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A B S T R A C T   

Air quality in Europe has been improving over the last decades. Notwithstanding, urban areas are 
still facing exceedances of the Air Quality Directive's limit and target values. In this study, we 
analyzed the effect of two mitigation measures on urban air quality: i) improvement of the 
biomass residential combustion appliances, and ii) electrification of passenger's cars fleet. Five 
European cities (Lisbon and Porto - Portugal, Athens - Greece, Kuopio - Finland, and Treviso - 
Italy) were used as case studies to evaluate the impact of the measures on the fine particle fraction 
(PM2.5) concentrations. To facilitate decision making and the quick test of new measures, the LIFE 
Index-Air tool was developed. In this tool, the air pollutant concentrations are predicted by 
Artificial Neural Networks trained using a set of air quality modelling simulations. The results 
indicate that the replacement of old biomass heating systems by new improved fireplaces can be 
more effective in Treviso. On the other hand, the replacement of gasoline and diesel passenger 
vehicles by electric ones seems to be more effective in reducing PM2.5 concentrations over Lisbon, 
Porto, and Athens. In Kuopio, both mitigation measures have an identical effect.   

1. Introduction 

During the last decade, different air pollutants have been associated with a widespread range of health effects (Cohen et al., 2017; 
GBD, 2020; Landrigan et al., 2018; Manisalidis et al., 2020). Furthermore, there is evidence that air pollution has an impact on 
economic activities, such as tourism (Eusébio et al., 2020), and it could also be linked to depression and suicide (Braithwaite et al., 
2019). Nowadays, air pollution issues attract the media and social attention pushing politicians to act. Despite the many improvements 
verified as a result of effectively implemented measures worldwide, diseases due to air pollution continue causing significant excess 
mortality and loss of life expectancy, especially through cardiovascular diseases (Lelieveld et al., 2020; Newby et al., 2015). In Europe, 
air quality is still poor in some areas, in particular concerning particulate matter (PM) and nitrogen oxides (NOx) in urban areas (EEA, 
2020). PM with an equivalent diameter smaller than 2.5 μm (PM2.5) are of particular concern because they are able to travel deeply 
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into the respiratory tract, reaching the lungs and even into the bloodstream (Shou et al., 2019). Still, a lot of challenges remain to be 
faced and the objective of providing good air quality to all European citizens is not fulfilled. 

According to the last European Environment Agency report (EEA, 2020), air quality improvement can be achieved by acting on the 
following key areas: road transport (expansion of infrastructures for biking; better planning to give sustainable transport services; 
improvement of public transport), residential heating (transition to lower emission fuels; raise public awareness), and industry 
(transition to lower emission fuels; installation of emission control equipment in all facilities). Mitigation and adaptation measures at 
urban scale include, among others, the expansion of district heating or replacement to cleaner fuels, the introduction of low-emission 
zones (LEZ) (Gehrsitz, 2017), the promotion of public transportation and switch to cleaner buses (Olawepo and Chen, 2019), the 
promotion of the bicycle use, lower speed limits and taxes for traffic (EEA, 2020). It should be noted that measures applied at the local 
scale may have different results due to several variables, such as micrometeorology, chemical reaction of the pollutants emitted and 
atmospheric dispersion, topography, among others (Fabregat et al., 2021). 

To help policy makers choose the best air quality improvement measures, scenarios assessment tools are needed. The use of In-
tegrated Assessment Modelling (IAM), which combines air quality, health, social and economic aspects of the decision-making process, 
could strongly contribute to evaluate the efficiency and effectiveness of air quality improvement measures (Relvas and Miranda, 2018; 
Miranda et al., 2016). 

