

ΠΟΛΤΣΕΧΝΕΙΟ ΚΡΗΣΗ΢

ΣΜΗΜΑ ΗΛΕΚΣΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΗΛΕΚΣΡΟΝΙΚΩΝ ΤΠΟΛΟΓΙ΢ΣΩΝ

Διπλωματική Εργαςία

«Παραλληλοποίηςη αλγορίθμου Bayesian

Intrapersonal/Extrapersonal Classifier για εκτέλεςη

ςτον πολυεπεξεργαςτή Cell Broadband Engine»

ΠΕΛΕΚΑΝΟ΢ ΝΕΚΣΑΡΙΟ΢

ΕΞΕΣΑ΢ΣΙΚΗ ΕΠΙΣΡΟΠΗ

Παπαευςταθίου Ιωάννησ, Επίκουροσ Καθηγητήσ Π.Κ. (Επιβλέπων)

Δόλλασ Απόςτολοσ, Καθηγητήσ Π.Κ.

Πνευματικάτοσ Διονύςιοσ, Αναπληρωτήσ Καθηγητήσ Π.Κ

Microprocessor & Hardware Laboratory 2

Microprocessor & Hardware Laboratory 3

SUMMARY

The slow progress in the performance of the traditional architectures let the high

performance computing community to examine alternative architectures. These

architectures are trying to deal with the limitations of the modern single core cache-

based designs. In this work we examine a new and very promising multicore

architecture, the Cell Broadband Engine Architecture.

The Cell Broadband Engine (Cell) is a multicore processor recently developed by

Sony, Toshiba and IBM. It was originally designed for the Playstation 3 game console,

but its capabilities also make it well suited for various other computation-intensive

applications. The Cell processor is capable of achieving impressive levels of

performance for complex scientific applications. These levels of performance can be

reached by exploiting the several dimensions of parallelism that Cell provides.

In this thesis the computational power of the Cell processor was applied to the face

recognition problem and more specifically to Bayesian Intrapersonal/Extrapersonal

Classifier (BIC), a complex face recognition algorithm based on probabilistic matching

techniques. In order to achieve better performance for the BIC algorithm we

parallelized and optimized the most computation–intensive parts of the algorithm.

During the porting procedure of the algorithm on the Cell processor many problems

were encountered, mostly related with data motion, parallelism levels and

scheduling.

In the final results a considerable improvement of performance was achieved, but

with a significant overhead too, which prevents us from reaching the desirable

results.

Microprocessor & Hardware Laboratory 4

Microprocessor & Hardware Laboratory 5

Table of Contents

CHAPTER 1 - Introduction ... 11

CHAPTER 2 - Platform ... 13

2.1 Cell Processor ... 13

2.1.1 Power Processor Element .. 14

2.1.2 Synergistic Processor Elements ... 15

2.1.3 Element Interconnection Bus .. 18

2.2 PlayStation 3 ... 19

2.2.1 Operating System .. 20

2.2.2 Memory System ... 20

2.2.3 Network Card ... 21

2.2.4 Graphics Card... 21

CHAPTER 3 - Bayesian Intrapersonal/Extrapersonal Classifier Algorithm 22

3.1 CSU Face Identification Evaluation System .. 22

3.2 The Face Recognition Problem ... 22

3.3 BIC Algorithm .. 23

3.3.1 Preprocessing .. 25

3.3.2 Bayesian Train .. 26

3.3.3 Bayesian Project .. 27

3.4 Algorithm Input .. 28

3.5 Algorithm Output ... 28

CHAPTER 4 - Implementation .. 29

4.1 The Programming Model ... 29

4.2 The Application Enablement Process ... 30

4.3 Profiling .. 31

4.4 Matrix Multiplication .. 32

4.5 Data Flow Analysis .. 34

4.6 Development .. 35

4.6.1 Data Partitioning .. 36

Microprocessor & Hardware Laboratory 6

4.6.2 Implementation on x86 Architecture .. 38

4.6.3 Port to PPE ... 38

4.6.4 PPE Control .. 38

4.6.5 DMA Transfers ... 41

4.6.6 Implementation with One & Multiple SPEs ... 45

4.6.7 Code Optimizations ... 46

4.6.8 Join with CSU Bayesian .. 49

4.7 Software Tools Problems ... 52

CHAPTER 5 - Evaluation & Verification .. 54

5.1 Measuring Performance ... 54

5.2 Performance ... 56

5.2.1 Performance of Model Application ... 56

5.2.2 Performance of SPEs .. 62

5.2.3 Total Performance ... 66

5.3 Precision ... 72

5.4 Verification ... 72

CHAPTER 6 - Conclusions & Future Work .. 73

6.1 Conclusions ... 73

6.2 Future Work ... 74

References .. 76

Microprocessor & Hardware Laboratory 7

List of Figures

Figure 1: Cell Broadband Engine Architecture ... 13

Figure 2: PowerPC Processor Element (PPE) block diagram.. 14

Figure 3: Synergistic Processor Element (SPE) block diagram 16

Figure 4: Synergistic Processor Element Architecture ... 17

Figure 5: Element Interconnection Bus ... 18

Figure 6: Intrapersonal/Extrapersonal difference images ... 23

Figure 7: Bayesian similarity.. .. 24

Figure 8: Bayesian Intrapersonal/Extrapersonal Classifier .. 25

Figure 9: Image Preprocessing ... 26

Figure 10: Application enablement process .. 30

Figure 11: Function-wise breakout of BIC applications ... 32

Figure 12: Column-major form .. 33

Figure 13: Development flow .. 35

Figure 14: Horizontal and vertical partitioning .. 36

Figure 15: Fork-Join procedure .. 39

Figure 16: PPE control .. 40

Figure 17: Data transfer to and from the LS .. 42

Figure 18: Data transfer for matrix multiplication ... 44

Figure 19: SIMD vectorization procedure on SPEs code .. 48

Figure 20: Overall scheduling process for CSU Bayesian Train 50

Figure 21: Overall scheduling process for CSU Bayesian Project 51

Figure 22: Performance impact of various optimizations (1) 57

Figure 23: Performance comparison for model application (1) 58

Figure 24: Performance impact of various optimizations (2) 59

Figure 25: Performance comparison for model application (2) 60

Figure 26: Performance impact of various optimizations (3) 61

Figure 27: Performance comparison for model application (3) 62

Figure 28: SPEs total execution time for Bayesian Train application 63

Figure 29: SPEs performance comparison with P4 for Bayesian Train 64

Figure 30: SPEs total execution time for Bayesian Project application 65

Figure 31: SPEs performance comparison with P4 for Bayesian Project 66

Figure 32: Total execution time of the Bayesian Train application 67

Figure 33: Performance comparisons for Bayesian Train .. 68

Figure 34: Total execution time of the Bayesian Project application 70

Figure 35: Performance comparisons for Bayesian Project .. 71

Microprocessor & Hardware Laboratory 8

List of Tables

Table 1: BIC profiling .. 31

Table 2: BIC applications profiling ... 31

Table 3: Matrices dimensions and data size .. 34

Table 4: Matrices dimensions and applications .. 34

Table 5: Submatrices dimensions and data size .. 37

Table 6: DMA transfers summary .. 43

Table 7: Clockticks for transp. matrix mult. (19500x59)x(19500x1) 56

Table 8: Execution time for transp. matrix mult. (19500x59)x(19500x1) 56

Table 9: Clockticks for transp. matrix mult. (19500x100)x(19500x100)...................... 58

Table 10: Execution time for transp. matrix mult. (19500x100)x(19500x100) 59

Table 11: Clockticks for matrix multiplication (19500x100)x(100x100) 61

Table 12: Execution time for matrix multiplication (19500x100)x(100x100) 61

Table 13: Clockticks at SPEs for CSU Bayesian Train .. 63

Table 14: Execution time at SPEs for CSU Bayesian Train ... 63

Table 15: Clockticks at SPEs for CSU Bayesian Project .. 64

Table 16: Execution time at SPEs for CSU Bayesian Project .. 64

Table 17: Total clockticks for CSU Bayesian Train ... 66

Table 18: Total execution time for CSU Bayesian Train ... 67

Table 19: Execution time analysis for CSU Bayesian Train .. 69

Table 20: Total clockticks for CSU Bayesian Project .. 69

Table 21: Total execution time for CSU Bayesian Project ... 69

Table 22: Execution time analysis for CSU Bayesian Project 71

Microprocessor & Hardware Laboratory 9

“You do not really understand something unless you
can explain it to your grandmother.”

– Albert Einstein

Microprocessor & Hardware Laboratory 10

ACKNOWLEDGEMENTS

It would not have been possible to write this thesis without the help and support of

the kind people around me, to only some of whom it is possible to give particular

mention here.

First of all I would like to express my sincere appreciation to my supervisor, professor

I. Papaefstathiou, whose expertise, understanding, and patience, added considerably

to the completion of my thesis.

Besides my supervisor, I would like to thank the rest of my thesis committee,

professors A. Dollas and D. Pnevmatikatos for the assistance they provided at all

levels of my five-year studies.

Very special thanks go to Mr. M. Kimionis, for his help and encouragement during all

the time I was in Microprocessors & Hardware Laboratory.

I must also acknowledge the postgraduate students G. Chrysos and P. Christou for

their important help they offered me in this research.

Many thanks and to all the other members of the Microprocessors & Hardware

Laboratory, postgraduate and undergraduate students, for their help and all the

good times we had together at the laboratory.

And finally I am grateful to Doris for some very special moments when the going was

tough and for her personal support and great patience at all times.

Microprocessor & Hardware Laboratory 11

CHAPTER 1

Introduction

During the last decade high performance computing became very popular; as the

need for more computational power grows high performance computing is trying to

serve these needs. More and more multicore processors are being designed to fulfill

the demands of the market. More processors mean more complex problems for the

processors designers, gate density, power consumption, and efficient memory

hierarchies are some of the problems they are facing. The scientific and industrial

communities are looking for alternative solutions that can keep up with the

insatiable demand of computing cycles and yet have a sustainable market outside

the scientific world.

A major trend in computer architecture is the design of multi-core-systems-on-a-chip

processors which can integrate several identical independent processing units on the

same die, together with network interfaces, acceleration units and other specialized

units. This technological trend is driving the development of high performance

processors that are holding enormous computational power on a single chip. The

burden is now being shifted, from the architecture which is becoming simpler and

more streamlined to the software. Software is now required to extract several forms

of parallelism and directly coordinate a plethora of computational and

communication activities across various levels of memories and functional units. This

is exactly and the purpose of this thesis, to take advantage of the computational

power that a multicore processor offers and use it for the needs of a specific

application. Moreover we are trying to extract the computational power of a

multicore processor through the partial redesign of an existing application in order

to achieve better performance for the application.

The multicore processor that is being used in this project is the Cell Broadband

Engine [1] processor that was jointly developed by IBM, Sony and Toshiba, is the new

member of the IBM Power/PowerPC processor family. The initial target was the

PlayStation 3 game console [2], but its capabilities also make it well suited for

various other computation-intensive applications such as visualization, image and

signal processing, bioinformatics etc [3], [4], [5], [6]. The Cell BE is a heterogeneous

chip with nine cores capable of massive floating point processing, optimized for

Chapter 1 Introduction

Microprocessor & Hardware Laboratory 12

compute-intensive workloads and broadband, rich media applications; for these

characteristics Cell became very popular in the scientific community [7].

As the computational power of multicore processors is increasing, the computation

complexity of the applications is also increasing. The databases are getting extremely

large, as well as and their processing time. One problem that needs to process many

data and is also computationally complex is the face recognition problem. The face

recognition is very popular in many applications such as computer vision, image

analysis, psychology, security, etc. In this thesis an existing application for face

recognition is being used, the Colorado State University (CSU) Face Identification

Evaluation System [8], [9]. This application is evaluating the performance of several

face recognition algorithms, from this collection of algorithms the most complex was

selected, the Bayesian Intrapersonal/Extrapersonal Classifier (BIC) [10], [11], [12].

The purpose was not the complete redesign of the application or the algorithm in

order to be faster, but to execute the BIC algorithm on the Cell processor without

changing the CSU application logic and achieve as much as possible performance.

