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SUMMARY 

The slow progress in the performance of the traditional architectures let the high 

performance computing community to examine alternative architectures. These 

architectures are trying to deal with the limitations of the modern single core cache-

based designs. In this work we examine a new and very promising multicore 

architecture, the Cell Broadband Engine Architecture. 

The Cell Broadband Engine (Cell) is a multicore processor recently developed by 

Sony, Toshiba and IBM. It was originally designed for the Playstation 3 game console, 

but its capabilities also make it well suited for various other computation-intensive 

applications. The Cell processor is capable of achieving impressive levels of 

performance for complex scientific applications. These levels of performance can be 

reached by exploiting the several dimensions of parallelism that Cell provides.  

In this thesis the computational power of the Cell processor was applied to the face 

recognition problem and more specifically to Bayesian Intrapersonal/Extrapersonal 

Classifier (BIC), a complex face recognition algorithm based on probabilistic matching 

techniques. In order to achieve better performance for the BIC algorithm we 

parallelized and optimized the most computation–intensive parts of the algorithm. 

During the porting procedure of the algorithm on the Cell processor many problems 

were encountered, mostly related with data motion, parallelism levels and 

scheduling. 

In the final results a considerable improvement of performance was achieved, but 

with a significant overhead too, which prevents us from reaching the desirable 

results. 
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CHAPTER 1  
 
Introduction 

During the last decade high performance computing became very popular; as the 

need for more computational power grows high performance computing is trying to 

serve these needs. More and more multicore processors are being designed to fulfill 

the demands of the market. More processors mean more complex problems for the 

processors designers, gate density, power consumption, and efficient memory 

hierarchies are some of the problems they are facing. The scientific and industrial 

communities are looking for alternative solutions that can keep up with the 

insatiable demand of computing cycles and yet have a sustainable market outside 

the scientific world.  

A major trend in computer architecture is the design of multi-core-systems-on-a-chip 

processors which can integrate several identical independent processing units on the 

same die, together with network interfaces, acceleration units and other specialized 

units. This technological trend is driving the development of high performance 

processors that are holding enormous computational power on a single chip. The 

burden is now being shifted, from the architecture which is becoming simpler and 

more streamlined to the software. Software is now required to extract several forms 

of parallelism and directly coordinate a plethora of computational and 

communication activities across various levels of memories and functional units. This 

is exactly and the purpose of this thesis, to take advantage of the computational 

power that a multicore processor offers and use it for the needs of a specific 

application. Moreover we are trying to extract the computational power of a 

multicore processor through the partial redesign of an existing application in order 

to achieve better performance for the application.  

The multicore processor that is being used in this project is the Cell Broadband 

Engine [1] processor that was jointly developed by IBM, Sony and Toshiba, is the new 

member of the IBM Power/PowerPC processor family. The initial target was the 

PlayStation 3 game console [2], but its capabilities also make it well suited for 

various other computation-intensive applications such as visualization, image and 

signal processing, bioinformatics etc [3], [4], [5], [6]. The Cell BE is a heterogeneous 

chip with nine cores capable of massive floating point processing, optimized for 
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compute-intensive workloads and broadband, rich media applications; for these 

characteristics Cell became very popular in the scientific community [7]. 

As the computational power of multicore processors is increasing, the computation 

complexity of the applications is also increasing. The databases are getting extremely 

large, as well as and their processing time. One problem that needs to process many 

data and is also computationally complex is the face recognition problem. The face 

recognition is very popular in many applications such as computer vision, image 

analysis, psychology, security, etc. In this thesis an existing application for face 

recognition is being used, the Colorado State University (CSU) Face Identification 

Evaluation System [8], [9]. This application is evaluating the performance of several 

face recognition algorithms, from this collection of algorithms the most complex was 

selected, the Bayesian Intrapersonal/Extrapersonal Classifier (BIC) [10], [11], [12].  

The purpose was not the complete redesign of the application or the algorithm in 

order to be faster, but to execute the BIC algorithm on the Cell processor without 

changing the CSU application logic and achieve as much as possible performance. 

The approach that was followed in order to accomplish our purpose was to 

parallelize only the most time-consuming functions of the algorithm. This was maybe 

not the best approach but certainly was the fastest way to port the CSU application 

on Cell processor and get a respectable performance improvement.  

The rest of this thesis is organized as follows: Chapter 2 introduces the Cell 

Broadband Engine processor and the Playstation 3 that was used in the 

implementation. Chapter 3 outlines the face recognition problem the CSU 

application and the BIC algorithm. Chapter 4 briefly describes the development 

process that was followed for the implementation. Chapter 5 presents the final 

results of the implementation and Chapter 6 has some conclusions from this work. 
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CHAPTER 2  
 
Platform 

This chapter describes the platform that was used for the implementation. The Cell 

processor, its architecture as well as and the Playstation 3 game console are 

described in this chapter. The purpose of the chapter is to introduce the reader to 

the architecture of Cell and to the hardware that was used in the implementation. 

Many aspects of the implementation that will be discussed later are based on 

concepts of this chapter. 

2.1 Cell Processor 
 

The Cell Broadband Engine (CBE) [13], known as Cell is a nine-core implementation of 

the Cell Broadband Engine Architecture (CBEA) [1], [14], [15], Figure 1 gives an 

architectural overview of the Cell B.E. The CBEA is a new architecture that extends 

the 64-bit PowerPC Architecture, CBEA and CBE are the results of collaboration 

between Sony, Toshiba and IBM (STI), formally started in early 2001.  

 

 

Figure 1: Cell Broadband Engine Architecture 
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It was initially designed for the Sony PlayStation 3 (PS3) game console, but rapidly 

became famous in the scientific community for its computing capabilities. The Cell 

Broadband Engine (Cell B.E.) is a heterogeneous multicore chip that is significantly 

different from conventional multiprocessor or multicore architectures. It consists of 

a traditional PowerPC microprocessor called Power Processor Element (PPE) that 

controls eight SIMD co-processing units called Synergistic Processor Elements (SPEs), 

a high speed memory controller, and a high bandwidth bus interface, the Element 

Interconnect Bus (EIB), all integrated on a single chip.  

2.1.1 Power Processor Element 

 

The Power Processor Element (PPE) [1], [15] is a 64-bit processor representative of 

the Power Architecture, optimized for design frequency and power efficiency. The 

PPE consists of the Power Processing Unit (PPU) and a Power Processor Storage 

Subsystem (PPSS); Figure 2 shows a simple block diagram of the PPE. 

 

 

Figure 2: PowerPC Processor Element (PPE) block diagram 

The PPU deals with instruction control and execution. It includes a 32 KB 2-way set 

associative instruction cache and a 32 KB 4-way set associative write-through data 

cache. Beside the standard floating point unit (FPU) the PPU also includes a short 
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vector SIMD engine, VMX [16], an incarnation of the PowerPC Velocity Engine or 

AltiVec, a branch unit and a virtual management unit. The PPE’s register file is 

comprised of 32 64-bit general purpose registers, 32 64-bit floating-point registers 

and 32 128-bit vector registers. 

The PPSS handles memory requests from the PPE and external requests to the PPE 

from other processors or I/O devices. It includes a unified (instruction and data) 512 

KB 8-way set associative write-back cache, various queues and a bus interface unit. 

While the PPE uses the PowerPC instruction set and is binary compliant with the 

PowerPC 970 architecture [17], its design is substantially different, it is not based on 

an existing design on the market today. The PPE is a dual-issue, dual-thread, in-order 

processor with a relatively simple architecture, which results in considerably smaller 

amount of circuitry than its out-of-order execution counterparts and lower energy 

consumption. This can potentially translate to lower performance, especially for 

applications heavy in branches. However, the high clock rate, high memory 

bandwidth and dual threading capabilities may make up for the potential 

performance deficiencies. The PPE seems to provide two independent execution 

units to the software layer. In practice the execution resources are shared, but each 

thread has its own copy of the architectural state, such as general-purpose registers.  

Although clocked at 3.2 GHz PPE looks like a quite potent processor, its main 

purpose is to serve as a controller and supervise the other cores on the chip. In a Cell 

based system the PPE will run the operating system (OS) and most of the 

applications but compute intensive parts of the OS and applications will be offloaded 

to the SPEs. Thanks to the PPE’s compliance with the PowerPC architecture, existing 

applications can run on the Cell out of the box, and be gradually optimized for 

performance using the SPEs (see 2.1.2), rather than written from scratch. 

2.1.2 Synergistic Processor Elements 

  

One of the key architecture features that enable the Cell Broadband Engine’s 

breakthrough  performance is the Synergistic Processor Element (SPE) [18], [19], [15], 

[1]. Each of the eight SPE’s consists of a Synergistic Processing Unit (SPU) and a 

Memory Flow Controller (MFC); Figure 3 shows a simple block diagram of the SPE. 

The SPU deals with instruction control and execution. It includes a single register file 

with 128 registers, each one 128 bits wide, a unified 256-KB Local Store (LS), an 

instruction-control unit, a load and store unit, two fixed-point units, one floating-

point unit, and a channel-and-DMA interface. Each SPU is an independent processor 

with its own program counter and is optimized to run SPE threads spawned by the 
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PPE. All SPU instructions are inherently SIMD operations that can run at four 

different granularities: 16-way 8-bit integers, 8-way 16-bit integers, 4-way 32-bit 

integers or single-precision floating-point numbers, or 2-way 64-bit double-precision 

floating point numbers [20]. Like the PPU, SPU is an in-order processor with two 

instruction pipelines, odd and even. The even pipeline is being devoted to arithmetic 

operations and the odd is being devoted to data motion. Particularly the floating 

point and fixed point units are on the even pipeline while the rest of the functional 

units are on the odd pipeline. Each SPU can issue and complete up to two 

instructions per cycle - one per pipeline. For a wide variety of applications, the SPU 

can approach this theoretical limit.  