European Member States have been adapting IAM to the national scale aiming to assess country-specific measures (De Angelis et al., 
2021; Viaene et al., 2016). For the application at the urban scale, some IAM approaches have been elaborated, such as the USIAM 
(Mediavilla-Sahagún and ApSimon, 2006), the OTELLO (Comes et al., 2010) and the RIAT+ (Carnevale et al., 2012a; Miranda et al., 
2016). Some of these IAM use non-linear relations based on trained Artificial Neural Networks (ANN) to connect emissions and air 
quality indixes (Carnevale et al., 2012b; Relvas et al., 2017). In recent years, there has been an increasing interest on the use of ANN for 
predicting and forecasting ambient air pollution (Cabaneros et al., 2019; Masood and Ahmad, 2021). ANN have been successfully 
implemented in many studies for the short and long-term forecasting of PM10, PM2.5, NOx and O3 (De Gennaro et al., 2013; Maleki 
et al., 2019; Mao et al., 2017; Park et al., 2018). Non-linear models based on ANN have been favored, since these studies are focused on 
the reduction of the concentration levels of pollutants (in particular PM) which are impacted by non-linear formation mechanisms 
and/or chemical processes taking place in the atmosphere (Miranda et al., 2016). In this scope and in the framework of the project LIFE 
Index-Air (https://www.lifeindexair.net/), a web-based tool was developed as an effort to address the existing gap between ambient 
air quality management and real-life exposure of urban populations and related health risks, to help stakeholders in the selection and 
assessment of air quality improvement measures to be applied in urban areas. The LIFE Index-Air tool includes data from emissions to 
health effects, providing, per reference case and for new emission scenarios: i) information on the spatial distribution of pollutant 
emissions, air quality concentrations and exceedances to EU standards; ii) exposure per population group; iii) and burden of disease. 

The LIFE Index-Air brings progress beyond the state of the art by developing a web-based tool, that does not require the installation 
of any kind of software to be used (e.g. in the case of RIAT+), and by integrating into a single platform a set of modules that allow 
moving from emissions to health effects assessment. It will contribute to further investigate the growing evidence of the role of the 
environment/air pollution as a determinant of human health and to support decision-makers. The main limitation of the tool is that it 

Fig. 1. Map showing the locations of the urban case studies.  
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currently only allows the testing of mitigation measures linked to road traffic, residential combustion and maritime traffic. However, in 
the future, it is possible to expand the set of measures included.The main objectives of this paper are: (i) to present the core meth-
odology used to develop the LIFE Index-Air tool, particularly the scenario building module, which allows the assessment of different air 
quality mitigation strategies; (ii) to test the developed methodology by applying two air quality mitigation measures over five urban 
areas (Lisbon and Porto – Portugal; Athens – Greece; Kuopio – Finland; Treviso - Italy). The paper is structured as follows: Section 2 
describes the methodology used, including emissions estimation, the used chemical transport model and ANN approach. In Section 3, 
two mitigation measures are tested and the main results are presented, and finally, Section 4 is devoted to the conclusions. 

Fig. 2. Spatial distribution of annual averaged concentrations of PM2.5 for Lisbon (Portugal), Porto (Portugal), Athens (Greece), Kuopio (Finland) 
and Treviso (Italy). The 2015 annual averaged values measured by the European air quality monitoring network are represented by small coloured 
circles. Lisbon, Porto and Athens domains cover 50 × 50 cells, Kuopio 25 × 25 cells and Treviso 20 × 20 cells, with 1 × 1 km2 of resolution. 
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2. Materials and methods 

The Index-Air tool, developed in the framework of the LIFE Index-Air project, is based on an integrated exposure-dose-burden of 
disease assessment, both for the current state of air quality (Reference) and for different emission scenarios defined by the user 
(Scenario Building). The focus of this paper, the Scenario Building module of the LIFE Index-Air tool allows to quickly test the impact of 
emission changes (mitigation measure) in relation to a reference air quality scenario. To achieve this goal, the proposed solution is the 
use of ANN previously trained with a set of air quality modelling simulations, in order to assess the impact of emission reduction 
measures on air quality in the five European urban areas. This approach relies on the fact that Chemical Transport Models (CTM) are 
not recommended to be used because they are too time-consuming. . In the current paper, the developed ANN and scenario building 
methodology is described and applied to the five European urban areas of LIFE Index-Air project (Fig. 1): Lisbon and Porto (Portugal), 
Athens (Greece), Kuopio (Finland) and Treviso (Italy). These 5 cities represent different urban characteristics, covering different 
climates, cultures and topographies. 