The approach that was followed in order to accomplish our purpose was to

parallelize only the most time-consuming functions of the algorithm. This was maybe

not the best approach but certainly was the fastest way to port the CSU application

on Cell processor and get a respectable performance improvement.

The rest of this thesis is organized as follows: Chapter 2 introduces the Cell

Broadband Engine processor and the Playstation 3 that was used in the

implementation. Chapter 3 outlines the face recognition problem the CSU

application and the BIC algorithm. Chapter 4 briefly describes the development

process that was followed for the implementation. Chapter 5 presents the final

results of the implementation and Chapter 6 has some conclusions from this work.

Microprocessor & Hardware Laboratory 13

CHAPTER 2

Platform

This chapter describes the platform that was used for the implementation. The Cell

processor, its architecture as well as and the Playstation 3 game console are

described in this chapter. The purpose of the chapter is to introduce the reader to

the architecture of Cell and to the hardware that was used in the implementation.

Many aspects of the implementation that will be discussed later are based on

concepts of this chapter.

2.1 Cell Processor

The Cell Broadband Engine (CBE) [13], known as Cell is a nine-core implementation of

the Cell Broadband Engine Architecture (CBEA) [1], [14], [15], Figure 1 gives an

architectural overview of the Cell B.E. The CBEA is a new architecture that extends

the 64-bit PowerPC Architecture, CBEA and CBE are the results of collaboration

between Sony, Toshiba and IBM (STI), formally started in early 2001.

Figure 1: Cell Broadband Engine Architecture

Chapter 2 Platform

Microprocessor & Hardware Laboratory 14

It was initially designed for the Sony PlayStation 3 (PS3) game console, but rapidly

became famous in the scientific community for its computing capabilities. The Cell

Broadband Engine (Cell B.E.) is a heterogeneous multicore chip that is significantly

different from conventional multiprocessor or multicore architectures. It consists of

a traditional PowerPC microprocessor called Power Processor Element (PPE) that

controls eight SIMD co-processing units called Synergistic Processor Elements (SPEs),

a high speed memory controller, and a high bandwidth bus interface, the Element

Interconnect Bus (EIB), all integrated on a single chip.

2.1.1 Power Processor Element

The Power Processor Element (PPE) [1], [15] is a 64-bit processor representative of

the Power Architecture, optimized for design frequency and power efficiency. The

PPE consists of the Power Processing Unit (PPU) and a Power Processor Storage

Subsystem (PPSS); Figure 2 shows a simple block diagram of the PPE.

Figure 2: PowerPC Processor Element (PPE) block diagram

The PPU deals with instruction control and execution. It includes a 32 KB 2-way set

associative instruction cache and a 32 KB 4-way set associative write-through data

cache. Beside the standard floating point unit (FPU) the PPU also includes a short

Chapter 2 Platform

Microprocessor & Hardware Laboratory 15

vector SIMD engine, VMX [16], an incarnation of the PowerPC Velocity Engine or

AltiVec, a branch unit and a virtual management unit. The PPE’s register file is

comprised of 32 64-bit general purpose registers, 32 64-bit floating-point registers

and 32 128-bit vector registers.

The PPSS handles memory requests from the PPE and external requests to the PPE

from other processors or I/O devices. It includes a unified (instruction and data) 512

KB 8-way set associative write-back cache, various queues and a bus interface unit.

While the PPE uses the PowerPC instruction set and is binary compliant with the

PowerPC 970 architecture [17], its design is substantially different, it is not based on

an existing design on the market today. The PPE is a dual-issue, dual-thread, in-order

processor with a relatively simple architecture, which results in considerably smaller

amount of circuitry than its out-of-order execution counterparts and lower energy

consumption. This can potentially translate to lower performance, especially for

applications heavy in branches. However, the high clock rate, high memory

bandwidth and dual threading capabilities may make up for the potential

performance deficiencies. The PPE seems to provide two independent execution

units to the software layer. In practice the execution resources are shared, but each

thread has its own copy of the architectural state, such as general-purpose registers.

Although clocked at 3.2 GHz PPE looks like a quite potent processor, its main

purpose is to serve as a controller and supervise the other cores on the chip. In a Cell

based system the PPE will run the operating system (OS) and most of the

applications but compute intensive parts of the OS and applications will be offloaded

to the SPEs. Thanks to the PPE’s compliance with the PowerPC architecture, existing

applications can run on the Cell out of the box, and be gradually optimized for

performance using the SPEs (see 2.1.2), rather than written from scratch.

2.1.2 Synergistic Processor Elements

One of the key architecture features that enable the Cell Broadband Engine’s

breakthrough performance is the Synergistic Processor Element (SPE) [18], [19], [15],

[1]. Each of the eight SPE’s consists of a Synergistic Processing Unit (SPU) and a

Memory Flow Controller (MFC); Figure 3 shows a simple block diagram of the SPE.

The SPU deals with instruction control and execution. It includes a single register file

with 128 registers, each one 128 bits wide, a unified 256-KB Local Store (LS), an

instruction-control unit, a load and store unit, two fixed-point units, one floating-

point unit, and a channel-and-DMA interface. Each SPU is an independent processor

with its own program counter and is optimized to run SPE threads spawned by the

Chapter 2 Platform

Microprocessor & Hardware Laboratory 16

PPE. All SPU instructions are inherently SIMD operations that can run at four

different granularities: 16-way 8-bit integers, 8-way 16-bit integers, 4-way 32-bit

integers or single-precision floating-point numbers, or 2-way 64-bit double-precision

floating point numbers [20]. Like the PPU, SPU is an in-order processor with two

instruction pipelines, odd and even. The even pipeline is being devoted to arithmetic

operations and the odd is being devoted to data motion. Particularly the floating

point and fixed point units are on the even pipeline while the rest of the functional

units are on the odd pipeline. Each SPU can issue and complete up to two

instructions per cycle - one per pipeline. For a wide variety of applications, the SPU

can approach this theoretical limit.

Figure 3: Synergistic Processor Element (SPE) block diagram

Unlike the PPE, the SPEs do not have caches. Instead, they have the LS that only they

can see. All code and data for the SPU must be stored within this 256K local area. In

fact, the SPUs cannot “see” the rest of the chip's address space at all. They can't

access each others' local stores nor can they access the PPE's caches or other on-chip

or off-chip resources. Each SPU fetches instructions from its own LS and it loads and

stores data from and to its own LS, it cannot access main memory directly, but it has

to issue DMA commands to the MFC to bring data into the LS or write results back to

main storage (main memory, other SPEs’ LS, and memory-mapped registers). In

effect LS works as a “second level” register file which provides a deterministic

operating environment for the SPEs. The lack of caches and the presence of the LS

Chapter 2 Platform

Microprocessor & Hardware Laboratory 17

contribute to the deterministic performance because cache misses are not a factor in

their performance.

Figure 4 shows the Synergistic Processor Element architecture.

Figure 4: Synergistic Processor Element Architecture

The MFC contains a DMA controller that supports DMA transfers. Programs running

on the SPU, the PPE, or another SPU, use the MFC’s DMA transfers to move

instructions and data between the SPU’s LS and main storage. The MFC interfaces

the SPU to the EIB (see 2.1.3), implements bus bandwidth-reservation features, and

synchronizes operations between the SPU and all other processors in the system. To

support DMA transfers, the MFC maintains and processes queues of DMA

commands. After a DMA command has been queued to the MFC, the SPU can

Chapter 2 Platform

Microprocessor & Hardware Laboratory 18

continue to execute instructions while the MFC processes the DMA command

autonomously and asynchronously. This autonomous execution of MFC DMA

commands and SPU instructions allows DMA transfers to be conveniently scheduled

to hide memory latency.

Synergistic processing clearly drives Cell’s performance. Offloading as much as

possible computations to the SPEs is the key to unleash the Cell computational

power. But keeping all eight SPEs “fed” with data and parallelizing the code to run on

all eight SPEs is the main challenge of programming the Cell processor.

2.1.3 Element Interconnection Bus

The Element Interconnection Bus (EIB) [21], [1], [15] is a communication bus internal

to the Cell processor which connects the various on-chip system elements: the PPE

processor, the memory controller (MIC), the eight SPE coprocessors, and two off-

chip I/O interfaces, for a total of 12 participants. The EIB also includes an arbitration

unit which functions as a set of “traffic lights”, Figure 5 shows the EIB.

Figure 5: Element Interconnection Bus

Chapter 2 Platform

Microprocessor & Hardware Laboratory 19

The EIB data network consists of four 16-byte-wide data rings: two running

clockwise, and the other two counterclockwise. Each ring potentially allows up to

three concurrent data transfers, as long as their paths don’t overlap. To initiate a

data transfer bus elements must request data bus access. The EIB data bus arbiter

processes these requests and decides which ring should handle each request. The

arbiter always selects one of the two rings that travel in the direction of the shortest

transfer. The arbiter also schedules the transfer to ensure that it won’t interfere with

other in-flight transactions. To minimize stalling on reads, the arbiter gives priority to

requests coming from the memory controller.

The EIB operates at half the processor-clock speed. Each EIB unit can simultaneously

send and receive 16 bytes of data every bus cycle. The EIB supports a peak

bandwidth of 204.8 GB/s for internal transfers among the SPEs. The memory

interface controller (MIC) provides a peak bandwidth of 25.6 GB/s to main memory.

The I/O controller provides peak bandwidths of 25 GB/s inbound and 35 GB/s

outbound.

It's clear that the EIB is one of the most important parts of the Cell design; it doesn't

do processing itself but has to contend with potentially hundreds of Gigabytes of

data flowing through it at any one time to many different destinations.

2.2 PlayStation 3

Currently the easiest and the cheapest way to gain access to a Cell processor is the

Sony PlayStation 3 (PS3) [2]. As mentioned before, Cell processor was originally

designed for PS3 and the vision was to achieve 1,000 times the performance of

PlayStation 2. Due to the need of access to the Cell’s computational power a Linux

based operating system designed to run on PS3. The need for real Cell hardware

mainly derives from the fact that IBM’s Cell simulator is very slow. Today anybody

can have access to the Cell processor by just installing an OS on PS3 and using it as a

normal PC with high capabilities. Although PS3 is an easy solution it may not be the

best, PS3 has some limitations on the performance of Cell. The main limitations are

the small memory, only 256 MB and the availability of only six SPEs out of eight. One

of the eight SPEs is disabled at the hardware level due to yield reasons and another

SPE is reserved for use by the PS3’s operating system. Apart from these limitations

PS3 remains a good choice for anybody who wants to have its own Cell processor.

Chapter 2 Platform

Microprocessor & Hardware Laboratory 20

2.2.1 Operating System

The PS3 is shipped with an operating system called Game OS but is capable of

running Linux OS if installed on the console's hard drive. The Linux operating system

runs on the PS3 on top of a virtualization layer, also called hypervisor, the Game OS.

This means that all the hardware is accessible only through the hypervisor calls. The

hardware signals the kernel through virtualized interrupts. The interrupts are used to

implement callbacks for non-blocking system calls. The Game OS permanently

occupies one of the SPEs and controls access to the hardware. A direct consequence

of this is larger latency in accessing hardware such as the network card. Even worse,

it makes some hardware inaccessible like the accelerated graphics card.

At this point, there are numerous distributions that have official or unofficial support

for PS3. The distributions that are currently known to work on PS3 (with varying

levels of support and end-user experience) include:

 Fedora Core 7 [22],

 YellowDog 6.0 [23],

 Gentoo PowerPC 64 edition [24],

 Debian [25].

All the distributions mentioned include Sony-contributed patches to the Linux

kernel-2.6.16 to make it work on PS3 hardware and talk to the hypervisor. However,

the Linux kernel version 2.6.20 has PS3 support already included in the source code

without the need for external patches.

2.2.2 Memory System

The memory system is built of dual-channel Rambus Extreme Data Rate (XDR)

memory. PS3 provides a modest amount of memory of 256 MB, out of which

approximately 200 MB is accessible to Linux OS and applications. The memory is

organized in 16 banks. Real addresses are interleaved across the 16 banks on a

naturally aligned 128-byte (cache line) basis. Addresses 2 KB apart generate accesses

to the same bank. For all practical purposes the memory can provide the bandwidth

of 25.6 GB/s to the SPEs through the EIB, provided that accesses are distributed

evenly across all the 16 banks.

