a sequence of observations. For example, determining whom a voice recording is, or
categorizing an electrocardiography signal as normal or give the type of abnormality,
fall under the umbrella of classification. On the other hand, the regression predicts
a continuous numerical value depending on the input variables. In time-series analysis,
regression models are often used to predict future values of a variable based on its historical
behavior. This fits well with the primary goal of time-series forecasting, which is to
forecast the future based on past observations.

In this thesis, our primary focus lies in the realm of time-series regression and
forecasting. Regression techniques aim to model the relationship between the input
features and the target variable, allowing us to predict future values based on historical
patterns. Forecasting, a specific form of regression, is centered around predicting future
observations within a time-series dataset.

3.2 Regression in machine learning

Regression is a statistical modeling technique used to understand the relationship
between a dependent variable and one or more independent variables. It aims to build
a mathematical model capable of making predictions or estimating the values of the
dependent variable for new or unseen data points. The dependent variable is also known
as the target variable or the outcome variable, while the independent variables are often
referred to as predictors, features, or input vector.

In regression, the dependent variable is usually continuous, meaning it can take on
any numerical value within a given range. The independent variables can be either
continuous or categorical. If there is only one independent variable, it is called simple
regression, while multiple independent variables are referred to as multiple regression.

The most common type of regression is linear regression, where the relationship
between the variables is assumed to be linear. Other types of regression include polyno-
mial regression, which allows for curved relationships, and logistic regression, which
is used when the dependent variable is categorical. However, more advanced techniques
have been developed to capture complex relationships and improve prediction accuracy.
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Gaussian process regression is a flexible and non-parametric approach that models
the relationship between variables as a distribution of functions. It allows for uncertainty
estimation and can capture non-linear relationships effectively. By defining a prior distri-
bution over functions, Gaussian process regression provides a posterior distribution that
represents the possible functions consistent with the data.

Neural networks are a type of computational model inspired by the structure and
function of biological neurons. In the context of regression, neural networks can learn com-
plex patterns and relationships by organizing interconnected layers of artificial neurons.
They can approximate non-linear functions and handle large amounts of data. Training
a neural network involves adjusting the weights and biases of its neurons to minimize the
prediction error.

Regression trees, also known as decision trees, are a non-parametric approach that
partitions the data space into regions and assigns a prediction value to each region. Each
internal node of the tree represents a splitting criterion based on one of the independent
variables, while the leaf nodes contain the predicted values. Regression trees are capable
of capturing non-linear relationships and interactions between variables. Ensembles of
regression trees, such as random forests or gradient boosting, further improve prediction
accuracy.

Regression analysis involves various steps, including data collection, data pre-processing,
model selection, and model evaluation. The quality of the regression model is assessed
using metrics such as the coefficient of determination (R-squared), mean squared error
(MSE), root mean squared error (RMSE), relative root mean squared error (RRMSE),
or mean absolute error (MAE).

Overall, regression analysis is a powerful tool and has numerous applications across
different fields, including economics, finance, social sciences, healthcare, and engineering.
It is commonly used for forecasting, trend analysis, impact assessment, and understanding
the relationship between variables.

3.3 Creating a data set from time-series raw data

When preparing a time-series dataset for a machine learning algorithm that creates a
forecasting model, the first thing to do is to create the data set from which the algorithm
will learn. Often, at the beginning, we have raw data, in the sense of time-indexed
observations {y0, y1, . . . , yN}. It is important to understand the form of the data set that
the algorithm accepts as input and see how we can get from raw data to that form.

Some machine learning algorithms, that are more based on statistical models, require
the data to be in pairs of time step t and the corresponding observation yt. In that
case, the time-series raw data do not need any processing. We have {t0, t1, . . . , tN},
and {y0, y1, . . . , yN}, respectively. Such algorithm is the Gaussian Process Regression
framework.

In deep learning models, the objective is to structure raw data into pairs of features and
targets. In this context, features consist of sequential observations from the time-series
data, while the target corresponds to the subsequent observation in the sequence. For
instance, we have feature vector {yi, yi+1, . . . , yi+n−1} ∈ Rn, which means that the model
can look back at n past observations, and target vector {yi+n, yi+n+1, . . . , yi+n+m−1} ∈
Rm, which means that the model can look front at m time steps in the future. This
approach enables the deep learning model to learn patterns and relationships within the
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time-series data. By organizing the data in this way, the model can effectively capture
temporal dependencies and make predictions about future values based on the provided
historical information. This process involves creating sliding windows over the time-series,
where each window represents a set of consecutive observations used as features, and the
following observation is designated as the target. This data set structuring facilitates the
training of deep learning models for tasks like forecasting, as it enables the model to learn
and generalize patterns in the temporal data. In Figure 3.1, we visualize the process of
creating a data set of pairs of feature vector and the corresponding target by applying a
sliding window on the time-series raw data.

(a) Sliding window of size 9. The feature
vector is of size 8, and the target is the
subsequent observation (single value).

(b) Sliding window of size 12. The feature vec-
tor is of size 10, and the target is the subsequent
2 observations.

Figure 3.1: Illustration when creating a data set of pairs of feature vector and the corre-
sponding target by applying a sliding window on the time-series raw data.

3.4 Data set splitting

Building algorithms that can learn from data and generate predictions is a common
challenge in machine learning. Such algorithms work by creating a mathematical model
from incoming data and then making data-driven predictions or decisions [34]. Typically,
the input data required to develop the model are split into different data sets. Training,
validation, and test sets are the three data sets that are most frequently utilized at various
phases of model construction.

A training data set is a data set of examples used during the learning process and is
used to fit the parameters of the machine learning model [35]. For example, a supervised
learning algorithm looks at the training data set to determine, or learn, the optimal
combinations of parameters that will generate a good predictive model. The goal is to
produce a trained (fitted) model that generalizes well to new, unknown data.

A data set of examples used to adjust the model’s hyperparameters (or architecture)
is known as a validation data set [35]. It may also go by the names “dev set” or
“development set”. The number of hidden units within each layer is an illustration of
a hyperparameter for artificial neural networks. It should have the same probability



54 3 Time-Series Forecasting

distribution as the training data set, as should the testing set. In addition to the training
and test datasets, a validation data set is required in order to prevent overfitting when
any classification parameter needs to be adjusted. For instance, if the best classifier for
the problem is sought after, the training data set is utilized to train the various candidate
classifiers, the validation data set is utilized to compare their performances and select the
best classifier, and finally, the test data set is utilized to obtain performance characteristics
such as accuracy, sensitivity, specificity, F-measure, and other metrics. The validation
data set performs as a hybrid: it is training data that is utilized for testing, but not as
part of the initial low-level training or the last round of testing.

The following is the fundamental methodology for selecting a model using validation
data set [35]:

Since our objective is to identify the network that performs the best on unseen data,
the most straightforward method for comparing various networks is to assess the error
function using data that is separate from the training data. Different networks are
trained by minimizing of an appropriate error function established with respect to
a training data set. The network with the minimum error relative to the validation
set is chosen after comparing the performance of the networks by assessing the error
function using an independent validation set. The hold-out method is the name
given to this strategy. The performance of the chosen network should be verified by
assessing its performance on a third independent set of data called a test set because
this approach can result in some overfitting to the validation set.

This approach is used in early stopping, where the candidate models are successive
iterations of the same network, and training is stopped when the error on the validation
set increases, selecting the prior model (the one with the least error).

An independent data set that shares the same probability distribution as the training
data set is referred to as a test data set [35]. There has not been any overfitting if
a model that fits the training data set also fits the test data set well. Overfitting is
typically shown by the training data set fitting the model better than the test data set.
Therefore, a test set is a collection of instances used solely to evaluate the effectiveness
(i.e. generalization) of a fully described classifier. To do this, classifications of cases in
the test set are predicted using the final model. To evaluate the model’s precision, those
predictions are contrasted with the actual classifications of the cases.

In Figure 3.2, we visualize how the time-series raw data are first split into training,
validation, and test sets, and then each set is formed into pairs of features and targets
(when the purpose is to work with a deep learning model).

3.5 Overfitting and the bias-variance trade-off

3.5.1 Overfitting and underfitting

Overfitting is defined as “the production of an analysis that corresponds too closely
or exactly to a particular set of data, and may, therefore, fail to fit to additional data or
predict future observations reliably” [36]. A mathematical model is said to be overfitted
if it has more parameters than the data can support [37]. These parameters, in a mathe-
matical sense, represent for example the degree of a polynomial. Overfitting is the process
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Figure 3.2: Visualization of the time-series raw data, and the split into training set,
validation set, and test set. Next, we apply a sliding window method at each set in
order to create the corresponding data sets (when the data is intended for a deep learning
model). The data sets are in the form of pairs of feature vectors and the corresponding
target vectors.

of unintentionally extracting some residual variance, also known as noise, and mistaking
it for underlying model structure [38]. Because the criteria used to choose the model
and the criteria to assess a model’s fitness are different, there is a chance of overfitting.
Overfitting happens when a model starts to “memorize” training data rather than "learn-
ing" to generalize from a trend. For instance, a model may be chosen by maximizing its
performance on some set of training data, but its suitability may be determined by its
ability to perform well on unseen data [39].

Underfitting is the inverse of overfitting, meaning that the statistical model or ma-
chine learning algorithm is too simplistic to accurately capture the patterns in the data.
An underfitted model is one that lacks certain parameters or terms that would be present
in a properly defined model. For instance, underfitting could happen when fitting a linear
model to non-linear data. Such a model will typically do poorly in terms of prediction [39].

3.5.2 Bias–variance trade-off

In statistics and machine learning, the bias–variance trade-off is the property of
a model that the variance of the parameter estimated across samples can be reduced
by increasing the bias in the estimated parameters [40]. The bias–variance dilemma
or bias–variance problem is the conflict in trying to simultaneously minimize these two
sources of error that prevent supervised learning algorithms from generalizing beyond
their training set:

• Bias in machine learning refers to the difference between a model’s predictions and the
actual distribution of the value it tries to predict. Models with high bias oversimplify
the data distribution function, resulting in high errors in both the training outcomes
and test data analysis results [41].

• Variance stands in contrast to bias; it measures how much a distribution on several
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Figure 3.3: Different curves fitted to the same training data set. Curve A has high bias
and low variance, whereas curve B has low bias and high variance. Curve B is overfitted
to the training data set, which results in bad performance to the test set. In contrast,
curve A has not so good performance in the training set, but succeeds to generalize and
performs good on the test set.

sets of data values differs from each other. The most common approach to measuring
variance is by performing cross-validation experiments and looking at how the model
performs on different random splits of your training data [41].

The bias–variance trade-off is a central problem in supervised learning. Ideally, one wants
to choose a model that both accurately captures the regularities in its training data,
but also generalizes well to unseen data. Unfortunately, it is typically impossible to
do both simultaneously. High-variance learning methods may be able to represent their
training set well but are at risk of overfitting to noisy or unrepresentative training data.
In contrast, algorithms with high bias typically produce simpler models that may fail to
capture important regularities (i.e., underfit) in the data [40].

Now let’s take a look at the different combinations of bias and variance in machine
learning models and the results they provide [41]:

• Low bias, low variance: ideal model
A machine learning model with low bias and low variance is considered ideal but is
not often the case in the machine learning practice, so we can speak of “reasonable
bias” and “reasonable variance”.

• Low bias, high variance: results in overfitting
This combination results in inconsistent predictions that are accurate on average. It
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occurs when a model has too many parameters and fits too closely to the training
data.

• High bias, low variance: results in underfitting
Predictions are consistent but inaccurate on average in this scenario. This happens
when the model does not learn well from the training data or has too few parameters,
leading to underfitting issues.

• High bias, high variance: results in inaccurate predictions
With both high bias and high variance, the predictions are both inconsistent and
inaccurate on average.

In Figure 3.4, there is an illustration of the four cases for low and high bias and variance.
In Figure 3.3, there is some synthetic data, where the fitting of two curves with different
bias-variance is illustrated.

Bias-variance decomposition is a mathematical technique that divides the gener-
alization error in a predictive model into two components: bias and variance. In machine
learning, as you try to minimize one component of the error (e.g., bias), the other compo-
nent (e.g., variance) tends to increase, and vice versa. Finding the right balance of bias
and variance is key to creating an effective and accurate model.

Figure 3.4: The bias-variance trade-off. With increased model complexity, the model
can more accurately match the underlying relation at the risk of increasing the variance
(amount of overfitting). The bias-variance trade-off corresponds to minimizing the total
prediction error, which is the sum of bias and variance in the light of the bias-variance
decomposition.

3.6 Forecasting strategies

Generally, time-series forecasting describes predicting the observation at the next time
step. This is called a one-step forecast, as only one time step is to be predicted. There are
some time-series problems where multiple time steps must be predicted. Contrasted to
the one-step forecast, these are called multi-step time-series forecasting problems. Below,
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we will see some of the most common forecasting strategies for both cases, one-step and
multi-step ahead predictions.

3.6.1 One-step ahead prediction

One-step forecast refers to the prediction of the series value at the next time step.
This type of strategy is defined below:

• Direct one-step ahead forecast:
Assume that we have a time-series of observations yt. Let model be the trained
model that takes into account n past observations {yt, yt−1, . . . , yt−n+1} and makes a
prediction for the next time step ŷt+1. We have

ŷt+1 = model(yt, yt−1, . . . , yt−n+1) (3.1)

3.6.2 Multi-step ahead prediction

Multi-step forecast refers to the prediction of the series values at the next m time
steps. We define the following variations of this type of strategy:

• Recursive one-step ahead forecast:
This strategy utilizes the one-step method in a recursive way in order to perform a
multi-step forecast. Assume that we have a time-series of observations yt. Let model
be the trained model that takes into account n past observations {yt, yt−1, . . . , yt−n+1}
and makes a prediction for the next time step ŷt+1. We have

ŷt+1 = model(yt, yt−1, . . . , yt−n+1)

ŷt+2 = model(ŷt+1, yt, yt−1, . . . , yt−n+2)

ŷt+3 = model(ŷt+2, ŷt+1, yt, yt−1, . . . , yt−n+3) (3.2)
...

ŷt+m = model(ŷt+m−1, . . . , ŷt+1, yt, . . . , yt−n+m)

• Multiple output multi-step ahead forecast:
Assume that we have a time-series of observations yt. Let model be the trained
model that takes into account n past observations {yt, yt−1, . . . , yt−n+1} and makes
a prediction of the series values at the next m time steps {ŷt+1, ŷt+2, . . . , ŷt+m}. We
have

ŷt+1, ŷt+2, . . . , ŷt+m = model(yt, yt−1, . . . , yt−n+1) (3.3)

• Direct multi-step ahead forecast:
The direct multi-step prediction method involves developing and training a separate
model for each forecast time step. Assume that we have a time-series of observations
yt. Let {model_1, model_2, . . . , model_m} be the m trained models that take into
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account n past observations {yt, yt−1, . . . , yt−n+1} and make a prediction of the series
values at the next m time steps {ŷt+1, ŷt+2, . . . , ŷt+m}, respectively. We have

ŷt+1 = model_1(yt, yt−1, . . . , yt−n+1)

ŷt+2 = model_2(yt, yt−1, . . . , yt−n+1) (3.4)
...

ŷt+m = model_m(yt, yt−1, . . . , yt−n+1)

Note that multiple output multi-step ahead forecast and direct multi-step ahead
forecast can, also, be utilized in a recursive way, when someone wants to look very deep
in the future.

3.6.3 Recursive strategies

Recursive forecasting strategies involve making predictions for future time periods by
utilizing previously predicted values as inputs for subsequent predictions. This approach
updates forecasts step by step, using the most recent forecasted value as a basis for
predicting the next one. This recursive technique is commonly used when someone wants
to extend the forecasting horizon, without changing the developed models.

Recursive forecasting strategies offer the advantage of adaptability, as they can swiftly
capture short-term fluctuations by using recent predictions as the basis for subsequent
forecasts. They also allow real-time updates, enabling adjustments as new data emerges
without the need to reanalyze the entire historical dataset. These methods are relatively
simple to implement and are computationally efficient. However, they come with the
risk of cumulative errors that can magnify over time, potentially leading to less accurate
long-term predictions. Additionally, the reliance on recent data might result in a limited
memory of past patterns, undermining the utilization of valuable historical information.
Moreover, these strategies can be vulnerable to instability when faced with sudden data
changes or noise, as errors could propagate and disrupt the forecasting process. Therefore,
the decision to employ a recursive forecasting approach should carefully consider the
nature of the data and the trade-off between short-term precision and long-term reliability.

In the context of model assessment on a test set, a recursive technique can be em-
ployed with a slight alteration. Instead of employing previously predicted values as inputs
for subsequent forecasts, the true observations can be utilized, taking advantage of the
complete knowledge of actual outcomes in the test set. By using the true observations
as inputs, this approach assesses the model’s performance in a more realistic scenario, al-
lowing for a direct comparison between the model’s predictions and the actual outcomes.
This methodology offers insights into how well the model can adapt to new data points
and provides a clear measure of its predictive accuracy on unseen data. While retain-
ing the adaptability and real-time updating benefits of recursive strategies, this modified
approach ensures a more accurate evaluation of the model’s predictive capabilities by elim-
inating the potential influence of cumulative errors that might arise from using predicted
values as inputs.
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3.7 Cross-validation

3.7.1 Cross-validation in general

Assessing the performance of a model is a crucial step in its development. Cross-
validation emerges as a statistical technique designed to facilitate this process effectively.
In the context of k-fold cross-validation, the dataset is partitioned into k folds. The model
is then trained on all but one fold, and its performance is evaluated on the excluded
fold. This process iterates until the model has been tested on each fold, and the final
performance metrics are calculated as the average of the scores obtained across all folds.
The utility of k-fold cross-validation extends beyond mere model evaluation; it serves
as a method for hyperparameters fine-tuning and a potent tool to mitigate overfitting,
ensuring that the model’s performance assessment is more robust and reliable compared
to a simple train-test split. Figure 3.5 depicts the split of the data in a typical 5-fold
cross-validation.

Figure 3.5: Illustration of the data set splits when performing an ordinary 5-fold cross-
validation. This method cannot be used in a time-series data set.

This concept forms the foundation of cross-validation, a widely embraced practice in
the machine learning realm. The most commonly adopted technique involves the initial
train-test split and then the random selection of samples from the available training data
set and their division into training and validation sets. To be precise, the standard steps
typically encompass the following:

1. Split randomly data in train and test set.

2. Focus on train set and split it again randomly in chunks (called folds).

3. Let’s say we got 10 folds; train on 9 of them and test on the 10th.

4. Repeat step three 10 times to get 10 accuracy measures (scores) on 10 different and
separate folds.

5. Compute the average of the 10 scores, which is the final reliable number telling us
how the model is performing.
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Figure 3.6: Illustration of the flowchart when performing cross-validation in order to fine-
tune the model (i.e., select the best hyperparameters).

3.7.2 Cross-validation in time-series

Traditional techniques like cross-validation, which entail random data partitioning
into training and validation subsets, operate under the assumption of independent and
identically distributed (i.i.d.) observations. This assumption does not hold in the case of
time series data, where observations are intrinsically reliant on each other. In simple word,
we want to avoid future-looking when we train our model. There is a temporal dependency
between observations, and we must preserve that relation during testing. Nonetheless,
certain situations in time-series data permit the application of modified cross-validation
techniques. Such techniques are explained below.

3.7.3 Prequential growing blocks

One method that can be used for cross-validating the time-series model is cross-
validation on a rolling basis. Start with a small subset of data for training purpose,
forecast for the later data points and then checking the accuracy for the forecasted data
points. The same forecasted data points are then included as part of the next training
dataset and subsequent data points are forecasted. A visualization of this method is
shown in Figure 3.7.

3.7.4 Prequential sliding blocks

In this approach, the process of training and testing the model is performed by sliding
over blocks of data, rather than adding testing data to the training data after each itera-
tion. This means that the testing data is not combined with the training data during the
iterative process. A visualization of this method is shown in Figure 3.8.
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Figure 3.7: Illustration of the data set splits when performing 5-fold cross-validation
using prequential growing blocks in order to fine-tune the model (i.e., select the best
hyperparameters). Blue color represents training set, while red color represents validation
set.

Figure 3.8: Illustration of the data set splits when performing 5-fold cross-validation using
prequential sliding blocks in order to fine-tune the model (i.e., select the best hyperpa-
rameters). Blue color represents training set, while red color represents validation set.

3.8 Hyperparameters tuning

Hyperparameters are a model’s in-built configuration variables. These variables re-
quire fine-tuning to produce a better performing model. These parameters are model
dependent and vary from model to model.

Hyperparameters generally have a significant impact on the success of machine learning
algorithms. A poorly configured machine learning model may perform no better than
chance, while a well configured one could achieve state-of-the-art result. The process to
find the best hyperparameters could be really tedious and is more of an art than science.
This process of fine-tuning model parameters is called hyperparameter optimization.

3.8.1 Grid search

Grid search is the most basic algorithmic method for hyperparameter optimisation.
It’s like running nested loops on all possible values of your inbuilt features. Grid search
is an example of uninformed search, meaning the next of feature set is independent of the
output of the last runs. This method, also, requires retraining in every iteration, which
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incurs a huge cost.

3.8.2 Random search

Random search is grid search where the next feature set is selected randomly and the
total number of runs have a upper limit. Random search is another example of uninformed
search meaning the next of feature set is independent of the output of the last runs and
it require retraining in every iteration which incurs a huge cost.

3.8.3 Sequential Model Based Optimization (SMBO)

Sequential Model Based Optimization (SMBO) minimizes validation loss by
sequentially selecting different hyperparameter sets, where the next set is selected by
Bayesian reasoning (dependent on the previous runs). Intuitively speaking, SMBO
looks back at the result of last runs to focus future searches on areas which look more
promising.

SMBO is utilized whenever the fitness function (f : X → R) is costly to evaluate.
In such cases, an approximate f (surrogate M) is calculated. This model M is cheaper
to compute. Typically, the inner loop in SMBO is the numerical optimization of this
surrogate or some transformation of this surrogate (line 3 in below code). The point x∗
that maximizes the surrogate becomes the proposal for where the true loss function f
should be evaluated (line 4).

In essence, after each run of hyperparameters on the objective function, the algorithm
makes an educated guess which set of hyperparameters is most likely to improve the
score and should be tried in the next run. It is done by getting regressor predictions on
many points (hyperparameter sets) and choosing the point that is the best guess based on
the so-called acquisition function. Acquisition function (S) defines a balance between
exploring new areas in the objective space and exploiting areas that are already known to
have favorable values. There are quite a few acquisition function options to choose from:

• EI and PI: Negative expected improvement and Negative probability im-
provement. Basically, when our algorithm is looking for the next set of hyperpa-
rameters, we can decide how small of the expected improvement we are willing to try
on the actual objective function. The higher the value, the bigger the improvement
(or probability of improvement) our regressor expects.

• LCB: Lower confidence bound. In this case, we want to choose our next point
carefully, limiting the downside risk. We can decide how much risk we want to take
at each run. By making the kappa parameter small we lean toward exploitation of
what we know, by making it larger we lean toward exploration of the search space.

Algorithm 3.1 shows a generic SMBO pseudocode. The explanation of that pseudocode
is the following:

• Line 1 : Initiate an empty H.

• Line 2 : Initiate the loop with a fixed number of trials.
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• Line 3 : (i) Learn a surrogate function for f called M . (ii) Define a evaluation criterion
which needs to be minimized. (iii) S(x,M) is run for multiple instances of x to find
x∗ which minimizes S.

• Line 4 : f is evaluated for x∗.

• Line 5 : H is updated with current value of x∗, f(x∗).

• Line 6 : M is updated after every iteration to become a better approximation of f .

• Line 7 : The process ends after a fixed number of iterations.

Algorithm 3.1: A generic sequential model based optimization algorithm
Input: True function: f , Initial surrogate function to approximate f : M0,

Number of trials: T , and Acquisition function that computes the next
hyperparameter assignment: S

Output: H
1 H ← ∅;
2 for t← 1 to T do
3 x∗ ← argmin

x
S(x,Mt−1);

4 Evaluate f(x∗);
5 H ← H∪ (x∗, f(x∗));
6 Fit a new model Mt to H;

It is worth noting, that different flavors of SMBO use different algorithms to opti-
mize EI, for example. Two commonly used methods to optimize EI are Tree Parzen
Estimators (TPE), and Gaussian processes (GPs).

The TPE replaces the generative process of choosing parameters from the search space
in a tree like fashion with a set of non-parametric distributions. It replaces choices for
parameter distributions with either a truncated Gaussian mixture, an exponentiated trun-
cated Gaussian mixture or a re-weighted categorical to form two densities—one density
for the loss function, where the loss is below a certain threshold, and another for a den-
sity where the loss function is above a certain threshold for values in the hyperparameter
space. With each sampled configuration from the densities that is evaluated, the densities
are updated to make them represent the true loss surface more precisely.

Instead of using the tree regressors, in the GP method the objective function is ap-
proximated by the Gaussian process. Nonetheless, we will not delve into more details
here.

3.9 Evaluation metrics

In the domain of machine learning, regression tasks involve predicting continuous nu-
merical values. When developing regression models, it is essential to assess the model’s
performance and reliability. Various evaluation metrics are employed to quantify the qual-
ity of predictions and to assist in model selection and refinement. This section discusses
some of the most commonly used regression evaluation metrics, including Mean Absolute
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Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Relative
Root Mean Squared Error (RRMSE), and R-squared (R2).

3.9.1 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a straightforward metric that measures the average
absolute difference between predicted and actual values. It is computed as the average of
the absolute differences between each predicted value ŷ and the corresponding true value
y. Considering N points, we have

MAE =
1

N

N∑
i=1

|yi − ŷi| (3.5)

MAE is useful because it provides a clear understanding of the average prediction error
in the same units as the target variable. Smaller MAE values indicate better model
performance.

3.9.2 Mean Squared Error (MSE)

Mean Squared Error (MSE) is another widely used metric that measures the average
squared difference between predicted values ŷ and actual values y. Considering N points,
we have

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (3.6)

MSE places more weight on larger errors than MAE and is sensitive to outliers. It is com-
monly used in machine learning because it is mathematically convenient for optimization.

3.9.3 Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE) is derived from MSE by taking the square root of
the average squared differences. Considering the predicted values ŷ, the actual values y,
and N points, we have

RMSE =
√
MSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (3.7)

RMSE has the advantage of providing an error metric in the same units as the target
variable, making it interpretable. It also penalizes larger errors more significantly than
MAE, which can be desirable in certain applications.
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3.9.4 Relative Root Mean Squared Error (RRMSE)

Relative Root Mean Squared Error (RRMSE) is a normalized version of RMSE that
expresses the error as a percentage of the range of the target variable. It helps to assess
the error relative to the magnitude of the data. RRMSE is calculated as follows:

RRMSE =
RMSE√∑N

i=1 ŷ
2
i

· 100% (3.8)

RRMSE values below 10% are often considered indicative of a good model fit.

3.9.5 R-squared (R2)

R-squared (R2), also known as the coefficient of determination, quantifies the propor-
tion of the variance in the target variable that is explained by the regression model. R2

values range from 0 to 1, where 0 indicates that the model explains none of the variance,
and 1 indicates a perfect fit. It is computed as:

R2 = 1− RSS

TSS
= 1−

∑N
i=1 (yi − ŷi)

2∑N
i=1 (ȳ − ŷi)2

(3.9)

where ȳ =
∑N

i=1 yi, RSS is the residual sum of squares, and TSS is the total sum of
squares. Higher R2 values suggest better model fit, but it should be interpreted alongside
other metrics.
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4 Transformations and Data Warping

Time-series data often needs pre-processing to ensure stationarity or to fulfill certain
assumptions of the modeling approach being used, such as normality. In this section, we
will delve into some useful and well-known transformations used in time series analysis:
Differencing, Standardization, Box-Cox, and κ-Logarithmic transformation.

4.1 Differencing

A stationary time series is one that has constant mean, variance, and autocorrelation
over time [18]. This means that the statistical properties of the series do not change with
time or depend on the time period. Thus, time series with trends, or with seasonality,
are not stationary — the trend and seasonality will affect the value of the time series at
different times. On the other hand, a white noise series is stationary — it does not matter
when you observe it, it should look much the same at any point in time. Stationarity is
desirable for many forecasting methods, such as ARIMA, because it makes the models
simpler and more reliable.

Transformations such as logarithms can help to stabilize the variance of a time series.
Differencing can help stabilise the mean of a time series by removing changes in the level of
a time series, and therefore eliminating (or reducing) trend and seasonality. Differencing is
a technique to transform a non-stationary time series into a stationary one by computing
the differences between consecutive observations. More specific, it involves subtracting
the current value of the series from the previous one, or from a lagged value. Let yt be
the value of the series at time t, and ∆ be the differencing operator. In particular, for
first-, second-, and third-order differencing we have:

• First-order difference:

∆yt = yt − yt−1 (4.1)

• Second-order difference:

∆2yt = ∆(∆yt)

= ∆yt −∆yt−1 (4.2)
= (yt − yt−1)− (yt−1 − yt−2)

= yt − 2yt−1 + yt−2

• Third-order difference:

∆3yt = ∆
(
∆2yt

)
= ∆2yt −∆2yt−1 (4.3)
= (yt − yt−1)− (yt−1 − yt−2)− [(yt−1 − yt−2)− (yt−2 − yt−3)]

= yt − 3yt−1 + 3yt−2 − yt−3

By first-order differencing, we model the “changes” in the data, while second-order
differencing would model the “change in the changes” of the original data. The order of
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differencing is the number of times the series is differenced to achieve stationarity. It is
usually denoted by d in the ARIMA notation. Choosing the right order of differencing is
important, because too much or too little differencing can affect the accuracy and validity
of the forecasts when modeling a time-series. One way to choose the order of differencing
is to start with d = 0 and increase it until the series becomes stationary, as indicated by
the plots and tests. Another way is to use the Akaike Information Criterion (AIC) or the
Bayesian Information Criterion (BIC) to compare different models with different orders
of differencing and select the one with the lowest value. In practice, it is almost never
necessary to go beyond second-order differences. Figure 4.1 shows the result of applying
differencing on a synthetic time-series.

Stationarizing our data can also have some disadvantages for forecasting. First, it can
introduce noise and randomness into the data, as it eliminates some of the information
and structure of the original series. Second, it can reduce the sample size and the degrees
of freedom of the data, as it discards some of the observations and parameters of the series.
Third, it can distort the long-term trends and relationships of the data, as it focuses on
the short-term fluctuations and differences of the series.

There are several ways to check if a time-series is stationary or not. One is to plot the
series and look for visual clues, such as trends, cycles, or changes in variance. Another is
to use statistical tests, such as the Augmented Dickey-Fuller (ADF) test, that compare
the null hypothesis of non-stationarity with the alternative hypothesis of stationarity. A
low p-value from the test indicates that the series is likely to be stationary.

After applying differencing, there might be scenarios where one would need to revert
to the original series — be it for interpretation, validation, or any other purpose. This
process of reverting to the original series from its differenced form is termed as the inverse
transformation. More specific, for first-, second-, and third-order differencing we have:

• First-order difference:
To find yt, we simply add the difference at time t to the original value at time t− 1.
This is akin to reversing the subtraction that was originally performed to get the
difference.

yt = yt−1 +∆yt (4.4)

• Second-order difference:
First, we integrate (cumulatively sum) the second-order differences to retrieve the
first-order differences. Then, we integrate the resulting first-order differences to get
back to the original series.

∆yt = ∆yt−1 +∆2yt (4.5)
yt = yt−1 +∆yt

• Third-order difference:
First, we integrate the third-order differences to get the second-order differences.
Then, we integrate the resulting second-order differences to retrieve the first-order
differences. Finally, we integrate the first-order differences to revert to the original
series.

∆2yt = ∆2yt−1 +∆3y

∆yt = ∆yt−1 +∆2yt (4.6)
yt = ∆yt + yt−1
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Figure 4.1: Differencing as a transformation on a synthetic time-series. The figure show
the result after applying differencing up to three times.

4.2 Standardization

Standardization refers to the process of removing the mean and scaling to unit variance.
This transformation is especially useful when the time series is expected to have a shifting
mean, varying variance, or generally large scale. In addition, data standardization comes
into the picture when features of the input data set have large differences between their
ranges, or simply when they are measured in different units. These differences in the
ranges of initial features cause trouble for many machine learning models. As far as the
sunspots are concerned, the time-series has only one feature. Although, it is important
to standardize the data when the modeling is going to be made by machine learning and
deep learning methods.

Standardization typically means rescales data to have a mean of 0 and a standard
deviation of 1 (unit variance). Let µ be the mean, and σ be the standard deviation of
our original data. In order to standardize our data, we simply subtract µ from the data
values and then divide by σ. More specific, we have:

• Forward transformation:

z =
y − µ

σ
(4.7)

• Inverse transformation:

y = zσ + µ (4.8)
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Figure 4.2: Standardization as a transformation on data of various distributions. Stan-
dardization transforms data to have a mean of zero and a variance of one.

Figure 4.2 shows the result of applying standardization on data of various distributions.
Overall, standardization is a pre-processing step commonly used in machine learning

algorithms for several important reasons:

• Scale invariance: Machine learning algorithms often use distance-based metrics to
make decisions or predictions. If the features in your dataset have different scales
(i.e., some features are measured in large units, while others are in small units), the
algorithm may give undue importance to features with larger scales. Standardizing
the data by centering it around zero and scaling it to unit variance ensures that all
features contribute more evenly to the model’s performance, making the algorithm
scale-invariant.

• Faster convergence: Many machine learning algorithms, particularly gradient-
based optimization techniques (e.g., gradient descent), converge faster when the data
is standardized. This is because the gradient updates are more balanced across fea-
tures, preventing certain features from dominating the learning process and poten-
tially leading to slower convergence or convergence to suboptimal solutions.

• Improved model interpretability: Standardizing the data allows for better inter-
pretation of model coefficients or feature importances. When features are on different
scales, it can be challenging to compare their relative importance in the model. Stan-
dardization ensures that the coefficients or feature importance scores represent the
impact of a one-unit change in the respective feature, which makes them more inter-
pretable.
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• Regularization effectiveness: Regularization techniques, such as L1 (Lasso) and
L2 (Ridge) regularization, penalize the magnitude of feature coefficients. Standardiza-
tion ensures that the regularization penalty is applied fairly to all features, preventing
some features from being overly penalized due to their scale.

• Avoiding numerical instabilities: In some algorithms, particularly those involving
matrix operations, data with widely varying scales can lead to numerical instability is-
sues. Standardizing the data can mitigate these problems and make the computations
more stable.

• Comparison across datasets: Standardization makes it easier to compare and
combine datasets that may have different units or scales. This is especially important
in cases where data from multiple sources need to be merged for analysis, or when
comparing models trained on different datasets.

• Model performance: Many machine learning models, such as support vector ma-
chines and k-means clustering, are sensitive to the scale of the input features. Stan-
dardizing the data often leads to better model performance, as it reduces the impact
of scale-related biases.

4.3 Box-Cox Transformation

The Box-Cox transformation is a family of power transformations that are used to
stabilize variance and make a dataset more closely follow a normal distribution. It is
particularly useful for time-series data where the variance is not constant across levels
(heteroscedasticity). The goal is to find an appropriate transformation that leads to data
that meets the assumptions of homoscedasticity and normality.

4.3.1 Mathematical formulation

Given a time-series y(t), we equivalently have a dataset of strictly positive scalars
Y = {y1, y2, . . . , yn}. Henceforth, for simplicity, we will omit the variable t. The Box-Cox
transformed series is defined as z(t, λ), or equivalently Z(λ) = {z1(λ), z2(λ), . . . , zn(λ)},
and each element is given by

z(λ) =

{
yλ−1
λ

, if λ ̸= 0

log (y) , if λ = 0
(4.9)

where λ is the transformation parameter. The transformation ensures that for any value
of λ, the transformed data will be continuous and will not contain any discontinuities or
abrupt shifts.

Now, we will refer to an extended form of the Box-Cox transformation, which could
accommodate negative or zero values of y. That transformation is given by

z(λ) =

{
(y+λ2)λ1−1

λ1
, if λ1 ̸= 0

log (y + λ2) , if λ1 = 0
(4.10)
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Here, λ = (λ1, λ2)
T . In practice, we could choose λ2 such that y + λ2 > 0 for any y. So,

we could only view λ1 as the model parameter. Consequently, the analysis below remains
the same for both forms of Box-Cox transformation.

The inverse Box-Cox transformation is given by

y(λ) =

{
(λz + 1)

1
λ , if λ ̸= 0

exp (z) , if λ = 0
(4.11)

As we will see below, for the estimation of parameter λ, we assume that z follows a normal
distribution. This raises a theoretical problem in that y must be positive, which means
that z must follow a truncated normal distribution conditioned on λz > −1.

In the Box-Cox transformation, the choice of λ plays a critical role in determining
the nature of the transformation applied to the data. When λ = 1, the transformation
is essentially linear, resulting in z = y − 1. This means that the original values undergo
a minor shift, but otherwise remain largely intact. For values of 0 < λ < 1, the trans-
formation tends to compress the larger values in the dataset while slightly expanding
the smaller ones. As λ approaches 1 from values below it, the transformation’s impact
reduces and the data moves closer to its original shape. Conversely, as λ closes in on 0
from values greater than it, the transformation becomes progressively skewed. This kind
of transformation can be especially useful when the data has a right-skewed distribution.
A special case arises when λ = 0. Here, the Box-Cox transformation becomes a loga-
rithmic one, represented as z = log (y). This transformation is particularly effective for
data that exhibits heavy right skewness. It works by significantly compressing the higher
values while expanding the smaller ones. When −1 < λ < 0, the transformation exerts
a stronger compression effect on the larger values. This becomes even more pronounced
as λ approaches 0 from negative values. On the flip side, as λ edges closer to −1, the
transformation becomes more extreme, heavily penalizing larger values. This can be bene-
ficial for stabilizing the variances in datasets that exhibit a marked decreasing exponential
trend. As λ decreases further beyond −1, the transformation becomes increasingly severe.
This range can yield highly transformed values that might significantly alter the intrinsic
relationships in the original data, hence requiring cautious interpretation. Interestingly,
as λ grows beyond 1, the transformation tends to spread out the larger values even more,
potentially resulting in a more right-skewed distribution. For instance, with λ = 2, the
transformation effectively squares each value. Consequently, higher values get dispersed
further, whereas values between 0 and 1 get more compressed. As λ continues to rise, this
effect intensifies, causing the larger values to stretch even more.

In practical data analysis, extreme λ values, especially much larger than 1, are em-
ployed sparingly because of the risk of disproportionately magnifying outliers. Neverthe-
less, in certain scenarios or datasets, enhancing the contrast or spread of the higher values
might be advantageous. As always, the choice of λ should be informed by visualizations,
statistical tests, and the overarching goals of the analysis.

Figure 4.3 shows the result of applying Box-Cox transformation on data of various
distributions.

4.3.2 Tuning the parameter λ

Choosing the correct value for λ is essential for the transformation’s effectiveness. The
goal is to find an appropriate transformation (through a suitable λ) that makes the data



4 Transformations and Data Warping 73

as “normal” as possible. Two common approaches to find the optimal λ are the following:

• Likelihood maximization: Using a profile likelihood method, we can evaluate the
likelihood of the transformed data for a range of λ values and choose the one that
maximizes it.

• Graphical methods: Plot the transformed data for a variety of λ values and visually
determine which one provides better results.

Maximum Likelihood Estimation (MLE) is a method used to estimate the pa-
rameters of a statistical model. In the context of the Box-Cox transformation, MLE can
be employed to find the optimal value of the λ parameter that maximizes the likelihood of
observing the given data. When using MLE with Box-Cox, the goal is typically to make
the transformed data as “normal” as possible, since many statistical methods assume data
normality. Next, we will see how MLE can be used for tuning the λ parameter in the
Box-Cox transformation.

