
TECHNICAL UNIVERSITY OF CRETE

ELECTRONIC AND COMPUTER ENGINEERING DEPARTMENT

DIPLOMA DISSERTATION

MUSIC GENRE CLASSIFICATION USING

TEMPORAL AND SPECTRAL FEATURES

by

MARKAKI ANTHI

COMMITEE

POTAMIANOS ALEXANDROS, Associate Professor (Supervisor)

DIGALAKIS VASILEIOS, Professor

LIAVAS ATHANASIOS, Associate Professor

CHANIA

AUGUST 2008

Acknowledgments

Abstract

In recent years, electronic music archives are gaining popularity. The variety and

amount of songs, even in personal computers, are being increased, which creates

the need for effective methods for music classification and retrieval. The task of

organizing and selecting music becomes more and more challenging. So, in the

music domain, there is the need to characterize the genre of a track from the infor-

mation that exists in its content. Musical genres are categorical descriptions that

are used to characterize music in music stores, radio stations and on the internet.

A typical way of music classification is the recognition of songs, based on

header tags. However, it is quite difficult to keep tag organization in the whole

archive. For that reason, to determine the music genres of a music piece, three basic

stages of a pattern recognition system have been used: frame feature extraction,

training of a classifier and classification. A number of content-based features are

first extracted. The signal is split into frames and certain characteristics of the

music signal within the frames are represented with a feature vector. After the

features are extracted from each music track, a classifier is necessary to determine

the genre of the music track. Then, the trained classifier is used to assign the feature

vectors of the test data.

In this thesis, we demonstrate the effectiveness of music genre classification

based on extracted features, applying various configurations. Finally, a simple pro-

gram is implemented to produce a playlist from a classification chart. The applica-

tion employs Self-Organizing Maps. It provides an overview of a music collection

by navigating on the map and showing the artist and the name of the song, based

on the location of the cursor. It gives to the user the opportunity to draw a circle

on the music landscape. The music map consists of grid squares, where each of

them contains a small number of songs. When the user selects a region in the map,

the system finds all the songs included in this region and put them in a playlist.

Alternatively, the user can click on a point on the music landscape and select a

iii

number of songs that he wants to listen. When the user selects a point in the map,

the system finds the n songs that correspond to the closest points and put them in a

playlist. This way, the user is able to see how similar the pieces are. It is known that

the recognition of musical genres is not a trivial task even for humans. Therefore,

the playlist gives us an estimation of how good the classification is.

The results are quite promising. The MFCC’s can be used in music genre

classification with an accuracy of 65purposes. Comparing our work with similar

projects, we infer that MFCC’s provide the best accuracy, which could be improved

in combination with other features.

Contents

1 Introduction 1

1.1 Scope . 1

1.2 Outline . 3

2 Related work 4

2.1 A Comparative Study on Content-Based Music Genre Classifiacation 4

2.2 Combining audio and symbolic descriptors for music classification

from audio . 6

2.3 MARSYAS . 7

2.3.1 Timbre Analysis . 8

2.3.2 Rhythm Analysis . 8

2.3.3 Pitch Analysis . 9

2.4 Automatic genre classification of music content: a survey 9

3 Feature Extraction 11

3.1 MFCCs . 12

3.2 PITCH . 14

3.3 BEAT . 16

4 Clustering and Classification 21

4.1 Clustering . 21

4.1.1 The k-means algorithm 22

4.2 Classification . 23

4.2.1 Self-Organizing Map . 25

5 Our Approach 30

5.1 Data preparation . 30

5.2 Production of wave files . 31

CONTENTS v

5.3 Train . 32

5.4 Test . 33

5.5 Scenarios . 33

5.6 SOM . 37

5.7 map mp3 playlist . 39

6 Conclusions & Future Work 41

6.1 Conclusions . 41

6.2 Future Work . 41

A Appendix A 43

A.1 LAME . 43

List of Figures

3.1 The relation between Mel and Hertz scale 14

3.2 The original signal and the shifted signal 16

3.3 The autocorrelation function . 17

3.4 The result of a classical piece . 19

3.5 The result of a rock piece . 20

4.1 The clustering of two centorids 24

4.2 The U-matrix . 27

4.3 The distance-matrix . 28

5.1 Results for beat, k-means per genre, sfr=16KHz, frame size=10ms 34

5.2 Results for pitch, k-means per genre, sfr=16KHz, frame size=10ms 34

5.3 Results for MFCC’s, k-means per group, sfr=16KHz, frame size=10ms 35

5.4 Results for MFCC’s, k-means per genre, sfr=16KHz, frame size=10ms 35

5.5 Results for MFCC’s, k-means per genre, sfr=11KHz, frame size=10ms 36

5.6 Results for MFCC’s, k-means per genre, sfr=16KHz, frame size=20ms 36

5.7 The results of our dataset . 38

List of Tables

2.1 The accuracy of the learning method for the dataset 1 6

2.2 The accuracy of the learning method for the dataset 2 6

2.3 The results of the dataset . 10

5.1 The number of songs of our dataset 30

5.2 The overall results . 37

Chapter 1

Introduction

1.1 Scope

In recent years, there has been a great proliferation of multimedia databases, which

create the need for affective methods for classification and retrieval of data. With

the development of computer networks, it becomes more and more popular to

download digital music from the internet. Personal computers and portable digital

music players are platforms for storing and playing music. As the music collec-

tions grow, the task of organizing and selecting music becomes more and more

challenging. Therefore, effective management of a large digital music database is

a substantial matter. So, in the music domain, there is the need to characterize the

genre of a track from the information that exists in its content. Musical genres are

categorical descriptions that are used to characterize music in music stores, radio

stations, and on the internet. Although the division of music into genres is con-

sidered to be arbitrary, there are some criteria that can be used for this purpose.

Some of these are the texture, the instrumentation and the rhythmic structure of the

pieces. People are good at genre classification. We are able to judge genre without

constructing high level descriptions. However, nowadays with the advance of tech-

nology, the categorization does not be performed manually. Several techniques for

automatic genre classification has been discovered, which lead to the development

of audio information retrieval systems for music.

To determine the music genres of a music piece, three basic stages of a pattern

recognition system have been used: frame based feature extraction, training of a

1.1 Scope 2

classifier and classification. A number of content-based features are first extracted.

First, the signal is split into frames, and certain characteristics of the music signal

within the frames are represented with a feature vector. In general, the features that

are used in music classification can be categorized into three classes: the timbral

texture, the rhythmic features and the pitch content features. After the features are

extracted from each music track, a classifier is necessary to determine the genre of

the music track. Finally, the trained classifier is used to assign the feature vectors

of the test data. For each class, the recognition rate is calculated as a percentage of

correctly classified pieces among all the classified pieces, and the overall recogni-

tion rate is calculated as the arithmetic mean of recognition rates of the individual

classes.

The Self-Organizing Map (SOM), an unsupervised neural network, is used to

cluster the pieces of music. It provides a mapping from high-dimensional music

spaces to two-dimensional maps where similar pieces of music are located close to

each other.

In order to see how well the music pieces are located in the map, a play from

the map application has been created. This application employs Self-Organizing

Maps. It provides an overview of a music collection by navigating on the map and

showing the artist and the name of the song, based on the location of the cursor.