Chapter 2 Platform

Microprocessor & Hardware Laboratory 21

2.2.3 Network Card

The PS3 has a built-in GigaBit Ethernet network card. However, unlike standard PC’s

Ethernet controllers, it is not attached to the PCI bus. It is directly connected to a

companion chip. The network card has a dedicated DMA unit, which allows making

data transfer without PPE’s intervention. One of many advantages of GigaBit

Ethernet is the possibility of increased frame size – so called Jumbo Frames. It can

increase available bandwidth by 20% in some case and significantly decreases

processor load when handling network traffic.

2.2.4 Graphics Card

PS3 features special edition from NVIDIA and 256 MB of video RAM. Unfortunately,

the virtualization layer does not allow access to these resources. At issue is not as

much accelerated graphics for gaming as is off-loading of some of the computations

to GPU and scientific visualization.

Microprocessor & Hardware Laboratory 22

CHAPTER 3

Bayesian
Intrapersonal/Extrapersonal
Classifier Algorithm

This section presents the face recognition algorithm that has been ported on the Cell

processor. The Bayesian Intrapersonal/Extrapersonal Classifier (BIC) is an algorithm

based on the probabilistic matching techniques proposed by Moghaddam and

Pentland for face recognition [10] . The design is using the ANSI C implementation of

the BIC algorithm which is part of the Colorado State University (CSU) Face

Identification Evaluation System, version 5.0. The methodology, the basic steps of

algorithm as well as matters of algorithm input and output are introduced in this

chapter.

3.1 CSU Face Identification Evaluation System

The Colorado State University (CSU) Face Identification Evaluation System [8], [9]

provides standard face recognition algorithms and standard statistical methods for

comparing face recognition algorithms. The system includes standardized image pre-

processing software, four distinct face recognition algorithms, analysis software to

study algorithm performance, and UNIX shell scripts to run standard experiments. All

code is written in ANSI C. The four algorithms provided are Principle Components

Analysis (PCA), a combined Principle Components Analysis and Linear Discriminant

Analysis algorithm (PCA+LDA), a Bayesian Intrapersonal/Extrapersonal Classifier

(BIC), and an Elastic Bunch Graph Matching (EBGM) algorithm. Our interested is only

for the BIC algorithm, which is the most complex among the four algorithms; a

detailed description of the BIC algorithm follows in the paragraph 3.3.

3.2 The Face Recognition Problem

2D face recognition has been a popular and challenging research area since last

decade. It arise general interests in computer vision, image analysis, psychology, etc.

Chapter 3 Bayesian Intrapersonal/Extrapersonal Classifier Algorithm

Microprocessor & Hardware Laboratory 23

The problem can be approached from two sides, identification and verification. The

identification problem is: given a set of face images with labeled identity (the

database) and a set of unlabeled face images (the probe), identify the person or

persons in the probe images. The related verification problem is: given a novel image

of specific person, confirm whether the person is or is not who they claim to be.

Many works have been proposed for this problem till now. Below it is briefly

introduced the method based on Bayesian theory.

3.3 BIC Algorithm

In traditional classifiers, face images are projected directly into a compressed

subspace, under the assumption that images of a single person will map to a tight

cluster of points. Conversely it is expected that projections of images of different

subjects will be widely separated, Moghaddam and Pentland proposed an

alternative [10], [11]. Their classifier defines the subspace in a different way, rather

than treading face images as points in a face subspace, they look at the space

spanned by the difference between two face images. The difference image for two

face images is the signed arithmetic difference between respective pixels in the

source images. Such difference images fall into two distinct classes:

 Intrapersonal difference images are those derived from two images of the

same subject.

 Extrapersonal difference images are those derived from two images of

different subjects.

Below Figure 6 shows intrapersonal and extrapersonal difference images.

Figure 6: Intrapersonal/Extrapersonal difference images

Chapter 3 Bayesian Intrapersonal/Extrapersonal Classifier Algorithm

Microprocessor & Hardware Laboratory 24

Moghaddam and Pentland suggest that intrapersonal and extrapersonal difference

images form distributions that are approximately Gaussian. As shown in Figure 7

their classifier matches probe images to stored images by computing the likelihood

that the corresponding difference images came from the subspace of intrapersonal

rather than extrapersonal. The likelihood is computed in two ways, by using

Maximum Likelihood (ML) method or Maximum a Posteriori (MAP) method.

Figure 7: Bayesian similarity. The difference image is projected through both
subspaces (intra/extra) in order to obtain the two likelihoods.

Chapter 3 Bayesian Intrapersonal/Extrapersonal Classifier Algorithm

Microprocessor & Hardware Laboratory 25

The CSU Face Identification Evaluation System implements the BIC algorithm in three

main steps, preprocessing, Bayesian training and Bayesian project [12], [8]. The

implementation uses the FERET database and it classifies all the images of the input

set, that is to say it uses each image of the input set as a probe, it classifies it and

goes to the next. The flow chart of the CSU implementation of the BIC is shown in

Figure 8.

Figure 8: Bayesian Intrapersonal/Extrapersonal Classifier

3.3.1 Preprocessing

Preprocessing is conducted at the first step of the algorithm. The process performs

five steps in converting a FERET image (see 3.4) to a normalized image [26]. The

normalization schedule is:

 Integer to float conversion - Converts 256 gray levels into floating point

equivalents.

 Geometric normalization – Lines up human chosen eye coordinates.

Chapter 3 Bayesian Intrapersonal/Extrapersonal Classifier Algorithm

Microprocessor & Hardware Laboratory 26

 Masking – Crops the image using an elliptical mask and image borders such

that only the face from forehead to chin and cheek to cheek is visible.

 Histogram equalization – Equalizes the histogram of the unmasked part of

the image.

 Pixel normalization – scales the pixel values to have a mean of zero and a

standard deviation of one.

For an example see Figure 9

Figure 9: Image Preprocessing

3.3.2 Bayesian Train

Before the algorithm can actually be used, parameters for the intrapersonal and

extrapersonal densities must be estimated using training data. The training step

outputs two training files, one for each subspace. The training file contains a

description of the training parameters, the mean of the training image, the

eigenvalues and a set of basis vectors for the subspace [27]. This training is

Chapter 3 Bayesian Intrapersonal/Extrapersonal Classifier Algorithm

Microprocessor & Hardware Laboratory 27

performed twice: once with the Intrapersonal subspace, and once with the

Extrapersonal subspace. At the end, the subspaces are stored into two different files:

bayesian.intra and bayesian.exta.

3.3.3 Bayesian Project

The main step of the algorithm is the Bayesian projection. The code projects the

feature vectors onto each of the two sets of basis vectors and then computes the

probability that each feature vector came from one or the other subspace. The

output is a set of distance files containing the distance from each image to all other

images. As we mentioned before the similarities may be computed using the

maximum a posteriori (MAP) or the maximum likelihood (ML) methods. From a

practical standpoint, the ML method uses information derived only from the

intrapersonal images, while the MAP method uses information derived from both

distributions. The below equations are extracted from Marcio Luis Teixeira’s thesis

on the Bayesian Intrapersonal/Extrapersonal Classifier [12], [10], [27].

First, let us introduce the probability of distance image Δ belonging to a class:

2

2

1

/ 2
/ 2 2

1

1 1
exp exp

2 2ˆ | *
22

M
i

i i

M m M

i

i

y

P

Where the parameters are:

i
ith eigenvalue (from training)

iy

Projection of a difference image onto the corresponding subspace

M Number of eigenvalues kept

m Dimension of the original data
1

T M
Mean of eigenvalues

T Number of training images used to estimate ˆ |P

2

Reconstruction error

Chapter 3 Bayesian Intrapersonal/Extrapersonal Classifier Algorithm

Microprocessor & Hardware Laboratory 28

The Maximum Likelihood classifier is then defined by:

2 2

1

M
i

ML

i i

y
S

The Maximum a Posteriori classifier uses Bayes rule to estimate the a posteriori

probability of Δ to the Intrapersonal or Extrapersonal class. This probability is:

ˆ ˆ|ˆ |
ˆ ˆ ˆ ˆ| |

I I

MAP I

I I E E

P P
S P

P P P P

Where

I Intrapersonal subspace

E Extrapersonal subspace

3.4 Algorithm Input

The main input of the algorithm is a set of frontal facial images from the Face

Recognition Technology (FERET) [26] database of the National Institute of Standards

and Technology (NIST). The set of images from the database to be used from the

algorithm are stored in an image list file with .srt extension. The algorithm is initially

reading and processing all the FERET database images included in the image list file.

The preprocessing step reads the .pgm extension files from the FERET database and

creates the normalized images with .sfi extension. These set of normalized images

consist the input of the Bayesian Train and Bayesian Project steps.

3.5 Algorithm Output

The algorithm produces a distance matrix for all of the images in the testing list. This

matrix is split up into distance files. One file is produced for every image in the list.

Each line in these file contain the name of another image and the distance to that

image. The file has the same name as the probe image and is placed in a distance

directory. The algorithm assumes that smaller distances are a closer match. Two sets

of distances files are created by the algorithm, one for each method it uses to

compute the distance, maximum a posteriori (MAP) or the maximum likelihood (ML)

method.

http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology

Microprocessor & Hardware Laboratory 29

CHAPTER 4

Implementation

In this chapter it is briefly described the process of enabling the CSU implementation

of the BIC algorithm to the Cell processor. It refers with details in the data

partitioning procedure, the levels of parallelism, the data transfers and the code

optimizations. It also describes some of the problems that were encounter during

the development and the solutions that were provided. The main purpose of this

chapter is to explain the overall development flow that was followed in our

implementation.

4.1 The Programming Model

The programming model that was chosen for our implementation was the function

offload model [28], [29] .The function offload model is the quickest way to effectively

use the Cell processor with an existing application. In this model, the main

application runs on the PPE and calls selected procedures to run on one or more

SPEs. In this programming model, the SPEs are used as accelerators for certain types

of performance-critical functions, hotspots. This model replaces complex or

performance-critical functions invoked by the main application with functions

offloaded into one or more SPEs, without changing the main application logic at all.

The original performance-critical function is optimized and recompiled for the SPE

environment and an SPE-executable program is being created.

Currently, the programmer statically identifies which functions should execute on

the PPE and which should be offloaded to SPEs by utilizing separate source and

compilation for the PPE and SPE components. It is also programmer’s responsibility

to manually partition and schedule the work to one or more SPEs. This model was

selected because we already had an implementation of the BIC algorithm and we

just wanted to improve the performance of the algorithm with parallelism. The

quickest and possibly easiest way to do this was to speed-up the computation-

intensive functions of the algorithm with the function offload model.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 30

4.2 The Application Enablement Process

The process of enabling an application on Cell processor can be incremental and

iterative [29]. It is incremental in the sense that the hotspots of the application

should be moved progressively off the PPE to the SPE. This process is iterative as for

each hotspot, the optimization can be refined at the SIMD, synchronization and data

movement levels until satisfactory levels of performance are obtained. As for the

starting point, a thorough profiling of the application on a general purpose system

will give all the hotspots that need to be looked at. Then, for each hotspot, a multi-

SPE implementation can be written with all the data transfer and synchronization

between the PPE and the SPE. Once this first implementation is working, the tuning

is turned to the SPE code. The last two steps can be repeated in a tight loop until the

performance is good enough. The same process can be repeated for all the major

hotspots. This enablement process is shown in Figure 10.

Figure 10: Application enablement process

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 31

4.3 Profiling

As it was mentioned above the first step for porting the application to the Cell

processor was the profiling of the original code, to locate the computation-intensive

functions. Intel’s Vtune Performance Analyzer 9.0 for Linux was used to determine

the most time-consuming functions for each of the three applications of BIC

algorithm. Table 1, Table 2 and Figure 11 shows the execution profile for each of the

three applications, preprocessing, Bayesian train and Bayesian project, the profiling

was made on a P4 machine at 2.66GHz, with Ubuntu 7.10 OS. These results indicate

that two of our applications spend more than 90% of their execution time in two

functions only, multiplyMatrix and tranposeMultiplyMatrixL. On the other hand,

preprocessing distributes its execution time to many functions with none of them

exceeding the 30% of the execution time.