The likelihood of a statistical model is a measure of how well the model explains
the observed data. Specifically, for a given set of parameters, the likelihood gives the
probability (or probability density, for continuous data) of observing the given set of data.
Suppose we have a statistical model defined by a probability distribution f(y|θ), where y
is the observed data and θ represents the parameters of the model. The likelihood of the
parameters θ given the data y is denoted as L(θ|y) and is equal to the joint probability
(or probability density) of the observed data given those parameters. For independent
and identically distributed (i.i.d.) data points the likelihood is given by

L(θ|y) = f(y|θ) = f(y1|θ) · f(y2|θ) · . . . · f(yn|θ) =
n∏

i=1

f(yi|θ)

The main goal in many statistical problems is to find the parameter values that maximize
this likelihood function, as these values are the ones that make the observed data most
probable. This approach is called MLE. Most of the time we prefer maximizing the
log-likelihood function, as it is mathematically more convenient. It is given by

ℓ(θ|y) = log (L(θ|y)) = log

(
n∏

i=1

f(yi|θ)

)
=

n∑
i=1

log (f(yi|θ))

Once the data are transformed, we often assume that they follow a normal distribution.
The normal probability density function is

f(zi|µ, σ2) =
1√
2πσ2

exp

(
−(zi − µ)2

2σ2

)
where µ and σ2 are the mean and variance of the transformed data, respectively. The
Box-Cox transformation changes the scale of our data, so when we compute the likelihood
on the transformed scale, it is not directly comparable to the likelihood on the original
scale. The Jacobian of the transformation corrects for this by giving us the factor by
which we should adjust the likelihood on the transformed scale to make it comparable to
the original scale. The Jacobian matrix is a matrix of all first-order partial derivatives
of a vector-valued function. In essence, it provides a linear approximation for how small
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changes in input variables can influence the multiple outputs of a function. Using the
Jacobian in the context of transformations involves calculating the determinant of the
Jacobian matrix J and applying it to adjust probabilities, densities, or likelihoods. Since
z(λ) is a scalar function of a scalar variable, J reduces to a single element. Here, it is
given by

J(y, λ) =
dz(λ)

dy
= yλ−1 , λ ∈ R

So, for the adjusted probability density function we have

fadj(y(λ)) = f(z(λ))|J(y, λ)| = 1√
2πσ2

exp

(
−(y − µ)2

2σ2

)
yλ−1

The probability density of y, and also the likelihood of observing our i.i.d. data points
y is the product of the individual densities

Ladj(λ, µ, σ
2|y) = fadj(y1|λ, µ, σ2)·fadj(y2|λ, µ, σ2)·. . .·fadj(yn|λ, µ, σ2) =

n∏
i=1

fadj(yi|λ, µ, σ2)

Substituting in our expression for fadj(yi|µ, σ2) we get

Ladj(λ, µ, σ
2|y) =

n∏
i=1

1√
2πσ2

exp

(
−(yi − µ)2

2σ2

)
yλ−1
i

The log-likelihood is simply the natural logarithm of the likelihood function. Taking
the logarithm transforms the product of probabilities (in the likelihood) into a sum of
logarithms, which is mathematically more tractable. Consequently, taking the logarithm
we have

ℓadj(λ, µ, σ
2|y) = log

(
Ladj(λ, µ, σ

2|y)
)

= log

(
n∏

i=1

1√
2πσ2

exp

(
−(yi − µ)2

2σ2

)
yλ−1
i

)

=
n∑

i=1

log

(
1√
2πσ2

exp

(
−(yi − µ)2

2σ2

)
yλ−1
i

)
=

n∑
i=1

[
log

(
1√
2πσ2

)
+ log

(
exp

(
−(yi − µ)2

2σ2

))
+ log

(
yλ−1
i

)]
=

n∑
i=1

[
log

(
1√
2πσ2

)]
+

n∑
i=1

[
log

(
exp

(
−(yi − µ)2

2σ2

))]
+

n∑
i=1

[
log
(
yλ−1
i

)]
= −n

2
log (2πσ2)− 1

2σ2

n∑
i=1

(yi − µ)2 − (1− λ)
n∑

i=1

log (yi)

The negative log-likelihood function is given by

−ℓadj(λ, µ, σ2|y) = n

2
log (2πσ2) +

1

2σ2

n∑
i=1

(yi − µ)2 + (1− λ)
n∑

i=1

log (yi) (4.12)
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For the values of µ and σ2, we use the sample mean and variance estimations of z. To
find the optimal λ, we would differentiate −ℓadj(λ, µ, σ2|y) with respect to λ and set it to
zero, and then solve for λ. This will give us the maximum likelihood estimate of λ. The
actual differentiation can be quite complex. In practice, numerical optimization methods
are often used to find the λ value that maximizes the log-likelihood function.

The main objective of the graphical methods is to visually assess how different
values of the λ parameter in the Box-Cox transformation affect the statistical properties
of the time series data, such as linearity, normality, and homoscedasticity. Here, we will
refer to some of the key graphical methods employed commonly. The first one is by
using Normal Probability Plot (Q-Q plot). This plot is used to visually assess if the
data follows a normal distribution. The ordered data values are plotted against expected
values from a standard normal distribution. If the data are normally distributed, the
points will approximately lie on a straight line. Different λ values can be tested, and
the one that results in the closest fit to a straight line is considered the best choice for
achieving normality. The second approach is to visually assess the distribution of the
data by plotting the histogram of the data. More specific, we transform the data with
various λ values and plot the resulting histograms. The histogram shape can provide
insights into skewness and kurtosis. A bell-shaped histogram indicates that the data is
closer to a normal distribution.

4.4 κ-Logarithmic Transformation

The κ-Logarithmic transformation is a nonlinear, monotonic transformation from
R+ → R. Therefore, it can be used like the Box-Cox transformation for the Gaussian
anamorphosis of positive valued data.

4.4.1 Mathematical formulation

Given a time-series y(t), we equivalently have a dataset of strictly positive scalars
Y = {y1, y2, . . . , yn}. Henceforth, for simplicity, we will omit the variable t. The Box-Cox
transformed series is defined as z(t, κ), or equivalently Z(κ) = {z1(κ), z2(κ), . . . , zn(κ)},
and for each element is given by

z(κ) =

{
yκ−y−κ

2κ
, if κ ̸= 0

log (y) , if κ = 0
(4.13)

where κ is the transformation parameter. The transformation ensures that for any value
of κ, the transformed data will be continuous and will not contain any discontinuities or
abrupt shifts.

The inverse κ-logarithmic transformation is given by

y(κ) =

{
(
√
1 + κ2z2 + κz)

1
κ , if κ ̸= 0

exp (z) , if κ = 0
(4.14)

Figure 4.3 shows the result of applying κ-logarithmic transformation on data of various
distributions.
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4.4.2 Tuning the parameter κ

Once the data are transformed, we often assume that they follow a normal distribution.
The normal probability density function is

f(zi|µ, σ2) =
1√
2πσ2

exp

(
−(zi − µ)2

2σ2

)

where µ and σ2 are the mean and variance of the transformed data, respectively. The
Box-Cox transformation changes the scale of our data, so when you compute the likelihood
on the transformed scale, it is not directly comparable to the likelihood on the original
scale. The Jacobian of the transformation corrects for this by giving us the factor by
which we should adjust the likelihood on the transformed scale to make it comparable to
the original scale. The Jacobian matrix is a matrix of all first-order partial derivatives
of a vector-valued function. In essence, it provides a linear approximation for how small
changes in input variables can influence the multiple outputs of a function. Using the
Jacobian in the context of transformations involves calculating the determinant of the
Jacobian matrix J and applying it to adjust probabilities, densities, or likelihoods. Since
z(κ) is a scalar function of a scalar variable, J reduces to a single element. Here, it is
given by

J(y, κ) =
dz(κ)

dy
=

yκ−1 + y−κ−1

2
, κ ∈ R

So, for the adjusted probability density function we have

fadj(y(κ)) = f(z(κ))|J | = 1√
2πσ2

exp

(
−(y − µ)2

2σ2

)
yκ−1 + y−κ−1

2

The probability density of y, and also the likelihood of observing our i.i.d. data points
y is the product of the individual densities

Ladj(κ, µ, σ
2|y) = fadj(y1|µ, σ2) · fadj(y2|µ, σ2) · . . . · fadj(yn|µ, σ2) =

n∏
i=1

fadj(yi|µ, σ2)

Substituting in our expression for fadj(yi|µ, σ2) we get

Ladj(κ, µ, σ
2|y) =

n∏
i=1

1√
2πσ2

exp

(
−(yi − µ)2

2σ2

)
yκ−1
i + y−κ−1

i

2

The log-likelihood is simply the natural logarithm of the likelihood function. Taking
the logarithm transforms the product of probabilities (in the likelihood) into a sum of
logarithms, which is mathematically more tractable. Consequently, taking the logarithm



4 Transformations and Data Warping 77

we have

ℓadj(κ, µ, σ
2|y) = log

(
Ladj(κ, µ, σ

2|y)
)

= log

(
n∏

i=1

1√
2πσ2

exp

(
−(yi − µ)2

2σ2

)
yκ−1
i + y−κ−1

i

2

)

=
n∑

i=1

log

(
1√
2πσ2

exp

(
−(yi − µ)2

2σ2

)
yκ−1
i + y−κ−1

i

2

)
=

n∑
i=1

[
log

(
1√
2πσ2

)
+ log

(
exp

(
−(yi − µ)2

2σ2

))
+ log

(
yκ−1
i + y−κ−1

i

2

)]
=

n∑
i=1

[
log

(
1√
2πσ2

)]
+

n∑
i=1

[
log

(
exp

(
−(yi − µ)2

2σ2

))]
+

n∑
i=1

[
log

(
yκ−1
i + y−κ−1

i

2

)]
= −n

2
log (2πσ2)− 1

2σ2

n∑
i=1

(yi − µ)2 +
n∑

i=1

[
log

(
yκ−1
i + y−κ−1

i

2

)]
The negative log-likelihood function is given by

−ℓadj(κ, µ, σ2|y) = n

2
log (2πσ2) +

1

2σ2

n∑
i=1

(yi − µ)2 −
n∑

i=1

[
log

(
yκ−1
i + y−κ−1

i

2

)]
(4.15)

For the values of µ and σ2, we use the sample mean and variance estimations of z. To find
the optimal κ, we would differentiate −ℓadj(κ, µ, σ2|y) with respect to λ and set it to zero,
and then solve for λ. This will give us the minimum negative log-likelihood estimate of
κ. The actual differentiation can be quite complex. In practice, numerical optimization
methods are often used to find the λ value that minimizes the negative log-likelihood
function, or equivalently maximizes the log-likelihood function.
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Figure 4.3: Box-Cox and κ-Logarithmic transformations on data of various distributions.
The objective of both transformations is for the transformed data to conform to a nor-
mal distribution. The first row shows the histograms of the original data for various
distributions. The PDFs are drawn with red. The second row shows the histograms
of the Box-Cox transformed data in each case. The PDFs of the corresponding normal
distributions are drawn with red. The third row shows histograms of the κ-Logarithmic
transformed data on each case. The PDFs of the corresponding normal distributions are
drawn with red.
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5 Gaussian Processes

In the dynamic landscape of machine learning and statistical modeling, Gaussian pro-
cesses (GPs) have emerged as a powerful paradigm that bridges the gap between data-
driven predictions and uncertainty quantification. Rooted in the principles of probabilistic
supervised learning, GPs offer an elegant framework for handling regression and classi-
fication tasks. Among its various applications, Gaussian process regression shines as a
prominent technique that not only predicts target values but also provides estimates of
the associated uncertainties.

At its core, a Gaussian process is more than just a predictive model; it is a distribution
over functions. Unlike traditional point estimates, which provide single predictions for
each input, GPs yield entire distributions of possible functions that could explain the
underlying data. This not only furnishes predictions but also offers a measure of confidence
or uncertainty associated with those predictions. Such a probabilistic perspective proves
invaluable when dealing with noisy, limited, or irregularly sampled data, where quantifying
uncertainty becomes paramount.

The terminology “Gaussian process” might evoke a connection to the Gaussian distri-
bution. Indeed, a Gaussian process is a natural extension of the multivariate Gaussian
distribution to an infinite-dimensional space of functions. This extension allows GPs to
capture complex patterns and non-linear relationships within data, making them adept
at handling diverse real-world problems.

In this exploration of Gaussian processes, our focus is on Gaussian process regression
(GPR). This specialized application involves inferring the underlying relationship between
input features and target variables, enabling us to make informed predictions about new,
unseen instances. GPR transcends traditional regression by not only estimating a mean
prediction, but also a covariance structure that characterizes the uncertainty associated
with the prediction. Consequently, GPR is particularly useful in scenarios where deci-
sions are made based on both accurate predictions and a keen awareness of the inherent
unpredictability in data.

Throughout this discussion, we will delve into the foundations of Gaussian processes,
demystifying concepts such as kernels, covariance functions, and hyperparameters. Fur-
thermore, we will dissect the intricacies of Gaussian process regression and analyze the
basic theoretical background in an attempt to showcase its application in various fields.

5.1 The Gaussian distribution

5.1.1 Univariate Gaussian distribution

A random variable X is Gaussian, and it follows a univariate normal distribution
(UVN) with mean µ = E[X] ∈ R and variance σ2 = Var(X) ∈ R, if its probability
density function (PDF) is [42]

PX(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(5.1)

Here, X represent the random variable and x ∈ R is the real argument. The normal
distribution of X is usually represented by X ∼ N (µ, σ2).
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Figure 5.1: Illustrations of the probability density function for various univariate normal
distributions.

5.1.2 Multivariate Gaussian distribution

The multivariate normal distribution (MVN), or joint normal distribution, is a gener-
alization of the univariate normal distribution to higher dimensions. A random variable
is said to be D-variate normally distributed if every linear combination of its D compo-
nents have a univariate normal distribution. Mathematically, X = (X1, X2 . . . , XD)

T has
a multivariate Gaussian distribution if Y =

∑D
i=1 αiXi is normally distributed for any

constant vector α ∈ RD. Note that if all D components are independent Gaussian ran-
dom variables, then X must be multivariate Gaussian, because the sum of independent
Gaussian random variables is always Gaussian. The PDF of a MVN with D dimensions
is defined as [42]

PX(x) =
1

(2π)D/2[det (Σ)]1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(5.2)

where D is the number of the dimension, X represent the random vector, x ∈ RD repre-
sents the real argument, µ = E[X] ∈ RD is the mean vector, and Σ = Cov(X,X) ∈ RD×D

is the covariance matrix. Σ is a symmetric matrix that stores the pairwise covariance of
all jointly modeled random variables, Xi, Xj, with Σij = Cov(Xi, Xj) ∈ R as its (i, j)
element.

5.1.3 Affine transformation

If Y = c + BX is an affine transformation of X ∼ N (µ,Σ), where c is an M × 1
vector of constants and B is a constant M ×N matrix, then Y has a multivariate normal
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(a) Probability density function of a bivariate normal dis-
tribution.

(b) Contour plot of a bivariate nor-
mal distribution.

Figure 5.2: Illustrations of a multivariate (bivariate) normal distribution.

distribution with expected value c+Bµ and variance BΣBT [43], i.e.,

Y ∼ N
(
c+Bµ,BΣBT

)
(5.3)

In particular, any subset of the Xi has a marginal distribution that is also multivariate
normal. To see this, consider the following example: to extract the subset (X1, X2, X4)

T ,
use

B =

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 0 1 0 . . . 0


which extracts the desired elements directly.

5.1.4 Bayes’ theorem and the two rules of probability

Let X and Y be two continuous random variables. The Bayes’ theorem is stated
mathematically as the following equation

pX|Y (x|y) =
pY |X(y|x)pX(x)

pY (y)
=

pX,Y (x, y)

pY (y)
(5.4)

The sum rule states that [44]

pX(x) =

∫
Y

pX,Y (x, y)dy (5.5)

and the product rule states that [44]

pX,Y (x, y) = pX|Y (x|y)pY (y) = pY |X(y|x)pX(x) (5.6)

In the remainder, we will see that a joint Gaussian distribution can be factorized into a
conditional Gaussian and a marginal Gaussian distribution.
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5.1.5 Marginalization

Given two continuous random variables X and Y whose joint distribution is known,
then the marginal probability density function can be obtained by integrating the joint
probability distribution, pX,Y (x, y), over Y , and vice versa. For the first case, that is

pX(x) =

∫
Y

pX,Y (x, y)dy =

∫
Y

pX|Y (x|y)pY (y)dy (5.7)

The first property of the “Gaussians”, states that if we marginalize out variables in
a multivariate Gaussian distribution, the result is still a Gaussian distribution. The
Gaussian distribution is thus closed under marginalization. In Gaussian distributions,
as stated above, we can perform the marginalization by applying the appropriate affine
transformation on the multivariate random variable.

Let X = (X1, X2, . . . , Xn)
T be a n-dimensional vector and Y = (Y1, Y2, . . . , Ym)

T a
m-dimensional vector, which both are jointly Gaussian distributed with covariance matrix
Σ ∈ R(n+m)×(n+m). Note that we can write Σ as a block matrix, i.e.,

Σ =

[
ΣXX ΣXY

ΣYY ΣYX

]
where ΣXX and ΣYY are the covariance matrices of X and Y, respectively, and ΣXY =
(ΣYX)

T gives the covariance between X and Y. We have that [45]

X ∼ N (µX,ΣXX) (5.8)

Y ∼ N (µY,ΣYY)

5.1.6 Conditioning

Rather than disregarding information, which was the case when calculating marginal
distributions earlier, our focus now shifts to integrating the information we possess re-
garding the other random variable, denoted as Y . Conditioning, in this context, signifies
a process of acquiring knowledge: it pertains to understanding how our awareness that
Y = y influences our understanding of variable X. Conditioning essentially involves
examining how the distribution of the variable X alters when the variable Y attains a
specific value, denoted as y. Mathematically, we have

pX|Y(x|y) =
pX,Y(x,y)

pY(y)
(5.9)

pY|X(y|x) =
pX,Y(x,y)

pX(x)

Note that Gaussian distributions are closed under conditioning. This fact means that,
if we start with a Gaussian distribution and update our knowledge given the observed
value of one of its components, then the resulting distribution is still Gaussian.
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Let X = (X1, X2, . . . , Xn)
T be a n-dimensional vector and Y = (Y1, Y2, . . . , Ym)

T a
m-dimensional vector, which both are jointly Gaussian distributed with covariance matrix
Σ ∈ R(n+m)×(n+m). Note that we can write Σ as a block matrix, i.e.,

Σ =

[
ΣXX ΣXY

ΣYY ΣYX

]
where ΣXX and ΣYY are the covariance matrices of X and Y, respectively, and ΣXY =
(ΣYX)

T gives the covariance between X and Y. We have that [45]

X|Y ∼ N (µX + ΣXYΣ
−1
YY(Y − µY),ΣXX − ΣXYΣ

−1
YYΣYX) (5.10)

Y|X ∼ N (µY + ΣYXΣ
−1
XX(X− µX),ΣYY − ΣYXΣ

−1
XXΣXY)

Figure 5.3: Illustrations of marginalization and conditioning in multivariate normal distri-
butions. The top row showcases contour plots representing various 2D Gaussian distribu-
tions. In contrast, the bottom row illustrates the conditional and marginal distributions
corresponding to the Gaussian distributions depicted above. It is noteworthy to observe
the bottom-right plot, where the marginal and conditional probability density functions
coincide. This equivalence arises due to a correlation of 0 between the variables X and Y,
implying that the value of X provides no information about the value of Y.

5.1.7 Gaussian Process (GP)

We use a Gaussian process (GP) to describe a distribution over functions. Formally,
a Gaussian process is a collection of random variables, any finite number of which have
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a joint Gaussian distribution [4]. A Gaussian process is completely specified by its mean
function and covariance function. We define the mean function m(x) and the covariance
function k(x,x′) of a real process f(x) as [4]

m(x) = E[f(x)] (5.11)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (5.12)

and will write the Gaussian process as [4]

f(x) ∼ GP(m(x), k(x,x′)) (5.13)

In our case, the random variables represent the value of the function f(x) at location
x. Often, Gaussian processes are defined over time, i.e. where the index set of the random
variables is time. Here the index set X is the set of possible inputs, which could be more
general, e.g. RD. For notational convenience, we use the (arbitrary) enumeration of the
cases in the training set to identify the random variables such that fi

∆
= f(xi) is the

random variable corresponding to the case (xi, yi) as would be expected [4].
From the definition of Gaussian processes we know that, for any finite set of input

{x1,x2, . . .xN}, we have the following multivariate normal distribution

f ≡ (fi, f2, . . . fN)
T ∼ N (µ,K) (5.14)

where
µi = m(xi) , i = 1, 2, . . . , N

Kij = k(xi,xj) , i, j = 1, 2, . . . , N

Figure 5.4: Random functions drawn from a Gaussian process GP(m(x), k(x, x′)), where
m(x) is the zero-mean function and the covariance function k(x, x′) is the squared expo-
nential kernel.
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5.2 Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric probabilistic approach to
obtain a function f , that is distributed according to a Gaussian Process (GP) and able to
describe our underlying data. The entire function evaluation is drawn from a multivariate
normal distribution.

The GP can be utilized as a prior probability distribution in Bayesian inference, which
allows for function regression. Following the Bayesian methodology, new information is
combined with existing information. Using Bayes’ theorem, the prior is combined with
new data to obtain a posterior distribution [46].

5.2.1 Parametric vs. non-parametric models

Parametric models necessitate the a priori specification of a set of parameters that
define the underlying data distribution. This predefined structure empowers parametric
models to make predictions based on a fixed number of parameters, regardless of the
size of the training dataset. Notable examples of parametric models encompass linear
regression, Lasso regression, Ridge regression, and logistic regression, among others [3].

On the other hand, the construction of non-parametric models does not entail ex-
plicit assumptions about the functional form, as seen in the case of parametric models like
linear regression. Instead, non-parametric models can be viewed as approximations that
closely adhere to the data points. These models refrain from relying on pre-established
parameter configurations, thereby enabling them to adapt to intricate and irregular pat-
terns present in the data. The advantage of non-parametric approaches lies in their ability
to eschew assumptions about a specific functional form, such as linear modeling, allow-
ing them to effectively capture a broader array of potential shapes for the actual or true
function [3].

Aspect Parametric Models Non-Parametric Models
Definition Require predefined parameter

settings
Do not rely on specific parameters

Flexibility Less flexible, assume fixed data
structure

Highly flexible, adapt to complex
patterns

Assumptions Make strong assumptions about
data distribution

Fewer assumptions about data
distribution

Complexity Simpler model structure More complex model structure
Interpretability More interpretable Less interpretable
Performance Efficient for large datasets with

limited features
Perform well with high-
dimensional data

Table 5.1: Comparison between parametric and non-parametric models [3]

5.2.2 Training set

We have a training set D of N observations, D = {(xi, yi) | i = 1, . . . , N}, where
x denotes an input vector of dimension D (independent variable) and y denotes a scalar
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output or target (dependent variable). The column vector inputs for all N cases are
aggregated in the D×N design matrix X = (x1,x2, . . . ,xN), and the targets are collected
in the vector y = (y1, y2, . . . , yN)

T , so we can write D = (X,y) [4]. Within the context of
regression, the target variables are continuous real values. Our primary objective revolves
around drawing conclusions about the connection between the input variables and these
target values, specifically, examining the conditional distribution of the targets concerning
the inputs. Note that we are not interested in modelling the input distribution itself.

5.2.3 Noisy observations

We have assumed that any observed values y at input x, i.e. y(x), differ from the
function value f(x) by additive noise, and we will further assume that this noise follows
an independent, identically distributed (i.i.d.) Gaussian distribution with zero mean and
variance σ2

n. It is [4]

ϵ ∼ N (0, σ2
n)

and consequently

ϵ ∼ N (0, σ2
nI) (5.15)

Finally, we have

y(x) = f(x) + ϵ (5.16)

5.2.4 Prior predictive distribution

Consider a finite training set D and a Gaussian process f(x) ∼ GP(m(x), k(x,x′)),
which is the GP prior, where m(x) is the prior mean function and k(x,x′) is the prior
covariance (kernel) function. That implies that

f |X ∼ N (m(X), K(X,X)) = p(f |X) (5.17)

where f is a vector with the function evaluation at all input vectors, i.e X.

5.2.5 Likelihood

Given that observations y are equal to the function evaluations f with additive i.i.d.
zero mean Gaussian noise, it is

E(y) = E(f) = m(X)

Cov(f , f) = K(X,X)

Cov (ϵ, ϵ) = σ2
nI

Cov (ϵ, f) = Cov (f , ϵ) = 0
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Cov(f ,y) = Cov(y, f) = Cov(f + ϵ, f)

= Cov(f , f) + Cov(ϵ, f)
= K(X,X) + 0

= K(X,X)

Cov(y,y) = Cov(f + ϵ, f + ϵ)

= Cov(f , f) + Cov(ϵ, ϵ) + 2 · Cov(ϵ, f)
= K(X,X) + σ2

nI+ 2 · 0
= K(X,X) + σ2

nI

We have the following joint Gaussian distribution of y and f given X[
y
f

] ∣∣∣∣∣X ∼ N
([

m(X)
m(X)

]
,

[
K(X,X) + σ2

nI K(X,X)
K(X,X) K(X,X)

])
= p

([
y
f

] ∣∣∣∣∣X
)

(5.18)

The conditional distribution y|f ,X ∼ N (µy|f ,Σy|f ) is normal with

µy|f ,X = m(X) +K(X,X) [K(X,X)]−1 (f −m(X)) = f (5.19)

Σy|f ,X = K(X,X) + σ2
nI−K(X,X) [K(X,X)]−1K(X,X)) = σ2

nI (5.20)

So, we have that [4]

y|f ,X ∼ N (f , σ2
nI) = p(y|f ,X) (5.21)

In the same way, we can derive the following distribution

f |y,X ∼ N (µf |y,X,Σf |y,X) = p(f |y,X) (5.22)

where the mean function is

µf |y,X = m(X) +K(X,X)
[
K(X,X) + σ2

nI
]−1

(y −m(X)) (5.23)

and the covariance function is

Σf |y,X = K(X,X)−K(X,X)
[
K(X,X) + σ2

nI
]−1

K(X,X) (5.24)

5.2.6 Marginal likelihood

Now, we will introduce the marginal likelihood (or evidence), which is the integral of
the likelihood times the prior. The term marginal likelihood refers to the marginalization
over the function values f .

p(y|X) =

∫
p(y|f ,X)p(f |X)df

=

∫
N (f , σ2

nI)N (m,K)df

= N (m,K+ σ2
nI)

=
1

(2π)D/2 [det(K+ σ2
nI)]

1/2
exp

(
1

2
(y −m)T [K+ σ2

nI]
−1(y −m)

)
(5.25)



88 5 Gaussian Processes

The corresponding log marginal likelihood is given by

log [p(y|X)] = log

(
1

(2π)D/2 [det(K+ σ2
nI)]

1/2
exp

(
1

2
(y −m)T [K+ σ2

nI]
−1(y −m)

))
=−1

2
(y −m)T

[
K+ σ2

nI
]−1

(y −m)︸ ︷︷ ︸
Data fit

−1

2
log
[
det (K+ σ2

nI)
]

︸ ︷︷ ︸
Complexity penalty

(5.26)

−n

2
log (2π)︸ ︷︷ ︸

Constant term

5.2.7 Posterior distribution

Given a set of training data D, the GP regression model uses Bayesian inference to
learn the distribution of f that is most likely to have generated the data. This involves
computing the posterior distribution of f given the data, which is defined as

p(f |y,X) =
p(y|f ,X)p(f)

p(y|X)
=

p(y, f |X)

p(y|X)
(5.27)

where p(y|f ,X) is the likelihood of the data given the function f , p(f) is the prior dis-
tribution of f , p(y|X) is the marginal likelihood of the data, and p(y, f |X) is the joint
distribution of y and f given X.

5.2.8 Posterior predictive distribution

Once the posterior distribution of f has been learned, the model can make predictions
at new test points X∗ by computing the posterior predictive distribution, which is defined
as

p(f∗|y,X,X∗) =

∫
p(f∗|f ,X∗)p(f |y,X)df (5.28)

More specific, we are interested in inferring f∗, given a set of new inputs X∗. To infer
f∗ given observations X, y and query X∗, we write down the joint distribution of y and f∗.
By the definition of Gaussian process, it is a Gaussian distribution. Therefore, we have[

y
f∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(5.29)

Then we condition this multivariate Gaussian on the known training values, and we get
the predictive distribution p(f∗|X∗,X,y):

f∗|X∗,X,y ∼ N (f̄∗, cov(f∗)) (5.30)
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where the posterior mean function is

f̄∗ = m(X∗) +K(X∗,X)[K(X,X) + σ2
nI]

−1(y −m(X)) (5.31)

and the posterior covariance function is

Cov(f∗) = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2
nI]

−1K(X,X∗) (5.32)

We can interpret the predictive formulas as follows

posterior mean = prior mean + correction conditioned on the observations

posterior uncertainty = prior uncertainty - reduction in uncertainty

In case we predict for only one point, then X∗ ≡ x∗. We have the predictive mean value
f̄∗ = µf∗ , and its variance Cov(f∗) = σ2

f∗
. The prediction interval at confidence level

(1− α)× 100% for 0 < α < 1 is given by[
µf∗ − fα/2σf∗ , µf∗ + f1−α/2σf∗

]
(5.33)

where fα/2 = Φ−1(α/2) and f1−α/2 = Φ−1(1 − α/2) are, respectively, (α/2) × 100% and
(1−α/2)×100% quantiles of the standard normal distribution. Also, note that Φ denotes
the CDF of the standard normal distribution.

5.3 Learning in Gaussian process models

Assume we have chosen a parameterized Gaussian prior f(x) ∼ GP(mθ(x), kθ(x,x
′)).

The two main concerns in a GP model is to select that kernel function kθ(x,x
′) and tune

its hyperparameters θ. These steps are incorporated in the term “model selection” and
are crucial in order to ensure a well-fitted model.

5.3.1 Bayesian model comparison

One method for model selection is Bayesian model comparison, defined as follows

p(M|D) = p(D|M)p(M)∑
M′ p(D|M′)p(M′)

∝ p(D|M)p(M) (5.34)

where p(M) is the prior over models and p(D|M) is the marginal likelihood given by

p(D|M) =

∫
θ

p(D|θ,M)p(θ|M)dθ (5.35)

The optimal modelM∗ is given by

M∗ = argmax
M

[p(D|M)p(M)] (5.36)

However, it does involve a very difficult integral (or sum in discrete case, as showed above)
over the hyperparameters of our GP, which makes it impractical, and is also very sensitive
to the prior we put over our hyperparameters.
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(a) Gaussian process regression on a training set of
4 points.

(b) Illustration of the posterior distribution over
functions that the GP offers.

(c) Gaussian process regression on a training set of
7 points.

(d) Illustration of the posterior distribution over
functions that the GP offers.

Figure 5.5: (a) It showcases Gaussian process regression with an initial set of 4 condi-
tioning points, utilizing a GP prior of squared exponential kernel (σf = 1, ℓ = 1) and a
zero-mean function. (b) 20 samples are drawn from the GP posterior. (c) Enrichment of
the model by introducing three additional observation points. This highlights the adap-
tive nature of the Gaussian process, as it refines predictions in response to increased data,
evolving the predictive distribution accordingly. (d) 20 samples are drawn from the new
GP posterior.
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5.3.2 Maximum likelihood estimation

Another, more “friendly” approach to perform model selection is by experimenting with
various kernel functions kθ, and tune the hyperparameters θ of each one using maximum
likelihood estimation (MLE). Then you can compare the resulting likelihood values, or
even test the final model’s performance.

Under this approach, we will measure the quality of the fit to our training data D
with the marginal likelihood, the probability of observing the given data under our prior.
It is given by

p(y|X,θ) =

∫
p(y|f ,X,θ)p(f |X,θ)df

= N
(
mθ,Kθ + σ2

nI
)

=
1

(2π)D/2 [det(Kθ + σ2
nI)]

1/2
exp

(
1

2
(y −mθ)

T [Kθ + σ2
nI]

−1(y −mθ)

)
(5.37)

We are interested in maximizing the marginal likelihood. So, in order to simplify the
calculations, we can take equivalently the log marginal likelihood, which is given by

log [p(y|X,θ)] =−1

2
(y −mθ)

T
[
Kθ + σ2

nI
]−1

(y −mθ)︸ ︷︷ ︸
Data fit

−1

2
log
[
det (Kθ + σ2

nI)
]

︸ ︷︷ ︸
Complexity penalty

(5.38)

−n

2
log (2π)︸ ︷︷ ︸

Constant term

The optimal hyperparameters θ∗ are given by

θ∗ = argmax
θ

[log [p(y|X,θ)]] (5.39)

Equivalently, we can minimize the negative log marginal likelihood, i.e

θ∗ = argmin
θ

[− log [p(y|X,θ)]] (5.40)

Optimizing the hyperparameters analytically involves the calculation of the partial differ-
entials with respect to each component of θ, i.e. θj. We have

∂

∂θj
log [p(y|X,θ)] =

1

2
(y −mθ)

TK−1
θ,σn

∂Kθ,σn

∂θj
K−1

θ,σn
(y −mθ) (5.41)

− 1

2
Tr
(
K−1

θ,σn

∂Kθ,σn

∂θj

)
=

1

2
Tr
((

K−1
θ,σn

(y −mθ)(y −mθ)
T
[
KT

θ,σn

]−1 −K−1
θ,σn

) ∂Kθ,σn

∂θj

)
where Kθ,σn = Kθ + σ2

nI. The essence of this method is to find values that make the
observations seem probable. Gradients of the log marginal likelihood with respect to the
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hyperparameters can be computed, so we can use gradient-based optimizers. We cannot
necessarily guarantee we will find a global optimum here and different solutions may lead
to different interpretations of the data.

5.3.3 Maximum a posteriori estimation

By applying the Bayes rule, we obtain the posterior distribution of θ given y and X.
We have

p(θ|y,X) =
p(y,θ|X)

p(y|X)
=

p(y|X,θ)p(θ)

p(y|X)
∝ p(y|X,θ)p(θ) (5.42)

where p(y|X,θ) is the likelihood of the data given the hyperparameters θ, p(θ) is the
prior distribution of θ, p(y|X) is the marginal likelihood of the data (which is ignored
below as it does not depend on θ), and p(y,θ|X) is the joint distribution of y and θ given
X. The maximum a posteriori (MAP) estimate of θ given that we have observed Y = y,
is defined as follows

θ∗ = argmax
θ

[p(θ|y,X)]

= argmax
θ

[log [p(θ|y,X)]]

= argmax
θ

[log [p(y|X,θ)p(θ)]]

= argmax
θ

[log [p(y|X,θ)] + log [p(θ)]] (5.43)

Note that if we apply a uniform prior distribution over the hyperparameters θ, then
MAP is equivalent to MLE.

5.3.4 Fully Bayesian inference and integral calculations

When trying to tune the hyperparameters of the GPR model, included in the vector
θ, in the analysis above we used methods MLE and MAP, in a form that it is not required
to do integral calculations. These methods can lead to overfitting.

A fully Bayesian approach is another way to avoid overfitting. It computes the poste-
rior over a function value by integrating over all possible hyperparameters. This is stated
by

p(f∗|y,X,X∗) =

∫
p(f∗|y,X,X∗,θ)p(θ|y,X)dθ (5.44)

For fully Bayesian inference, it is necessary to calculate marginal likelihoods analytically.
This is often a intensive task and the above integral cannot be computed exactly. The first
term in the integral is tractable. The second term is the posterior over hyperparameters,
which comes from Bayes’ rule, but requires approximation before we can compute the
integral. There are methods that can be used for that task, like numerical integration,
Markov Chain Monte Carlo, or variational methods. Although, we will not get further
into this subject here.
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5.4 Warped Gaussian Process Regression

In their simplest form, Gaussian processes (GPs) are constrained by their inherent sim-
plicity, which involves an assumption that the target data follows a multivariate Gaussian
distribution, with Gaussian noise affecting individual data points [47]. This simplicity
facilitates the ease of making predictions through matrix manipulations, and it results in
predictive distributions that also conform to the Gaussian distribution.

However, there are many situations where assuming Gaussian noise and modeling
data as a GP may be impractical. For instance, the observations might consist of positive
quantities spanning several orders of magnitude. In such cases, it might not be sensible to
model these quantities directly while assuming homoscedastic Gaussian noise. To address
this issue, it is a common practice in the statistics literature to apply transformations
to the data. For example, taking the logarithm of the data is one such transformation.
Subsequently, modeling proceeds with the assumption that this transformed data adheres
to Gaussian noise, making it more amenable to modeling by a GP [47]. It is important to
note that the logarithm is just one of many potential transformations that could be applied
to the observation space to reshape the data into a form that can be effectively modeled
using a GP. Such transformations are also the Box-Cox or the κ-logarithmic, which were
discussed in a previous section. In essence, there exists a continuum of transformations
that could be employed to align the data with the GP modeling framework.

In the view of applying a transformation on the data before building the GPR model,
“warped GPR” is defined. This advanced framework allows for the vanilla GPR to be
applied properly on data that are not Gaussianly distributed by transforming or “warping”
the observation space. The “warped GPR” makes a transformation from a latent space
to the observation, such that the data is best modelled by a GP in the latent space [47].
It can also be viewed as a generalization of the GP, since in observation space it is a
non-Gaussian process, with non-Gaussian and asymmetric noise in general.

5.4.1 Making predictions

While working with warped GPR, we have defined a warping function g, that trans-
form each observation y to its corresponding value z in the warped space. We train the
model on the transformed data, and finally we are capable of making predictions in the
warped space by obtaining the posterior predictive distribution as discussed above. At
this point, assume that we have a point estimate µz∗ and its corresponding variance σ2

z∗

at x∗. Transferring this prediction to the observation space is straightforward by means
of the principle of “quantile invariance”, which states that the quantiles of a probability
distribution remain invariant under a monotonic transformation, i.e., if Φ(zα) = α and
zα = g(yα), then it holds that FY (yα) = α [48]. Therefore, the predictive distribution in
the observation space can be reconstructed from the respective distribution in the warped
space by means of the function g−1(z). More precisely, the optimal prediction is given
by [48]

ŷ∗ = g−1(µz∗) (5.45)

while the predictive interval at the confidence level (1− α)× 100% is given by [48][
g−1(µz∗ − fα/2σz∗), g−1(µz∗ + f1−α/2σz∗)

]
(5.46)
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where fα/2 = Φ−1(α/2) and f1−α/2 = Φ−1(1 − α/2) are, respectively, (α/2) × 100% and
(1 − α/2) × 100% quantiles of the standard normal distribution. Function Φ denotes
the CDF of the standard normal distribution. Note that Equation (5.45) returns the
median of the marginal predictive distribution in the observation space. This is due to
the principle of quantile invariance, taking into account that the conditional mean µz∗ is
also the median of the latent variable’s marginal conditional distribution [48].

For the warped space, the GPR gives a predictive distribution, which is Gaussian, and
where the median and the mean lie at the same point. Transferring a prediction µz∗ to
the observation space, we get ŷ∗ by Equation (5.45), which is the median of the marginal
predictive distribution in the observation space, as stated above. To calculate the mean,
we need to calculate the following integral [47]:

E[y∗] =

∫
dzg−1(z)Nz(µz∗ , σ

2
z∗) (5.47)

This is a simple one-dimensional integral under a Gaussian density, so Gauss-Hermite
quadrature (see Appendix E) may be used to accurately compute it with a weighted sum
of a small number of evaluations of the inverse function g−1 at appropriate places [47].

5.5 Mean Functions

Within the Gaussian process regression (GPR) framework, a critical initial decision
pertains to the selection of the prior mean function. This choice assumes significance, as
the prior mean function substantially influences the model’s behavior and predictions. It
serves as a foundational assumption regarding the inherent relationship between the input
features and the target variable. It is worth noting that the mean function represents one
of the two fundamental components of a Gaussian process (GP).