It gives to the user the opportunity to draw a circle on the music landscape. The

music map consists of grid squares, where each of them contains a small number

of songs. When the user selects a region in the map, the system finds all the songs

included in this region and put them in a playlist. Alternatively, the user can click

on a point on the music landscape and select a number of songs that he wants to

listen. When the user selects a point in the map, the system finds the n songs that

correspond to the closest points and put them in a playlist. This way, the user is

able to see how similar the pieces are. It is known that the recognition of musical

genres is not a trivial task even for humans. Therefore, the playlist gives us an

estimation of how good the classification is.

1.2 Outline 3

1.2 Outline

The rest of the dissertation is organized as follows. In the next chapter, short infor-

mation is provided about the work that has been done in music genre classification.

In Chapters 3 and 4, there are descripted the features that are extracted as well

as the procedures of clustering and classification. In Sections 5 and 6, our work

is presented, the implementation results and an attempt of comparison with other

published results. Finally, we conclude in chapter seven and discuss some issues

about future extensions.

Chapter 2

Related work

2.1 A Comparative Study on Content-Based Music Genre

Classifiacation

A lot of work has been done in feature extraction for music genre classification

from Tao Li, Mitsunori Ogihara and Qi Li [7].

Various content-based features have been used. One of this kind is the timbral

textural such as the mel-frequency cepstral coefficients, the spectral centroid, the

spectral rolloff, the spectral flux, the zero crossings and the low energy which are

useful for the differentiation of similar sounds. Other kind is the rhythmic con-

tent feature like the beat that is extracted form the beat histogram and catches the

rhythmic pulse from music signals. In order to construct the beat histogram an on-

set detection curve is computed, where the successive bursts of energy correspond

to successive pulses. Then, on this curve is performed an autocorrelation function

and lastly a peak picking to find the tempo. Pitch content features which describe

the melody and harmony of the signals, are calculated via pitch histogram. It con-

tains the peaks of the autocorrelation function which is computed to the envelopes

of each frequency band. Since it is desirable to have local and global information

about the sounds, wavelet transform is being used. The wavelet transform provides

information about a signal that is not apparent in the original form of the signal.

The original signal is in the time domain. The wavelet transform reveals frequency

information and information about the times at which different frequencies occur.

2.1 A Comparative Study on Content-Based Music Genre Classifiacation 5

A common way to implement the wavelet transform is the discrete octave band

decomposition [8]. The signal is decomposed by applying a low pass and a high

pass filter. At each step of the decomposition the signal obtained from the the low

pass, is recursively decomposed. More specifically, the wavelet transform can be

thought as a window that is shifted along the original signal. At each location, the

wavelet is correlated with the signal at that particular point and the process is re-

peated. So, the wavelet is stretched to a larger scale. A large scale corresponds to

a low frequency while a short scale corresponds to a high frequency. The process

continues with larger and larger wavelet scales. The wavelet result of the process is

a map of correlation values, called wavelet coefficients. This way, it has computed

the wavelet histogram.

The wavelet filters that are used are the Daubechies, which are the most com-

mon used in music and image information retrieval systems. The histogram is

constructed at each subband. The first three moments of each subband are kept and

finally is computed the subband energy.

For the classification has been used support vector machines, k-nearest neigh-

bor classifier, Gaussian mixture models and linear discriminant analysis. The sup-

port vector machines are learning machines that perform classification. They con-

struct a N-dimensional hyperplane that separates the data into two categories, the

positive data and the negative data. They are based on the concept of decision

planes that define decision boundaries. A decision plane separates a set of objects

that have different class memberships.

The K-nearest neighbor is a clustering method used to separate the data with

similarities between various classes. It is based on the euclidian distance between a

test sample and the training samples. For each row of the set that is to be classified,

the k closest members of the training dataset are located. The euclidean distance

measure is used to calculate how close is the target row that is examined from each

member of the training set. This procedure is repeated for all the rows.

Gaussian mixture models consist of local Gaussian modes and an integrated

network. They try to describe a system using combination of all the Gaussian clus-

ters. It is assumed to exist for each class a probability density function. The expec-

tation maximization algorithm is used to estimate the parameters of each Gaussian

model. The expectation step assumes the cluster parameters to be correct and finds

the most likely distribution of the data. The maximization step assumes the distri-

bution to be correct and maximizes the likelihood of the cluster parameters.

Linear discriminant analysis is a classic method for classification. It finds a

2.2 Combining audio and symbolic descriptors for music classification from
audio 6

linear transformation that discriminates among classes and performs classification.

The main idea is to describe the main decision boundary instead of describing the

properties of each class. This means that we dont want to describe the class but the

separating surface.

Two datasets have been used. The first contains ten genres with 1000 songs

each genre. The ten genres are Blue, Classical, Country, Disco, Hip Hop, Jazz,

Metal, Pop, Reggae and Rock. The second dataset contains 756 songs of five

genres. The genres are Ambient, Classical, Fusion, Jazz and Rock. The results are

shown in tables 2.1 and 2.2.

Features SVM GMM LDA KNN
DWCHs 74.9 63.5 71.3 62.1
MFCC 58.4 46.4 55.5 53.7
Beat 26.5 22.1 24.9 22.8
Pitch 36.6 25.8 30.7 33.3

Table 2.1: The accuracy of the learning method for the dataset 1

Features SVM GMM LDA KNN
DWCHs 71.48 64.77 65.74 61.84
MFCC 60.45 53.43 59.26 59.93
Beat 43.37 37.95 40.87 41.27
Pitch 37.56 29.62 37.82 38.89

Table 2.2: The accuracy of the learning method for the dataset 2

2.2 Combining audio and symbolic descriptors for music

classification from audio

Similar work has been done by Thomas Lidy, Andreas Rauber (University of

Technology, Austria) and Antonio Pertuse, Jone Manuel Inesta (University of

Alicante,Spain). Rhythm patterns have been used such as a short time fourier

transform and a discrete fourier transform applied to a sonogram. A rhythm his-

togram is constructed containing the modulation amplitude values of the critical

2.3 MARSYAS 7

bands that have been computed from the rhythm pattern. Then, the mean, the

median, the variance, the skewness, the kurtosis, the minimum and maximum val-

ues are calculated for each band, and constitute a Statistical Spectrum Descriptor

(SSD). An onset detection algorithm is applied to extract information about the

rhythm of the signal. The onset detection calculates the minimum, the maximum,

the mean, the median and the standard deviation of the distance of frames between

successive onsets. Moreover, the number of onsets is added to the onset features.

For the classification it has chosen to use the linear Support Vector Machines, with

the Weka machine learning software. Three different datasets were used for the

genre classification and the accuracy was 66.71

2.3 MARSYAS

Marsyas (Music Analysis Retrieval and Synthesis for Audio Signals) is a free soft-

ware framework for audio analysis, synthesis and retrieval. It is considered to be a

useful tool for audio analysis, providing a lot of algorithms.

Marsyas is a framework for audio signal processing, music information re-

trieval and classification written in C++. It provides many tools. The software per-

forms both training and classification. The procedure is composed of pre-filtering,

feature extraction and classification.