 

Figure 3: Synergistic Processor Element (SPE) block diagram 

Unlike the PPE, the SPEs do not have caches. Instead, they have the LS that only they 

can see. All code and data for the SPU must be stored within this 256K local area. In 

fact, the SPUs cannot “see” the rest of the chip's address space at all. They can't 

access each others' local stores nor can they access the PPE's caches or other on-chip 

or off-chip resources. Each SPU fetches instructions from its own LS and it loads and 

stores data from and to its own LS, it cannot access main memory directly, but it has 

to issue DMA commands to the MFC to bring data into the LS or write results back to 

main storage (main memory, other SPEs’ LS, and memory-mapped registers). In 

effect LS works as a “second level” register file which provides a deterministic 

operating environment for the SPEs. The lack of caches and the presence of the LS 
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contribute to the deterministic performance because cache misses are not a factor in 

their performance.  

Figure 4 shows the Synergistic Processor Element architecture. 

 

 

Figure 4: Synergistic Processor Element Architecture 

The MFC contains a DMA controller that supports DMA transfers. Programs running 

on the SPU, the PPE, or another SPU, use the MFC’s DMA transfers to move 

instructions and data between the SPU’s LS and main storage. The MFC interfaces 

the SPU to the EIB (see 2.1.3), implements bus bandwidth-reservation features, and 

synchronizes operations between the SPU and all other processors in the system. To 

support DMA transfers, the MFC maintains and processes queues of DMA 

commands. After a DMA command has been queued to the MFC, the SPU can 
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continue to execute instructions while the MFC processes the DMA command 

autonomously and asynchronously. This autonomous execution of MFC DMA 

commands and SPU instructions allows DMA transfers to be conveniently scheduled 

to hide memory latency.  

Synergistic processing clearly drives Cell’s performance. Offloading as much as 

possible computations to the SPEs is the key to unleash the Cell computational 

power. But keeping all eight SPEs “fed” with data and parallelizing the code to run on 

all eight SPEs is the main challenge of programming the Cell processor. 

2.1.3 Element Interconnection Bus  

 

The Element Interconnection Bus (EIB) [21], [1], [15] is a communication bus internal 

to the Cell processor which connects the various on-chip system elements: the PPE 

processor, the memory controller (MIC), the eight SPE coprocessors, and two off-

chip I/O interfaces, for a total of 12 participants. The EIB also includes an arbitration 

unit which functions as a set of “traffic lights”, Figure 5 shows the EIB. 

 

 

Figure 5: Element Interconnection Bus 
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The EIB data network consists of four 16-byte-wide data rings: two running 

clockwise, and the other two counterclockwise. Each ring potentially allows up to 

three concurrent data transfers, as long as their paths don’t overlap. To initiate a 

data transfer bus elements must request data bus access. The EIB data bus arbiter 

processes these requests and decides which ring should handle each request. The 

arbiter always selects one of the two rings that travel in the direction of the shortest 

transfer. The arbiter also schedules the transfer to ensure that it won’t interfere with 

other in-flight transactions. To minimize stalling on reads, the arbiter gives priority to 

requests coming from the memory controller. 

The EIB operates at half the processor-clock speed. Each EIB unit can simultaneously 

send and receive 16 bytes of data every bus cycle. The EIB supports a peak 

bandwidth of 204.8 GB/s for internal transfers among the SPEs. The memory 

interface controller (MIC) provides a peak bandwidth of 25.6 GB/s to main memory. 

The I/O controller provides peak bandwidths of 25 GB/s inbound and 35 GB/s 

outbound. 

It's clear that the EIB is one of the most important parts of the Cell design; it doesn't 

do processing itself but has to contend with potentially hundreds of Gigabytes of 

data flowing through it at any one time to many different destinations. 

2.2 PlayStation 3 
 

Currently the easiest and the cheapest way to gain access to a Cell processor is the 

Sony PlayStation 3 (PS3) [2]. As mentioned before, Cell processor was originally 

designed for PS3 and the vision was to achieve 1,000 times the performance of 

PlayStation 2. Due to the need of access to the Cell’s computational power a Linux 

based operating system designed to run on PS3. The need for real Cell hardware 

mainly derives from the fact that IBM’s Cell simulator is very slow. Today anybody 

can have access to the Cell processor by just installing an OS on PS3 and using it as a 

normal PC with high capabilities. Although PS3 is an easy solution it may not be the 

best, PS3 has some limitations on the performance of Cell. The main limitations are 

the small memory, only 256 MB and the availability of only six SPEs out of eight. One 

of the eight SPEs is disabled at the hardware level due to yield reasons and another 

SPE is reserved for use by the PS3’s operating system. Apart from these limitations 

PS3 remains a good choice for anybody who wants to have its own Cell processor. 

 



Chapter 2  Platform 

 

 

Microprocessor & Hardware Laboratory                                                                                                         20 

 

2.2.1 Operating System 

 

The PS3 is shipped with an operating system called Game OS but is capable of 

running Linux OS if installed on the console's hard drive. The Linux operating system 

runs on the PS3 on top of a virtualization layer, also called hypervisor, the Game OS. 

This means that all the hardware is accessible only through the hypervisor calls. The 

hardware signals the kernel through virtualized interrupts. The interrupts are used to 

implement callbacks for non-blocking system calls. The Game OS permanently 

occupies one of the SPEs and controls access to the hardware. A direct consequence 

of this is larger latency in accessing hardware such as the network card. Even worse, 

it makes some hardware inaccessible like the accelerated graphics card.  

At this point, there are numerous distributions that have official or unofficial support 

for PS3. The distributions that are currently known to work on PS3 (with varying 

levels of support and end-user experience) include: 

 Fedora Core 7 [22], 

 YellowDog 6.0 [23], 

 Gentoo PowerPC 64 edition [24], 

 Debian [25]. 

All the distributions mentioned include Sony-contributed patches to the Linux 

kernel-2.6.16 to make it work on PS3 hardware and talk to the hypervisor. However, 

the Linux kernel version 2.6.20 has PS3 support already included in the source code 

without the need for external patches. 

2.2.2 Memory System 

 

The memory system is built of dual-channel Rambus Extreme Data Rate (XDR) 

memory. PS3 provides a modest amount of memory of 256 MB, out of which 

approximately 200 MB is accessible to Linux OS and applications. The memory is 

organized in 16 banks. Real addresses are interleaved across the 16 banks on a 

naturally aligned 128-byte (cache line) basis. Addresses 2 KB apart generate accesses 

to the same bank. For all practical purposes the memory can provide the bandwidth 

of 25.6 GB/s to the SPEs through the EIB, provided that accesses are distributed 

evenly across all the 16 banks. 
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2.2.3 Network Card  

 

The PS3 has a built-in GigaBit Ethernet network card. However, unlike standard PC’s 

Ethernet controllers, it is not attached to the PCI bus. It is directly connected to a 

companion chip. The network card has a dedicated DMA unit, which allows making 

data transfer without PPE’s intervention. One of many advantages of GigaBit 

Ethernet is the possibility of increased frame size – so called Jumbo Frames. It can 

increase available bandwidth by 20% in some case and significantly decreases 

processor load when handling network traffic.  

2.2.4 Graphics Card 

 

PS3 features special edition from NVIDIA and 256 MB of video RAM. Unfortunately, 

the virtualization layer does not allow access to these resources. At issue is not as 

much accelerated graphics for gaming as is off-loading of some of the computations 

to GPU and scientific visualization. 
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CHAPTER 3  
 
Bayesian 
Intrapersonal/Extrapersonal 
Classifier Algorithm 

This section presents the face recognition algorithm that has been ported on the Cell 

processor. The Bayesian Intrapersonal/Extrapersonal Classifier (BIC) is an algorithm 

based on the probabilistic matching techniques proposed by Moghaddam and 

Pentland for face recognition [10] . The design is using the ANSI C implementation of 

the BIC algorithm which is part of the Colorado State University (CSU) Face 

Identification Evaluation System, version 5.0. The methodology, the basic steps of 

algorithm as well as matters of algorithm input and output are introduced in this 

chapter. 

3.1 CSU Face Identification Evaluation System 
 

The Colorado State University (CSU) Face Identification Evaluation System [8], [9] 

provides standard face recognition algorithms and standard statistical methods for 

comparing face recognition algorithms. The system includes standardized image pre-

processing software, four distinct face recognition algorithms, analysis software to 

study algorithm performance, and UNIX shell scripts to run standard experiments. All 

code is written in ANSI C. The four algorithms provided are Principle Components 

Analysis (PCA), a combined Principle Components Analysis and Linear Discriminant 

Analysis algorithm (PCA+LDA), a Bayesian Intrapersonal/Extrapersonal Classifier 

(BIC), and an Elastic Bunch Graph Matching (EBGM) algorithm. Our interested is only 

for the BIC algorithm, which is the most complex among the four algorithms; a 

detailed description of the BIC algorithm follows in the paragraph 3.3. 

3.2 The Face Recognition Problem 
 

2D face recognition has been a popular and challenging research area since last 

decade. It arise general interests in computer vision, image analysis, psychology, etc.
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The problem can be approached from two sides, identification and verification. The 

identification problem is: given a set of face images with labeled identity (the 

database) and a set of unlabeled face images (the probe), identify the person or 

persons in the probe images. The related verification problem is: given a novel image 

of specific person, confirm whether the person is or is not who they claim to be. 

Many works have been proposed for this problem till now. Below it is briefly 

introduced the method based on Bayesian theory. 