Process Clockticks %

csuBayesianProject 53,10%
csuBayesianTrain 7,70%
csuPreprocessNormalize 4,62%
Other OS processes 34,58%

Table 1: BIC profiling

Function Bayesian Train Bayesian Project Preprocessing

multiplyMatrix 60,88% 0% 14,79%

transposeMultiplyMatrixL 33,85% 90,90% 0%

centerThenProjectImages 0% 3,02% 0%

interpLinear 0% 0% 28,44%

histEqualMask 0% 0% 10,67%

Others 5,27% 6,08% 46,1%

Table 2: BIC applications profiling

This is a useful fact for an implementation on the Cell processor, as it implies that

significant speed up might be obtained for these applications by only offloading

these functions to the SPUs. Especially the speed-up of the tranposeMultiplyMatrixL

function is what concerns us more because is the most time-consuming part of the

total BIC application. The rest of the enablement process is based on this results and

the main objective is the speed-up of tranposeMultiplyMatrixL and multiplyMatrix

functions.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 32

for (i=1; i<=n; i++){

 for (j=1; j<=n; j++){

 for (k=1; k<=n; k++){

 c[i,j]=c[i,j]+a[i,k]*b[k,j];

 }

 }

}

Figure 11: Function-wise breakout of BIC applications

4.4 Matrix Multiplication

Matrix multiplication and transpose matrix multiplication is a common operation in

ML and MAP classifiers and also a computation-intensive procedure for the

processors. The hard part of matrix multiplication (and transpose multiplication) is

the evaluation of the triple loop, for example a multiplication of the form C = A x B,

where A and B are n x n matrices can be structured as follows:

60,88%

14,79%

33,85%

90,90%

3,02%

28,44%

10,67%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bayesian Train Bayesian Project Preprocessing

Function-wise breakout

multiplyMatrix

transposeMultiplyMatrixL

centerThenProjectImages

interpLinear

histEqualMask

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 33

This structure involves 2n3 operations, carried out by a total of 6n3 instructions, three

loads, an addition, a multiplication and a store are required each time the

computation is evaluated. Another important thing that makes even harder the

matrix multiplication is that all the elements of the matrices are double precision (64-

bit) floating-point numbers.

The implementation of these functions in the CSU BIC algorithm uses column major

form for storing the data in the main memory. That is to say that the elements of a

column are stored sequentially in the main memory, as shown in Figure 12. As the

CSU BIC algorithm implementation uses matrices not only in these two functions, the

implementation for the SPEs depends on the structures and type definitions that

CSU implementation uses. This makes a lot easier the compatibility of the two

offloaded functions with the rest of the code.

Figure 12: Column-major form

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 34

4.5 Data Flow Analysis

After the functions that would run on SPEs were located, a data flow analysis was

required to determine the amount of data that had to be transferred to the SPEs LS.

Both functions have two input arguments, matrix A and matrix B and return the

result into another matrix C. The size of matrices A, B and C is not always the same,

all the function calls in the original source code were studied carefully and was

discovered that there are three kinds of multiplications and transpose

multiplications. The following table, Table 3 shows the dimensions of matrices for

each case and the amount of space needed. Besides the multiplication types, Table

4 shows which application uses each type of multiplication. The application of

preprocessing is not included in the next table because the original implementation

of preprocessing was not changed.

Matrix
Multiplication

A B C Data size (MB)

Transpose 19500x100 19500x100 100x100 31.28
Transpose 19500x59 19500x1 59x1 9.36

Normal 19500x100 100x100 19500x100 31.28

Table 3: Matrices dimensions and data size

Matrix
Multiplication

A B C Application

Transpose 19500x100 19500x100 100x100 Bayesian Train
Transpose 19500x59 19500x1 59x1 Bayesian Project

Normal 19500x100 100x100 19500x100 Bayesian Train

Table 4: Matrices dimensions and applications

From the previous data analysis it was obvious that was unable to perform at once

these multiplications at the SPEs due to the limited size of LS at the SPEs. This

observation led us to the conclusion that in order to execute the multiplication at the

SPEs it was necessary to partition the data into smaller pieces. Moreover the

matrices had to split into submatrices of the appropriate size, calculate the partial

results at the SPEs and combine them to estimate the final result of the initial

matrices. This necessity for data partitioning offered us and the first level parallelism

of the implementation, parallel submatrices multiplication on the SPEs in order to

estimate one of the large matrix multiplications. More details on the implementation

of data partitioning and the first level parallelism follows in the next paragraph.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 35

4.6 Development

According to the data layout that was defined in the previous paragraph the

development started from the data partitioning problem that occurred. Apart from

the two main functions tranposeMultiplyMatrixL and multiplyMatrix, auxiliary

functions were created for partitioning the matrices and merging the submatrices.

As the implementation was based on an existing application and on existing source

code, these two functions were implemented separately from rest application. When

the correctness of the two functions was verified they were combined with the rest

source code of the application. This approach has the benefits of fast development

and easy debugging as it has small size of source code. After the data partitioning

problem was solved we had to deal with the data transfer to the SPEs in order to

execute the two functions. At first only one SPE was used and then the

implementation was extended on multiple SPEs. A detail development flow chart is

shown on Figure 13.

Figure 13: Development flow

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 36

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2 0 1 2

3

4

5

6

7 3 4 5

8

9

 0 1 2 3 4 5 6 7 8 9

0

1

2 0
 3

3

4

5

6

7 1
 4

8

9

10

11

12 2
 5

13

14

All the code was developed with the use of IBM’s Cell SDK 2.1 and Full-System

Simulator. For the final stage of the development it was used a PS3 with Yellow Dog

Linux 6.0 OS.

4.6.1 Data Partitioning

From the data flow analysis it was discovered that data partitioning consisted an

absolute necessity. A way should be found to resolve this problem in order to

execute multiplications at the SPEs. The main idea is that a matrix multiplication of

large matrices can be calculated by doing the partial multiplications of the

appropriate submatrices and combine the partial results to a final result. Two

methods were implemented for data partitioning because the first implementation

had a significant overhead and it was necessary to avoid it.

At first two functions were implemented at the PPE side to partition the matrices to

smaller submatrices. The two functions are partitionMatrixVertical and

partitionMatrixHorizontal, these functions break up the matrices in submatrices in

vertical or horizontal direction. The dimensions of the submatrices are defined by

the user, but the matrix row dimension must be a multiple of the submatrix row

dimension, the same limitation holds and for the column dimension. The following

figure, Figure 14, show an example of horizontal and vertical partitioning for

submatrices dimensions 5x5.

Figure 14: Horizontal and vertical partitioning

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 37

Submatrices of proper dimensions can be created for both matrices with the use of

functions partitionMatrixVertical and partitionMatrixHorizontal. The problem with

this approach is that in order to create the submatrices, blocks of memory had to be

copied from multiple positions of the original matrix, for each submatrix. This copy

procedure was adding an important amount of time to the final execution time and

this overhead had to be avoided. More specifically the memcpy function was used

for the data copy and it proved to be very slow on the PPE and we had to find an

alternative method.

To avoid this overhead it was decided not to partition the data at the PPE but to

construct the appropriate submatrices at the SPEs. This implementation has the

advantage of not using the memcpy function at the PPE side and the disadvantage

that it needs more DMA transfers to be initiated from the SPEs. The partitioning

procedure of the second method is in fact the same with the first but instead of

being implemented at the PPE side and temporary storing the submatrices is

implemented directly to the SPEs. The first method was creating the submatrices at

the PPE side and was doing sequential DMA transfers starting from the address of

each submatrix. In the second method the data of each submatrix were not grouped

together, but they were transferred to the SPEs column by column (because of the

column-major form, figure 4.2) from the main memory until the submatrix was

constructed in the LS. This means that as many DMA transfers as the columns of

each submatrix had to be done. A more detailed analysis for the data partitioning

method and the data transfers is discussed in paragraph 4.6.5.

The next step was to multiply these submatrices and calculate the overall result. This

procedure is iterative and takes place to the SPEs; it multiplies the appropriate

submatrices and stores the partial results back to the main memory. These partial

results are added and merged properly to create the final result. For the merging

process the functions mergeMatrixVertical and mergeMatrixHorizontal where

created, these function implement the exact opposite of the partitioning process.

Finally, the most suitable dimensions for the submatrices were defined for each case

of multiplication that was showed previously on Table 4 these dimensions are shown

at Table 5

Matrix
Multiplication

Submatrix A Submatrix B Submatrix C Data Size (KB)

Transpose 100x100 100x50 100x50 160.00
Transpose 250x59 250x1 59x1 120.47

Normal 50x100 100x100 50x100 160.00

Table 5: Submatrices dimensions and data size

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 38

4.6.2 Implementation on x86 Architecture

The above procedure was first implemented on P4 machine at 2.66 GHz; this

implementation can be considered as a model of the final implementation. A small

program was developed only for matrix multiplication and transpose matrix

multiplication with data partitioning as described. At this stage the SPEs are not

being used so the first method for data partitioning was followed. This model

program was mainly used to verify at this level the correctness of the data

partitioning procedure. The program performs a multiplication of two matrices with

the classic method (without data partitioning) and the same multiplication with data

partitioning and subtracts the two result matrices to verify the result. A correct

calculation should give a zero matrix after the subtraction of the two results.

Unfortunately because the multiplication with submatrices changes the order of the

additions, in comparison with the normal multiplication, the final result has a small

difference from the classic method. This difference is located after the tenth decimal

digit of the result. The precision of the implementation and how this inaccuracy

affects us will be discussed in more depth in the next chapter.

4.6.3 Port to PPE

The next step of the development was the porting of the original CSU BIC algorithm

and the model program that was described above to the PPE. This porting to the PPE

was made to confirm the correct execution of the model program and of the

complete algorithm, too, on the PPE. There were some problems with the porting of

the CSU BIC algorithm implementation because the program was designed for little

endian architecture and PPE is big endian. Some changes were made to resolve this

problem and the application executed correctly to the PPE. This part of the

development was important in order to gain familiarity with the gcc-ppu compiler

and the necessary makefiles for the Cell processor [28], [30]. After this step the

application was running on PPU and the next step was to begin offloading the

functions to the SPEs. We let aside the CSU BIC algorithm implementation for PPE to

continue the function offloading process with our model program for easier

development.

4.6.4 PPE Control

Before it was able for the code to execute on SPEs the design had first to deal with

matters of control and synchronization [29], [30]. As it was mentioned before the

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 39

function offload model uses the PPE to schedule and control the threads running on

SPEs. These controls are based on a fork-join model; more specifically, the PPE

creates the number of SPE threads that needs (fork) it also initiates the execution of

the threads and when the threads are done, it joins all the independent execution

flows and destroys the threads. While the threads are running the PPE can either

continue execution, asynchronous execution or can wait the SPE threads to finish,

synchronous execution. In the implementation synchronous execution was the only

way because there were dependencies between the results from the SPEs and the

following PPE code. A top level view of this procedure is shown in Figure 15.

Figure 15: Fork-Join procedure

The fork-join procedure is implemented with the use of specific library calls provided

by the SPE runtime management library [31] [32]. The following figure, Figure 16,

shows very simply how PPE creates SPE context, loads a SPE program and executes

the program from the current thread.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 40

Figure 16: PPE control

The PPE control is a very important part of the design, as the total scheduling

procedure consumes a significant amount of time compared with the total execution

time. Some overhead from the scheduling process is unavoidable but it was

managed to be reduced as much as possible. In order to reduce the overhead the

context was created only once and the program was loaded to the SPEs only once,

when it was possible. In the case of CSU Bayesian Project this was an important

optimization because only one specific function was offloaded to the SPEs, so the

context was created and the program was loaded to the SPEs only once. But in the

case of CSU Bayesian Train there were two different programs to be executed on the

SPEs so the appropriate program was load to the SPEs each time. Despite all the

optimizations that were tried in the CSU Bayesian Project the overhead from the

scheduling procedure remained very high mainly due to the fact that the program

had many calls of the multiplication function and so many re-entrances to the SPEs.

More details for the scheduling of CSU Bayesian Train and CSU Bayesian Project are

presented in paragraph 4.6.8.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 41

4.6.5 DMA Transfers

According to the Cell architecture, SPEs can only use data from their LS; for the

implementation this means that the two submatrices had to be transferred to the LS

to be able executing the multiplication. In paragraph 4.6.1 it was explained how the

data were partitioned in order to fit in the LS, now it will be explained how these

data are transferred to the LS.