The pre-filtering section includes different filtering techniques. After that, the

feature extraction is performed to the signals. A lot of different features have been

supported to this system, some of which are fast fourier transform analysis, short

time fourier transform, spectral and temporal centroids, Linear Prediction Analysis,

Mel-frequency cepstral coefficients and many others. In most cases, combination

of these features or derivatives of them are used. For the feature extraction the first

thirty seconds and the last fifteen seconds are omitted in order to avoid undesirable

noises. TheMel-frequency cepstarl coefficients are derived from the fourier trans-

form of the audio signals adopted to the mel scale, which is a scale that corresponds

to the human hearing. After applying a discrete cosine transform, the coefficients

are produced. The short- time spectral features are calculated from the fast fourier

transform of each short analysis window and are based on the magnitude spectrum

S(f). Most specifically, we have:

2.3 MARSYAS 8

2.3.1 Timbre Analysis

• Centroid: It is the center of gravity or second moment of the spectrum.

It is calculated from the following equation where S(f) is the magnitude

spectrum.

X =

∑M
f=1 S(f) × f
∑M

f=1 S(f)
(2.1)

• Rolloff: It is the frequency below which 85obtained. It shows the density of

low frequencies in the signal. It is calculayted from the following calculation

x∑
f=1

S(f) = 0.85 ×
M∑

f=1

S(f) (2.2)

• Flux: It shows the difference between spectra of subsequent time frames. It

is calculated from the following equation

X(f) =
M∑

f=1

(S(f) − S(f − 1))2 (2.3)

• Zero crossings: It is a count of the number times the signal crosses from

positive to negative.

2.3.2 Rhythm Analysis

The rhythm is a useful information for music classification. The goal is to define

the tempo. The tempo declares the speed that repetitive sounds occur. In order to

find the repeated patterns that define the rhythm, the beat histogram is constructed.

After decomposing the signal using the discrete wavelet transform and recompos-

ing with the inverse wavelet transform, different frequency bands are produced.

Each of these bands, are undergoing envelope extraction and all these envelopes

are summed. Then, an autocorrelation function is performed to the signal to see

how well it matches with itself. Finally, a peak picking finds the best peaks and

puts them to a histogram.

2.4 Automatic genre classification of music content: a survey 9

2.3.3 Pitch Analysis

The pitch is computed from a pitch histogram. As with the beat histogram, the

highest peaks are selected and are computed the distance between the two peaks

and the amplitude of the highest peak.

2.4 Automatic genre classification of music content: a sur-

vey

N.Scaringella and G.Zoia reached an automatic genre classification of music ap-

proach [11].

The first kind of feature that was extracted is the timbre which makes two

sounds with the same pitch and loudness sound different. In this category belong

temporal features that are computed from the audio signal frame, energy features

that refer to the energy content of the signals. In this case, root mean square energy

of the signal are calculated, as well as the energy of the harmonic component of the

power spectrum and the energy of the noisy part of the power spectrum. Another

kind is the spectral shape features which describe the shape of the power spectrum

and the centroid, the spread, the skewness, the kurtosis, the slope, the roll-off fre-

quency, the variation and the mel- frequency cepstral coefficients are calculated.

Furthermore, melody and harmony analysis has been done. Melody declares the

succession of pitched events wile harmony declares the pitch simultaneity in mu-

sic. The melody description more specifically can be found in [5]. Two functions

that characterize the pitch distribution have been used. The first contains informa-

tion about the pitch range of the piece and the second that maps all pitches to a

single octave. Three different techniques extract the rhythm, like the autocorrela-

tion function of features over time, the fast fourier transform in order to estimate

the modulations of features and the histogram of onset intervals. All these features

are extracted from 30-seconds pieces of songs, after the beginnings of the pieces.

This aims at the avoidance of the introductions that in most cases do not represent

the category that the pieces belong to.

For the classification, have been used both supervised and unsupervised meth-

ods [2],[10]. The simplest way for the unsupervised learning method is the similar-

2.4 Automatic genre classification of music content: a survey 10

ity measures. The simplest measure is the Euclidean distance or a cosine distance.

However, these measures have sense only if the features are time-invariant. To

make a time-invariant representation, statistical models are appropriate. Typical

models are the Gaussian mixture models [4][5] and the Hidden Markov Models

(HMMs) that model the relationship between features. K-means algorithm is an-

other way of clustering but its drawback is that the centroids have to be known in

advance. Finally, the Self-Organizing Map (SOM) and the Growing Hierarchical

Self- Organizing Map (GHSOM) are used to cluster the data. These are unsuper-

vised artificial neural networks that map high dimensional input data onto lower

dimensional output spaces. Nevertheless, the topological relationships between

the input data are being kept. A big number of supervised classifiers are used to

classify unlabelled data. The k-nearest neighbor algorithm is based on the idea that

the neighbors influence the decision. The k closest vectors of the training set are

selected and the feature that is to be classified is assigned the label of the most

represented class in the neighbors. For the Gaussian mixture models, it is assumed

the existence of a probability density function. The expectation-maximization al-

gorithm is used to estimate the parameters for each Gaussian component and the

mixture weights. Hidden Markov Models (HMMs) are used to model the differ-

ent duration possibilities of music. The Linear Discriminant Analysis (LDA) finds

a linear transformation that discriminates among classes and makes classification

with some metrics such as Euclidean distance. Support Vector Machines (SVMs)

manage a margin maximization and a nonlinear transformation of the future space.

For the experiments a dataset which is composed of 1515 songs over 10 genres

was used. The ten genres are Classical, Ambient, Electronic, New-Age, Rock,

Punk, Jazz, Blues, Folk and Ethnic. From all the songs, the 1005 were used for the

training while the 510 for the testing.The results are shown in table 2.3.

Ambient Blues Classical Electronic Ethnic Folk Jazz New-Age Punk Rock
Ambient 52.94 0 0 7.32 4.82 0 0 26.47 0 5.95
Blues 0 76.47 0 0 0 4.17 0 0 0 3.57
Classical 2.94 0 100 0 8.43 0 0 0 0 0
Electronic 5.88 0 0 53.66 6.02 4.17 4.55 5.88 0 19.05
Ethnic 2.94 0 0 7.32 59.04 12.5 4.55 20.59 0 0
Folk 0 5.88 0 1.22 3.61 62.5 0 2.94 0 2.38
Jazz 0 3.94 0 3.66 6.02 4.17 81.82 8.82 0 5.95
New-Age 29.41 0 0 4.88 4.82 8.33 4.55 32.35 0 5.95
Punk 0 0 0 0 0 4.17 0 0 100 4.76
Rock 5.88 14.71 0 21.95 7.23 0 4.55 2.94 0 52.38

Table 2.3: The results of the dataset

Chapter 3

Feature Extraction

Feature extraction is an essential pre-processing step to pattern recognition and

machine learning problem. It is often decomposed into feature construction and

feature selection. Feature extraction is the core of content-based description of

audio files. With feature extraction, we extract from the signals information that

represent the music. This way, a computer is able to recognize the content of

a piece of music. The features must be comprehensive, must not require a big

amount of storage and not much computation as well. Many different features

can be implemented for music classification, but we are focused on content-based

acoustic features. Many of them are highly interdependent, this means that are

based on the same initial computations. Timbral textural features, the category

that the mel-frequency cepstral coefficients belong to, are useful for us to distinct

sounds that have similar rhythm and pitch contents. Rhythmic content features

such as the beat and the tempo, are used to show the movement and the regularity

of the rhythm of music pieces. Pitch content features are used to describe the

melody of a song.