3.3 BIC Algorithm 
 

In traditional classifiers, face images are projected directly into a compressed 

subspace, under the assumption that images of a single person will map to a tight 

cluster of points. Conversely it is expected that projections of images of different 

subjects will be widely separated, Moghaddam and Pentland proposed an 

alternative [10], [11]. Their classifier defines the subspace in a different way, rather 

than treading face images as points in a face subspace, they look at the space 

spanned by the difference between two face images. The difference image for two 

face images is the signed arithmetic difference between respective pixels in the 

source images. Such difference images fall into two distinct classes: 

 Intrapersonal difference images are those derived from two images of the 

same subject. 

 Extrapersonal difference images are those derived from two images of 

different subjects. 

Below Figure 6 shows intrapersonal and extrapersonal difference images.   

 

Figure 6: Intrapersonal/Extrapersonal difference images 
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Moghaddam and Pentland suggest that intrapersonal and extrapersonal difference 

images form distributions that are approximately Gaussian. As shown in Figure 7 

their classifier matches probe images to stored images by computing the likelihood 

that the corresponding difference images came from the subspace of intrapersonal 

rather than extrapersonal. The likelihood is computed in two ways, by using 

Maximum Likelihood (ML) method or Maximum a Posteriori (MAP) method.  

 

Figure 7: Bayesian similarity. The difference image is projected through both 
subspaces (intra/extra) in order to obtain the two likelihoods. 
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The CSU Face Identification Evaluation System implements the BIC algorithm in three 

main steps, preprocessing, Bayesian training and Bayesian project [12], [8]. The 

implementation uses the FERET database and it classifies all the images of the input 

set, that is to say it uses each image of the input set as a probe, it classifies it and 

goes to the next. The flow chart of the CSU implementation of the BIC is shown in 

Figure 8. 

 

Figure 8: Bayesian Intrapersonal/Extrapersonal Classifier 

3.3.1 Preprocessing 

 

Preprocessing is conducted at the first step of the algorithm. The process performs 

five steps in converting a FERET image (see 3.4) to a normalized image [26]. The 

normalization schedule is: 

 Integer to float conversion - Converts 256 gray levels into floating point      

equivalents. 

 Geometric normalization – Lines up human chosen eye coordinates. 
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 Masking – Crops the image using an elliptical mask and image borders such   

that only the face from forehead to chin and cheek to cheek is visible. 

 Histogram equalization – Equalizes the histogram of the unmasked part of 

the image. 

 Pixel normalization – scales the pixel values to have a mean of zero and a 

standard deviation of one. 

For an example see Figure 9 

 

Figure 9: Image Preprocessing 

3.3.2 Bayesian Train 

 

Before the algorithm can actually be used, parameters for the intrapersonal and 

extrapersonal densities must be estimated using training data. The training step 

outputs two training files, one for each subspace. The training file contains a 

description of the training parameters, the mean of the training image, the 

eigenvalues and a set of basis vectors for the subspace [27]. This training is 
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performed twice: once with the Intrapersonal subspace, and once with the 

Extrapersonal subspace. At the end, the subspaces are stored into two different files: 

bayesian.intra and bayesian.exta. 

3.3.3 Bayesian Project 

 

The main step of the algorithm is the Bayesian projection. The code projects the 

feature vectors onto each of the two sets of basis vectors and then computes the 

probability that each feature vector came from one or the other subspace. The 

output is a set of distance files containing the distance from each image to all other 

images. As we mentioned before the similarities may be computed using the 

maximum a posteriori (MAP) or the maximum likelihood (ML) methods. From a 

practical standpoint, the ML method uses information derived only from the 

intrapersonal images, while the MAP method uses information derived from both 

distributions. The below equations are extracted from Marcio Luis Teixeira’s thesis 

on the Bayesian Intrapersonal/Extrapersonal Classifier [12], [10], [27]. 

First, let us introduce the probability of distance image Δ belonging to a class: 
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The Maximum Likelihood classifier is then defined by: 
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The Maximum a Posteriori classifier uses Bayes rule to estimate the a posteriori 

probability of Δ to the Intrapersonal or Extrapersonal class. This probability is: 
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Where 

I  Intrapersonal subspace 

E  Extrapersonal subspace 

3.4 Algorithm Input 
 

The main input of the algorithm is a set of frontal facial images from the Face 

Recognition Technology (FERET) [26] database of the National Institute of Standards 

and Technology (NIST). The set of images from the database to be used from the 

algorithm are stored in an image list file with .srt extension. The algorithm is initially 

reading and processing all the FERET database images included in the image list file. 

The preprocessing step reads the .pgm extension files from the FERET database and 

creates the normalized images with .sfi extension. These set of normalized images 

consist the input of the Bayesian Train and Bayesian Project steps. 

3.5 Algorithm Output 
 

The algorithm produces a distance matrix for all of the images in the testing list. This 

matrix is split up into distance files. One file is produced for every image in the list. 

Each line in these file contain the name of another image and the distance to that 

image. The file has the same name as the probe image and is placed in a distance 

directory. The algorithm assumes that smaller distances are a closer match. Two sets 

of distances files are created by the algorithm, one for each method it uses to 

compute the distance, maximum a posteriori (MAP) or the maximum likelihood (ML) 

method. 

http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
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CHAPTER 4  
 
Implementation 

In this chapter it is briefly described the process of enabling the CSU implementation 

of the BIC algorithm to the Cell processor. It refers with details in the data 

partitioning procedure, the levels of parallelism, the data transfers and the code 

optimizations. It also describes some of the problems that were encounter during 

the development and the solutions that were provided. The main purpose of this 

chapter is to explain the overall development flow that was followed in our 

implementation. 

4.1 The Programming Model 
 

The programming model that was chosen for our implementation was the function 

offload model [28], [29] .The function offload model is the quickest way to effectively 

use the Cell processor with an existing application. In this model, the main 

application runs on the PPE and calls selected procedures to run on one or more 

SPEs. In this programming model, the SPEs are used as accelerators for certain types 

of performance-critical functions, hotspots. This model replaces complex or 

performance-critical functions invoked by the main application with functions 

offloaded into one or more SPEs, without changing the main application logic at all. 

The original performance-critical function is optimized and recompiled for the SPE 

environment and an SPE-executable program is being created.  

Currently, the programmer statically identifies which functions should execute on 

the PPE and which should be offloaded to SPEs by utilizing separate source and 

compilation for the PPE and SPE components. It is also programmer’s responsibility 

to manually partition and schedule the work to one or more SPEs. This model was 

selected because we already had an implementation of the BIC algorithm and we 

just wanted to improve the performance of the algorithm with parallelism. The 

quickest and possibly easiest way to do this was to speed-up the computation- 

intensive functions of the algorithm with the function offload model. 
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4.2 The Application Enablement Process 
 

The process of enabling an application on Cell processor can be incremental and 

iterative [29]. It is incremental in the sense that the hotspots of the application 

should be moved progressively off the PPE to the SPE. This process is iterative as for 

each hotspot, the optimization can be refined at the SIMD, synchronization and data 

movement levels until satisfactory levels of performance are obtained. As for the 

starting point, a thorough profiling of the application on a general purpose system 

will give all the hotspots that need to be looked at. Then, for each hotspot, a multi-

SPE implementation can be written with all the data transfer and synchronization 

between the PPE and the SPE. Once this first implementation is working, the tuning 

is turned to the SPE code. The last two steps can be repeated in a tight loop until the 

performance is good enough. The same process can be repeated for all the major 

hotspots. This enablement process is shown in Figure 10. 

 

Figure 10: Application enablement process 
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4.3 Profiling 
 

As it was mentioned above the first step for porting the application to the Cell 

processor was the profiling of the original code, to locate the computation-intensive 

functions.  Intel’s Vtune Performance Analyzer 9.0 for Linux was used to determine 

the most time-consuming functions for each of the three applications of BIC 

algorithm. Table 1, Table 2 and Figure 11 shows the execution profile for each of the 

three applications, preprocessing, Bayesian train and Bayesian project, the profiling 

was made on a P4 machine at 2.66GHz, with Ubuntu 7.10 OS. These results indicate 

that two of our applications spend more than 90% of their execution time in two 

functions only, multiplyMatrix and tranposeMultiplyMatrixL. On the other hand, 

preprocessing distributes its execution time to many functions with none of them 

exceeding the 30% of the execution time. 

 

Process Clockticks % 

csuBayesianProject 53,10% 
csuBayesianTrain 7,70% 
csuPreprocessNormalize 4,62% 
Other OS processes 34,58% 

Table 1: BIC profiling 

Function Bayesian Train Bayesian Project Preprocessing 

multiplyMatrix 60,88% 0% 14,79% 

transposeMultiplyMatrixL 33,85% 90,90% 0% 

centerThenProjectImages 0% 3,02% 0% 

interpLinear 0% 0% 28,44% 

histEqualMask 0% 0% 10,67% 

Others 5,27% 6,08% 46,1% 

Table 2: BIC applications profiling 

 

This is a useful fact for an implementation on the Cell processor, as it implies that   

significant speed up might be obtained for these applications by only offloading 

these functions to the SPUs. Especially the speed-up of the tranposeMultiplyMatrixL 

function is what concerns us more because is the most time-consuming part of the 

total BIC application. The rest of the enablement process is based on this results and 

the main objective is the speed-up of tranposeMultiplyMatrixL and multiplyMatrix 

functions. 
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for (i=1; i<=n; i++){ 

  for (j=1; j<=n; j++){ 

    for (k=1; k<=n; k++){ 

      c[i,j]=c[i,j]+a[i,k]*b[k,j]; 

    } 

  } 

} 

 

 

Figure 11: Function-wise breakout of BIC applications 

4.4 Matrix Multiplication 
 

Matrix multiplication and transpose matrix multiplication is a common operation in 

ML and MAP classifiers and also a computation-intensive procedure for the 

processors. The hard part of matrix multiplication (and transpose multiplication) is 

the evaluation of the triple loop, for example a multiplication of the form C = A x B, 

where A and B are n x n matrices can be structured as follows: 
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This structure involves 2n3 operations, carried out by a total of 6n3 instructions, three 

loads, an addition, a multiplication and a store are required each time the 

computation is evaluated. Another important thing that makes even harder the 

matrix multiplication is that all the elements of the matrices are double precision (64-

bit) floating-point numbers.  

