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Abstract 
 

 

 

 

Although current networks protocols can potentially support many data types (text, 

graphics, audio, and video), multimedia computing‟s future is tied to network 

bandwidth and quality-of-service issues. For the foreseeable future, network 

connections will range from low bandwidth (infrared, cellular modems, and Integrated 

Services Digital Network, or ISDN) to high bandwidth (such as gigabit networks). 

Advances in data compression will alleviate bandwidth problems in low-bandwidth 

networks by packing more data into fewer packets, effectively increasing bandwidth. 

Moreover, because network traffic grows ever busier, creating an insatiable demand 

for raw bandwidth, compression techniques are also important for high-bandwidth 

networks. 

 

Nowadays, using contemporary low-cost reprogrammable field-programmable gate 

array (FPGA) technology enables us to implement compressors/decompressors which 

are capable of switching packets at speeds up to 10 Gb/sec. The processing in these 

switches comprises mainly of table lookups. The actual implementation of the 

majority of data compression algorithms consists mainly of table lookups, as well. 

Thus, the implementation complexity of a network compressor/decompressor is very 

similar to that of a network switch/router. As a result, it is claimed that devices that 

can compress network data at speeds up to a few Gb/sec can probably be 

implemented. These chips can be connected to the routers/switches and considerably 

reduce the bandwidth consumed. They can be applied whenever the bandwidth 

needed is more than the bandwidth provided, or whenever the network user is charged 

according to the network bandwidth used. 

 

The purpose of this thesis is to implement the Titan-R, a single-chip IPcomp device 

for multi-gigabit networks, using field-programmable gate array (FPGA) technology. 

This chip compresses streams at speeds of a few Gbps, while introducing very low 

compression ratio. Moreover, the Titan-R operates transparently that is, after 

compression, the transmitted network packets have the same format as the 

unencrypted packets), making it easy to integrate in existing network infrastructures. 

Using a sophisticated compression algorithm, the Titan-R increased the effective 

bandwidth of tested IP networks from 48% to 250%. The Titan-R supports up to 

32,000 different dictionaries, a feature that significantly increases the compression 

gain achieved when this device is connected to real networks. In terms of bandwidth 

supported, the Titan-R architecture is more efficient than existing approaches (see the 

“Related work” chapter) because it‟s the only one that uses a deep pipeline (256 

stages) along with massive parallelism at each pipeline stage, and memory repetition 

for higher memory throughput. 
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1 
 

 

Introduction 
 

 

 

 

This initial chapter provides the motivation for conducting research in high 

performance data compression, summarizes the scientific contribution of the work, 

and describes the structure of this thesis. 

 

 

1.1 Motivation 
 

 

Network data compression has been used since the first congestion problems arose 

and high bandwidth applications were developed. In particular, the shorter 

representations of some data patterns are already an integral part of digital 

communications; everything, from the telephone network to the modems used on the 

PCs, already uses compression to achieve the speeds the customers are accustomed to. 

 

The majority of the existing general network compression schemes have some 

common characteristics. They can compress traffic at speeds of up to 25 Mb/sec using 

a combination of hardware and software, the data after compression and 

decompression is exactly the same as the original one (lossless compression), they use 

a variation of the same basic algorithm and are performed either by a specific piece of 

software or by a very simple hardware device. The majority of these schemes are also 

applied to data departing to/arriving from the network gateway, and to either circuit 

networks or networks that carry packets of a few hundred bytes length. They are also 

very effective when applied to text or binary data, but cannot compress real-time data 

like video and audio, since these are always compressed at the source by the 

application itself. Even though both the current state-of-the-art and the next 

generation networks will carry all kinds of data, the text and binary files will always 

comprise a large part of the overall traffic. 

 

Nowadays, contemporary low-cost reprogrammable field-programmable gate array 

(FPGA) technology enables us to implement compressors/decompressors which are 

capable of transmitting packets at speeds up to 10 Gb/sec. The processing in these 

switches comprises mainly of table lookups. The actual implementation of the 

majority of data compression algorithms consists mainly of table lookups, as well. 

Thus, the implementation complexity of a network compressor/decompressor is very 

similar to that of a network switch/router. As a result, it is claimed that devices that 

can compress network data at speeds up to a few Gb/sec can probably be 

implemented. These chips can be connected to the routers/switches and considerably 
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reduce the bandwidth consumed. They can be applied whenever the bandwidth 

needed is more than the bandwidth provided, or whenever the network user is charged 

according to the network bandwidth used. The motivation of this work was based on 

the fact that compression – as mentioned earlier – has been proved very effective 

when applied to real network data and numerous devices that compress the data sent 

over low-bandwidth links have been designed and are widely used. Nowadays, 

congestion problems in high speed networks have started to arise and they will 

probably be enhanced in the future. Since compression is a way of reducing the 

bandwidth used, it would ease the stress on these congested networks. But in order for 

this compression to be effective, a mechanism, that would decide the right number of 

connections that a network using compression can carry, should also be deployed. 

This mechanism should be aware of the fact that the network uses a certain 

compression scheme, so as to increase the number of connections admitted 

accordingly. 

 

 

1.2 Scientific Contribution 
 

 

Though current network can potentially support many different types of data (i.e. text, 

images, audio, video and graphics), the future of multimedia computing is tied to 

issues of network bandwidth and Quality of Service (QoS). The outlook is that 

potential users of networks will, for the foreseeable future, be diverse: from users with 

access to low-bandwidth connections (i.e. infrared, cellular modems, ISDN
(1)

), to 

users with access to very high-bandwidth connections (e.g. Gigabit networks). 

Advances in data compression will alleviate bandwidth problems in low-bandwidth 

networks by effectively increasing bandwidth. Moreover, based on technology‟s 

experience with the insatiable demand for raw computing speed (since applications 

seem to grow at an astounding rate), compression techniques would be important for 

high-bandwidth networks, as well. 

 

In particular, in the case of high bandwidth networks, the application of Moore‟s law 

to the network integrated circuits means systems on a chip with the ability to process 

tens of millions of packets/second, at even the highest wire speed, would be possible. 

Along with Dense Wavelength Division Multiplexing (DWDM), which currently 

doubles the amount of fiber capacity available every year, this implies that all the 

kinds of network data will eventually go to packets, including backbone trunks, 

backbone switches, local voice switches, local data switches, business access lines, 

residential access lines, broadcast TV and even consumer electronics. So, even though 

“the network bandwidth is becoming cheaper and more readily available, we seem to 

find new and innovative ways to chew it up”. As a result, compression desirable for 

these next generation high bandwidth networks, as well. 

 

The compression algorithms generally operate by identifying repeating patterns in 

data and then replacing repetitive sequences with a token or reference to an earlier 

distance of the same sequence. From a simple perspective, compression is designed to 

reduce data to its most basic essence for efficient transmission and raise channel 

entropy. A major characteristic of the state-of-the-art networks is that they carry data 

from applications that have widely varying traffic characteristics –from real time 
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video clips to batch backup files. Thus, in order for a network to accommodate these 

applications, it must provide the appropriate Quality of Service (QoS) to each one of 

them. The most common approach today to delivering QoS is simply to provide 

additional bandwidth, or, in other words, to increase the useful bandwidth. Therefore, 

a sophisticated network resource allocation software which ensures that given QoS 

criteria are satisfied (even when the network works at or near capacity) will ease the 

strain on a modern network. 

 

The thesis of this work is that a suitable compression framework can make certain 

types of packet networks more effective. 

 

This framework comprises of: 

 Hardware devices, software applications or a combination of the two to 

perform the actual compression. These devices/applications compress the 

traffic in a transparent way so that the intermediate routing devices can still be 

regular ones. This can be done in two ways: Either (a) with a 

compression/decompression device at each end of the link which would make 

the data appearing on the attached routing devices to be the original one or (b) 

the data would be compressed and then carried over ordinary packets which 

are routed/switched by regular devices all the way to the decompression 

device. These devices/applications are also capable of compressing the 

network data in an efficient way and at the speed of the network links. 

 

 Interface modules for configuring these devices/applications according to the 

network specific characteristics. These are powerful, yet user friendly and fast 

for the network manager to configure the compression scheme, based on the 

rapidly changing features of the network data. 

 

 A network admission control strategy for deciding how the network resources 

are shared between the network users. If this strategy is effective, the network 

can carry more data while maintaining the Quality of Service (QoS) promised 

to the users. If this control scheme does not take into account the reduction in 

the network data caused by the compression devices, the increase in the 

amount of traffic carried over the network will be minimal. 

 

This thesis describes a compression framework argued to considerably increase the 

useful bandwidth and the number of connections admitted to a high-speed packet 

network. Its effectiveness is evaluated by implementation and by detailed simulation 

using data taken from real networks. In addition, this dissertation presents a low-

complexity hardware compression device that can be used whenever the cost of the 

compression is a critical issue. 

 

 
(1) ISDN: Integrated Services Digital Network 
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1.3 Structure of the Thesis 
 

 

The remainder of this thesis is organized as follows: 

 Chapter 2 presents the related work in lossless hardware-based data 

compression and, more especially, analyzes the X-MatchPRO 

compression/decompression architecture. 

 Chapter 3 describes the main architecture of the system which leads us to high 

performance data compression. 

 Chapter 4 points out its hardware implementation using low-cost 

reprogrammable field-programmable gate array (FPGA). 

 Finally, chapter 5 provides results derived from the measurements, 

conclusions and future work on data compression. 
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2 
 

 

Related work 
 

 

 

 

This chapter presents the past work in high performance data compression. 

Especially, it presents the X-MatchPRO high-speed lossless
(2)

 data compression 

algorithm and its hardware implementation, which enables data independent 

throughputs of 1.6 Gbit/s compression and decompression using contemporary low-

cost reprogrammable field-programmable gate array technology. A full-duplex 

implementation is presented that allows a combined compression and decompression 

performance of 3.2 Gbit/s. The features of the compression algorithm and architecture 

that have enabled the throughputs are described in detail. X-MatchPRO is a fully 

synchronous design proven in silicon specially targeted to improve the performance 

of Gbit/s storage and communication applications. 

 

 
(2) The term „lossless‟ means that the original data can be exactly recreated after a decompression operation, and should 

not be confused with audio and video compression systems (such as JPEG and MPEG) which are lossy and hence 

only recreate an approximation of the original data. 

 

 

2.1 Introduction 
 

 

Lossless data compression, where the original data is reconstructed exactly after 

decompression, has been accepted as a tool that can bring important benefits to a 

computing system. The most obvious benefit of data compression is a reduction in the 

volume of data which must be stored. This is important where the storage media itself 

is costly (such as memory) or other parameters, such as power consumption, weight 

or physical volume, are critical to product feasibility. Using data compression reduces 

the total storage requirement, thus effecting a cost saving. 

There are also two other positive effects that data compression brings. The first of 

these is a reduction in the bandwidth required to transmit a given amount of data. Less 

data must be transmitted in compressed form, and hence less band width is required. 

This can affect a cost saving in cabling operations, where a lower bandwidth link will 

be sufficient to meet demand. The second effect is that given a fixed bandwidth, the 

total time required to transmit compressed data is less than for uncompressed one. 

This can lead to a performance benefit, as the bandwidth of a link appears greater 

when transmitting compressed data and hence more data can be transmitted in a given 

amount of time. 

Data compression applications have been increasing over the past years according to a 

combination of pressure for more bandwidth allied and to the need to improve storage 



16 

 

capacity. Lossless data compression has been successfully applied to storage systems 

(tapes, hard disk drives, solid state storage, file servers) and communication networks 

(LAN, WAN, wireless). One of the common factors for successful integration of 

lossless data compression in these applications is a high throughput so the 

compression/decompression processes do not slow the original system down. High 

performance lossless data compression has been researched as the means to achieve 

the high throughput target. 

Data compression is not being used to its full advantage in systems that operate at 

bandwidths of over 1 Gbit/s due to performance limitations encountered in the data 

compression hardware. This chapter describes the X-MatchPRO method and 

architecture that uses a CAM-based dictionary where multiple symbols are processed 

per cycle to deliver the required performance so as to avoid becoming a bottleneck in 

a system operating at a gigabit per second bandwidth. 

The remainder of this chapter is organized as follows: 

 Sector 2.2 presents a review of the area of lossless hardware-based data 

compression. 

 Sector 2.3 describes the characteristics of the X-MatchPRO algorithm. 

 Sector 2.4 analyzes the system compression/decompression architecture. 

 Finally, sector 2.5 points out the hardware implementation. 

 

 

2.2 Background 
 

 

A useful classification of lossless data compression systems identifies two main 

components: a model and a coder. The purpose of the model is to identify where the 

redundancy is located in the input data and signal repetitive data sequences to the 

coder. The coder uses the information obtained from the model to reduce the input 

data for shorter codewords and to produce a compressed output. Compression is 

obtained whenever the ratio of output to input bits is less than 1. Although some 

coding methods map better than others depending on the chosen model, many 

different combinations between model and coder are possible. 

Modeling can be done mainly in two different ways: statistical or dictionary. Both 

methods have found their way to hardware and software implementations of lossless 

data compression systems. 

 

Statistical Methods: Statistical methods show a cleaner separation between model and 

coder than dictionary methods. Statistical modeling is based on assigning values to 

events depending on their probability. The higher the value, the higher the probability. 

The accuracy with which this frequency distribution reflects reality determines the 

efficiency of the model. The best lossless compression figures reported in the 

literature correspond to software based statistical methods, like Prediction by Partial 

Matching (PPM) and Dynamic Markov Compression (DMC). These methods are 

based on variable order Markov modeling, where predictions are done based on the 

symbols that precede the current symbol. Statistical methods in hardware are 

restricted to simple higher order modeling using binary alphabets that limits speed, or 

simple multisymbol alphabets using zeroth-order models that limits compression. 