The selected air quality modelling system is composed by the Weather Research & Forecasting (WRF-ARW, version 3.7.1) (Ska-
marock et al., 2008) and the Comprehensive Air Quality Model with Extensions (CAMx, version 6.40) (ENVIRON, 2015). The WRF- 
ARW is a numerical weather prediction and atmospheric simulation model that provides meteorology to the CAMx model, which is 
an Eulerian chemical transport model suitable to be applied for different spatial scales, ranging from global to urban areas. The system 
was applied with a horizontal resolution of 1 × 1 km2 and hourly temporal resolution, for the year 2015, to reproduce the meteo-
rological patterns and the PM2.5PM2.5 levels in the different case studies. Lisbon, Porto and Athens domains cover 50 *50 cells, Kuopio 
25 *25 cells and Treviso 20 *20 cells, with 1 *1 km2 of resolution. Each domain comprises one or more municipalities. More details 
about the modelling setup can be found in (Ferreira et al., 2020; Korhonen et al., 2021). 

ANN can be considered as computational models that are based on the structure and functions of biological neural networks and 
can reproduce the behavior of complex air quality modelling systems (Taherkhani et al., 2020). To generate these ANN, it was first 
necessary to select the model type, the input shape suitable for the domains under study and then, to identify a set of emission- 
concentration scenarios, to be simulated using WRF-CAMx. The input shape assumed that the air quality (yearly mean PM2.5 con-
centration) values in a given cell also depend on the precursor emissions in distant cells. A second key factor to be considered is the 
dominant wind direction. Based on previous successful applications (Carnevale et al., 2012a; Miranda et al., 2016) a feed-forward 
neural network was selected. Once the ANN have been trained, it was used to provide results for different scenarios. Finally, the 
trained ANN were uploaded in the LIFE Index-Air tool allowing the quick estimation of air pollutant concentration values based on 
modified emissions of particulate matter and precursor gaseous pollutants, for each one of the 5 cities. More details about ANN training 
and validation can be found in section 3.2. 

3. Application and results 

Given the methodological approach described in section 2, this section presents the air quality results obtained for the base case 
scenario, the training and validation of the ANN, and the description and application of the mitigation measures/what-if scenarios. 

3.1. Air quality assessment in the reference situation 

To evaluate the performance of the model, the PM2.5 annual levels simulated by the WRF-CAMx modelling system for the 5 cities 
were compared with available measurements. The purpose was to guarantee the robustness of the data to be used to train and validate 
ANN, and to characterize the PM2.5 air pollution patterns in the 5 cities. 

Fig. 2 shows the annual averages of PM2.5 concentration patterns as estimated by the WRF-CAMx modelling system, for 2015, and 
based on hourly results, and the annual averages of monitored data for air quality stations available within the simulation domains. 
The acquisition efficiency of at least 75% (small circles mentioned as M in Fig. 2). The measured data were obtained from the European 
air quality database – AirBase, which includes air quality monitoring data from all EU Member States. The exact GPS latitude and 
longitude coordinates of each station can be found in Table S1 (Supplementary material). 

The modelling setup shows a good ability to simulate the spatial patterns of PM2.5 over the European urban areas (the error was on 
average 2.4 μg.m− 3). This strengthens the robustness of the model setup and gives the confidence to use the obtained data to train and 
validate ANN. More detail about the WRF-CAMx accuracy for the annual average concentrations of PM2.5 can be found in Fig. S1. The 
differences between the modelled and measured values can be justified by the uncertainties in the atmospheric emissions calculation 
(e.g. the non-inclusion of road dust resuspension) (Hosiokangas et al., 2004), especially in the case of Kuopio.The complex topography 
of the urban domain increases in Athens, it also increases the model uncertainties. . For Porto and Treviso, the performance of the 
model is quite similar. The performance obtained with WRF-CAMx is within the range obtained in previous studies (Coelho et al., 
2021; Ferreira et al., 2020). 

According to the obtained results Athens and Treviso did not comply with the European air quality standard (25 μg.m− 3) for the 
annual PM2.5 levels over an area of 5% and 42% of the simulation domain, respectively, while the remaining cities (Lisbon, Porto and 
Kuopio) did not register any exceedances in 2015. The annual average of PM2.5 concentration values over the whole domain was 24 μg. 
m− 3 for Treviso, 14 μg.m− 3 for Athens, 10 μg.m− 3 for Lisbon, 6 μg.m− 3 for Kuopio and 4 μg.m− 3 for Porto. Maxima annual concen-
trations were estimated for Athens (with a value of 40 μg.m− 3), followed by Treviso, Lisbon, Porto and Kuopio (where the lowest 
maximum value of 7 μg.m− 3 was obtained). 