Cell supports two kinds of DMA transfers, PPE initiated and SPE initiated, in our

implementation only SPE initiated DMA transfers were used. This choice was made

because there are eight times more SPEs than PPEs and the number of cycles to

initiate a transfer from the SPEs is smaller than the number of cycles to initiate the

same transfer from the PPE. The data transferring process can be described from

the following steps:

 SPU needs data.

1. SPU initiates DMA request for data.

2. DMA requests data from the memory.

3. Data is copied to the LS.

4. SPU can access data from the local store.

 SPU operates on data and then copies data from LS back to main memory in a

similar process.

The above process looks very simple but there are two important limitations for the

DMA transfers. The size of a single transfer is limited to 16KB and the size can only

be 1, 2, 4, 8, 16, or a multiple of 16 bytes. So as it looks, for large data many DMA

transfers had to be done and if the size of our data is not a multiple of 16, again

extra DMA transfers had to be initiated. There are two categories of DMA commands

the put and the get

 put commands move data from LS to main storage.

 get commands move data from main storage to LS.

The following figure, Figure 17 describes the total procedure for data transfer to and

from the LS. The circled numbers shown in the figure correspond to the steps of the

data transferring process as it was defined above. The black arrows are for data

transfer from the main memory to the LS and the red arrows are for the opposite

process, data transfers from the LS to the main memory.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 42

Figure 17: Data transfer to and from the LS

In our matrix multiplication problem the data that needed to be transferred were

two submatrices from the main memory and the result of the multiplication back to

the main memory. Multiple get commands were needed to fetch the submatrices

from the main memory and multiple put commands to send the result back to the

main memory. Table 6 shows a summary of the required DMA transfers for each

case of multiplication of the form C = A x B.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 43

Submatrix Type Data Size (KB) DMA – get
(KB)

DMA – put
(KB)

100 x 100 A 80 100 x 0,8 -
100 x 50 B 40 50 x 0,8 -

100 x 50 C 40 -
2 x 16
1 x 8

250 x 59 A 118 59 x 2 -
250 x 1 B 2 1 x 2 -

59 x 1 C 0.472 -
1 x 0,464
1 x 0,008

50 x 100 A 40 50 x 0,8 -
100 x 100 B 80 100 x 0,8 -

50 x 100 C 40 -
2 x 16
1 x 8

Table 6: DMA transfers summary

The data that should be transferred to each SPE are depended on the matrix

multiplication type and the dimensions of the submatrices. Due to the limited LS size

a multiplication of two submatrices must be completed and write the result to the

main memory before the allocated space can be available for the new data.

Figure 18 shows the sequence of the DMA transfers for a simple matrix

multiplication. The figure clearly shows the parallelism through the data partitioning;

the two SPEs execute multiplications in parallel. The execution between the SPEs is

independent but each SPE has to free its LS before getting new data and starting the

next multiplication. In this case first C0 and C6 are calculated then C1 and C7 and so

on. After all the calculations finish, the submatrices are properly joined to construct

the final result matrix. In the previous example, the addition of submatrices C0 – C2

creates the upper left part of the result, C3 – C5 the upper right, C6-C8 the lower left

and C8-C11 the lower right. The construction of the result matrix is very simple and it

takes place at the PPE side after all the SPEs have finished.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 44

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2 0 1 2

3

4

5

6

7 3 4 5

8

9

 0 1 2 3 4 5 6 7 8 9

0

1

2 0
 3

3

4

5

6

7 1
 4

8

9

10

11

12 2
 5

13

14

 0 1 2 3 4 5 6 7 8 9

0

1 C0 C3

2 C1 C4

3 C2 C5

4

5

6 C6 C9

7 C7 C10

8 C8 C11

9

Figure 18: Data transfer for matrix multiplication

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 45

4.6.6 Implementation with One & Multiple SPEs

In this section, the overall execution of the model program will be presented

considering all the design aspects and limitations that were described in the previous

paragraphs. The transfer of all the required data to the SPEs was resolved and a

complete multiplication can now take place. At first only one SPE it was used and

then the implementation was extended to multiple SPEs.

Until this point the model program was executing a matrix multiplication on the PPE

with the data partitioning method that was described in paragraph 4.6.1. Next the

appropriate scheduling control was added in this program and the multiplication

function was moved to the SPE code. We developed the code for DMA transfers and

the program was ready to be executed. The model application on the PPE side

creates two matrices, starts an SPE thread and waits for it to finish. On the SPE side,

it transfers the appropriate data for a pair of submatrices, calculates the

multiplication and sends back the result; this procedure is repeated until all the

submatrices multiplications are completed. At this stage there is no parallelism since

only one SPE it was used, which executes the partial multiplications sequentially.

The design was extended on two and finally on six SPEs (and eight SPEs on simulation

only), the procedure remains the same as in the case of one SPE. The advantage now

is that the total number of iterations that are required for one multiplication is

distributed on multiple SPEs. To mange executing one multiplication on multiple

SPEs, each SPE had to be informed about how many iterations should execute, which

data must fetch and where should store the result submatrix of each iteration. This

information is passed once at each SPE through a structure called control block. The

control block contains information such as, matrices addresses, iterations number,

result address and information related to the pairs of submatrices that should be

multiplied.

So far the data partitioning problem was resolved, a model application was

implemented for our design; the model application and the total application were

ported to the PPE and with the use of PPE control and DMA transfers the model

application was executed on one and multiple SPUS. At this stage the correctness of

the implementation on the SPEs was also verified with the subtraction method that

was described in paragraph 4.6.2. The next stage of the development was the

optimizations of the SPE code. Next section describes a number of optimizations

made on the SPE code in order to increase its efficiency.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 46

4.6.7 Code Optimizations

Writing code for the Cell is, in many ways, different than programming most of the

common modern architectures (in particular the x86 processors family). The main

differences come from the fact that, on the Cell architecture, the user has full control

over the processor behavior and all the hardware details are exposed to the

programmer. This puts a serious burden on the programmer who has to take care of

many aspects while writing code. A number of general, but important, programming

rules must be followed, where possible. What the programmer gets for this price is

extremely predictable performance and the possibility to get really close to the peak

speed whenever these rules can be applied. These programming rules are in effect a

number of code optimizations that the programmer must apply [33], [28], [30].

There are many possible code optimizations that are mainly related with the SPE

code and less with the PPE code. The most of them try to exploit the advantages of

Cell’s architecture, such as SIMD, wide registers, LS and some of them try to hide the

disadvantages of the architecture like data transferring and branch prediction.

From all the optimizations some of them were selected and applied to the design,

these optimizations are the following:

 Function Inline

 Code SIMD Vectorization

 Loop Unrolling

The optimizations follow the same philosophy as the rest of the development

process. First the optimizations were applied on the model application and when the

performance and the correctness of the code were verified, it was joined with the

CSU Bayesian application.

Function Inline

The first step of the optimizations was the use of the compiler in such way to

produce optimized code. A specific flag was used, the -Winline, in the makefiles to

force the compiler produce code with function inlining. Function-inlining eliminates

the two branches associated with function-call linkage. These include the branch and

set link for function-call entry, and the branch indirect for function-call return. SPEs

can only do static branch prediction, since these prediction schemes are rather

inefficient on programs that have a complex execution flow, reducing the number of

branches in the code usually provides performance improvements. The compiler by

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 47

default has the optimization level set to three, -O3, which does some function

inlining so the extra inlining that was applied didn’t had significant increase in

performance.

SIMD Vectorization

The next and most important optimization was the SIMD vectorization of the SPE

code. As mentioned in Chapter 2, each SPE is an SIMD processor which means a

single instruction can be applied to multiple data elements in parallel. SIMD

processing exploits data-level parallelism, this is the second level of parallelism in the

implementation. Data-level parallelism means that the operations required to

transform a set of vector elements can be performed on all elements of the vector at

the same time. Vectorization is also supported and in the PPE through the vector

unit [32], [16], but only the computation-intensive part of the SPE code was

vectorized.

In both the PPE and SPEs, vector registers hold multiple data elements as a single

vector. The data paths and registers supporting SIMD operations are 128 bits wide,

corresponding to four full 32-bit words or eight half-words, or 2 double-words. Both

the vector unit of PPE and SPE instruction set have extensions that support C-

language intrinsics [28], [30]. Intrinsics are C-language commands, in the form of

function-calls that are convenient substitutes for one or more inline assembly-

language instructions. In our design all the data were double, so the vector registers

could only hold two 64-bit values and the data parallelism offered by the SIMD

vectorization is reduced to only two simultaneous operations. This means that once

the data were promoted from double to vector type it was able to execute two

loads, two multiplications, two additions simultaneously and so the iterations were

reduced by a factor of two. Next figure, Figure 19, explains the SIMD vectorization

procedure followed in the implementation.

As shown in Figure 19, instead of loading one element into one 128-bit register we

use the data type vector and load two matrix elements into one register. After this

the vector command is being executed for multiplication and addition, spu_madd

which executes in parallel the operations C1 = A1 x B1 + C1 and C2 = A2 x B2 + C2.

Next the two elements C1 and C2 are added and stored to the appropriate place of

the result matrix. This is how the multiplication code on the SPEs was vectorized; the

code vectorization on its own was not enough, more performance was needed so

the loop unrolling technique was applied.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 48

Figure 19: SIMD vectorization procedure on SPEs code

Loop Unrolling

The final optimization that was applied to the design was the loop unrolling

technique. This technique is often used to increase the size of basic blocks

(sequences of consecutive instructions without branches), which increases

scheduling opportunities. Loop-unrolling eliminates branches by decreasing the

number of loop iterations. Loop unrolling can be manual, compiler directed, or

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 49

compiler automated. Typically, branches associated with looping are inexpensive

because they are highly predictable. However, if a loop can be fully unrolled, then all

branches can be eliminated, including the final non-predicted branch. Due to the

high number of registers on the SPEs and to the simplicity of SPEs architecture, no

register renaming, no speculative execution, no dynamic branch prediction etc.,

explicit unrolling provides considerable improvements in performance. In our

implementation the code was manually unrolled many times in order to achieve a

significant improvement in performance. The SPE code was gradually unrolled until

the improvement was not important; finally the code was unrolled twenty-five

times. Next chapter provides detailed results for 5x and 25x unrolling.

4.6.8 Join with CSU Bayesian

The final step of the development was the join of the offloaded functions with the

rest of the CSU Bayesian application. Until now all the development may be

considered as modeling since we were working on a simple model program. At this

point all the work that was done for the model program must be joined with the

main application.

Up to this stage the model application was executing one or more matrix

multiplications on multiple SPEs with optimized SPE code, the correctness and the

performance of the model were also verified. All the calls of matrix multiplication or

transpose matrix multiplication were located and replaced in the CSU Bayesian

application. Instead of executing the default code for the multiplication functions,

the program flow was redirected to our code. As shown in Figure 20 the program

after the matrix multiplication function-call executes a series of scheduling

operations and initiates the execution of the SPE code. When the SPE code has been

executed the program return to the PPE side, destroys the SPEs context, creates the

result matrix and returns to the normal execution flow until the next matrix

multiplication function-call.

The above procedure works fine with the CSU Bayesian Train because it is executing

two different functions at the SPEs, the number of the function-calls is small and the

execution time at the SPEs is much greater than the scheduling overhead. In the case

of CSU Bayesian Project, as it was referred in section 4.6.4 this procedure was

proved to be wrong because only one function was repeatedly running on SPEs

thousands times with small execution time. In order to improve the performance of

CSU Bayesian Project a different approach was followed. Since the SPEs were

running the same program it wasn’t necessary to create new context and load the

program each time. Instead of this, the context was created and the program was

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 50

loaded only once, so the only operation of scheduling that was repeated each time

was the initiation of the SPE program, this alternate approach is shown in Figure 21.