The analysis of the signal, gives us a global description of the sound. But we

are interested in the dynamic evolution of the feature. So, the analysis has to be

done with the use of a short-time window. Usually, we apply a Hamming window

which removes edge effects. This way, signals are divided into frames (the position

of each window), that are statistically stationary.

One of the main challenges when designing music information retrieval sys-

tems is to find the most descriptive features of the system. There is a great deal of

features. Timbral features are used to distinct the sounds with the same or similar

rhythm [6]. Some of these are the zero crossings which is an appropriate mea-

3.1 MFCCs 12

sure of noisiness, the centroid which consists a measure of spectral sharpness and

brightness, the roloff which measures the spectral shape, the flux which computes

the difference between the magnitudes of successive distributions, and the MFCCs

which consist a compact representation of the spectrum of an audio signal. It takes

into account the human perception of pitch.

Rhythmic features describe the movement of the signal over time. Instead of

just measuring the tempo, is more interesting for classification purposes to extract

information about rhythmical structure and beat strength. A beat histogram is a

curve describing beat strength as a function of a range of tempo values. Peaks of

the histogram correspond to the main beat and other sub beats.

Pitch features describe the melody and the harmony of music signals. It is

extracted via pitch detection techniques, the most common of whom is the pitch

histogram. It contains information about the amplitudes and periods of maximum

peaks of it.

Timbral features are calculated for every short-time frame of sound, while

rhythmic and pitch features are computed over the whole file. This means that

timbral features focus on the statistics of local information but from a global per-

spective and rhythmic and pitch features since are computed over the whole file,

dont contain enough information for classification purposes.

3.1 MFCCs

The use of Mel-Frequency Cepstral Coefficients (MFCCs) for music information

retrieval has become standard since a lot of years. MFCCs are dominant features

which are used in speech recognition systems, such as the systems which recognize

numbers spoken into a telephone. They are used for recognizing people from their

voices and for genre classification as well.

They are short time spectral features. The mel-frequency cepstral coefficients

algorithm is based on transformation from time domain to frequency domain and

filtration with perceptual filterbank. Firstly, for each frame, is calculated the fast

fourier transform and the result is stored in a vector F. The result of this operation is

being filtered with each filter from Mel filterbank and the result is aggregated and

stored in a vector S. After that, the logarithm of the vector S is being calculated.

3.1 MFCCs 13

Finally, this vector is being transformed by discrete cosine transform [9]. The

whole procedure is described by the following equations.

•
F (i) = [�(F (i))]2 + [�(F (i))]2 (3.1)

•
S(k) =

N/2∑
i=0

(F (i) × M(i)) (3.2)

•
L(m) = log S(k) (3.3)

•
C(n) =

L−1∑
i=0

L(i) × cos(
πn

2L
× (2i + 1)) (3.4)

Where F is the result of the FFT, k is every filter, C is the Mel frequency cepstral

coefficients and n the coefficient number of M coefficients. The m MFCC features

are organized in a fxm matrix, where each row consists of the m MFCC values for

a frame and there are f rows, the number of frames into which the signal has been

segmented.

The reason that is used the mel scale is because many experiments have shown

that the ears perception to the frequency components in the speech does not follow

the linear scale but the mel- frequency scale, which should be understood as a

linear frequency spacing below 1KHz and logarithmic spacing above 1KHz. The

common used formula that reflects the relation between the mel frequency and the

physical frequency is given by the following equation where f is the frequency in

hertz.

M(f) = 1125 × log(1 +
f

700
) (3.5)

The relation between Mel and Hertz scale is shown in figure 3.1.

Thus, the MFCC’s are calculated as follows [4]:

• Divide signal into frames

• For each frame, obtain the amplitude spectrum

• Convert to Mel spectrum

• Take the logarithm

3.2 PITCH 14

Figure 3.1: The relation between Mel and Hertz scale

• Take the discrete cosine transform (DCT)

3.2 PITCH

Pitch is a feature that has been underrated for many decades. This feature is impor-

tant for recognizing a womans voice from a mans. However, it is quite difficult to

understand its perception.

3.2 PITCH 15

Pitch is an auditory attribute of tones, and any tone is physically character-

ized by a frequency. For that reason, it is immediately dependent on frequency.

However, even and isolated tones have multiple pitches. So, there is not a direct

relationship between pitch and frequency. Moreover, in real life, most sounds are

accompanied by additional sounds. As a consequence, a model of pitch perception

must include the segregation of tones from noise and other multiple tones. Lastly,

no one tone can be characterized by just one frequency. For all these reasons, it is

clear that the pitch detection techniques are not accurate.

The pitch content features describe the melody and harmony information about

music signals and are derived from the pitch histogram. In order to construct this

histogram, the audio signal is first decomposed into a number of octave frequency

bands using discrete wavelet transform.After that, we calculate the autocorrelation

funvtion of the log of spectrum of the signals. Spectrum autocorrelation method has

been successfully used in several pitch estimations. The idea is derived from the

observation that a periodic signal has a periodic magnitude spectrum, the period

of which is the fundamental frequency. The autocorrelation function has a local

maximum in the position corresponding to the period of the spectrum.

So, we extract the fundamental frequency since we know that the first minimum

of the autocorrelation function corresponds to the fundamental period. The inverse

of the fundamental period gives us the frequency that we want. This way, we have

the pitch value. All these pitch values are entering into a histogram. The largest

entry in the histogram is taken to be the pitch.

The goal is to estimate independent pitch estimates as separate frequency bands

and then combine the results to yield a global estimate. This solves several prob-

lems, one of which is inharmonicity. The higher armonics may deviate from their

expected spectral positions, and even the intervals between them are not constant

at narrow enough bands. Thus we utilize spectral intervals to calculate pitch like-

lihoods at separate frequency bands, and then combine the results in a manner that

takes the inharmonicity into account. Another advantage of bandwise processing

is that it provides robustness in the case of badly corrupted signals, where only a

fragment of the whole frequency range is good enough to be used.

Spectral and cepstral analysis, need to divide the signal into a series of frames.

Conventional methods usually employ a fixed-length hamming window. However,

windowing a speech using a fixed- length window may yield following two draw-

backs. First, a frame contains both periodic and non- periodic parts of speech sig-

nal and secondly the periodic signal may be cut off at an unbefitting point, which

3.3 BEAT 16

Figure 3.2: The original signal and the shifted signal

makes the period of signal incomplete. Due to that non-periodic part have negative

effect on harmonic information of speech signal, which leads to spectral distortion

in frequency domain. Feature extraction from fixed-length windowed frame can-

not reflect the nature of signal. Pitch synchronous analysis which intercepts signal

using a window whose length is integral times of the pitch period of the speech,

provides a solution to the problem of harmonic leakage.

3.3 BEAT

The beat features try to count the number of beats of a song. They are driven

by instruments that operate in the lower frequencies, like the drum or the bass.

3.3 BEAT 17

Figure 3.3: The autocorrelation function

Beat estimation is the process of predicting the music beat from a representation

of music, symbolic or acoustic. The beat is assumed to represent what humans

perceive as a binary regular pulse underlying the music. The beat in music is often

marked by transient sounds. The rhythmic content features are extracted from the

beat histogram [14]. The beat histogram describes how much periodicity is in the

audio excerpt at different tempo levels, in many cases, the most prominent peaks

correspond to the main tempo of the excerpt.