Binary alphabets limit speed because only a few bits (typically a single bit) are 

processed in each cycle while zeroth-order models limit compression because they 
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can only provide an inexact representation of the statistical properties of the data 

source. Coding is typically performed with methods like Huffman and arithmetic 

coding, the latter being preferred because its efficiency can be made arbitrarily close 

to the entropy or information content of the model by controlling its precision and 

therefore is optimal for any model. A few statistical data compressors have been 

reported in the literature. A zeroth-order model associated with an arithmetic coding 

is described by Boo et al. for coding of multilevel images. The probabilities in the 

model are stored in cumulative format using reference probabilities to simplify the 

update process. The arithmetic coding process has been simplified by truncating the 

multiplier. An implementation of a parallel binary arithmetic coder is done by Jiang 

using an IBM Q-coder as the building block. The Q-coder is a seventh-order binary 

Markov model associated with a corresponding binary arithmetic coder. The parallel 

implementation processes 4 bits in parallel and since there are only 16 possible input 

combinations. Parallel decoding is also possible. The same technique is used to obtain 

a parallel implementation of a multi-alphabet arithmetic coder associated with a byte-

based zeroth-order model. The system processes 8 B at a time, but parallel decoding is 

in this case unfeasible because the number of possible input combinations is 256
8
, 

hence, the complexity of the hardware is too high. The work presented by the same 

author in “Novel design of arithmetic coding for data compression” is the 

implementation of a byte-based zeroth-order model associated with a multi-alphabet 

arithmetic coder. Kuang et al. present another high-order binary model that describes 

a tenth-order Markov model with associated binary arithmetic coder. In this case, such 

the IBM Q-coder, the high-order binary Markov modeling uses fixed-order models 

and not variable-order ones such as PPM, because it is always possible to predict both 

symbols in a binary alphabet. The chip has been implemented in a 0.8 um and clocks 

at 25 MHz. The compression ratio is in the order of 0.5, while speed is data dependent 

but typically around 3 Mbit/s. Hsieh and Wei describe a byte-based zeroth-order 

model associated to a multi-alphabet arithmetic coder for video compression. A 

similar technique to “A VLSI architecture for arithmetic coding of multilevel images” 

is used to store the frequency model using some frequency counts as base and others 

as offsets from the base. This technique simplifies model adaptation. The chip 

described by Mukherjee et al. does not use arithmetic coding but three-based code, 

but others exist. The code is static and it does not adapt with changes in the incoming 

data source. Since it is not hardwired but mapped to a memory device, it can be 

changed to suit the application. A compression ratio of 0.5 processing 8-bit symbols 

results in each symbol to be processed in approximately two memory cycles. They 

report a compression performance of 95.2 Mb/s for compression and 60.6 Mb/s for 

decompression in a 2-um SCMOS technology with a clocking frequency of 83.3 

MHz. An adaptive Huffman code implementation in hardware is presented in “Design 

and hardware architectures for dynamic Huffman coding”. This design is based on 

content addressable memory (CAM) modules to speed up the tree adaptation process 

and achieves a throughput of almost 1 bit/cycle. The model is again a zeroth-order 

one but no details are available for the hardware implementation. 

 

Dictionary methods: Dictionary methods try to replace a symbol or group of symbols 

by a dictionary location code. The modeling stage is given extra importance while 

coding is simplified. Some dictionary-based techniques use simple uniform binary 

codes to process the information supplied by the modeler. Both software and 

hardware based dictionary models are very popular, achieving good throughput and 

competitive compression. Utilities like Pkzip and ARJ in software, or hardware 
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algorithms like ALDC developed by IBM, by STAC/Hifn, illustrate this situation. 

These four examples are Lempel-Ziv-1 (LZ1) derivatives. The ALDC chip is 

implemented in a 0.8-um CMOS technology and clocks at 40 MHz to obtain a 

throughput of 320 Mb/s. The AHA implementation achieves 320 Mb/s at a 40 MHz 

operation and it is implemented in a 0.5-um CMOS technology. The STAC/Hifn 

device has been implemented in a 0.35-um CMOS technology. It clocks at 80 MHz 

with a throughput of 640 Mb/s. The Hifn device is also a full-duplex architecture 

meaning that it can compress and decompress simultaneously. Both of these chips use 

CAM memory to store the dictionary and enable parallel searching and adaptation. 

Surk presents a processing element with (PE)-based architecture for the LZ1 

algorithm. Each PE compares the incoming input symbol with the symbol it stores in 

one cycle and shifts the symbol to its neighbor. The data input rate is constant. Post-

layout simulation indicates a performance of 700 Mb/s in a 0.5-um CMOS 

technology. The basic symbol is 7-bits wide so the compressor is only suitable for the 

compression of ASCII coded model. Jung and Burleson describe another LZ1 

implementation for the optimization of wireless local area networks. The architecture 

includes multichannel support being able to switch between different dictionaries 

depending on the communication channel being compressed. This improves 

compression since each channel has its own dictionary but there is an overhead 

associated with the multiplexing. A throughput of 50 Mb/s is reported based on 1.2-

um CMOS technology using a clock frequency of 100 MHz. Nusinov and Pasco also 

present an LZ1 derivative for multichannel compression. The different dictionaries 

are stored in RAM memory externally and the appropriate one is uploaded in internal 

CAM. The chip clocks at 20 MHz and has a throughput of 80 Mb/s. 

Lempel-Liv-2 (LZ2) algorithms have not become as widely used as LZ1 ones. The 

UNIX utility „compress‟ uses LZ2 and the data compression Lempel-Ziv (DCLZ) 

family of compressors initially invented by Hewlett-Packard and currently being 

developed by AHA, also use LZ2 derivatives. The DCLZ family of devices clock at 

40 MHz for a throughput of 160 Mb/s based on a 0.5-um CMOS technology. Bunton 

and Borriello present another LZ2 implementation that improves the DCLZ. This new 

algorithm uses a similar dictionary structure to DCLZ but it offers a more advanced 

dictionary maintenance mechanism where a tag is attached to each dictionary location 

to identify which node should be eliminated once the dictionary becomes full. The 

design has been implemented in a 2-um CMOS technology with a throughput of 160 

Mb/s. 

 

Other work that cannot be classified in the range of statistical or dictionary coding 

includes the genetic algorithms (GA) developed by the DCP Research Corp. in the 

DCP816 chip. This chip is implemented in a 1-um CMOS technology and has a 

throughput of 1.68 Mb/s clocking at 40 MHz. It supports multiple channels of 

compression/decompression and uses 512 kB of external RAM per channel. 

Sakanashi et al. present a device for printer image compression also based on a 

genetic algorithm that is able to select the best group of pixels to be used as context to 

predict the next input pixel depending on the characteristics of the image being 

compressed. The compressing method is lossless. It is associated to reconfigurable 

hardware such as a field programmable gate array (FPGA) plus a standard IBM QM-

coder, a derivative from the Q-coder, to perform the compression itself. The X-

MatchPRO family of devices belongs to the category of dictionary-based compressors 

but they are not LZ derivatives. X-MatchPRO originates from previous research and 

advances in FPGA technology. The flexibility provided by using this technology is of 
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great interest since the chip can be adapted to the requirements of a particular 

application easily. The objective is to use programmable hardware able to obtain good 

compression ratios and still maintain a high throughput so that the 

compression/decompression processes do not slow the original system down. 

 

 

2.3 Algorithm Description 
 

 

The X-MatchPRO algorithm uses a fixed-width dictionary of previously seen data and 

attempts to match or partially match the current data element with an entry in the 

dictionary. Each entry is 4 B (tuple) wide and several types of matches are possible 

where all or some of the bytes at different positions within the tuple match. Those 

bytes that do not match are transmitted as literals. This partial match concept gives the 

name to the procedure –the X referring to “don‟t care”. At least 2 B have to match and 

when no valid match is generated a miss is codified adding a single bit to the four-

byte tuple. The dictionary is maintained using a move to front (MTF) strategy 

whereby a new tuple is placed at the front of the dictionary while the rest move down 

one position. When the dictionary becomes full the tuple placed in the last position is 

discarded leaving space for a new one. X-MatchPRO reserves one location in the 

dictionary to code internal runs of full matches at location zero. Since the MTF 

strategy forces anything that repeats to be stored at location zero (top of dictionary), 

this run-length-internal (RLI) technique is used to efficiently code any 32-bit 

repeating pattern. 

 

The coding function for a match is required to code several fields as follows. 

A zero followed by: 

If normal code: 

1. Match location: It uses the binary code associated to the matching location. 

2. Match type: That indicates which bytes of the incoming tuple have matched. 

This is codified using a static Huffman code based on the statistics obtained 

through extensive simulation. 

3. Any extra characters that did not match transmitted in literal form. 

If RLI code: 

1. RLI location: The last address in the dictionary is reserved to code RLI events. 

2. Run length: 8 bits are used to indicate how many 32-bit repeating patterns 

have been observed. The maximum run length that it is possible to process in a 

single code is therefore 225. 

 

The coding function for a miss has two fields as follows: 

A one followed by: 

1. The 4 B in literal form. 

 

A data tuple (4 B) is added to the front of the dictionary while the rest move one 

position down if a full match has not occurred. The MTF technique is only applied 

when dealing with full matches. In this case, the tuples from the first location until the 

location previous to the matching tuple move down one location, while the matching 

tuple is placed at the front of the dictionary. 
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Figure 2.1. X-MatchPRO example 

 

The algorithm is illustrated with an example in Figure 2.1. The example is based on a 

small dictionary of only four locations, one of which is reserved to code RLI events. 

Each dictionary location has a different address. The adaptation vector column defines 

how the dictionary adapts for the next cycle so that a 1 means load data from north 

neighboring location, while a 0 means keep current data. Each cycle in the figure 

corresponds to a different clock cycle. The search data in cycle 1 of Figure 2.1 

generates a full match at location 1 and the corresponding output is generated together 

with a new adaptation vector that will shift the dictionary for cycle 2. The search data 

in cycle 2 cannot be found in the dictionary so a miss is generated with the four 

missing bytes being added to the output in literal form. The cycle 3 search generates a 

partial match where the two first bytes of the search tuple are found in location two. 

The match type 3 signals this matching condition and the two missing bytes are added 

to the output in literal form. Cycle 4 generates a new full match this time at location 2. 

An RLI coding event is inactive in cycles 5, 6 and 7. The RLI output is generated at 

cycle 8 when the run stops with a length of 3. The RLI counter only increments when 

the search data is present at location 0. The code generated at cycle 5 is removed from 

the output when the RLI counter exceeds 1 because cycle 5 would be coded as part of 

the run length. This output code would have been needed if the RLI counter had 

remained with a count of 1 indicating a single full match at location 0 and not a valid 

run length. 

 

 

2.4 System Architecture 
 

 

X-MatchPRO uses a simple coprocessor style interface to communicate with the rest 

of the system. Compression and decompression commands are issued through a 

common 16-bit control data port. A 3-bit address is used to access the internal 
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registers that store the commands plus information related to compressed and 

uncompressed block sizes for reading or writing. A total of six registers form the 

register bank. Three registers are used to control the compression channel and the 

other three for the decompression one. The first bit. In the address line indicates if the 

read/write operation accesses compression or decompression registers. The chip is 

designed to compress any block size ranging from 8 B to 32 kB. A decompression 

operation can be requested in the middle of a compression operation and vice versa. 

 

2.4.1 Compression Architecture 
 

The compression architecture is based around a block of CAM to realize the 

dictionary. This is necessary since the search operation must be done in parallel in all 

the entries in the dictionary to allow high- and data-independent throughput. The 

length of the CAM varies with three possible values of 16, 32, or 64 tuples trading 

complexity for compression. Dictionary size is variable so as to adapt algorithm 

complexity to the resources available in the selected FPGA. The number of tuples 

present in the dictionary has an important effect on compression. In principle, the 

larger the dictionary the higher the probability of having a match and improving 

compression. On the other hand, a bigger dictionary uses more bits to code its 

locations degrading compression when processing small data blocks that only use a 

fraction of the dictionary length available. The width of the CAM is fixed with 4 

B/word and its columns can be configured as selectable shift-registers to implement 

the move to front adaptation policy. 

Figure 2.2 shows the compression architecture. There are three major components in 

the compression architecture corresponding to compression model, coder and packer. 

It also shows the location of the pipeline registers used to reduce the clock period of 

the design. There are a total of five levels of registers from input to output and the 

design supports incremental transmission, which means that transmission of 

compressed data present in the output buffers can start before the whole data block is 

compressed. These two features help to maintain the latency of the design to a 

minimum. 

 
Figure 2.2. Compression architecture 
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Figure 2.3. CAM-Based dictionary architecture 

 

1. The Compression Model Comprises: 

a. Dictionary: CAM-based dictionary with 16, 32 or 64 tuples. The n-

tuple dictionary is formed by a total of n x 32 CAM cells. Each cell 

stores one bit of a data tuple and it can maintain its current data, or 

load the data present in the dictionary using one XOR gate to do the 

comparison of each input bit plus (log2(dictionary width)) 2-input 

AND gates tree to obtain a single comparison bit per dictionary 

position. The delay of the search operation, although in principle is 

independent of dictionary length, in practice the high fanouts and long 

wires of large dictionaries degrade its speed considerably. An 

adaptation vector named „move‟ in Figure 2.3 and whose length equals 

the dictionary length defines which cells keep its current data and 

which cells load data from its north-neighboring cell. 

b. Move generation logic: The adaptation vector „move‟ is generated by 

the movement generation logic using the results of the search operation 

present in the „match‟ vector of Figure 2.3. The movement generation 

logic function is to propagate up a match position so all the dictionary 

cells located over the match position and the match position itself load 

the data of their north neighboring cells, while all the dictionary cells 

located down the match position keep the current data. New data is 

always inserted at the top of the dictionary so when a data element is 

found in the dictionary it is promoted from its current position to the 

top of the dictionary in a single cycle. The propagation delay of the 

movement generation logic is O(log2(dictionary length)) 2-input OR 

gates. Data flows toward the bottom of the dictionary as it grows older. 

The oldest data element is always located at the bottom of the 

dictionary and this is the one evicted from the list when room is 

required for a data element new to a full dictionary. 

c. Out of Date Adaptation (ODA) logic: ODA logic forces the dictionary 

to adapt with previous match information and breaks the critical path 

in compression improving speed. In principle, the adaptation vector 

„move‟ must be generated using the results of the current search 

operation available in the „match‟ vector before the next cycle can 
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start. This search and adaptation operation forms a critical feedback 

loop specially with large dictionaries because it depends on dictionary 

size with O(1 + log2(dictionary width + log2(dictionary length))) levels 

of logic. The search operation becomes critical since the fanout of the 

search register is directly proportional to dictionary length. It is not 

possible to add a pipeline register in the feedback loop without 

affecting algorithm functionality so to further increase the speed of the 

circuit the algorithm is modified introducing the ODA mechanism. 

ODA implies that adaptation at time t + 2 takes place using the patch 

results generated by the previously process data at time t and not the 

one at time t + 1. This technique breaks the fundamental feedback loop 

by adding a register between the search and adaptation circuitry. The 

danger is that dictionary efficiency could be lost if the ODA technique 

duplicates the same data in different positions in the dictionary. Prior 

to adding a register between the search and adaptation operations, the 

adaptation vector at time t provides information to reorder the 

dictionary at time t + 1 and makes sure that data words are unique in 

the dictionary. In ODA the adaptation vector at time t is not effective 

until time t + 2 so adaptation at time t + 1 could insert a data element at 

the top of the dictionary that already exists in some other dictionary 

location. After a few cycles the same data could be stored in multiple 

dictionary positions and dictionary efficiency would be lost degrading 

compression. The way to avoid this is by forcing the current adaptation 

vector to adapt not only the dictionary as before but also the next 

adaptation vector.  