These results are associated with different PM2.5 emission contributions in the urban areas under study. The European Monitoring 
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and Evaluation Programme (EMEP) emission inventory (https://www.emep.int/) was used in the air quality modelling applications. 
The total PM2.5 emissions values were: 5446, 3850, 9489, 139, and 2218 tons per year for Lisbon, Porto, Athens, Kuopio and Treviso, 
respectively. Fig. 3 shows the PM2.5 emissions share for the 5 cities according to the Standard Nomenclature for Air Pollution (SNAP). 

In Athens, the industrial sector is the main emission source (SNAP3&4; 50.4%) followed by road transport (SNAP 7; 15.1%) and 
solvents use (SNAP6; 9.82%). The highest anthropogenic emissions in Treviso come from residential (SNAP2; 63.2%), road transport 
(SNAP7, 14.1%) and non-road transport sectors (SNAP8; 9.88%). Despite Lisbon values complying with the European air quality 
standard for the annual PM2.5 levels, they were higher than the World Health Organization guideline (10 μg.m− 3) over an area of 37% 
of the simulation domain, with residential (SNAP2; 31.5%) and road transport (SNAP7; 25.0%) as the main contributing activities. In 
the cities of Porto and Kuopio, that had the lowest PM2.5 concentration values, the air pollution levels are mainly affected by residential 
(Porto = 35.1%; Kuopio = 45.1%), road transport (Porto = 21.7%; Kuopio = 45.7%) and industrial sectors (Porto = 24.5%; Kuopio =
6.4%). 

It should be noted that the accuracy of the WRF model was also evaluated through the direct comparison of modelled results against 
measurements. The measured data were acquired at the National Oceanic and Atmospheric Administration (NOAA) database (Rey-
nolds et al., 2010) from the National Centers for Environmental Information and at the national meteorological stations network (when 
available), on an hourly base. This analysis revealed that the most important meteorological variables for the air quality modelling 
(temperature and wind velocity) are well reproduced by the WRF model, which strengthens the robustness of the model setup and 
gives confidence in the obtained air quality modelling results. For the year under study, the modelled results show that in Lisbon, the 
annual mean temperature was around 17 ◦C (Hot-Summer Mediterranean climate according to the Köppen–Geiger climate classifi-
cation system, with short, mild and rainy winters and warm to hot, dry summers), the annual wind speed was of 3.8 m∙s− 1 and blows 
(predominantly) from North. In Porto urban area, the annual mean temperature was 15 ◦C (Warm-Summer Mediterranean climate, 
with mild wet winters and warm dry summers); the wind blows from North/Northwest with an annual magnitude of 4 m∙s− 1. The 
annual mean temperature in Kuopio was around 4.3 ◦C (classified as Subarctic climate), with long and cold winters (with temperatures 
below zero from November until March), and short and relatively mild summers. The annual wind speed for this city was 4.4 m∙s− 1, 
blowing (predominantly) from the South. In Treviso, the annual mean temperature was 13.3 ◦C (Humid subtropical climate). The wind 
direction in Treviso varied throughout the year (without clear prevailing conditions), with an annual magnitude of 3.3 m∙s− 1. The 
annual mean temperature in Athens was 16.5 ◦C (Hot-Summer Mediterranean climate); the magnitude of wind speed experiences 
substantial seasonal variation for the year, blowing predominantly from the North. 

Fig. 3. Emissions share of PM2.5 for Lisbon, Porto, Athens, Kuopio and Treviso urban areas for the following SNAP activities: SNAP1 – energy 
production, SNAP2 – commercial, services and residential combustion, SNAP3&4 – industrial combustion and production processes, SNAP5- 
extraction and distribution of fossil fuels, SNAP6 - solvents use, SNAP7 - road transport, SNAP8 – maritime transport, aviation, and off-road 
transport, SNAP9 - waste treatment and disposal, and SNAP10 – agriculture. 

Table 1. 
List of the emission reduction scenarios.  