The implementation of these functions in the CSU BIC algorithm uses column major 

form for storing the data in the main memory. That is to say that the elements of a 

column are stored sequentially in the main memory, as shown in Figure 12. As the 

CSU BIC algorithm implementation uses matrices not only in these two functions, the 

implementation for the SPEs depends on the structures and type definitions that 

CSU implementation uses. This makes a lot easier the compatibility of the two 

offloaded functions with the rest of the code.  

 

 

Figure 12: Column-major form 
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4.5 Data Flow Analysis 
 

After the functions that would run on SPEs were located, a data flow analysis was 

required to determine the amount of data that had to be transferred to the SPEs LS. 

Both functions have two input arguments, matrix A and matrix B and return the 

result into another matrix C. The size of matrices A, B and C is not always the same, 

all the function calls in the original source code were studied carefully and was 

discovered that there are three kinds of multiplications and transpose 

multiplications. The following table, Table 3 shows the dimensions of matrices for 

each case and the amount of space needed. Besides the multiplication types,   Table 

4 shows which application uses each type of multiplication. The application of 

preprocessing is not included in the next table because the original implementation 

of preprocessing was not changed. 

 

Matrix 
Multiplication 

A B C Data size (MB) 

Transpose 19500x100 19500x100 100x100 31.28 
Transpose 19500x59 19500x1 59x1 9.36 

Normal 19500x100 100x100 19500x100 31.28 

Table 3: Matrices dimensions and data size 

Matrix 
Multiplication 

A B C Application 

Transpose 19500x100 19500x100 100x100 Bayesian Train 
Transpose 19500x59 19500x1 59x1 Bayesian Project 

Normal 19500x100 100x100 19500x100 Bayesian Train 

Table 4: Matrices dimensions and applications 

 

From the previous data analysis it was obvious that was unable to perform at once 

these multiplications at the SPEs due to the limited size of LS at the SPEs. This 

observation led us to the conclusion that in order to execute the multiplication at the 

SPEs it was necessary to partition the data into smaller pieces. Moreover the 

matrices had to split into submatrices of the appropriate size, calculate the partial 

results at the SPEs and combine them to estimate the final result of the initial 

matrices. This necessity for data partitioning offered us and the first level parallelism 

of the implementation, parallel submatrices multiplication on the SPEs in order to 

estimate one of the large matrix multiplications. More details on the implementation 

of data partitioning and the first level parallelism follows in the next paragraph. 
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4.6 Development 
 

According to the data layout that was defined in the previous paragraph the 

development started from the data partitioning problem that occurred. Apart from 

the two main functions tranposeMultiplyMatrixL and multiplyMatrix, auxiliary 

functions were created for partitioning the matrices and merging the submatrices. 

As the implementation was based on an existing application and on existing source 

code, these two functions were implemented separately from rest application. When 

the correctness of the two functions was verified they were combined with the rest 

source code of the application. This approach has the benefits of fast development 

and easy debugging as it has small size of source code. After the data partitioning 

problem was solved we had to deal with the data transfer to the SPEs in order to 

execute the two functions. At first only one SPE was used and then the 

implementation was extended on multiple SPEs.  A detail development flow chart is 

shown on Figure 13. 

 

 

Figure 13: Development flow  
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All the code was developed with the use of IBM’s Cell SDK 2.1 and Full-System 

Simulator. For the final stage of the development it was used a PS3 with Yellow Dog 

Linux 6.0 OS. 

4.6.1 Data Partitioning 

 

From the data flow analysis it was discovered that data partitioning consisted an 

absolute necessity. A way should be found to resolve this problem in order to 

execute multiplications at the SPEs. The main idea is that a matrix multiplication of 

large matrices can be calculated by doing the partial multiplications of the 

appropriate submatrices and combine the partial results to a final result. Two 

methods were implemented for data partitioning because the first implementation 

had a significant overhead and it was necessary to avoid it. 

At first two functions were implemented at the PPE side to partition the matrices to 

smaller submatrices. The two functions are partitionMatrixVertical and 

partitionMatrixHorizontal, these functions break up the matrices in submatrices in 

vertical or horizontal direction. The dimensions of the submatrices are defined by 

the user, but the matrix row dimension must be a multiple of the submatrix row 

dimension, the same limitation holds and for the column dimension. The following 

figure, Figure 14, show an example of horizontal and vertical partitioning for 

submatrices dimensions 5x5. 

 

 

 

  

 

 

 

 

 

 

Figure 14: Horizontal and vertical partitioning 
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Submatrices of proper dimensions can be created for both matrices with the use of 

functions partitionMatrixVertical and partitionMatrixHorizontal. The problem with 

this approach is that in order to create the submatrices, blocks of memory had to be 

copied from multiple positions of the original matrix, for each submatrix. This copy 

procedure was adding an important amount of time to the final execution time and 

this overhead had to be avoided. More specifically the memcpy function was used 

for the data copy and it proved to be very slow on the PPE and we had to find an 

alternative method.    

To avoid this overhead it was decided not to partition the data at the PPE but to 

construct the appropriate submatrices at the SPEs. This implementation has the 

advantage of not using the memcpy function at the PPE side and the disadvantage 

that it needs more DMA transfers to be initiated from the SPEs. The partitioning 

procedure of the second method is in fact the same with the first but instead of 

being implemented at the PPE side and temporary storing the submatrices is 

implemented directly to the SPEs. The first method was creating the submatrices at 

the PPE side and was doing sequential DMA transfers starting from the address of 

each submatrix. In the second method the data of each submatrix were not grouped 

together, but they were transferred to the SPEs column by column (because of the 

column-major form, figure 4.2) from the main memory until the submatrix was 

constructed in the LS. This means that as many DMA transfers as the columns of 

each submatrix had to be done. A more detailed analysis for the data partitioning 

method and the data transfers is discussed in paragraph 4.6.5. 

The next step was to multiply these submatrices and calculate the overall result. This 

procedure is iterative and takes place to the SPEs; it multiplies the appropriate 

submatrices and stores the partial results back to the main memory. These partial 

results are added and merged properly to create the final result. For the merging 

process the functions mergeMatrixVertical and mergeMatrixHorizontal where 

created, these function implement the exact opposite of the partitioning process. 

Finally, the most suitable dimensions for the submatrices were defined for each case 

of multiplication that was showed previously on Table 4 these dimensions are shown 

at Table 5 

Matrix 
Multiplication 

Submatrix A Submatrix B Submatrix C Data Size (KB) 

Transpose 100x100 100x50 100x50 160.00 
Transpose 250x59 250x1 59x1 120.47 

Normal 50x100 100x100 50x100 160.00 

Table 5: Submatrices dimensions and data size 
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4.6.2 Implementation on x86 Architecture 

 

The above procedure was first implemented on P4 machine at 2.66 GHz; this 

implementation can be considered as a model of the final implementation. A small 

program was developed only for matrix multiplication and transpose matrix 

multiplication with data partitioning as described. At this stage the SPEs are not 

being used so the first method for data partitioning was followed. This model 

program was mainly used to verify at this level the correctness of the data 

partitioning procedure. The program performs a multiplication of two matrices with 

the classic method (without data partitioning) and the same multiplication with data 

partitioning and subtracts the two result matrices to verify the result. A correct 

calculation should give a zero matrix after the subtraction of the two results. 

Unfortunately because the multiplication with submatrices changes the order of the 

additions, in comparison with the normal multiplication, the final result has a small 

difference from the classic method. This difference is located after the tenth decimal 

digit of the result. The precision of the implementation and how this inaccuracy 

affects us will be discussed in more depth in the next chapter. 

4.6.3 Port to PPE 

 

The next step of the development was the porting of the original CSU BIC algorithm 

and the model program that was described above to the PPE. This porting to the PPE 

was made to confirm the correct execution of the model program and of the 

complete algorithm, too, on the PPE. There were some problems with the porting of 

the CSU BIC algorithm implementation because the program was designed for little 

endian architecture and PPE is big endian. Some changes were made to resolve this 

problem and the application executed correctly to the PPE. This part of the 

development was important in order to gain familiarity with the gcc-ppu compiler 

and the necessary makefiles for the Cell processor [28], [30]. After this step the 

application was running on PPU and the next step was to begin offloading the 

functions to the SPEs. We let aside the CSU BIC algorithm implementation for PPE to 

continue the function offloading process with our model program for easier 

development.  

4.6.4 PPE Control 

 

Before it was able for the code to execute on SPEs the design had first to deal with 

matters of control and synchronization [29], [30]. As it was mentioned before the 
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function offload model uses the PPE to schedule and control the threads running on 

SPEs. These controls are based on a fork-join model; more specifically, the PPE 

creates the number of SPE threads that needs (fork) it also initiates the execution of 

the threads and when the threads are done, it joins all the independent execution 

flows and destroys the threads.  While the threads are running the PPE can either 

continue execution, asynchronous execution or can wait the SPE threads to finish, 

synchronous execution. In the implementation synchronous execution was the only 

way because there were dependencies between the results from the SPEs and the 

following PPE code. A top level view of this procedure is shown in Figure 15.  