 

 
Figure 2.4. Out of date adaptation (ODA) example 
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Figure 2.5. Adaptation logic architecture 

 

Figure 2.4 illustrates this process using a small dictionary of only four 

positions in length and 4 B (tuple) in width. Every cycle of Figure 2.4 

corresponds to a different cycle. The multiple full-match events in 

cycles 2 and 5 show how the search data could be found 

simultaneously at position 0 and at position higher than zero, but in 

this case the match at position 0 is selected as valid. The next 

adaptation vector depicted at the right of the dictionary depends 

exclusively on this match information. Figure 2.4 shows how ODA 

adapts the dictionary at time t + 2 using a modified adaptation vector  

originally generated at time t and how data duplication is restricted to 

position 0 maintaining dictionary efficiency. For example, the current 

adaptation vector depicted at the left of the dictionary for cycle 3 is 

generated shifting down the next adaptation vector of cycle 2, as 

indicated by the current adaptation vector of cycle 2. The current 

adaptation vector at cycle 3 adapts the dictionary of cycle 4. By using 

this simple technique, the effect of ODA in dictionary efficiency is 

negligible because in the worst case only one dictionary position 

contains repeated information and in the best case all the dictionary 

positions contain different data. The logic cost of ODA is very small 

since the basic ODA cell only contains a flip-flop and a multiplexor. 

Figure 2.5 shows the ODA logic plus the movement generation logic 

for a dictionary of four positions. 
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d. Priority logic: This logic assigns a different priority to each of the 

possible matches. A full match has the highest priority while partial 

matches are assigned priorities according to the number of matching 

bytes. The higher the number, the higher the priority. 

e. Best match decision logic: Logic that selects one of the matches as the 

best for compression using the priority information. 

 

2. The Coder Comprises of: 

f. Main coder: Main X-MatchPRO coder whose function is as follows: 

when a match is detected, it assigns a uniform binary code of size 

log2(dictionary size) to the match location preceded by a single bit set 

to 0, a static Huffman code to the match type and concatenates any 

necessary bytes that were not found part of a match in literal form. 

There are 11 possible different match type combinations of 2, 3 or 4 B 

matching in the tuple. The Huffman tree, obtained after extensive 

simulation, has only different code lengths 2, 3, 4 and 5 bits. The full 

match is the most probable match type and its Huffman code is only 2-

bits long. Matches of three nonconsecutive bytes are the least probable 

and they are assigned 5-bit long Huffman codes. If, instead of a match, 

a miss is detected, the first single bit is set to 1 and the 4 B in literal 

form follow. 

g. RLI coder: The RLI coder detects the existence of multiple full 

matches at location zero, using a counter. If the counter exceeds the 

count of 1, then a RLI event becomes active, the pipeline is empty 

from the previous code and the output of the chip is frozen while the 

run length is taking place. A maximum of 255 full matches at location 

0 can be coded in a single RLI codeword. The code corresponding to 

the last location in the dictionary is reserved to signal RLI events. 

 

3. The Packer Comprises of: 

h. Bit assembly logic: Logic that assembles the variable-length 

codewords produced by the coder into 64-bit fixed length codes which 

are then output to the width adaptation logic. 

i. Width adaptation logic: This logic reads in 64-bit compressed words 

from the bit assemply logic and writes out 32-bit compressed words to 

the compressed output bus. It performs a buffering function smoothing 

the data flow out of the chip to the compressed port and it also 

transforms the data width from 64-bit to a more manageable 32-bit. It 

contains a total of 2 kB of fully synchronous dual-port RAM organized 

in two blocks of 256 x 32 bits to buffer compressed data before it is 

output to the compressed data out bus. 

 

2.4.2 Decompression Architecture 
 

Figure 2.6 shows the decompressor architecture. The decompressor channel is also 

formed by three major components: the decompression model, decoder and unpacker.  

The number of registers in Figure 2.6 from input to output is again five, so the latency 

of the compressor and decompressor channels is comparable. The design supports 

incremental reception so decompression of the compress block can start before the 

whole data block has been received. 
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Figure 2.6. Decompression architecture 

 

1. The Decompression Model Comprises of: 

j. Dictionary: Fully synchronous RAM-based dictionary that stores the 

history data during a decompression operation. The contents of the 

RAM dictionary during decompression must be the same as the 

contents of the CAM dictionary during compression in each cycle. 

Adaptation must take place in exactly the same way to enable correct 

decompression of the compressed block. The initialization of the 

compression CAM sets all words to zero. This means that a possible 

input word formed by zeros will generate multiple full matches in 

different locations. The algorithm simply selects the full match closest 

to the top. This operational mode, in effect, initializes the dictionary to 

a state where all the words with location address higher than zero are 

declared invalid without the need for extra logic. The reason is that 

location x – 1 is different from 0 because locations closer to the top 

have higher priority generating matches. The MTF adaptation 

mechanism shifts down the dictionary when full matches are not 

detected and, therefore, ensures that the last word from this initial state 

to be deleted from the dictionary is always the word located at location 

0 at time 0. This operational mode in compression enables the 

decompression RAM dictionary to have only location 0 loaded with 

value 0 during the initialization phase because references to RAM 

locations higher than zero are not possible before their contents are 

updated. This technique avoids having a long overhead equal to 

dictionary size cycles to initialize each position in the RAM to a 

predefined value before each decompression operation. The read and 

write addresses are also monitored for possible collisions. If both 

addresses are the same, the algorithm needs to read the data that is 

going to be written in that common address. This data is not present in 

the memory yet, but it is present in the RAM data in bus. The RAM 

data is written in the memory normally but it is also latched 

temporarily in a register. Multiplexing logic selects the output coming 

from this register instead of the output coming from the memory when 
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the same address is being read and written. The read address is also 

modified to an unused address to make it different from the write one 

and avoid corrupting the RAM contents. 

k. Pointer array: The pointer array logic performs an indirection function 

over the read and write addresses that accessed the RAM dictionary. It 

models the MTF maintenance policy of the CAM dictionary moving 

pointers instead of data. The pointer array enables mapping the CAM 

dictionary to RAM for decompression. Since the pointer array is much 

smaller than the CAM dictionary the savings in complexity allow 

having the full-duplex architecture in a single device. This is true 

because the basic pointer word width is 4, 5 or 6 bits depending on the 

length of the dictionary. On the other hand, the basic data word width 

is 32 bit. Each position in the pointer array is reset to a value the as its 

physical location in the array before each decompression operation. 

l. Move generation logic: This logic generates the adaptation vector 

depending on the match type and match location. The adaptation 

vector moves the CAM dictionary in compression and the pointer array 

in decompression. 

m. ODA logic: This component forces the pointer array to adapt with 

previous match information. The ODA logic in decompression is used 

to replicate the adaptation process in the compression dictionary. They 

have exactly the same functionality so both dictionaries are maintained 

in synchrony, although its use to improve the timing characteristics of 

the design is restricted to the compression channel. 

n. Output tuple assembler: Module that assembles a decompressed tuple 

using dictionary information and any literal characters present in the 

code. 

 

2. The Decoder Comprises of: 

o. Main decoder: The main decoder obtains a match type and a match 

location from the codeword supply by the bit unpacker. The first bit 

defines if a match or a miss follows. If a match is detected the next 

log2(dictionary size) following bits in the codeword define the match 

location. The Huffman code for the match type follows the match 

location code. If the match is partial the missing bytes follow the 

match type. If instead of a full or a partial match a miss is detected the 

next 32 bits following the first bit correspond to the four missing bytes. 

p. RLI decoder: RLI decoder that when the match location in the code 

word corresponds to the last position of the dictionary output match 

location 0 and match type 0 as many times as the number of the 

repetitions indicated in the next 8 bits that defined the run length. A 

counter is loaded with the run length and then it counts up until this 

value is reached. 

 

3. The Unpacker Comprises of: 

q. Bit disassembly logic: This logic unpacks 64 bits of compressed data 

read from the internal buffers into variable-length codewords. To be 

able to shift out old data and concatenated new data, the codeword 

length must be supplied by the decoder logic. This feedback loop 

between the decoder logic and the unpacker one is illustrated in Figure 
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2.6 with the signal “match width” extending from the main decoder 

module to the code concatenate and shift module. The architecture of 

this module has been parallelized so concatenation of new data is done 

in parallel to the decoding operation and only the shifting of old data 

out must wait for the decoding operation to complete. This feedback 

loop remains, though, as the critical path of the design and limits the 

maximum clock frequency. 

r. Width adaptation logic: The logic performs the equivalent but opposite 

function as its counterpart in the compression channel. It reads in 32-

bit of compressed data from the input compressed bus and it writes out 

64-bit of compressed data to the bit disassembly logic when it requires 

more data. It performs a buffering function smoothing the data flow in 

the chip from the compressed port. It contains 2 kB of fully-

synchronous dual-port RAM organized in two blocks of 256 x 32 bits 

each as in the packer. 

 

 

2.5 Hardware Implementation 
 

 

The X-MatchPRO compressor/decompressor processor is a fully contained unit 

having a simple architecture and uncomplicated interface – Figure 2.7 shows the 

global architecture together with the PCI interface. 

 

The X-MatchPRO design is a dictionary style compressor based around a dictionary 

implemented in the form of a content addressable memory (CAM). The length of the 

CAM varies with values ranging from 16 to 1024 tuples (4-byte locations) trading 

complexity for compression. Typically, the device complexity increases by a factor of 

1.5 each time the dictionary doubles. Dictionary size is variable to be able to adapt 

algorithm complexity to the resources available in the selected FPGA. Each dictionary 

entry contains exactly 4 bytes. The dictionary adaptively stores the most recent 

phrases that have occurred in the data stream. Compression is achieved by replacing 

repeated phrases with references to the dictionary (these are codewords which are 

shorter than the phrase itself). 

 

The coding section is active during compression. This generates the required 

codewords and forms successive codewords into fixed 32-bit width words for writing 

to external medium. The decoding section is responsible for the reverse process – data 

is read from the external medium and generates the required dictionary references to 

allow the decompressed data to be recreated. 
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Figure 2.7. X-MatchPRO plus PCI interface architecture 
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2.5.1 Register bank description 
 

A total of 10 registers form the register bank that controls the 

compression/decompression engines and coding/decoding buffers. These registers are 

accessed by using the address bus and the control bus and can be read or written. 

Figure 2.8 shows the format of these registers. 

 

 

 
 

Figure 2.8. Register format 
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Address Channel Register Function 

1000 Decompression R0D Command register Activates or stops the 

decompression channel 

1001 Decompression R1D Uncompressed 

block size register 

Sets the number of bytes of 

the uncompressed block 

before decompression 

1010 Decompression R2D Compressed block 

size register 

Reserved 

1011 Decompression R3D Decompression 

CRC 

CRC code is stored here 

after completion of a 

decompression operation 

0001 Decompression R4D Decompression 

Status 

Status information of the 

decompression channel 

1100 Compression R0C Command register Activates or stops the 

compression channel 

1101 Compression R1C Uncompressed 

block size register 

Sets the number of bytes of 

the uncompressed block 

before compression 

1110 Compression R2C Compressed block 

size register 

Sets the number of bytes of 

the compressed block before 

compression 

1111 Compression R3C Compression CRC CRC code is stored here 

after completion of a 

compression operation 

0000 Compression R4C Compression 

Status 

Status information of the 

compression channel 

Table 2.1. Register access description 

 

2.5.2 X-MatchPRO threshold value 
 

The threshold value is input with the command and written in the command register. 

It defines a programmable latency. A small value means a low latency but it is more 

probable that underflows in the output buffers will take place. A bigger value 

introduces more latency but these conditions are not so frequent. After an underflow 

in the output buffers the threshold value also defines the distance between write and 

read addresses before more compressed or uncompressed data is output or requested 

respectively. 

Underflow conditions are not error conditions but they will generate bubbles where 

valid data is not present in the compressed or uncompressed data out streams during 

compression or decompression respectively. 

The threshold can have any value between 1 and 128. A threshold of 1 implies 

minimum latency => 1*64 bits of data are written in the buffer before the bus is 

requested during compression to output compressed data or 1*32 bits of data are 

written in the output buffers before the bus is requested during decompression. 

A threshold of 128 implies maximum latency or blocked operational mode => 128 * 

64 bits of data are written in the buffer before the bus is requested during compression 

to output compressed data or 128*32 bits of data are written in the output buffer 

before the bus is requested during decompression. 
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2.5.3 X-MatchPRO latency 
 

In compression latency is defined as the number of cycles found between the moment 

the compression engine stops inputting data and the output buffers finish emptying the 

buffers (=> chip ready to start a new operation). The compression latency has two 

components one fix and one variable. The fixed component of 4 cycles is defined by 

the levels of registers located between the input search register and the output buffers 

(5 levels). The variable component is defined by how much data is in the buffers 

when the compression engine finishes its operation (flushing operation). The 

probability of having a long flushing operation is small when the threshold value 

setting is small. This variable component depends, however, in the input data. If the 

data expands, the latency will grow because more data will be left in the buffers to be 

output during the flushing operation. 

In decompression, latency is also controlled by the threshold value. Latency can be 

defined as the number of cycles that elapse between the first tuple of compressed data 

enters the chip and the first tuple of uncompressed data leaves the chip. There are 

again two components. The levels of registers (5 levels) between the decoding buffers 

and the output register in the device introduced a fixed component of 4 cycles. The 

output buffer introduces the other component and it depends on the threshold value. A 

threshold value of 8 introduces a latency of 8 because 8 32-bit tuples must be written 

in the buffer before the number of 32-bit words exceeds the threshold value and the 

bus is requested to output uncompressed data. 

 

2.5.4 X-MatchPRO operational modes 
 

The device organizes the data block to be processed during compression and 

decompression operations in records of 512 bytes. This means that it will request the 

input data bus until one record has accessed the input buffers and then it will release 

the data bus and rearbitrate for new data if required until the whole block has accessed 

the input buffers. The compression and decompression engines are engaged shortly 

after the first input record has started accessing the bus and data will be available in 

the output buffers after a short latency. It is the responsibility of the system to service 

the requests originating in the output buffers to avoid having overflow errors in these 

buffers. 

 

2.5.4.1 Compression mode 

 

To start a compression operation the CPU must write two registers: The 

uncompressed block size register (UBSR) must be written first and the command 

register (CR) must be written second. The UBSR tells the compression engine when it 

must stop after processing all the bytes of data present in the block. The UBSR 

specifies the number of bytes present in the block and can be any value between 8 and 

65536. The CR puts the device in compression mode and it also contains the threshold 

value to control the output buffer. It also sets the test bit that sets the device to self-

checking test mode when 0 or to full-duplex mode when 1. The device requests the 

uncompressed data in bus after the command register has been set using the signal bus 

request cu. The system will grant the bus using bus acknowledge cu when data is 

ready for compression. 

Data must be available in the uncompressed data in bus one cycle after the bus has 

been granted. If data is not ready for the device the wait cu signal in the 



33 

 

uncompressed data in bus can be asserted. The chip requests the compressed bus 

when the number of 64-bit words available in the output buffer is bigger than the 

threshold value using the bus request cc signal and waits for the acknowledgement 

bus acknowledge cc. 