In order to construct the beat histogram, the envelope of each band is extracted

separately [12]. For each band, full-wave rectification, low pass filtering, down-

sampling and mean removal are performed in order to extract an envelope. The

low pass filtering will cut off teh frequencies higher tahn 200Hz. The envelpopes of

each band are summed up and the autocorrelation function is calculated to capture

the periodicities in the signal’s envelope. Some onsets positions may correspond to

the position of a beat, while other onsets fall of the beat. By detecting the onsets in

the acoustic signal, and using this as input to a beat induction model, it is possible

to estimate the beat[15]. Autocorrelation involves comparing a signal with versions

3.3 BEAT 18

of itself delayed by successive intervals. This yields the relative strength of differ-

ent periodicities within the signal. In terms of musical data, autocorrelation allows

one to find the relative strength of different rhythmic pulses. Such histograms are

sometimes be used directly as features. The dominant peaks in the autocorrelation

function are accumulated over the whole signal into a beta histogram. The tempo

corresponds to the main beat.

Some of the demands of a beat estimation system are stability and robustness.

Stability to ensure that the estimation is yielding low errors for music exhibiting

stationary beats and robustness to ensure that the estimation continues to give good

results for music breaks without stationary beats. In addition, the system should be

casual, and instantaneous. Casual to ensure real-time behavior, and instantaneous

to ensure fast response.

The beat estimation has been evaluated by comparing the beat per minute

(BPM) output of the algorithm to a human estimate. The human estimate was

found by tapping along while the musical piece was playing, and finding the mean

time difference between taps. The estimated BPM values match the human esti-

mate in a percent of 60

In figure 3.4 we see the beat histogram that correspond to a classical piece and

in figure 3.5 the beat hisogram of a rock music piece. The dominant values (90 for

classical and 120 for rock) are the beats per minute, which consist the main tempo.

3.3 BEAT 19

Figure 3.4: The result of a classical piece

3.3 BEAT 20

Figure 3.5: The result of a rock piece

Chapter 4

Clustering and Classification

4.1 Clustering

Clustering is an approach to identify natural grouping of similar entries in such

sets of unclassified data-often without any a priori knowledge of the similarities

that may involve. The principal idea is the partition of the dataset into sub-classes,

called clusters. So, cluster is a collection of data objects that are similar to one

another and thus can be treated collectively as one group. Clustering has wide ap-

plications in pattern recognition, spatial data analysis, image processing, economic

science etc. The difficult with clustering is what constitutes it. It can be shown

that there is no absolute best criterion for the choice. Consequently, it is the user

which must supply this criterion, in such a way that the result of the clustering will

suit his needs. Nevertheless, there is a number of problems associated with clus-

tering. Among them is the fact that dealing with large number of dimensions and

large number of data items can be problematic because of time complexity. In ad-

dition to the effectiveness of the method depends on the definition of the distance.

Moreover, if an obvious distance measure does not exist, it must be defined which

is not always easy, especially in multi-dimensional spaces.

4.1 Clustering 22

4.1.1 The k-means algorithm

K-means algorithm is an algorithm used to classify objects based on attributes

and features into k number of groups. K is a positive integer number. K-means

is one of the simplest unsupervised learning algorithms that solve the clustering

problem. The main idea is to define k centroids, one for each cluster [1]. These

centorids should be placed in an appropriate way because different location could

cause different result. So, the better choice is to place them as much as possible

far away from each other. The next step is to take each point belonging to a given

data set and associate it to the nearest centroid. The first grouping has completed.

Now, the k new centorids that have produced must be recalculated. This loop is

repeated until the k centorids do not change their location. This means that they do

not move any more. The algorithm is composed of the following steps:

• Specify k, the number of clusters to be generated

• Choose k points at random as cluster centers

• Assign each instance to its closest cluster center using Euclidean distance

• Calculate the centroid (mean) for each cluster and use it as a new cluster

center

• Reassign all instances to the closest cluster center

• Iterate until the cluster centers do not change any more

Each instance x in the training set can be represented as a vector of n values,

one for each attribute.

X = (x1, x2, ..., x3) (4.1)

The Euclidean distance of two vectors x and y is defined as:

|x − y| =

√√√√(
n∑

i=1

(x − y)2) (4.2)

The mean µ of a set of vectors C is defined as:

µ =
1
|C| ×

∑
x∈C

x (4.3)

4.2 Classification 23

However there are some difficulties with this algorithm. Firstly, although the

algorithm will produce the desired number of clusters, maybe the centorids will not

be representative of the data. Secondly, the method is computationally inefficient.

Each step of the procedure requires calculation of the distance between every pos-

sible pair of data points and comparison of all the distances. This requires a lot

of time. The main drawback of the k-means algorithm is that the cluster result is

sensitive to the selection of the initial cluster centroids. The initial choice is of

great importance for the whole procedure. If it could be ensured good initial clus-

tering centorids using other techniques, then the k-means algorithm would work

properly to find the optimal clustering centers. It is clear that in order to use this

algorithm, the number k of clusters need to be specified. However, for continuous

distributions, there exists a set of k principal points for all positive integers k. There

is no right or wrong values for k. Instead, the appropriate choice depends on the

particular application and must be determined by the investigator.

In figure 4.1 we see two clusters and how the k-means algorithm has located

their centroids.

4.2 Classification

Classification is a technique used to predict group membership for data instances.

In other words, it is a process of partitioning a set of data or objects in a set of

sub-classes. Classification techniques analyze and categorize the data into known

classes. Each data sample is labeled with a known class label.

The main difference between clustering and classification is that clustering is

an unsupervised learning method while classification is a supervised. This means

that classification analysis requires that the user / analyst know ahead of time how

classes are defined. The objective of a classifier is not to explore the data to dis-

cover interesting segments, but rather to decide how new records should be classi-

fied. In classification it is known the class labels and the number of classes, while

in clustering we dont know the class labels and may neither the number of classes.

4.2 Classification 24

Figure 4.1: The clustering of two centorids

4.2 Classification 25

4.2.1 Self-Organizing Map

Artificial neural networks are a promising part of the science community. The Self-

Organizing Map (SOM) is one of the most popular artificial neural algorithm for

use in unsupervised learning and data visualization [13]. The SOM has been used

for a wide range of purposes. First of all, the algorithm was used for the diagno-

sis of speech voicing. Due to SOMs we can categorize voice samples much more

precisely than a man could have done. Other examples of SOM applications in

the area of Speech Recognition are speaker identification and isolated-word recog-

nition. This is very useful to recognize isolated and carefully articulated words.

Moreover, in engineering applications, the SOM is often used as a look-up-table.

Similar to locating the most similar entry in a table for a given input pattern, we

determine the best matching unit on the map. Furthermore, SOMs have contributed

to the emerging research area of bioinformatics. Using the SOM, you are able to

find similarities in expression profiles and suggest inferences about gene functions.

SOMs are used to explore financial statements of enterprises and to reveal relation-

ships between the type of corporation and the risk of bankruptcy. SOMs appear to

cope very well with the large amount of accounting and financial data available on

firms from balance sheets and annual files. Finally, SOMs are useful for natural

language processing. They are a very interesting approach to exploratory collec-

tions, because relationships between text items, such as similarity, clusters, gaps

and outliers can be communicated naturally using spatial relationships, shading

and colors.