The prior mean function encapsulates the a priori beliefs or expectations we hold about
the target variable’s behavior before observing any data points. It serves as a foundational
reference point for the GPR model to start making predictions. In essence, the prior mean
function acts as an "initial best guess" or starting assumption regarding the average value
of the target variable across the input space.

Two primary choices for the prior mean function are the zero mean and the constant
mean. Let’s delve into each of these choices and the implications they bring to the GPR
model [4]:

• Zero mean:

m(X) = 0 (5.48)

Opting for a zero mean function assumes that the expected value of the target variable
is zero across the entire input space. This choice implies that the model begins
with no inherent bias in its predictions. It is particularly useful when there is no
prior information suggesting a specific average behavior of the target variable. A
zero mean function is versatile and can adapt well to data with varying trends and
patterns. Often, we prefer a zero mean function, as it offers simplification and has
not a critical impact to the final model. GPs are flexible enough to model the mean
even if it is set to an arbitrary value at the beginning.
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• Constant mean:

m(X) = c (5.49)

On the other hand, choosing a constant mean function involves specifying a fixed value
as the mean across all inputs. This choice injects a degree of bias into the model’s
predictions, assuming a consistent average behavior across the dataset. A constant
mean function can be advantageous when there is a strong prior belief that the target
variable’s mean is not zero and should be explicitly considered in the predictions.

The choice between a zero mean and a constant mean function should align with the
insights you possess about the problem at hand. In GPR, the choice of the mean function
does not have a significant impact on the model’s behavior as the number of data points
increases. The reason for this is that GPR is a flexible and adaptive method that relies on
both the prior mean function and the covariance (kernel) function to capture patterns in
the data. In fact, the predictive estimates converge towards the mean function as we move
far away from observed data points, which is not really the case. This is a fundamental
property of Gaussian processes. The covariance function, which encodes the relationships
between data points, has a more pronounced influence on the shape of the predictions
and the uncertainty estimates. In cases where there are a sufficient number of data points
and the covariance function is well-tuned to the data, the predictive power of the model
becomes increasingly reliant on the covariance function’s ability to capture underlying
patterns and relationships. This often makes the choice of the mean function less critical,
as the model will adapt to the observed data and the covariance structure. We will see in
a following subsection, that one can use a constant mean function, without much thought,
consider its value as an additional model’s hyperparameter and tune it through maximum
likelihood estimation.

5.6 Kernel Functions

A kernel or covariance function describes the covariance of the Gaussian Process ran-
dom variables. Letting x,x′ ∈ Rn, the kernel function is denoted by k(x,x′) ∈ R and it
gives the covariance between x and x′. Recall that the kernel function k(x,x′) together
with the mean function m(x) define the Gaussian process distribution:

f(x) ∼ GP(m(x), k(x,x′))

In general, what relates one observation to another is just the covariance function.
We will use the popular kernel function named “squared exponential” to get a better
understanding of its role.

k(x,x′) = σ2
f exp

(
−(x− x′)2

2l2

)
where the maximum allowable covariance is defined as σ2

f ; this should be high for functions
which cover a broad range on the y axis. If x ≈ x′, then k(x,x′) approaches this maximum,
meaning f(x) is nearly perfectly correlated with f(x′). This is good: for our function to
look smooth, neighbours must be alike. Here, covariance decays exponentially fast as
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x and x′ become farther apart in the input space. Now, if x is distant from x′, we
have instead k(x,x′) ≈ 0, i.e., the two points cannot “see” each other. So, for example,
during interpolation at new x values, distant observations will have negligible effect. How
much effect this separation has will depend on the length parameter, l, so there is much
flexibility built into ((5.55)) [49]. Not quite enough flexibility though: the data are often
noisy as well, from measurement errors and so on. Consequently, we take the approach
of folding the noise into k(x,x′), by writing

k(x,x′) = σ2
f exp

(
−(x− x′)2

2l2

)
+ σ2

nδ(x,x
′)

where δ(x,x′) is the Kronecker delta function and σ2
n is the noise variance. We will explain

further below.

5.6.1 Validity of a kernel

Suppose that we have a set X = (x1,x2, . . . ,xN) ∈ RD×N of random variables. In order
to be a valid kernel function the resulting kernel matrix K should be positive definite.
That implies that the matrix should be symmetric and invertible. For us this means that
if we define a covariance matrix K, based on evaluating k(xi,xj) at pairs of N x-values,
we must have that[50]

xTKx > 0 for all x ̸= 0 (5.50)

We intend to use as a covariance matrix in an MVN, and a positive (semi-)definite
covariance matrix is required for MVN analysis. In that context, positive definiteness is
the multivariate extension of requiring that a univariate Gaussian have positive variance
parameter, σ2.

The process of defining a new valid kernel from scratch it is not always trivial. Typ-
ically, predefined kernels are used to model a variety of processes. In what follows, we
will visually explore some of these predefined kernels, and we will see how we can apply
operations on them in order to construct new valid kernels.

5.6.2 White noise kernel

The white noise kernel represents independent and identically distributed noise added
to the Gaussian process distribution. It has the form [46]

k(x,x′) = σ2
nδ(x,x

′) (5.51)

where σ2
n is the variance of the noise and δ(x,x′) is the Kronecker delta. This formula

results in a covariance matrix with zeros everywhere except on the diagonal of the covari-
ance matrix. This diagonal contains the variances of the individual random variables. All
covariances between samples are zero because the noise is uncorrelated.

Figure 5.6 shows the white noise kernel as a function of the difference x−x′, and some
samples drawn from a MVN with zero mean and white noise kernel for various values of
the parameter σn, together with a visual representation of the corresponding covariance
matrices.
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5.6.3 Constant kernel

The equation for the constant kernel is given by [46]

k(x,x′) = c (5.52)

This kernel is mostly used in addition to other kernel functions. It depends on a single
hyperparameter c ≥ 0.

Figure 5.7 shows the constant kernel as a function of the difference x− x′, and some
samples drawn from a MVN with zero mean and constant kernel for various values of
the parameter c, together with a visual representation of the corresponding covariance
matrices.

5.6.4 Linear kernel

The equation for the linear kernel is given by [46]

k(x,x′) = σ2
fx

Tx′ (5.53)

The linear kernel is a dot-product kernel and thus, non-stationary. This kernel is often
used in combination with the constant kernel to include a bias.

Figure 5.8 shows the linear kernel as a function of x and x′, and some samples drawn
from a MVN with zero mean and linear kernel for various values of the parameter σf ,
together with a visual representation of the corresponding covariance matrices.

5.6.5 Polynomial kernel

The equation for the polynomial kernel is given by [46]

k(x,x′) = σ2
f

(
xTx′ + c

)p (5.54)

The polynomial kernel has an additional parameter p ∈ R, that determines the degree
of the polynomial. Since a dot-product is contained, the kernel is also non-stationary.
The prior variance grows rapidly for ∥x∥2 ≥ 1 such that the usage for some regression
problems is limited. It depends on a single hyperparameter c ≥ 0.

Figure 5.9 shows the polynomial kernel as a function of x and x′, and some sam-
ples drawn from a MVN with zero mean and polynomial kernel for various values of
the parameter σf , together with a visual representation of the corresponding covariance
matrices.

5.6.6 Squared exponential kernel

The squared exponential (or exponentiated quadratic, or radial basis function) kernel
is one of the most popular kernels used in Gaussian process modelling. It has the form [46]

k(x,x′) = σ2
f exp

(
−∥x− x′∥22

2ℓ2

)
(5.55)
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where σ2
f is the scale factor, and ℓ is the lengthscale. The squared exponential kernel

has become the de-facto default kernel for GPs. This is probably because it has some
nice properties. It is universal, and you can integrate it against most functions that you
need to. Every function in its prior has infinitely many derivatives. It also has only two
parameters:

• The lengthscale ℓ determines the length of the “wiggles” in our function. In general,
we will not be able to extrapolate more than l units away from our data.

• The output variance σ2
f determines the average distance of our function away from

its mean. Every kernel has this parameter out in front; it is just a scale factor.

Figure 5.10 shows the squared exponential kernel as a function of the difference x−x′,
and some samples drawn from a MVN with zero mean and squared exponential kernel
for various values of the parameters σf , ℓ, together with a visual representation of the
corresponding covariance matrices.

5.6.7 Squared exponential ARD kernel

The equation for the squared exponential ARD kernel is given by [46]

k(x,x′) = σ2
f exp

(
−(x− x′)TP−1(x− x′)

)
(5.56)

where
P = diag (ℓ1, ℓ2, . . . , ℓD)

The automatic relevance determination (ARD) extension to the squared exponential
kernel allows for independent lenghtscales, ℓ1, ℓ2, . . . , ℓD > 0, for each dimension of
x,x′ ∈ RD. The individual lenghtscales are typically larger for dimensions which are
irrelevant as the covariance will become almost independent of that input. We can inter-
pret ℓj as the characteristic lengthscale of dimension j. If ℓj →∞, then the corresponding
dimension is ignored. If P is spherical, we get the isotropic kernel.

5.6.8 Exponential kernel

The exponential kernel has the form [51]

k(x,x′) = σ2
f exp

(
−∥x− x′∥2

ℓ

)
(5.57)

where σ2
f is the scale factor and ℓ is the lengthscale. This kernel is, also, called the

Ornstein-Uhlenbeck kernel. Where the squared exponential function is smooth, the ex-
ponential kernel is only continuous — it is not differentiable. This has important impli-
cations in modeling, as the function approximations produced by kernel methods inherit
the smoothness of the kernel. Hence, a smooth kernel (like the squared exponential)
is good for fitting smooth functions, while a non-differentiable kernel (like the absolute
exponential) may be a better choice for fitting non-differentiable (non-smooth) functions.

Figure 5.11 shows the exponential kernel as a function of the difference x − x′, and
some samples drawn from a MVN with zero mean and exponential kernel for various
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values of the parameters σf , ℓ, together with a visual representation of the corresponding
covariance matrices.

5.6.9 Rational quadratic kernel

The rational quadratic kernel is equivalent to adding together many squared expo-
nential kernels with different lengthscales. So, GP priors with this kernel expect to see
functions which vary smoothly across many length scales. It has the form [52]

k(x,x′) = σ2
f

(
1 +
∥x− x′∥22

2αℓ2

)−α

(5.58)

where σ2
f is the scale factor, ℓ is the lengthscale and α is the scale-mixture factor. In

particular, the parameter α determines the relative weighting of large-scale and small-
scale variations. When α → ∞, the rational quadratic kernel is identical to the squared
exponential kernel.

Figure 5.12 shows the rational quadratic kernel as a function of the difference x− x′,
and some samples drawn from a MVN with zero mean and rational quadratic kernel
for various values of the parameters σf , α, ℓ, together with a visual representation of the
corresponding covariance matrices.

5.6.10 Periodic kernel

The periodic kernel has the form [52]

k(x,x′) = σ2
f exp

−2 sin2
(

π∥x−x′∥2
p

)
ℓ2

 (5.59)

where σ2
f is the scale factor, ℓ is the lengthscale, and p is the period factor. The periodic

kernel allows one to model functions which repeat themselves exactly. Its parameters are
easily interpretable:

• The period p simply determines the distance between repetitions of the function.

• The lengthscale ℓ determines the lengthscale in the same way as in the squared
exponential kernel.

Figure 5.13 shows the periodic kernel as a function of the difference x− x′, and some
samples drawn from a MVN with zero mean and periodic kernel for various values of the
parameters σf , p, ℓ, together with a visual representation of the corresponding covariance
matrices.

5.6.11 Cosine kernel

The cosine kernel has the form

k(x,x′) = σ2
f cos

(
2π∥x− x′∥2

p

)
(5.60)
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where σ2
f is the scale factor and p is the period factor. These parameters have the same

interpretation as in the periodic kernel; cosine kernel is another form of a “periodic”
covariance function.

Figure 5.14 shows the cosine kernel as a function of the difference x − x′, and some
samples drawn from a MVN with zero mean and cosine kernel for various values of the
parameters σf , p, together with a visual representation of the corresponding covariance
matrices.

5.6.12 The Matérn kernel

The equation for the Matérn kernel is given by [4]

k(x,x′) =
21−ν

Γ(ν)

(√
2ν∥x− x′∥2

ℓ

)ν

Kν

(√
2ν∥x− x′∥2

ℓ

)
(5.61)

with positive parameters ν and ℓ, where Kν is a modified Bessel function, and Gamma
is the gamma function.

Note that the scaling is chosen so that for ν → ∞ we obtain the SE covariance
function. For the Matérn class, the process f(x) is k-times MS differentiable if and only if
ν > k. The Matérn covariance functions become especially simple when ν is half-integer,
i.e ν = p+ 1/2, where p is a non-negative integer. In this case the covariance function is
a product of an exponential and a polynomial of order p, the general expression is given
by [4]

kν=p+1/2(x,x
′) = exp

(
−
√
2ν∥x− x′∥2

ℓ

)
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8ν∥x− x′∥2

ℓ

)p−i

(5.62)

It is possible that the most interesting cases for machine learning are ν = 3/2 and ν = 5/2,
for which [4]

kν=3/2(x,x
′) =

(
1 +

√
3∥x− x′∥2

ℓ

)
exp

(
−
√
3∥x− x′∥2

)
(5.63)

and

kν=5/2(x,x
′) =

(
1 +

√
5∥x− x′∥2

ℓ
+

5∥x− x′∥22
3ℓ2

)
exp

(
−
√
5∥x− x′∥2

)
(5.64)

since for ν = 1/2 the process becomes very rough, and for ν ≥ 7/2, in the absence of
explicit prior knowledge about the existence of higher order derivatives, it is probably very
hard from finite noisy training examples to distinguish between values of ν ≥ 7/2 (or even
to distinguish between finite values of ν and ν →∞, the smooth squared exponential, in
this case).

Figure 5.15 shows the Matérn kernel as a function of the difference x− x′, and some
samples drawn from a MVN with zero mean and Matérn kernel for various values of the
parameters ν, ℓ, together with a visual representation of the corresponding covariance
matrices.
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5.6.13 Making new kernels from old

Previously, we stated many commonly used covariance functions. Now, we will show
the two main ways to combine existing kernel functions to make new ones.

The sum of two kernels is a valid kernel [4]. Proof: consider the random process
f(x) = f1(x)+f2(x), where f1(x) and f2(x) are independent. Then k(x,x′) = k1(x,x

′)+
k2(x,x

′). This construction can be used e.g. to add together kernels with different
characteristic lengthscales. In Figure 5.19, an example of the sum of two kernels is shown.

The product of two kernels is a valid kernel [4]. Proof: consider the random process
f(x) = f1(x)f2(x), where f1(x) and f2(x) are independent. k(x,x′) = k1(x,x

′)k2(x,x
′).

A simple extension of this argument means that kp(x,x′) is a valid covariance function
for p ∈ N. In Figure 5.16, 5.17, and 5.18, three examples of the product of two kernels
are shown.

5.7 A numerically stable GPR algorithm

Algorithm 5.1 is an efficient algorithm for making predictions and calculating log
marginal likelihood in a Gaussian process regression framework [4]. The implementation
of that algorithm addresses the matrix inversion required by Equations (5.31) and (5.32)
using Cholesky factorization (see Appendix D). For multiple test cases, lines 4-6 are
repeated. The log determinant required in Equation (5.27) is computed from the Cholesky
factor (for large n it may not be possible to represent the determinant itself). The
computational complexity is n3/6 for the Cholesky decomposition in line 2, and n2/2 for
solving triangular systems in lines 3-4 and (for each test case) in line 6.

Algorithm 5.1: An efficient Gaussian process regression algorithm [4]
Input: Training data: X (inputs), y (targets), Test input: x∗, Mean function:

mθ(x), Covariance function: kθ(x,x
′), and Kernel’s hyperparameters θ

Output: Predictive mean: f̄∗, Predictive variance: Var(f∗), and Log marginal
likelihood: log [p(y|X,θ)]

1 Compute covariance matrix: K = Kθ(X,X) + σ2
nI

2 Perform Cholesky decomposition on matrix K and obtain factor L: K = LLT

3 Solve Lu = y for u
4 Solve LTα = u for α
5 Compute kernel vector k∗ = k(X,x∗)
6 Solve Lv = k∗ for v
7 Compute predictive mean f̄∗ = kT

∗α
8 Compute predictive variance Var(f∗) = k(x∗,x∗)− vTv
9 Compute the log marginal likelihood

log [p(y|X,θ)] = 1
2
yTα−

∑
i log (Lii)− n

2
log (2π)
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(a) White noise kernel as a function of the difference x−x′ for various values
of the parameter σn.

(b) (Left) Samples from a MVN 1with zero mean and white noise kernel for
various values of the parameter σn. (Right) Covariance matrices correspond-
ing to the GP samples drawn on the left.

Figure 5.6: Visualization of the white noise kernel function.

1The covariance matrix was factorized using Cholesky decomposition.
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(a) Constant kernel as a function of the difference x−x′ for various values of
the parameter c.

(b) (Left) Samples from a MVN 2with zero mean and constant kernel for
various values of the parameter c. (Right) Covariance matrices corresponding
to the GP samples drawn on the left.

Figure 5.7: Visualization of the constant kernel function.

2The covariance matrix was factorized using Cholesky decomposition.
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(a) Linear kernel as a function of x and x′ for various values of the parameter
σf .

(b) (Left) Samples from a MVN 3with zero mean and linear kernel for various
values of the parameter σf . (Right) Covariance matrices corresponding to
the GP samples drawn on the left.

Figure 5.8: Visualization of the linear kernel function.

3The covariance matrix was factorized using Cholesky decomposition.
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(a) Polynomial kernel as a function of x and x′ for various values of the
parameter σf .

(b) (Left) Samples from a MVN 4with zero mean and polynomial kernel for
various values of the parameter σf . (Right) Covariance matrices correspond-
ing to the GP samples drawn on the left.

Figure 5.9: Visualization of the polynomial kernel function.

4The covariance matrix was factorized using Cholesky decomposition.
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(a) Constant kernel as a function of the difference x−x′ for various values of
the parameters σf and ℓ.

(b) (Left) Samples from a MVN 5with zero mean and squared exponential
kernel for various values of the parameters σf and ℓ. (Right) Covariance
matrices corresponding to the GP samples drawn on the left.

Figure 5.10: Visualization of the squared exponential kernel function.

5The covariance matrix was factorized using Cholesky decomposition.
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(a) Exponential kernel as a function of the difference x−x′ for various values
of the parameters σf and ℓ.

(b) (Left) Samples from a MVN 6with zero mean and exponential kernel
for various values of the parameters σf and ℓ. (Right) Covariance matrices
corresponding to the GP samples drawn on the left.

Figure 5.11: Visualization of the exponential kernel function.

6The covariance matrix was factorized using Cholesky decomposition.
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(a) Rational quadratic kernel as a function of the difference x−x′ for various
values of the parameters σf , α, and ℓ.

(b) (Left) Samples from a MVN7 with zero mean and rational quadratic kernel
for various values of the parameters σf , α, and ℓ. (Right) Covariance matrices
corresponding to the GP samples drawn on the left.

Figure 5.12: Visualization of the rational quadratic kernel function.

7The covariance matrix was factorized using Cholesky decomposition.
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(a) Periodic kernel as a function of the difference x− x′ for various values of
the parameters σf , p, and ℓ.

(b) (Left) Samples from a MVN 8with zero mean and periodic kernel for
various values of the parameters σf , p, and ℓ. (Right) Covariance matrices
corresponding to the GP samples drawn on the left.

Figure 5.13: Visualization of the periodic kernel function.

8The covariance matrix was factorized using Cholesky decomposition.
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(a) Cosine kernel as a function of the difference x − x′ for various values of
the parameters σf , p, and ℓ.

(b) (Left) Samples from a MVN 9with zero mean and cosine kernel for var-
ious values of the parameters σf , p, and ℓ. (Right) Covariance matrices
corresponding to the GP samples drawn on the left.

Figure 5.14: Visualization of the cosine kernel function.

9The covariance matrix was factorized using Cholesky decomposition.
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(a) Matérn kernel as a function of the difference x − x′ for various values of
the parameters σf , p, and ℓ.

(b) (Left) Samples from a MVN 10with zero mean and Matérn kernel for
various values of the parameters σf , p, and ℓ. (Right) Covariance matrices
corresponding to the GP samples drawn on the left.

Figure 5.15: Visualization of the Matérn kernel function.

10The covariance matrix was factorized using Cholesky decomposition.
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(a) Squared exponential × Periodic kernel as a function of the difference x−x′
for various values of the parameters σf , ℓ1, p, and ℓ2.

(b) (Left) Samples from a MVN 11with zero mean and Squared exponential ×
Periodic kernel for various values of the parameters σf , ℓ1, p, and ℓ2. (Right)
Covariance matrices corresponding to the GP samples drawn on the left.

Figure 5.16: Visualization of the Squared exponential × Periodic kernel function.

11The covariance matrix was factorized using Cholesky decomposition.
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(a) Exponential × Periodic kernel as a function of the difference x − x′ for
various values of the parameters σf , ℓ1, p, and ℓ2.

(b) (Left) Samples from a MVN 12with zero mean and Exponential × Peri-
odic kernel for various values of the parameters σf , ℓ1, p, and ℓ2. (Right)
Covariance matrices corresponding to the GP samples drawn on the left.

Figure 5.17: Visualization of the Exponential × Periodic kernel function.

12The covariance matrix was factorized using Cholesky decomposition.
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(a) (Left) Samples from a MVN 13with zero mean and Linear × Periodic kernel for various values
of the parameters σf , p, and ℓ. (Right) Covariance matrices corresponding to the GP samples
drawn on the left.

Figure 5.18: Visualization of the Linear × Periodic kernel function.

13The covariance matrix was factorized using Cholesky decomposition.
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(a) (Left) Samples from a MVN 14with zero mean and Linear + Periodic kernel for various
values of the parameters σf1 , σf2 , p, and ℓ. (Right) Covariance matrices corresponding to the
GP samples drawn on the left.

Figure 5.19: Visualization of the Linear + Periodic kernel function.

14The covariance matrix was factorized using Cholesky decomposition.
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5.8 Computational cost and limitations

Gaussian processes demonstrate the remarkable versatility of constructing models and
managing uncertainty using the unassuming Gaussian distribution. In the realm of ma-
chine learning, they find primary application in modeling functions that are computation-
ally expensive. Nevertheless, their utility extends across a diverse range of applications
in various fields. It is important to acknowledge that the primary drawback associated
with straightforward Gaussian process models is their limited scalability when confronted
with large datasets. More specific [53]:

• The O(N3) computational cost usually takes the blame, required to factor the co-
variance matrix or do the covariance matrix inversion, so that we can evaluate the
marginal likelihood and make predictions. The Cholesky approach is noticeable more
numerically stable.

• That cost is not the only story. Computing the kernel matrix costs O(DN2) and
uses O(N2) memory. Sometimes the covariance computations can be significant, and
running out of memory places a hard limit on problem sizes.

There is a large literature on special cases and approximations of GPs that can be evalu-
ated more efficiently.

It is crucial to recognize that Gaussian processes are not universally capable of repre-
senting all functions. For example, the probability of a function being strictly monotonic
under any Gaussian process is essentially zero. Additionally, Gaussian processes serve as
valuable components in constructing various other models. However, when our observa-
tion process deviates from a Gaussian distribution or when the underlying noise is not
assumed to be Gaussian, conducting inference becomes a more complex task, necessitating
additional effort and approximation techniques.

5.9 Multi-output Gaussian Process Regression

In the analysis above, the GPR allows functions with scalar outputs. For the extension
to vector-valued outputs, multiple approaches exist [46]:

(i) Extending the kernel to multivariate outputs

(ii) Adding the output dimension as training data

(iii) Using separated GPR for each output

While the first two approaches set a prior on the correlation between the output dimen-
sions, the latter disregards a correlation without loss of generality. Following the approach
in (iii), let each target y be a vector of dimension M , then the previous definition of the
training set D is extended to a vector-valued output with X = (x1,x2, . . . ,xN) ∈ RD×N

and Y = (y1,y2, . . . ,yN)
T ∈ RN×M . We write D = {(xi,yi) | i = 1, . . . , N} or just

D = (X,Y). In that case, we define the vector-valued GP as follows [46]

fGP(x) ∼


GP (m1(x), k1 (x,x

′))
GP (m2(x), k2 (x,x

′))
...

GP (mM(x), kM (x,x′))

(5.65)
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6 Decision trees

One of the most effective approaches in the realm of supervised learning, catering to
both classification and regression tasks, is the decision tree. This method constructs
a tree-like structure resembling a flowchart, where each internal node signifies a test
performed on an attribute, each branch represents a test outcome, and each leaf node,
also known as a terminal node, corresponds to a class label or a continuous value. This
construction process entails repeatedly partitioning the training data into subsets based on
attribute values, with stopping criteria such as the maximum tree depth or the minimum
number of samples required for node splitting [54].

6.1 Types of decision trees

Tree-based algorithms form a prominent group of closely related techniques in non-
parametric supervised learning, applicable to both regression and classification tasks. For
those unfamiliar with supervised learning, it is a subset of machine learning algorithms
that involve model development using labeled data, comprising both input and output
values. Decision trees can be categorized into two types based on their target variables [55]:

• Categorical variable decision trees: These are employed when the algorithm aims
to predict a categorical target variable. For instance, consider predicting the relative
price of a computer, categorized as low, medium, or high. Features like monitor type,
speaker quality, RAM, and SSD may be considered. The decision tree learns from
these features, guiding each data point through various nodes until it reaches a leaf
node corresponding to one of the three categorical targets: low, medium, or high.

• Continuous variable decision trees: In this scenario, the features provided as
input to the decision tree, such as the characteristics of a house, are used to predict
a continuous output, such as the price of the house.

6.2 Structure of a decision tree

Let’s explore the appearance and operational principles of a decision tree when making
predictions with new input data [55]. Figure 6.1 provides a visual representation illus-
trating the fundamental structure of a decision tree. Each decision tree starts with a root
node that serves as the entry point for incoming inputs. This root node subsequently
branches into groups of decision or internal nodes, which make conditional assessments
based on various outcomes and observations. This process of segmenting a single node
into multiple nodes is known as splitting. Conversely, if a node doesn’t further split, it is
referred to as a “leaf node” or “terminal node”. A segment of a decision tree is commonly
referred to as a “branch” or “sub-tree”, as exemplified by the grey box in Figure 6.1.

Another concept worth considering is the opposite of splitting, where we remove de-
cision rules from the tree when necessary. This process is referred to as pruning and
serves the purpose of reducing the algorithm’s complexity or preventing overfitting [55].
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Figure 6.1: Basic structure of a decision tree.

6.3 Terminology in decision trees

Here are some commonly used terms in decision trees [56]:

• Root node: This represents the topmost node in the tree, encompassing the entire
dataset. It serves as the starting point for the decision-making process.

• Decision or internal node: These nodes symbolize choices regarding input features.
Internal nodes branch off, connecting to leaf nodes or other internal nodes.

• Leaf or terminal node: These nodes have no child nodes and indicate a class label
(for classification) or a numerical value (for regression).

• Splitting: This is the process of dividing a node into two or more sub-nodes using a
split criterion and a chosen feature.

• Branch or sub-tree: A subsection of the decision tree that starts at an internal
node and ends at leaf nodes.

• Parent node: The node that divides into one or more child nodes.

• Child node: Nodes that emerge when a parent node is split.

• Impurity: A measure of how homogeneous the target variable is in a subset of
data. It reflects the level of randomness or uncertainty in a set of examples. Common
impurity measurements in decision trees for classification tasks include the Gini index
and entropy.
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• Variance: Variance measures the variation between predicted and target variables
in different data samples. It is used in regression problems within decision trees.
Measures like Mean Squared Error (MSE), Mean Absolute Error (MAE), Friedman
MSE, or Half Poisson Deviance are employed to gauge variance in regression tasks.

• Information Gain: Information gain quantifies the reduction in impurity achieved
by splitting a dataset based on a particular feature in a decision tree. The feature that
provides the greatest information gain determines the splitting criterion. Information
gain is utilized to identify the most informative feature for splitting at each node,
with the aim of creating purer subsets.

• Pruning: Pruning is the process of removing branches from the tree that do not
contribute additional information or may lead to overfitting.

Next, we will focus on regression trees and the basic algorithm for constructing them.

6.4 Theoretical background of regression trees

In this subsection, the analysis has been extracted from [1].

Tree-based methods partition the feature space into a set of rectangles, and
then fit a simple model (like a constant) in each one. They are conceptually
simple yet powerful. Next, we will describe a popular method for tree-based re-
gression and classification called CART (Classification And Regression Tree).

Let’s consider a regression problem with continuous response Y and inputs X1

and X2, each taking values in the unit interval. The top-left panel of Figure
6.2 shows a partition of the feature space by lines that are parallel to the
coordinate axes. In each partition element, we can model Y with a different
constant. However, there is a problem: although each partitioning line has a
simple description like X1 = c, some of the resulting regions are complicated
to describe.

To simplify matters, we restrict attention to recursive binary partitions like
that in the top-right panel of Figure 6.2. We first split the space into two
regions and model the response by the mean of Y in each region. We choose
the variable and split-point to achieve the best fit. Then one or both of these
regions are split into two more regions, and this process is continued until
some stopping rule is applied. For example, in the top right panel of Figure
6.2, we first split at X1 = t1. Then the region X1 ≤ t1 is split at X2 = t2
and the region X1 > t1 is split at X1 = t3. Finally, the region X1 > t3 is
split at X2 = t4. The result of this process is a partition into the five regions
R1, R2, . . . , R5 shown in the Figure 6.2. The corresponding regression model
predicts Y with a constant cm in region Rm, that is

f̂(X) =
5∑

m=1

cmI{(X1, X2) ∈ Rm} (6.1)



120 6 Decision trees

This same model can be represented by the binary tree in the bottom left
panel of Figure 6.2. The full dataset sits at the top of the tree. Observations
satisfying the condition at each junction are assigned to the left branch, and
the others to the right branch. The terminal nodes or leaves of the tree
correspond to the regions R1, R2, . . . , R5. The bottom-right panel of Figure 6.2
is a perspective plot of the regression surface from this model. For illustration,
we chose the node means c1 = −5, c2 = −7, c3 = 0, c4 = 2, c5 = 4 to make
this plot.

A key advantage of the recursive binary tree is its interpretability. The feature
space partition is fully described by a single tree. With more than two inputs,
partitions like that in the top right panel of Figure 6.2 are difficult to draw,
but the binary tree representation works in the same way. This representation
is also popular among medical scientists, perhaps because it mimics the way
that a doctor thinks. The tree stratifies the population into strata of high and
low outcome, on the basis of patient characteristics.

6.5 Basic regression trees

In this subsection, the analysis has been extracted from [1].

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is, (xi, yi)
for i = 1, 2, . . . , N , with xi = (xi1, xi2, . . . , xip)

T . The algorithm needs to
automatically decide on the splitting variables and split points, and also what
topology (shape) the tree should have. Suppose first that we have a partition
into M regions R1, R2, . . . , RM , and we model the response as a constant cm
in each region:

f(x) =
M∑

m=1

cmI(x ∈ Rm) (6.2)

If we adopt as our criterion the minimization of the sum of squares (yi−f(xi))
2,

it is easy to see that the best ĉm is just the average of yi in region Rm:

ĉm = avg(yi|xi ∈ Rm) (6.3)

Now finding the best binary partition in terms of minimum sum of squares is
generally computationally infeasible. Hence, we proceed with a greedy algo-
rithm. Starting with all of the data, consider a splitting variable j and split
point s, and define the pair of half-planes

R1(j, s) = {X|Xj ≤ s} (6.4)

R2(j, s) = {X|Xj > s} (6.5)
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Figure 6.2: Partitions and CART. Top right panel shows a partition of a two-dimensional
feature space by recursive binary splitting, as used in CART, applied to some synthetic
data. Top left panel shows a general partition that cannot be obtained from recursive
binary splitting. Bottom left panel shows the tree corresponding to the partition in the
top right panel, and a perspective plot of the prediction surface appears in the bottom
right panel. Credit: [1].

Then we seek the splitting variable j and split point s that solve:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

 (6.6)

For any choice j and s, the inner minimization is solved by

ĉ1 = avg(yi|xi ∈ R1(j, s)) (6.7)
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ĉ2 = avg(yi|xi ∈ R2(j, s)) (6.8)

For each splitting variable, the determination of the split point s can be done
very quickly and hence by scanning through all of the inputs, determination
of the best pair (j, s) is feasible.

Having found the best split, we partition the data into the two resulting regions
and repeat the splitting process on each of the two regions. Then this process
is repeated on all of the resulting regions.

How large should we grow the tree? Clearly, a very large tree might overfit
the data, while a small tree might not capture the important structure. Tree
size is a tuning parameter governing the model’s complexity, and the optimal
tree size should be adaptively chosen from the data. One approach would
be to split tree nodes only if the decrease in sum-of-squares due to the split
exceeds some threshold. This strategy is too short-sighted, however, since
a seemingly worthless split might lead to a very good split below it. The
preferred strategy is to grow a large tree T0, stopping the splitting process
only when some minimum node size is reached. Then this large tree is pruned
using cost-complexity pruning, which we now describe.

We define a subtree T ⊂ T0 to be any tree that can be obtained by pruning T0,
that is, collapsing any number of its internal (non-terminal) nodes. We index
terminal nodes by m, with node m representing region Rm. Let |T | denote
the number of terminal nodes in T . Letting

Nm = #{xi ∈ Rm} (6.9)

ĉm =
1

Nm

∑
xi∈Rm

yi (6.10)

Qm(T ) =
1

Nm

∑
xi∈Rm

(yi − ĉm)
2 (6.11)

we define the cost complexity criterion

Ca(T ) =

|T |∑
m=1

NmQm(T ) + α|T | (6.12)

The idea is to find, for each α, the sub-tree Tα ⊆ T0 to minimize Ca(T ).
The tuning parameter α ≥ 0 governs the trade-off between tree size and its
goodness of fit to the data. Large values of α result in smaller trees Tα, and
conversely for smaller values of α. As the notation suggests, with α = 0 the
solution is the full tree T0. We discuss how to adaptively choose α below. For
each α, one can show that there is a unique smallest sub-tree Tα that minimizes
Ca(T ). To find Tα, we use weakest link pruning: we successively collapse the
internal node that produces the smallest per-node increase in

∑
m NmQm(T ),

and continue until we produce the single-node (root) tree. This gives a (finite)
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sequence of sub-trees, and one can show this sequence must contain Tα. See
Breiman et al. (1984) [57] or Ripley (1996) [58] for details. Estimation of
α is achieved by five- or ten-fold cross-validation: we choose the value α̂ to
minimize the cross-validated sum of squares. Our final tree is Tα̂.

6.6 Bagging vs. Boosting

6.6.1 Ensemble learning methods

Ensemble learning models are rooted in the concept that the fusion of multiple
models can yield formidable results. This technique harnesses the power of multiple
models, often termed “weak learners”, to achieve outcomes that surpass those of individ-
ual constituent models in terms of performance, stability, and predictive accuracy [59].
Machine learning predictions and classification errors typically stem from factors such
as noise, bias, and variance. Ensemble learning techniques are specifically designed to
mitigate these issues and enhance the overall robustness and reliability of the model.

Ensemble learning techniques can be applied to tackle both classification and re-
gression problems, consistently demonstrating superior performance compared to other
machine learning approaches. This superiority arises from the fact that the final prediction
is derived by amalgamating results from numerous models [59]. While there are countless
possibilities for creating ensembles in predictive modeling, two techniques stand out as
predominant in ensemble learning: bagging and boosting. In the following sections, we
will delve into the underlying principles of bagging and boosting techniques.

6.6.2 Bagging

Bootstrap aggregating, commonly referred to as bagging, is an ensemble learning
method designed to enhance the stability and accuracy of machine learning algorithms
employed in statistical classification and regression tasks. It addresses issues such as
variance reduction and overfitting that can arise in individual models. This technique is
typically applied in the context of decision tree algorithms.

Bagging achieves its goal by constructing an ensemble of diverse learners through
variations in the training dataset. Instead of training a single model on the entire dataset,
bagging generates multiple weak learners or base models by training them on subsets of the
original data. The specifics of the ensemble, including the number of models and the size
of the subsets, are determined by the data scientist developing the model. The subsets
of data utilized to train the weak learners are formed through random sampling with
replacement for each new model trained. This implies that a data subset for training may
contain duplicate entries. Bagging employs similar learners on small sample populations
of the training data, and subsequently aggregates the predictions of these learners. For
classification problems, the final model output is determined through majority voting,
whereas for regression problems, it involves computing an average of the predictions. The
steps involved in bagging are the following [59]:
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1. Subset creation: Multiple subsets are generated from the training dataset by
selecting observations with replacement, a technique known as bootstrapping. Each
subset represents a random sample from the original data.

2. Base model generation: A base model, often referred to as a weak model, is
constructed separately for each subset. These base models are trained independently
on their respective subsets.

3. Parallel processing: The base models operate concurrently and independently of
each other. This parallelization allows for efficient model training on different data
samples.

4. Predictive aggregation: The predictions made by all the base models are aggre-
gated or combined to determine the final outcome. This aggregation process can
involve methods such as averaging or majority voting, depending on the specific
problem.

Figure 6.3 shows a diagrammatic representation of the bagging process.
In essence, bagging mitigates variance-related errors and significantly improves the

overall accuracy of the model. By introducing diversity in the training process and lever-
aging the collective insights of multiple models, bagging ensures a more robust and reliable
ensemble learning approach.

Figure 6.3: Diagrammatic representation of the bagging process.
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6.6.3 Boosting

Boosting stands as an ensemble modeling technique that aims to create a robust
model by integrating a multitude of weak models. This process involves sequentially
building models using weak models. The initial step entails constructing a model using
the training data. Next, each subsequent model is developed to rectify errors present
within the previous model’s predictions. This iterative approach continues until either
the entire training dataset is accurately predicted or the maximum allowable number of
models is reached.

Distinct from the bagging methodology, boosting is an ensemble technique that brings
alterations to the training data and dynamically adjusts the importance of observations
based on previous predictions. In contrast to the independent nature of weak learners in
bagging, boosting introduces a sense of interdependence among them. Each weak learner
takes into consideration the outcomes of its predecessor and adapts the weights assigned
to data points. This transformative process works to elevate the weak learners into a
realm of strong learners. Following are the steps involved in the boosting technique [55]:

1. Equal weight subset: A subset is created from the training dataset where each
data point is assigned equal weight. This initial subset serves as the starting point
for the boosting process.

2. Base model creation: A base model is constructed using the initial dataset, and
this model is used to make predictions on the entire dataset.

3. Error calculation: Errors are computed by comparing the predicted values from
the base model with the actual values. Any observation that the model predicts
incorrectly is assigned a higher weight, emphasizing the misclassified data points.

4. Next model creation: A new model is created as part of the boosting process,
with the goal of correcting the errors made by the previous model. This new model
is designed to focus on the observations that the prior model misclassified.

5. Iterative error correction: The boosting process continues iteratively, with each
subsequent model built to rectify the errors made by the previous model. This
iterative approach aims to gradually improve the overall predictive performance.

6. Final model: The final model that emerges from this process is a robust and strong
learner. It’s essentially the weighted mean or combination of all the models (weak
learners) created during the boosting process.

Figure 6.4 shows a diagrammatic representation of the boosting process.
Boosting orchestrates adjustments to observation weights, particularly those that were

incorrectly predicted, by enhancing their importance. This emphasis on the incorrectly
predicted observations aims to rectify their subsequent prediction. While boosting serves
to diminish bias-related errors, it does bear the potential of inducing overfitting within
the training dataset. This duality underscores the necessity of striking a balance during
the boosting process, as the technique’s endeavors to enhance accuracy can inadvertently
lead to an excessive specialization to the training data.
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Figure 6.4: Diagrammatic representation of the boosting process.