If data cannot be collected from the compressed data out bus the corresponding wait 

cc signal can be used to hold the outputting of data by the device. When the device 

produces compressed data in the compressed bus it asserts the compressed data valid 

signal active. The engine is known to be active because the compressing signal is 

active. The chip stops processing data when the value stored in UBSR is reached. 

Then a flushing c signal is activated to indicate that any remaining compressed data in 

the output buffers is being flushed out. When the buffers are emptied of their contents 

the device asserts the signal finished c active for one cycle and the interrupt request 

signal. The system can read the compressed block size register (CBSR) at the end of a 

compression operation to obtain the resulting compressed block size in bytes. This 

value could be compared with the original uncompressed block size to evaluate the 

compression efficiency. The system can also read the status register to monitor that an 

abnormal termination did not take place. After this cycle the device is ready to start a 

new compression operation. Figure 2.9 corresponds to a typical compression 

operation. 

 

 

 
 

Figure 2.9. Compression operation 
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2.5.4.2 Decompression mode 

 

To start a decompression operation the system must write 2 registers. The UBSR and 

the CR have the same function as in compression. The UBSR is used to indicate the 

device how much data must be decompressed before finishing the decompressed 

operation. Then, the system requests the compressed data in bus with the bus request 

dc signal and the bus is granted with the bus acknowledge dc signal. The bus request 

dc during decompression is equivalent to a compressed data request. Once the bus is 

granted the system is responsible to make available 32 bits of compressed data per 

cycle as long as the bus request signal is maintained active. The system can use the 

wait dc signal to insert wait cycles in the bus. The engine writes uncompressed data in 

the output buffers. Once the amount of data is larger than the threshold value the 

device asserts the bus request du signal requesting the uncompressed data out bus. 

The bus is granted with the bus acknowledge du signal. . When the device produces 

uncompressed data in the uncompressed data out bus it asserts the uncompressed data 

valid signal active. The engine is known to be active because the decompressing 

signal is active. When the output buffers are emptied of their contents the device 

asserts the signal finished d active for one cycle and the interrupt request signal. . The 

system can read the status register to monitor that an abnormal termination did not 

take place. After this cycle the device is ready to start a new decompression operation. 

Figure 2.10 shows a typical decompression cycle. 

 

 

 
 

Figure 2.10. Decompression operation 
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2.5.5 X-MatchPRO Error conditions 
 

2.5.5.1 Output Buffer Coding Overflow and Output Buffer Decoding Overflow 

 

Overflow errors should never be encountered under normal operation conditions. To 

avoid overflow errors the output bus that holds compressed data during compression 

and uncompressed data during decompression should be granted if it is being 

requested when the inputting of one data record has finished and before the inputting 

of a new data record starts. 
 

2.5.5.2 CRC Error 

 

A CRC error should never be encountered under normal operation conditions. The 

CRC error signal is used during compression in test mode. Both channels are active 

and a CRC code is calculated using all the data input to the compression channel and 

output by the decompression channel. A CRC error indicates a hardware failure 

because either the compression or the decompression channels failed to successfully 

perform its operation and there has been a mismatch in the calculated CRC‟s by each 

channel. 
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3 
 

 

System Architecture 

 

 

 

 

This chapter describes the device which implements the LZ77 algorithm since 

it is the optimal for this end-to-end compression scheme. In the next sections the 

hardware architecture and the implementation of this device are outlined. But before 

moving to the actual implementation, it is essential to point out more details about the 

specific algorithm. 

 

 

3.1 Compression Algorithm 
 

 

There are mainly four different compression classes. Each one is suitable for 

particular applications. The problem with the network streams is that they consist of 

different kinds of data and so a flexible algorithm should be used. 

 

The basic idea behind a substitutional compressor is to replace an occurrence of a 

particular phrase or group of bytes in a piece of data, with a reference to a previous 

occurrence of that phrase (dictionary-based compression algorithm). There are two 

main classes of schemes, named after Jakob Ziv and Abraham Lempel, who first 

proposed them in 1977 and 1978: the LZ77 and the LZ78. 

 

It is widely supported that the LZ78 based algorithms produce better results by 

increasing the complexity of the matching circuit and thus making the compression 

procedure either slower or more expensive, in terms of hardware resources needed. 

However, this is not the case for the very irregular real network traces. 
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The main reasons the LZ77 based algorithms achieve a higher compression gain than 

the LZ78-based ones are as follows: 

 

 The LZ78 ones “adapt slowly to their input data” and so in the case of the 

“non-stationary” network traffic, they cannot achieve the expected high 

compression gain. 

 The major deficiency of the LZ77 is the limited size of the look-ahead buffer 

since it can go up to 32 bytes, in order to be effective. In the case where a 48-

byte network packet is compressed at each run of the algorithm, the size of 

this buffer should, by nature, be much less than 48 bytes and so this deficiency 

does not affect the compression ratio. 

 Another deficiency of the LZ77 is that the size of the search buffer is also 

limited. Since the larger the buffer, the better the compression, large buffers 

are preferred. However, this deficiency does not affect the compression ratio a 

network compression device can achieve since the traffic is “non-stationary” 

and thus a buffer even in the order of tens of kilobytes cannot achieve better 

results than a 4 KB one. 

 

In addition to the better compression ratio achieved by the LZ77-based algorithms, 

there are some other reasons that make it more attractive for a network compression 

scheme: 

 

 The decoding process is much faster, due to the intrinsic latency 

characteristics of the algorithm. 

 It has a pre-defined longest delay in making the best possible matches and this 

delay is in the order of a few tens of character cycles. 

 It is much easier to implement in hardware. 

 There are no patents for the basic algorithm. 

 

This thesis concentrates on the LZ77 Coding, which is implemented by this device. 

 

3.1.1 LZ77 Coding 
 

The main idea of LZ77 Coding is to use part of the previously seen input stream as a 

dictionary. Whenever an LZ-77 compressor processes a phrase that has already been 

seen, it outputs a pair of values corresponding to the position of the phrase in the 

previously-seen buffer of data and the length of the phrase. In particular, a compressor 

maintains a window to the input stream and shifts the input in that window from right 

to left, as strings and symbols are being compressed. This window is divided into two 

parts: the dictionary, which includes the symbols that have been input and 

compressed, and the lookahead buffer, containing the text it tries to find a match in 

the dictionary. In practical implementations the dictionary is some thousands of byte 

long, while the lookahead buffer is only tens of bytes long. In Figure 3.1 is the 

pseudo-code for the compression. 
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Figure 3.1. Pseudo-code for LZ77 

 

Decompression is simple and fast: Whenever a (position, length) pair is encountered, 

go to that (position) in the window and copy (length) bytes to the output. 

 

In Figure 3.2 a run of the compressor is shown and in Figure 3.3, a run of the 

decompressor. 

 

Sliding-window-based schemes can be simplified by numbering the input text 

characters mod N, in effect creating a circular buffer. The sliding window approach 

automatically creates the LRU effect which must be done explicitly in LZ78 schemes. 

Variants of this method, like the gzip and the winzip software tools, apply additional 

compression to the output of the LZ77 compressor, such as dynamic Huffman coding 

and Arithmetic Coding, that result in a degree of improvement over the basic scheme. 

This increase is achieved whenever the data is rather random and the LZ77 

compressor has little effect. 

 

 
Figure 3.2. A typical run of the LZ77 compressor 
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Figure 3.3. A typical run of the LZ77 decompressor 

 

 

3.2 Implementation Details 
 

 

The device was designed using the VHSIC
(3)

 hardware description language (VHDL). 

The results of the initial high-level design were compared with the theoretical results 

so as to ensure the functionality of these devices is correct. Then, the VHDL code was 

synthesized, was placed and routed using the Xilinx ISE 9.1i and simulated using 

Modelsim 6.0a. 

 

 
(3) VHSIC: Very-High-Speed Integrated Circuits 

 

 

3.3 Format of Compressed Data 
 

 

According to the end-to-end scheme, the network traffic is compressed at a source 

site, encapsulated over ordinary network packets and then decompressed at the 

destination site. In particular in the source node all the cells that have the same header 

are collected, all the headers removed and thus a long data-stream formed. Then and 

before the transmission if this datastream, the compression algorithm is applied to it 

and the compressed stream is encapsulated into ATM
(4)

 cells. So, each compressed 

packet consists of a 48-byte compressed stream as the payload and the original 

header. Therefore, all the data coming on a certain VC
(5)

/VP
(6)

 into the compression, 

leave the device on the same VC/VP, after being processed. In other words, the flows 

are not altered in any way except of the number of cells they consist of. 

 

http://en.wikipedia.org/wiki/VHSIC
http://en.wikipedia.org/wiki/Hardware_description_language
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Figure 3.4. Compressed Cell Format 

 

As it has already been described, the compressed streams comprise of 2-byte tokens 

and 1 byte uncompressed bytes, together with some bit flags for distinguishing the 

two. These flags should also be transmitted for the decompressor to make the same 

distinction. These bits cannot be efficiently sent together with their corresponding 

items. Instead eight outputs items (bytes or tokens) are collected together and, then, 

one byte consisting of the 8 flags is transmitted followed by the eight items. Figure 

3.4 shows the format of a compressed cell. Recall that the last three bytes of the 

shown cell carry a portion of a 9-byte compressed quantity. This is not a problem 

since the decompressor can form data-streams comprising of more than one cell and 

then perform the actual decompression. 

 

 
(4) ATM: Asynchronous Transfer Mode 
(5) VC: Virtual Circuit/Virtual Channel 

(6) VP: Virtual Path 

 

 

3.4 System Interconnections 
 

 

The System Chips are interconnected to each other and to the existing network 

terminals as shown in Figure 3.5. In this figure it is clear that both the compressed and 

the uncompressed data is carried by ATM cells. 

 

 
Figure 3.5. System Interconnections 
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3.5 Core Hardware Architecture 
 

 

In Figure 3.6, the block diagram of the system chip is shown. 

 

 
Figure 3.6. Block Diagram of the system 

 

As in every dictionary based compression device, the core comprises of the dictionary 

and the comparison circuits around it. Therefore, the speed of the device depends 

heavily on the memory throughput and the comparisons‟ latency. In the architecture 

proposed in this chapter the speedup implementation techniques of pipelining, 

parallelism and repetition of information have all been used in order to accelerate this 

core. In particular, the main characteristics of the architecture are: 

 

 256-stage pipeline. 

 16 comparisons in parallel at each pipeline stage. 

 Memory repetition (100% more memory used) for higher memory throughput. 

 

This architecture was implemented using the VHDL and the Synthesiser previously 

mentioned. 

 

Using these speedup techniques and after some optimisations of the device, the 

network data can be compressed at speeds up to 2.5 Gb/sec and the latency introduced 

is within the acceptable limits for network traffic (5 cell times). The latency can be 

further reduced if greater hardware resources are to be used, as it will be described in 

the next section. 

 

 

 

 

 

 



43 

 

3.5.1 Compression Unit 
 

The compression unit implements the LZ77 algorithm which is applied only to the 

payloads of the ATM cells. Its block diagram is shown in Figure 3.7. In general, the 

compressibility table determines if a flow should be compressed or if it should bypass 

circuits ensure the main unit and the header memory, and the merge and bypass 

circuits ensure the cells will be formed and sent over the transmission link correctly. 

 

Moving to the exact functionality of the device, at first the header bits described by a 

certain register are used as an index to the compressibility table so as to determine 

whether this particular cell should be compressed or not. If the cell should not be 

compressed it is sent through the bypass path to the merge circuit. If it is a 

compressible cell the compressibility table points to the dictionary to be used for 

compressing the cell. In each entry of the table the 15 last bytes of the payload of the 

last cell on this flow are also stored. These bytes together with the first byte of the 

new cell form a 16-byte look-ahead buffer which is sent to the compression unit. In 

the next clock cycle, the second byte of the cell will arrive. These two first bytes of 

the cell together with the 14 last bytes of the previous cell will form the new look-

ahead buffer and so on. In this manner the 48 bytes of the payload are processed by 

the compression unit in 48 byte-clock cycles. 

 

As stated above, the core circuit is organised in a 256-stage pipeline. In Figure 3.8 a 

pipeline stage is demonstrated. It consists of a memory bank of 31 bytes for each 

dictionary
(7)

, a “crossbar” so as to route each 16-byte quantity to a specific comparator 

and 64 comparators that are used 4 times each at every clock cycle. The inputs of each 

stage are: 

a) the 16-byte long look-ahead buffer,  

b) the 15-bit address of the dictionary that should be used, 

c) register LONMA which specifies what is the longest match up to the last point 

of the pipeline and what is the dictionary address of the first byte of this match 

and 

d) the four PRENA1-PRENA4 registers which specify the 4 longest matches  

found in the last pipeline stage and the addresses of these matches. 

 

 
Figure 3.7. Compression Unit Block Diagram 
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Figure 3.8. Block diagram of a Pipeline stage. Wire widths are in Bytes. 

 

The outputs of each stage are: 

a) the unchanged 16-byte look-ahead buffer, 

b) the also uncharged 15-bit address fields, 

c) the possibly altered LONMA register and 

d) the new PRENA registers which specify the 4 longest matches found on this 

stage. 

 

The reasoning behind the size of the memory is as follows: The algorithm 

implemented has a longest possible match of 16. Thus, taking 16 subsequent bytes, all 

their possible matches are included in these 16 bytes and the next 15 subsequent ones. 

So, it is guaranteed that all the matches of the first 16 bytes are included in the 31 

bytes stored in the memory. This concept is illustrated in Figure 3.9. Note that the last 

15 bytes should also be included in another memory bank together with the 16 bytes 

next to them in the incoming stream, for all the possible matches to be examined. 

Thus, this technique requires 93.75% of memory overhead. 
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Figure 3.9. Overview of the compression task 

 

Since the main objective has been to minimize the time for the comparisons of the 16 

byte look-ahead buffer with every single byte in the dictionary, parallelism is also 

used. In every pipeline stage, there are 64 byte-comparators each used 4 times in each 

major cycle. Therefore, 256 comparisons are done in each major cycle. Since the 16, 

16-byte long strings should be compared with the 16-byte long look-ahead buffer 16 * 

16 = 256 comparisons are needed. As a result, in each clock cycle, all the possible 

matches of the look-ahead buffer with a particular 16-byte stream are identified. 

 

The exact timing of a pipeline stage is shown in Figure 3.10. The memory is accessed 

and at the same time the register LONMA is compared with the four PRENA 

registers. The longest of these 5 matches is stored in register LONMA, together with 

the corresponding address in the dictionary. After the memory is read the first 4 16-

byte comparisons are executed and their results stored in the corresponding registers. 