SOMs are constructed as follows. First, you have to decide the geometry of

nodes. The nodes are mapped into k-dimensional space, initially at random, and

then are adjusted. Each iteration involves randomly selecting a data point and

moving randomly selecting a data point and moving the nodes in the direction of

this point. The closest node is moved the most, whereas other nodes are moved by

smaller amounts demanding on their distance from the closest node in the initial

geometry. Neighboring points in the initial geometry tend to be mapped to nearby

points in k-dimensional space [3].

The SOM algorithm is not a clustering algorithm. It is considered as a tool

in reducing the dimensionality of the data and for information visualization. It is

not a tool that produces an explicit partitioning of a dataset into a precise number

of groups. The maps do not show sharp cluster borders and there is no obvious

centroid. We can theoretically think of each node on the map as a cluster centroid.

4.2 Classification 26

There are different techniques used for the initialization of the map. The first

approach is to use random values, independent of the training data set. It is a

poor way of initializing the map because it requires quite a number of additional

training cycles until the map can be said to be at least roughly representative of

the training data. The second approach is to use random samples from the input

training data. When the training commences, the map is already in a state in which

it represents at least a subset of the input data items. This reduces the number

of training iterations needed and lowers the computational cost. Nevertheless, the

choice of input samples used for the initialization is random and the number of

map nodes is very small compared to the number of training data items. So, the

initial map is not likely to be truly representative of the given dataset. The third

approach is to reflect the distribution of the data more faithfully. However, this is

not easy since the map is usually only two-dimensional while the dataset is often

of a much higher dimensionality. If there is one dimension which always holds

values very close to its mean, then it would be relatively easy to predict the values

of the dimension.

Visualizing a SOM is challenging because the input data is usually of a high

dimensionality. By projecting the input space to a two-dimensionality grid we can

express the similarity of two samples as the distance between them. One of the

simplest ways of coping with higher dimensions is to use a two-dimensional coor-

dinate plane and to incorporate further axes for each additional dimension. Color

as a means of representing dimensionality is used in numerous SOM visualiza-

tions. Since every color has a red, green and blue component, it is capable of

displaying three dimensions at once. At the same time, it appears to be very easy

for the human eye to spot similarities in color as opposed to similarities between

two geometric figures. Similarity coloring has turned out to be so intuitively com-

prehensible that it has become the generally accepted method of choice when the

objective is to visualize the cluster structure of the data.

To detect the cluster boarders on a map a so-called distance matrix is often

helpful. It is shown in figure 4.3. A popular example is the U-matrix (Ultsch and

Siemon 1990), which is shown in figure 4.2. It visualizes the distances of each

map unit to its immediate neighbors using grey shape. Inside clusters the distance

between neighboring units will be small, visualized by a light shade of grey. On

cluster boundaries, the differences between neighboring units is large, resulting in

a dark shade of grey. Furthermore, there SOMs offer the choice to provide the

training set with labels for the different groups.

4.2 Classification 27

Figure 4.2: The U-matrix

4.2 Classification 28

Figure 4.3: The distance-matrix

4.2 Classification 29

For the experiments, we used a dataset, which contains 4000 songs over twelve

genres. The twelve genres are Classical, Classical-Opera, Dance-Electro, Hard

Rock-Heavy Metal, Jazz, Blues, Latin, Punk Alternative, Rock-Pop-Classic, Rock-

Pop-Alternative-Other, Vocalists and World-Various. The excerpts of the dataset

were taken from mp3 compressed audio files.

First of all, we made k-means clustering per category. The half songs are being

used for the training and the rest half for the testing. For the training, the MFCCs

of all the songs in each category are being concatenated and in the resulting ta-

ble is implemented the k-means algorithm. So, a 16x12 table of the centroids is

produced. Then, the Euclidean distances for each test song are being calculated

and follows the assignment of a category to each song, based on the minimum Eu-

clidean distance. We make the same procedure by using k-means clustering per

group. We calculate again Euclidean distances for each test song. Based again

on the minimum Euclidean distance, we assign each song to a group and then in

the category that the group belongs to. After using self- organizing map we make

multidimensional scaling from high-dimensional to low-dimensional space, usu-

ally two or three and we organize the music data into clusters. In the first case,

we map the groups in each category using groups k-means data and in the second

we map the categories using category k-means data. For the visualization of the

results, are being used distinct colors.

Chapter 5

Our Approach

5.1 Data preparation

The aim was to collect a database that would cover different musical genres. So,

we have twelve genres: classical, classical-opera, dance-electro, hard-rock-heavy-

metal, jazz-blues, latin, punk- alternative, rap, rock-pop-classic, rock-pop-alternative-

other, world-various and vocalists. The amount of pieces for each genre is not the

same and is shown in table 5.1.

Genre Number of songs Number of groups
Classical 148 10
Classical-opera 76 2
Dance-electro 350 15
Hard-rock-heavy-metal 78 5
Jazz-blues 228 14
Latin 258 13
Punk-alternative 358 16
Rap 94 5
Rock-pop-classic 884 36
Rock-pop-alternative-other 1254 66
Vocalists 32 6
World-various 101 3

Table 5.1: The number of songs of our dataset

5.2 Production of wave files 31

5.2 Production of wave files

All pieces in the twelve collections were given as mp3-files. To make them read-

able by Matlab, they were converted to .wav files since the build-in routines that

Matlab contains can process .wav files. This was achieved using the lame decoder,

an open source tool. Since these mp3 files have been created by extracting from

audio CDs, the sampling frequency is 44100 Hertz (Hz), which means that the am-

plitude value of the audio signal is scanned and stored 44100 times per second.

However, for our demands, the processing of wave files and the feature extrac-

tion can be done with a lower quality of sound. So, in order to reduce the size of

files that are going to be processed, we reduce the sampling frequency at 16000

and 11025Hz. The sampled amplitude values are usually coded with 16 bits per

sample, leading to 65536 possible values to describe the amplitude. So, using the

lame, with one command and appropriate parameters the mp3 files are undergo-

ing downsampling and new mp3 files are produced. Then, format normalization

is applied and each music file is decoded to raw Pulse Code Modulation (PCM)

and converted to the .wav format, but with a new sampling frequency 11025 and

16000Hz. Moreover, taking into account the duplication of the data when using

stereo sound, it is obvious that the processing of such files is very space consum-

ing. For that reason, it was decided to use only one channel instead of two. As it

was seen, there was not any effect on the results. This can be done either with lame

or with the Matlab. In order to avoid a huge consumption of hard disk space and a

long duration for importing and processing the data into Matlab, we chose to do it

with the lame.

In order to make this procedure automatic, we made batch scripts. By executing

the batch script from the root folder where the music genre folders reside, every

subdirectory is scanned and each mp3 file is processed by the lame commands as

described above.

Now the wave files are ready to be processed using custom code written in

Matlab. However, before that it is necessary to separate the songs into training

set and testing set. Since the Matlab has some restrictions concerning the main

memory, it was decided to use only ten seconds of each song. Besides, it is obvious

that sometimes the beginning and the end of a piece is not representative of the

category that it belongs to. So, we used the seconds after the first sixty seconds.

This way, we managed to have less memory occupied during processing and also

5.3 Train 32

to succeed better classification results.