Scenarios NOX VOC PM10 PM2.5 SO2 

0 0 0 0 0 0 
1 − 28 − 21 − 29 − 23 − 33 
2 − 56 − 41 − 58 − 46 − 65 
3 − 56 − 21 − 29 − 23 − 33 
4 − 28 − 41 − 29 − 23 − 33 
5 − 28 − 21 − 58 − 46 − 33 
6 − 28 − 21 − 29 − 23 − 65 
7 − 56 − 41 − 29 − 23 − 33 
8 − 56 − 21 − 58 − 46 − 65 
9 − 56 − 21 − 29 − 23 − 65  
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3.2. ANN training and validation 

The WRF-CAMx simulations results were used as datasets for ANN training and validation. The validation cells represent 25% of the 
total available cells and are extracted to guarantee a uniform coverage of the domain. More specifically, a set of 10 emission reduction 
scenarios, combining precursor emissions reductions, were carried out using the WRF-CAMx modelling system and were then used to 
train the ANN (see Table 1). The scenarios include two levels of emissions: low emission reductions and high emission reductions, 
considering the average Maximum Feasible Reduction provided by the GAINS database (https://gains.iiasa.ac.at/). That means that, 
given the technologies currently available, it is not possible to reduce for example more than 56% of the NOx emissions. The low 
emission reductions are obtained as half of high emission reductions levels. The scenarios were compulsorily limited in number due to 
the needed computational time. However previous works (Carnevale et al., 2014; Relvas et al., 2017) had demonstrated that it is 
possible to achieve reliable results with a narrow number of scenarios. 

Fig. 4. Scheme representing, for Lisbon, the 4 areas on which the emissions are considered as input for the ANN, in terms of wind directions.  

Fig. 5. Scheme of the typical feed-forward back-propagation ANN applied in this study.  
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The training is a time-consuming task that implies selecting the model type, architecture, and an input shape adequate to the 
domain under study. The selected emission input considers the total precursor emissions over 4 areas corresponding to four quadrants, 
which are chosen taking into consideration the dominant winds. An influence distance of 4 km means considering emissions of 8 × 8 

Table 2 
ANN best parameters for the different case studies.  

ANN features PM2.5 value 

Lisbon Porto Athens Kuopio Treviso 

Nodes in the input layer 18 
Hidden layer function hyperbolic tangent (tanh) 
Hidden layer nodes 40 60 30 18 40 

Output transfer function linear 
Training function Levenberg–Marquardt algorithm 

Cells of influence (nr) 4 4 4 2 4 
Training set (% of cells) 75 

Validation set (% of cells) 25  

Fig. 6. PM2.5 concentrations for each domain cell (a). Surrogate model validation scatter plot between WRF-CAMx (x-axis) and ANN (y-axis) for 
PM2.5 yearly average concentration (b). 
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km2 around the a given cell, subdivided in 4 quadrants, to determine the PM2.5 concentration of that cell. This pre-processing of the 
emissions is done inside the tool each time the emissions are changed by the user (mitigation measure selection) through a Python code 
pre-processor. Fig. 4 shows the selected areas for the Lisbon case study. 

A feed-forward neural network (Fig. 5) was selected to reproduce the annual mean PM2.5 concentrations resulting from the given 
emission scenarios. 

In this study, the training of the ANN was performed using Levenberg–Marquardt backpropagation algorithm (Sapna et al., 2012; 
Yu and Wilamowski, 2018) over more than 400 epochs, after normalizing all the data between − 1 and 1. 

The ANN used consists of an input layer, one or more intermediate layers (hidden layers) and an output layer, in which a node in 
each layer is connected by a weight (wij) to all the nodes in the next layer. Each node in a hidden layer has a nonlinear activation 
function, usually a sigmoid function. The values of input attributes are fed to the network which will then be weighted, summed up and 
fed to the activation function in each hidden layer node. This procedure is followed to the output node, where the predicted output 
variable is estimated. Then this predicted value (PM2.5 concentrations) is compared against the actual value and the resulting error is 
propagated backwards through the ANN to modify the weights to reduce the error by a small amount. 

The following parameters were tested:  

• the number of neurons in the hidden layer;  
• the activation functions: linear, hyperbolic tangent sigmoid, logsigmoid;  
• the spatial coverage of input values (radius of influence of emissions) 

The validation cells represent 25% of the total available cells and are extracted to guarantee a uniform coverage of the domain. 
Table 2 resumes the best ANN parameters considered for each city. 