 

 

Figure 15: Fork-Join procedure 

 

The fork-join procedure is implemented with the use of specific library calls provided 

by the SPE runtime management library [31] [32]. The following figure, Figure 16, 

shows very simply how PPE creates SPE context, loads a SPE program and executes 

the program from the current thread.    
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Figure 16: PPE control 

 

The PPE control is a very important part of the design, as the total scheduling 

procedure consumes a significant amount of time compared with the total execution 

time. Some overhead from the scheduling process is unavoidable but it was 

managed to be reduced as much as possible. In order to reduce the overhead the 

context was created only once and the program was loaded to the SPEs only once, 

when it was possible. In the case of CSU Bayesian Project this was an important 

optimization because only one specific function was offloaded to the SPEs, so the 

context was created and the program was loaded to the SPEs only once. But in the 

case of CSU Bayesian Train there were two different programs to be executed on the 

SPEs so the appropriate program was load to the SPEs each time. Despite all the 

optimizations that were tried in the CSU Bayesian Project the overhead from the 

scheduling procedure remained very high mainly due to the fact that the program 

had many calls of the multiplication function and so many re-entrances to the SPEs. 

More details for the scheduling of CSU Bayesian Train and CSU Bayesian Project are 

presented in paragraph 4.6.8.  
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4.6.5 DMA Transfers 

 

According to the Cell architecture, SPEs can only use data from their LS; for the 

implementation this means that the two submatrices had to be transferred to the LS 

to be able executing the multiplication. In paragraph 4.6.1 it was explained how the 

data were partitioned in order to fit in the LS, now it will be explained how these 

data are transferred to the LS. 

Cell supports two kinds of DMA transfers, PPE initiated and SPE initiated, in our 

implementation only SPE initiated DMA transfers were used. This choice was made 

because there are eight times more SPEs than PPEs and the number of cycles to 

initiate a transfer from the SPEs is smaller than the number of cycles to initiate the 

same transfer from the PPE.  The data transferring process can be described from 

the following steps: 

 SPU needs data. 

1. SPU initiates DMA request for data. 

2. DMA requests data from the memory. 

3. Data is copied to the LS. 

4. SPU can access data from the local store. 

 SPU operates on data and then copies data from LS back to main memory in a 

similar process. 

The above process looks very simple but there are two important limitations for the 

DMA transfers. The size of a single transfer is limited to 16KB and the size can only 

be 1, 2, 4, 8, 16, or a multiple of 16 bytes. So as it looks, for large data many DMA 

transfers had to be done and if the size of our data is not a multiple of 16, again 

extra DMA transfers had to be initiated. There are two categories of DMA commands 

the put and the get 

 put commands move data from LS to main storage. 

 get commands move data from main storage to LS. 

 

The following figure, Figure 17 describes the total procedure for data transfer to and 

from the LS. The circled numbers shown in the figure correspond to the steps of the 

data transferring process as it was defined above. The black arrows are for data 

transfer from the main memory to the LS and the red arrows are for the opposite 

process, data transfers from the LS to the main memory. 
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Figure 17: Data transfer to and from the LS 

 

In our matrix multiplication problem the data that needed to be transferred were 

two submatrices from the main memory and the result of the multiplication back to 

the main memory. Multiple get commands were needed to fetch the submatrices 

from the main memory and multiple put commands to send the result back to the 

main memory. Table 6 shows a summary of the required DMA transfers for each 

case of multiplication of the form C = A x B. 
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Submatrix Type Data Size (KB) DMA – get 
(KB) 

DMA – put 
(KB) 

100 x 100 A 80 100 x 0,8 - 
100 x 50 B 40 50 x 0,8 - 

100 x 50 C 40 - 
2 x 16 
1 x 8 

250 x 59 A 118 59 x 2 - 
250 x 1 B 2 1 x 2 - 

59 x 1 C 0.472 - 
1 x 0,464 
1 x 0,008 

50 x 100 A 40 50 x 0,8 - 
100 x 100 B 80 100 x 0,8 - 

50 x 100 C 40 - 
2 x 16 
1 x 8 

Table 6: DMA transfers summary 

 

 

The data that should be transferred to each SPE are depended on the matrix 

multiplication type and the dimensions of the submatrices. Due to the limited LS size 

a multiplication of two submatrices must be completed and write the result to the 

main memory before the allocated space can be available for the new data.  

Figure 18 shows the sequence of the DMA transfers for a simple matrix 

multiplication. The figure clearly shows the parallelism through the data partitioning; 

the two SPEs execute multiplications in parallel. The execution between the SPEs is 

independent but each SPE has to free its LS before getting new data and starting the 

next multiplication. In this case first C0 and C6 are calculated then C1 and C7 and so 

on. After all the calculations finish, the submatrices are properly joined to construct 

the final result matrix. In the previous example, the addition of submatrices C0 – C2 

creates the upper left part of the result, C3 – C5 the upper right, C6-C8 the lower left 

and C8-C11 the lower right. The construction of the result matrix is very simple and it 

takes place at the PPE side after all the SPEs have finished.  
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Figure 18: Data transfer for matrix multiplication 
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4.6.6 Implementation with One & Multiple SPEs 

 

In this section, the overall execution of the model program will be presented 

considering all the design aspects and limitations that were described in the previous 

paragraphs. The transfer of all the required data to the SPEs was resolved and a 

complete multiplication can now take place. At first only one SPE it was used and 

then the implementation was extended to multiple SPEs. 

Until this point the model program was executing a matrix multiplication on the PPE 

with the data partitioning method that was described in paragraph 4.6.1. Next the 

appropriate scheduling control was added in this program and the multiplication 

function was moved to the SPE code. We developed the code for DMA transfers and 

the program was ready to be executed. The model application on the PPE side 

creates two matrices, starts an SPE thread and waits for it to finish. On the SPE side, 

it transfers the appropriate data for a pair of submatrices, calculates the 

multiplication and sends back the result; this procedure is repeated until all the 

submatrices multiplications are completed. At this stage there is no parallelism since 

only one SPE it was used, which executes the partial multiplications sequentially.  

The design was extended on two and finally on six SPEs (and eight SPEs on simulation 

only), the procedure remains the same as in the case of one SPE. The advantage now 

is that the total number of iterations that are required for one multiplication is 

distributed on multiple SPEs. To mange executing one multiplication on multiple 

SPEs, each SPE had to be informed about how many iterations should execute, which 

data must fetch and where should store the result submatrix of each iteration. This 

information is passed once at each SPE through a structure called control block. The 

control block contains information such as, matrices addresses, iterations number, 

result address and information related to the pairs of submatrices that should be 

multiplied. 

So far the data partitioning problem was resolved, a model application was 

implemented for our design; the model application and the total application were 

ported to the PPE and with the use of PPE control and DMA transfers the model 

application was executed on one and multiple SPUS. At this stage the correctness of 

the implementation on the SPEs was also verified with the subtraction method that 

was described in paragraph 4.6.2. The next stage of the development was the 

optimizations of the SPE code. Next section describes a number of optimizations 

made on the SPE code in order to increase its efficiency. 
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4.6.7 Code Optimizations 

 

Writing code for the Cell is, in many ways, different than programming most of the 

common modern architectures (in particular the x86 processors family). The main 

differences come from the fact that, on the Cell architecture, the user has full control 

over the processor behavior and all the hardware details are exposed to the 

programmer. This puts a serious burden on the programmer who has to take care of 

many aspects while writing code. A number of general, but important, programming 

rules must be followed, where possible. What the programmer gets for this price is 

extremely predictable performance and the possibility to get really close to the peak 

speed whenever these rules can be applied. These programming rules are in effect a 

number of code optimizations that the programmer must apply [33], [28], [30]. 

There are many possible code optimizations that are mainly related with the SPE 

code and less with the PPE code. The most of them try to exploit the advantages of 

Cell’s architecture, such as SIMD, wide registers, LS and some of them try to hide the 

disadvantages of the architecture like data transferring and branch prediction. 

From all the optimizations some of them were selected and applied to the design, 

these optimizations are the following: 

 Function Inline  

 Code SIMD Vectorization 

 Loop Unrolling 

The optimizations follow the same philosophy as the rest of the development 

process. First the optimizations were applied on the model application and when the 

performance and the correctness of the code were verified, it was joined with the 

CSU Bayesian application. 

Function Inline  

 

The first step of the optimizations was the use of the compiler in such way to 

produce optimized code. A specific flag was used, the -Winline, in the makefiles to 

force the compiler produce code with function inlining. Function-inlining eliminates 

the two branches associated with function-call linkage. These include the branch and 

set link for function-call entry, and the branch indirect for function-call return. SPEs 

can only do static branch prediction, since these prediction schemes are rather 

inefficient on programs that have a complex execution flow, reducing the number of 

branches in the code usually provides performance improvements. The compiler by 
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default has the optimization level set to three, -O3, which does some function 

inlining so the extra inlining that was applied didn’t had significant increase in 

performance. 

SIMD Vectorization 

 

The next and most important optimization was the SIMD vectorization of the SPE 

code. As mentioned in Chapter 2, each SPE is an SIMD processor which means a 

single instruction can be applied to multiple data elements in parallel. SIMD 

processing exploits data-level parallelism, this is the second level of parallelism in the 

implementation. Data-level parallelism means that the operations required to 

transform a set of vector elements can be performed on all elements of the vector at 

the same time. Vectorization is also supported and in the PPE through the vector 

unit [32], [16], but only the computation-intensive part of the SPE code was 

vectorized. 