5.3 Train

The basic idea is to scan all the subdirectories and to process every wave file that

exists. As mentioned above, this program is executed from the root folder of each

genre. Using systems commands in the Matlab code, we get into every directory

that is found even and the most nested. In each directory, a list of the wave files,

that exist there, is created and every wave file is processed with the frontend.The

result in the table contains the vectors of the features extracted from the wave files.

For each file, this table is stored in a mat file. Next step is to produce the appro-

priate k-means tables, using similar procedure with systems command in Matlab

code. Specifically, in the case that we want to do clustering per category, for each

category, all the subdirectories are scanned by opening each mat file that happens

to be meet, and the data of the tables are concatenated. At this point, it is important

to mention that we dont concatenate all the MFCC vectors of the mat files, but only

the rows that correspond to the ten seconds described above. This has to do with

the configuration of each scenarios concerning the duration of the frame as defined

in the frontend parameters. Moreover, if a song is smaller than two minutes, the

ten seconds of the middle of the piece are extracted.

If we want to do training per category, we create the concatenated table that

contains the features of all the songs of this category. Respectively, in the case of

training per group, we create the concatenated table that contains the features of

each group.

The process is completed by applying the k-means algorithm in all these tables,

producing 16 clusters (k=16). The resulting k- means tables are stored in mat files.

We follow exactly the same procedure when dealing with the beat and the pitch

features. The only difference is that in that case, we extract one only value, which

correspond to the main peak of the histogram in each case.

5.4 Test 33

5.4 Test

After the training per category or per group, some .mat files have been created that

contain the matrix resulting from the k-means algorithm. It is a table of the cen-

troids. For each song that we want to classify, the Euclidean distances between the

vectors of the under testing song and the vectors of the k-means table are calcu-

lated according to the equations 5.1 and 5.2 (where D is the distance, µ is the mean

value, i is the cluster and j the category). We assign each song to the category, from

which the sum of the Euclidean distance is minimum. In case of the clustering

per group, we assign each song to the group with the minimum distance, and then

to the category that this group belong to. The program is executed from the root

folder and offers with choice either to test all the songs of all the categories at once,

or to test all the songs of a single category. With the creation of appropriate loops,

we denote the number of songs that have been classified for each genre and we cal-

culate how many songs were classified correctly, that gives us the desired results.

This way, it is possible to create a table with all the results for all the genres and to

save them as .mat files for later processing.

dt(xj) =
16∑
i=1

dε(�µij �xt) (5.1)

ĵ = argmaxj

1
N

N∑
t=1

dt(x, j) (5.2)

5.5 Scenarios

In the following figures (5.1, 5.2, 5.3, 5.4, 5.5, 5.6) we present the results of differ-

ent scenarios for train and test, using different configurations and different features.

Finally, in table 5.2 we present the overall results of the 6 scenarios.

5.5 Scenarios 34

Figure 5.1: Results for beat, k-means per genre, sfr=16KHz, frame size=10ms

Figure 5.2: Results for pitch, k-means per genre, sfr=16KHz, frame size=10ms

5.5 Scenarios 35

Figure 5.3: Results for MFCC’s, k-means per group, sfr=16KHz, frame size=10ms

Figure 5.4: Results for MFCC’s, k-means per genre, sfr=16KHz, frame size=10ms

5.5 Scenarios 36

Figure 5.5: Results for MFCC’s, k-means per genre, sfr=11KHz, frame size=10ms

Figure 5.6: Results for MFCC’s, k-means per genre, sfr=16KHz, frame size=20ms

5.6 SOM 37

Scenario Accuracy
BEAT, k-means per genre, sfr=16KHz, frame size=10ms 31.42%
PITCH, k-means per genre, sfr=16KHz, frame size=10ms 37.10%
MFCC’s, k-means per group, sfr=16KHz, frame size=10ms 64.08%

MFCC’s, k-means per genre, sfr=16KHz, frame size=10ms 61.25%
MFCC’s, k-means per genre, sfr=11KHz, frame size=10ms 40.20%
MFCC’s, k-means per genre, sfr=16KHz, frame size=20ms 58.33%

Table 5.2: The overall results

5.6 SOM

Applying the som algorithm we produce the visualization of the data. Even in data

with more dimensions, the som algorithm applies multidimensional scaling, re-

sulting to two or three dimensions. To produce this visualization, we implemented

two different scenarios. In the first scenarios, we apply the som algorithm on the

MFCC values of each song. In the second scenarios, we apply the algorithm on the

k-means data of the concatenated MFCCs values of all the songs per genre.

Similar to the train procedure for the feature extraction, this program is also

executed from the root folder. After parsing the directory tree in depth, at each

MFCC mat file, we extract the features vectors that correspond to ten seconds and

concatenate the MFCCs of all the files into a table. At the same time, we create an

array of labels, of the same length with the array of the concatenated MFCC values,

which contains the name of the genre that each song belongs to. This means that

between the two arrays there is a correspondence of rows. In other words, the first

row of the labels array corresponds to the first vector of the MFCC array.

By using the function som data struct, we create a structure from the array

with all the MFCC vectors. At this structure, we add the array with the labels.

After normalizing the data of structure, we execute the algorithm of som with the

function som make. The result is a new structure that has undergone the necessary

multidimensional scaling and our data have been represented by two coordinates.

This way, they can be represented to the plane.

Using the appropriate parameters for the visualization of the results, we use

the U-matrix. At this matrix, each component is a distance measure between two

adjacent neurons. High values in the U- matrix represent a frontier region between

clusters and low values represent a high degree of similarities among neurons on

5.6 SOM 38

Figure 5.7: The results of our dataset

that region. For each song, the matrix of the values consists of 2000 values. How-

ever the structure that results after the som contains a matrix with fewer values

because for each cell we have kept the prevalent value.

Moreover, we represent in a cellular map the classification of the pieces that

has been produced from the som. The number of cells is the same with the number

of resulting data from the som. For that reason, we created a chromatic code, by

making a color for each genre, and an array of the same length with the array of

labels that we described above. This way, at each row of this chromatic array, we

put the color of the category that the point-row of the other array belongs to. So,

we have three references for each point: its som data, its label and its color. With

the aid of the function som cplane we create the cellular map.

The results of the SOM algorithm is shown in the figure 5.7:

5.7 map mp3 playlist 39

5.7 map mp3 playlist

As we have mentioned above, in order to evaluate the effectiveness of MFCC fea-

tures and the visualization that SOM performs, we implemented two applications

that give us the possibility to judge acoustically the result. The philosophy of the

programs is based on the use of the cellular map that has come up from the process

with the SOM algorithm. We used one hundred and twenty songs from all the gen-

res, and with the path name of each song, we made the SOM structure. After the

execution of the algorithm, we used the resulting map as an input image and the

path name with the coordinates of each song as data input. The coordinates have

been computed after appropriate scaling according to the dimensions of image in

pixels.

Initially, in both versions, when the program is loaded, it is demanded from the

user to give as input the image that is going to be used as map and the corresponding

data file. In the first version, the user selects the number of songs that he wants to

put in the playlist. As the cursor is being moved on the cellular map, the user

can see the song corresponding to that position. Clicking on a point on the map,

a program of repeating songs is opened. So, a playlist has been created, which

consist of a number of songs that the user has selected. The songs are the n closest

to that point that we have clicked on. By clicking on a new point, the playlist is

replaced with a new one. In the second version, the user can draw a circle and the

playlist wiil consist of the ongs included in the circle.