Figure 20: Overall scheduling process for CSU Bayesian Train

As shown in the next figure there are two function-calls in a loop, the creation of the

context and the program loading was done outside the loop to avoid their

unnecessary repeat. When there is a function-call the PPE side of the code creates

the appropriate control block, which is different for every function call and initiates

the execution at the SPE side.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 51

Figure 21: Overall scheduling process for CSU Bayesian Project

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 52

Unfortunately not even with this alternative scheduling procedure managed to

reduce the impact of scheduling overhead, due to the large number of function-calls

and the very small execution time spend at the SPEs. The last optimization that was

implemented to increase the performance was the execution of two function-calls

together at the SPEs. The number of two function-calls was not selected arbitrarily it

was selected because in each iteration of the loop we have two function-calls. A

larger number would be preferred but because the iterations of the loop were

varying it wasn’t able to unroll the loop and offload more function-calls together.

With this last optimization the overhead from the SPE initiation procedure was

reduced to the half as the initiation was executing once every two multiplications.

4.7 Software Tools Problems

During the development process, apart from the design problems that were

described in the previous paragraph, many other problems came up, mostly related

with the software tools. In this section a list of these problems is presented, as well

as how each problem solved or avoided.

The last version of the IBM SDK for Multicore Acceleration Version 3.0 (Development

Tools + Full-System Simulator), was unable to be installed on one of the available

servers. The version of the kernel that runs on the servers was not compatible with

the SDK, a newer version was required. It was not currently able to update the

servers, so the previous version of SDK was used, version 2.1.

The source code compilation and execution with the 2.1 version SDK was working

fine until the cycle-mode was enabled. The cycle-mode gives accurate performance

results of the application, but as it was discovered, a bug in the 2.1 version was

preventing the execution of code with DMA transfers in cycle-mode. This was a

major problem because it was unable to measure the performance. The solution to

this bug from IBM was the version 3.0 of the SDK, so the version 3.0 was installed on

a P4 host machine (not on any server) with OS Ubuntu 7.10.

The Full-System Simulator application that is included in the SDK is a very demanding

application and especially the cycle-mode was extremely slow on the host machine.

This was delaying the development process and it was necessary to avoid it, the

solution was to execute the applications directly on hardware and measure the

performance in different way. The only available hardware was a PS3 and to be able

executing applications on the PS3 the installation of an OS was required.

Chapter 4 Implementation

Microprocessor & Hardware Laboratory 53

The Yellow Dog Linux 6.0 (YDL) was installed on the PS3, the installation procedure

was done by following the detailed guide for YDL installation [34]. The only conflict

during the installation was the monitor configuration, because PS3 normally is

connected on HDMI monitor, the installation was not working until the proper

settings for the monitor were chosen.

Normally the development with the use of IBM’s SDK includes a graphical user

interface (GUI) environment through Eclipse and a graphical performance analyzer

called Visual Performance Analyzer. Due to the low memory of the PS3 the GUI was

avoided and the development was done with a simple text editor and command line

compiler.

The use of the PS3 for development demands a careful memory management from

the programmer, during the development a memory leak in a program was causing

continues memory swaps. The hard disk of the PS3 is very slow and the swap

procedure weighs down the entire OS as well as the running application. Avoiding

the development of applications with high memory usage on the PS3 is

recommended. Another limitation on the PS3 development is the availability of only

six SPEs out of eight, as it was mentioned in paragraph 2.2. Besides these limitations

development on the PS3 is much faster than the use of the simulator, the simulator

is better to be used only for specialized measures of performance that cannot be

done on hardware.

Most of the solutions on the above problems came up from the Cell development

community; the main source for information was the IBM’s developerWorks web site

and forum [35], [36].

Microprocessor & Hardware Laboratory 54

CHAPTER 5

Evaluation & Verification

This chapter presents the performance of the design and compares it with the

performance of other processors for the specific algorithm. The measuring

procedure is also described here as well as the precision and the verification of the

implementation. The total application was executed and verified with a subset of the

FERET database consisted of 120 images.

5.1 Measuring Performance

Measuring the performance of an application is a very important step and provides

the programmer with critical information about its design. In our design the

performance was measured gradually during the development process and at the

end to determine the final performance of the implementation. For the Cell

processor there are currently three ways to measure the performance of an

application running on Cell. The first two methods are using two software tools that

are available in the SDK to assist in measuring the performance, the spu-timing

analyzer and the IBM Full System Simulator for Cell B.E [37], [38].

The spu-timing analyzer performs a static timing analysis of a program by annotating

its assembly instructions with the instruction-pipeline state. This analysis is useful for

coarsely spotting dual-issue rates (odd and even pipeline use) and assessing what

program sections may be experiencing instruction-dependency and data-

dependency stalls. However, static analysis outputs typically do not provide

numerical performance information about program execution. Thus, it cannot report

anything definitive about cycle counts, branches taken or not taken, branches hinted

or not hinted, DMA transfers, and so forth.

The IBM Full System Simulator for the Cell B.E. performs a dynamic analysis of

program execution. Any part of a program, from a single line to the entire program,

can be studied. Performance numbers are provided for:

 Instruction histograms (for example, branch, hint, and prefetch)

 Cycles per instruction (CPI)

 Single-issue and dual-issue rates

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 55

 Stall statistics

 Register use

The output of the IBM Full System Simulator for the Cell Broadband Engine can be a

text listing or a graphic plot. The disadvantage of this method is speed, because the

method depends completely on the simulator is extremely slow. This method of

performance measuring was partially used in the implementation to provide us

detailed information for the SPE code, in order to make the appropriate

optimizations.

The last method for measuring and the one that was followed in the design is the

dynamic profiling using the hardware counters. The processor includes two software-

visible 64-bit time-base registers in the PPE one for configuration and one for

counting and eleven software-visible 32-bit decrementers (down-counters), three in

the PPE and one in each of the eight SPEs [30]. The time-base registers and the

decrementers are not clocked at the 3.2 GHz as the core clock, they have their one

frequency called time-base frequency. This frequency is different on the PS3 than on

the Cell Blades [39], the PS3 time-base frequency is 79.8 MHz and this value was

used for our measurements.

During the measuring procedure the one 64-bit time-base register in the PPE was

used to measure the total execution time and execution time of code segments at

the PPE. The SPEs performance was measured with the use of the decrementers of

each SPE. Both types of time-base registers were providing us with a number of

clockticks which was converted to execution time by dividing with the time-base

frequency. In the case of the SPEs, when multiple SPEs were used the greater time

was considered as the SPEs execution time.

In order to have a fair comparison the total execution time for P4 was measured in a

similar way. The time.h library was used for the P4 to measure the real execution

time through the OS. The main purpose was to compare the processors and not the

systems, so for both measurements the amount of time for loading data to the main

memory and for storing data to the hard disk was taken out. Furthermore all the

printf system-calls were removed from the programs to avoid as much as possible

the OS since the two processors are running different OS. Due to the OS

measurements of the same code had a small variation, so five measurements were

taken for each case and the average is being presented as the final result.

The measuring procedure that was described above was applied for all the

measurements and the results that are following in the next paragraph.

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 56

5.2 Performance

This section presents all the performance measurements that were done to evaluate

the implementation. First the performance of the model application was measured

and compared with equivalent application running on P4 at 2.66 GHz and 1 GB RAM,

this machine was our reference machine. Then the performance of the total code

running on SPEs (multiplication function) was measured and compared with the

performance of the same function on the reference machine (P4). Finally the total

execution time of CSU Bayesian Project and CSU Bayesian Train was evaluated and

compared with the P4.

5.2.1 Performance of Model Application

Firstly the performance of the model application was measured for a single

multiplication of each type. The model application was used to perform only one

multiplication of each type with a variety of code optimizations. The results are only

for the execution time of the multiplication and not of the whole application. The

summary of the results is shown in the next tables and figures.

The following tables, Table 7 and Table 8 shows the measured clockticks and the

execution time for the first case of transpose matrix multiplication with dimensions

(19500x59)x(19500x1).

Clockticks
79.8 MHz

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 1046791 901476 548363 471731
2-SPUs 527084 455771 287213 242302
4-SPUs 276705 240020 147039 127780
6-SPUs 199681 158850 95475 84613

Table 7: Clockticks for transpose matrix multiplication (19500x59)x(19500x1)

Execution Time
(sec)

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 0,01311 0,01129 0,00687 0,00591
2-SPUs 0,00660 0,00571 0,00359 0,00303
4-SPUs 0,00346 0,00300 0,00184 0,00160
6-SPUs 0,00250 0,00199 0,00119 0,00106

Table 8: Execution time for transpose matrix multiplication (19500x59)x(19500x1)

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 57

As shown in Table 7 and Table 8 the performance of the code had a significant

improvement with the use of multiple SPEs and the optimizations that were

mentioned in paragraph 4.6.7. Figure 22 shows the gradually improvement of the

performance for the specific multiplication.

Figure 22: Performance impact of various optimizations (1)

In Figure 23 the performance results that were taken for the SPEs are being

compared with execution time of the same code on the reference machine. Only the

results for fully optimized code are being used in the comparison. The CSU

implementation of the BIC algorithm is using an optimization level –O3 during the

compilation, with an important improvement in performance, so the performance of

the model application was measured on P4 and with an –O3 option. As it is shown

the performance of the P4 –O3 machine, compared with one SPU, is slightly better.

On the other hand comparing the execution time on 6-SPUs with the P4 –O3

execution time, a speed up of 4.52x is achieved.

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

Original SIMD SIMD+5x Unroll SIMD+25x Unroll

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Transpose Matrix Multiplication (19500x59)x(19500x1)

1-SPU

2-SPUs

4-SPUs

6-SPUs

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 58

Figure 23: Performance comparison for model application (1)

The next tables, Table 9 and Table 10, are showing the performance results,

clockticks and execution time, for the transpose matrix multiplication

(19500x100)x(19500x100). As before a figure shows the performance impact of the

various optimizations, Figure 24, and another one shows the comparison with the

reference machine, Figure 25.

Clockticks
79.8 MHz

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 155876357 130946171 69766634 57622354
2-SPUs 77998093 65276335 34905702 28844555
4-SPUs 39604747 33156633 17738707 14670401
6-SPUs 26031831 21798942 11669627 9701396

Table 9: Clockticks for transpose matrix multiplication (19500x100)x(19500x100)

0,0161

0,0048
0,0059

0,0030

0,0016
0,0011

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0,018

P4 P4 -O3 1-SPU 2-SPUs 4-SPUs 6-SPUS

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Transpose Matrix Multiplication (19500x59)x(19500x1)

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 59

Execution Time
(sec)

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 1,95334 1,64093 0,87427 0,72208
2-SPUs 0,97742 0,81800 0,43741 0,36146
4-SPUs 0,49630 0,41550 0,22229 0,18384
6-SPUs 0,32621 0,27317 0,14624 0,12157

Table 10: Execution time for transpose matrix multiplication
(19500x100)x(19500x100)

Figure 24: Performance impact of various optimizations (2)

Next figure, Figure 25 shows the comparison of the SPEs with the reference

machine. In contrast with the previous comparison, in this type of multiplication, the

1-SPU implementation achieves better performance than the optimized version on

P4. Finally the 6-SPUs implementation has speed-up 6.9x, compared with the P4, for

the specific type of multiplication.

0,00

0,50

1,00

1,50

2,00

2,50

Original SIMD SIMD+5x Unroll SIMD+25x Unroll

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Transpose Matrix Multiplication (19500x100)x(19500x100)

1-SPU

2-SPUs

4-SPUs

6-SPUs

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 60

Figure 25: Performance comparison for model application (2)

The last results concern the third type of multiplication, the normal matrix

multiplication with dimensions (19500x100)x(100x100). The results are presented

with same order as before, Table 11, Table 12 and Figure 26 are showing the

performance measurements and Figure 27 shows the comparison results with

reference machine.

The normal matrix multiplication proved to be much slower than transpose matrix

multiplication and this is due to the column major form that was used to store the

matrices in the main memory as was mentioned in paragraph 4.4. The speed-up that

is being achieved in this type of multiplication is 13x and is greater from the previous

cases.