Fig. 6 presents the validation results for the PM2.5 neural network model based on a scatter plot that compares the WRF-CAMx 
output results with the ANN outputs. 

Fig. 6 also includes the root-mean-square error (RMSE), which gives essential information about the skill in predicting the 
magnitude of a variable allowing to diagnose the variation in the errors in a set of predicted values, and the coefficient of determination 
(r2), which indicates the strength of the relationship between variables. The high obtained r2 values and the low RMSE highlight the 
good fit between both approaches (CTM and ANN). The best performance was obtained for Treviso because there is only a slight 
variation of the PM2.5 concentrations among grid cells. 

The good performance achieved with the ANN allowed its incorporation and use in the LIFE Index-Air tool, in order to obtain quick 
estimations of air pollutant concentration values for different emission scenarios, for each one of the 5 cities. The Scenario Building 
module is a key feature of the tool, since it allows the quantitative assessment of selected mitigation measures, in support of effective 
air quality management. 

3.3. Mitigation measures and results 

The transport sector (SNAP7) together with the residential combustion (SNAP2) are the two main PM emission sources in all the 
case studies. The exception is Athens, for which the residential combustion is not so relevant (Fig. 3), and where the industrial zone 
located on the west side of the city is the largest source of PM2.5. Thus, it was decided to test two different air quality improvement 
measures that are related to these two relevant emission sectors: the total replacement of conventional residential fireplaces by more 
efficient equipment; and the total replacement of petrol and diesel passenger vehicles by electric ones. 

First, for the residential sector, statistical information regarding biomass-based heating appliances (open fireplace, more efficient 
fireplaces, woodstove, wood burning furnace, salamander stove, boiler, oven, wood burning water heater and furnace) was collected 
for the different case studies/countries as well as the amount of biomass burned annually (Table 3). The new scenario considers the 
total replacement of conventional residential fireplaces (Open fireplaces), Woodstoves, and Salamander stoves by more efficient 
equipment, namely More efficient fireplaces. 

Table 3 
Share of biomass-based heating appliances by type, for each city, for the reference case, and for the scenario considering the total replacement of 
conventional residential fireplaces by more efficient equipment.   

Percentage of distribution (%) New percentage of distribution (%) 

Lisbon Porto Athens Kuopio Treviso Lisbon Porto Athens Kuopio Treviso 

Open Fireplace 33.4 33.4 3.2 7.8 13.7 0.0 0.0 0.0 0.0 0.0 
More Efficient Fireplaces 15.4 15.4 1.8 16.2 13.7 76.6 76.6 44.0 68.0 84.4 

Woodstove 20.0 20.0 8.0 38.0 36.3 0.0 0.0 0.0 0.0 0.0 
Wood burning furnace 11.0 11.0 5.3 11.8 0.0 11.0 11.0 5.3 11.8 0.0 

Salamander Stove 7.8 7.8 31.0 6.0 20.8 0.0 0.0 0.0 0.0 0.0 
Boiler 7.2 7.2 31.0 2.2 3.2 7.2 7.2 31.0 2.2 3.2 
Oven 4.3 4.3 16.0 3.0 7.6 4.3 4.3 16.0 3.0 7.6 

Wood burning water heater 0.6 0.6 1.5 3.2 4.7 0.6 0.6 1.5 3.2 4.7 
Furnace 0.4 0.4 2.2 11.8 0.0 0.4 0.4 2.2 11.8 0.0 

Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0  
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Then, typical emission factors for the different types of residential heating equipment were used to estimate the emissions (bottom- 
up approach). Finally, the share of emission was applied to the EMEP emission inventory (https://www.emep.int/), allowing the 
recalculation of the emissions based on a change in the share of biomass-based heating appliances and/or on the change in the amount 
of biomass burned. 

Regarding road traffic, statistical information about the fleet composition in each case study was collected, namely fleet age and 
type of fuel used Table 4). These data were used to recalculate the emissions using the Transport Emission Model for line sources 
(TREM transport emissions model (Tchepel et al., 2012) (bottom-up approach). Then, the share of emissions was applied to the EMEP 
emission inventory allowing the recalculation of the emissions based on a change in the distribution of the fleet. The new scenario 
considers the replacement of all petrol and diesel passenger vehicles by electric ones. The total number of vehicles considered in each 
city was: 1351444, 854,445, 2,991,572, 59,821 and 140,111 for Lisbon, Porto, Athens, Kuopio and Treviso, respectively. 