Both programs have been written in java and the Eclipse has been used as a

development application. In the first version, We used a jframe object, into which

we implemented a jpanel object. In the jpanel, we implemented a jlabel object,

where the image is appeared. At this jlabel, we have implemented three classes to

open the image, to open the data file and to select the playlist size. Moreover, we

have implemented two methods, one for catching the mouse moves and one for the

mouse clicks. So, the main parts of the program are:

• openDataItemActionPerformed: It is a class that is used to open the file

data. This file, at each row, contains three elements, separated with tabs. The

first two are the coordinates x and y, and the third is the mp3 file with his

pathname. For the read of this file, it is used the class readfile, which disso-

ciates all the elements of each row, so that we can process them separately.

• OpenImageItemActionPerformed: It is a class that is used to open the

5.7 map mp3 playlist 40

image file.

• setPlayListLengthActionPerformed: it is a class that is used to give the

number of songs that we want to put to the playlist. The default value is 1.

• imageAreaMouseMoved: It is a j labelmethod that takes the coordinates of

the cursor and finds the closest song to that point, by computing Euclidean

distances. Moreover, it prints the name and the coordinates of the song

• imageAreaMouseClicked: : It is a jlabel method that is used for the creation

of the playlist and the opening of the program. When we click on a point, it

is created a matrix of all the songs and the distance of them from that point.

This matrix is being sorted and the n first songs are selected to be put to the

playlist. Finally, a DOS command is built for the opening of the program

and the direct play of the songs.

In the second version of the program, instead of using the jlabel object, we

implemented a method with which we present the image and draw the circle using

the mouse. The two classes to open the image and the data file remain the same.

Furthermore, we have implemented three new methods for mouse press, mouse

drag and nmouse release. So, the main parts of this version of the program are:

• mainPanelMousePressed: This method is used to catch the press of the

mouse

• mainPanelMouseDragged: This method is used to catch the dragging, which

means moving the mouse having the left button pressed.

• mainPanelMouseDragged: This method is used to catch the release of the

mouse button. After the mouse is released, the playlist is calculated.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Nowadays, with the popularity of multimedia applications, a large amount of music

data has been accumulated on the internet. So, automatic classification of music

data becomes a critical technique for providing an effective retrieval of music data.

In this work, we have presented an attempt for classification of music into gen-

res. The system was tested, using audio features extracted from segments of wave

files. First, it was investigated the usefulness of MFCC-based signal extraction

from raw music files. It has shown that MFCC extraction does give information

useful for the classification. We have also compared MFCC with other features

such the beat and the pitch, and it was discovered that MFCC show an increase

in accuracy. The results were promising. In average, 65 percent of the audio data

were classified correctly. So, the main conclusion from our results is that it is

indeed possible to recognize genre using spectral information.

6.2 Future Work

This approach has raised many interesting questions on which future work could

be done. The main drawback of our work it is thought to be the disaggregation

6.2 Future Work 42

of the pieces into genres. The most important in the whole procedure is the train-

ing. For that reason, a better organized data set could prove to be crucial for the

classification results.

Another idea could be to test and new features, since different features have

different impacts on the classifying performance. What is more, we could add and

other features, jointly with these that have been presented, for improved classifi-

cation results. It is probable that a combination of the features would bring better

results. Furthermore, another problem of the automatic music genre classification

is the design of the classifier. Therefore, as a part of the future work, could be the

employment of other classification algorithms or and the fusion with other methods

of music classification. Different classification methods could bring better results.

Appendix A

A.1 LAME

Lame is a research project for learning about and improving mp3 encoding tech-

nology. It is an open source encoder that can be used to create compressed audio

files. These audio files can be played back by every music player. Lame includes

an mp3 encoding library, simple frontend application, a much-improved psychoa-

coustic model and a graphical frame analyzer.

The encoder is a command-line tool, usable from the terminal application or

other graphical applications. One of these applications is the lame front-end, which

is a graphical interface. It offers easy access to all lame parameters. It can work in

batch mode, so it can be used by external applications to encoding/decoding files.

However, we chose to use it directly from the terminal, by invoking the lame tool.

The lame offers a lot of options. With the command decode, lame makes the

decoding from to a wave file. The input file can be any input type supported by

encoding. In our case, it is an mp3 file. What is more, with the command resample

sfreq, we achieve the downsampling with the desired sampling frequency. We

chose 11 and 16 KHz. What is more, by adding the parameter a at this command,

we mix the stereo input file to mono and encode it as mono. The downmix is

calculated as the sum of the left and the right channel, attenuated by 6 dB.

Bibliography

[1] Khaled Alsabti, Sanjay Ranka, and Vineet Singh. An efficient k-means clus-

tering algorithm. In In Proceedings of IPPS/SPDP Workshop on High Per-

formance Data Mining, 1998.

[2] J.-J. Aucouturier and F. Pachet. Music similarity measures: What’s the use?

In Proceedings of 3rd International Conference on Music Information Re-

trieval, pages 157–163, Paris, France, 2002.

[3] P. S. Bradley and Usama M. Fayyad. Refining initial points for k-means

clustering. pages 91–99. Morgan Kaufmann, 1998.

[4] Hrishikesh Deshp and Rohit Singh. Classification of music signals in the

visual domain. In Proceedings of the Digital Audio Effects Workshop, 2001.

[5] E. Gomez, A. Klapuri, and B. Meudic. Melody description and extraction in

the context of music content processing. Journal of New Music Research, 32,

2003.

[6] Mark Levy and Mark Sandler. Lightweight measures for timbral similarity

of musical audio. In AMCMM ’06: Proceedings of the 1st ACM workshop on

Audio and music computing multimedia, pages 27–36, New York, NY, USA,

2006.

[7] Tao Li, Mitsunori Ogihara, and Qi Li. A comparative study on content-based

music genre classification. In SIGIR ’03: Proceedings of the 26th annual

international ACM SIGIR conference on Research and development in infor-

maion retrieval, pages 282–289, New York, NY, USA, 2003.

[8] Stéphane Mallat. A Wavelet Tour of Signal Processing, Second Edition

(Wavelet Analysis & Its Applications). Academic Press, September 1999.

BIBLIOGRAPHY 45

[9] Dominc Niewiadonomy and Adam Pelikant. digital speech signal parameter-

ization by mel frequency cepstral coefficients and word boundaries. In 33rd

Journal of applied computer science, 2004.

[10] E Pampalk, A Flexer, and G Widmer. Improvements of audio-based music

similarity and genre classificaton. ISMIR 2005, 2005.

[11] N. Scaringella, G. Zoia, and D. Mlynek. Automatic genre classification of

music content: a survey. Signal Processing Magazine, IEEE, 23(2):133–141,

2006.

[12] E. D. Scheirer. Tempo and beat analysis of acoustic musical signals. Journal

of Acoustical Society of America, 1998.

[13] SOM TOOLBOX official web site. http://www.cis.hut.fi/projects/somtoolbox/.

[14] George Tzanetakis, Georg Essl, and Perry Cook. Musical genre classification

of audio signals. In IEEE Transactions on Speech and Audio Processing,

pages 293–302, 2002.

[15] George Tzanetakis, Ajay Kapur, and Manj Benning. Query-by-beat-boxing:

Music retrieval for the dj. In ISMIR, 2004.