6.6.4 Comparison

Now that we’ve gained a foundational understanding of both algorithms, let’s delve
into the distinctions and commonalities between these two methods by drawing compar-
isons. Here are some of the similarities between bagging and boosting:

• Multiple learners: Both bagging and boosting ensemble techniques create an en-
semble of multiple learners from a single learner.

• Random sampling: Both techniques employ random sampling to generate multiple
training datasets, introducing diversity into the learning process.

• Combining learner outputs: In both bagging and boosting, the final prediction is
typically made by averaging the results of the individual learners or through majority
voting.

• Reducing variance: Bagging and boosting serve to decrease model variance and
enhance the stability of the models.

Let’s explore some of the differences between bagging and boosting algorithms:

• Nature of combination: Bagging and boosting may both involve N learners, but
they fundamentally differ in how they combine predictions. Bagging combines pre-
dictions from the same type of models, whereas boosting combines predictions from
different types of models.

• Parallel vs. sequential: Bagging operates as a parallel ensemble learning method,
while boosting is a sequential ensemble learning method, with each learner built on
the insights of its predecessor.

• Independence vs. interaction: In bagging, each model is constructed indepen-
dently of the others, with no interaction between them. In contrast, boosting relies
on the results of previously built models to influence the creation of new models,
creating a sequential and interdependent process.



6 Decision trees 127

• Weighting: Bagging assigns equal weight to each model in the ensemble, treating
them uniformly. In the boosting technique, the contribution of new models is weighted
based on their performance, with better-performing models receiving greater impor-
tance.

• Training data subsets: In boosting, new subsets of training data are formed by
including observations that the previous model misclassified, aiming to correct errors.
Bagging, on the other hand, uses randomly generated training data subsets without
considering previous model performance.

• Effect on variance and bias: Bagging primarily aims to reduce variance, making
it effective at mitigating overfitting. In contrast, boosting is designed to reduce bias,
addressing issues related to underfitting.

6.7 Random forests

6.7.1 Architecture of random forests

Random forests, also known as random decision forests, stand as a robust ensemble
learning algorithm employed for a range of tasks such as classification and regression.
This method implements the bagging technique and operates by constructing a multitude
of decision trees during the training phase. In essence, a random forest is an ensemble of
decision trees brought together in a distinctive manner [60].

For classification endeavors, the output generated by the random forest corresponds to
the class that the majority of trees have chosen. Conversely, when dealing with regression
tasks, the final prediction is derived from the mean or average predictions of the individual
trees. This approach addresses a significant pitfall of decision trees, which tend to overfit
their training data. Random decision forests mitigate this by introducing randomness and
variety into the process.

A key feature of the random forest is that it comprises multiple decision trees, and
each tree is constructed from a distinct subset of the data rows. Additionally, at each
node of these trees, a distinct subset of features is chosen for the splitting process. This
diversity in data samples and feature selection is pivotal to the success of a random forest.
Each of these trees generates its own prediction, and these individual predictions are then
aggregated through averaging [61].

This aggregation process is what sets random forests apart from a single decision tree,
rendering them more accurate and less prone to overfitting. This is particularly evident
in the context of the random forest regressor, where the final prediction is obtained as an
average of the predictions produced by all trees within the forest. While it is noteworthy
that random forests often exhibit superior performance compared to individual decision
trees, their accuracy can fall short of that achieved by gradient boosted trees. Nonetheless,
it is important to recognize that the performance of random forests is influenced by the
characteristics of the data being processed.
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6.7.2 Hyperparamaters of random forests

When writing code regarding a Random Forest model, the following are some of the
most common hyperparameters that someone has to tune:

• n_estimators: This hyperparameter specifies the number of decision trees to be
included in the random forest. Increasing n_estimators typically improves the model’s
performance, but it can also lead to longer training times.

• max_depth: It controls the maximum depth of each individual decision tree in the
forest. Setting a higher value allows trees to be deeper, which can lead to overfitting
if not carefully tuned.

• min_samples_split: This hyperparameter determines the minimum number of
samples required to split an internal node during the tree-building process. A lower
value makes the trees more sensitive to noise and can result in overfitting.

• min_samples_leaf : Specifies the minimum number of samples required to be in a
leaf node. Similar to min_samples_split, a lower value increases the risk of overfit-
ting.

• max_features: Determines the maximum number of features to consider when
making a split decision. You can set it as a fixed number or a fraction of the total
number of features. It introduces randomness and helps prevent overfitting.

• bootstrap: A binary parameter that indicates whether the training data should be
bootstrapped (sampled with replacement). It controls whether each tree in the forest
is trained on a different subset of the data.

• random_state: Set for reproducibility. It controls the random seed for random
number generation during the construction of the trees.

• criterion: Specifies the function used to measure the quality of a split. Common
options include “gini” for Gini impurity and “entropy” for information gain.

• oob_score: A binary parameter indicating whether to use out-of-bag samples to
estimate the model’s accuracy. Out-of-bag samples are data points that were not
included in the bootstrapped training set for each tree.

• n_jobs: Specifies the number of CPU cores to use during training. Setting it to −1
will use all available cores.

• warm_start: A binary parameter that allows you to reuse the existing model and
continue training with additional estimators. Useful for incremental learning.
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6.8 Adaptive Boosting (AdaBoost)

6.8.1 Architecture of AdaBoost

The initial breakthrough in boosting algorithms that achieved remarkable practical
success was realized through Adaptive Boosting, often abbreviated as AdaBoost. This
technique involves fitting a series of weak learners to the dataset, subsequently accord-
ing greater weight to incorrect predictions while assigning relatively lesser weight to the
accurate ones. This strategic weighting mechanism allows the algorithm to concentrate
its efforts on predicting the more challenging observations. Ultimately, the conclusive
outcome is derived from a majority vote in classification tasks or an averaging process in
regression scenarios [62].

The default approach of the algorithm involves employing decision trees as founda-
tional estimators, which are considered weak learners. These decision trees consist of
only one split, often referred to as decision stumps due to their concise nature. Both
the foundational estimators and the decision tree’s parameters are adjustable, offering an
avenue for enhancing the overall model’s performance through careful tuning.

6.8.2 Hyperparamaters of AdaBoost

When writing code regarding an AdaBoost model, the following are some of the most
common hyperparameters that someone has to tune:

• n_estimators: This hyperparameter specifies the number of weak learners (usually
decision trees) to be combined. Increasing n_estimators typically improves model
performance, but it can also lead to longer training times.

• base_estimator: AdaBoost can work with different types of base classifiers. By
default, it uses a decision tree with a depth of 1 (a stump), but you can specify a
different base estimator, such as a decision tree with greater depth or even other types
of classifiers.

• learning_rate: This hyperparameter controls the contribution of each weak learner
to the final ensemble. Lower values make the learning process more gradual, and the
model may require more weak learners to reach good performance.

• loss: Specifies the loss function to be optimized during training. For regression tasks,
common options include “linear” (least squares loss) and “exponential” (exponential
loss).

• random_state: Set for reproducibility. It controls the random seed for random
number generation during training.

• n_jobs: Specifies the number of CPU cores to use during training. If set to −1, it
will use all available cores.
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6.9 Gradient boosting

Gradient boosting is one of the most powerful techniques for building predictive mod-
els. Gradient boosting involves three elements [62]:

1. A loss function to be optimized.

2. A weak learner to make predictions.

3. An additive model to add weak learners to minimize the loss function.

6.9.1 Loss function

The choice of the loss function relies on the nature of the problem under considera-
tion. It is necessary for the function to be mathematically smooth (differentiable), and
while there are established loss functions available, you also have the flexibility to create
your own. To illustrate, in regression tasks, a squared error could be adopted, while in
classification problems, logarithmic loss might be more appropriate. An advantage of the
gradient boosting framework is that you don’t need to develop a new boosting technique
for every potential loss function. Instead, it provides a versatile framework that can
accommodate any loss function with smooth mathematical properties [62].

6.9.2 Weak learner

Gradient boosting employs decision trees as its weak learners. More specifically, re-
gression trees are employed. These trees produce real values for splits and their outcomes
can be summed up, enabling subsequent model outputs to be combined in order to “ad-
just” the discrepancies in predictions. The tree-building process is carried out greedily,
where the best split points are chosen based on measures of purity like Gini index or to
minimize the overall loss [62]. In the initial stages, similar to how it is done in AdaBoost,
very short decision trees were utilized. These trees had just one split, often termed a
“decision stump”. For more comprehensive trees, generally with 4 to 8 levels, they can be
adopted. To ensure the weak nature of the learners while still facilitating the greedy con-
struction, certain limitations are often imposed on the weak learners. These restrictions
could involve a maximum number of layers, nodes, splits, or leaf nodes. The objective
is to maintain the weak character of the learners while allowing their construction in a
greedy fashion.

6.9.3 Additive model

The model introduces trees sequentially, with each new tree being added individually
and the existing trees remaining unchanged. A gradient descent technique is applied to
minimize the loss while incorporating these trees. In conventional usage, gradient descent
is employed to decrease a set of parameters, like the coefficients in a regression equation
or the weights in a neural network. Once the error or loss is computed, the weights are
adjusted to minimize that error.
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However, in this context, instead of dealing with parameters, we work with weak
learner sub-models, particularly decision trees. Following the loss calculation, in order to
execute the gradient descent procedure, a new tree needs to be incorporated into the model
that reduces the loss (essentially following the gradient). To achieve this, we parameterize
the tree, then modify its parameters to move in the correct direction (aiming to reduce
the residual loss). This approach is generally referred to as functional gradient descent or
gradient descent with functions [62].

The outcome generated by the new tree is subsequently combined with the output of
the existing sequence of trees, with the aim of rectifying or enhancing the final model
output. A predetermined number of trees are included, or the training process halts
when the loss attains an acceptable level, or when further improvements on an external
validation dataset are no longer observed.

6.9.4 Intuitive introduction

Similar to other boosting techniques, gradient boosting assembles weak learners into
a robust single learner through an iterative process. This is best understood within
the context of least-squares regression, where the objective is to instruct a model F to
predict values of the form ŷ = F (x), achieved by minimizing the average squared error
1
n

∑
i(ŷi− yi)

2. In this equation, the index i runs through a training set of actual output
values y of size n. It is:

• ŷi is the predicted value F (xi),

• yi is the observed value, and

• n is the number of samples in y

Let’s delve into a gradient boosting algorithm comprising M stages. At each stage m,
1 ≤ m ≤M , of the gradient boosting process, let’s assume there’s a somewhat imperfect
model Fm in place. For lower values of m, this model might simply return ŷi = ȳ, where
the right-hand side represents the mean of y. To enhance Fm, our algorithm aims to
introduce a new estimator, denoted as hm(x). Consequently,

Fm+1(xi) = Fm(xi) + hm(xi) = yi (6.13)

or, put differently,

hm(xi) = yi − Fm(xi) (6.14)

Therefore, gradient boosting endeavors to fit hm to the residual yi − Fm(xi). Just like
other versions of boosting, each subsequent Fm+1 aims to rectify the errors made by its
predecessor Fm. This concept’s generalization, encompassing loss functions beyond the
squared error, as well as tackling classification and ranking problems, stems from the
observation that residuals hm(xi) for a given model are proportionate to the negative gra-
dients of the mean squared error (MSE) loss function (in relation to F (xi)). Specifically,
it can be expressed as:

LMSE =
1

n

n∑
i=1

(yi − F (xi))
2 (6.15)
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− ∂LMSE

∂F (xi)
=

2

n
(yi − F (xi)) =

2

n
hm(xi) (6.16)

This underscores the possibility of specializing gradient boosting into a gradient descent
algorithm. Furthermore, its extension involves integrating a different loss function and
its corresponding gradient.

6.9.5 Gradient boosting algorithm

In numerous cases of supervised learning, there exists a set of input vectors x and
corresponding output variables y, linked by a certain probabilistic distribution. The
objective is to determine a function F̂ (x) that effectively approximates the output variable
based on the input values. This is formalized by introducing a loss function L(y, F (x))
and seeking to minimize its expected value:

F̂ = argmin
F

Ex,y[L(y, F (x))] (6.17)

The gradient boosting method assumes a real-valued y. It aims to approximate F̂ (x) by
composing a weighted sum of M functions hm(x) from a defined class H, referred to as
base (or weak) learners:

F̂ (x) =
M∑

m=1

γmhm(x) + const (6.18)

Typically, a known training set {(x1, y1), . . . , (xn, yn)} is provided, consisting of observed
sample values of x and their corresponding y values. Adhering to the principle of empirical
risk minimization, the method aims to find an approximation F̂ (x) that minimizes the
average loss function value over the training set, thereby minimizing the empirical risk. It
achieves this by initiating with a model comprising a constant function F0(x), and then
progressively expanding it in a step-by-step manner:

F0(x) = argmin
γ

n∑
i=1

L(yi, γ) (6.19)

Fm(x) = Fm−1(x) +

(
argmin
hm∈H

[
n∑

i=1

L(yi, Fm−1(xi) + hm(xi))

])
(x) (6.20)

for m ≥ 1, where hm ∈ H represents a base learner function. However, the optimal
selection of the function hm for an arbitrary loss function L is often computationally
unfeasible. Thus, we simplify our approach while preserving the core idea. We apply
a steepest descent approach to this optimization problem (functional gradient descent).
This involves iteratively modifying Fm−1(x) to find a local minimum of the loss function:

Fm(x) = Fm−1(x)− γ
n∑

i=1

∇Fm−1L(yi, Fm−1(xi)) (6.21)
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This change is governed by a small positive value γ. For sufficiently small γ, this guaran-
tees that L(yi, Fm(xi)) ≤ L(yi, Fm−1(xi)). Furthermore, we can optimize γ by finding the
γ value that minimizes the loss function:

γm = argmin
γ

n∑
i=1

L(yi, Fm(xi)) = argmin
γ

n∑
i=1

L
(
yi, Fm−1(xi)− γ∇Fm−1L(yi, Fm−1(xi))

)
(6.22)

In the scenario where we examine the continuous case—meaning that H encompasses
all arbitrary differentiable functions on Rd—the model’s update process follows these
equations:

Fm(x) = Fm−1(x)− γm

n∑
i=1

∇Fm−1L(yi, Fm−1(xi)) (6.23)

In these equations, γm represents the step length, and its value is determined by:

γm = argmin
γ

n∑
i=1

L
(
yi, Fm−1(xi)− γ∇Fm−1L(yi, Fm−1(xi))

)
(6.24)

However, in the discrete case, specifically when the setH is finite, we opt for the candidate
function h that is closest to the gradient of L. Then, by using line search on the afore-
mentioned equations, we can compute the coefficient γ. It’s important to note that this
approach is heuristic, and as a result, it provides an approximation rather than an exact
solution to the given problem. In pseudo-code, the generic gradient boosting method is
shown in Algorithm 6.1.

6.9.6 Gradient tree boosting

Gradient boosting is commonly employed with decision trees, particularly fixed-size
trees like CARTs, used as base learners. In this context, Friedman suggests an enhance-
ment to the gradient boosting method that refines the fit quality of each base learner. In
the standard gradient boosting approach, at the m-th step, a decision tree hm(x) is fitted
to pseudo-residuals. Let Jm denote the number of leaves in this tree. The tree divides the
input space into Jm distinct regions R1m, . . . , RJmm and provides a constant prediction
within each region. By using indicator notation, the output of hm(x) for input x can be
expressed as a sum:

hm(x) =
Jm∑
j=1

bjm1Rjm
(x) (6.25)

Here, bjm represents the predicted value within region Rjm. These coefficients bjm are then
multiplied by a value γm, determined through line search to minimize the loss function.
The model is updated as follows:

Fm(x) = Fm−1(x) + γmhm(x) (6.26)
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Algorithm 6.1: A generic gradient boosting algorithm [5]
Input: Training set {(xi, yi)}ni=1, loss function L(y, F (x)), and number of

iterations M
Output: Final boosted model FM(x)

1 Initialize the model with a constant value:

F0(x) = argmin
γ

n∑
i=1

L(yi, γ)

2 for m = 1 to M do
3 Compute so-called pseudo-residuals:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, . . . , n

4 Fit a base learner (or weak learner, e.g. tree) closed under scaling hm(x) to
pseudo-residuals, i.e. train it using the training set {(xi, rim)}ni=1

5 Compute multiplier γm by solving the following one-dimensional optimization
problem:

γm = argmin
γ

n∑
i=1

L (yi, Fm−1(xi) + γhm(xi))

6 Update the model:
Fm(x) = Fm−1(x) + γmhm(x)

7 Output the final model: FM(x)

γm = argmin
γ

n∑
i=1

L(yi, Fm−1(xi) + γhm(xi)) (6.27)

Friedman proposes a modification to this algorithm, referred to as “TreeBoost”, where
instead of a single γm for the entire tree, it selects a distinct optimal value γjm for each
region of the tree. Consequently, the coefficients bjm derived from the tree-fitting process
can be disregarded, leading to a revised model update rule:

Fm(x) = Fm−1(x) +
Jm∑
j=1

γjm1Rjm
(x) (6.28)

γjm = argmin
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ) (6.29)

6.10 Improvements to basic gradient boosting

Gradient boosting follows a greedy approach, which makes it susceptible to rapid
overfitting of a training dataset. To counteract this, regularization techniques can be
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employed, aiming to penalize specific components of the algorithm. By and large, these
methods enhance the algorithm’s performance by mitigating overfitting. In this subsec-
tion, we will explore four enhancements that can be applied to the fundamental gradient
boosting process [62]:

• Tree constraints

• Shrinkage

• Random sampling

• Penalized learning

6.10.1 Tree constraints

It’s crucial for the weak learners to possess some level of competence while still main-
taining their inherent weakness. There exist various methods to constrain the decision
trees. A useful rule of thumb is that the more restricted the process of tree creation,
the greater the number of trees necessary in the model. Conversely, if individual trees
are subject to fewer constraints, a smaller number of trees will suffice. The subsequent
constraints can be enforced during the decision tree construction: [62]:

• Number of trees: It’s generally safe to augment the number of trees in the model,
as it’s usually slow to lead to overfitting. The guiding principle is to continue adding
trees until no further improvement is observed.

• Tree depth: Opting for shallower trees is advisable, as deeper trees tend to be more
intricate. The range of 4 to 8 levels often yields favorable outcomes.

• Number of nodes or leaves: This constraint governs the size of the tree. It doesn’t
enforce a symmetrical structure unless other constraints are concurrently applied.

• Number of observations per split: This constraint sets a minimum requirement
for the volume of training data at a particular node before a split can be contemplated.

• Minimum improvement to loss: This acts as a restriction on the enhancement
achieved by any split that is introduced to a tree.

6.10.2 Weighted updates

The predictions made by each tree are sequentially accumulated. To control the learn-
ing pace of the algorithm, the contribution of each tree can be adjusted through weighting.
This adjustment is known as shrinkage or a learning rate. Essentially, this technique
slows down the learning process, necessitating the inclusion of more trees in the model.
Consequently, the training duration is extended, creating a trade-off between the quantity
of trees and the learning rate [62]. It’s typical to employ small values within the range of
0.1 to 0.3, and even values below 0.1, for effective results.
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6.10.3 Stochastic gradient boosting

A significant revelation in bagging ensembles and random forests was the ability to
construct trees greedily using sub-samples from the training dataset. This advantageous
concept can also be harnessed to decrease the correlation among trees within the sequence
in gradient boosting models. This adaptation of boosting is referred to as stochastic
gradient boosting. There are a few different variations of stochastic boosting that can be
employed [62]:

• Sub-sample rows before creating each tree.

• Sub-sample columns before creating each tree.

• Sub-sample columns before considering each split.

In general, adopting a more assertive sub-sampling approach, such as opting for only 50%
of the available data, has proven to yield advantageous outcomes.

6.10.4 Penalized gradient boosting

Supplementary restrictions can be applied to the parameterized trees aside from defin-
ing their structure. In the context of gradient boosting, classical decision trees like CART
are replaced with a modified version known as a regression tree. These regression trees
have numeric values assigned to their leaf nodes, which are sometimes referred to as
weights in certain literature. Consequently, the leaf weight values of these trees can be
subjected to regularization using well-known regularization functions, such as: [62]:

• L1 regularization of weights.

• L2 regularization of weights.

6.11 Extreme Gradient Boosting (XGBoost)

XGBoost, short for Extreme Gradient Boosting, represents a resilient machine-learning
algorithm [63]. It stands as a parallelized and meticulously optimized variant of the gra-
dient boosting algorithm. The parallelization of the entire boosting process significantly
enhances training efficiency. Instead of aiming to construct the best possible model us-
ing the entire dataset, as is common in traditional methods, XGBoost takes a different
approach. It trains numerous models on diverse subsets of the training dataset and sub-
sequently selects the best-performing model through a voting mechanism [64]. In many
instances, XGBoost surpasses conventional gradient boosting algorithms in terms of per-
formance. It is worth noting that in XGBoost, the layer-wise tree growth strategy is
being used.
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6.11.1 Features of XGBoost

Now, we will discuss some features of XGBoost that make it a so interesting and
widespread implementation of gradient boosting [64, 65]:

• Regularization: XGBoost provides the option to penalize complex models using
both L1 and L2 regularization methods. This regularization aids in preventing over-
fitting.

• Handling sparse data: Dealing with sparse data, which may result from missing
values or data processing steps like one-hot encoding, is a crucial aspect. XGBoost
employs a sparsity-aware split finding algorithm to effectively manage various types
of sparsity patterns within the data.

• Weighted quantile sketch: Unlike most existing tree-based algorithms, which typ-
ically handle data of equal weights using quantile sketch algorithms, XGBoost is
equipped to handle weighted data effectively and find split points through its dis-
tributed weighted quantile sketch algorithm.

• Block structure for parallel learning: XGBoost can leverage multiple CPU cores
for faster computation. This is achievable due to a block structure in its system design.
Data is organized and stored in in-memory units called blocks. This approach enables
the reuse of data layout by subsequent iterations, as opposed to recomputing it. It
also aids in tasks like split finding and column sub-sampling.

• Cache awareness: XGBoost optimizes memory access for gradient statistics by row
index, which often involves non-continuous memory access. To achieve this, XGBoost
allocates internal buffers in each thread for storing gradient statistics, thus making
optimal use of hardware.

• Out-of-core computing: This feature is designed to handle large datasets that don’t
fit into memory efficiently. It optimizes disk space usage while processing extensive
datasets.

• Non-linearity: XGBoost is capable of detecting and learning from non-linear pat-
terns within the data, making it adaptable to a wide range of scenarios.

• Scalability: XGBoost can run in distributed environments using servers and clus-
ters like Hadoop and Spark. This scalability enables the processing of vast amounts
of data. Moreover, XGBoost is available in several programming languages, includ-
ing C++, Java, and Python, enhancing its accessibility and usability across various
platforms.

6.11.2 Algorithm of XGBoost

Next, we give an intuitive explanation of the XGBoost algorithm:

1. Initialization: XGBoost starts with initializing the ensemble model with a simple
estimate. This initial estimate is often the mean (for regression) or the log-odds (for
classification) of the target values.
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2. Boosting iterations: The algorithm proceeds in a series of boosting iterations,
where each iteration improves the model by adding a new decision tree (weak
learner) to the ensemble.

3. Calculation of residuals: For each boosting iteration, the algorithm calculates the
difference between the actual target values and the current ensemble’s predictions.
These differences are called residuals.

4. Building decision trees: A new decision tree is added to the ensemble in each
boosting iteration. This tree is trained to predict the residuals calculated in the
previous step. The goal of the new tree is to capture the patterns that were not
well-modeled by the existing ensemble.

5. Regularization: To prevent overfitting and improve generalization, XGBoost ap-
plies regularization techniques to each new tree. These techniques include max
depth constraints on the trees, minimum child weight constraints, and column sub-
sampling (selecting a subset of features for each tree).

6. Calculating leaf outputs: Once a decision tree is trained, its outputs (predictions
for individual instances) are assigned to the leaves of the tree. These outputs are
determined based on the distribution of residuals that fall into each leaf during
training.

7. Updating ensemble predictions: The predictions of the new tree are then added
to the predictions made by the existing ensemble, updating the overall prediction
of the model.

8. Learning rate: Each new tree’s contribution to the ensemble’s prediction is con-
trolled by a parameter called the learning rate. A lower learning rate makes the
model more robust by shrinking the contribution of each new tree, reducing the risk
of overfitting.

9. Repeat: Steps 3-8 are repeated for a predefined number of boosting iterations or
until a stopping criterion is met.

10. Final prediction: The final prediction of the XGBoost model is the sum of pre-
dictions from all the individual trees in the ensemble, adjusted by the learning rate.

In Algorithm 6.2, a generic unregularized XGBoost algorithm is shown.

6.11.3 Hyperparamaters of XGBoost

When writing code regarding an XGBoost model, the following are some of the most
common hyperparameters that someone has to tune:

• n_estimators: This hyperparameter specifies the number of boosting rounds or
decision trees to build. It controls the number of weak learners in the ensemble.
Typically, higher values may lead to better performance but can also increase training
time.
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• learning_rate (or eta): The learning rate determines the step size at each iter-
ation while moving toward a minimum of a loss function. Lower values make the
optimization process more robust but require more iterations to converge.

• max_depth: It controls the maximum depth of each decision tree in the ensemble.
Increasing this value can lead to more complex trees, but it may also increase the risk
of overfitting.

• min_child_weight: This hyperparameter sets the minimum sum of instance weight
(hessian) needed in a child. It can be used to control overfitting. Larger values make
the algorithm more conservative.

• subsample: It determines the fraction of randomly sampled training data to use for
growing trees during each boosting round. Setting it to a value less than 1.0 can help
prevent overfitting.

• colsample_bytree: This controls the fraction of features to be randomly sampled
when building each tree. It can be used to introduce randomness and reduce overfit-
ting.

• gamma (or min_split_loss): It specifies a regularization term that penalizes
larger tree structures. Increasing gamma can make the algorithm more conservative
and prevent overfitting.

• lambda (reg_lambda): This is the L2 regularization term on weights. It adds a
penalty term to the loss function based on the magnitude of the weights, discouraging
large weights.

• alpha (reg_alpha): This is the L1 regularization term on weights. Like lambda, it
adds a penalty term to the loss function, encouraging sparsity in the feature weights.

• objective: It defines the learning task and corresponding objective function. Com-
mon values include “reg:squarederror” for regression tasks and “binary:logistic” for
binary classification.

• eval_metric: This specifies the evaluation metric to be used during training. Com-
mon options include “rmse” for regression and “logloss” for classification.

• early_stopping_rounds: It allows you to stop training if the model’s performance
on a validation set does not improve for a specified number of consecutive rounds.

• scale_pos_weight: Used in imbalanced classification tasks, it controls the balance
of positive and negative weights. It can help the model handle class imbalance.

6.12 Light Gradient Boosting Machine (LightGBM)

In this subsection, the analysis has been extracted from [7].
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Algorithm 6.2: A generic unregularized XGBoost algorithm [6]
Input: Training set: {(xi, yi)}Ni=1, Loss function: L(y, F (x)), Number of weak

learners: M , and Learning rate: α
Output: Final boosted model F̂M(x)

1 Initialize the model with a constant value:

F̂(0)(x) = argmin
θ

N∑
i=1

L(yi, θ)

2 for m = 1 to M do
3 Compute the “gradients” and “hessians”:

ĝm(xi) =

[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=F̂(m−1)(x)

ĥm(xi) =

[
∂2L(yi, F (xi))

∂F (xi)2

]
f(x)=F̂(m−1)(x)

4 Fit a base learner (or weak learner, e.g. tree) using the training set{
xi,− ĝm(xi)

ĥm(xi)

}N

i=1

by solving the following optimization problem:

ϕ̂m = argmin
ϕ∈Φ

N∑
i=1

1

2
ĥm(xi)

[
ϕ(xi)−

ĝm(xi)

ĥm(xi)

]2

5 Update the model:
F̂m(x) = αϕ̂m(x)

6 Update the model:
F̂(m)(x) = F̂(m−1)(x) + F̂m(x)

7 Output the final model: F̂ (x) = F̂(M)(x) =
∑M

m=0 F̂m(x);

Gradient boosting decision tree (GBDT) is a widely-used machine learning al-
gorithm, due to its efficiency, accuracy, and interpretability. GBDT achieves
state-of-the-art performances in many machine learning tasks, such as multi-
class classification, click prediction, and learning to rank. In recent years,
with the emergence of big data (in terms of both the number of features
and the number of instances), GBDT is facing new challenges, especially in
the trade-off between accuracy and efficiency. Conventional implementations
of GBDT need to, for every feature, scan all the data instances to estimate
the information gain of all the possible split points. Therefore, their computa-
tional complexities will be proportional to both the number of features and the
number of instances. This makes these implementations very time-consuming
when handling big data.
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To tackle this challenge, a straightforward idea is to reduce the number of
data instances and the number of features. However, this turns out to be
highly non-trivial. For example, it is unclear how to perform data sampling
for GBDT. While there are some works that sample data according to their
weights to speed up the training process of boosting, they cannot be directly
applied to GBDT.

As an answer to these challenges, the algorithm of LightGBM [7] was introduced, which
is a gradient-boosting framework based on decision trees to increase the efficiency of the
model and reduces memory usage. It uses two novel techniques:

• Gradient-based One Side Sampling (GOSS)

• Exclusive Feature Bundling (EFB)

These techniques fulfill the limitations of the histogram-based algorithm that is primarily
used in all GBDT frameworks. The two techniques of GOSS and EFB described below
form the characteristics of the LightGBM algorithm. They comprise together to make
the model work efficiently and provide it a cutting edge over other GBDT frameworks. It
is worth noting that in LightGBM, the leaf-wise tree growth strategy is being used.

6.12.1 Gradient-based One-Side Sampling (GOSS)

The following analysis has been extracted from [7].

While there is no native weight for data instances in GBDT, different data
instances have varied roles in the computation of information gain. The in-
stances with larger gradients (i.e., under-trained instances) will contribute
more to the information gain. GOSS keeps those instances with large gradi-
ents (e.g., larger than a predefined threshold, or among the top percentiles),
and only randomly drops those instances with small gradients to retain the
accuracy of information gain estimation. This treatment can lead to a more
accurate gain estimation than uniformly random sampling, with the same tar-
get sampling rate, especially when the value of information gain has a large
range.

In particular, in order to compensate for the influence to the data distribution,
when computing the information gain, GOSS introduces a constant multiplier
for the data instances with small gradients (see Algorithm 6.3). Specifically,
GOSS firstly sorts the data instances according to the absolute value of their
gradients and selects the top a × 100% instances. Then it randomly samples
b × 100% instances from the rest of the data. After that, GOSS amplifies
the sampled data with small gradients by a constant 1−a

b
when calculating

the information gain. By doing so, we put more focus on the under-trained
instances without changing the original data distribution by much.
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Algorithm 6.3: Gradient-based One-Side Sampling (GOSS) [7]

Input: Training data: I, Number of iterations: d, Sampling ratio of large
gradient data: a, Sampling ratio of small gradient data: b, Loss function:
loss, and Weak learner: L

1 models← {}
2 fact← 1−a

b

3 topN← a× len(I)
4 randN← b× len(I)
5 for i = 1 to d do
6 preds← models.predict(I)
7 g← loss(I, preds)
8 w← {1, 1, ...}
9 sorted← GetSortedIndices(abs(g))

10 topSet← sorted[1 : topN]
11 randSet← RandomPick(sorted[topN : len(I)], randN)
12 usedSet← topSet + randSet
13 w[randSet]× = fact {Comment: Assign weight fact to the small gradient data}
14 newModel← L(I[usedSet],−g[usedSet],w[usedSet])
15 models.append(newModel)

6.12.2 Exclusive Feature Bundling (EFB)

The following analysis has been extracted from [7].

High-dimensional data are usually very sparse which provides us the possibil-
ity of designing a nearly lossless approach to reduce the number of features.
Specifically, in a sparse feature space, many features are mutually exclusive,
i.e., they never take non-zero values simultaneously. The exclusive features can
be safely bundled into a single feature, called an Exclusive Feature Bundle.
So, an efficient algorithm was designed by reducing the optimal bundling prob-
lem to a graph coloring problem (by taking features as vertices and adding
edges for every two features if they are not mutually exclusive), and solv-
ing it by a greedy algorithm with a constant approximation ratio. Hence,
the complexity of histogram building changes from O(#data × #feature) to
O(#data × #bundle), while #bundle ≪ #feature. Hence, the speed of the
training framework is improved without hurting accuracy.

Addressing the initial concern, it has been established that determining the
optimal bundling strategy is NP-Hard, indicating the inherent challenge of
finding an exact solution within polynomial time. Seeking a viable alternative,
researchers have approached the problem by converting the optimal bundling
issue into a graph coloring problem, with features represented as vertices and
edges added between non-mutually exclusive pairs. Following this reduction, a
pragmatic approach employs a greedy algorithm that offers reasonable results
with a constant approximation ratio for graph coloring, ultimately leading to
the creation of the feature bundles.
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Moreover, it is worth noting that in many scenarios, a substantial number of
features display a lack of complete mutual exclusivity. These features seldom
assume zero values simultaneously. In light of this, a potential enhancement
lies in permitting a slight fraction of conflicts within the algorithm. This ad-
justment could yield an even smaller collection of feature bundles, thereby fur-
ther refining the computational efficiency of the process. Quantitative analysis
demonstrates that introducing a controlled level of conflict-achieved through
a calculated introduction of randomness—would impact training accuracy by
a maximum of O([(1− γ)n]2/3). Here, γ represents the maximal conflict rate
within each bundle. By opting for a relatively modest γ, a harmonious balance
between accuracy and efficiency can be achieved.
Drawing on the previously discussed ideas, an algorithm is formulated for
exclusive feature bundling, as outlined in Algorithm 6.4. Initially, a graph is
constructed with weighted edges, where the weights correspond to the total
conflicts between features. Subsequently, features are sorted by their degrees
within the graph, in a descending order. The features in the ordered list are
then evaluated; they are either assigned to an existing bundle with minimal
conflict (controlled by γ), or a new bundle is created. The time complexity
of Algorithm 6.4 is O(#feature2), and it is executed only once before the
training phase. While this complexity is manageable for scenarios with a
moderate number of features, it may encounter challenges when dealing with
an extensive feature set, such as millions of features. To further enhance
computational efficiency, an alternative strategy is proposed, which bypasses
the graph construction step. This strategy entails ordering features based on
the count of nonzero values, mirroring the concept of ordering by degrees,
as more nonzero values often correlate with a higher likelihood of conflicts.
As this approach primarily modifies ordering strategies in Algorithm 6.4, the
specifics of the new strategy are omitted to prevent redundancy.
The second aspect revolves around the necessity of a proficient technique for
merging features within the same bundle, aimed at reducing the associated
training complexity. Central to this process is ensuring that the values of
original features remain discernible within the feature bundles. Given that
the histogram-based algorithm operates on discrete bins instead of continuous
feature values, the construction of a feature bundle involves situating exclusive
features in separate bins. This is achieved by introducing offsets to the original
feature values. To illustrate, consider a scenario where two features reside in a
feature bundle. Initially, feature A spans values within [0, 10), while feature B
spans values within [0, 20). By adding an offset of 10 to the values of feature B,
the refined feature takes on values from [10, 30). Consequently, the merger of
features A and B becomes feasible, utilizing a feature bundle spanning [0, 30]
to replace the original features. Further details of this process are presented
in Algorithm 6.5.
The EFB algorithm effectively bundles numerous exclusive features into a more
compact set of dense features, thereby mitigating unnecessary computational
overhead for zero-valued features. It is important to note that an optimization
approach can also be applied to the fundamental histogram-based algorithm.
This optimization involves excluding zero feature values by employing a table
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to record data with non-zero values for each feature. By scanning this ta-
ble, the cost associated with histogram building for a feature transitions from
O(#data) to O(#non_zero_data). It’s worth mentioning that this optimiza-
tion necessitates additional memory allocation and computational resources to
manage per-feature tables throughout the entirety of the tree growth process.
This enhancement has been incorporated into LightGBM as a basic function.
Importantly, this optimization coexists harmoniously with EFB and can be
employed when the bundles exhibit sparsity.

Algorithm 6.4: Greedy Bundling [7]
Input: Features: F , and Max conflict count: K
Output: bundles

1 Construct graph G
2 searchOrder ← G.sortByDegree()
3 bundles← {}
4 bundlesConflict← {}
5 for i in searchOrder do
6 needNew ← True;
7 for j = 1 to len(bundles) do
8 cnt← ConflictCnt(bundles[j], F [i])
9 if cnt← bundlesConflict[i] ≤ K then

10 bundles[j].add(F [i])
11 needNew ← False
12 break

13 if needNew then
14 Add F [i] as a new bundle to bundles

Algorithm 6.5: Merge Exclusive Features [7]
Input: Number of data: numData, and One bundle of exclusive features: F
Output: newBin, and binRanges

1 binRanges← {0}
2 totalBin← 0
3 for f in F do
4 totalBin+ = f.numBin
5 binRanges.append(totalBin)

6 newBin← new Bin(numData)
7 for i = 1to numData do
8 newBin[i]← 0
9 for j = 1 to len(F ) do

10 if F [j].bin[i] ̸= 0 then
11 newBin[i]← F [j].bin[i] + binRanges[j]
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6.12.3 Hyperparamaters of LightGBM

When writing code regarding a LightGBM model, the following are some of the most
common hyperparameters that someone has to tune:

• num_leaves: This hyperparameter controls the maximum number of leaves (termi-
nal nodes) in each tree. Increasing num_leaves can make the model more expressive,
but may lead to overfitting.

• learning_rate (or eta): This hyperparameter determines the step size at each
iteration during the optimization process. Lower values make the optimization more
robust but require more iterations.

• max_depth: Specifies the maximum depth of the individual decision trees in the
ensemble. It is an alternative to controlling tree depth compared to the num_leaves
parameter.

• min_data_in_leaf : This sets the minimum number of data points that should be
present in a leaf node. It helps control overfitting and is another way to control tree
complexity.

• bagging_fraction (or subsample): It controls the fraction of data randomly sam-
pled for training each tree. Values less than 1.0 introduce randomness and can prevent
overfitting.

• feature_fraction (or colsample_bytree): Similar to XGBoost, this parameter
controls the fraction of features to be randomly selected for each tree, adding further
randomness.

• lambda_l2 (or reg_lambda): LightGBM supports L2 regularization on the leaf
weights to prevent overfitting. This parameter controls the strength of L2 regulariza-
tion.

• lambda_l1 (or reg_alpha): This parameter controls the strength of L1 regular-
ization on the leaf weights.

• min_child_samples: Specifies the minimum number of data points required in a
leaf. It can be used as an alternative to min_data_in_leaf to control overfitting.

• boosting_type: LightGBM supports different boosting types, including “gbdt”
(Gradient Boosting Decision Tree), “dart” (Dropouts meet Multiple Additive Regres-
sion Trees), and “goss” (Gradient-based One-Side Sampling).

• objective: It defines the learning task and corresponding objective function, such as
“regression”, “binary”, or “multiclass”.

• metric: Specifies the evaluation metric to be used during training and testing. Com-
mon options include “rmse” for regression and “binary_logloss” for binary classifica-
tion.

• early_stopping_rounds: Like XGBoost, this parameter allows you to stop train-
ing if the model’s performance on a validation set does not improve for a specified
number of consecutive rounds.
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• scale_pos_weight: Used in imbalanced classification tasks, it balances the positive
and negative weights to handle class imbalance.

• max_bin: Controls the maximum number of bins to bucket feature values into
during histogram-based tree building. Increasing this may lead to more accurate
trees, but can also increase training time.
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7 Deep Learning Methods

The content of subsections 7.3, 7.4, 7.5, 7.6, and 7.7 is obtained from [66], which has
used a very concise and consistent notation describing basic concepts of neural networks
and details on recurrent neural networks.