Fig. 7 shows PM2.5 emissions obtained for the different cities, for the reference case and for the considered scenarios (SNAP2 – 
residential sector; SNAP7 – transport sector). 

The results in terms of emission reductions show that there are big differences among the urban case studies. For Porto, Kuopio and 
Treviso, a higher PM2.5 reduction is achieved with the residential combustion measure, and for the other urban domains, the elec-
trification of passenger's cars fleet seems to be more effective. These results are in line with the PM2.5 emissions share (Fig. 3). The 
major emission reductions are estimated for Lisbon (927 t/year), followed by Porto (594 t/year) and Athens (402 t/year), being Kuopio 
the area where the reduction is smaller. 

The changes in emissions were used as input to the ANN previously trained for each one of the urban case studies. Figs. 8 and 9 
present the maps of the PM2.5 concentration difference between the reference case and the residential heating and the vehicular traffic 
reduction scenarios, respectively, as provided by the Scenario Builder module of the LIFE Index-Air tool. 

The obtained concentration reduction levels are quite different among cities and scenarios. Lisbon is where the effect of passenger's 
fleet electrification seems to have a higher impact (achieving in some cells more than 5 μg.m− 3 of reduction), followed by Athens (up to 
3 μg.m− 3 of reduction). This was expected because in both capital cities, private passenger vehicles are used as the main means of 
transport. There is, however, a substantial difference between them; while in Lisbon the fleet is mainly diesel-based, in Athens the 
petrol fleet is dominant. This has an impact on the emission reduction achieved (Fig. 7) and in the PM2.5 concentration reductions. 
Even though Porto displayed the second higher reduction in emissions (569 t/year), the effect in PM2.5 concentrations is quite low, up 
to 1 μg.m− 3, which can be explained by the already very low reference PM2.5 concentrations (up to 8 μg.m− 3) (see Fig. 2). The total 
PM2.5 emissions (3850 t/year) in Porto are much lower than the emissions in Lisbon (5446 t/year) and in Athens (9489 t/year), the two 
case studies with a simulation domain size similar the Porto's domain. Size. The same can be mentioned for Kuopio, where the 
maximum PM2.5 annual reduction is close to 1 μg.m− 3. The reduction in the Treviso urban domain is mainly achieved over the 

Table 4 
Share of passenger cars fuel, for the reference case, and the scenario considering the total replacement of petrol and diesel passenger vehicles by 
electric ones.   

Percentage of distribution (%) New percentage of distribution (%) 

Lisbon Porto Athens Kuopio Treviso Lisbon Porto Athens Kuopio Treviso 

Petrol Passenger Cars (%) 37.6 37.6 92.4 74.2 51.4 0.0 0.0 0.0 0.0 0.0 
Diesel Passenger Cars (%) 62.1 62.1 7.2 25.7 48.6 0.0 0.0 0.0 0.0 0.0 

Electric Passenger Cars (%) 0.3 0.3 0.4 0.1 0.0 100.0 100.0 100.0 100.0 100.0 
Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0  
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Fig. 7. Reference emissions and new emissions (t.year− 1) achieved by the application of the residential sector (SNAP2) and the transport sector 
(SNAP7) mitigation measures over Lisbon, Porto, Athens, Kuopio and Treviso. 
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municipality of Treviso, but the effect of fleet electrification seems extremely limited. 
Treviso is where the effect of open fireplaces seems to have a higher impact (achieving in some cells more than 3 μg.m− 3 of 

reduction), followed by Lisbon (up to 2 μg.m− 3 of reduction). In Athens, the contribution of residential eating is already very small (see 
Fig. 3), and for that reason the investment in the replacement of fireplaces would not be highly effective. In the case of Porto and 
Kuopio, the effect on concentrations is also very low. 

In Fig. 10, the concentration reductions (in μg.m− 3) are presented for the Lisbon, Porto, Athens, Kuopio and Treviso municipalities. 

Fig. 8. PM2.5 concentration differences between the reference case and the emission reduction scenario for residential heating, for the cities 
case studies. 
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The assessment of the effect of the scenarios on the city centers, represented by the main municipality of each city (please note that the 
simulation domains can contain one or more municipalities), is especially relevant because these areas are particularly affected by air 
pollution due to urbanization and high population density. 