After the results are stored, the second set of comparisons starts and at the same time 

the 4 comparison results are compared with one another and the longest match is 

stored in register PRENA1. Similarly, all the four PRENA registers are loaded with 

the 4 longest matches produced by the 4 sets of comparisons. 
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Figure 3.10. Timing diagram of a pipeline stage 

 

As shown in the circuit diagram of Figure 3.8, in each one of the pipeline stages, there 

is a 31 byte per dictionary SRAM memory bank, 64 byte-comparators, 4 longest 

match circuits and a 15-byte pipeline register. Since there are 256 pipeline stages, the 

total hardware-cell count is 15872 8 bit-SRAM cells –all registers are also included-, 

16K 8 bit-comparators and 1K longest match circuits, per dictionary. 

 

By using all the above speedup factors, the compressor can process data at a constant 

speed of 622 Mb/sec introducing a latency of 256 clock cycles or 5 cell times. This is 

a significant improvement over the current network compressors since, as it is 

described in Chapter 2, the processing speed of the fastest such compressor is 100 

Mb/sec and its latency is up to 2 cell times. 

 

In order for this design to be used in an even faster network (e.g. a 1044 Mb/sec one), 

the only alternation needed is the following: Instead of having 64 comparators in each 

pipeline stage, 256 are needed, so as all the necessary comparisons can be done at the 

same time. By following the same calculations as in the last paragraphs, the latency of 

each pipeline stage will be 5 ns and, thus, a clock rate of 200 MHz can be used. As a 

result, the compressor would be able to process data at a rate up to 1.4 Gb/sec. 

 
(7) Since the address is 15-bit wide up to 32K dictionaries can be supported. However the number of the actual 

dictionaries will depend on the cost requirements the device should satisfy. 

 

3.5.2 Decompression Unit 
 

The decompression unit is much simpler than the compression one, since there is no 

need for comparisons between the input data and the one stored in the dictionary. It 

just maintains the compressibility table and a 4 KB dictionary for each compressible 

flow. Its block diagram is shown in Figure 3.11. Using the compressibility table it 

first determines if a cell comprises of compressed or not. If the header corresponds to 

an uncompressible flow, the cell is sent over the bypass path. If it is a compressed 

cell, the compressibility table entry points to the dictionary that should be used for the 

decompression of it. Then, for each byte the decompressor determines, if it is a part of 

an (address, length) token or an uncompressed byte. In the latter case, it sends the byte 

to the merge circuit and stores it in the next free entry of the corresponding dictionary. 

In the former one, the memory item, at the corresponding address, is fetched and the 

first length bytes of it are written to the output buffer. The new string is written in the 

next free position of the dictionary. 
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Figure 3.11. Decompression Unit Block Diagram 

 

Since the decompression unit needs at most two memory accesses per input byte and 

assuming the same delay parameters as in the compression unit, its latency is 7 ns if a 

standard non-pipelined architecture is used. If the two accesses are performed into 

two different pipeline stages, in which case a dual port SRAM is also needed, the 

latency of the device will be 4 ns. Therefore, even when a non-pipelined architecture 

is used the unit can decompress data at speeds up to 1066 Mb/sec. 
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4 
 

 

Hardware Implementation 
 

 

 

 

This chapter describes the way implemented each component of the whole 

system. The following sectors present the implementation of every component in 

details and shows figures and tables about the architecture and the pinout used. The 

last ones provide the FSM
(8)

 used for the successful operation of each pipeline stage 

and some optimizations made for improving the performance which is our main 

scope. 

 

 
(8) FSM: Finite State Machine 

 

 

4.1 Memory bank 
 

 

As required, instead of LZ77 algorithm, a memory is used for saving dictionaries plus 

data duplicated for the reasons described in the section 3.5.1. This module is a 

ROM
(9)

, generated by Xilinx CORE Generator, which contains a dictionary in every 

odd address and duplicated data in every even one. Its size is chosen to be 8 Kbytes 

(64 Kbits), 4 KB for the dictionary and 4 KB for the memory overhead. Previous 

research has showed that the optimal width for this memory is 16 Bytes (128 bits), so 

a memory bank, the size of which is 31 Bytes, will be resulted from reading two 

addresses. Subsequently, the depth of the memory is 512 words so as the address 

length is 9 bits. 

Figure 4.1 shows the interface of this component while Table 4.1 describes the 

functionality of signals. 

 

MEMORY BANK

9

1

128addra

clka

douta

 
 

Figure 4.1. Memory Bank Interface 
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Signal Width (bits) Type Description 

clka 1 Input Clock signal 

addra 9 Input Read address 

douta 128 Output Output Data 

 

Table 4.1. Memory Bank pinout 

 

The use of ROM proves that dictionary must not be written from the system; it is only 

initialized externally; it is initialized by a .COE
(10)

 file which is loaded from the user 

to specify the values of the memory. 

 

 
(9) ROM: Read Only Memory 
(10) COE: COEfficient 

 

 

4.2 Crossbar 
 

 

“Crossbar” is not used with the strict sense of the term. It is a component that gets a 

16-byte long input (output data from memory), creates the 31-byte long memory 

bank, saves it in a latch and uses it for further processing. 

Crossbar Interface is showed in Figure 4.2 and more details about signal functionality 

are referred in Table 4.2. 

 

Signal Width (bits) Type Description 

input 128 Input Input data 

wrbuffer 1 Input Buffer write signal (if „1‟ write) 

dsit 1 Input Situation of written data 

(in buffer) 

compNo 2 Input No of comparison  

output1 128 Output 1
st
 output 

output2 128 Output 2
nd

 output 

output3 128 Output 3
rd

 output 

output4 128 Output 4
th

 output 

 

Table 4.2. Crossbar pinout 

 

CROSSBAR

128

2

128input

wrbuffer

output1

1

1

dsit

compNo

128 output2

128 output3

128 output4

 
 

Figure 4.2. Crossbar Interface 
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Figure 4.3. Crossbar Architecture 

 

This component is implemented by using a 31-Byte (248-bits) long latch –as stated 

before- for saving the memory bank, a demultiplexer 1-2 (16 byte input – outputs), 

which decides where the input data are going to be saved in the latch and four 

multiplexers 4-1 (16 byte inputs – output) that decide which 16 bytes are going to be 

sent to the four outputs for further processing. The architecture of this module is 

showed in Figure 4.3. 

As presented in figure above, according to the “dsit” signal, which controls the 

demultiplexer, the input data are saved either in bytes 1-16 (if „0‟) or in bytes 17-31 

(if „1‟) of the latch. Furthermore, according to the “compNo” signal, multiplexers 

choose the desirable bytes to be sent to the outputs. All the possible combinations are 

presented in Table 4.3. 

 

compNo outputs Output1 

(bytes) 

Output2 

(bytes) 

Output3 

(bytes) 

Output4 

(bytes) 

00 1-16 2-17 3-18 4-19 

01 5-20 6-21 7-22 8-23 

10 9-24 10-25 11-26 12-27 

11 13-28 14-29 15-30 16-31 

 

Table 4.3. Output combinations according the No of comparison 
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4.3 Pipeline Stage Comparator 
 

 

Pipeline Stage Comparator is a circuit which compares two 16 byte (128 bit) long 

vectors, which are its inputs. The first one is the unchanged Look-ahead buffer and 

the second one is 16 bytes from the memory bank derived from the Crossbar using the 

method described in the previous section. Its output is the longest match (the largest 

number of common bytes in row) between these vectors concatenated with the 

address of the first byte of the second vector in memory bank. 

The interface of this component is showed in Figure 4.4 and described in Table 4.4, 

which is presented above. 

 

Signal Width (bits) Type Description 

input1 128 Input 1
st
 input of comparator (Look-

ahead buffer) 

input2 128 Input 2
nd

 input of comparator (output of 

Crossbar) 

memoryaddress 9 Input Memory address of the dictionary 

in BRAM 

firstbyte 4 Input Address of the first byte in 

memory bank 

longestMatch 16 Output Output of comparator (longest 

match between input1 & input2) 

 

Table 4.4. Pipeline Stage Comparator pinout 

 

 

PIPELINE STAGE

COMPARATOR

128

128

16

input1

input2

longestMatch

9

memoryaddress

4

firstbyte
 

 

Figure 4.4. Pipeline Stage Comparator Interface 
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BYTE16COMPARATOR

128

128

16

input1

input2

longestMatch
FINDLONGESTMATCH 4

isequal
CONCATENATION 16

longestmatch

9

memoryaddress

4

firstbyte

 

Figure 4.5. Pipeline Stage Comparator Architecture 

 

The procedure, which is followed for leading us to the result, is divided in three 

stages. At the first stage, the two vectors are compared and a new vector (16 bit long) 

is created, which shows which bytes are the same in the leading vectors. At the 

second stage, the longest match is counted using the new 16 bit long vector and, 

finally, in the third stage, the longest match created is concatenated with the address 

of the first byte as described before. 

Each one stage is processed by a specific subcircuit, so the three subcircuits used are a 

16-Byte Comparator, a Find Longest Match Circuit and a Concatenation Circuit. The 

connection between these components, which leads us to the architecture of Pipeline 

Stage Comparator, is showed in Figure 4.5. 

The implementation of these three components, presented in Figure 4.5, is described 

in details at the following subsectors. 

 

4.3.1 16-Byte Comparator 
 

The first part of a Pipeline Stage Comparator compares the two inputs (16 bytes long) 

and exports, as a result, a 16 bit long vector, in which the „1‟ shows that the specific 

bytes are equal and the „0‟ shows that are not. The interface of 16-Byte Comparator, 

as this structure is called, is showed in Figure 4.6 and more information is given in 

Table 4.5. 

 

BYTE16COMPARATOR

128

128

16

input1

input2

isequal

 
 

Figure 4.6. 16-Byte Comparator Interface 
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BYTE
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input2(7 downto 0)

BYTE
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TOR

8
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input2(15 downto 8)

BYTE

COMPARA

TOR

8

8

input1(23 downto 16)
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BYTE

COMPARA
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8

8
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...

 
 

Figure 4.7. 16-Byte Comparator Architecture 

 

Signal Width (bits) Type Description 

input1 128 Input 1
st
 input of comparator 

input2 128 Input 2
nd

 input of comparator 

isequal 16 Output Output of comparator (shows 

which bytes between input1 & 

input2 are equal) 

 

Table 4.5. 16-Byte Comparator pinout 

 

The 16-Byte Comparator unit is implemented using 16 Byte comparators. The 

architecture used is presented in Figure 4.7.  

The structure of Byte Comparator is described in details above. 

 

4.3.1.1 Byte Comparator 

 

Each Byte Comparator gets, as input, two vectors (one byte long each one), compares 

them and exports, as output, a bit, which shows if the two bytes (vectors) are equal 

(„1‟) or not („0‟). Figure 4.8 shows the interface of this structure and Table 4.6 gives 

more information about the functionality of every signal. 
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BYTE

COMPARATOR

8

8

input1

isequal

input2

 

Figure 4.8. Byte Comparator Interface 

 

Signal Width (bits) Type Description 

input1 8 Input 1
st
 input of comparator 

input2 8 Input 2
nd

 input of comparator 

Isequal 1 Output Output of comparator (shows if 

bytes -input1 & input2- are equal) 

 

Table 4.6. Byte Comparator pinout 

 

This structure is implemented using eight XNOR gates, each of which checks if two 

bits –each one from the specific input byte– are equal. The outputs of these gates are 

sent to an AND gate which “decides” if all bits are equal. In other words, it examines 

whether the input bytes are equal or not. So, an AND gate of eight inputs has to be 

used, which is not so common because of the fanin constraints. As a result, the 

implementation uses two AND gates of four inputs and one AND gate of two inputs 

for the results which are the first ones. 

The architecture, which is described before, is showed in Figure 4.9. 

 

Input1(0)
Input2(0)

Input1(1)
Input2(1)

Input1(2)
Input2(2)

Input1(3)
Input2(3)

isequal

Input1(4)
Input2(4)

Input1(5)
Input2(5)

Input1(6)
Input2(6)

Input1(7)
Input2(7)

 
 

Figure 4.9. Byte Comparator Architecture 

 

 

 



56 

 

4.3.2 Find Longest Match Circuit 
 

After the comparison, previously described, a 4-bit counter is placed for counting the 

„1‟ in row in the 16 bit long vector derived from the 16-Byte Comparator. Its output is 

the longest match counted, the largest number of the „1‟ in row. 

Find Longest Match Circuit Interface is showed in Figure 4.11 and the functionality 

of the signals is described in Table 4.7. 

 

Signal Width (bits) Type Description 

Isequal 16 Input Input (shows which bytes are 

equal) 

longestMatch  4 Output Output (the calculated longest 

match) 

 

Table 4.7. Find Longest Match Circuit pinout 

 

Find Longest Match Circuit is implemented in behavioral VHDL. Firstly, the counter 

is initialized to 0. Every time, the iterator meets a „1‟, the counter is increased by 1 

and, when it meets a „0‟, the counter is initialized to 0. Each time, the circuit checks if 

the new value of the counter is greater than the previous maximum value, and if so, it 

stores the value. Finally, after the whole procedure finishes, the maximum value is 

sent as output. 

Figure 4.10 shows the pseudo-code used for implementing this component. 
 

sum := 0 ; 

maxSum := 0 ; 

 

for i :=0 to 15 then 

 

    if isequal(i) = '1' then 

 

     sum := sum + 1 ; 

 

    else 

   

     sum := 0 ; 

  

    end if ; 

 

    if sum > maxSum then 

 

     maxSum := sum ; 

 

    end if ; 

 

end loop ; 

 

longestMatch := maxSum ; 

 

Figure 4.10. Pseudo-code for counting the longest match 
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FINDLONGEST

MATCH
16 4isequal longestMatch

 

Figure 4.11. Find Longest Match Circuit Interface 

 

4.3.3 Concatenation Circuit 
 

Concatenation Circuit is the final part of a Pipeline Stage Comparator where the final 

result is created. Except for the longest match, it is important to know where the 

longest match is found, so an address must be stored in the final result, which is 

created by the concatenation of the longest match and the address of the first byte of 

the second input (derived from the crossbar) in BRAM. This address has two parts; 

the first one is the memory address of the memory bank (8 bits) and the second one is 

the position of the first byte in the memory bank (4 bits). If these parts are 

summarized with the longest match derived from the counter of Find Longest Match 

Circuit (4 bits), the size of the final result will be resulted, which is 16 bits long. The 

procedure, which is followed for the creation of the result, is simple and the structure 

of the vector derived is showed in Figure 4.12. 