7.1 The concept of deep learning

Deep learning is a branch of machine learning which is based on artificial neural
networks (ANNs), or deep neural networks (DNNs). It is capable of learning complex
patterns and relationships within data. It has become increasingly popular in recent
years due to the advances in processing power and the availability of large datasets. Some
key features are the following [67]:

1. Deep learning is a subfield of machine learning that involves the use of neural net-
works to model and solve complex problems. Neural networks are modeled after the
structure and function of the human brain and consist of layers of interconnected
nodes that process and transform data.

2. The key characteristic of deep learning is the use of deep neural networks, which
have multiple layers of interconnected nodes. These networks can learn complex
representations of data by discovering hierarchical patterns and features in the data.
Deep learning algorithms can automatically learn and improve from data without
the need for manual feature engineering, and they have achieved significant success
in various fields, including image recognition, natural language processing, speech
recognition, and recommendation systems.

3. Deep learning architectures include Convolutional Neural Networks (CNNs), Recur-
rent Neural Networks (RNNs), and Deep Belief Networks (DBNs).

4. Training DNNs typically requires a large amount of data and computational re-
sources. However, the availability of cloud computing and the development of spe-
cialized hardware, such as Graphics Processing Units (GPUs), have made it easier
to train DNNs.

7.2 The components of a deep learning network

In the view of a high level representation, a DNN contains the following compo-
nents [68]:

1. Input layer:
An ANN has several nodes that input data into it. These nodes make up the input
layer of the system, and, in general, they represent the input “features”.

2. Hidden layer:
The input layer processes and passes the data to layers further in the neural network.
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These hidden layers process information at different levels, adapting their behavior
as they receive new information. Deep learning networks have hundreds of hidden
layers that they can use to analyze a problem from several different angles. For
example, if we were given an image of an unknown animal that we had to classify,
we would compare it with animals you already know. For example, we would look
at the shape of its eyes and ears, its size, the number of legs, and its fur pattern,
and we would try to identify patterns. The hidden layers in DNNs work in the
same way. If a deep learning algorithm is trying to classify an animal image, each of
its hidden layers processes a different feature of the animal and tries to accurately
categorize it.

3. Output layer:
The output layer consists of the nodes that output the data. Deep learning models
that output “yes” or “no” answers have only two nodes in the output layer. On the
other hand, those that output a wider range of answers have more nodes.

In Figure 7.1, a high level illustration of a simple deep neural network is shown.

Figure 7.1: High level illustration of a simple deep neural network.

7.3 The Perceptron

The most basic type of artificial neuron is called a perceptron. Perceptrons con-
sist of a number of external input links, a threshold, and a single external output link.
Additionally, perceptrons have an internal input, b, called bias. The perceptron takes a
vector of real-valued input values, all of which are weighted by a multiplier. In a previous
perceptron training phase, the perceptron learns these weights on the basis of training
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data. It sums all weighted input values and “fires” if the resultant value is above a pre-
defined threshold. The output of the perceptron is always boolean, and it is considered
to have fired if the output is ‘1’. The deactivated value of the perceptron is ‘−1’, and the
threshold value is, in most cases, ‘0’.

As we only have one unit for the perceptron, we omit the sub-indexes that refer to the
unit. Given the input vector x = (x1, . . . , xn)

T and trained weights w = (w1, . . . , wn)
T ,

the perceptron outputs y, which is computed by the formula

y =

{
1 , if

∑n
i=1wixi + b > 0

−1 , otherwise
(7.1)

We refer to z =
∑n

i=1 wixi as the weighted input, and to s = z + b as the state of the
perceptron. For the perceptron to fire, its state must exceed the value of the threshold.
The general structure of a perceptron is shown in Figure 7.2.

Single perceptron units can already represent a number of useful functions. Exam-
ples are the boolean functions AND, OR, NAND, and NOR. Other functions are only
representable using networks of neurons, as they are not linearly separable, e.g. boolean
function XOR. Single perceptrons are limited to learning only functions that are linearly
separable. In general, a problem is linear and the classes are linearly separable in a
n-dimensional space if the decision surface is a (n− 1)-dimensional hyperplane.

Figure 7.2: The general structure of the most basic type of artificial neuron, called a
perceptron.

7.4 The Delta Learning Rule

Perceptron training is learning by imitation, which is called “supervised learning”.
During the training phase, the perceptron produces an output and compares it with the
true output value provided by the training data. In cases of misclassification, it then
modifies the weights accordingly [69]. In a finite time, the perceptron will converge to
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reproduce the correct behavior, provided that the training examples are linearly separable.
Convergence is not assured if the training data is not linearly separable. A variety of
training algorithms for perceptrons exist, of which the most common are the perceptron
learning rule and the delta learning rule. Both start with random weights, and both
guarantee convergence to an acceptable hypothesis.

Using the perceptron learning rule algorithm, the perceptron can learn from a
set of samples. A sample is a pair (x, d) where x is the input and d is its label. For the
sample (x, d), given the input x = (x1, . . . , xn)

T , the old weight vector w = (w1, . . . , wn)
T

is updated to the new vector w′ using the rule

w′
i = wi +∆wi (7.2)

with

∆wi = η(d− y)xi (7.3)

where y is the output calculated using the input x and the weights w and η is the learning
rate. The learning rate is a constant that controls the degree to which the weights are
changed. As stated before, the initial weight vector w0 has random values. The algorithm
will only converge towards an optimum if the training data is linearly separable, and the
learning rate is sufficiently small. The perceptron rule fails if the training examples are
not linearly separable.

The delta learning rule was specifically designed to handle linearly separable and
linearly non-separable training examples. It also calculates the errors between calculated
output and output data from training samples, and modifies the weights accordingly.
The modification of weights is achieved by using the gradient descent optimization
algorithm, which alters them in the direction that produces the steepest descent along
the error surface towards the global minimum error. The delta learning rule is the basis
of the error backpropagation algorithm, which we will discuss later in this section.

7.5 The Sigmoid Threshold Unit

The sigmoid threshold unit is a different kind of artificial neuron, very similar to the
perceptron, but uses a sigmoid function to calculate the output. The output y is computed
by the formula

y =
1

1 + e−l·s (7.4)

with

s = z + b, where z =
n∑

i=1

wixi (7.5)

where b is the bias and l is a positive constant that determines the steepness (slope) of the
sigmoid function. The major effect on the perceptron is that the output of the sigmoid
threshold unit now has more than two possible values. Now, the output is “squashed” by
a continuous function that ranges between 0 and 1.
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Accordingly, the sigmoid function is called the “squashing” function, because it maps
a very large input domain onto a small range of outputs. For a low total input value,
the output of the sigmoid function is close to zero, whereas it is close to one for a high
total input value. The advantage of neural networks using sigmoid units is that they are
capable of representing non-linear functions. Cascaded linear units, like the perceptron,
are limited to representing linear functions. A sigmoid threshold unit is sketched in Figure
7.3.

Figure 7.3: The general structure of a sigmoid threshold unit.

7.6 Feed-Forward Neural Networks and Backpropagation

In feed-forward neural networks (FFNNs), sets of neurons are organized in layers,
where each neuron computes a weighted sum of its inputs. Input neurons take signals
from the environment, and output neurons present signals to the environment. Neurons
that are not directly connected to the environment, but which are connected to other
neurons, are called hidden neurons. FFNNs are loop-free and fully connected. This
means that each neuron provides an input to each neuron in the following layer, and that
none of the weights give an input to a neuron in a previous layer.

The simplest type of FFNNs are single-layer perceptron networks. Single-layer
neural networks consist of a set of input neurons, defined as the input layer, and a set
of output neurons, defined as the output layer. The outputs of the input-layer neurons
are directly connected to the neurons of the output layer. The weights are applied to the
connections between the input and output layer. In the single-layer perceptron network,
every single perceptron calculates the sum of the products of the weights and the inputs.
The perceptron fires ‘1’ if the value is above the threshold value. Otherwise, the perceptron
takes the deactivated value, which is usually ‘−1’. The threshold value is typically ‘0’.

Sets of neurons organized in several layers can form multilayer forward-connected
networks. The input and output layers are connected via at least one hidden layer, built
from set(s) of hidden neurons. The multilayer FFNN sketched in Figure 7.1, with one
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input layer, three hidden layers and one output layer, is classified as a 4-layer FFNN. For
most problems, FFNNs with large number of hidden layers offer no advantage.

Multilayer FFNNs using sigmoid threshold functions are able to express non-linear
decision surfaces. Any function can be closely approximated by these networks, given
enough hidden units.

The most common neural network learning technique is the error backpropagation
algorithm. It uses gradient descent to learn the weights in multilayer networks. It works
in small iterative steps, starting backwards from the output layer towards the input layer.
A requirement is that the activation function of the neuron be differentiable. Usually,
the weights of a feed-forward neural network are initialized to small, normalized random
numbers using bias values. Then, error backpropagation applies all training samples to
the neural network and computes the input and output of each unit for all (hidden and)
output layers.

The set of units of the network is N
∆
= I ⊔ H ⊔ O, where ⊔ is disjoint union, and I,

H, O are the sets of input, hidden, and output units, respectively. We denote input units
by i, hidden units by h, and output units by o. For convenience, we define the set of
non-input units as U ∆

= H ⊔O. For a non-input unit u ∈ U , the input to u is denoted by
xu, its state by su, its bias by bu, and its output by yu. Given units u, v ∈ U , the weight
that connects u with v is denoted by wuv.

To model the external input that the neural network receives, we use the external
input vector x = (x1, . . . , xn)

T . For each component of the external input vector, we find
a corresponding input unit that models it, so the output of the i-th input unit should be
the equivalent i-th component of the input to the network (i.e., xi), and consequently,
|I| = n.

For the non-input unit u ∈ U , the output of u, written yu, is defined using the sigmoid
activation function by

yu =
1

1 + e−su
(7.6)

where su is the state of u, and it is defined by

su = zu + bu (7.7)

where bu is the bias of u, and zu is the weighted input of u, defined in turn by

zu =
∑
v

wvuxv,u, with v ∈ Pre(u) (7.8)

=
∑
v

wvuyv

where xvu is the information that v passes as input to u, and Pre(u) is the set of units
v that precede u; that is, input units, and hidden units that feed their outputs yu (see
Equation (7.6)) multiplied by the corresponding weight wvu to the unit u.

Starting from the input layer, the inputs are propagated forward through the network
until the output units are reached at the output layer. Then, the output units produce
an observable output (the network output) y. More precisely, for o ∈ O, its output yo
corresponds to the o-th component of y.

Next, the backpropagation learning algorithm propagates the error backwards, and the
weights and biases are updated such that we reduce the error with respect to the present
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training sample. Starting from the output layer, the algorithm compares the network
output yo with the corresponding desired target output do. It calculates the error eo for
each output neuron using some error function to be minimized. The error eo is computed
as

eo = (do − yo) (7.9)

and we have the following notion of overall error of the network

E =
1

2

∑
o∈O

e2o (7.10)

To update the weight wuv, we will use the formula

∆wuv = −η
∂E

∂wuv

(7.11)

where η is the learning rate. We now make use of the chain rule to calculate the weight
update by deriving the error with respect to the activation, and the activation in terms
of the state, and in turn the derivative of the state with respect to the weight:

∆wuv = −η
∂E

∂yu

∂yu
∂su

∂su
∂wuv

(7.12)

The derivative of the error with respect to the activation for output units is

∂E

∂yo
= −(do − yo) (7.13)

now, the derivative of the activation with respect to the state for output units is

∂yo
∂so

= yo(1− yo) (7.14)

and the derivative of the state with respect to a weight that connects the hidden unit h
to the output unit o is

∂su
∂wuv

= yh (7.15)

Let’s define, for the output unit o, the error signal by

ϑo = −
∂E

∂yo

∂yo
∂so

(7.16)

for output units we have that

ϑo = (do − yo)yo(1− yo) (7.17)

and we see that we can update the weight between the hidden unit h and the output unit
o by

∆who = ηϑoyh (7.18)
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Now, for a hidden unit h, if we consider that its notion of error is related to how much
it contributed to the production of a faulty output, then we can backpropagate the error
from the output units that h sends signals to; more precisely, for an input unit i, we need
to expand the equation

∆wih = −η ∂E

∂wih

(7.19)

to

∆wih = −η
∑
o

∂E

∂yo

∂yo
∂so

∂so
∂yh

∂yh
∂sh

∂sh
∂wih

, o ∈ Suc(h) (7.20)

where Suc(h) is the set of units that succeed h, that is, the units that are fed with the
output of h as part of their input. By solving the partial derivatives, we obtain

∆wih = −η
∑
o

(ϑowho)
∂yh
∂sh

∂sh
∂wih

(7.21)

= η
∑
o

(ϑowho)yh(1− yh)yi

If we define the error signal of the hidden unit h by

ϑh =
∑
o

(ϑowho)yh(1− yh) , o ∈ Suc(h) (7.22)

then we have a uniform expression for weight change, that is,

∆wvu = −ηϑuyv (7.23)

We calculate ∆wvu again and again until all network outputs are within an acceptable
range, or some other terminating condition is reached.

7.7 Recurrent Neural Networks

Recurrent Neural Networks (RNN) differ from feed-forward neural networks by
the presence of feedback connections, where the flow of information occurs between neu-
rons of the same layer or from higher layer neurons to lower layer neurons [70, 71]. The
presence of feedback connections makes RNNs able to perform tasks that require memory.
This is because the network keeps information about its previous status. More specifically,
the network at the time t transmits to itself the information to be used at the moment
t+ 1 (together with the external input received at t+ 1). Therefore, the behavior of the
network is influenced by the input it receives at a given instant, and by what happened
to the network at the previous instant (in turn influenced by the previous instants).

7.7.1 Basic architecture

Fully Recurrent Neural Networks (FRNN) connect the outputs of all neurons
to the inputs of all neurons. This is the most general neural network topology because all
other topologies can be represented by setting some connection weights to zero to simulate
the lack of connections between those neurons. Figure 7.4 depicts a FRNN.



7 Deep Learning Methods 155

The Elman network [72] is similar to a 3-layer neural network, but additionally, the
outputs of the hidden layer are saved in so-called “context cells”. The output of a context
cell is circularly fed back to the hidden neuron along with the originating signal. Every
hidden neuron has its own context cell and receives input both from the input layer and
the context cells. Elman networks can be trained with standard error backpropagation,
the output from the context cells being simply regarded as an additional input. Figure
7.5 depicts an Elman RNN. Jordan networks [73] have a similar structure to Elman
networks, but the context cells are instead fed by the output layer. Figure 7.6 depicts a
Jordan RNN.

RNNs need to be trained differently from FFNNs. This is because, for RNNs, we
need to propagate information through the recurrent connections in-between steps. The
most common and well-documented learning algorithms for training RNNs in temporal,
supervised learning tasks are backpropagation through time (BPTT) and real-time
recurrent learning (RTRL). In BPTT, the network is unfolded in time to construct
a FFNN. Then, the generalized delta rule is applied to update the weights. This is an
offline learning algorithm in the sense that we first collect the data and then build the
model from the system. In RTRL, the gradient information is propagated forward. Here,
the data is collected online from the system, and the model is learned during collection.
Therefore, RTRL is an online learning algorithm.

Figure 7.4: The general structure of a FRNN.

7.7.2 Training Recurrent Neural Networks

The most common methods to train recurrent neural networks are Backpropagation
Through Time (BPTT) [74, 70, 71] and Real-Time Recurrent Learning (RTRL) [71, 75],
whereas BPTT is the most common method. The main difference between BPTT and
RTRL is the way the weight changes are calculated. The Long Short-Term Memory
(LSTM) recurrent neural networks (in which we will focus next) uses the BPTT method.
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Figure 7.5: The general structure of an Elman RNN.

Figure 7.6: The general structure of a Jordan RNN.
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7.7.3 Backpropagation Through Time

The BPTT algorithm makes use of the fact that, for a finite period of time, there is an
FFNN with identical behavior for every RNN. To obtain this FFNN, we need to unfold
the RNN in time. Figure 7.7 shows a simple, fully recurrent neural network with a single,
two-neuron layer. The corresponding feed-forward neural network, shown in Figure 7.7,
requires a separate layer for each time step with the same weights for all layers. If weights
are identical to the RNN, both networks show the same behavior.

Figure 7.7: (a) It shows a simple fully recurrent neural network with a two neuron layer.
(b) The same network unfolded over time, with a separate layer for each time step. This
is the form of a feed-forward neural network.

The unfolded network can be trained using the backpropagation algorithm described
before. At the end of a training sequence, the network is unfolded in time. The error
is calculated for the output units with existing target values using some chosen error
measure. Then, the error is injected backwards into the network, and the weight updates
for all time steps are calculated. The weights in the recurrent version of the network are
updated with the sum of their deltas over all time steps.

We calculate the error signal for a unit for all time steps in a single pass using the
following iterative backpropagation algorithm. We consider discrete time steps 1, 2, 3, . . .,
indexed by the variable τ . The network starts at a point in time t′ and runs until a final
time t. This time frame between t′ and t is called an epoch. Let U be the set of non-input
units, and let fu be the differentiable, non-linear squashing function of the unit u ∈ U ;
the output yu(τ) of u at time τ is given by

yu(τ) = fu(zu(τ)) (7.24)
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with the weighted input

zu(τ + 1) =
∑
l

W[u,l]X[u,l](τ + 1) , l ∈ Pre(u) (7.25)

=
∑
v

W[u,v]yv(τ) +
∑
i

W[u,i]yi(τ + 1)

where v ∈ U ∩ Pre(u) and i ∈ I, is the set of input units. Note that the inputs to u at
time τ + 1 are of two types: the environmental input that arrives at time τ + 1 via the
input units, and the recurrent output from all non-input units in the network produced
at time τ . If the network is fully connected, then U ∩ Pre(u) is equal to the set U of
non-input units. Let T (τ) be the set of non-input units for which, at time τ , the output
value yu(τ) of the unit u ∈ T (τ) should match some target value du(τ). The cost function
is the summed error Etotal(t

′, t) for the epoch t′, t′ + 1, . . . , t, which we want to minimize
using a learning algorithm. Such total error is defined by

Etotal(t
′, t) =

t∑
τ=t′

E(τ) (7.26)

with the error E(τ) at time τ defined using the squared error as an objective function by

E(τ) =
1

2

∑
u∈U

(eu(τ))
2 (7.27)

and with the error eu(τ) of the non-input unit u at time τ defined by

eu(τ) =

{
du(τ)− yu(τ) , if u ∈ T (τ)

0 , otherwise
(7.28)

To adjust the weights, we use the error signal ϑu(τ) of a non-input unit u at a time τ ,
which is defined by

ϑu(τ) =
∂E(τ)

∂zu(τ)
(7.29)

When we unroll ϑu over time, we obtain the equality

ϑu(τ) =

{
f ′
u(zu(τ))eu(τ) , if τ = t

f ′
u(zu(τ))

(∑
k∈U wkuϑk(τ + 1)

)
, if t′ ≤ τ < t

(7.30)

After the backpropagation computation is performed down to time t′, we calculate the
weight update ∆wuv in the recurrent version of the network. This is done by summing
the corresponding weight updates for all time steps:

∆wuv = −η
∂Etotal(t

′, t)

∂wuv

(7.31)

with

∂Etotal(t
′, t)

∂wuv

=
t∑

τ=t′

ϑu(τ)
∂zu(τ)

∂wuv

(7.32)

=
t∑

τ=t′

ϑu(τ)xuv(τ)
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7.7.4 Solving the vanishing gradient problem

Standard RNN can not bridge more than 5–10 time steps [76]. This is due to that
back-propagated error signals tend to either grow or shrink with every time step. Over
many time steps, the error therefore typically blows-up or vanishes [77, 78]. Blown-up
error signals lead straight to oscillating weights, whereas with a vanishing error, learning
takes an unacceptable amount of time, or does not work at all.

The explanation of how gradients are computed by the standard backpropagation
algorithm and the basic vanishing error analysis is as follows: we update weights after the
network has trained from time t to time t′ using the formulas (7.31), (7.32) and (7.30).
Consequently, given a fully recurrent neural network with a set of non-input units U,
the error signal that occurs at any chosen output-layer neuron o ∈ O, at time-step τ , is
propagated back through time for t− t′ time-steps, with t′ < t to an arbitrary neuron v.
This causes the error to be scaled by the following factor:

∂ϑv(t
′)

∂ϑo(t)
=

{
f ′
v(zv(t

′))wov(τ) , if t− t′ = 1

f ′
v(zv(t

′))
(∑

u∈U wuv
∂ϑu(t′+1)
∂ϑo(t)

)
, if t− t′ > 1

(7.33)

To solve the above equation, we unroll it over time. For t′ ≤ τ ≤ t, let uτ be a non-input-
layer neuron in one of the replicas in the unrolled network at time τ . Now, by setting
ut = v and ut′ = o, we obtain the equation

∂ϑv(t
′)

∂ϑo(t)
=
∑
ut′∈U

· · ·
∑

ut−1∈U

(
t∏

τ=t′+1

f ′
uτ
(zuτ (t− τ + t′))wuτuτ−1

)
(7.34)

Observing Equation (7.34), it follows that if

|f ′
uτ
(zuτ (t− τ + t′))wuτuτ−1| > 1 (7.35)

for all τ , then the product will grow exponentially, causing the error to blow-up; more-
over, conflicting error signals arriving at neuron v can lead to oscillating weights and
unstable learning. If now

|f ′
uτ
(zuτ (t− τ + t′))wuτuτ−1| < 1 (7.36)

for all τ , then the product decreases exponentially, causing the error to vanish, preventing
the network from learning within an acceptable time period. Finally, the equation∑

o∈O

∂ϑv(t
′)

∂ϑo(t)
(7.37)

shows that if the local error vanishes, then the global error also vanishes. A more detailed
theoretical analysis of the problem with long-term dependencies is presented in [79]. The
paper also briefly outlines several proposals on how to address this problem.

7.8 Long Short-Term Memory

One solution that addresses the vanishing error problem is a gradient-based method
called Long Short-Term Memory (LSTM) published by [80, 78, 76, 81]. LSTM
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can learn how to bridge minimal time lags of more than 1, 000 discrete time steps. The
solution uses constant error carousels (CECs), which enforce a constant error flow
within special cells. Access to the cells is handled by multiplicative gate units, which
learn when to grant access.

7.8.1 Constant Error Carousel

Suppose that we have only one unit u with a single connection to itself. The local
error back flow of u at a single time-step τ follows from Equation (7.30) and is given by

ϑu(τ) = f ′
u(zu(τ))wuuϑu(τ + 1) (7.38)

From Equations (7.36) and (7.37) we see that, in order to ensure a constant error flow
through u, we need to have

f ′
u(zu(τ))wuu = 1 (7.39)

and by integration we have

fu(zu(τ)) =
zu(τ)

wuu

(7.40)

From this, we learn that fu must be linear, and that u’s activation must remain constant
over time; i.e.,

yu(τ + 1) = fu(zu(τ + 1)) = fu(yu(τ)wuu) = yu(τ) (7.41)

This is ensured by using the identity function as fu, and by setting wuu = 1. This
preservation of error is called the constant error carousel (CEC), and it is the central
feature of LSTM, where short-term memory storage is achieved for extended periods of
time. Clearly, we still need to handle the connections from other units to the unit u, and
this is where the different components of LSTM networks come into the picture.

7.8.2 Memory blocks

In the absence of new inputs to the cell, we now know that the CEC’s backflow remains
constant. However, as part of a neural network, the CEC is not only connected to itself
but also to other units in the neural network. We need to take these additional weighted
inputs and outputs into account. Incoming connections to neuron u can have conflicting
weight update signals because the same weight is used for storing and ignoring inputs.
For weighted output connections from neuron u, the same weights can be used to both
retrieve u’s contents and prevent u’s output flow to other neurons in the network. To
address the problem of conflicting weight updates, LSTM extends the CEC with input
and output gates connected to the network input layer and to other memory cells. This
results in a more complex LSTM unit, called a memory block; its standard architecture
is shown in Figure 7.8. The input gates, which are simple sigmoid threshold units with
an activation function range of [0, 1], control the signals from the network to the memory
cell by scaling them appropriately; when the gate is closed, activation is close to zero.
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Additionally, these can learn to protect the contents stored in u from disturbance by
irrelevant signals. The activation of a CEC by the input gate is defined as the cell state.
The output gates can learn how to control access to the memory cell contents, which
protects other memory cells from disturbances originating from u. So we can see that the
basic function of multiplicative gate units is to either allow or deny access to constant
error flow through the CEC.

7.8.3 Architecture

Long Short-Term Memory (LSTM), as already referred, is a recurrent neural
network architecture designed by Sepp Hochreiter and Jürgen Schmidhuber in 1997. The
LSTM architecture consists of one unit, the memory unit, also known as the LSTM
unit. The LSTM unit is made up of four feed-forward neural networks. Each of these
neural networks consists of an input layer and an output layer. In each of these neural
networks, input neurons are connected to all output neurons. As a result, the LSTM
unit has four fully connected layers. Three of the four feed-forward neural networks are
responsible for selecting information and performing the typical memory management
operations. The fourth neural network is used to create new candidate information. More
specific, these neural networks are the following:

1. Forget gate: responsible for the deletion of information from memory.

2. Input gate: responsible for the insertion of new information in memory.

3. Output gate: responsible for the use of information present in memory.

4. Candidate memory: responsible for creating new candidate information to be
inserted into the memory.

Figure 7.8 illustrates the architecture of a typical LSTM unit. Next, we will delve into
the details of its components.

Figure 7.8: Architecture of a typical vanilla LSTM unit.
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7.8.4 Input and output

An LSTM unit receives three vectors as input. Two vectors come from the LSTM
itself and were generated by the LSTM at the previous instant, the instant t− 1. These
are the cell state, c ∈ RQ, and the hidden state, h ∈ RQ. The third vector comes from
outside. This is the vector x ∈ RF , called input vector, submitted to the LSTM at instant
t. We call Q the “output dimension” or “hidden size”, and F the “input dimension” which
is essentially the number of features in the input vector.

Given the three input vectors c, h, and x, the LSTM regulates, through the gates,
the internal flow of information and transforms the values of the cell state and hidden
state vectors. Vectors that will be part of the LSTM input set in the next instant, the
instant t+1. Information flow control is done so that the cell state acts as a long-term
memory, while the hidden state acts as a short-term memory.

In practice, the LSTM unit uses recent past information (the short-term memory, h)
and new information coming from the outside (the input vector, x) to update the long-
term memory (cell state, c). Finally, it uses the long-term memory (the cell state, c) to
update the short-term memory (the hidden state, h). The hidden state determined in
instant t is also the output of the LSTM unit in instant t. It is what the LSTM provides
to the outside for the performance of a specific task. In other words, it is the behavior on
which the performance of the LSTM is assessed [82].

7.8.5 Gates

The three gates (forget gate, input gate, and output gate) are information selec-
tors [82]. Their task is to create selector vectors. A selector vector is a vector with values
between zero and one and near these two extremes. A selector vector is created to be
multiplied, element by element, by another vector of the same size. This means that a
position where the selector vector has a value equal to zero completely eliminates the in-
formation included in the same position in the other vector, when doing element-wise (or
point-wise) multiplication. A position where the selector vector has a value equal to one
leaves unchanged the information included in the same position in the other vector. All
three gates are neural networks that use the sigmoid function as the activation function
in the output layer. The sigmoid function is used to produce, as an output, a vector
composed of values between zero and one and near these two extremes. All three gates
use as input the vector xt and the hidden state vector coming from the previous instant
ht−1.

7.8.6 Forget gate

At any time t, an LSTM receives an input vector xt as an input. It also receives
the hidden state ht−1 and cell state ct−1 vectors determined in the previous instant at
t − 1. The first activity of the LSTM unit is executed by the forget gate. The forget
gate decides, based on xt and ht−1, what information to remove from the cell state vector
coming from time t− 1 [82]. The outcome of this decision is a selector vector. Formally.
it is

ft = σ(Wfxt +Rfht−1 + bf ) (7.42)
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where Wf ∈ RQ×F , and Rf ∈ RQ×Q are the weights associated with xt, and ht−1,
respectively, and bf ∈ RQ represents the bias vector associated with the forget gate.

7.8.7 Input gate and candidate memory

After removing some of the information from the cell state received in input (ct−1), we
can insert a new one. This activity is carried out by two neural networks: the candidate
memory and the input gate. The two neural networks are independent of each other,
and their inputs are the vectors xt and ht−1.

The candidate memory is responsible for the generation of a candidate vector: a vector
of information that is candidate to be added to the cell state [82]. Candidate memory
output neurons use hyperbolic tangent function. The properties of this function ensure
that all values of the candidate vector are between −1 and 1. This is used to normalize
the information that will be added to the cell state. The input gate is responsible for the
generation of a selector vector, which will be multiplied element-wise with the candidate
vector [82]. Formally, it is

c̃t = tanh (Wc̃xt +Rc̃ht−1 + bc̃) (7.43)

it = σ(Wixt +Riht−1 + bi) (7.44)

where Wc̃ ∈ RQ×F , and Rc̃ ∈ RQ×Q are the weights associated with xt, and ht−1, respec-
tively, and bc̃ ∈ RQ represents the bias vector associated with the candidate memory, while
Wi ∈ RQ×F , and Ri ∈ RQ×Q are the weights associated with xt, and ht−1, respectively,
and bi ∈ RQ represents the bias vector associated with the input gate

7.8.8 Output Gate

The output gate essentially determines the value of the hidden state outputted by
the LSTM instant at t and received by the LSTM in the next instant at t+1. A selector
vector is generated from the output gate based on the values of xt and ht−1 it receives as
input [82]. The output gate uses the sigmoid function as the activation function of the
output neurons. Formally, it is

ot = σ(Woxt +Roht−1 + bo) (7.45)

where Wo ∈ RQ×F , and Ro ∈ RQ×Q are the weights associated with xt, and ht−1, respec-
tively, and bo ∈ RQ represents the bias vector associated with the output gate.

7.8.9 Cell state and hidden state

The selector vector ft (calculated by the forget gate) is multiplied element-wise with
the vector of the cell state ct−1 received as input by the LSTM unit [82]. This means that
a position where the selector vector has a value equal to zero completely eliminates the
information included in the same position in the cell state. A position where the selector
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vector has a value equal to one leaves unchanged the information included in the same
position in the cell state.

Furthermore, the selector vector it (calculated by the input gate) is multiplied element-
wise with the vector of the candidate memory c̃t [82]. This means that a position where
the selector vector has a value equal to zero completely eliminates the information included
in the same position in the candidate vector. A position where the selector vector has a
value equal to one leaves unchanged the information included in the same position in the
candidate vector. The result of the multiplication between the candidate vector and the
selector vector is added to the cell state vector. This adds new information to the cell
state.

Now, we update the cell state by combining the above operations. The cell is used
by the output gate and passed into the input set used by the LSTM unit in the next
instant at t+ 1. Formally, it is

ct = ft ⊙ ct−1 + it ⊙ c̃t (7.46)

where ⊙ is the element-wise multiplication, ft ∈ RQ is the selector vector produced by
the forget gate, it ∈ RQ is the selector vector produced by the input gate, c̃t ∈ RQ is the
selector vector produced by the candidate memory, and ct−1 ∈ RQ is the cell state that
LSTM received as input from the previous instant t− 1.

Output generation also works with a multiplication between a selector vector and
a candidate vector [82]. In this case, however, the candidate vector is not generated by
a neural network, but it is obtained simply by using the hyperbolic tangent function on
the cell state vector. This step makes the vector values of the cell state normalized within
a range of −1 to 1. In this way, after multiplying with the selector vector (whose values
are between zero and one), we get a hidden state with values between −1 and 1. This
makes it possible to control the stability of the network over time. The selector vector
and the candidate vector are multiplied with each other element-wise [82]. This means
that a position where the selector vector has a value equal to zero completely eliminates
the information included in the same position in the candidate vector. A position where
the selector vector has a value equal to one leaves unchanged the information included in
the same position in the candidate vector. Formally, it is

ht = ot ⊙ tanh (ct) (7.47)

where ⊙ is the element-wise multiplication, ot ∈ RQ is the selector vector produced by
the output gate, and ct ∈ RQ is the update cell state at instant t. Finally, the output of
the whole LSTM unit is ht ∈ RQ.
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7.8.10 Dimensionality, weights, and biases

From the above analysis, note that the weight matrices W and R, as well as the biases
b, of each component, do not change with time unroll. This means that once the LSTM is
trained, the weight matrices are fixed during inference and not time-dependent. In other
words, the same weight matrices and biases are used in every time step.

The total weight-bias parameters of the LSTM are

num_parameters = 4 · (Q · F ) + 4 · (Q ·Q) + 4 · F (7.48)

and the matrix containing all the trained weight-bias parameters will be of the following
form 

Wf Rf bf

Wi Ri bi

Wo Ro bo

Wc Rc bc

 (7.49)

7.9 Stacked Long Short-Term Memory

Stacked Long Short-Term Memory (Stacked LSTMs) networks represent a
powerful and sophisticated architecture within the realm of recurrent neural networks
(RNNs). In the pursuit of modeling complex temporal dependencies in sequential data,
Stacked LSTMs have emerged as a valuable tool. They extend the capabilities of their
single-layer counterparts, allowing for the hierarchical extraction of patterns and informa-
tion from sequential data. Stacked LSTMs or Deep LSTMs were introduced by Graves,
et al. [83, 84]. Given that LSTMs operate on sequence data, the addition of layers adds
levels of abstraction to input observations over time. In effect, chunking observations over
time or representing the problem at different time scales.

Stacked LSTMs are a stable technique for challenging sequence prediction problems.
A Stacked LSTM architecture can be defined as an LSTM model comprised of multiple
LSTM layers. An LSTM layer above provides a sequence output rather than a single value
output to the LSTM layer below. Specifically, it is one output per input time step, rather
than one output time step for all input time steps. Figure 7.9 illustrates the architecture
of a stacked LSTM neural network. In this type of neural network, each layer consists of a
different LSTM unit with its own weights and biases. As the output of the whole structure,
we define the hidden state of the topmost layer. In order to increase the flexibility and
ability of the model to capture patterns, it is often to choose different hidden size Q from
the output size R, and use an intermediate dense layer that performs the dimensionality
transformation from one to the other. The dense layer is assumed to be a part of the
whole structure, and its weights and biases are trained with backpropagation during the
training phase.
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Figure 7.9: Architecture of a stacked LSTM neural network. This image depicts the
network unrolled in time (i.e. the horizontal axis). A dense layer receives the output of
the stacked LSTM in order to perform a linear transformation and get the data to the
desired dimensionality.
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8 A Concise Overview of Heliophysics

8.1 Sun

The content of this subsection is based on information about the solar system that is
publicly available from NASA’s website [85] (except 8.1.4 whose bibliographic references
are explicitly written in the text).

8.1.1 General characteristics

The Sun, situated at the heart of our solar system, is a yellow dwarf star that has
been shining for approximately 4.5 billion years. It emits a radiant glow generated by
its hydrogen and helium composition. Positioned roughly 150 million kilometers away
from Earth, it serves as the sole star in our solar system. The Sun’s vitality is crucial
for the sustenance of life on our planet, as it supplies the energy necessary for existence.
Although from our terrestrial standpoint, the Sun may seem like a constant source of
light and warmth, it is, in fact, a dynamic celestial body that undergoes continuous
transformations while emitting energy into space. The field of study that focuses on
comprehending the Sun and its impact on the solar system is referred to as Heliophysics.
While the Sun holds a central role in our solar system and is indispensable for our survival,
it possesses an average magnitude compared to other stars, some of which can be up to
100 times larger. Moreover, numerous solar systems consist of multiple stars. Through
the examination of our Sun, scientists can enhance their understanding of the mechanisms
at work in distant stars.

The Sun, our medium-sized star, boasts a radius of approximately 700, 000 kilometers.
While there are stars of larger dimensions in the universe, the Sun surpasses our home
planet in terms of mass significantly. To put it into perspective, it would require over
330, 000 Earths to equal the Sun’s mass and a staggering 1.3 million Earths to fill the
Sun’s volume. The Sun’s closest stellar companion is the Alpha Centauri triple star
system.

The core of the Sun holds the title for being the hottest region, with temperatures
soaring above 15 million degrees Celsius. In contrast, the portion we refer to as the surface
or photosphere is comparatively cooler, measuring around 5, 500 degrees Celsius. One of
the most perplexing enigmas surrounding the Sun lies in its outer atmosphere known as the
corona. Astonishingly, the corona becomes increasingly hotter as it extends farther away
from the surface. It reaches scorching temperatures of up to 2 million degrees Celsius,
surpassing the photosphere by a significant margin. Due to its extreme temperatures and
radiation, the Sun cannot sustain life as we know it. Nevertheless, life on Earth thrives
solely because of the Sun’s light and energy.

Within the vast expanse of the Milky Way galaxy, the Sun finds its abode in a spiral
arm known as the Orion Spur, which extends outward from the Sagittarius arm. Orbiting
around the center of the Milky Way, the Sun carries along with it a retinue of planets,
asteroids, comets, and various celestial objects that compose our solar system. In our
cosmic journey, our solar system maintains an average velocity of 720, 000 kilometers per
hour. However, even at this rapid speed, it takes approximately 230 million years for the
Sun to complete a single revolution around the Milky Way. As the Sun traverses its path
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around the galaxy, it also rotates on its own axis. With a tilt of 7.25 degrees in relation
to the plane of the planets’ orbits, the Sun’s non-solid structure causes different parts to
rotate at varying rates. At the equator, the Sun completes a full rotation approximately
every 25 Earth days, while at its poles, the Sun rotates once on its axis every 36 Earth
days.

Approximately 4.6 billion years ago, the Sun took shape within a colossal, swirling
mass of gas and dust known as the solar nebula. As the nebula contracted due to its
gravitational forces, it underwent increased rotation and transformed into a flattened
disk. The majority of the nebula’s material migrated towards the center, culminating in
the formation of our Sun, which accounts for a staggering 99.8% of the total mass in our
solar system. The remaining substances coalesced to give rise to the planets and other
celestial bodies that presently orbit the Sun. The surplus gas and dust that remained were
expelled by the youthful Sun’s early solar wind. Like all stars, the Sun will eventually
deplete its energy reserves. As it nears the end of its life cycle, the Sun will expand into a
red giant, growing so immense that it may engulf Mercury, Venus, and potentially Earth
as well. Scientists estimate that the Sun is currently at approximately the halfway point
of its lifespan and has approximately another 5 billion years left before it transitions into
a white dwarf.

Figure 8.1: Graphic view of our Milky Way Galaxy. The Milky Way Galaxy is organized
into spiral arms of giant stars that illuminate interstellar gas and dust. The Sun is on a
finger called the Orion Spur. Overlaid is a graphic of galactic longitude in relation to our
Sun. Credit: NASA/Adler/U. Chicago/Wesleyan/JPL-Caltech
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8.1.2 Structure

The Sun, an immense celestial body composed predominantly of hydrogen and helium,
remains intact through the force of its own gravitational pull. The remaining is composed
of trace amounts of heavier elements, including oxygen, carbon, neon, and iron. The Sun
can be divided into various distinct regions. Starting from the interior, we encounter the
core, the radiative zone, and the convection zone. Progressing outward, we reach
the visible surface referred to as the photosphere, followed by the chromosphere, the
transition zone, and finally, the corona — an expansive outer atmosphere enveloping the
Sun. Among these regions, the core stands out as the hottest segment. It is within the
core that nuclear reactions occur, fusing hydrogen nuclei to form helium, and generating
the Sun’s abundant heat and luminosity.

Unlike Earth and other solid planets and moons, the Sun lacks a solid surface. How-
ever, the portion commonly referred to as the "surface" of the Sun is known as the photo-
sphere. The term photosphere, meaning "light sphere", is fitting as it emits the majority
of visible light, making it observable from Earth with our eyes. Although commonly
termed the surface, the photosphere is actually the first layer of the solar atmosphere.
It possesses a thickness of approximately 402 kilometers and experiences temperatures
of around 5, 500 degrees Celsius. While significantly cooler than the scorching core, it
remains hot enough to cause carbon, including diamonds and graphite, to not only melt
but also vaporize. The photosphere serves as the primary source of the Sun’s radiation,
with most of it escaping outward into space.