2,67

1,18

0,72

0,36

0,18
0,12

0,00

0,50

1,00

1,50

2,00

2,50

3,00

P4 P4 -O3 1-SPU 2-SPUs 4-SPUs 6-SPUS

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Transpose Matrix Multiplication (19500x100)x(19500x100)

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 61

Clockticks
79.8 MHz

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 198780074 178159632 100880352 86438608
2-SPUs 99394563 89100817 50457176 43210090
4-SPUs 50458809 45233567 25615118 21939141
6-SPUs 33127616 29703043 16821343 14416868

Table 11: Clockticks for matrix multiplication (19500x100)x(100x100)

Execution Time
(sec)

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 2,49098 2,23258 1,26416 1,08319
2-SPUs 1,24555 1,11655 0,63230 0,54148
4-SPUs 0,63232 0,56684 0,32099 0,27493
6-SPUs 0,41513 0,37222 0,21079 0,18066

Table 12: Execution time for matrix multiplication (19500x100)x(100x100)

Figure 26: Performance impact of various optimizations (3)

0,00

0,50

1,00

1,50

2,00

2,50

3,00

Original SIMD SIMD+5x Unroll SIMD+25x Unroll

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Matrix Multiplication (19500x100)x(100x100)

1-SPU

2-SPUs

4-SPUs

6-SPUs

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 62

Figure 27: Performance comparison for model application (3)

5.2.2 Performance of SPEs

After the implementation was joined with the rest CSU Bayesian application, the first

thing that was measured was the total execution time of the code running on the

SPEs. The execution time of the SPEs was measured separately for the Bayesian Train

and the Bayesian Project.

The results for the Bayesian Train application are shown in Table 13 and Table 14.

Figure 28 shows as before the impact of various optimizations for the code running

on SPEs in Bayesian Train. Finally Figure 29 shows the comparison between the

execution time for the multiplications on the reference machine and the total time

consumed by the SPEs on Cell, for the Bayesian Train application. The speed-up that

comes up from this comparison is 10.16x, to make it clear this speed-up concerns

only the multiplication time and has nothing to do with the real speed-up. This is the

maximum speed-up that can be achieved if overhead is null. Unfortunately the

5,81

3,00

1,08

0,54
0,27 0,18

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

P4 P4 -O3 1-SPU 2-SPUs 4-SPUs 6-SPUS

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Matrix Multiplication (19500x100)x(100x100)

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 63

overhead is not null so the real speed-up is much less than this one, the overhead is

being discussed in the next section were the overall speed-up is presented.

Clockticks
79.8 MHz

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 1030599761 889726021 493054770 413494050
2-SPUs 515919751 445655372 247038005 208062817
4-SPUs 262608579 233691657 127327553 108099230
6-SPUs 173234840 150420564 85080956 74703660

Table 13: Clockticks at SPEs for CSU Bayesian Train

Execution Time
(sec)

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 13,08 11,29 6,26 5,25
2-SPUs 6,55 5,66 3,14 2,64
4-SPUs 3,33 2,97 1,62 1,37
6-SPUs 2,20 1,91 1,08 0,95

Table 14: Execution time at SPEs for CSU Bayesian Train

Figure 28: SPEs total execution time for Bayesian Train application

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

Original SIMD SIMD+5x Unroll SIMD+25x Unroll

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

SPUs Total Execution Time CSU Bayesian Train

1-SPU

2-SPU

4-SPU

6-SPU

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 64

Figure 29: SPEs performance comparison with P4 for Bayesian Train

Next tables and figures present the results and the comparisons for Bayesian Project

in the same way they were shown for Bayesian Train.

Clockticks
79.8 MHz

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 1,52E+10 1,31E+10 7,90E+09 6,87E+09
2-SPUs 7,67E+09 6,60E+09 4,07E+09 3,51E+09
4-SPUs 4,00E+09 3,47E+09 2,15E+09 1,87E+09
6-SPUs 2,64E+09 1,23E+09 1,42E+09 2,28E+09

Table 15: Clockticks at SPEs for CSU Bayesian Project

Execution Time
(sec)

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 193,05 166,12 100,27 87,17
2-SPUs 97,27 83,81 51,68 44,59
4-SPUs 50,81 44,01 27,34 23,79
6-SPUs 33,52 28,99 17,97 15,64

Table 16: Execution time at SPEs for CSU Bayesian Project

9,65

5,25

2,64

1,37
0,95

0

2

4

6

8

10

12

P4 -O3 1-SPU 2-SPUs 4-SPUs 6-SPUS

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Total Execution Time for Multiplications in Bayesian Train

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 65

Figure 30: SPEs total execution time for Bayesian Project application

The above figure, Figure 30, shows the total execution time of the SPEs for the

Bayesian Project application. In contrast with Bayesian Train, Bayesian Project

becomes faster from the P4 only when two or more SPEs are in use. This difference

is due to the size of matrices, smaller matrices are being multiplied in Bayesian

Project.

The same result is shown and in Figure 31, for two SPEs and up Cell is faster than P4

in this function-level comparison. The maximum speed-up for Bayesian Project as it

derives from the results is 4.56x, approximately two times less than the maximum

speed-up that was achieved in the case of Bayesian Train. As mentioned before this

not the real speed-up but the maximum speed-up for the multiplications and not for

the total application

0,00

50,00

100,00

150,00

200,00

250,00

Original SIMD SIMD+5x Unroll SIMD+25x Unroll

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

SPUs Total Execution Time CSU Bayesian Project

1-SPU

2-SPU

4-SPU

6-SPU

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 66

Figure 31: SPEs performance comparison with P4 for Bayesian Project

5.2.3 Total Performance

Finally the total performance for both applications is being measured, total

execution time on the reference machine and total execution time on Cell. First the

results for the Bayesian Train application are shown in the next tables and figures.

Table 17 and Table 18 show the measured clockticks and the total execution time for

the Bayesian Train in same form with all the previous results.

Clockticks
79.8 MHz

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 1,15E+09 1,00E+09 5,95E+08 5,16E+08
2-SPUs 6,22E+08 5,52E+08 3,51E+08 3,10E+08
4-SPUs 3,67E+08 3,26E+08 2,25E+08 2,06E+08
6-SPUs 2,79E+08 2,55E+08 1,95E+08 1,79E+08

Table 17: Total clockticks for CSU Bayesian Train

71,39

87,17

44,59

23,79

15,64

0

10

20

30

40

50

60

70

80

90

100

P4 -O3 1-SPU 2-SPUs 4-SPUs 6-SPUS

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Total Execution Time for Multiplications in Bayesian Project

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 67

Execution Time
(sec)

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 14,41 12,56 7,46 6,47
2-SPUs 7,80 6,92 4,40 3,88
4-SPUs 4,60 4,09 2,82 2,58
6-SPUs 3,50 3,19 2,44 2,24

Table 18: Total execution time for CSU Bayesian Train

Figure 32: Total execution time of the Bayesian Train application

Figure 32 shows the gradual improvement in performance for the overall application

of Bayesian Train. The impact of the optimizations is gradually decreased as the

number of SPEs increases. This is caused because the percentage of the execution

time that accepts the optimizations is reduced every time, on the other hand the

added overhead is increasing.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

Original SIMD SIMD+5x Unroll SIMD+25x Unroll

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

CSU Bayesian Train Total Execution Time

1-SPU

2-SPUs

4-SPUs

6-SPUs

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 68

Next figure, Figure 33, shows the performance of CSU Bayesian Train application

compared with the reference machine and with the execution of the application on

the PPE only.

Figure 33: Performance comparisons for Bayesian Train

Obviously the speed-up that was finally achieved is much less than the function-level

speed-up of the previous paragraph. The final speed-up is 4.68x (in relation with P4),

this decrement from the expected speed-up is caused by a number of factors. The

main overhead in this case is the extremely slow execution of the rest code running

on PPE, especially the part of this code which has many accesses to the main

memory. There are two more factors which are increasing the overhead, the one is

the scheduling process and the other is the additions and the merging to construct

the final matrix from the submatrices. The scheduling overhead is affecting us but

not as much as in the case of Bayesian Project; on the other hand addition and

23,92

10,49

2,24

0

5

10

15

20

25

30

PPE P4 -O3 Cell

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

CSU Bayesian Train

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 69

merging are affecting us more in this case because of the larger matrices. Next table,

Table 19 shows a timing analysis of the Bayesian Train application.

 Execution Time (sec) Percentage %

PPE code 0,89 40,09
SPE code 0,95 42,79
Addition 0,24 10,81
Merging 0,10 4,50

Scheduling 0,04 1,80

Table 19: Execution time analysis for CSU Bayesian Train

The last results are showing the overall performance for the CSU Bayesian Project

application. As previously, Table 20 and Table 21 shows the clockticks and the

execution time for the application. Figure 34 shows the gradually improvement of

the performance and the last figure, Figure 35 shows the results of the comparison

between Cell, PPE and P4.

Clockticks
79.8 MHz

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 1,69E+10 1,48E+10 9,68E+09 8,56E+09
2-SPUs 9,49E+09 8,36E+09 5,85E+09 5,28E+09
4-SPUs 5,81E+09 5,33E+09 4,01E+09 3,76E+09
6-SPUs 5,02E+09 4,72E+09 3,90E+09 3,76E+09

Table 20: Total clockticks for CSU Bayesian Project

Execution Time
(sec)

Original SIMD SIMD + 5x
Unroll

SIMD + 25x
Unroll

1-SPU 212,01 185,95 121,27 107,31
2-SPUs 118,89 104,73 73,25 66,22
4-SPUs 72,77 66,85 50,30 47,08
6-SPUs 62,95 59,13 48,81 47,11

Table 21: Total execution time for CSU Bayesian Project

As shown in the next figure, Figure 34, the performance has a measurable

improvement for two and four SPUs, but for six SPUs the execution time converges

to the value that was achieved with 4-SPUs. This means that the percentage of the

improvement between four and six SPUs is very small and is being overlapped by the

scheduling overhead which is increasing according to the number of SPUs.

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 70

Figure 34: Total execution time of the Bayesian Project application

In the next figure, Figure 35, the main observation is the same as before, the half of

the function-level speed-up is achieved. The speed-up of the CSU Bayesian Project is

only 1.77x and the main reasons for that is the scheduling overhead and the rest

code running on PPE. As it was mentioned in paragraph 4.6.8, the structure of the

application does not allow us to “stay” at the SPEs; instead, the execution is passing

from the PPE to the SPEs and back multiple times. This control trade-off from PPE to

SPEs and round is increasing dramatically the scheduling overhead. Besides the

scheduling and PPE overhead a small amount of the overall overhead is caused from

the final addition and merging process.

0,00

50,00

100,00

150,00

200,00

250,00

Original SIMD SIMD+5x Unroll SIMD+25x Unroll

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

CSU Bayesian Project Total Execution Time

1-SPU

2-SPUs

4-SPUs

6-SPUs

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 71

Figure 35: Performance comparisons for Bayesian Project

Table 22 shows the execution times for the different parts of the CSU Bayesian

Project application. As the table shows a large amount of time is consumed for

scheduling, contrary to the CSU Bayesian Train application.

 Execution Time (sec) Percentage %

PPE code 16,33 35,07
SPE code 15,97 34,31
Addition 2,18 4,68
Merging 0,02 0,05

Scheduling 12,05 25,89

Table 22: Execution time analysis for CSU Bayesian Project

285,88

83,24

47,11

0

50

100

150

200

250

300

350

PPE P4 Cell

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

CSU Bayesian Project

Chapter 5 Evaluation & Verification

Microprocessor & Hardware Laboratory 72

5.3 Precision

As it was mentioned in paragraph 4.6.2 the normal method of matrix multiplication

compared with the submatrices multiplication method has a precision difference

located after the tenth decimal digit. It is well known that floating-point addition is

not associative so that the calculation sequence and the order in which the addends

enter the floating-point calculation of the sum greatly influence the size of the

accumulated round-off error of the result. In the case of normal matrix multiplication

for the calculation of each element a sequence of additions and multiplication is

being executed. When submatrices are being used this sequence is difference since

the partial products are first evaluated for each pair of submatrices and then the

final addition takes place.

The round-off error depends on the number of the final additions, meaning that it

depends on the number of submatrices. In our case the maximum round-off error

affects the result up to the tenth decimal digit. This does not affect the decision of

the classifier; it has been observed that the image with the smaller distance from the

probe has a significant difference from the other images. The only way this error can

lead the classifier to the wrong decision is when two images had a difference

between them less than 10-10 and the wrong image has the smaller distance from the

probe. During all the tests that were done, never the round-off error caused a wrong

decision.