Fig. 10 shows that there is high variability in the concentration reductions among the different municipalities. This is mainly 
explained by the emission source that is affected by the mitigation measure, meaning that, in some cells, the emission is null or 
practically null and in other cells, the emission is high. This variability, in addition to the meteorological influence, justifies the shown 
differences. 

Fig. 9. PM2.5 concentration differences between the reference case and the emission reduction scenario for vehicular traffic, for the cities 
case studies. 
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It is possible to see a higher impact of the vehicles traffic reduction scenario (S2) in Lisbon, Athens and Porto when the central 
municipality is assessed instead of the entire simulation domain, indicating that the city centre is mostly affected by road traffic on 
annual average. The results also point out that in the case of Lisbon and Athens municipalities the electrification of passenger fleet is 
very effective, with an average reduction of 1.5 μg.m− 3 but achieving reductions higher than 3 μg.m− 3 in the city centres. In the Porto 
municipality, the electrification of the passenger fleet seems to be less effective, with a reduction of only 0.5 μg.m− 3 on average. 
However, the reference PM2.5 concentrations in Porto are already very low compared with Lisbon and Athens. 

4. Conclusions 

Air quality is an increasingly concerning issue and decision-makers need simple and fast tools to support decisions. This paper 
presents the methodology used to create the Scenario Building module of the LIFE Index-Air tool. First, the WRF-CAMx modelling 
system was applied to simulate the reference scenario over five cities / case studies (Lisbon and Porto – Portugal; Athens – Greece; 

Fig. 10. Reduction of PM2.5 concentrations over the main municipality (city centre) for each simulation domain, considering the two emission 
reduction scenarios. The red line represents mean, boxes the 25th and 75th quartiles while the whiskers show the maximum value of 95th percentile 
and minimum value of 5th percentile. Note that the scales are different. S1 concerns the residential heating scenario and S2 the vehicular traffic 
scenario. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Kuopio – Finland; Treviso – Italy). The obtained validation results were in line with the results reported in previous studies with the 
same modelling system, confirming the ability to simulate the PM2.5 concentrations. Air quality simulations indicate that, for the 
simulation year, Athens and Treviso did not comply with the European air quality standards (25 μg.m− 3) for the annual PM2.5 levels 
over 5% and 42% of the simulation domain, respectively, while the remaining cities (Lisbon, Porto and Kuopio) did not show any 
exceedances. The annual average of PM2.5 concentrations over the whole domain was 24, 14, 10, 6, and 4 μg.m− 3 for Treviso, Athens, 
Lisbon, Kuopio, and Porto, respectively. Then a set of emission reduction scenarios were created for each case study and used as input 
for a feed-forward ANN training and validation. Validation results demonstrated the ANN capacity to mimic the behavior of the WRF- 
CAMx modelling system over the case studies. To test the created scenario building module, two mitigation measures were applied: i) 
improvement of the biomass residential combustion appliances; and ii) electrification of passenger's cars fleet. The selection of these 
measures was made based on the PM2.5 main emission sources. Results show that the replacement of old biomass heating systems by 
new improved fireplaces can be more effective in Treviso. On the other hand, the replacement of gasoline and diesel passenger vehicles 
by electric vehicles seems to be more effective in reducing the PM2.5 concentrations over Lisbon, Porto, and Athens. In Kuopio, both 
mitigation measures have a low and equivalent effect. To further enhance the urban air quality, in addition to passenger vehicles 
electrification, the electrification of light-duty vehicles, heavy-duty vehicles and buses is strongly recommended. 

The results show that this approach based on ANN, calibrated using a limited number of air quality modelling system simulations, 
can reproduce competently the concentration values. The main advantage of this approach is that it considers the specificities of each 
domain and requires less computational power and time than a CTM, allowing the application/development of tools and decision 
support systems. Future work will include the application of the LIFE Index-Air tool with its remaining modules (Exposure, Dosimetry 
and Burden of Disease) to estimate the health benefits related to these measures over the five case study cities. The LIFE Index-Air tool 
is not only particularly useful for decision-makers, but it can also be used in schools to raise responsibility and awareness on air quality. 
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