Above the photosphere, we find the chromosphere, the transition zone, and the
corona. While the chromosphere and corona are commonly recognized as distinct re-
gions, not all scientists categorize the transition zone as an individual layer. Instead,
the transition zone denotes the narrow region where the chromosphere undergoes rapid
heating, eventually merging into the corona. Together, the photosphere, chromosphere,
and corona comprise the Sun’s atmosphere. It is within this atmospheric realm that
notable features become visible, including sunspots, coronal holes, and solar flares.
These phenomena contribute to the dynamic nature of the Sun and offer intriguing areas
of study.

Typically, the visible light emitted from the upper regions of the Sun is overshadowed
by the brightness of the photosphere, making it difficult to observe. However, during total
solar eclipses, when the Moon aligns to cover the photosphere, the chromosphere becomes
visible as a delicate red rim encircling the Sun. Simultaneously, the corona manifests as
a stunning white crown, exhibiting plasma streamers that extend outward and resemble
the shapes of flower petals.

One of the most significant mysteries surrounding the Sun lies in the corona’s sig-
nificantly higher temperature compared to the layers situated directly beneath it. This
disparity in temperature poses a major unsolved puzzle in solar research and is known
as the coronal heating problem. Scientists are still actively studying and seeking
explanations for the mechanisms responsible for the intense heating of the corona.

8.1.3 Solar activity

The Sun exhibits variable behavior and undergoes distinct phases of high and low
activity, collectively known as the solar cycle. Roughly every 11 years, the geographic
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Figure 8.2: Illustration of the Sun’s structure, in false color for contrast. Credit:
Wikipedia, “Sun”

poles of the Sun experience a reversal of their magnetic polarity, resulting in the swapping
of the north and south magnetic poles. Throughout this cycle, the photosphere, chromo-
sphere, and corona of the Sun transition from a state of tranquility to one of vigorous
activity. The peak of this activity cycle, referred to as solar maximum, corresponds to
a period of significantly increased solar storm activity. During solar maximum, phenom-
ena such as sunspots, intense eruptions known as solar flares, and coronal mass ejections
become more frequent occurrences.

Solar activity possesses the capability to release immense quantities of energy and
particles, a portion of which can have an impact on Earth. Similar to the dynamic
nature of weather on our planet, conditions in space, known as space weather, are
in a constant state of flux due to the Sun’s activity. Space weather phenomena can
pose challenges and disruptions to various technological systems and infrastructure on
Earth. For instance, it can interfere with satellite operations, GPS navigation, and radio
communications. Moreover, space weather events have the potential to cripple power
grids and cause corrosion in pipelines that transport oil and gas. Thus, understanding
and monitoring space weather is crucial for mitigating and managing the potential risks
and impacts it can have on our technological systems and infrastructure.

8.1.4 Magnetic field

The Sun possesses a large and complex magnetic field. Magnetic fields are generated
by magnetic objects or moving charged particles, and they describe the force exerted
by these objects in their surrounding space. The Sun’s magnetic field is created by the
movement of charged particles within its plasma, consisting of positively charged ions and
negatively charged electrons [86].

The Sun’s high temperatures cause the plasma to move vigorously, creating intricate
and twisted magnetic fields. Additionally, the solar wind, consisting of extremely hot
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plasma blown off the Sun’s surface, contributes to the magnetic field. The plasma near
the poles rotates at a slower rate than at the equator, resulting in the twisting and
stretching of the magnetic fields. The interaction and influence of these plasma motions
give rise to the Sun’s complex magnetic field.

Figure 8.3: The Sun’s magnetic field is shown in a series of illustrated images with the
poles and equator indicated. The magnetic field lines change as the Sun rotates. After
1, 2, and 3 rotations the magnetic field line gets progressively wrapped around the Sun,
becoming stretched as it nears the equator. After many rotations the magnetic field is
complex and wrapped tightly around the Sun in many loops. Credit: José Francisco
Salgado, PhD (Adler Planetarium)

Close to the Sun’s surface, the magnetic fields are intricate and twisted, while fur-
ther away, certain trends emerge. The magnetic field strength is stronger near the poles
and weaker at the equator, although it remains approximately 100 times stronger than
Earth’s magnetic field even at the equator. The Sun’s magnetic field extends well beyond
the orbits of the known planets, reaching distances of around 75-100 times the distance
between the Earth and the Sun [86].

During the approximately 11-year sunspot cycle, the Sun’s magnetic field undergoes
reversals. Magnetograms from instruments like SOHO/MDI and SDO/HMI are used to
analyze the configurations of the magnetic field above the Sun’s surface. These con-
figurations play a crucial role in understanding the potential conditions of severe space
weather [87]. The Sun’s magnetic field can be observed through the behavior of solar
material. The Sun’s plasma, consisting of charged particles, creates magnetic fields as
the particles move. These invisible magnetic fields guide the motion of the plasma and
can be visualized through loops and towers of material in the corona, which emit light
in wavelengths invisible to the human eye. Instruments like magnetographs are used to
measure the strength and direction of magnetic fields at the footpoints of these loops on
the Sun’s surface [88].

To gain a deeper understanding of the Sun’s magnetic field, scientists utilize models
and simulations. The Potential Field Source Surface (PFSS) model, for example, illus-
trates the undulating nature of the magnetic fields around the Sun. These models combine
observational measurements with knowledge of solar material movement and magnetism
to provide insights into the structure and behavior of the Sun’s magnetic field, both in
the corona and on the far side of the Sun.

While a complete understanding of the Sun’s magnetic field is still evolving, scientists
have made significant progress. The Sun’s magnetic field is responsible for driving its
approximately 11-year activity cycle, with periods of maximum and minimum solar ac-
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(a) In January 2011, three years after solar min-
imum, the magnetic field of the sun is still rela-
tively simple, with open field lines concentrated
near the poles. Credit: NASA’s Goddard Space
Flight Center/Bridgman.

(b) In July 2014, at solar maximum, the struc-
ture is much more complex, with closed and
open sun’s magnetic field lines poking out all
over – ideal conditions for solar explosions.
Credit: NASA’s Goddard Space Flight Cen-
ter/Bridgman.

Figure 8.4: This comparison shows the relative complexity of the solar magnetic field
between (a) January 2011 and (b) July 2014. Credit: NASA’s Goddard Space Flight
Center/Bridgman.

tivity. During solar maximum, the magnetic field becomes highly complex, characterized
by numerous active regions. In contrast, during solar minimum, the field is weaker and
concentrated at the poles, without the formation of sunspots. By studying the changes in
the magnetic fields over time, scientists can observe the evolution from concentrated and
smooth structures near solar minimum to more tangled and disorderly fields during solar
maximum. These changing magnetic conditions contribute to solar events such as flares
and coronal mass ejections, highlighting the dynamic nature of the Sun’s magnetic field
and its impact on space weather phenomena [88].

8.2 Solar wind

The solar wind is a continuous stream of charged particles, mainly protons and elec-
trons, flowing outward from the Sun’s corona. It is formed by the expansion of plasma
from the outermost atmosphere of the Sun, known as the corona. The plasma is heated
to such high temperatures that the Sun’s gravity cannot hold it down, and it is propelled
outward. This plasma follows the Sun’s magnetic field lines, which extend radially out-
ward and create a spiral pattern due to the Sun’s rotation. The solar wind is generated
by these expanding plasma streamers, which originate from large bright patches called
"coronal holes" in the Sun’s corona [89].

As the solar wind travels away from the Sun, it becomes thin and encounters the inter-
stellar medium, which is the space between stars. It passes through a shock wave called
the “termination shock”, slows down, and enters a subsonic flow region known as the he-
liosheath. The heliosheath extends to the heliopause, the boundary where the heliosphere
(the region influenced by the Sun’s magnetic field) meets the interstellar medium. Similar
to Earth’s magnetic shield, the solar wind interacts with Earth’s magnetosphere when it
reaches our planet. Earth’s magnetic shield, known as the magnetosphere, deflects the
solar wind, causing most of its energetic particles to flow around and beyond Earth.
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Figure 8.5: Solar wind consisting of charged particles and the sun’s magnetic field bombard
Earth’s magnetosphere. Credit: NASA Goddard Space Flight Center

Figure 8.6: Solar wind is continually released from the sun’s outermost atmosphere. This
artist’s illustration shows solar wind streaming out from the sun. It, also, depicts that
solar wind particles coming towards Earth. Credit: NASA

The solar wind is composed of protons and electrons and carries the Sun’s magnetic
field with it. Different regions on the Sun produce solar wind of varying speeds and
densities. Coronal holes, which are large, persistent patches in the Sun’s corona, produce
high-speed solar wind. The solar wind travels at average speeds of 1.4 million kilometers
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(a) Illustration of the heliosphere. Credit: En-
cyclopedia Britannica, Inc.

(b) The heliospheric current sheet. Credit:
Werner Heil/NASA.

Figure 8.7: (a) Illustration of the heliosphere. The solar wind first encounters the inter-
stellar medium at the bow shock. At the heliopause the outward pressure of the solar
wind balances the pressure of the incoming interstellar medium. Credit: Encyclopædia
Britannica, Inc. (b) The heliospheric current sheet. Its shape results from the influence
of the Sun’s rotating magnetic field on the plasma in the interplanetary medium. Credit:
Werner Heil/NASA.

per hour. The Sun’s north and south poles have prominent coronal holes, resulting in fast
solar wind at high latitudes. In the equatorial plane where the planets orbit, the solar
wind tends to be slower, forming the equatorial current sheet.

The effects of our windy star, the Sun, are felt throughout the solar system. As Nicky
Fox, the division director for heliophysics at NASA Headquarters, stated, “if the sun
sneezes, Earth catches a cold” due to the impact of the solar wind. The solar wind plays
a crucial role in space weather, with high-speed solar winds causing geomagnetic storms
and slow-speed solar winds resulting in calmer space weather conditions [90].

One notable effect of the solar wind on Earth is the stunning aurora displays seen
around the polar regions. Known as the northern lights (aurora borealis) in the North-
ern Hemisphere and the southern lights (aurora australis) in the Southern Hemisphere,
these displays can be expanded closer to the equator during geomagnetic storms triggered
by high-speed solar wind. However, geomagnetic storms can also have damaging conse-
quences. They can disrupt satellite operations and electricity networks, posing a threat
to astronauts in space. During these storms, astronauts on the International Space Sta-
tion seek shelter, spacewalks are paused, and sensitive satellites are powered down until
the radiation storm subsides. SpaceX experienced firsthand the impact of space weather
when a geomagnetic storm destroyed up to 40 Starlink satellites, worth over $50 million,
in February 2022 [90]. Geomagnetic storms also lead to changes in the Earth’s atmo-
sphere. The storms energize the atmosphere, causing it to heat up and expand upward,
resulting in a denser thermosphere. This denser thermosphere generates more drag, which
can affect satellite operations. For instance, the increased drag from a geomagnetic storm
caused the Starlink satellites to fall back to Earth and burn up in the atmosphere.

Given the costly consequences of solar weather, enhancing our understanding, mon-
itoring, and prediction of such events is crucial. Scientists study the solar wind to gain
insights into the space weather environment and improve space weather forecasts. Helio-
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physics missions, such as the Parker Solar Probe, the Solar and Heliospheric Observatory
(SOHO), the Solar Terrestrial Relations Observatory (STEREO), and ESA’s Solar Or-
biter, are dedicated to studying the Sun and its influence on the solar system. Together,
these missions form the Heliophysics System Observatory (HSO), aiming to comprehend
various aspects, from the formation of planetary atmospheres to the impact of space
weather on astronauts and technology near Earth.

The solar wind also releases charged particles in events called coronal mass ejections
(CMEs), which can trigger geomagnetic storms and are associated with aurora displays.
Moreover, the solar wind extends far beyond the orbit of Pluto, forming a large protective
region known as the heliosphere, which shields the solar system from harmful cosmic rays.
Variations in the properties of the solar wind occur throughout the Sun’s 11-year cycle of
activity, which directly affects space weather conditions on Earth.

8.3 Coronal holes

Coronal holes appear as dark regions in the solar corona, characterized by cooler and
less dense plasma compared to their surroundings. These open regions are associated
with unipolar magnetic fields and allow the solar wind to escape more easily into space,
resulting in streams of relatively fast solar wind [91]. Coronal holes can develop at any
time and location on the Sun, but they are more common and persistent during the years
around the solar minimum. These holes can last through several solar rotations and are
most prevalent at the solar poles. However, they can also extend to lower solar latitudes
or develop as isolated structures separate from the polar holes [92].

The interaction of the high-speed solar wind from coronal holes with the slower ambient
solar wind leads to the formation of a compression region called a co-rotating interaction
region (CIR). The CIR can result in particle density enhancement and increases in inter-
planetary magnetic field (IMF) strength before the arrival of the coronal hole’s high-speed
stream (CH HSS). As the CH HSS reaches Earth, solar wind speed and temperature in-
crease, while particle density decreases. The IMF strength generally weakens as the CH
HSS flow progresses [91]. Coronal holes located near the solar equator are most likely to
result in CIR passages and higher solar wind speeds at Earth. Strong CIRs and faster CH
HSS can cause geomagnetic storming, leading to periods of heightened geomagnetic activ-
ity and enhanced auroral displays. The size and location of the coronal hole on the solar
disk determine the level of auroral activity, with larger holes typically associated with
faster solar wind. However, coronal holes usually have minimal effects on aurora watchers
at middle latitudes, occasionally causing geomagnetic storm conditions [91]. These regions
of open magnetic field lines, known as coronal holes, play a significant role in the solar
wind’s formation. They can persist for weeks or months, changing in shape and size over
time. Coronal holes can develop independently or as extensions of the polar coronal holes,
which are more stable during solar minimum. The extensions towards lower latitudes can
disconnect and become isolated structures themselves.

Coronal holes are observed in extreme ultraviolet and X-ray imagery, appearing as
large dark regions in the solar atmosphere. They are characterized by unipolar magnetic
fields that extend far into the solar system. These regions have lower plasma density,
facilitating the escape of charged plasma and contributing to the fast component of the
solar wind, reaching speeds of approximately 700 kilometers per second [91].

Understanding coronal holes is crucial for space weather forecasting. Their influence
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(a) Coronal holes at solar minimum. Credit:
NASA’s Scientific Visualization Studio/SDO.

(b) Coronal holes at solar maximum. Credit:
NASA’s Scientific Visualization Studio/SDO.

Figure 8.8: (a) A sample of solar coronal holes around the time of the minimum of sunspot
activity (October 2019). Note the coronal holes in the solar polar regions (near the top
and bottom of the solar disk) and the large coronal hole across the Sun’s equator. Credit:
NASA’s Scientific Visualization Studio/SDO. (b) A sample of solar coronal holes around
the time of the maximum of sunspot activity (April 2014). Note the polar regions are
devoid of coronal holes, but a large hole appears in the Southern Hemisphere. Credit:
NASA’s Scientific Visualization Studio/SDO.

on the solar wind and its interaction with Earth’s magnetosphere can lead to geomag-
netic storms and associated aurorae. By closely analyzing and monitoring coronal holes,
forecasters can provide valuable information about the expected levels of geomagnetic
response and overall space weather conditions.

In summary, coronal holes are temporary regions of cooler, less dense plasma in the
solar corona, where the Sun’s magnetic field extends as open field lines into interplanetary
space. These regions allow solar wind to escape at an accelerated rate, resulting in de-
creased plasma temperature and density, as well as increased solar wind speed. Streams
of high-speed solar wind from coronal holes can cause significant displays of aurorae and
geomagnetic storms, particularly during periods of solar minimum when coronal mass
ejections are less frequent [91].

8.4 Coronal Mass Ejections

Coronal mass ejections (CMEs) are massive bubbles of coronal plasma ejected from
the Sun, characterized by intense magnetic field lines. They often resemble twisted ropes
known as “flux ropes”. While CMEs can occur simultaneously with solar flares, they can
also happen spontaneously. The frequency of CMEs varies throughout the 11-year solar
cycle, with approximately one per week during solar minimum and an average of two to
three per day near solar maximum [93].
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Figure 8.9: Co-rotating interaction region (CIR). Geometry of the interaction between
fast solar wind and ambient solar wind. Credit: SpaceWeatherLive

CMEs disrupt the solar wind flow and can cause disturbances that impact systems
on Earth and in near-Earth space. The magnetic fields of CMEs merge with the inter-
planetary magnetic field (IMF) and geomagnetic field lines, resulting in increased energy
transfer from the solar wind to the magnetosphere. As a consequence, CMEs play a cru-
cial role in driving geomagnetic storms and substorms, leading to the mesmerizing auroral
lights observed at high latitudes [93]. This large-scale plasma and magnetic field ejections
expand in size as they propagate away from the Sun. Faster CMEs can travel at speeds
ranging from slower than 250 kilometers per second (km/s) to nearly 3000 km/s, reaching
Earth in as little as 15 to 18 hours. Slower CMEs may take several days to arrive, but
they can still have significant impacts. The size of larger CMEs can encompass a quarter
of the space between Earth and the Sun when they reach our planet [94].

CMEs result from the realignment of highly twisted magnetic field structures known
as flux ropes in the lower corona of the Sun. This reconfiguration, termed magnetic
reconnection, can trigger a sudden release of electromagnetic energy in the form of a
solar flare. CMEs predominantly originate from active regions associated with sunspot
groups but can also occur from locations where relatively cool and denser plasma is
trapped by magnetic flux, such as filaments and prominences. Faster CMEs can generate
shock waves, accelerating charged particles ahead of them and intensifying radiation storm
potential [94].

Important parameters for CME analysis include size, speed, and direction, which are
determined through coronagraph imagery obtained from orbital satellites. Instruments
like the Large Angle and Spectrometric Coronagraph (LASCO) on the NASA Solar and
Heliospheric Observatory (SOHO) and the coronagraph on the NASA STEREO-A space-
craft aid in analyzing and categorizing CMEs. The Deep Space Climate Observatory
(DSCOVR) satellite, positioned at the L1 orbital area, provides advanced warning of
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(a) A coronal mass ejection (CME) captured by NASA and
ESA’s Solar and Heliospheric Observatory (SOHO). Credit:
NASA/GSFC/SOHO/ESA.

(b) The eruption of two CMEs
on Jan. 8, 2000 recorded from
NASA’s LASCO coronagraph.
Credit: NASA/SOHO/LASCO

Figure 8.10: Coronal Mass Ejections.

CME-associated interplanetary shocks, aiding in monitoring CME arrival and potential
geomagnetic storm initiation [94].

When a CME collides with Earth’s magnetosphere, the resulting disturbance can cause
geomagnetic storms, aurorae, and, in rare cases, damage to electrical power grids. The oc-
currence of CMEs near solar maximum is more frequent, with approximately three CMEs
daily, while near solar minimum, there is approximately one CME every five days [95].
CMEs, with their explosive plasma outbursts, carry a substantial mass of material, trav-
eling at high speeds of hundreds of kilometers per second. They contain particle radiation
and powerful magnetic fields stronger than the normal solar wind. These eruptions, orig-
inating from magnetically disturbed regions in the Sun’s upper atmosphere, occur more
frequently during the solar maximum phase of the sunspot cycle. While closely associated
with solar flares, the exact relationship between CMEs and solar flares remains uncertain.
As CMEs traverse the solar system, some are directed towards Earth, and if they inter-
act with Earth’s magnetosphere, they can generate radiation storms and awe-inspiring
auroras [96].

In summary, coronal mass ejections are enormous plasma bubbles with intense mag-
netic field lines that erupt from the Sun, exhibiting a variety of characteristics and be-
haviors throughout the solar cycle. Their impacts on the solar wind, magnetosphere, and
Earth’s systems make them significant drivers of geomagnetic storms, substorms, and
captivating auroras.

8.5 Solar flares

A solar flare is an intense, localized eruption of electromagnetic radiation in the Sun’s
atmosphere. Flares occur in active regions and are often, but not always, accompanied by
coronal mass ejections, solar particle events, and other solar phenomena. The occurrence
of solar flares varies with the 11-year solar cycle.

Solar flares are thought to occur when stored magnetic energy in the Sun’s atmosphere
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accelerates charged particles in the surrounding plasma. This results in the emission of
electromagnetic radiation across the electromagnetic spectrum.

Solar flares are large explosions of high-energy electromagnetic radiation from the
Sun and are absorbed by the daylight side of Earth’s upper atmosphere, particularly the
ionosphere, and do not reach the surface. This absorption can temporarily increase the
ionization of the ionosphere, potentially interfering with short-wave radio communication.
These intense bursts of radiation can be visible as bright flashes and last from minutes to
hours. They occur when energy stored in tangled magnetic fields is suddenly released in
the Sun’s atmosphere. Flares are often accompanied by CMEs, which are large releases
of plasma and magnetic field.

Solar flares are classified based on their brightness in X-ray wavelengths, with X-class
flares being the most powerful, followed by M-, C-, and B-class flares. A-class flares are
the smallest and have minimal impact on Earth. The number of sunspots, dark and cooler
regions on the Sun’s surface with strong magnetic fields, can indicate the likelihood of a
solar flare eruption.

Figure 8.11: On Feb. 24, 2014, the sun emitted a significant solar flare, peaking at
7:49 p.m. EST. NASA’s Solar Dynamics Observatory (SDO), which keeps a constant
watch on the sun, captured images of the event. These SDO images from 7:25 p.m. EST
on Feb. 24 show the first moments of this X-class flare in different wavelengths of light –
seen as the bright spot that appears on the left limb of the sun. Hot solar material can
be seen hovering above the active region in the sun’s atmosphere, the corona. Credit:
NASA/SDO

During strong solar flares, charged electrons in the upper atmosphere can temporarily
disrupt radio waves, causing radio blackouts. The severity of these blackouts depends on
the strength of the solar flare and is classified on the NOAA Solar Radiation Storm Scale.
The effects of solar flares on Earth’s technologies and communications can be mitigated
by monitoring and issuing warnings from organizations like NASA, NOAA, and the U.S.
Air Force Weather Agency. Solar flares can significantly affect spacecraft, satellites, and
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communication systems. However, they don’t possess enough energy to cause lasting
damage to Earth itself. It is important to note that solar flares do not pose a threat of
destroying Earth. While they can disrupt the technological world, appropriate measures
can be taken to protect ourselves.

Monitoring space weather and understanding the effects of solar activity require study-
ing both solar flares and CMEs. By closely monitoring the Sun’s activity, organizations
can provide warnings to vulnerable technology sectors. Predicting space weather is an
ongoing effort that has improved over the years. Solar flares and their associated phe-
nomena are fascinating, but not something to worry about. They are natural events that
occur as part of the Sun’s dynamic behavior. By studying and understanding them, we
can better protect our technology and prepare for their potential impacts.

8.6 Sunspots

The content of this subsection has been extracted from [97].

8.6.1 General characteristics

Sunspots are planet-size, dark regions on the surface of the Sun, boasting strong
magnetic fields. These magnetic fields can give rise to eruptive disturbances like solar
flares and coronal mass ejections (CMEs).

The reason sunspots appear darker is due to their relatively lower temperature com-
pared to the surrounding areas. The central region of a sunspot, known as the umbra,
has a temperature of approximately 3, 500 degrees Celsius, while the adjacent photosphere
registers around 5, 500 degrees Celsius, as stated by the National Weather Service (NWS).

The frequency and intensity of visible sunspots are indicative of the solar activity level
within the 11-year solar cycle, which is influenced by the Sun’s magnetic field. Sunspots
provide a valuable glimpse into the complex magnetic nature of the Sun’s interior and
have captivated solar observers for centuries.

8.6.2 Formation

According to the European Solar Telescope, sunspots are formed when concentrations
of magnetic fields from the Sun’s deep interior rise to the surface. These sunspots consist
of a central dark region called the umbra and a surrounding region known as the penum-
bra. Although the exact process of sunspot formation is not fully understood, scientists
generally accept the theory proposed by astronomer Horace Babcock in 1961, which sug-
gests that sunspots are a result of the Sun’s magnetic field. Sunspots are, on average,
about the same size as Earth, though they can vary from hundreds to tens of thousands
of miles across, according to Cool Cosmos.

To visualize this, imagine the Sun’s magnetic field as loops of rubber bands, with one
end attached to the north pole and the other to the South Pole. As the Sun rotates,
a phenomenon known as “differential rotation” occurs, with the equator rotating faster
than the poles, as explained by the Royal Museums Greenwich. This differential rotation
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Figure 8.12: Sunspots consist of a central darker region, known as the umbra, and a
surrounding region, known as the penumbra. Credit: NSO/AURA/NSF. Infographic
made by Space.com

causes the magnetic loops to become increasingly twisted and complex. Eventually, these
magnetic fields reach a point where they snap, rise, and break through the surface of the
Sun. This disruption in the magnetic field forms small pores, which can merge and grow
into larger structures called proto-spots, eventually developing into fully-fledged sunspots.
A collection of sunspots is referred to as an active region.

The magnetic field in active sunspot regions can be up to 2, 500 times stronger than
Earth’s magnetic field, according to the National Weather Service (NWS). This strong
magnetic field restricts the inflow of hot gas from the Sun’s interior, causing sunspots to be
cooler and appear darker in comparison to their surroundings. The University Corporation
for Atmospheric Research (UCAR) notes that if you were to cut out a standard sunspot
from the Sun and place it in the night sky, it would shine as brightly as a full moon.

8.6.3 Sunspots and the solar cycle

Sunspots have a lifespan that typically spans from a few days to several weeks, and
occasionally they can persist for months before eventually dissipating. The total number
of sunspots fluctuates throughout the 11-year solar cycle, commonly referred to as the
sunspot cycle. According to the National Oceanic and Atmospheric Administration’s
(NOAA) Space Weather Prediction Center (SWPC), the peak of sunspot activity coincides
with the solar maximum, whereas the solar minimum is characterized by a reduction in
sunspot occurrence.

The positions of sunspots also change as the solar cycle progresses. During the solar
maximum, a larger number of sunspots are observed along mid-latitudes, approximately 30
degrees north and south. Subsequently, as the cycle advances, sunspots gradually migrate
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(a) Sunspots - July 19, 2000 (solar maximum).
(b) Sunspots - March 18, 2009 (solar mini-
mum).

Figure 8.13: Visible light images show the Sun at solar maximum in July 2000 and at
solar minimum in March 2018. Sunspots freckle the Sun during solar maximum. The dark
spots are associated with solar activity. Credit: NASA Earth Observatory/GSFC/SOHO.

towards the equator, resulting in fewer sunspots during the solar minimum. There are
instances during the solar minimum when no sunspots are visible. It is worth noting that
although the 11-year solar cycle is relatively consistent, an exceptional period known as
the "Maunder minimum" occurred between 1645 and 1715. During this time, there was a
substantial dearth of sunspot activity, with fewer than 50 sunspots recorded between 1672
and 1699, according to Physics World. In comparison, a typical solar minimum usually
features 12 to over 100 sunspots per year. The Maunder minimum was named after
British astronomer Edward Walter Maunder, who, along with his wife Annie, identified the
prolonged period of minimal sunspot activity from historical records in 1890, as reported
by The Times.

8.6.4 Discovery of the sunspots

There is some debate about who discovered sunspots. According to the Chandra X-ray
Center, the earliest records of solar activity are from Chinese astronomers around 800 B.C.
Chinese and Korean astronomers frequently observed sunspots, according to the Chandra
X-ray Center. However, there are no known early illustrations of such observations.

The earliest known drawings of solar activity appeared many years later, in 1128,
in John of Worcester’s chronicle. “In the third year of Lothar, emperor of the Romans,
in the twenty-eighth year of King Henry of the English ... on Saturday, 8 December,
there appeared from the morning right up to the evening two black spheres against the
sun”, Worcester wrote. Just five days after Worcester described a large sunspot group,
Korean astronomers reported that they’d observed a red vapor that “soared and filled the
sky”. This description suggests the presence of the aurora borealis, or northern lights, at
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Figure 8.14: During solar maximum a large number of sunspots are visible at mid-latitudes
and during solar minimum a very small number (sometimes zero) of sunspots are visible
at the equator. Credit: Future.

relatively low latitudes.
In 1610, aided by a telescope, English astronomer Thomas Harriot detailed his solar

observations according to NASA with detailed notes and sketches. His drawings are the
earliest known pictorial record of sunspots. A year later, David and Johannes Fabricius
(father and son) independently discovered sunspots. A couple of months after that, Jo-
hannes Fabricius became the first person in the West to publish anything on the subject
of sunspots, in a pamphlet titled “On the Spots Observed in the Sun and their Apparent
Rotation with the Sun”.

According to NASA, there were two other independent sunspot discoveries at the same
time in 1611. Galileo Galilei and Jesuit Christoph Scheiner competed over who deserved
the credit for discovering sunspots. Unbeknownst to the quarreling astronomers, sunspots
had already been observed and recorded hundreds of years earlier, so their lifelong feud
was futile.

8.6.5 Observing sunspots

Sunspots have been observed for hundreds of years and continue to be the main focus
for scientists who want to learn more about the solar cycle and assess the risk of space
weather, such as solar flares and CMEs.

Our current picture of solar activity would not be as clear without the work of Japanese
astronomer Hisako Koyama. Between 1947 and 1996, Koyama sketched sunspots from
the roof of the National Museum of Nature and Science in Tokyo, using a 20-centimeter
refracting telescope. For over 40 years, Koyama made more than 10, 000 sunspot observa-
tions that have shaped solar science and our understanding of space weather, according
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(a) (b)

Figure 8.15: (a) A page from Thomas Harriot’s notebook. Credit: Thomas Harriot. (b)
Sunspots can be monitored with daily hand-drawn sketches. This image shows sunspot
drawings from the World Data Center for the Sunspot Index and Long-term Solar Obser-
vations (SILSO) at the Royal Observatory of Belgium. Credit: SILSO/Royal Observatory
of Belgium.

to a commentary about her work published in the journal Space Weather.
Nowadays, scientists at NOAA’s Space Weather Prediction Center analyze sunspot

regions daily to access their threats. They monitor and record changes in sunspot size,
number and position to assess the likelihood of a solar flare and/or CME from an active
region. The World Data Center for the Sunspot Index and Long-term Solar Observations
at the Royal Observatory of Belgium also tracks sunspots and records the highs and
lows of the solar cycle to evaluate solar activity and improve space weather forecasting.
Scientists classify sunspot groups to assess which are more likely to incite a solar flare or
CME. To do so, researchers at the Mount Wilson Observatory in California have come up
with a set of classifications to assign to sunspot groups, according to SpaceWeatherLive.

Each day, sunspots are counted and receive both a magnetic classification and a spot
classification. Another classification system is based on the Zürich/McIntosh system and
is designed to classify sunspots to inform scientists about how long the sunspot will last,
its complexity and size, SpaceWeatherLive says.

Figure 8.16: Some of Galileo’s sketches of sunspots from the 17th century. Credit: NASA
Earh Observatory.
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8.6.6 Sunspots today

Solar cycle 25 is the current solar cycle, the 25th since 1755, when extensive recording
of solar sunspot activity began. It began in December 2019 with a minimum smoothed
sunspot number of 1.8. It is expected to continue until about 2030 [98].

The forecast that is shown in 8.17 comes from the Solar Cycle Prediction Panel repre-
senting NOAA, NASA and the International Space Environmental Services (ISES) which
was convened in 2019. This amounts to the official forecast for the solar cycle 25. After
an open solicitation, the Panel received nearly 50 distinct forecasts for Solar Cycle 25
from the scientific community. Prediction methods include a variety of physical models,
precursor methods, statistical inference, machine learning, and other techniques. The
prediction released by the panel is a synthesis of these community contributions [98].

The Prediction Panel predicted Cycle 25 to reach a maximum of 115 occurring in
July, 2025. The error bars on this prediction mean the panel expects the cycle maximum
could be between 105-125 with the peak occurring between November 2024 and March
2026 [98].

Figure 8.17: ISES Solar Cycle Sunspot Number Progression. Credit: NOAA/Space
Weather Prediction Center (SWPC).
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9 Exploratory Analysis of Sunspot Number Datasets

The sunspot number time-series exhibits a peculiar and rich character, while being one
of the most important indicators of solar activity. Here, we will analyze the time-series
of:

• the yearly mean total sunspot number, and

• the 13-month smoothed monthly total sunspot number,

in both, time and frequency domain. In that way, we will explore some of the key char-
acteristics present in these time-series, whose knowledge is instrumental when someone
wants to build forecasting models.

9.1 Sunspots time-series analysis in time domain

In this subsection, we analyze the sunspot time-series (yearly and monthly) in the
time domain and inspect some statistical properties.

9.1.1 Autocorrelation and Partial Autocorrelation

The Autocorrelation Function (ACF) and the Partial Autocorrelation Func-
tion (PACF) are fundamental tools used in time-series analysis. These tools help us
understand and quantify the temporal dependencies that exist in a time-series dataset.
Below, we explain what these functions represent and make the corresponding plots for
our sunspot time-series.

The ACF provides a measure of the correlation between observations of a time-series
at two different points in time, as a function of the time difference (or lag) between these
two points. It gives us information about the direct and indirect relationships between
different lags of a time-series. By plotting the ACF, we can visually see the correlation
of a time-series with its own lags. This helps us understand the degree to which a data
point in a time series is influenced by its past data points and can provide insights into
whether the time-series is stationary.

On the other hand, the PACF quantifies the correlation between observations at two
points in time, while controlling for any influence from other time points. In other words,
the PACF only measures the direct relationships between different lags of a time series,
effectively removing the correlations already explained by intervening time points. It
isolates the impact of each lag and provides a clearer picture of the relationship between
a particular lag and the current observation.

Both ACF and PACF plots provide valuable insights that can inform the selection of
an appropriate model for forecasting and generally help in time-series modeling by un-
derstanding the underlying patterns. In particular, the ACF and PACF are instrumental
when determining the order of Autoregressive (AR) or Moving Average (MA) components
in an ARIMA model for a time-series. The patterns observed in these plots can suggest
the presence of trend, seasonality, and the suitable orders for AR, MA, or ARMA models.

In Figures 9.1 and 9.2, the ACF and PACF for the time-series of the yearly mean
total sunspot number are shown. In the ACF plot, we observe a tail-off. This suggests
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that the data might be characterized by an Autoregressive (AR) process. However, after
the lag of 38, the autocorrelation drops and stays within the 95% confidence interval of
no autocorrelation (shown by the horizontal bounds around zero). This implies that lags
beyond 38 are not significantly correlated with the present value. In PACF plot, there is
also a tail-off in the correlations, indicative of a Moving Average (MA) process. However,
note that lags after the 85 lag are not statistically significant at the 5% level. Thus, the
partial autocorrelations beyond this point may not be meaningful. Furthermore, we could
set lag 9 as the cut-off lag in the PACF, given that greater lags are slightly significant
at the 5% level. Considering these plots, a MA model of order 9 may be a reasonable
starting point for modeling this series, along with an AR model of order 38, or even a
combined ARMA model.

In Figures 9.3 and 9.4, the ACF and PACF for the time-series of the 13-month
smoothed monthly total sunspot number are shown. We also see a progressive
degradation in the ACF plot. The autocorrelation decreases and remains within the 95%
confidence interval of no autocorrelation after the lag of 460. This suggests that lags above
460 have a negligible correlation to the present value. The correlations in the PACF plot
likewise show a tail-off, and lags after lag 59 are not statistically significant at the 5%
level. The partial autocorrelations that continue past this point might not be significant.
Furthermore, considering that longer lags are marginally significant at the 5% level, we
might choose lags 335 and 36 as the cut-off lags in the ACF and PACF, respectively. A
MA model of order 36, an AR model of order 335, or even a mixed ARMA model may
be a good place to start when modeling this series in light of these charts.

From ACF and PACF plots we can extract useful information about seasonality
and stationarity in sunspot time-series. A clear sign of seasonality in such plots is a
significant spike at the lag corresponding to the seasonal period, which is the length of one
seasonal cycle, or periodic correlations with a period of that cycle. Here, in particular,
we observe a periodicity of an 11 lag at the ACF plot of the yearly sunspots, while in
the monthly sunspots it is a periodicity of a 130 lag. If a time-series is stationary, the
ACF plot will show autocorrelation quickly decaying to zero. Non-stationary data, on the
other hand, typically shows slow decay and have large and positive 1 lag, which is the case
here. In the PACF plot, a stationary time-series will usually have one or two significant
spikes, and the rest will mostly be within the insignificant range (inside the confidence
band), which is not true for the sunspot number time-series. So, we can conclude that
the sunspot data may not be stationary.

9.1.2 Trend analysis

Here, we conduct a trend analysis on the time-series of sunspot number. The analysis
involves the following two main statistical methods:

• Linear regression (Ordinary Least Squares) (see Appendix A)

• Mann-Kendall trend test (and its variants) (see Appendix B)

The linear regression is performed to determine if a significant linear trend exists in the
sunspot data, while the Mann-Kendall test checks for the existence of any increasing or
decreasing trend. Additionally, we use the Theil-Sen estimator as a more robust check



188 9 Exploratory Analysis of Sunspot Number Datasets

Figure 9.1: ACF and PACF for the time-series of the yearly mean total sunspot number.

Figure 9.2: ACF and PACF for the time-series of the yearly mean total sunspot number
(zoomed-in).
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Figure 9.3: ACF and PACF for the time-series of the monthly sunspot number.

Figure 9.4: ACF and PACF for the time-series of the monthly sunspot number (zoomed-
in).
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for any trend line. The dependent variable in the model is the sunspot count, and the
independent variable is time. We check for yearly and monthly sunspots as well.

In an attempt to break down the results of the linear regression in the time-series
of the yearly mean total sunspot number (see Table 9.1), we comment the following:

• An R-squared of 0.011 indicates that only about 1.1% of the total variance in the
data can be explained by the model. This is quite low, suggesting that this linear
model does not explain much of the variability of the response data around its mean.

• A p-value of 0.0564 for the F-statistic is just above the common alpha level of 0.05,
suggesting that the relationship between the predictor and outcome is not statistically
significant at the 5% level.

• The slope indicates that for each unit increase in time, the number of sunspots
increases by 0.0705, on average. However, the p-value for x1 is 0.056, which suggests
that this effect is not statistically significant at the 5% level.

• The p-value associated with Omnibus is 0, lower than the chosen alpha level of 0.05,
indicating that the residuals are not normally distributed.

• The skewness is 0.785, indicating a moderately positively skewed distribution.

• The kurtosis is 2.847, which is less than 3, indicating a distribution that is slightly
platykurtic.

• The Durbin-Watson statistic is 0.367, indicating a strong positive auto-correlation.

In summary, the linear regression model suggests a slight increase in yearly sunspot counts
over time. However, this trend is not statistically significant, and this model explains a
very small portion of the variance in sunspot counts.

Now, we make use of the Mann-Kendall test (and its variants) in order to detect
any trend, not necessarily linear, in the time-series of the yearly mean total sunspot
number (see Tables 9.3, 9.4, and 9.5). In summary, while the Theil-Sen estimator sug-
gests a slight upward trend in the yearly number of sunspots over time, all the variants
of the Mann-Kendall test indicate that this trend is not statistically significant. Conse-
quently, based on this analysis, we cannot conclude that there is a significant trend in the
yearly number of sunspots.

All the aforementioned results about any existing trends for the yearly mean total
sunspot number time-series are shown in Figure 9.5.

Next, we are trying to analyze the results of the linear regression in the time-series
of the monthly sunspot number (see Table 9.2). We comment the following:

• An R-squared of 0.001 indicates that only about 0.1% of the total variance in our
data can be explained by the model. This is incredibly low, indicating that just a
small portion of the variability in the response data around its mean can be explained
by the model.

• A p-value of 0.0377 for the F-statistic is less than the common alpha level of 0.05,
suggesting that the relationship between your predictor and outcome is statistically
significant at the 5% level.
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• The slope indicates that for each unit increase in time, the number of sunspots
increases by 0.0290. The p-value of 0.038 for x1 suggests that this effect is statistically
significant at the 5% level.