5.4 Verification

The last but not least step of the design was the overall verification of the

application. Until now the correctness of the multiplications was verified many times

during the development process, now the final results of the application have to be

verified. As it was mentioned in paragraph 3.5 the output of the application is a set

of files, so a comparison of these files was made to verify the results. A result set

produced by the execution of the original code was compared with a result set

produced from the execution on PS3. Due to the large amount of data that is

contained in these files, a script written on Matlab was used for faster verification.

The verification process was successful and all the results were the same, meaning

that in both executions the algorithm was taking the same decision for each image.

The difference on the decimal digits that was mentioned in the previous paragraph

was not affecting the final results.

Microprocessor & Hardware Laboratory 73

CHAPTER 6

Conclusions & Future Work

This chapter summarizes the contribution and the results of this work. Some final

conclusions are being presented as well as and some thoughts for future work.

6.1 Conclusions

The main contribution of this work was the parallelization of the BIC algorithm and

its execution on the Cell processor. Moreover the use of an existing application and

its partial redesign for the Cell processor were also parts of this work contribution.

The implementation of this design proved to be hard enough due to the

inexperience on the development tools as well as and on parallel programming

techniques. Multicore processors increase the performance but they also increase

the complexity of the software development process, so matters like scheduling and

synchronization must now be considered. Several problems came up during the

development; most of them were related with software tools and design aspects, a

close study of these problems let us to their resolve.

In the final results a considerable improvement of performance was achieved, but

with a significant overhead too, which prevents us from reaching the desirable

results. The main reason for this is the selection of a fast programming model, such

as the function-offload model instead of a hard model like streaming model. The

selection of a different model could possibly bring us better results with a significant

cost on time and effort. This extra cost derives from the fact that these models

demand the complete redesign of the application and the use of more complex

techniques. However the selection of this model cannot be considered as wrong

because it balances the main targets, performance, fast development and

conservation of the original application logic. Another important factor, apart from

the model that affects the final results is the structure of the algorithm and the

application. For example the double precision data reduces the second level of

parallelism (SIMD) to 2-way only, the variable number of iterations in some loops

prevents the use of loop unrolling technique etc.

Chapter 6 Conclusions & Future Work

Microprocessor & Hardware Laboratory 74

Concluding, Cell processor, although initially designed mainly for games and

multimedia, is a very promising architecture for scientific computations, as well. But

due to the absence of specialized software tools and the simple architectural design

of the SPUs, the user is forced to consider a number of low-level details, which

increase the complexity of the development. Below is shown a summary of the

major design and tools problems that were encountered during this work:

 Data partitioning to fit in LS, paragraph 4.5.

 Partitioning on PPE side was ineffective, paragraph 4.6.1.

 DMA transfers limitations, paragraph 4.6.5.

 Scheduling overhead due to multiple function calls in Bayesian Project,

paragraphs 4.6.4 and 4.6.8.

 Small computation time on SPEs in Bayesian Project, paragraph 4.6.8.

 Unable to install SDK version 3.0 on server, paragraph 4.7.

 Bug at the execution of the simulator in cycle–mode, for version 2.1,

paragraph 4.7.

 Simulator was extremely slow, paragraph 4.7.

 Development on PS3 has limited memory and SPEs, paragraph 4.7.

6.2 Future Work

This project is a complete work which has exhausted most of the possible

improvements that could be done with the use of the function offload model. Any

future work on the specific algorithm must focus on the complete redesign of the

application and the use of a different model. Perhaps an implementation with the

streaming model or any other SPE-centric model would result a better performance.

Whatever programming model will be used the design must use as much as possible

the SPEs and avoid the re-scheduling; by doing this the code running on the PPE will

be reduced as well as the scheduling overhead. Below, some more specific ideas for

future work are being proposed:

 For the CSU Bayesian Project application would be better to project more

images at once instead of projecting one by one. This will increase the

dimensions of the matrices for the Bayesian Project and will reduce the

iterations.

 A vectorization of the code running on the PPE would probably increase its

performance.

Chapter 6 Conclusions & Future Work

Microprocessor & Hardware Laboratory 75

 If the use of single precision floating point is not dramatically affecting the

results, then this will increase the second level parallelism from 2-way to 4-

way.

Microprocessor & Hardware Laboratory 76

References

[1] J. A. Kahle, et al., "Introduction to the Cell Multiprocessor," IBM Systems Journal,

vol. 49, no. 4/5, pp. 589-605, 2005.

[2] Sony. Playstation. [Online].

http://gr.playstation.com/ps3/index.html

[3] A. Chow, G. Fossum, and D. Brokenshire, "A Programming Example: Large FFT on

the Cell Broadband Engine," in GSPx, Santa Clara, 2005.

[4] D. Bader, V. Agarwal, K. Madduri, and S. Kang, "High Performance Combinatorial

Algorithm Design on the Cell Broadband Engine," Parallel Computing, vol. 33, no.

10-11, pp. 720-740, 2007.

[5] F. Petrini, et al., "Multicore Suprises: Lessons Learned from Optimizing Sweep3D

on the Cell Broadband Engine," in IEEE International Parallel and Distributed

Processing Symposium, Long Beach, 2007, p. 62.

[6] V. Sachdeva, M. Kistler, E. Speight, and T. K. Tzeng, "Exploring the Viability of the

Cell Broadband Engine for Bioinformatics Applications," in IEEE International

Parallel and Distributed Processing Symposium, Long Beach, 2007, p. 259.

[7] S. Williams, et al., "The potential of the Cell processor for scientific computing,"

in Third Conference on Computing Frontiers CF'06, New York, 2006, pp. 9-20.

[8] D. Bolme, R. Beveridge, M. Teixeira, and B. Draper, "The CSU Face Identification

Evaluation System: Its Purpose, Features and Structure," in International

Conference on Vision Systems, Graz, Austria, 2003, pp. 304-311.

[9] R. Beveridge. Evaluation of Face Recognition Algorithms. [Online].

http://www.cs.colostate.edu/evalfacerec

[10] B. Moghaddam and A. Pentland, "Probabilistic Visual Learning for Object

Detection," in IEEE International Conference on Computer Vision, Cambridge,MA,

1995, pp. 786-793.

http://gr.playstation.com/ps3/index.html
http://www.cs.colostate.edu/evalfacerec

Microprocessor & Hardware Laboratory 77

[11] B. Moghaddam, C. Nastar, and A. Pentland, "A Bayesian Similarity Measure for

Direct Image Matching," in International Conference on Pattern Recognition,

Vienna, Austria, 1996, pp. 350-358.

[12] M. L. Teixeira, "The Bayesian Intrapersonal/Extrapersonal Classifier," Master's

Thesis, CSU Computer Science Department, Jul. 2003.

[13] D. Pham, et al., "The Design and Implementation of a First Generation Cell

Processor," in International Solid State Circuits Conference, San Fransisco, 2005,

pp. 184-185.

[14] T. Chen, R. Raghavan, J. Dale, and E. Iwata, "Cell Broadband Engine Architecture

and its First Implementation," IBM developerWorks techical article, 2005.

[15] IBM, "Cell Broadband Engine Architecture," Oct. 2007, Version 1.02.

[16] IBM, "VectorSIMD Multimedia Extension Technology," Oct. 2006, Version 2.07c.

[17] IBM, "PowerPC 970FX RISC Microprocessor User’s Manual," Dec. 2005, Version

1.6.

[18] M. Gschwind, et al., "Synergistic Processing in Cell's Multicore Architecture," IEEE

Micro, vol. 26, no. 2, pp. 10-24, 2006.

[19] B. Flachs, et al., "The Microarchitecture of the Synergistic Processor for a Cell

Processor," IEEE Solid State Circuits, vol. 41, no. 1, 2006.

[20] IBM, "SPU Instruction Set Architecture," Jan. 2007, Version 1.2.

[21] M. Kistler, M. Perrone, and F. Petrini, "Cell Multiprocessor Communication

Network: Built for Speed," IEEE Micro, vol. 26, no. 3, pp. 10-23, 2006.

[22] Fedora. Fedora Project. [Online].

http://fedoraproject.org/

[23] TerraSoft. Yellow Dog Linux. [Online].

http://www.terrasoftsolutions.com/products/ydl/

[24] Gentoo. Gentoo Linux. [Online].

http://www.gentoo.org/

http://fedoraproject.org/
http://www.terrasoftsolutions.com/products/ydl/
http://www.gentoo.org/

Microprocessor & Hardware Laboratory 78

[25] Debian. Debian -- The Universal Operating System. [Online].

http://www.debian.org/

[26] NIST. (2003) FERET Database. [Online].

http://www.itl.nist.gov/iad/humanid/feret/

[27] G. Shakhnarovich and B. Moghaddam, "Face Recognition in Subspaces," in

Handbook of Face Recognition. Springer-Verlag, 2004.

[28] IBM, "Cell Broadband Engine Programming Tutorial," Oct. 2007, Version 3.0.

[29] A. Arevalo, et al., Programming the Cell Broadband Engine: Examples and Best

Practices, 1st ed. IBM, 2007.

[30] IBM, "Cell Broadband Engine Programming Handbook," Apr. 2007, Version 1.1.

[31] IBM, "SPE Runtime Management Library," Sep. 2007, Version 2.2.

[32] IBM, "SPU C/C++ Language Extensions," Mar. 2006, Version 2.1.

[33] D. A. Brokenshire, "Maximizing the Power of the Cell Broadband Engine

Processor: 25 Tips to Optimal Application Performance," IBM developerWorks

technical article, 2006.

[34] TerraSoft. Yellow Dog Linux-Installation Support. [Online].

http://www.terrasoftsolutions.com/support/installation/

[35] IBM. Cell Broadband Engine Resource Center. [Online].

http://www.ibm.com/developerworks/power/cell/documents.html

[36] IBM. Cell Broadband Engine Architecture Forum. [Online].

http://www.ibm.com/developerworks/forums/forum.jspa?forumID=739&cat=46

[37] IBM, "Full-System Simulator for the Cell Broadband Engine Processor," Oct.

2007, Version 3.0.

[38] IBM, "Performance Analysis with the Full-System Simulator," Oct. 2007, Version

3.0.

[39] IBM. IBM BladeCenter QS20. [Online].

http://www-03.ibm.com/technology/splash/qs20/

http://www.debian.org/
http://www.itl.nist.gov/iad/humanid/feret/
http://www.terrasoftsolutions.com/support/installation/
http://www.ibm.com/developerworks/power/cell/documents.html
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=739&cat=46
http://www-03.ibm.com/technology/splash/qs20/

Microprocessor & Hardware Laboratory 79

	SUMMARY
	ACKNOWLEDGEMENTS
	CHAPTER 1 - Introduction
	CHAPTER 2 - Platform
	2.1 Cell Processor
	2.1.1 Power Processor Element
	2.1.2 Synergistic Processor Elements
	2.1.3 Element Interconnection Bus

	2.2 PlayStation 3
	Operating System
	2.2.2 Memory System
	2.2.3 Network Card
	2.2.4 Graphics Card

	CHAPTER 3 - Bayesian Intrapersonal/Extrapersonal Classifier Algorithm
	3.1 CSU Face Identification Evaluation System
	3.2 The Face Recognition Problem
	3.3 BIC Algorithm
	3.3.1 Preprocessing
	3.3.2 Bayesian Train
	3.3.3 Bayesian Project

	3.4 Algorithm Input
	3.5 Algorithm Output

	CHAPTER 4 - Implementation
	4.1 The Programming Model
	4.2 The Application Enablement Process
	4.3 Profiling
	4.4 Matrix Multiplication
	4.5 Data Flow Analysis
	4.6 Development
	4.6.1 Data Partitioning
	4.6.2 Implementation on x86 Architecture
	4.6.3 Port to PPE
	4.6.4 PPE Control
	4.6.5 DMA Transfers
	4.6.6 Implementation with One & Multiple SPEs
	4.6.7 Code Optimizations
	Function Inline
	SIMD Vectorization
	Loop Unrolling

	4.6.8 Join with CSU Bayesian

	4.7 Software Tools Problems

	CHAPTER 5 - Evaluation & Verification
	5.1 Measuring Performance
	5.2 Performance
	5.2.1 Performance of Model Application
	5.2.2 Performance of SPEs
	5.2.3 Total Performance

	5.3 Precision
	5.4 Verification

	CHAPTER 6 - Conclusions & Future Work
	6.1 Conclusions
	6.2 Future Work

	References