 

LONGEST

MATCH

FIRST

BYTE

MEMORY

ADDRESS

8 bits 4 bits 4 bits

15 8 7 4 3 0

 
 

Figure 4.12. Structure of final result 

 

 

4.4 Byte MUX 2-1 x 16 
 

 

This module gets as inputs, four PRENA1-PRENA4, which are the results of the four 

comparisons of the previous pipeline stage, and four results of the Pipeline Stage 

Comparators of the current Pipeline Stage and chooses which of them will be further 

processed. The Interface of Byte MUX 2-1 x 16 is showed in Figure 4.13 and more 

details for the functionality of the signals are given in Table 4.8. 
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Figure 4.13. Byte MUX 2-1 x 16 Interface 

 

Signal Width (bits) Type Description 

PRENA1 16 Input Result of 1
st
 comparison in 

previous pipeline stage 

PRENA2 16 Input Result of 2
nd

 comparison in 

previous pipeline stage 

PRENA3 16 Input Result of 3
rd

 comparison in 

previous pipeline stage 

PRENA4 16 Input Result of 4
th

 comparison in 

previous pipeline stage 

comparator1out 16 Input Output of 1
st
 comparator 

comparator2out 16 Input Output of 2
nd

 comparator 

comparator3out 16 Input Output of 3
rd

 comparator 

comparator4out 16 Input Output of 4
th

 comparator 

control 4 Input Control signal 

output1 16 Output First output stream 

output2 16 Output Second output stream 

output3 16 Output Third output stream 

output4 16 Output Fourth output stream 

 

Table 4.8. Byte MUX 2-1 x 16 pinout 

 

Byte MUX 2-1 x 16 is implemented using four multiplexers. Every multiplexer 

chooses the value of output, which might be either the value of PRENAx or the value 

of comparisonxout. So every multiplexer is a 2-1 multiplexer with 16 bit long inputs – 

output. The structure of this implementation is presented in Figure 4.14. 
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Figure 4.14. Byte MUX 2-1 x 16 Architecture 

 

 

4.5 Longest Match Circuit (1 out of 4) 
 

 

Longest Match Circuit is a simple structure of Comparator 4-1. It gets, as input, four 

16 bits long vectors (the outputs of Byte MUX 2-1 x 16) and exports a 16 bits long 

vector, which is the largest one of the inputs. Figure 4.15 shows the interface of 

Longest Match Circuit and Table 4.9 describes the functionality of the signals. 
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Figure 4.15. Longest Match Circuit Interface 

 

Signal Width (bits) Type Description 

input1 16 Input 1
st
 input of comparator 

input2 16 Input 2
nd

 input of comparator 

input3 16 Input 3
rd

 input of comparator 

input4 16 Input 4
th

 input of comparator 

output 16 Output Output of comparator (max of 

input1, input2, input3 & input4) 

 

Table 4.9. Longest Match Circuit pinout 

 

This module is implemented using three Comparators 2-1. The first one compares the 

first two inputs, the second one compares the other two and the third one compares 

the results of the other two comparators. It must be pointed out that every comparator 

compares only the 4 LSBs, which are the longest match and the remaining 12 bits are 

the memory address. At last, the final output is the concatenation of the largest 

“longest match” (4 bits) with the memory address (12 bits) chosen from the specific 

input. Figure 4.16 shows Longest Match Circuit Architecture. 
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16

16

input1

input2

max(input1, input2)

COMPARATOR 2–1

16

16

input3

input4

max(input3, input4)

COMPARATOR 2–1 16
output

(max of inputs)

 
 

Figure 4.16. Longest Match Circuit Architecture 
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4.6 Longest Match (1 out of 2) 
 

 

This part is the last one of the whole procedure of a pipeline stage. It is a Comparator 

2-1 with 16 bits long inputs – output. It compares the two inputs and exports the 

greater one. As Longest Match Circuit does, it only compares the four LSBs of the 

input vectors and, finally, creates the final result using the procedure of concatenation, 

just as described in the previous section. Furthermore, the first input is the longest 

match calculated by the current pipeline stage and the second one is the longest match 

calculated by all the previous pipeline stages. 

Table 4.10 shows the pinout of this comparator and Figure 4.17 presents Longest 

Match Interface. 

 

Signal Width (bits) Type Description 

input1 16 Input 1
st
 input of comparator 

input2 16 Input 2
nd

 input of comparator 

output 16 Output Output of comparator (max of 

input1 & input2) 

 

Table 4.10. Longest Match pinout 

 

COMPARATOR 2–1

16

16

16

input1

input2

output

 
 

Figure 4.17. Longest Match Interface 

 

 

4.7 Pipeline Registers 
 

 

There are some pipeline registers used for separating each pipeline stage from the 

next one and storing the results which are derived from the whole procedure of the 

current pipeline stage. These results will be used for further processing to the next 

pipeline stages. A general interface of a pipeline register is presented in Figure 4.18 

and Table 4.11 describes the functionality of the signals. 
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Figure 4.18. Pipeline Register Interface 

 

Signal Width (bits) Type Description 

clock 1 Input Clock signal 

reset 1 Input Register reset signal 

enable 1 Input Register enable signal 

D N Input Register input stream 

Q N Output Register output stream 

 

Table 4.11. Pipeline Register pinout 

 

The pipeline registers used are one for storing the unchanged memory address (N = 

15), one for the unchanged look-ahead buffer (N = 128), one for the possibly altered 

LONMA (N = 16) and four for the new PRENAs (N = 16) which specify the four 

longest matches found on this stage. Table 4.12 points out all the registers used. 

 

Pipeline Register Input – output length 

(bits) 

Description 

ADDR 15 Memory Address 

Look-ahead buffer 128 Look-ahead buffer 

PRENA1 16 Result of 1
st
 comparison 

PRENA2 16 Result of 2
nd

 comparison 

PRENA3 16 Result of 3
rd

 comparison 

PRENA4 16 Result of 4
th

 comparison 

LONMA 16 Total Longest match 

 

Table 4.12. Pipeline Registers used in each Pipeline Stage 
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4.8 Finite State Machine (FSM) 
 

 

The use of a FSM is thought indispensable for securing the right operation of the 

procedure of each pipeline stage. According to the timing diagram described in 

chapter 3, the procedure of a pipeline stage is divided in five parts and it finishes after 

five cycles. First of all, during the first cycle, memory is accessed for gaining the first 

set of data, which is the first half of memory bank and, simultaneously, it is chosen to 

compare the four PRENAs (results from the previous pipeline stage). A second 

memory access takes place at the second cycle. The output data is the second half of 

memory bank and, as it is fully regained, the first comparison can take place, so it is 

implemented and the result is stored in PRENA1 pipeline register. Finally, the other 

three comparisons take place at the following three cycles and their results are stored 

in PRENA2 – PRENA4, similarly. Every of the cycles described above corresponds a 

state of the FSM created. All this information is summarized in Figure 4.19, which 

shows the loop of this procedure, and Figure 4.20, which shows the FSM scheme that 

presents the state sequence. 

The first thought about the FSM needed is to create a FSM, which operates in four 

cycles; the first state is only used one time at system start (reset) and the fifth one 

does the first memory access again and goes back to the second one. This solution is 

chosen for improving the system performance, but it has a main drawback, because 

these four states are used for the four comparisons and PRENAs are compared only 

once, which is not desirable. So the FSM described is the only solution. 

More details about the comparisons and which are the parts of memory bank 

compared are presented in sector 4.2, which describes the implementation of 

“Crossbar”. 

 
while 

(1) 1st memory access (bytes  1 - 16) & PRENAs comparison 

(2) 2nd memory access (bytes 17 - 31) & 1st comparison 

(3) 2nd comparison 

(4) 3rd comparison 

(5) 4th comparison 

back to while 

 

Figure 4.19. Pipeline Stage procedure 

 

1 2 3 4 5

 
 

Figure 4.20. FSM scheme 
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The signals controlled by this FSM are summarized in Table 4.13. 

 

Signal Component Description 

wrbuffer Crossbar Write enable of latch 

dsit Crossbar Control signal of deMUX 

compNo  Crossbar Control signal of MUXs 

control Byte MUX 2-1 x 16 Control signal of MUXs 

prena1RegLdEn PRENA1 Register Enable of Register 

prena2RegLdEn PRENA2 Register Enable of Register 

prena3RegLdEn PRENA3 Register Enable of Register 

prena4RegLdEn PRENA4 Register Enable of Register 

firstbyte1 Pipeline Stage Comparator 1 Situation of first byte in memory 

bank (used in concatenation circuit 

for creating the final result) 

Firstbyte2 Pipeline Stage Comparator 2 Situation of first byte in memory 

bank (used in concatenation circuit 

for creating the final result) 

Firstbyte3 Pipeline Stage Comparator 3 Situation of first byte in memory 

bank (used in concatenation circuit 

for creating the final result) 

Firstbyte4 Pipeline Stage Comparator 4 Situation of first byte in memory 

bank (used in concatenation circuit 

for creating the final result) 

 

Table 4.13. Signals controlled by FSM 

 

 

4.9 Pipeline Stage 
 

 

Pipeline Stage is a component of a higher level than those previously described. 

Especially, it contains all the components described above; a memory (two BRAMs), 

a Crossbar, four Pipeline Stage Comparators, a Byte MUX 2-1 x 16, a Longest Match 

Circuit (Comparator 4-1), a Longest Match (Comparator 2-1) and some Pipeline 

Registers presented in sector 4.7. The connections between these components are 

described in the specific sectors and summarized in the Figure 4.21. 

Moreover, this figure does not show the FSM which is placed for controlling the 

procedure of each Pipeline Stage. The FSM used is described in details in sector 4.8. 
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Figure 4.21. Block diagram of a Pipeline stage. Wire widths are in Bytes. 

 

Pipeline Stage Interface is presented in Figure 4.22 and more details about signal 

functionality are presented in Table 4.14. 

 

PIPELINE STAGE

addrin (15)

bufferin (128)

prena1in (16)

prena2in (16)

prena3in (16)
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addrout (15)

bufferout (128)

prena2out (16)

prena1out (16)

prena3out (16)

prena4out (16)

lonmaout (16)

clk reset
 

 

Figure 4.22. Pipeline Stage Interface 
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Signal Width (bits) Type Description 

clk 1 Input Clock signal of system 

reset 1 Input System reset 

addrin 15 Input Memory address input 

bufferin 128 Input Look-ahead buffer input 

prena1in 16 Input PRENA1 input 

prena2in 16 Input PRENA2 input 

prena3in 16 Input PRENA3 input 

prena4in 16 Input PRENA4 input 

lonmain 16 Input LONMA input 

addrout 15 Output Memory address output 

bufferout 128 Output Look-ahead buffer output 

prena1out 16 Output PRENA1 output 

prena2out 16 Output PRENA2 output 

prena3out 16 Output PRENA3 output 

prena4out 16 Output PRENA4 output 

lonmaout 16 Output LONMA output 

 

Table 4.14. Pipeline Stage pinout 

 

 

4.10  Compressor 
 

 

Compressor is the top level of this system. The main characteristics of the architecture 

used are: 

 256 pipeline stages placed in row (the outputs of pipeline stage n are 

connected to the inputs of pipeline stage n+1) 

 16 comparisons in parallel in every pipeline stage (increasing the 

comparisons‟ latency help us to improve the speed of the device). 

 Memory repetition (100% memory overhead) for higher memory throughput 

and, consequently, higher speed. 

This architecture is showed in Figure 4.23. 

 

The interface of the device is similar to the one of the lower level (Pipeline Stage), 

because the inputs of the device are connected to the inputs of the first pipeline stage 

and the outputs of 256
th

 pipeline stage to the outputs of compressor. Figure 4.24 

shows the interface described above. In addition, more details about the signals of this 

figure are given in Table 4.15. 
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Figure 4.23. Compressor Architecture 
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Figure 4.24. Compressor Interface 

 

Signal Width (bits) Type Description 

clk 1 Input Clock signal of system 

reset 1 Input System reset 

addrin 15 Input Memory address input 

bufferin 128 Input Look-ahead buffer input 

prena1in 16 Input PRENA1 input 

prena2in 16 Input PRENA2 input 

prena3in 16 Input PRENA3 input 

prena4in 16 Input PRENA4 input 

lonmain 16 Input LONMA input 

addrout 15 Output Memory address output 

bufferout 128 Output Look-ahead buffer output 

prena1out 16 Output PRENA1 output 

prena2out 16 Output PRENA2 output 

prena3out 16 Output PRENA3 output 

prena4out 16 Output PRENA4 output 

lonmaout 16 Output LONMA output 

 

Table 4.15. Compressor Interface 

 

The architecture described before and showed in Figure 4.23 is the optimal, but, in 

practice, it cannot be implemented because of the device utilization constraint. 

According to the measurements, 512 BRAMs must be used, but the largest FPGA 

today has only 336 and 20% more logic cells than the same FPGA has. So it is 

essential to find an alternative solution for implementing the compressor with 256 

pipeline stages. The solution found is to implement the compressor on two FPGAs 

(half of the compressor on each one). The connection between them is implemented 

using an external interface. This architecture can be created because of the low system 

frequency (around 50 MHz) and it will be easy to create the external interface needed. 

This final architecture for the compressor is showed in Figure 4.25. 
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Figure 4.25. Compressor Architecture (with device utilization constraint) 

 

 

4.11  Optimizations 
 

 

Regardless the throughput derived from the main design described above is 

satisfactory, some experiments conclude that the performance can be improved. So it 

is essential to make some improvements – optimizations. The experiments show that 

the critical path of this device is the FLM
(11)

 Circuit, the counter placed in Pipeline 

Stage Comparator for counting the number of equal bytes in row, which is 

predictable, because includes 16 steps, each one for every byte. Each step includes an 

adder, a comparator and some multipliers and all steps must be serial, because 

everyone needs the result derived from the previous one. Consequently, the work is 

concentrated in this component to improve the performance of the device. The 

remainder of this sector describes the optimizations chosen to be done in FLM Circuit 

for higher speed of the device. 

 

 
(11) FLM: Find Longest Match 

 

 

4.11.1  Optimization 1 – Pipelined FLM (16 pipeline stages) 
 

The first thought is to make a fully pipelined FLM Circuit with 16 pipeline stages, 

each of which will be used for the calculation of a byte, but this is not potential, 

because this implementation leads us to a design, which needs 40 – 45 % more logic 

cells than the largest FPGA has available. This constraint leads us to characterize this 

attempt a failure and go on finding a different approach. 

 

4.11.2  Optimization 2 – Pipelined FLM (8 pipeline stages) 
 

After the previous futile attempt, it is decided to decrease the number of pipeline 

stages of this component. So 8-stage pipelined FLM Circuit is tested and the results 

show that it can be implemented using the available logic cells. Every stage must be 

responsible for calculating two bytes and designed for this purpose. It concludes an 
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adder, a comparator and two multiplexers for the calculation of every byte. The 

architecture used for implementing a FLM pipeline stage is showed in Figure 4.26. 
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Figure 4.26. FLM Pipeline Stage Architecture 

 

The adders increase the previously calculated match by 1 and create the new match, 

which is chosen if the specific bytes are equal. Otherwise, the new match is initialized 

to 0. This procedure is implemented with the use of two multipliers (one for each byte 

calculation). The first one selects the specific bit (refers to the specific bytes) from the 

bitstream (output of 16-Byte Comparator), which shows if the bytes are equal („1‟) or 

not („0‟). The second one gets as inputs the increased match and the constant “0000” 

and chooses the new match according to the result of the previous multiplier (if „1‟, 

output is the increased match, else the constant “0000”). Furthermore, the new match 

is compared with the longest one calculated at the previous pipeline stages. Finally, 

bitstream and memory address go through the next pipeline stages; the bitstream for 

the selectors of multipliers in following pipeline stages and the memory address for 

the creation of final result in concatenation circuit. 