• The p-value associated with Omnibus is 0, indicating that the residuals (the differ-
ence between the observed and predicted values) are not normally distributed.

• A skewness of 0.773 indicates a moderately positively skewed distribution.

• The kurtosis is 2.824, which is less than 3, indicating a distribution that is slightly
platykurtic.

• The Durbin-Watson statistic is 0.004, indicating a strong positive autocorrelation
in the residuals from the regression analysis.

In conclusion, the linear regression model predicts a modest rise in sunspot numbers over
time. Despite the fact that the model only accounts for a relatively small percentage of
the variance in sunspot counts, this trend seems to be statistically significant.

Now, we utilize the Mann-Kendall test (and its variants) to detect any trend, not nec-
essarily linear, in the time-series of the 13-month smoothed monthly total sunspot
number (see Tables 9.6, 9.7, and 9.8). Theil-Sen Estimator implies a minor rising trend
in the monthly number of sunspots over time, but according to all Mann-Kendall tests,
this trend is not statistically significant. Therefore, we are unable to draw the conclusion
that the monthly number of sunspots has a discernible trend.

All the aforementioned results about any existing trends for the 13-month smoothed
monthly total sunspot number time-series are shown in Figure 9.6.

------------------------------
OLS Lineear Regression Results
------------------------------

Model: OLS R-squared: 0.011
No. Observations: 323 Adj. R-squared: 0.008
Df Residuals: 321 F-statistic: 3.666
AIC: 3582.0 Prob (F-statistic): 0.0564
BIC: 3589.0 Log-Likelihood: -1788.8
=======================================================================

coef std err t P>|t| [0.025 0.975]
-----------------------------------------------------------------------
const -52.8527 68.629 -0.770 0.442 -187.872 82.167
x1 0.0705 0.037 1.915 0.056 -0.002 0.143
=======================================================================
Omnibus: 27.857 Durbin-Watson: 0.367
Prob(Omnibus): 0.000 Jarque-Bera (JB): 33.487
Skew: 0.785 Prob(JB): 5.35e-08
Kurtosis: 2.847 Cond. No. 3.72e+04

Table 9.1: Linear regression results in the time-series of the yearly mean total sunspot
number.
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----------------------
OLS Regression Results
----------------------

Model: OLS R-squared: 0.001
No. Observations: 3282 Adj. R-squared: 0.001
Df Residuals: 3280 F-statistic: 4.324
AIC: 3.652e+04 Prob (F-statistic): 0.0377
BIC: 3.653e+04 Log-Likelihood: -18258.0
=======================================================================

coef std err t P>|t| [0.025 0.975]
-----------------------------------------------------------------------
const 26.8593 26.330 1.020 0.308 -24.765 78.483
x1 0.0290 0.014 2.079 0.038 0.002 0.056
=======================================================================
Omnibus: 265.416 Durbin-Watson: 0.004
Prob(Omnibus): 0.000 Jarque-Bera (JB): 330.754
Skew: 0.773 Prob(JB): 1.51e-72
Kurtosis: 2.824 Cond. No. 4.51e+04

Table 9.2: Linear regression results in the time-series of the 13-month smoothed monthly
total sunspot number.

------------------------------------------------
Hamed and Rao Modified Mann-Kendall Test Results
------------------------------------------------

Null Hypothesis: There is no trend in the series.
Alternative Hypothesis: There is trend in the series.

Trend: No trend
Hypothesis Test Result (h): False
p-value: 0.1071
Test Statistic (z): 1.6116
Kendall’s Tau: 0.0622
Mann-Kendall Score (s): 3236.0
Variance (var_s): 4029602.9833
Slope: 0.0484
Intercept: 57.5097

Table 9.3: Hamed and Rao modified Mann-Kendall test results in the time-series of the
yearly mean total sunspot number.
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-----------------------------------------------
Yue and Wang Modified Mann-Kendall Test Results
-----------------------------------------------

Null Hypothesis: There is no trend in the series.
Alternative Hypothesis: There is trend in the series.

Trend: No trend
Hypothesis Test Result (h): False
p-value: 0.1966
Test Statistic (z): 1.2913
Kendall’s Tau: 0.0622
Mann-Kendall Score (s): 3236.0
Variance (var_s): 6276410.9540
Slope: 0.0484
Intercept: 57.5097

Table 9.4: Yue and Wang modified Mann-Kendall test results in the time-series of the
yearly mean total sunspot number.

----------------------------------
Seasonal Mann-Kendall Test Results
----------------------------------

Null Hypothesis: There is no trend in the series.
Alternative Hypothesis: There is trend in the series.

Trend: No trend
Hypothesis Test Result (h): False
p-value: 0.0953
Test Statistic (z): 1.6680
Kendall’s Tau: 0.0622
Mann-Kendall Score (s): 3236.0
Variance (var_s): 3761480.6667
Slope: 0.0484
Intercept: 57.5097

Table 9.5: Seasonal Mann-Kendall test results in the time-series of the yearly mean total
sunspot number.
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------------------------------------------------
Hamed and Rao Modified Mann-Kendall Test Results
------------------------------------------------

Null Hypothesis: There is no trend in the series.
Alternative Hypothesis: There is trend in the series.

Trend: No trend
Hypothesis Test Result (h): False
p-value: 0.8633
Test Statistic (z): 0.1721
Kendall’s Tau: 0.0122
Mann-Kendall Score (s): 65495.0
Variance (var_s): 144769808459.2507
Slope: 0.0010
Intercept: 69.9727

Table 9.6: Hamed and Rao modified Mann-Kendall test results in the time-series of the
13-month smoothed monthly total sunspot number.

-----------------------------------------------
Yue and Wang Modified Mann-Kendall Test Results
-----------------------------------------------

Null Hypothesis: There is no trend in the series.
Alternative Hypothesis: There is trend in the series.

Trend: No trend
Hypothesis Test Result (h): False
p-value: 0.8725
Test Statistic (z): 0.1605
Kendall’s Tau: 0.0122
Mann-Kendall Score (s): 65495.0
Variance (var_s): 166595238084.2805
Slope: 0.0010
Intercept: 69.9727

Table 9.7: Yue and Wang modified Mann-Kendall test results in the time-series of the
13-month smoothed monthly total sunspot number.
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----------------------------------
Seasonal Mann-Kendall Test Results
----------------------------------

Null Hypothesis: There is no trend in the series.
Alternative Hypothesis: There is trend in the series.

Trend: No trend
Hypothesis Test Result (h): False
p-value: 0.2493
Test Statistic (z): 1.1520
Kendall’s Tau: 0.0135
Mann-Kendall Score (s): 6034.0
Variance (var_s): 27426600.0
Slope: 0.0133
Intercept: 69.7772

Table 9.8: Seasonal Mann-Kendall test results in the time-series of the 13-month smoothed
monthly total sunspot number.

---------------------------------------------
Correlated Seasonal Mann-Kendall Test Results
---------------------------------------------

Null Hypothesis: There is no trend in the series.
Alternative Hypothesis: There is trend in the series.

Trend: No trend
Hypothesis Test Result (h): False
p-value: 0.7549
Test Statistic (z): 0.3121
Kendall’s Tau: 0.0125
Mann-Kendall Score (s): 5547.0
Variance (var_s): 315798852.3333
Slope: 0.0133
Intercept: 69.7772

Table 9.9: Correlated seasonal Mann-Kendall test results in the time-series of the 13-
month smoothed monthly total sunspot number.
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Figure 9.5: Yearly mean total sunspot number time-series, along with various linear trends
estimations. The significance of these trends is being tested in the text above.

Figure 9.6: 13-month smoothed monthly total sunspot number time-series, along with
various linear trends estimations. The significance of these trends is being tested in the
text above.
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9.1.3 Stationarity analysis

In time-series analysis, a fundamental assumption often made is that the data are
stationary. A stationary time-series is one whose properties do not depend on the time at
which the series is observed. In other words, it does not exhibit trends or seasonality and
its variance is constant over time. This assumption is crucial because many statistical
modeling techniques require the data to be stationary to make reliable forecasts. How-
ever, many real-world time-series data exhibit trends, seasonality, or other non-stationary
behaviors. Therefore, before applying any statistical model, it is important to first check
whether the sunspot data are stationary or not.

There are several statistical tests available to test the stationarity of a time-series.
Among these, the Augmented Dickey-Fuller, the Dickey-Fuller Generalized Least Squares,
the Phillips-Perron, and the Kwiatkowski–Phillips–Schmidt–Shin tests are widely used.
The first three are unit root tests, while the last one is a trend-stationarity test. In Tables
9.10, 9.11, 9.12, and 9.13, we apply these tests on the time-series of the yearly mean total
sunspot number, while in Tables 9.14, 9.15, 9.16, and 9.17, these tests are applied on the
time-series of the 13-month smoothed monthly total sunspot number.

----------------------------
Augmented Dickey-Fuller Test
----------------------------
Null Hypothesis: The series contains a unit root
Alternative Hypothesis: The series does not contain a unit root
-------------------------------------
Test Statistic -3.187
P-value 0.021
Lags 8
-------------------------------------
Trend: Constant
Critical Values: -3.45 (1%), -2.87 (5%), -2.57 (10%)

Table 9.10: ADF test results in the time-series of the yearly mean total sunspot number.

----------------------
Dickey-Fuller GLS Test
----------------------
Null Hypothesis: The series contains a unit root
Alternative Hypothesis: The series does not contain a unit root
-------------------------------------
Test Statistic -1.187
P-value 0.222
Lags 8
-------------------------------------
Trend: Constant
Critical Values: -2.63 (1%), -2.01 (5%), -1.69 (10%)

Table 9.11: DF-GLS test results in the time-series of the yearly mean total sunspot
number.
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--------------------
Phillips-Perron Test
--------------------
Null Hypothesis: The series contains a unit root
Alternative Hypothesis: The series does not contain a unit root
-------------------------------------
Test Statistic -4.469
P-value 0.000
Lags 8
-------------------------------------
Trend: Constant
Critical Values: -3.45 (1%), -2.87 (5%), -2.57 (10%)

Table 9.12: PP test results in the time-series of the yearly mean total sunspot number.

---------
KPSS Test
---------
Null Hypothesis: The series is trend stationary
Alternative Hypothesis: The series is non-stationary
-------------------------------------
Test Statistic 0.233
P-value 0.213
Lags 7
-------------------------------------
Trend: Constant
Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%)

Table 9.13: KPSS test results in the time-series of the yearly mean total sunspot number.

----------------------------
Augmented Dickey-Fuller Test
----------------------------
Null Hypothesis: The series contains a unit root
Alternative Hypothesis: The series does not contain a unit root
-------------------------------------
Test Statistic -10.404
P-value 0.000
Lags 29
-------------------------------------
Trend: Constant
Critical Values: -3.43 (1%), -2.86 (5%), -2.57 (10%)

Table 9.14: ADF test results in the time-series of the 13-month-smoothed monthly total
sunspot number.
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----------------------
Dickey-Fuller GLS Test
----------------------
Null Hypothesis: The series contains a unit root
Alternative Hypothesis: The series does not contain a unit root
-------------------------------------
Test Statistic -6.451
P-value 0.000
Lags 29
-------------------------------------
Trend: Constant
Critical Values: -2.57 (1%), -1.95 (5%), -1.63 (10%)

Table 9.15: DF-GLS test results in the time-series of the 13-month-smoothed monthly
total sunspot number.

--------------------
Phillips-Perron Test
--------------------
Null Hypothesis: The series contains a unit root
Alternative Hypothesis: The series does not contain a unit root
-------------------------------------
Test Statistic -6.593
P-value 0.000
Lags 29
-------------------------------------
Trend: Constant
Critical Values: -3.43 (1%), -2.86 (5%), -2.57 (10%)

Table 9.16: PP test results in the time-series of the 13-month-smoothed monthly total
sunspot number.

---------
KPSS Test
---------
Null Hypothesis: The series is trend stationary
Alternative Hypothesis: The series is non-stationary
-------------------------------------
Test Statistic 0.104
P-value 0.569
Lags 36
-------------------------------------
Trend: Constant
Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%)

Table 9.17: KPSS test results in the time-series of the 13-month-smoothed monthly total
sunspot number.
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For the time-series of the yearly mean total sunspot number, we see that all unit root
tests give a p-value less than 0.05 (5% significance level), which indicates that the series
does not contain a unit root, and consequently it is weakly stationary. The KPSS test also
advocates for this result, as it indicates that the series is trend-stationary by producing a
p-value greater than 0.05 (5% significance level).

For the time-series of the 13-month smoothed monthly total sunspot number, we see
that ADF and Phillips-Perron say that the series does not contain a unit root, while
the DF-GLS test indicates that there is a unit root (5% significance level). However, the
KPSS test says that the series is trend-stationary. Some of the tests produce contradictory
results, so we cannot draw a clear conclusion. Nonetheless, by majority voting, let’s say
that the series might be stationary.

9.1.4 Heteroscedasticity analysis

In time-series analysis, an assumption often made is that the data are homoscedastic.
A homoscedastic time-series is one whose variance does not change over time. This as-
sumption is crucial because many statistical modeling techniques require the data to be
homoscedastic to make reliable forecasts. However, many real-world time-series data ex-
hibit heteroscedasticity. Therefore, before applying any statistical model, it is important
to first check whether the sunspot data are homoscedastic or not.

There are several statistical tests available to test the heteroscedasticity of a time-
series. Among these, the White, and the Breusch-Pagan tests are widely used. In Tables
9.18, and 9.19, we apply these tests on the time-series of the yearly mean total sunspot
number, while in Tables 9.20, and 9.21, these tests are applied on the time-series of the
13-month smoothed monthly total sunspot number.

For the time-series of the yearly mean total sunspot number, we see that White test
give a p-value greater than 0.05 (5% significance level), which indicates that the series is
homoscedastic, while Breusch-Pagan test give a p-value slightly less than 0.05 indicating
heteroscedasticity. For the time-series of the 13-month smoothed monthly total sunspot
number, we see that both tests give a p-value less than 0.05 (5% significance level), which
indicates that the series is heteroscedastic. In general, we can conclude that both time-
series are more likely to be heteroscedastic.

----------
White Test
----------

Null Hypothesis: The error variance does not depend on x
Alternative Hypothesis: The error variance depends on x

-------------------------------------
Test Statistic 1.932
P-value 0.147
-------------------------------------

Table 9.18: White test results in the time-series of the yearly mean total sunspot number.
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------------------
Breusch-Pagan Test
------------------

Null Hypothesis: The residual variance does not depend on x
Alternative Hypothesis: The residual variance depends on x

-------------------------------------
Test Statistic 3.843
P-value 0.049
-------------------------------------

Table 9.19: Breusch-Pagan test results in the time-series of the yearly mean total sunspot
number.

----------
White Test
----------

Null Hypothesis: The error variance does not depend on x
Alternative Hypothesis: The error variance depends on x

-------------------------------------
Test Statistic 7.565
P-value 5.273e-04
-------------------------------------

Table 9.20: White test results in the time-series of the 13-month-smoothed monthly total
sunspot number.

------------------
Breusch-Pagan Test
------------------

Null Hypothesis: The residual variance does not depend on x
Alternative Hypothesis: The residual variance depends on x

-------------------------------------
Test Statistic 14.641
P-value 1.325e-04
-------------------------------------

Table 9.21: Breusch-Pagan test results in the time-series of the 13-month-smoothed
monthly total sunspot number.



202 9 Exploratory Analysis of Sunspot Number Datasets

9.2 Sunspot time-series analysis in frequency domain

In this subsection, we analyze the sunspot time-series (yearly and monthly) in the
frequency domain in order to perform a seasonality analysis.

9.2.1 Frequency spectrum and seasonality analysis

Sunspot numbers have been recorded for centuries, providing a time-series that offers
insights into the solar activity cycle. These sunspot numbers vary over time, with periods
of high and low activity. To better understand the periodicities embedded within this
data, a frequency domain analysis is conducted using the Fast Fourier Transform (FFT).

The FFT is an efficient algorithm used to compute the Discrete Fourier Transform
(DFT) and its inverse. By converting our time-series data into the frequency domain using
FFT, we can identify the dominant frequencies, which represent the main periodicities
in the sunspot activity. The use of FFT in analyzing the sunspot number time-series
is instrumental in deciphering the underlying periodicities of solar activity. By isolating
these dominant frequencies, we gain a better understanding of the sun’s behavior. In
Figures 9.7, and 9.8, the FFT coefficient in the complex plane and the frequency spectrum
of the yearly mean total sunspot number time-series are shown. Additionally, in Figures
9.9, and 9.10, the FFT coefficient in the complex plane and the frequency spectrum of
the 13-month smoothed monthly total sunspot number time-series are shown.

Upon visualizing the frequency spectrum of both time-series, specific dominant peaks
can be identified that correspond to known cycles of sunspot activity. The most notable
peak in the frequency spectrum of the yearly sunspots is at frequency 0.09 year−1, repre-
senting the nearly 11-year solar cycle, a well-documented periodicity in sunspot numbers.
In the frequency spectrum, we see a dominant peak at frequency 0.0076 month−1 (or 132
months), which is the periodicity corresponding to the 11-year solar cycle. Additionally,
other minor peaks may provide insights into less prominent cycles or harmonics in the
sunspot data. Such harmonics can be seen at frequencies 0.008 year−1, 0.0181 year−1,
and 0.1181 year−1 in the yearly sunspots time-series, or at frequencies 0.0009 month−1,
0.007 month−1, and 0.0098 month−1 in the monthly sunspots time-series.
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Figure 9.7: Fast Fourier Transform (FFT) coefficients in the complex plane, corresponding
to the yearly mean total sunspot number time-series.

Figure 9.8: Frequency spectrum of the yearly mean total sunspot number time-series. It
is calculated by Fast Fourier Transform (FFT).
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Figure 9.9: Fast Fourier Transform (FFT) coefficients in the complex plane, corresponding
to the 13-month smoothed monthly total sunspot number time-series.

Figure 9.10: Frequency spectrum of the 13-month smoothed monthly total sunspot num-
ber time-series. It is calculated by Fast Fourier Transform (FFT).
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10 Forecasting the Yearly Number of Sunspots

In previous sections, we introduced three different machine learning models that can be
used for time-series forecasting. Now, we will use Warped Gaussian Process Regres-
sion (Warped GPR), Light Gradient Boosting Machine (LightGBM), and Long
Short-Term Memory (LSTM) in order to predict the yearly mean total sunspot
number time-series. In this section, we delve into the results obtained from employing
these models in forecasting sunspot activity, the pros and cons of each method, and how
they are compared to other methods and results in the bibliography.

10.1 Warped Gaussian Process Regression (Warped GPR)

10.1.1 Data pre-processing

As analyzed in section 5, Gaussian Process Regression (GPR) framework often assumes
that the likelihood of the observed data points, given the latent function values, follows a
Gaussian distribution with some noise, as well as that the joint distribution of the observed
data at different input points follows a multivariate Gaussian distribution. However, we
saw in section 9 that the histogram of the yearly mean sunspot number is more likely to
follow an exponential distribution with a right-skewness. To boost GPR performance, it
is a good practice to apply first a non-linear transformation to the data and get them
closer to “normality”, and then work on the transformed data. Then, when we have the
predictions made by the GPR model, we apply the inverse transformation to get the
predicted value in the observation space domain.

In our case, we apply the κ-logarithmic transformation, to account for the skew-
ness and the non-negativity of the original sunspot data. For the training phase, explained
below, the train-test split was 90%−10%, respectively. In Figure 10.2, we see the original
time-series of the yearly mean sunspot number, the histogram of all data, the histogram
of the train data, and the histogram of the test data. The transformed time-series of
the yearly mean sunspot number, the histogram of the transformed train data, and the
histogram of the transformed test data are shown in Figure 10.3.

To assess the normality of the transformed time-series data, we employ the Kol-
mogorov-Smirnov test (see Appendix C), a widely recognized statistical non-parametric
test used to determine whether a given dataset follows a normal distribution. This test
plays a pivotal role in validating the assumption of normality, which can be crucial un-
der the GPR framework. The Kolmogorov-Smirnov test quantifies the maximum vertical
discrepancy between the empirical cumulative distribution function (ECDF) of the trans-
formed data and the cumulative distribution function (CDF) of the standard normal
distribution. In other words, it assesses how closely our data aligns with a theoretical
standard normal distribution. The null hypothesis of this test is that the data follows a
standard normal distribution. Upon performing the Kolmogorov-Smirnov test, we obtain
a p-value of 0.27, which is above 0.05 (assume 5% significance level). Consequently, we
cannot reject the null hypothesis on a 5% significance level and the data can be assumed
normal. In Figure 10.1, we can see the CDF and the ECDF that correspond to our data
from the transformed yearly mean total sunspot number after performing standardization



206 10 Forecasting the Yearly Number of Sunspots

(the Kolmogorov-Smirnov test is applied on the standardized data).

Figure 10.1: One-sample Kolmogorov-Smirnov test to check the normality of the trans-
formed sunspot data. This figure depicts the CDF of the standard normal distribution,
and the empirical CDF obtained by the transformed data. We can see that they are very
close.

In Table 10.1, we can see the sample mean and the sample standard deviation for the
time-series of the yearly mean sunspot number, in the original as well as in the transformed
domain. Additionally, the mean and the standard deviation are computed for their train
and test subsets.

Original Original Original Transformed Transformed Transformed
data train data test data data train data test data

µ̂ 78.39 79.54 67.90 6.54 6.60 6.04
σ̂ 61.95 62.44 57.11 2.79 2.79 2.82

Table 10.1: Sample mean (µ̂) and sample standard variation (σ̂) for the original data, the
transformed data, and their train and test splits.
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(a) Plot of the original sunspot time-series. (b) Histogram of the original sunspot data.

(c) Histogram of the original train sunspot
data. (d) Histogram of the original test sunspot data.

Figure 10.2: (a) Time-series of the yearly mean sunspot number in the original domain.
(b) Histogram of the time-series data. (c) Histogram of the train data (90%). Training
set contains observations from 1700.5 to 1990.5 (291 data points). (d) Histogram of the
test data (10%). Test set contains observations from 1991.5 to 2022.5 (32 data points).
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(a) Plot of the transformed sunspot time-series.
(b) Histogram of the transformed sunspot
data.

(c) Histogram of the transformed train sunspot
data.

(d) Histogram of the transformed test sunspot
data.

Figure 10.3: (a) Time-series of the yearly mean sunspot number in the transformed do-
main. (b) Histogram of the time-series data. Training set contains observations from
1700.5 to 1990.5 (291 data points). (c) Histogram of the train data (90%). (d) Histogram
of the test data (10%). Test set contains observations from 1991.5 to 2022.5 (32 data
points).
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As already mentioned, in time-series analysis an assumption often made is that the
data are homoscedastic. A homoscedastic time-series is one whose variance does not
change over time. This assumption is crucial because many statistical modeling techniques
require the data to be homoscedastic to make reliable forecasts. We saw in a previous
subsection that the time-series of the yearly mean total sunspot number is heteroscedastic.

Now, we will ensure that the yearly sunspot data become homoscedastic after applying
the κ-logarithmic transformation. There are several statistical tests available to test the
heteroscedasticity of a time-series. In Tables 10.2, and 10.3, we apply the White and the
Breusch-Pagan test on the time-series of the transformed yearly mean total sunspot num-
ber, respectively. We see that both tests give a p-value greater than 0.05 (5% significance
level), which indicates that the series is homoscedastic.

----------
White Test
----------

Null Hypothesis: The error variance does not depend on x
Alternative Hypothesis: The error variance depends on x

-------------------------------------
Test Statistic 0.520
P-value 0.593
-------------------------------------

Table 10.2: White test results in the transformed time-series of the yearly mean total
sunspot number.

------------------
Breusch-Pagan Test
------------------

Null Hypothesis: The residual variance does not depend on x
Alternative Hypothesis: The residual variance depends on x

-------------------------------------
Test Statistic 0.790
P-value 0.373
-------------------------------------

Table 10.3: Breusch-Pagan test results in the transformed time-series of the yearly mean
total sunspot number.
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10.1.2 Model selection

In GPR framework, it is essential to define first a GP prior with a mean function m(x)
and kernel function k(x,x′). In our case, for modeling the yearly mean sunspot number,
the input variable is one-dimensional, and it corresponds to the time. So instead of x, the
notation x will be used. For the design matrix X, it is just the row vector (x1, x2, . . . , xN)
for N observations. We select a constant mean function and a covariance function
that is the product of an exponential kernel and a periodic kernel. More specific, it
is:

mθ(x) = c

kθ(x, x
′) = σ2

f exp

(
−∥x− x′∥2

ℓ1

)
exp

−2 sin2
(

π∥x−x′∥2
p

)
ℓ22


where θ = (σf , ℓ1, p, ℓ2, σn, c)

T is the vector containing the model’s hyperparameters.
Note that σ2

n, noise variance, is modeled through an additive component of Gaussian
noise to the true observations (not through the kernel function itself), and it is present
in the posterior predictive formula. Intuitively speaking, the kernel choice is made with
the purpose to model the periodicity of the sunspot number time-series and its non-
smoothness. Other kernel functions were, also, tested, but they produced less good
results in terms of prediction accuracy.

During the training phase of the GPR model, our objective is to find the optimal
set of hyperparameters, θ∗, that maximizes the log marginal likelihood, or equivalently
minimizes the negative log marginal likelihood. Remember that the formula to obtain log
marginal likelihood is

log (p(y|X,θ)) =−1

2
(y −mθ(X))T

[
Kθ(X,X) + σ2

nI
]−1

(y −mθ(X))︸ ︷︷ ︸
Data fit

−1

2
log
[
det (Kθ(X,X) + σ2

nI)
]

︸ ︷︷ ︸
Complexity penalty

−n

2
log (2π)︸ ︷︷ ︸

Constant term

and then optimal θ∗ is given by

θ∗ = argmin
θ

[− log (p(y|X,θ))]

The optimal values of the hyperparameters are shown in Table 10.4.
For the aforementioned minimization, we use the Global Optimization Toolbox

from MATLAB. That toolbox provides several methods to perform global optimization,
like “global search”, “multi-start”, “surrogate optimization”, “pattern search”, “genetic algo-
rithm”, “particle swarm”, “simulated annealing”, and “multi-objective optimization”. One
can use more than one method, in a way to “cross-validate” the results.

It is worth noting that the optimal values we get through the optimization for the
hyperparameters have a straightforward interpretation. The σf is taking a value close
to the sample standard deviation of the transformed training data. The p is taking a
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Parameter σf ℓ1 p ℓ2 σn c

Optimal value 2.99 28.20 10.9 1.37 0.01 6.53
Bounds (0.01, 200) (0.01, 200) (5, 15) (0.01, 200) (1e-16, 0.01) (−50, 100)

Optimal LML −432.28

Table 10.4: Warped GPR. Optimal set of hyperparameters θ∗, the bounds that were
set during the optimization, and the optimal value of the log marginal likelihood (LML).

value near the predominant 11-year periodicity of the sunspot number. The ℓ1 is taking
a value close to 1 corresponding to the smoothness of the sunspot number from year to
year, while ℓ2 is taking a relatively large value indicating that the periodic covariance
is significant over a longer lengthscale and keeping the repetitions close to each other
more consistent. Finally, c, is getting approximately the value of the sample mean of the
transformed training data.

10.1.3 Model evaluation

Now, we will visualize the resulting model in terms of its forecasting capabilities in var-
ious scenarios. As forecasting strategies, we will use the “direct one-step ahead” method
(see Equation (3.1)), as well as the “multiple output multi-step ahead” method (see Equa-
tion (3.3)) and assess their performance. The first one is used to make 1-step ahead
predictions (1-SA), while the second one is used to make 6-steps ahead predictions (6-
SA), 12-steps ahead predictions (12-SA), and 32-steps ahead predictions (32-SA). Note
that in all cases, the trained model remains the same, which is defined when the optimal
values for the hyperparameters are set.

Before we get through the assessment of each model, it is important to remember a
characteristic point of Warped GPR framework. For a Vanilla GPR, the point estimates
are “ready to use”, and the predictive distribution is Gaussian, which means that the
median and mean lie at the same point. For the Warped GPR, when applying the inverse
transformation to the point estimates produced by the model, the distribution that results,
in general, has different values for the mean and the median (mainly induced by the
distribution of the data in the original domain). Consequently, one can use both estimates
(those obtained by the median, and those obtained by the mean) to produce predictions.

Below, we will refer to the predictions, and their accuracy, made by each model (for
each forecasting strategy), when we consider the median value as the point estimate. Only
for the case of 1-SA prediction, we consider also the mean value as the point estimate.
In the Appendix I, there are figures showing the rest of the models, when considering the
mean value as the point estimate.

In Table 10.5 and Table 10.6, we can see various evaluation metrics for the predictions
made by each model, when we consider both types of point estimates, the median and
the mean, respectively.

As expected, the prediction accuracy decreases as the forecasting horizon gets larger.
It means that, when trying to predict sunspot number for more years ahead, we get larger
uncertainty and discrepancies from the true values. It is worth noting that RMSE(%), in
all forecasting strategies, is less than 10, which indicates a good fit of the model and a
competitive accuracy.
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Metric 1-SA 6-SA 12-SA 32-SA
MAE 14.72 23.37 28.16 29.28
RMSE 19.41 28.04 34.20 33.13

RRMSE (%) 3.93 6.30 6.64 6.64
R2 0.88 0.75 0.63 0.65

Correlation coefficient 0.94 0.88 0.83 0.9
Percentage in 68% C.I. (%) 100 100 100 100
Percentage in 95% C.I. (%) 100 100 100 100

Table 10.5: Evaluation metrics for the predictions produced by each type of model (fore-
casting strategy) under Warped GPR framework, when we consider the median value
as the point estimate. Each metric is evaluated with respect to all the points of the test
set.

Metric 1-SA 6-SA 12-SA 32-SA
MAE 15.00 25.55 31.67 37.85
RMSE 19.59 28.73 38.41 42.11

RRMSE (%) 3.87 5.95 6.85 7.4
R2 0.88 0.74 0.53 0.44

Correlation coefficient 0.94 0.88 0.83 0.87

Table 10.6: Evaluation metrics for the predictions produced by each type of model (fore-
casting strategy) under Warped GPR framework, when we consider the mean value as
the point estimate. Each metric is evaluated with respect to all the points of the test set.
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(a) Yearly mean total sunspot number predictions using 1-
SA forecasting strategy.

(b) True vs. 1-SA predicted values
on the test set.

(c) Error between true and 1-SA predicted val-
ues on the test set.

(d) Absolute error between true and 1-SA pre-
dicted values on the test set.

Figure 10.4: Warped GPR. Predicting the yearly mean total sunspot number using
1-SA forecasting strategy. We consider the median value as the point estimates.
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(a) Yearly mean total sunspot number predictions using 1-
SA forecasting strategy.

(b) True vs. 1-SA predicted values
on the test set.

(c) Error between true and 1-SA predicted val-
ues on the test set.

(d) Absolute error between true and 1-SA pre-
dicted values on the test set.

Figure 10.5: Warped GPR. Predicting the yearly mean total sunspot number using
1-SA forecasting strategy. We consider the mean value as the point estimates.
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(a) Yearly mean total sunspot number predictions using 6-
SA forecasting strategy.

(b) True vs. 6-SA predicted values
on the test set.

(c) Error between true and 6-SA predicted val-
ues on the test set.

(d) Absolute error between true and 6-SA pre-
dicted values on the test set.

Figure 10.6: Warped GPR. Predicting the yearly mean total sunspot number using
6-SA forecasting strategy. We consider the median value as the point estimates.
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(a) Yearly mean total sunspot number predictions using 12-
SA forecasting strategy.

(b) True vs. 12-SA predicted val-
ues on the test set.

(c) Error between true and 12-SA predicted val-
ues on the test set.

(d) Absolute error between true and 12-SA pre-
dicted values on the test set.

Figure 10.7: Warped GPR. Predicting the yearly mean total sunspot number using
12-SA forecasting strategy. We consider the median value as the point estimates.
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(a) Yearly mean total sunspot number predictions using 32-
SA forecasting strategy.

(b) True vs. 32-SA predicted val-
ues on the test set.

(c) Error between true and 32-SA predicted val-
ues on the test set.

(d) Absolute error between true and 32-SA pre-
dicted values on the test set.

Figure 10.8: Warped GPR. Predicting the yearly mean total sunspot number using
32-SA forecasting strategy. We consider the median value as the point estimates.
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10.2 Light Gradient Boosting Machine (LightGBM)

10.2.1 Data pre-processing

Under the Light Gradient Boosting Machine (LightGBM) framework, the pre-processing
comprises the two following steps:

1. Standardize the time-series data. This transformation results in a zero mean and
unit variance of the data.

2. Create the data set of pairs (features, target) from the raw (standardized) data
of time-series. In time-series forecasting, features represent the look-back window
(past observations), and the corresponding target represents the look-front window
(subsequent or future observations).

Standardization is often a good practice in machine learning algorithms, and especially
in gradient boosting decision trees can help in avoiding numerical instabilities, ensure
the regularization effectiveness, and achieve a faster convergence. For the training phase,
explained below, the train-validation-test split was 80%− 10%− 10%, respectively. Note
that the choice of the look-back and look-front window plays a crucial role in the final
model performance.

10.2.2 Model selection

Once the data set is “ready to use”, we proceed to the training phase that is carried
out in parallel with the hyperparameters tuning. First, let’s define the hyperparameters
of the LightGBM model that are searched and optimized:

• colsample_bytree: This hyperparameter controls the fraction of features randomly
selected to build each tree during training. It helps in reducing overfitting by intro-
ducing randomness into feature selection.

• learning_rate: Often referred to as the “eta” parameter, it determines the step size
at each iteration during gradient boosting. Lower values make the model more robust
but require more iterations.

• n_estimators: This parameter specifies the number of boosting rounds or trees to
be built. Increasing it can lead to a more complex model, but may risk overfitting if
not carefully tuned.

• num_leaves: It defines the maximum number of leaves (or terminal nodes) in each
tree. Higher values can make the model more expressive, but also increase the risk of
overfitting.

• reg_lambda: Also known as lambda, this hyperparameter controls the L2 regular-
ization strength on the leaf weights. It helps prevent overfitting by penalizing large
weights.

• subsample: It determines the fraction of data randomly selected for each tree build-
ing iteration. Setting it to values less than 1.0 introduces stochasticity and can im-
prove model generalization.
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(a) Standardized yearly mean total sunspot number time-series used for developing 1-SA predic-
tive model.

(b) Standardized yearly mean total sunspot number time-series used for developing 6-SA predic-
tive model.

Figure 10.9: Transformed yearly mean total sunspot number time-series split in train-
validate-test sets for usage in LightGBM forecasting model development. Subfigure (a)
corresponds to the 1-SA forecasting method, and subfigure (b) corresponds to the 6-SA
forecasting method. The standardization is done with respect to the train set, which has
a mean of 1 and a standard deviation of 1.
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• max_depth: This hyperparameter defines the maximum depth of each tree in the
ensemble. A deeper tree can capture complex relationships in the data, but may also
lead to overfitting. Setting an appropriate value for “max_depth” is crucial to balance
model complexity and generalization (value of −1 means in general that there is no
maximum depth).

The concept of the training phase is to find the optimal set of hyperparameters for the
LightGBM model, and train the corresponding model on our sunspot data. For that
purpose, one iteration of our “search process” contains the following steps:

1. Select a value for the hyperparameters.

2. Train a LightGBM model (or more than one models, see “direct multi-step ahead
forecast” strategy in Equation (3.4)) on the training set.

3. Calculate the value of the loss function on the validation set (“validation loss”).

After searching for various values for the hyperparameters, we select the model that pro-
duced the smallest validation loss, and that is the optimal model. The “search process” is
getting done using Sequential Model Based Optimization (SMBO) 15. SMBO is a Bayesian
optimization technique that uses information from past trials to inform the next set of
hyperparameters to explore. The approximation of the user-defined objective function is
being done with a Gaussian process. After each run of hyperparameters on the objective
function, the algorithm makes an educated guess which set of hyperparameters is most
likely to improve the score and should be tried in the next run. This process is being
repeated more than one times to ensure the optimal results. The loss function that we
use is the RMSE.

We build two models, one for 1-step ahead predictions (1-SA), and one for 6-steps
ahead predictions (6-SA). The corresponding forecasting strategies are the “direct one-step
ahead” method (see Equation (3.1)), and the “direct multi-step ahead forecast” method
(see Equation (3.4)), respectively. In Table 10.7 and Table 10.8, the optimal set of hy-
perparameters is shown for 1-SA model and 6-SA model, respectively. The look-back
window in the 1-SA model is of 12 years length, and the look-front window is of 1 year
length. The look-back window in the 1-SA model is of 11 years length, and the look-front
window is of 6 years length. The parameter “look-back” for both models is being tuned
with trial-and-error.

10.2.3 Model evaluation

Now, we will visualize the trained models in terms of their forecasting capabilities in
both scenarios, where the forecasting horizon is 1 year, and 6 years. See Figure 10.10 and
Figure 10.11, respectively. In Table 10.9 we can see various evaluation metrics for the
predictions made by each model (1-SA, and 6-SA) on the test set.

As expected, the prediction accuracy decreases as the forecasting horizon gets larger.
It means that, when trying to predict sunspot number for more years ahead, we get
larger discrepancies from the true values. It is worth noting that RRMSE(%), in both
forecasting strategies, is less than 10, which indicates a good fit of the model and a
competitive accuracy.

15We used scikit-optimize for implementing Sequential model-based optimization in Python
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Parameter 1 Bounds
colsample_bytree 0.80 (0.7, 1)

learning_rate 0.5 (0.01, 1)
n_estimators 25 (10, 1000)
num_leaves 654 (10, 1000)
reg_lambda 7.21e-3 (0.001, 1)
subsample 0.82 (0.7, 1)
max_depth −1 (−1,−1)

Optimal Val Loss 18.78

Table 10.7: LightGBM 1-SA. The optimal set of model’s hyperparameters (second col-
umn), the bounds that were set during the optimization (third column), and the optimal
value of the loss function calculated on the validation set (bottom row).

Parameter 1 2 3 4 5 6 Bounds
colsample_bytree 0.76 0.78 0.82 0.85 0.74 0.97 (0.7, 1)

learning_rate 0.69 0.51 0.53 0.34 0.35 0.44 (0.01, 1)
n_estimators 16 10 10 10 106 559 (10, 1000)
num_leaves 993 10 10 986 674 1000 (10, 1000)
reg_lambda 0.88 0.20 1e-3 0.27 0.81 0.84 (0.001, 1)
subsample 0.71 0.76 0.71 0.98 0.82 0.92 (0.7, 1)
max_depth −1 −1 −1 −1 −1 −1 (−1,−1)

Optimal Val Loss 30.97

Table 10.8: LightGBM 6-SA. The optimal set of model’s hyperparameters (second to
seventh column), the bounds that were set during the optimization (eighth column), and
the optimal value of the loss function calculated on the validation set (bottom row).

Metric 1-SA 6-SA
MAE 14.17 22.05
RMSE 19.17 27.13

RRMSE (%) 3.78 5.27
R2 0.88 0.77

Correlation coefficient 0.94 0.90

Table 10.9: Evaluation metrics for the predictions produced by each type of model (fore-
casting strategy) under LightGBM framework. Each metric is evaluated with respect
to all the points of the test set.
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(a) Yearly mean total sunspot number predictions using 1-
SA forecasting strategy.

(b) True vs. 1-SA predicted values
on the test set.

(c) Error between true and 1-SA predicted val-
ues on the test set.

(d) Absolute error between true and 1-SA pre-
dicted values on the test set.

Figure 10.10: LightGBM 1-SA. Predicting the yearly mean total sunspot number using
1-SA forecasting strategy. We consider the median value as the point estimates.
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(a) Yearly mean total sunspot number predictions using 6-
SA forecasting strategy.

(b) True vs. 6-SA predicted values
on the test set.