In both the PPE and SPEs, vector registers hold multiple data elements as a single 

vector. The data paths and registers supporting SIMD operations are 128 bits wide, 

corresponding to four full 32-bit words or eight half-words, or 2 double-words. Both 

the vector unit of PPE and SPE instruction set have extensions that support C-

language intrinsics [28], [30]. Intrinsics are C-language commands, in the form of 

function-calls that are convenient substitutes for one or more inline assembly-

language instructions. In our design all the data were double, so the vector registers 

could only hold two 64-bit values and the data parallelism offered by the SIMD 

vectorization is reduced to only two simultaneous operations. This means that once 

the data were promoted from double to vector type it was able to execute two 

loads, two multiplications, two additions simultaneously and so the iterations were 

reduced by a factor of two. Next figure, Figure 19, explains the SIMD vectorization 

procedure followed in the implementation. 

As shown in Figure 19, instead of loading one element into one 128-bit register we 

use the data type vector and load two matrix elements into one register. After this 

the vector command is being executed for multiplication and addition, spu_madd 

which executes in parallel the operations C1 = A1 x B1 + C1 and C2 = A2 x B2 + C2. 

Next the two elements C1 and C2 are added and stored to the appropriate place of 

the result matrix. This is how the multiplication code on the SPEs was vectorized; the 

code vectorization on its own was not enough, more performance was needed so 

the loop unrolling technique was applied. 
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Figure 19: SIMD vectorization procedure on SPEs code 

  

Loop Unrolling 

 

The final optimization that was applied to the design was the loop unrolling 

technique. This technique is often used to increase the size of basic blocks 

(sequences of consecutive instructions without branches), which increases 

scheduling opportunities. Loop-unrolling eliminates branches by decreasing the 

number of loop iterations. Loop unrolling can be manual, compiler directed, or 
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compiler automated. Typically, branches associated with looping are inexpensive 

because they are highly predictable. However, if a loop can be fully unrolled, then all 

branches can be eliminated, including the final non-predicted branch. Due to the 

high number of registers on the SPEs and to the simplicity of SPEs architecture, no 

register renaming, no speculative execution, no dynamic branch prediction etc., 

explicit unrolling provides considerable improvements in performance. In our 

implementation the code was manually unrolled many times in order to achieve a 

significant improvement in performance. The SPE code was gradually unrolled until 

the improvement was not important; finally the code was unrolled twenty-five 

times. Next chapter provides detailed results for 5x and 25x unrolling. 

4.6.8 Join with CSU Bayesian 

 

The final step of the development was the join of the offloaded functions with the 

rest of the CSU Bayesian application. Until now all the development may be 

considered as modeling since we were working on a simple model program. At this 

point all the work that was done for the model program must be joined with the 

main application.  

Up to this stage the model application was executing one or more matrix 

multiplications on multiple SPEs with optimized SPE code, the correctness and the 

performance of the model were also verified. All the calls of matrix multiplication or 

transpose matrix multiplication were located and replaced in the CSU Bayesian 

application. Instead of executing the default code for the multiplication functions, 

the program flow was redirected to our code. As shown in Figure 20 the program 

after the matrix multiplication function-call executes a series of scheduling 

operations and initiates the execution of the SPE code.  When the SPE code has been 

executed the program return to the PPE side, destroys the SPEs context, creates the 

result matrix and returns to the normal execution flow until the next matrix 

multiplication function-call. 

The above procedure works fine with the CSU Bayesian Train because it is executing 

two different functions at the SPEs, the number of the function-calls is small and the 

execution time at the SPEs is much greater than the scheduling overhead. In the case 

of CSU Bayesian Project, as it was referred in section 4.6.4  this procedure was 

proved to be wrong because  only one function was repeatedly running on SPEs 

thousands times  with small execution time. In order to improve the performance of 

CSU Bayesian Project a different approach was followed. Since the SPEs were 

running the same program it wasn’t necessary to create new context and load the 

program each time. Instead of this, the context was created and the program was 
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loaded only once, so the only operation of scheduling that was repeated each time 

was the initiation of the SPE program, this alternate approach is shown in Figure 21. 

 

Figure 20: Overall scheduling process for CSU Bayesian Train 

 

As shown in the next figure there are two function-calls in a loop, the creation of the 

context and the program loading was done outside the loop to avoid their 

unnecessary repeat. When there is a function-call the PPE side of the code creates 

the appropriate control block, which is different for every function call and initiates 

the execution at the SPE side.   
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Figure 21: Overall scheduling process for CSU Bayesian Project 
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Unfortunately not even with this alternative scheduling procedure managed to 

reduce the impact of scheduling overhead, due to the large number of function-calls 

and the very small execution time spend at the SPEs. The last optimization that was 

implemented to increase the performance was the execution of two function-calls 

together at the SPEs. The number of two function-calls was not selected arbitrarily it 

was selected because in each iteration of the loop we have two function-calls. A 

larger number would be preferred but because the iterations of the loop were 

varying it wasn’t able to unroll the loop and offload more function-calls together. 

With this last optimization the overhead from the SPE initiation procedure was 

reduced to the half as the initiation was executing once every two multiplications.  

4.7 Software Tools Problems 
 

During the development process, apart from the design problems that were 

described in the previous paragraph, many other problems came up, mostly related 

with the software tools. In this section a list of these problems is presented, as well 

as how each problem solved or avoided. 

The last version of the IBM SDK for Multicore Acceleration Version 3.0 (Development 

Tools + Full-System Simulator), was unable to be installed on one of the available 

servers. The version of the kernel that runs on the servers was not compatible with 

the SDK, a newer version was required. It was not currently able to update the 

servers, so the previous version of SDK was used, version 2.1. 

The source code compilation and execution with the 2.1 version SDK was working 

fine until the cycle-mode was enabled. The cycle-mode gives accurate performance 

results of the application, but as it was discovered, a bug in the 2.1 version was 

preventing the execution of code with DMA transfers in cycle-mode. This was a 

major problem because it was unable to measure the performance. The solution to 

this bug from IBM was the version 3.0 of the SDK, so the version 3.0 was installed on 

a P4 host machine (not on any server) with OS Ubuntu 7.10. 

The Full-System Simulator application that is included in the SDK is a very demanding 

application and especially the cycle-mode was extremely slow on the host machine. 

This was delaying the development process and it was necessary to avoid it, the 

solution was to execute the applications directly on hardware and measure the 

performance in different way. The only available hardware was a PS3 and to be able 

executing applications on the PS3 the installation of an OS was required. 
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The Yellow Dog Linux 6.0 (YDL) was installed on the PS3, the installation procedure 

was done by following the detailed guide for YDL installation [34]. The only conflict 

during the installation was the monitor configuration, because PS3 normally is 

connected on HDMI monitor, the installation was not working until the proper 

settings for the monitor were chosen. 

Normally the development with the use of IBM’s SDK includes a graphical user 

interface (GUI) environment through Eclipse and a graphical performance analyzer 

called Visual Performance Analyzer. Due to the low memory of the PS3 the GUI was 

avoided and the development was done with a simple text editor and command line 

compiler.  

The use of the PS3 for development demands a careful memory management from 

the programmer, during the development a memory leak in a program was causing 

continues memory swaps. The hard disk of the PS3 is very slow and the swap 

procedure weighs down the entire OS as well as the running application. Avoiding 

the development of applications with high memory usage on the PS3 is 

recommended. Another limitation on the PS3 development is the availability of only 

six SPEs out of eight, as it was mentioned in paragraph 2.2. Besides these limitations 

development on the PS3 is much faster than the use of the simulator, the simulator 

is better to be used only for specialized measures of performance that cannot be 

done on hardware. 

Most of the solutions on the above problems came up from the Cell development 

community; the main source for information was the IBM’s developerWorks web site 

and forum [35], [36]. 
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CHAPTER 5 
 
Evaluation & Verification 

This chapter presents the performance of the design and compares it with the 

performance of other processors for the specific algorithm. The measuring 

procedure is also described here as well as the precision and the verification of the 

implementation. The total application was executed and verified with a subset of the 

FERET database consisted of 120 images. 

5.1 Measuring Performance 
 

Measuring the performance of an application is a very important step and provides 

the programmer with critical information about its design. In our design the 

performance was measured gradually during the development process and at the 

end to determine the final performance of the implementation. For the Cell 

processor there are currently three ways to measure the performance of an 

application running on Cell. The first two methods are using two software tools that 

are available in the SDK to assist in measuring the performance, the spu-timing 

analyzer and the IBM Full System Simulator for Cell B.E [37], [38].  

The spu-timing analyzer performs a static timing analysis of a program by annotating 

its assembly instructions with the instruction-pipeline state. This analysis is useful for 

coarsely spotting dual-issue rates (odd and even pipeline use) and assessing what 

program sections may be experiencing instruction-dependency and data-

dependency stalls. However, static analysis outputs typically do not provide 

numerical performance information about program execution. Thus, it cannot report 

anything definitive about cycle counts, branches taken or not taken, branches hinted 

or not hinted, DMA transfers, and so forth. 

The IBM Full System Simulator for the Cell B.E. performs a dynamic analysis of 

program execution. Any part of a program, from a single line to the entire program, 

can be studied. Performance numbers are provided for:  

 Instruction histograms (for example, branch, hint, and prefetch)  

 Cycles per instruction (CPI)  

 Single-issue and dual-issue rates 
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 Stall statistics  

 Register use 

The output of the IBM Full System Simulator for the Cell Broadband Engine can be a 

text listing or a graphic plot. The disadvantage of this method is speed, because the 

method depends completely on the simulator is extremely slow. This method of 

performance measuring was partially used in the implementation to provide us 

detailed information for the SPE code, in order to make the appropriate 

optimizations. 