Apart from the changes in the architecture, the procedure followed by each pipeline 

stage must be changed. So the FSM of the system is changed. The procedure still lasts 

five cycles, but there are 8 cycles needed for the initialization of every pipeline stage 

because of the 8-stage pipelined FLM circuit and, consequently, the increased latency 

of the device. Figure 4.27 shows the state sequence of the new FSM and Figure 4.28 

presents more information about the procedure followed. 

 

1 2 3 4 5

13 12 11 10 9

6 7

8

 
 

Figure 4.27. FSM scheme (optimized system) 
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(1) 1st memory access (bytes 1-16) & PRENAs Comparison (MUX) 

(2) 2nd memory access (bytes 17-31), 1st comparison (Crossbar) & 

PRENAs Comparison (MUX) 

(3) 2nd comparison (Crossbar) & PRENAs Comparison (MUX) 

(4) 3rd comparison (Crossbar) & PRENAs Comparison (MUX) 

(5) 4th comparison (Crossbar) & PRENAs Comparison (MUX) 

(6) 1st memory access (bytes 1-16) & PRENAs Comparison (MUX) 

(7) 2nd memory access (bytes 17-31), 1st comparison (Crossbar) & 

PRENAs Comparison (MUX) 

(8) 2nd comparison (Crossbar) & PRENAs Comparison (MUX) 

while 

(9) 3rd comparison (Crossbar) & PRENAs Comparison (MUX) 

(10) 4th comparison (Crossbar) & 1st comparison (MUX) 

(11) 1st memory access (bytes 1-16) & 2nd comparison (MUX) 

(12) 2nd memory access (bytes 17-31), 1st comparison (Crossbar) & 

3rd comparison (MUX) 

(13) 2nd comparison (Crossbar) & 4th comparison (MUX) 

back to while 

 

Figure 4.28. Pipeline Stage procedure (optimized system) 

 

This time, the procedure is divided in three parts, in contrast to the procedure 

previously described which is divided in the two parts. The first part is referred to the 

memory use, the second one to the part before the FLM circuit (as refer to the choice 

of crossbar which leads Pipeline Stage Comparators) and the third one to the part after 

it (as refer to the selection of Byte MUX 2-1 x 16). 
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5 
 

 

Performance, Conclusions 

& Future Work 
 

 

 

 

In this chapter, a performance comparison will be made between FPGA 

implementation of Titan-R and the results published by X-MatchPRO implementation 

in [8]. Furthermore, this chapter summarizes the work and the conclusions and 

suggests areas for further study. 

 

 

5.1 Performance 
 

 

This section is divided in two parts; the first one presents the results published by X-

MatchPRO implementation and the second one provides the performance of this 

implementation plus the utilization of the device used. 

 

5.1.1 X-MatchPRO Performance 
 

As refer to X-MatchPRO implementation, two data sets have been chosen as 

representatives of network and computer-originated traffic: the memory data set is 

formed by data captured directly from main memory in a UNIX workstation used in 

an engineering environment. The disc data set is formed by typical data found in the 

hard disk of the same workstation. 

Figures 5.1 and 5.2 show the compression performance comparison. It is common in 

networking and storage applications that data is present in small packets so the 

performance of these algorithms is evaluated in function of four different block sizes 

plus file-based compression. The “Y” axis is the compression ratio defined as the ratio 

output bits / input bits so the smaller the figure the better the compression. The “X” 

axis is the block size defined as the number of bytes in a block data to be compressed 

independently. This means that the dictionary is cleared each time a data block is 

processed. Memory data exhibits a strong 32-bit granularity because it is based on a 

32-bit operating system so it suits well the X-MatchPRO algorithm. Compression 

improves with block size until a 4-Kbyte block size is used. This is a natural block 

size for memory pages and further increases in block size do not improve compression 

significantly. 
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Figure 5.1. Compression performance on the memory data set 

 

 
 

Figure 5.2. Compression performance on the disc data set 
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The disc data set of Figure 5.2 is more textually bias with a lot of database 

information so byte-oriented methods such as LZ derivatives have an advantage. It 

shows that compression improves with packet size until around 16 kB for the LZ-

derivatives and 4 kB for X-MatchPRO. The smaller X-MatchPRO dictionaries tend to 

saturate earlier than their LZ equivalents. 

Table 5.1 shows a summary of the features of lossless data compression devices. X-

MatchPRO results are based on three different dictionary sizes: 16, 32 and 64 

locations. A dictionary larger than 64 locations improves compression but the flip-

flop rich architecture of the dictionary demands larger FPGAs. It is also necessary to 

replace the uniform binary coding of the match locations by a more complex coding 

technique. Otherwise, the extra number of bits required to code the match locations in 

a large dictionary damages the compression ratio specially when compressing small 

packets. These three implementations trade complexity for compression while speed 

remains invariant. Table 5.1 summarizes the characteristics of the X-MatchPRO 

algorithm as implemented in Xilinx, Altera and Actel technologies. The complexity 

figures correspond to the dictionary with 16 entries. Doubling the dictionary size 

increases chip complexity by a factor of 1.5 approximately. 

 

DEVELOPERS System Design 

Group 

Loughborough 

University 

CHIP X-MatchPROv4 (16-word dictionary) 

PROCESS 0.18 micron 

SRAM-CMOS 

FPGA 

Xilinx 

VIRTEX-E 

0.18 micron 

SRAM-CMOS 

FPGA 

Altera 

APEX20KE 

0.25 micron 

FLASH-CMOS 

FPGA 

Actel 

A500K 

ProASIC 

COMPLEXITY 5367 LUT‟s 

55% of a 

XCV400EBG 

432-8 

5040 LC‟s 

60% of a 

EP20K200EFC 

484-1 

9039 TILE‟s 

70% of a 

A500K130- 

BG456 

CLOCK 

SPEED 

50 MHz 50 MHz 25 MHz 

THROUGHPUT 200 Mbytes/s 200 Mbytes/s 100 Mbytes/s 

FULL-DUPLEX 

PERFORMANCE 

400 Mbytes/s 400 Mbytes/s 200 Mbytes/s 

ALGORITHM X-MatchPRO X-MatchPRO X-MatchPRO 

EXTERNAL RAM 

REQUIRED 

NO NO NO 

COMPRESSION 

RATION 

0.58 16 word 

0.53 32 word 

0.51 64 word 

0.58 16 word 

0.53 32 word 

0.51 64 word 

0.58 16 word 

0.53 32 word 

0.51 64 word 

 

Table 5.1. X-MatchPROv4 Performance Summary 
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The X-MatchPRO chips use a lower-clock frequency than the ASIC implementations, 

but it can achieve higher throughput thanks to its internal parallel architecture able to 

process 4 B of input information in a single cycle while all the other solutions only 

process a single byte. All these chips use CAM circuits to implement the dictionaries 

and in the case of the fastest X-MatchPRO chips, each input symbol can be processed 

in a single cycle. Adaptation in the fast LZ1 implementations is based on keeping a 

window with the most recently seen symbols in the dictionary. Symbols enter and 

leave the dictionary in a FIFO
(12)

 style, so model adaptation is simplified if compared 

with X-MatchPRO, where the best match must be resolved before the model is ready 

for a new cycle. X-MatchPRO solves the adaptation feedback loop that exists in its 

model with the use of the out-of-date adaptation mechanism that delays the arrival of 

match information to the dictionary by one cycle without affecting its efficiency. The 

packing and unpacking of compressed data is also simple in ASIC devices because 

they map variable-length streams of symbols to fixed length codewords so the 

boundaries between codewords are easily identifiable. On the other hand, X-

MatchPRO codewords are variable in length and their unpacking is a more complex 

process and indeed, a performance limitation factor in the chip. The complexity and 

performance of the Altera Apex and Xilinx Virtex chips is comparable because both 

use a hierarchical architecture with SRAM switches based on logic cells (Altera) or 

logic elements (Virtex) with similar complexity and identical feature size. Actel 

ProASIC devices, on the other hand, use a flat architecture with fine-grained logic 

cells that increases routing complexity and negatively affects performance. ProASIC 

feature size is also larger than the Xilinx and Altera feature size and this is also a 

reason for lower performance. 

To sum up, X-MatchPRO offers an unprecedented level of 

compression/decompression throughput in a FPGA implementation of a lossless data-

compression algorithm for general applications. The hardware architectures have been 

verified in three different FPGA technologies. The fine granularity of the Actel 

ProASIC devices has proven very efficient to implement the flip-flop rich X-

MatchPRO architecture. The higher granularity of the Altera and Xilinx technologies 

combined with a more advanced process has enabled throughputs well over the Gbit/s 

mark. The full-duplex implementation effectively uses the memory resources 

available in these FPGAs to simultaneously handle a compressed and uncompressed 

data stream. The architecture is easily scalable so it can be adapted to newer FPGAs 

with higher gate counts with little effort. The aim is to improve compression for the 

disk data set by increasing dictionary length and introducing more efficient coding 

techniques than simple uniform binary coding for the match locations. It is also 

expected that an ASIC implementation of this algorithm will be able to improve 

throughput by a typical factor of 3, if compared with a similar feature size FPGA. 

 
(12) FIFO: first-in/ first-out 

 

5.1.2 Titan II Performance 
 

This section presents Titan II, which is the second version of an ASIC implementation 

of a high-speed compressor. Titan II developed by Y. Papaefstathiou and has the same 

architecture with Titan-R described in previous chapters. This implementation 

performance is only presented for reference, because any comparison between ASIC 

and FPGA implementation has no sense. 
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5.1.2.1 Performance versus hardware cost 

 

To calculate the silicon area and the timing characteristics, the design was synthesized 

(using Synopsys Design Compiler V, http://www.synopsys.com), and placed and 

routed (using Silicon Ensemble-PKS, http://www.cadence.com) for UMC‟s 0.18-μm-

CMOS technology, with a worst-case 2-input NAND gate delay of 0.25 ns, and a 

worst-case memory latency of 2.45 ns. The Titan II was initially designed for 1-Gbps 

networks. By using all the speedup factors described earlier, the compressor can 

indeed process data at a constant speed of more than 1 Gbps (1.17 Gbps), introducing 

a latency of 256 clock cycles or a few mean packet times. For this design to be usable 

in multigigabit networks (for example, 2.5 Gbps to 10 Gbps), the only alteration 

needed is to use 256 comparators in each pipeline stage instead of 64, letting the 

device perform all the necessary comparisons simultaneously. When using 256 

comparators in each pipeline stage, the latency is slightly less than 3 ns, allowing 

Titan II to work with a clock rate of 333 MHz. As a result, every compressor can 

process data at a rate of more than 2.5 Gbps (2.63 Gbps). By plugging four of these 

compressors in parallel (and using the compressibility table to load-balance flows to 

compression units), the system developer can achieve a 10-Gbps total throughput. 

Obviously, in this case, the system administrator should take care to initialize the 

compressibility table such that it optimizes the load balancing. The far simpler 

decompression unit can process data at 2.7 Gbps without any alterations to its 

architecture. Consequently, to process data at a full-duplex rate of 10 Gbps, a 

compression or decompression system requires four pairs of compression and 

decompression units. 

 

5.1.2.2 Silicon area versus compression gain 

 

Using the network data presented earlier and altering the Titan II‟s hardware modules 

produced the results in Figure 5.3. A full-featured, single-dictionary device that can 

simultaneously compress data at 2.5 Gbps and decompress packets at 2.7 Gbps 

requires 230-Kbyte gates and 96-Kbyte, 1-bit SRAM cells. Consequently, using the 

0.18-μm technology, this device is about 5.5 mm2. Moreover, a 10-Gbps device (with 

four cores operating in parallel) can easily fit in a 25-mm2 die (5 mm Χ 5 mm). If less 

die area is available, the chip‟s dimensions can be reduced, by reducing memory 

repetition (so that not all possible matches will be examined) and the sizes of the 

supported dictionaries. Reducing the die area results in lower compression gains, as 

Figure 9 clearly demonstrates. In particular, reducing the device‟s dimensions by a 

factor of four reduces the compression gain by about 30%; thus, if 2 mm2 are 

available, the worst HTTP traffic compression gain decreases from 48% to 35%. 

 

http://www.synopsys.com/
http://www.cadence.com/


78 

 

 
 

Figure 5.3. Results of using a 0.18−μm technology against the worst-case 

compression gain: die area in mm2 (a) and gate count (b). 

 

5.1.2.3 Silicon area versus throughput 

 

If the device is to be used on a lower-bandwidth IP network, the required silicon area 

would be reduced proportionally to the requested throughput. Because this increases 

the number of clock cycles for each major cycle, the device should perform fewer 

comparisons in parallel, and therefore requires fewer comparators. In fact, the number 

of comparators decreases proportionally to the decrease in bandwidth. Figure 10 

shows this trade-off. Therefore, on a 2.5-Gbps network, the device requires 230-Kbyte 

gates and 96-Kbyte 1-bit SRAM cells. If the bandwidth serviced is 1.25 Gbps, the 

device needs 180-Kbyte gates and 102-Kbyte 1-bit SRAM cells. In general, reducing 

the gate count by 25% halves the device‟s bandwidth. For lower than 250-Mbps 

speeds, a slightly different architecture is used, and thus its silicon area estimations 

are not included in Figure 5.4. 
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Figure 5.4. Gate and 1-bit SRAM count against device throughput. 

 

Because the proposed compression system is highly flexible, it can also be used in 

lower-end networking systems, such as office gateways, to reduce contention on the 

link connected to the third-party network provider, thus making those gateway 

systems more effective. I am currently extending the proposed design approach to 

lower-speed access networks, especially wireless, where I expect to see similar 

benefits. When creating an efficient compression device in a wireless environment, 

special care should be taken to reduce the device‟s power consumption. I am therefore 

fine-tuning the overall architecture as well as the micro-organization of the various 

submodules to consume the least power possible. 

 

5.1.3 Titan-R Performance 
 

In previous chapters, the Titan-R architecture is presented. We present the idea on 

which the architecture is based and then we describe the design process and the 

implementation of it. Also, we propose an idea in order to improve the throughput of 

it. Now, we have to evaluate it and present the area cost as well as the performance 

and the throughput. These values will give us a clear view of the quality of our design. 

Furthermore, we will compare our design with X-MatchPRO architecture. 