(c) Error between true and 6-SA predicted val-
ues on the test set.

(d) Absolute error between true and 6-SA pre-
dicted values on the test set.

Figure 10.11: LightGBM 6-SA. Predicting the yearly mean total sunspot number using
6-SA forecasting strategy. We consider the median value as the point estimates.



224 10 Forecasting the Yearly Number of Sunspots

10.3 Long Short-Term Memory (LSTM)

10.3.1 Data pre-processing

Under the Long Short-Term Memory (LSTM) framework, the pre-processing comprises
the two following steps:

1. Standardize the time-series data. This transformation results in a zero mean and
unit variance of the data.

2. Create the data set of pairs (features, target) from the raw (standardized) data
of time-series. In time-series forecasting, features represent the look-back window
(past observations), and the corresponding target represents the look-front window
(subsequent or future observations).

Standardization is often a good practice in machine learning algorithms, and especially in
LSTM can help in avoiding numerical instabilities, and achieve a faster convergence. For
the training phase, explained below, the train-validation-test split was 80%− 10%− 10%,
respectively. As far as the creation of the data set is concerned, the choice of the look-
back and look-front window play a pivotal role in the final model’s characteristics and
performance.

10.3.2 Model selection

Once the data set is “ready to use”, we proceed to the training phase that is carried
out in parallel with the hyperparameters tuning. We use a (stacked) LSTM model in
sequence with a Linear model (dense layer). First, let’s define the hyperparameters of the
whole structure (see Figure 7.9) that are searched and optimized:

• input_size: The number of expected features in the input data. As features here,
we mean the dimensionality of each input x at a time step in the LSTM unit. In our
case, it is equal to 1, as at each time step we only have one observation, which is the
number of sunspots.

• hidden_size: The number of features in the hidden state (output).

• num_layers: The number of recurrent layers, i.e. stacked LSTM layers.

• dropout: If non-zero, introduces a dropout layer on the outputs of each LSTM layer
except the last one, with dropout probability equal to this value.

• in_features: The number of input features (input dimensions). It is equal to the
“hidden_size”.

• out_features: The number of output features (output dimensions). In our case, it
is equal to 1, as each model predicts only one value.

The concept of the training phase is to find the optimal set of hyperparameters for the
LSTM model, and train the corresponding model on our sunspot data. For that purpose,
one iteration of our “search process” contains the following steps:
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1. Select a value for the hyperparameters.

2. Train an LSTM model (or more than one models, see “direct multi-step ahead
forecast” strategy in Equation (3.4)) on the training set.

3. Calculate the value of the loss function on the validation set (“validation loss”).

The learning rate is set to 10e-5 after experimenting with various values. The look-back
window for each trained model is also set appropriately by experimenting with various
values. After these two are fixed, we proceed with hyperparameter tuning. After searching
for various values for the hyperparameters, we select the model that produced the smallest
validation loss, and that is the optimal model. The “search process” is getting done using a
simple grid search. The loss function that we use is the RMSE. Note that during training,
we apply “early stopping” by monitoring the validation loss; when it stops improving (we
have set some “patience” epochs), we stop the training process.

We build two models 16, one for 1-step ahead predictions (1-SA), and one for 6-steps
ahead predictions (6-SA). The corresponding forecasting strategies are the “direct one-step
ahead” method (see Equation (3.1)), and the “direct multi-step ahead forecast” method
(see Equation (3.4)), respectively. In Table 10.10 and Table 10.11, the optimal set of
hyperparameters is shown for 1-SA model and 6-SA model, respectively. The look-back
window in the 1-SA model is of 12 years length, and the look-front window is of 1 year
length. The look-back window in the 1-SA model is of 22 years length, and the look-front
window is of 6 years length.

10.3.3 Model evaluation

Now, we will visualize the trained models in terms of their forecasting capabilities in
both scenarios, where the forecasting horizon is 1 year, and 6 years. See Figure 10.13 and
Figure 10.14, respectively. In Table 10.12 we can see various evaluation metrics for the
predictions made by each model (1-SA, and 6-SA) on the test set.

As expected, the prediction accuracy decreases as the forecasting horizon gets larger.
It means that, when trying to predict sunspot number for more years ahead, we get
larger discrepancies from the true values. It is worth noting that RRMSE(%), in both
forecasting strategies, is less than 10, which indicates a good fit of the model and a
competitive accuracy.

16We used PyTorch Lightning as the deep learning framework and especially the modules
torch.nn.LSTM and torch.nn.Linear. This framework uses Tensors and is capable of accelerating
the training process using special GPUs (hardware needed).
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(a) Standardized yearly mean total sunspot number time-series used for developing 1-SA predic-
tive model.

(b) Standardized yearly mean total sunspot number time-series used for developing 6-SA predic-
tive model.

Figure 10.12: Transformed yearly mean sunspot number time-series split in train-validate-
test sets for usage in LSTM forecasting model development. Subfigure (a) corresponds
to the 1-SA forecasting method, and subfigure (b) corresponds to the 6-SA forecasting
method. The standardization is done with respect to the train set, which has a mean of
1 and a standard deviation of 1.
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Parameter 1 Grid
input_size 1 −
hidden_size 120 (60 : 20 : 300)
num_layers 2 (1 : 1 : 3)
drop_out 0 (0.1 : 0.1 : 0.2)

in_features 120 −
out_features 1 −

Optimal Val Loss 19.07

Table 10.10: LSTM 1-SA. Optimal set of model’s hyperparameters, the bounds that
were set during the optimization, and the optimal value of the loss function calculated on
the validation set.

Parameter 1 2 3 4 5 6 Grid
input_size 1 1 1 1 1 1 −
hidden_size 200 150 150 200 300 200 (50 : 50 : 400)
num_layers 2 1 1 1 1 1 (1 : 1 : 3)
drop_out 0 0 0 0 0.2 0 (0.1 : 0.1 : 0.2)

in_features 200 150 150 200 300 200 −
out_features 1 1 1 1 1 1 −

Optimal Val Loss 31.62

Table 10.11: LSTM 6-SA. Optimal set of model’s hyperparameters, the bounds that
were set during the optimization, and the optimal value of the loss function calculated on
the validation set.

Metric 1-SA 6-SA
MAE 12.41 23.50
RMSE 15.44 31.97

RRMSE (%) 3.00 6.17
R2 0.93 0.62

Correlation coefficient 0.97 0.85

Table 10.12: Evaluation metrics for the predictions produced by each type of model
(forecasting strategy) under LSTM framework. Each metric is evaluated with respect to
all the points of the test set.
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(a) Yearly mean total sunspot number predictions using 1-
SA forecasting strategy.

(b) True vs. 1-SA predicted values
on the test set.

(c) Error between true and 1-SA predicted val-
ues on the test set.

(d) Absolute error between true and 1-SA pre-
dicted values on the test set.

Figure 10.13: LSTM. Predicting the yearly mean total sunspot number using 1-SA
forecasting strategy. We consider the median value as the point estimates.
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(a) Yearly mean total sunspot number predictions using 6-
SA forecasting strategy.

(b) True vs. 6-SA predicted values
on the test set.

(c) Error between true and 6-SA predicted val-
ues on the test set.

(d) Absolute error between true and 6-SA pre-
dicted values on the test set.

Figure 10.14: LSTM. Predicting the yearly mean total sunspot number using 6-SA
forecasting strategy. We consider the median value as the point estimates.
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10.4 Findings

In the above subsections, we applied three supervised machine learning methods on
yearly sunspots data with the purpose to model them and be able to make accurate
forecasts. These models revealed unique strengths and weaknesses, each contributing
to our understanding of time-series forecasting in its own way. Below, we provide a
comparative analysis of these three machine learning models with respect to the yearly
sunspot number forecasting:

For Gaussian Process Regression (GPR) we note the following:

• Strengths:

- GPR is a powerful model for capturing complex relationships within time-series
data, especially when dealing with non-linear patterns.

- It provides probabilistic predictions, offering not only point forecasts but also
uncertainty estimates, which can be valuable for decision-making and risk assess-
ment.

- GPR is highly interpretable, allowing us to understand the influence of each input
feature on the predictions.

• Weaknesses:

- Computationally intensive, GPR can be slow for large datasets, making it less
practical in real-time forecasting scenarios.

- It may not perform as well when dealing with high-dimensional input data or
when assumptions of Gaussianity are violated.

For Gradient Boosting Decision Trees (GBDTs) we note the following:

• Strengths:

- Gradient Boosting Decision Trees, represented by models like XGBoost or Light-
GBM, excel at capturing complex relationships and interactions in the data.

- They are computationally efficient and can handle large datasets with many fea-
tures.

- Feature importance analysis is straightforward, aiding in variable selection and
model interpretation.

• Weaknesses:

- They may struggle to capture long-term dependencies and intricate temporal
patterns in time-series data, especially when faced with irregularly spaced obser-
vations.

- These models typically do not provide probabilistic forecasts, which limits the
quantification of uncertainty.



10 Forecasting the Yearly Number of Sunspots 231

For Long Short-Term Memory (LSTM) we note the following:

• Strengths:

- LSTMs are designed to model sequences and are well-suited for time-series data,
capable of capturing long-range dependencies.

- They excel when dealing with irregularly spaced data or missing values, making
them versatile for real-world applications.

- LSTMs can provide multi-step ahead forecasts, which are essential in many fore-
casting scenarios.

• Weaknesses:

- Training LSTMs can be computationally expensive, and they may require sub-
stantial amounts of data to generalize well.

- Interpreting the inner workings of LSTMs can be challenging, which limits their
transparency and interpretability.

For our sunspot forecasting task, we observed that LSTM outperformed the other mod-
els in capturing the intricate patterns and long-range dependencies inherent in sunspot
data when the objective was to forecast 1 step ahead. When we tried to forecast 6 steps
ahead, the LightGBM revealed a better performance. Also, GPR produced competitive
predictions, along with the advantage that its training is independent of the forecasting
horizon. Once we have tuned the model, we can make predictions as deeply in the future
as we desire. However, the choice of model should always be guided by the specific needs
and constraints of the forecasting problem at hand. We realized, also, that in general, pre-
dictions with a deeper forecasting horizon have larger uncertainty and come with greater
errors. In general, the predictions of all models gave RRMSE less than 10%, which indi-
cates a very good fit. Finally, as far as computational complexity is concerned, LightGBM
is the most efficient algorithm, whereas LSTM can become significantly costly. GPR is
performing well, given that the dataset of the yearly sunspots is not large and the matrix
manipulations are not too intensive.

10.5 Forecasting the peak of Solar Cycle 25

Using our proposed aforementioned machine learning models, we can predict the up-
coming peak of the Solar Cycle 25. We have:

• 112 sunspots in 2024 (LightGBM 6-SA)

• 118 sunspots in 2024 (Warped GPR using median value)

• 122 sunspots in 2024 (Warped GPR using mean value)

• 131 sunspots in 2024 (LSTM 6-SA)

• 115 sunspots in 2025 (NASA)
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Figure 10.15: Warped GPR using median value. Forecast of the next 6 years of the
time-series of the yearly mean total sunspot number. The predictions correspond to the
years 2023-2028.

Figure 10.16: Warped GPR using mean value. Forecast of the next 6 years of the
time-series of the yearly mean total sunspot number. The predictions correspond to the
years 2023-2028.



10 Forecasting the Yearly Number of Sunspots 233

Figure 10.17: LightGBM 6-SA. Forecast of the next 6 years of the time-series of the
yearly mean total sunspot number. The predictions correspond to the years 2023-2028.

Figure 10.18: LSTM 6-SA. Forecast of the next 6 years of the time-series of the yearly
mean total sunspot number. The predictions correspond to the years 2023-2028.
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10.6 Related work

Below, we refer to some related work on forecasting the time-series of the sunspots
number (monthly and yearly):

• Werner et al. [99] proposes an autoregressive AR(9) model capable of predicting the
yearly sunspot number. The forecast quality is being estimated by the sum of the
square residuals and by the mean standard deviation. For forecasting horizons 1, 2,
3, and 4, they obtain mean standard deviations of 14, 23, 29, and 32, respectively.
For greater forecasting horizons, it is said that the aforementioned metric gets greater
than 30.

• Gonçalves et al. [100] uses a warped Gaussian process regression framework in order
to make predictions on the yearly number of sunspots. Tests using holdout data
yielded a root mean squared error of 10 within 5 years and 25–35 within 10 years.

• Covas et al. [101] forecasts the sunspot butterfly diagram using feed-forward neural
networks. In that way, it attempts to demonstrate that forecasting of the Sun’s
sunspot time-series can be extended to the spatial-temporal case. In that way, it
predicts that the upcoming Cycle 25 maximum sunspot number will be around 57±17.
That implies a very weak cycle and that it will be the weakest cycle on record.

• Upton et al. [102] used a flux transport model and predicted that Solar Cycle 25
would be similar in size to Solar Cycle 24 with a 15% uncertainty. It refers that Cycle
25 will be slightly weaker than Cycle 24, making it the weakest cycle on record in the
last hundred years.

• Labonville et al. [103] used a dynamo-based model to forecast the upcoming solar
cycle and predicted a maximum sunspot number of 89 + 29/− 15.

• Pala et al. [104] used two layers of stacked LSTMs and predicted that the upcoming
Solar Cycle 25 would have a maximum sunspot number of 167.3 with the peak being
reached in 2023.2 ± 1.1. The trained LSTM gives a RMSE of 36 for a forecasting
horizon of 5 years.

• Okoh et al. [105] used a method called the Hybrid Regression Neural Network, which
combines regression analysis and neural network learning to estimate SSN. They
predicted that the end of Solar Cycle 24 would be in March 2020 (± seven months)
with a SSN of 5.4 and the maximum of Solar Cycle 25 would be January 2025 (± six
months) with a SSN of 122.1 (±18.2).

• Rigozo et al. [106] carried out a study to estimate the strength of solar activity in both
Solar Cycle 24 and 25 based on extrapolation of spectral components. They estimated
that the maximum number of sunspots in Cycle 25 will occur in April 2023 with a
sunspot number of 132.1 (with a solar-cycle length of 118 months or 9.8 years). In
the same study, Solar Cycle 24 was also estimated, and the maximum SSN value was
projected to be 113.3 in November 2013. However, when the actual SSN values were
examined, the maximum SSN value was reached in February 2014 with a SSN value
of 146.1. Thus, it can be said that Rigozo et al. [106] reached their maximum SSN
estimation with an about 30% deviation from the actual SSN value, so the estimation
methods are good methods.
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11 Conclusion and Future Work

In this diploma thesis, we embarked on a journey through the world of time-series
analysis using various machine learning methods. We covered fundamental concepts in
time-series analysis, delved into forecasting strategies, explored non-linear data transfor-
mations, and applied three distinct supervised machine learning models to forecast the
yearly mean sunspot number. The choice of machine learning model for time-series fore-
casting depends on the specific characteristics of the data and the forecasting objectives.
Gaussian Process Regression (GPR) offers interpretability and probabilistic forecasts,
while Gradient Boosting Decision Trees (GBDTs) are efficient and perform well with
complex, high-dimensional data. Long Short-Term Memory (LSTM) neural networks, on
the other hand, shine in capturing long-term dependencies and handling irregular data,
but they require significant computational resources.

About the forecasting of the yearly mean total sunspot number, we found that the
aforementioned machine learning algorithms, with the appropriate data transformations
and selection of hyperparameters, can be used to model accurately time-series data. In
particular, they give competitive predictions of the yearly sunspot number, one of them
can provide uncertainty estimates, and forecast that the upcoming peak will occur in
2024. This estimate agrees with recent articles which propose earlier appearance of the
peak than the existing forecasts of NASA and NOAA that have predicted occurrence of
the peak in 2025 or later. Regarding the predictive performance of our methods compared
to the related work mentioned before, we note that similar GPR implementation gives
a RMSE of 10 within 5 years and 25–35 within 10 years, while our GPR give 28 for 6
years ahead and 34 for 12 years ahead. Furthermore, we stated that an AR(9) model for
forecasting horizons 1, 2, 3, and 4, produced mean standard deviations of 14, 23, 29, and
32, respectively. Another LSTM implementation in literature gave an RMSE of 36 for
a forecasting horizon of 5 years, while our stacked LSTM gave 32. However, it is worth
noting that in this work, the literature LSTM was built based on monthly sunspot data
(as the majority of scientific works on sunspots), so the comparison cannot be done in an
absolute way.

With respect to future work, first of all, it is worth testing the same models on the
time-series of the 13-month smoothed monthly total sunspot number and analyzing the
results. In addition, further research could explore other more advanced machine learning
models. A good idea, for example, would be to experiment with bidirectional LSTMs.
Bidirectional LSTMs add one more LSTM layer, which reverses the direction of informa-
tion flow and the input sequence flows now both ways, forwards and backwards. Then
the outputs are combined from both LSTM layers in several ways, such as average, sum,
multiplication, or concatenation. One could explore to what extent additional layers
of training of data would be beneficial to tune the involved parameters. Furthermore,
investigating other ensemble methods that blend multiple forecasting models, such as
bagging or stacking, can lead to improved prediction accuracy. In that context, one could
experiment with a more sophisticated way of bagging. For example, one could train a
meta-model (often a simple linear regression or neural network) to combine the predictions
of multiple base models. The meta-model learns how to weigh the predictions of the base
models based on their performance on a validation set. Another approach would be to use
gradient-based optimization techniques to learn how to aggregate predictions, e.g. train
a neural network to learn the optimal combination (weights) of base model predictions
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by minimizing a loss function. Additionally, instead of predicting a single point estimate
(in LightGBM, or LSTM), we can predict multiple quantiles of the target variable using
quantile regression forests. This would provide a range of predictions, allowing us to esti-
mate prediction intervals along with point estimates. As far as the modeling of sunspots
is concerned, another interesting approach would be to create a model that can handle
possible interactions between two or more variables (correlated phenomena) and utilize
their relationship to gain greater insight into the real underlying procedure, resulting in
even better predictions. For example, such variables could be the total sunspot area,
the strength of the Sun’s polar magnetic fields during a solar cycle minimum, or other
physical phenomena related to the Sun.

To draw to a close, in the dynamic intersection of time-series analysis and machine
learning, the possibilities are boundless. The daily growth of data produced and collected
is profound, and it is becoming urgent to not only marvel at the scale of all these data, but
also to understand how they can be exploited and interpreted. As we conclude this thesis,
let us be inspired by the endless potential that lies ahead in solving complex problems,
making informed decisions, creating data-driven models, and driving innovation.



A OLS Linear Regression 237

A OLS Linear Regression
A linear regression model establishes the relation between a dependent variable, y,

and at least one independent variable, x, as:

ŷ = b1x+ b0 (A.1)

In Ordinary Least Squares (OLS) method, we have to choose the values of b1 and b0 such
that, the total sum of squares of the difference between the calculated values of ŷ, and
observed values of y, is minimized. The formula for OLS is

min
b0,b1

(S) = min
b0,b1

N∑
i=1

(yi − ŷi)
2 (A.2)

= min
b0,b1

N∑
i=1

(yi − b1xi − b0)
2

= min
b0,b1

N∑
i=1

(ϵ̂i)
2

where, ŷi is the predicted value for the i-th observation, yi is the actual value for the i-th
observation, ϵi is the error or residual for the i-th observation, and N is total number of
observations. To get the values of b0 and b1 which minimize S, we can take the partial
derivative for each coefficient and equate it to zero.

We use Python’s statsmodels module to implement ordinary least squares method of
linear regression. Statsmodels provides classes and functions for the estimation of many
different statistical models. The result of the corresponding function call of OLS is a table
containing various information. Below, we give a description of some of the terms in the
table:

• R-squared: This is the proportion of the variance in the dependent variable that is
predictable from the independent variable.

• Adjusted R-squared: This is the R-squared that has been adjusted based on the
number of predictors in the model. It is a more accurate measure of the goodness of
fit, especially when comparing models with different numbers of predictors.

• F-statistic and Prob(F-statistic): The F-statistic is a measure of how significant
the fit of the model is. It is calculated by dividing the mean squared error of the
model by the mean squared error of the residuals. The p-value associated with the
F-statistic is the probability that one would get the calculated value of F if the null
hypothesis of no relationship between the variables were true.

• coef (const, x1): These are the coefficients of the linear regression equation. The
constant term is the y-intercept, and x1 is the slope of the line.

• Condition Number: This is a measure of the sensitivity of the function’s output
to its input. When the condition number is large, the function is ill-conditioned,
meaning the output can be highly sensitive to changes in the input. In the context
of regression analysis, a high condition number is a warning sign for multicollinearity
among the predictors.
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• Omnibus and Prob(Omnibus): This is a test of the skewness and kurtosis of
the residual (the difference between the observed and predicted values). The null
hypothesis is that the residuals are normally distributed. The p-value associated
with the Omnibus test is the probability that one would get the calculated value of
Omnibus if the null hypothesis were true.

• Skew: This is a measure of data symmetry. A value of 0 indicates perfect symmetry.
Positive skewness indicates a distribution with an asymmetric tail extending towards
more positive values. Negative skewness indicates a distribution with an asymmetric
tail extending towards more negative values.

• Kurtosis: This is a measure of the "tailedness" of the data. A high kurtosis may
indicate that the data have heavy tails or outliers.

• Durbin-Watson: This is a test for auto-correlation in the residuals from a regression
analysis. The test statistic ranges from 0 to 4, with a value around 2 indicating no
auto-correlation. Values less than 2 and greater than 2 indicate positive and negative
auto-correlation, correspondingly.

• Jarque-Bera (JB) and Prob(JB): This is another test of the skewness and kurtosis
of the residuals. The test compares the shape of the distribution of residuals to a nor-
mal distribution. The p-value associated with the Jarque-Bera test is the probability
that one would get the calculated value of JB if the null hypothesis were true. A
p-value less than the chosen significance level would indicate that the residuals are
not normally distributed.

B Mann-Kendall Trend Test
The Mann-Kendall trend test (MK test) is used to analyze time series data for con-

sistently increasing or decreasing trends (monotonic trends). It is a non-parametric test,
which means it works for all distributions (i.e. data does not have to meet the assumption
of normality), but data should have no serial correlation. If the data has a serial corre-
lation, it could affect in significant level (p-value). It could lead to misinterpretation. To
overcome this problem, researchers proposed several modified Mann-Kendall tests (Hamed
and Rao Modified MK Test, Yue and Wang Modified MK Test, Modified MK test using
Pre-Whitening method, etc.). Seasonal Mann-Kendall test also developed to remove the
effect of seasonality. The two hypotheses of the Mann-Kendall test are as follows:

• Null hypothesis (Ho): There is no trend present in the data.

• Alternative hypothesis (Hα): A trend is present in the data.

We use Python’s pyMannKendall library to implement the Mann-Kendall trend test
and its variants. Currently, this package has 11 Mann-Kendall tests and 2 Theil-Sen’s
slope estimator functions. Below, it is a brief description of these functions:

• Original Mann-Kendall test (original_test): Original Mann-Kendall test is a
non-parametric test, which does not consider serial correlation or seasonal effects.
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• Hamed and Rao Modified MK Test (hamed_rao_modification_test): This
modified MK test proposed by Hamed and Rao (1998) to address serial autocorrela-
tion issues. They suggested a variance correction approach to improve trend analysis.
User can consider first n significant lag by insert lag number in this function. By
default, it considered all significant lags.

• Yue and Wang Modified MK Test (yue_wang_modification_test): This is also
a variance correction method for considered serial autocorrelation proposed by Yue,
S., & Wang, C. Y. (2004). User can also set their desired significant n lags for the
calculation.

• Modified MK test using Pre-Whitening method (pre_whitening_modificati-
on_test): This test suggested by Yue and Wang (2002) to using Pre-Whitening the
time series before the application of trend test.

• Modified MK test using Trend free Pre-Whitening method (trend_free_pre
_whitening_modification_test): This test also proposed by Yue and Wang (2002)
to remove trend component and then Pre-Whitening the time series before application
of trend test.

• Multivariate MK Test (multivariate_test): This is an MK test for multiple
parameters proposed by Hirsch (1982). He used this method for seasonal MK test,
where he considered every month as a parameter.

• Seasonal MK Test (seasonal_test): For seasonal time series data, Hirsch, R.M.,
Slack, J.R. and Smith, R.A. (1982) proposed this test to calculate the seasonal trend.

• Regional MK Test (regional_test): Based onHirsch (1982) proposed seasonal
MK test, Helsel, D.R. and Frans, L.M., (2006) suggest regional MK test to calculate
the overall trend in a regional scale.

• Correlated Multivariate MK Test (correlated_multivariate_test): This mul-
tivariate MK test proposed by Hipel (1994) where the parameters are correlated.

• Correlated Seasonal MK Test (correlated_seasonal_test): This method pro-
posed by Hipel (1994) used, when time series significantly correlated with the preced-
ing one or more months/seasons.

• Partial MK Test (partial_test): In a real event, many factors are affecting the
main studied response parameter, which can bias the trend results. To overcome this
problem, Libiseller (2002) proposed this partial MK test. It required two parameters
as input, where, one is response parameter and other is an independent parameter.

• Theil-Sen’s Slope Estimator (sens_slope): This method proposed by Theil (1950)
and Sen (1968) to estimate the magnitude of the monotonic trend. Intercept is cal-
culate using Conover, W.J. (1980) method.

• Seasonal Theil-Sen’s Slope Estimator (seasonal_sens_slope): This method
proposed by Hipel (1994) to estimate the magnitude of the monotonic trend, when
data has seasonal effects. Intercept is calculate using Conover, W.J. (1980) method.
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The result of any function implementing a Mann-Kendall test is a table containing
various information. Below, we give a description of some of the terms in the table:

• Trend: This value tells us the existence of any trend.

• Hypothesis Test Result (h): This value is true or false, depending on the rejection
of the null hypothesis or not based on the data.

• p-value: The p-value tells us if we have strong evidence to reject the null hypothesis
of no trend or not, depending on the chosen significance level.

• Test Statistic (z): The z-score is a measure of how many standard deviations the
observed trend is away from what we would expect if there were no trend. A larger
absolute value of z would provide stronger evidence against the null hypothesis.

• Kendall’s Tau: This is a measure of the correlation between the observed data and
the time variable. A positive value indicates a positive correlation, suggesting an
upward trend over time. A negative value indicates a negative correlation, suggesting
a downward trend over time.

• Mann-Kendall Score (s): This is the test statistic for the Mann-Kendall test. A
positive value indicates an upward trend and a negative value indicates a downward
trend.

• Variance (var_s): This is the variance of the test statistic. It is used in the
calculation of the z-score and the p-value.

• Slope: The slope is the estimated rate of change in the values of y, according to the
Theil-Sen Estimator (or to the Seasonal Theil-Sen Estimator).

• Intercept: The intercept is the estimated value of y at the start of the time-series,
according to the Theil-Sen Estimator (or to the Seasonal Theil-Sen Estimator).

C Kolmogorov - Smirnov Test
The Kolmogorov-Smirnov test (KS test) is used to compare two distributions to de-

termine if they are pulling from the same underlying distribution. The KS test is non-
parametric, which means we do not need to rely on assumptions that the data are drawn
from a given family of distributions. This is good, since we often will not know the
underlying distribution beforehand in the real world. There are two versions of the KS
test:

• Two-Sample: eCDF of A compared to eCDF of B

• One-Sample: eCDF of A compared to CDF of B

The one-sample KS test is used when we are comparing a single empirical sample to
a theoretical parameterized distribution. The two-sample KS test is used when we are
comparing two empirical samples. When comparing two samples, we are trying to answer
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the following question: “What is the probability that these two sets of samples were drawn
from the same probability distribution?”.

The KS test uses the following hypotheses:

• Null hypothesis (Ho): The two samples of the data at hand are from the same
distribution.

• Alternative hypothesis (Hα): The two samples of the data at hand are not from
the same distribution.

The KS statistic can be expressed as:

D = sup
x
(|F1(x)− F2(x)|)

where F1 and F2 are the two cumulative distribution functions of the first and second
samples, respectively. Another way to put it is that the KS statistic is the maximum
absolute difference between the two cumulative distributions. To calculate this value, the
KS statistic is taken into account along with the sample size of both distributions. Typical
thresholds for rejecting the null hypothesis are 1% and 5%, implying that any p-value less
than or equal to these values would lead to the rejection of the null hypothesis. The image
below shows an example of the statistic, depicted as a black arrow.

Figure C.1: Illustration of the Kolmogorov–Smirnov statistic. The red line is a model
CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.

D Cholesky Decomposition
The Cholesky decomposition of an asymmetric, positive definite matrix A decomposes

A into a product of a lower triangular matrix L and its transpose

LLT = A

where L is called the Cholesky factor. The Cholesky decomposition is useful for solving
linear systems with symmetric, positive definite coefficient matrix A. To solve Ax = b for
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x, first solve the triangular system Ly = b by forward solving linear systems substitution
and then the triangular system LTx = y by back substitution. Using the backslash
operator, we write the solution as x = LT\(L\b), where the notation A\b is the vector
x which solves Ax = b. Both the forward and backward substitution steps require
n2/2 operations, when A is of size n × n. The computation of the Cholesky factor L is
considered numerically extremely stable and takes time n3/6, so it is the method of choice
when it can be applied.

Note, also, that the determinant of a positive definite symmetric matrix can be calcu-
lated efficiently by

det (A) = |A| =
n∏

i=1

L2
ii

or

log (det (A)) = log (|A|) = 2
n∑

i=1

log (Lii)

where L is the Cholesky factor from A.

E Gauss-Hermite Quadrature

In numerical analysis, Gauss–Hermite quadrature is a form of Gaussian quadrature
for approximating the value of integrals of the following kind∫ +∞

−∞
e−x2

f(x) dx.

In this case ∫ +∞

−∞
e−x2

f(x) dx ≈
n∑

i=1

wif(xi)

where n is the number of sample points used. The xi, i = 1, 2, . . . , n, are the roots of the
physicists’ version of the Hermite polynomial Hn(x), and the associated weights wi are
given by

wi =
2n−1n!

√
π

n2[Hn−1(xi)]2

The “physicist’s Hermite polynomials” are given by

Hn(x) = (−1)nex2 dn

dxn
e−x2

Consider a function h(y), where the variable y is normally distributed

y ∼ N (µ, σ2)

The expectation of h corresponds to the following integral

E[h(y)] =

∫ +∞

−∞

1

σ
√
2π

exp

(
−(y − µ)2

2σ2

)
h(y)dy
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As this does not exactly correspond to the Hermite polynomial, we need to change vari-
ables

x =
y − µ√

2σ
⇔ y =

√
2σx+ µ

Coupled with the integration by substitution, we obtain

E[h(y)] =

∫ +∞

−∞

1√
π
exp(−x2)h(

√
2σx+ µ)dx

leading to

E[h(y)] ≈ 1√
π

n∑
i=1

wih(
√
2σxi + µ)

F Matrix Derivatives
Derivatives of the elements of an inverse matrix:

∂

∂θ
K−1 = −K−1∂K

∂θ
K−1

where ∂K
∂θ

is a matrix of element-wise derivatives. For the log determinant of a derivative
of log determinant positive definite symmetric matrix we have

∂

∂θ
log (|K|) = tr

(
K−1∂K

∂θ

)

G Marginal and Conditional Distributions of MVN
Suppose X = (x1, x2) is a joint Gaussian with parameters[

µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, Λ = Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
then the marginals are given by

p(x1) = N (x1|µ1,Σ11)

p(x2) = N (x2|µ2,Σ22)

and the posterior conditional is given by

p(x1|x2) = N (x1|µ1|2,Σ1|2)

where

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

= µ1 − Λ−1
11 Λ12(x2 − µ2)

= Σ1|2(Λ11µ1 − Λ12(x2 − µ2))

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 = Λ−1

11
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H Sunspot Number Datasets

H.1 13-month smoothed monthly total sunspot number

Credit: WDC-SILSO, Royal Observatory of Belgium, Brussels. Info link: 13-month
smoothed monthly total sunspot number (info). Download link: 13-month smoothed
monthly total sunspot number (csv file).

H.1.1 Data description

The 13-month smoothed monthly total sunspot number is derived by a “tapered-
boxcar” running mean of monthly sunspot numbers over 13 months centered on the corre-
sponding month (Smoothing function: equal weights = 1, except for first and last elements
(−6 and +6 months) = 0.5, Normalization by 1/12 factor). There are no smoothed values
for the first 6 months and last 6 months of the data series: columns 4, 5 and 6 are set to
−1 (no data). The time range of the data set is from 01/1749 until 12/2022 (constantly
renewed).

H.1.2 Choice of smoothing

This 13-month smoothed series is provided only for backward compatibility with a
large number of past publications and methods resting on this smoothed series. It has
thus become a base standard (e.g. for the conventional definition of the times of minima
and maxima of solar cycles).

However, a wide range of other smoothing functions can be used, often with better
low-pass filtering and anti-aliasing properties. As the optimal filter choice depends on the
application, we thus invite users to start from the monthly mean Sunspot Numbers and
apply the smoothing function that is most appropriate for their analyses. The classical
smoothed series included here should only be used when direct comparisons with past
published analyses must be made.

H.1.3 Error values

The standard deviations in this file are obtained from the weighted mean of the vari-
ances of the 13 months in the running mean value:

σms =

√∑
(wM · σ2

M)∑
(wM)

where σM is the standard deviation for a single month, wM is 1 or 0.5 and M = 13 in
this case. As successive monthly means are highly correlated, the standard error on the
smoothed values can be estimated by the same formula as for a single month: σ/

√
N

where σ is the listed standard deviation and N the total number of observations in the
month. The number of observations given in column 6 is the number of observations
of the corresponding (middle) month. This thus gives a smoothed mean of monthly
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standard deviations, i.e. with the same low-pass filtering as the data value itself. Further
autocorrelation analyses will be needed to derive a conversion of this standard deviation
to a standard error of the 13-month smoothed number.

H.1.4 File format

Below, we give some details about the csv file containing the dataset about the 13-
month smoothed monthly total sunspot number:

• Filename: SN_ms_tot_V2.0.csv

• Format: Comma Separated Values (CSV)

• Contents:

- Column 1-2: Gregorian calendar date (year - month).

- Column 3: Date in fraction of year.

- Column 4: Monthly smoothed total sunspot number.

- Column 5: Monthly mean standard deviation of the input sunspot numbers.

- Column 6: Number of observations used to compute the corresponding monthly
mean total sunspot number.

- Column 7: Definitive/provisional marker.’1’ indicates that the value is definitive.
’0’ indicates that the value is still provisional.

H.2 Yearly mean total sunspot number

Credit: WDC-SILSO, Royal Observatory of Belgium, Brussels. Info link: Yearly mean
total sunspot number (info). Download link: Yearly mean total sunspot number (csv file).

H.2.1 Data description

Yearly mean total sunspot number obtained by taking a simple arithmetic mean of the
daily total sunspot number over all days of each year. (NB: in early years in particular
before 1749, the means are computed on only a fraction of the days in each year because
on many days, no observation is available). A value of −1 indicates that no number is
available (missing value).

H.2.2 Error values

The yearly standard deviation of individual data is derived from the daily values by
the same formula as the monthly means:

σm =

√∑
(Nd · σ2

d)∑
(Nd)
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where σd is the standard deviation for a single day and Nd is the number of observations
for that day. The standard error on the yearly mean values can be computed by: σ/

√
N

where σ is the listed standard deviation and N the total number of observations in the
year. NB: this standard error gives a measure of the precision, i.e. the sensitivity of the
yearly value to different samples of daily values with random errors. The uncertainty on
the mean (absolute accuracy) is only determined on longer time scales, and is thus not
given here for individual yearly values.

H.2.3 File format

Below, we give some details about the csv file containing the dataset about the yearly
mean total sunspot number:

• Filename: SN_y_tot_V2.0.csv

• Format: Comma Separated Values (CSV)

• Contents:

- Column 1: Gregorian calendar year (mid-year date).

- Column 2: Yearly mean total sunspot number.

- Column 3: Yearly mean standard deviation of the input sunspot numbers from
individual stations.

- Column 4: Number of observations used to compute the yearly mean total sunspot
number.

- Column 5: Definitive/provisional marker. ’1’ indicates that the value is definitive.
’0’ indicates that the value is still provisional.
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Solar Minimum Smoothed Maximum Smoothed Average Time Duration Spotless
Cycle (Y-M) minimum (Y-M) maximum spots of Rise (Y-M) days

SSN SSN per day (Y-M)

1 1755-02 14.0 1761-06 144.1 70 06-04 11-04 -
2 1766-06 18.6 1769-09 193.0 99 03-03 09-00 -
3 1775-06 12.0 1778-05 264.2 111 02-11 09-03 -
4 1784-09 15.9 1788-02 235.3 103 03-05 13-07 -
5 1798-04 5.3 1805-02 82.0 38 06-10 12-03 -
6 1810-07 0.0 1816-05 81.2 31 05-10 12-10 -
7 1823-05 0.1 1829-11 119.2 63 06-06 10-06 -
8 1833-11 12.2 1837-03 244.9 112 03-04 09-08 -
9 1843-07 17.6 1848-02 219.9 99 04-07 12-05 -
10 1855-12 6.0 1860-02 186.2 92 04-02 11-03 561
11 1867-03 9.9 1870-08 234.0 89 03-05 11-09 942
12 1878-12 3.7 1883-12 124.4 57 05-00 11-03 872
13 1890-03 8.3 1894-01 146.5 65 03-10 11-10 782
14 1902-01 4.5 1906-02 107.1 54 04-01 11-06 1007
15 1913-07 2.5 1917-08 175.7 73 04-01 10-01 640
16 1923-08 9.3 1928-04 130.2 68 04-08 10-01 514
17 1933-09 5.8 1937-04 198.6 96 03-07 10-05 384
18 1944-02 12.9 1947-05 218.7 109 03-03 10-02 382
19 1954-04 5.1 1958-03 285.0 129 03-11 10-06 337
20 1964-10 14.3 1968-11 156.6 86 04-01 11-05 285
21 1976-03 17.8 1979-12 232.9 111 03-09 10-06 283
22 1986-09 13.5 1989-11 212.5 106 03-02 09-11 257
23 1996-08 11.2 2001-11 180.3 82 05-03 12-04 619
24 2008-12 2.2 2014-04 116.4 49 05-04 11-00 914
25 2019-12 1.8 - - - - - -

Table H.1: Details of solar cycles 1 to 25. Based on the 13-month smoothed monthly
total sunspot number time series. Credit: WDC-SILSO, Royal Observatory of Belgium,
Brussels.
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I Warped GPR (Predictions using the mean value)
Here, we give the figures showing the predictions made by the warped GPR model,

when we consider the mean value as the point estimate, for forecasting horizons 6, 12,
and 32.

(a) Yearly mean total sunspot number predictions using 6-
SA forecasting strategy.

(b) True vs. 6-SA predicted values
on the test set.

(c) Error between true and 6-SA predicted val-
ues on the test set.

(d) Absolute error between true and 6-SA pre-
dicted values on the test set.

Figure I.1: Warped GPR. Predicting the yearly mean total sunspot number using 6-SA
forecasting strategy. We consider the mean value as the point estimates.
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(a) Yearly mean total sunspot number predictions using 12-
SA forecasting strategy.

(b) True vs. 12-SA predicted val-
ues on the test set.

(c) Error between true and 12-SA predicted val-
ues on the test set.

(d) Absolute error between true and 12-SA pre-
dicted values on the test set.

Figure I.2: Warped GPR. Predicting the yearly mean total sunspot number using 12-
SA forecasting strategy. We consider the mean value as the point estimates.
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(a) Yearly mean total sunspot number predictions using 32-
SA forecasting strategy.

(b) True vs. 32-SA predicted val-
ues on the test set.

(c) Error between true and 32-SA predicted val-
ues on the test set.

(d) Absolute error between true and 32-SA pre-
dicted values on the test set.

Figure I.3: Warped GPR. Predicting the yearly mean total sunspot number using 32-
SA forecasting strategy. We consider the mean value as the point estimates.
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