The last method for measuring and the one that was followed in the design is the 

dynamic profiling using the hardware counters. The processor includes two software-

visible 64-bit time-base registers in the PPE one for configuration and one for 

counting and eleven software-visible 32-bit decrementers (down-counters), three in 

the PPE and one in each of the eight SPEs  [30]. The time-base registers and the 

decrementers are not clocked at the 3.2 GHz as the core clock, they have their one 

frequency called time-base frequency. This frequency is different on the PS3 than on 

the Cell Blades [39], the PS3 time-base frequency is 79.8 MHz and this value was 

used for our measurements.   

During the measuring procedure the one 64-bit time-base register in the PPE was 

used to measure the total execution time and execution time of code segments at 

the PPE. The SPEs performance was measured with the use of the decrementers of 

each SPE. Both types of time-base registers were providing us with a number of 

clockticks which was converted to execution time by dividing with the time-base 

frequency. In the case of the SPEs, when multiple SPEs were used the greater time 

was considered as the SPEs execution time. 

In order to have a fair comparison the total execution time for P4 was measured in a 

similar way. The time.h library was used for the P4 to measure the real execution 

time through the OS. The main purpose was to compare the processors and not the 

systems, so for both measurements the amount of time for loading data to the main 

memory and for storing data to the hard disk was taken out. Furthermore all the 

printf system-calls were removed from the programs to avoid as much as possible 

the OS since the two processors are running different OS. Due to the OS 

measurements of the same code had a small variation, so five measurements were 

taken for each case and the average is being presented as the final result. 

The measuring procedure that was described above was applied for all the 

measurements and the results that are following in the next paragraph.  
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5.2 Performance 
 

This section presents all the performance measurements that were done to evaluate 

the implementation. First the performance of the model application was measured 

and compared with equivalent application running on P4 at 2.66 GHz and 1 GB RAM, 

this machine was our reference machine. Then the performance of the total code 

running on SPEs (multiplication function) was measured and compared with the 

performance of the same function on the reference machine (P4). Finally the total 

execution time of CSU Bayesian Project and CSU Bayesian Train was evaluated and 

compared with the P4. 

5.2.1 Performance of Model Application 

 

Firstly the performance of the model application was measured for a single 

multiplication of each type. The model application was used to perform only one 

multiplication of each type with a variety of code optimizations. The results are only 

for the execution time of the multiplication and not of the whole application.   The 

summary of the results is shown in the next tables and figures. 

The following tables, Table 7 and Table 8 shows the measured clockticks and the 

execution time for the first case of transpose matrix multiplication with dimensions 

(19500x59)x(19500x1). 

Clockticks 
79.8 MHz 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 1046791 901476 548363 471731 
2-SPUs 527084 455771 287213 242302 
4-SPUs 276705 240020 147039 127780 
6-SPUs 199681 158850 95475 84613 

Table 7: Clockticks for transpose matrix multiplication (19500x59)x(19500x1)  

Execution Time 
(sec) 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 0,01311 0,01129 0,00687 0,00591 
2-SPUs 0,00660 0,00571 0,00359 0,00303 
4-SPUs 0,00346 0,00300 0,00184 0,00160 
6-SPUs 0,00250 0,00199 0,00119 0,00106 

Table 8: Execution time for transpose matrix multiplication (19500x59)x(19500x1) 
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As shown in Table 7 and Table 8 the performance of the code had a significant 

improvement with the use of multiple SPEs and the optimizations that were 

mentioned in paragraph 4.6.7.  Figure 22 shows the gradually improvement of the 

performance for the specific multiplication. 

 

 

Figure 22: Performance impact of various optimizations (1) 

 

In Figure 23 the performance results that were taken for the SPEs are being 

compared with execution time of the same code on the reference machine. Only the 

results for fully optimized code are being used in the comparison. The CSU 

implementation of the BIC algorithm is using an optimization level –O3 during the 

compilation, with an important improvement in performance, so the performance of 

the model application was measured on P4 and with an –O3 option. As it is shown 

the performance of the P4 –O3 machine, compared with one SPU, is slightly better. 

On the other hand comparing the execution time on 6-SPUs with the P4 –O3 

execution time, a speed up of 4.52x is achieved. 
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Figure 23: Performance comparison for model application (1) 

 

The next tables, Table 9 and Table 10, are showing the performance results, 

clockticks and execution time, for the transpose matrix multiplication 

(19500x100)x(19500x100). As before a figure shows the performance impact of the 

various optimizations, Figure 24, and another one shows the comparison with the 

reference machine, Figure 25. 

 

Clockticks 
79.8 MHz 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 155876357 130946171 69766634 57622354 
2-SPUs 77998093 65276335 34905702 28844555  
4-SPUs 39604747 33156633 17738707 14670401 
6-SPUs 26031831 21798942 11669627 9701396 

Table 9: Clockticks for transpose matrix multiplication (19500x100)x(19500x100)  
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Execution Time 
(sec) 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 1,95334 1,64093 0,87427 0,72208 
2-SPUs 0,97742 0,81800 0,43741 0,36146 
4-SPUs 0,49630 0,41550 0,22229 0,18384 
6-SPUs 0,32621 0,27317 0,14624 0,12157 

Table 10: Execution time for transpose matrix multiplication 
(19500x100)x(19500x100) 

 

 

Figure 24: Performance impact of various optimizations (2) 

 

Next figure, Figure 25 shows the comparison of the SPEs with the reference 

machine. In contrast with the previous comparison, in this type of multiplication, the 

1-SPU implementation achieves better performance than the optimized version on 

P4. Finally the 6-SPUs implementation has speed-up 6.9x, compared with the P4, for 

the specific type of multiplication. 

0,00

0,50

1,00

1,50

2,00

2,50

Original SIMD SIMD+5x Unroll SIMD+25x Unroll

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Transpose Matrix Multiplication (19500x100)x(19500x100)

1-SPU

2-SPUs

4-SPUs

6-SPUs



Chapter 5                                                                                                                                         Evaluation & Verification 

 

 

Microprocessor & Hardware Laboratory                                                                                                         60 

 

 

Figure 25: Performance comparison for model application (2) 

 

The last results concern the third type of multiplication, the normal matrix 

multiplication with dimensions (19500x100)x(100x100). The results are presented 

with same order as before, Table 11, Table 12 and Figure 26 are showing the 

performance measurements and Figure 27 shows the comparison results with 

reference machine.  

The normal matrix multiplication proved to be much slower than transpose matrix 

multiplication and this is due to the column major form that was used to store the 

matrices in the main memory as was mentioned in paragraph 4.4. The speed-up that 

is being achieved in this type of multiplication is 13x and is greater from the previous 

cases. 
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Clockticks 
79.8 MHz 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 198780074 178159632 100880352 86438608 
2-SPUs 99394563 89100817 50457176 43210090 
4-SPUs 50458809 45233567 25615118 21939141 
6-SPUs 33127616 29703043 16821343 14416868 

Table 11: Clockticks for matrix multiplication (19500x100)x(100x100) 

Execution Time 
(sec) 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 2,49098 2,23258 1,26416 1,08319 
2-SPUs 1,24555 1,11655 0,63230 0,54148 
4-SPUs 0,63232 0,56684 0,32099 0,27493 
6-SPUs 0,41513 0,37222 0,21079 0,18066 

Table 12: Execution time for matrix multiplication (19500x100)x(100x100) 

 

 

Figure 26: Performance impact of various optimizations (3) 
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Figure 27: Performance comparison for model application (3) 

 

5.2.2 Performance of SPEs 
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overhead is not null so the real speed-up is much less than this one, the overhead is 

being discussed in the next section were the overall speed-up is presented. 

Clockticks 
79.8 MHz 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 1030599761 889726021 493054770 413494050 
2-SPUs 515919751 445655372 247038005 208062817 
4-SPUs 262608579 233691657 127327553 108099230 
6-SPUs 173234840 150420564 85080956 74703660 

Table 13: Clockticks at SPEs for CSU Bayesian Train 

Execution Time 
(sec) 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 13,08 11,29 6,26 5,25 
2-SPUs 6,55 5,66 3,14 2,64 
4-SPUs 3,33 2,97 1,62 1,37 
6-SPUs 2,20 1,91 1,08 0,95 

Table 14: Execution time at SPEs for CSU Bayesian Train 

 

 

Figure 28: SPEs total execution time for Bayesian Train application 
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Figure 29: SPEs performance comparison with P4 for Bayesian Train 

 

Next tables and figures present the results and the comparisons for Bayesian Project 

in the same way they were shown for Bayesian Train. 

Clockticks 
79.8 MHz 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 1,52E+10 1,31E+10 7,90E+09 6,87E+09 
2-SPUs 7,67E+09 6,60E+09 4,07E+09 3,51E+09 
4-SPUs 4,00E+09 3,47E+09 2,15E+09 1,87E+09 
6-SPUs 2,64E+09 1,23E+09 1,42E+09 2,28E+09 

Table 15: Clockticks at SPEs for CSU Bayesian Project 

Execution Time 
(sec) 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 193,05 166,12 100,27 87,17 
2-SPUs 97,27 83,81 51,68 44,59 
4-SPUs 50,81 44,01 27,34 23,79 
6-SPUs 33,52 28,99 17,97 15,64 

Table 16: Execution time at SPEs for CSU Bayesian Project 
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Figure 30: SPEs total execution time for Bayesian Project application 

 

The above figure, Figure 30, shows the total execution time of the SPEs for the 

Bayesian Project application. In contrast with Bayesian Train, Bayesian Project 

becomes faster from the P4 only when two or more SPEs are in use. This difference 

is due to the size of matrices, smaller matrices are being multiplied in Bayesian 

Project. 