First of all, Xilinx ISE 9.1i was used in order to develop, synthesize and implement 

our design and ModelSim 6.0a in order to verify its correct functionality. The device 

family used is Virtex5, the device is “XC5VLX330T” and the device speed is -2. 

After completing the implementation we measure the area cost and the performance 

using the synthesis and place and route tools of ISE.  

Before starting the evaluation of our design and presenting the results, we will give 

some information to the readers about the metrics we use in order to evaluate our 

system. The metric we used to measure the area cost is the number of Slice LUT‟s and 

Logic Cells (LC‟s). The number of Slice LUTs is the number of the Reported Slices 

multiplied by a factor of 4. Moreover, the number of BRAMs used is another metric 

measured for evaluating the memory cost. 
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Furthermore, some metrics are used in order to measure the speed of our design. 

Using Xilinx ISE synthesis tools, the Performance (Operating Frequency) of the 

system is measured. Multiplying this Frequency with the input bits of the system per 

cycle, the Throughput is calculated. Throughput is used widely by most researchers in 

order to evaluate their research. Another metric which shows the compression quality 

is the compression ratio which is defined as the ratio output bits / input bits, so the 

smaller the figure the better the compression. 

This section contains, at first, area and memory evaluation and utilization. Then we 

evaluate the Performance of our system. At paragraph 5.1.1, X-MatchPRO 

Architecture is evaluated by combining Area, Memory and Performance results. 

Finally, our implementation is compared with related work. 

 

First of all, the area cost for every structure of the Titan-R Architecture is shown in 

Tables 5.2 – 5.7. 

 

Structure No of Logic Cells 

Default design Optimized design 

1-bit adder carry out: 512 - 

2-bit adder: 512 - 

2-bit adder carry out: 512 - 

3-bit adder: 1536 - 

3-bit adder carry out: 512 - 

4-bit adder: 3584 8192 

4-bit adder carry out: 512 - 

Total (Adders/Subtractors): 7680 8192 

 

Table 5.2. Adders/Subtractors Logic Cells Utilization 

 

Structure No of Logic Cells 

Default design Optimized design 

128-bit register: 128 128 

15-bit register: 128 128 

16-bit register: 640 4224 

4-bit register: - 7680 

8-bit register: - 4096 

Total (# Registers): 896 16256 

 

Table 5.3. Registers Logic Cells Utilization 

Structure No of Logic Cells 

Default design Optimized design 

1-bit latch 31744 31744 

Total (# Latches): 31744 31744 

 

Table 5.4. Latches Logic Cells Utilization 
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Structure No of Logic Cells 

Default design Optimized design 

2-bit comparator greater 1024 - 

3-bit comparator greater 2048 - 

4-bit comparator greater 4608 8704 

5-bit comparator greater 512 - 

Total (# Comparators): 8192 8704 

 

Table 5.5. Comparators Logic Cells Utilization 

 

Structure No of Logic Cells 

Default design Optimized design 

1-bit 16-to-1 multiplexer - 8192 

Total (# Multiplexers): - 8192 

 

Table 5.6. Multiplexers Logic Cells Utilization 

 

Structure No of Logic Cells 

Default design Optimized design 

1-bit xor2 65536 65536 

Total (# Xors): 65536 65536 

 

Table 5.7. Xors Logic Cells Utilization 

 

After “Synthesize XST” and “Place & Route” processes, some measurements for the 

device utilization of Titan-R implementations are derived. The results of these 

measurements of both implementations are presented in Tables 5.8 – 5.11. Especially, 

Tables 5.8, 5.9, 5.10 and 5.11 show Slice Logic Utilization, Slice Logic Distribution, 

I/O Utilization and Specific Feature Utilization of the device, respectively. 

 

 Default design Optimized design 

Number of Slice Registers 

(out of 207360) 

60672 

(28%) 

124304 

(56%) 

Number of Slice LUTs 

(out of 207360) 

126938 

(60%) 

116440 

(56%) 

Number used as Logic 

(out of 207360) 

126938 

(60%) 

116440 

(56%) 

 

Table 5.8. Slice Logic Utilization 
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 Default design Optimized design 

Number of Bit Slices used 181546 199632 

Number with an unused Flip 

Flop 

120874 

(66%) 

75328 

(37%) 

Number with an unused LUT 54608 

(30%) 

83192 

(41%) 

Number of fully used Bit Slices 6064 

(3%) 

41112 

(20%) 

 

Table 5.9. Slice Logic Distribution 

 

 Default design Optimized design 

Number of IOs 448 448 

Number of bonded IOBs                

(out of 960) 

448 

(46%) 

448 

(46%) 

IOB Flip Flops/Latches - - 

 

Table 5.10. I/O Utilization 

 

 Default design Optimized design 

Number of Block RAM/FIFO 

(out of 324) 

256 

(79%) 

256 

(79%) 

Number of 

BUFG/BUFGCTRLs 

(out of 32) 

16 

(50%) 

3 

(9%) 

 

Table 5.11. Specific Feature Utilization 

 

Except for the device utilization measurements, some measurements referred to the 

performance of the device are carried out. Table 5.12 shows the timing summary 

derived from these measurements. 

 

 Default design Optimized design 

Minimum period (ns) 20.274 5.976 

Maximum Frequency (MHz) 49.323 167.343 

Minimum input arrival time 

before clock (ns) 

18.643 6.274 

Maximum output required time 

after clock (ns) 

2.799 2.799 

Maximum combinational path 

delay (ns) 

0.962 0.957 

 

Table 5.12. Timing Summary (Speed Grade: -2) 
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Regardless of the low clock frequency of this device for both implementations 

(around 49 MHz for the default implementation and 167 MHz for the optimized one), 

a great throughput value is achieved thanks to the architecture used which achieves a 

high level of parallelism. The throughput achieved is 2.525 Gb/s for the default design 

and 8.566 Gb/s for the optimized one. 

Furthermore, the compression ratio is calculated by the division of the compressed 

size and the raw size. In this device, the values of compression ratio are derived from 

the Titan II hardware simulator according to the trace size. 

Finally, the performance summary of Titan-R implementations (including the values 

of compression ratio) is presented in Table 5.13. 

 

DEVELOPERS Microprocessor & Hardware Laboratory 

Technical University of Crete 

CHIP Titan-R 

Default design Optimized design 

PROCESS FPGA 

Xilinx 

VIRTEX5 

FPGA 

Xilinx 

VIRTEX5 

COMPLEXITY 126938 LUT‟s 

60% of a 

XC5VLX330T 

116440 LUT‟s 

56% of a 

XC5VLX330T 

CLOCK 

SPEED 

49.323 MHz 167.343 MHz 

THROUGHPUT 2.525 Gb/s 8.566 Gb/s 

ALGORITHM LZ77 LZ77 

EXTERNAL RAM 

REQUIRED 

NO NO 

COMPRESSION 

RATION 

0.3253 (Trace size: 2.965) 

0.4377 (Trace size: 1.714) 

0.4398 (Trace size: 3.339) 

0.3452 (Trace size: 1.846) 

0.4629 (Trace size: 1.582) 

0.3253 (Trace size: 2.965) 

0.4377 (Trace size: 1.714) 

0.4398 (Trace size: 3.339) 

0.3452 (Trace size: 1.846) 

0.4629 (Trace size: 1.582) 

 

Table 5.13. Titan-R Performance Summary 

 

Except for the measurements carried out on the whole system, some other 

measurements were done using devices with less pipeline stages for computing the 

performance achieved. The main advantage of these devices is that they need 

decreased area cost and can be implemented in smaller (and cheaper) FPGA devices. 

These implementations have much lower throughputs, but they may be useful 

according to the application. So, we chose to measure four implementations of 16, 32, 

64 and 128 pipeline stages implemented in Spartan3, Virtex2P, Virtex4 and Virtex5 

families, respectively. Tables 5.14 and 5.15 show the performance summary of these 

devices as refer to the default and optimized design, respectively. 
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DEVELOPERS Microprocessor & Hardware Laboratory 

Technical University of Crete 

CHIP Titan-R (default design) 

PIPELINE 

STAGES 

16 32 64 128 

PROCESS FPGA 

Xilinx 

SPARTAN3 

FPGA 

Xilinx 

VIRTEX2P 

FPGA 

Xilinx 

VIRTEX4 

FPGA 

Xilinx 

VIRTEX5 

COMPLEXITY 28592 LUT‟s 

69% of a 

XC3S2000 

54759 LUT‟s 

82% of a 

XC2VP70 

113640 LUT‟s  

84% of a 

XC4VLX160 

126938 LUT‟s 

60% of a 

XC5VLX330T 

CLOCK 

SPEED 

20.641 MHz 

(Speed grade: 

-5) 

35.525 MHz 

(Speed grade: 

-7) 

43.424 MHz 

(Speed grade: 

-12) 

49.323 MHz 

(Speed grade: 

-2) 

THROUGHPUT 66.051 Mb/s 227.36 Mb/s 555.827 Mb/s 1.263 Gb/s 

 

Table 5.14. Devices with less pipeline stages Performance Summary 

(default design) 

 

DEVELOPERS Microprocessor & Hardware Laboratory 

Technical University of Crete 

CHIP Titan-R (optimized design) 

PIPELINE 

STAGES 

16 32 64 128 

PROCESS FPGA 

Xilinx 

SPARTAN3 

FPGA 

Xilinx 

VIRTEX2P 

FPGA 

Xilinx 

VIRTEX4 

FPGA 

Xilinx 

VIRTEX5 

COMPLEXITY 24359 LUT‟s 

59% of a 

XC3S2000 

51991 LUT‟s 

78% of a 

XC2VP70 

88972 LUT‟s 

65% of a 

XC4VLX160 

116440 LUT‟s 

56% of a 

XC5VLX330T 

CLOCK 

SPEED 

70.889 MHz 

(Speed grade: 

-5) 

145.427 MHz 

(Speed grade: 

-7) 

150.095 MHz 

(Speed grade: 

-12) 

167.343 MHz 

(Speed grade: 

-2) 

THROUGHPUT 226.845 Mb/s 930.733 Mb/s 1.921 Gb/s 4.283 Gb/s 

 

Table 5.15. Devices with less pipeline stages Performance Summary 

(optimized design) 

 

The final measurements were carried out in designs with less pipeline stages, but this 

time, we used the same FPGA device (XC5VLX330T of Xilinx Virtex5 family). The 

only purpose of these measurements was to compare the performance achieved in all 

these designs. Table 5.16 presents the results for the clock frequency and the 

throughput of these systems. Moreover, Figures 5.5 and 5.6 show the graphs of these 

results. 
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Pipeline 

stages 

Clock Frequency 

(MHz) 

Throughput 

(Mbps) 

 

Default 

design 

Optimized 

design 

Default 

design 

Optimized 

design 

8 52,877 175,108 84,6032 280,1728 

16 49,277 171,174 157,6864 547,7568 

32 47,732 167,343 305,4848 1070,9952 

64 49,323 167,343 631,3344 2141,9904 

96 48,51 167,343 931,392 3212,9856 

128 49,323 167,343 1262,6688 4283,9808 

 

Table 5.16. Clock Frequency and Throughput measurement results 

 

 
 

Figure 5.5. Clock Frequency Graph 

 

 
 

Figure 5.6. Throughput Graph 
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The final step of the procedure of system development was the simulation in order to 

verify the correct functionality of the system. The simulator used was Modelsim 6.0a. 

The system is simulated by using many different testbenches, which are divided in 

three main categories. The first category included testbenches chosen for having no 

match (longest match equal to zero) or low value of longest match, the second one 

included those with high value of longest match or full match (longest match equal to 

16) and the third one included testbenches chosen in random or hierarchical method. 

Hierarchical testbenches was chosen for having linearly increased longest match 

according to the time. All the testbenches used show that the system works properly in 

every situation with the same good performance. 

 

 

5.2 Conclusions 
 

 

In this work, we developed the Titan-R Architecture which is an FPGA-based IPcomp 

Processor for high-speed networks. Two were the implementations proposed for 

creating Titan-R; the first one was the default implementation with a simple counter in 

Pipeline Stage Comparator which serially counts the longest match between two 16 

bytes long vectors and the other one was to use a pipelined counter (with 8 pipeline 

stages) instead of the simple one for improving the performance of the system. The 

main goal of this thesis was to improve, as much as it was possible, the performance 

of this device and, especially, to increase the value of the throughput. That was the 

motivation for creating the optimized version of Titan-R. 

The results obtained from the implementations of the device are encouraging, 

regarding they are compared to those reported by other systems as X-MatchPRO 

architecture. We achieved to develop a system with higher throughput and lower 

compression ratio (better compression) trading the area and memory cost and the 

latency of the system. The default implementation achieves a value of throughput 

around to 2.5 Gb/s and compression ratio lower than that proposed to the related 

work, but a large FPGA device with 60% LUT‟s Utilization and 79% BRAM‟s 

Utilization is used. Moreover, the latency is very high at a level of 256. Then, the 

optimized implementation achieves to improve the value of throughput around to 8.5 

Gb/s by keeping the compression ratio and the device utilization at the same levels, 

but the main drawback of this implementation is that it increases the latency of the 

system and, especially, multiplies it by a factor of 8, due to the 8 pipeline stages used 

for implementing the counter (FLM circuit) in Pipeline Stage Comparator of every 

Pipeline Stage of the whole system. The new value of latency is 256 x 8 = 2048. 
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5.3 Future Work 
 

 

Regardless of the encouraging results derived from the above implementations, there 

are some things necessary for the further development of the system. 

The first idea is to implement the decompression unit by using the implementations of 

the compression one, which is not so complex, because the decompression unit is 

much simpler than the compression one and does not need to compare the input data 

to the dictionary data. It simply maintains the compressibility table and a 4-Kbyte 

dictionary for each compressible flow. 

Another idea is to develop an interface with both the two units (compression and 

decompression one), which will dynamically change according to the operation 

needed. This interface is going to be developed by using dynamic reconfiguration. 

Moreover, it might be useful to implement and simulate it on board, which is going to 

help us to see the full operation of this device and how useful it may be. 

Another idea would be to connect many FPGAs in parallel in order to improve the 

performance of the system, because parallel processing will enable us to increase the 

throughput. 

Furthermore, it may be useful a further study in I/O Interface. The first idea would be 

to choose external pins for being responsible for the communication of the system 

with the external world, but, this may cause to the performance of the system. So we 

must find other solutions for implementing the I/O issue. Serial and Ethernet ports, 

which are contained in modern FPGA devices, would be alternative solutions for 

solving this problem, but we do not know if there will be an impact on the 

performance. 

Another subject for further research will be to make some measurements for the 

energy cost. This device trades area and memory cost for improving its performance 

(throughput), so it will be very useful to know the amount of the energy which is 

spent for achieving this high value of throughput. 

To sum up, these extensions lead closer to an efficient FPGA implementation of 

Titan-R. 
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