The same result is shown and in Figure 31, for two SPEs and up Cell is faster than P4 

in this function-level comparison. The maximum speed-up for Bayesian Project as it 

derives from the results is 4.56x, approximately two times less than the maximum 

speed-up that was achieved in the case of Bayesian Train. As mentioned before this 

not the real speed-up but the maximum speed-up for the multiplications and not for 

the total application 

0,00

50,00

100,00

150,00

200,00

250,00

Original SIMD SIMD+5x Unroll SIMD+25x Unroll

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

SPUs Total Execution Time CSU Bayesian Project

1-SPU

2-SPU

4-SPU

6-SPU



Chapter 5                                                                                                                                         Evaluation & Verification 

 

 

Microprocessor & Hardware Laboratory                                                                                                         66 

 

 

Figure 31: SPEs performance comparison with P4 for Bayesian Project 

 

5.2.3 Total Performance 
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Table 17: Total clockticks for CSU Bayesian Train 
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Execution Time 
(sec) 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 14,41 12,56 7,46 6,47 
2-SPUs 7,80 6,92 4,40 3,88 
4-SPUs 4,60 4,09 2,82 2,58 
6-SPUs 3,50 3,19 2,44 2,24 

Table 18: Total execution time for CSU Bayesian Train 

 

 

Figure 32: Total execution time of the Bayesian Train application 
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Next figure, Figure 33, shows the performance of CSU Bayesian Train application 

compared with the reference machine and with the execution of the application on 

the PPE only. 

 

 

Figure 33: Performance comparisons for Bayesian Train 
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merging are affecting us more in this case because of the larger matrices. Next table, 

Table 19 shows a timing analysis of the Bayesian Train application. 

 

 Execution Time (sec) Percentage  % 

PPE code 0,89 40,09 
SPE code 0,95 42,79 
Addition 0,24 10,81 
Merging 0,10 4,50 

Scheduling 0,04 1,80 

Table 19: Execution time analysis for CSU Bayesian Train 

 

The last results are showing the overall performance for the CSU Bayesian Project 

application. As previously, Table 20 and Table 21 shows the clockticks and the 

execution time for the application. Figure 34 shows the gradually improvement of 

the performance and the last figure, Figure 35 shows the results of the comparison 

between Cell, PPE and P4. 

 

Clockticks 
79.8 MHz 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 1,69E+10 1,48E+10 9,68E+09 8,56E+09 
2-SPUs 9,49E+09 8,36E+09 5,85E+09 5,28E+09 
4-SPUs 5,81E+09 5,33E+09 4,01E+09 3,76E+09 
6-SPUs 5,02E+09 4,72E+09 3,90E+09 3,76E+09 

Table 20: Total clockticks for CSU Bayesian Project 

Execution Time 
(sec) 

Original SIMD SIMD + 5x 
Unroll 

SIMD + 25x 
Unroll 

1-SPU 212,01 185,95 121,27 107,31 
2-SPUs 118,89 104,73 73,25 66,22 
4-SPUs 72,77 66,85 50,30 47,08 
6-SPUs 62,95 59,13 48,81 47,11 

Table 21: Total execution time for CSU Bayesian Project 

 

As shown in the next figure, Figure 34, the performance has a measurable 

improvement for two and four SPUs, but for six SPUs the execution time converges 

to the value that was achieved with 4-SPUs. This means that the percentage of the 

improvement between four and six SPUs is very small and is being overlapped by the 

scheduling overhead which is increasing according to the number of SPUs. 
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Figure 34: Total execution time of the Bayesian Project application 

 

In the next figure, Figure 35, the main observation is the same as before, the half of 

the function-level speed-up is achieved. The speed-up of the CSU Bayesian Project is 

only 1.77x and the main reasons for that is the scheduling overhead and the rest 

code running on PPE. As it was mentioned in paragraph 4.6.8, the structure of the 

application does not allow us to “stay” at the SPEs; instead, the execution is passing 
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SPEs and round is increasing dramatically the scheduling overhead. Besides the 

scheduling and PPE overhead a small amount of the overall overhead is caused from 
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Figure 35: Performance comparisons for Bayesian Project 

 

Table 22 shows the execution times for the different parts of the CSU Bayesian 

Project application. As the table shows a large amount of time is consumed for 

scheduling, contrary to the CSU Bayesian Train application. 

 

 Execution Time (sec) Percentage  % 

PPE code 16,33 35,07 
SPE code 15,97 34,31 
Addition 2,18 4,68 
Merging 0,02 0,05 

Scheduling 12,05 25,89 

Table 22: Execution time analysis for CSU Bayesian Project 
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5.3 Precision 
 

As it was mentioned in paragraph 4.6.2 the normal method of matrix multiplication 

compared with the submatrices multiplication method has a precision difference 

located after the tenth decimal digit. It is well known that floating-point addition is 

not associative so that the calculation sequence and the order in which the addends 

enter the floating-point calculation of the sum greatly influence the size of the 

accumulated round-off error of the result. In the case of normal matrix multiplication 

for the calculation of each element a sequence of additions and multiplication is 

being executed. When submatrices are being used this sequence is difference since 

the partial products are first evaluated for each pair of submatrices and then the 

final addition takes place.  

The round-off error depends on the number of the final additions, meaning that it 

depends on the number of submatrices. In our case the maximum round-off error 

affects the result up to the tenth decimal digit. This does not affect the decision of 

the classifier; it has been observed that the image with the smaller distance from the 

probe has a significant difference from the other images. The only way this error can 

lead the classifier to the wrong decision is when two images had a difference 

between them less than 10-10 and the wrong image has the smaller distance from the 

probe. During all the tests that were done, never the round-off error caused a wrong 

decision. 

5.4 Verification 
 

The last but not least step of the design was the overall verification of the 

application. Until now the correctness of the multiplications was verified many times 

during the development process, now the final results of the application have to be 

verified. As it was mentioned in paragraph 3.5 the output of the application is a set 

of files, so a comparison of these files was made to verify the results. A result set 

produced by the execution of the original code was compared with a result set 

produced from the execution on PS3. Due to the large amount of data that is 

contained in these files, a script written on Matlab was used for faster verification. 

The verification process was successful and all the results were the same, meaning 

that in both executions the algorithm was taking the same decision for each image. 

The difference on the decimal digits that was mentioned in the previous paragraph 

was not affecting the final results.     
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CHAPTER 6 
 
Conclusions & Future Work 

This chapter summarizes the contribution and the results of this work. Some final 

conclusions are being presented as well as and some thoughts for future work.  

6.1 Conclusions 
 

The main contribution of this work was the parallelization of the BIC algorithm and 

its execution on the Cell processor. Moreover the use of an existing application and 

its partial redesign for the Cell processor were also parts of this work contribution. 

The implementation of this design proved to be hard enough due to the 

inexperience on the development tools as well as and on parallel programming 

techniques. Multicore processors increase the performance but they also increase 

the complexity of the software development process, so matters like scheduling and 

synchronization must now be considered. Several problems came up during the 

development; most of them were related with software tools and design aspects, a 

close study of these problems let us to their resolve. 

In the final results a considerable improvement of performance was achieved, but 

with a significant overhead too, which prevents us from reaching the desirable 

results. The main reason for this is the selection of a fast programming model, such 

as the function-offload model instead of a hard model like streaming model. The 

selection of a different model could possibly bring us better results with a significant 

cost on time and effort. This extra cost derives from the fact that these models 

demand the complete redesign of the application and the use of more complex 

techniques. However the selection of this model cannot be considered as wrong 

because it balances the main targets, performance, fast development and 

conservation of the original application logic. Another important factor, apart from 

the model that affects the final results is the structure of the algorithm and the 

application. For example the double precision data reduces the second level of 

parallelism (SIMD) to 2-way only, the variable number of iterations in some loops 

prevents the use of loop unrolling technique etc. 
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Concluding, Cell processor, although initially designed mainly for games and 

multimedia, is a very promising architecture for scientific computations, as well. But 

due to the absence of specialized software tools and the simple architectural design 

of the SPUs, the user is forced to consider a number of low-level details, which 

increase the complexity of the development. Below is shown a summary of the 

major design and tools problems that were encountered during this work: 

 Data partitioning to fit in LS, paragraph 4.5. 

 Partitioning on PPE side was ineffective, paragraph 4.6.1. 

 DMA transfers limitations, paragraph 4.6.5. 

 Scheduling overhead due to multiple function calls in Bayesian Project, 

paragraphs 4.6.4 and 4.6.8. 

 Small computation time on SPEs in Bayesian Project, paragraph 4.6.8. 

 Unable to install SDK version 3.0 on server, paragraph 4.7. 

 Bug at the execution of the simulator in cycle–mode, for version 2.1, 

paragraph 4.7. 

 Simulator was extremely slow, paragraph 4.7. 

 Development on PS3 has limited memory and SPEs, paragraph 4.7. 

6.2 Future Work 
 

This project is a complete work which has exhausted most of the possible 

improvements that could be done with the use of the function offload model. Any 

future work on the specific algorithm must focus on the complete redesign of the 

application and the use of a different model. Perhaps an implementation with the 

streaming model or any other SPE-centric model would result a better performance. 

Whatever programming model will be used the design must use as much as possible 

the SPEs and avoid the re-scheduling; by doing this the code running on the PPE will 

be reduced as well as the scheduling overhead. Below, some more specific ideas for 

future work are being proposed: 

 For the CSU Bayesian Project application would be better to project more 

images at once instead of projecting one by one. This will increase the 

dimensions of the matrices for the Bayesian Project and will reduce the 

iterations. 

 A vectorization of the code running on the PPE would probably increase its 

performance. 
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 If the use of single precision floating point is not dramatically affecting the 

results, then this will increase the second level parallelism from 2-way to 4-

way.    
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