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ABSTRACT

The multicast beamforming problem is considered from the viewpoint of mini-

mizing outage probability subject to a transmit power constraint. The main dif-

ference with the point-to-point transmit beamforming problem is that in multicast

beamforming the channel is naturally modeled as a Gaussian mixture, as opposed

to a single Gaussian distribution. The Gaussian components in the mixture model

user clusters of different means (locations) and variances (spreads). It is shown

that minimizing outage probability subject to a transmit power constraint is an NP-

hard problem when the number of Gaussian kernels, J , is greater than or equal to

the number of transmit antennas, N . Through dimensionality reduction, it is also

shown that the problem is practically tractable for 2 − 3 Gaussian kernels. An

approximate solution based on the Markov inequality is also proposed. This is

simple to compute for any J and N , and often works well in practice.



1. INTRODUCTION

Consider a base station or wireless access point that uses an antenna array to trans-

mit common information to a pool of users, each equipped with a single receive

antenna. When the channel vectors of all users are known at the transmitter, it

is possible to beamform in a way that directs power towards the users and limits

wasteful radiation in other directions. This is a physical layer multicasting ap-

proach that has been recently investigated in a series of papers [7, 5, 4, 3]. The

design formulations in [7, 5, 4, 3] target signal to (interference plus) noise ratio

(SNR) guarantees: they either minimize total transmitted power subject to guaran-

teed SNR for each receiver, or maximize the minimum SNR subject to an overall

transmitted power constraint.

Exact channel state information (CSI) will never be available in practice, in

which case it is impossible to guarantee instantaneous SNR. An alternative is

to offer average (expected) SNR guarantees. The channel correlation matrices

(which vary far slower than the actual channel realizations) are then sufficient for

transmit optimization, and the solutions in [7, 5, 4, 3] carry over almost verbatim.
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The drawback is that persistent deep fading can occur in this case, which is un-

acceptable for delay-sensitive applications. An alternative is to start with a set of

nominal channel vectors, allow limited perturbation, and aim for a conservative

design that guarantees a certain SNR for every allowable perturbation; see [2, 4]

for related results in the context of multicasting, and references therein for earlier

work on robust unicast beamforming.

A different approach is pursued here. The channel vector is modeled as ran-

dom, with a known distribution. The objective is to design the weight vector of

the transmit beamformer to minimize the outage probability, i.e., the probability

that the useful received signal power falls below a certain threshold. In a multi-

cast context, this has the following interpretation: If one draws a large number of

channel vectors, then (under ergodic mixing conditions) the fraction of terminals

served will be approximately one minus the outage probability. Minimizing the

outage probability thus approximately maximizes the number of users served. In

a single-user (unicast) context, averaging is with respect to the temporal channel

variation, and minimizing outage approximately maximizes the fraction of time

that the channel meets the quality of service demand.

Minimum outage probability beamforming has been considered in the liter-

ature, in the context of point-to-point multiple-input single-output systems [8]

and receive beamforming for the cellular uplink [1]. The main difference with our



1. Introduction 11

setup is that in [8, 1] the channel is modeled using a (single) Gaussian distribution,

whereas we adopt a Gaussian mixture. This is natural for wireless multicasting,

where subscribers are spatially dispersed in a non-uniform fashion (e.g., clustered

in malls, squares, campuses, etc). Also, given enough kernels, it is possible to ap-

proximate almost any density by a Gaussian mixture. Finally, we note that unicast

beamforming under an outage probability constraint has been considered in [10].



2. RESULTS

Let the channel vectors be drawn from a Gaussian mixture distribution

f(h) =
J∑

j=1

pjN (h;mj, σ
2
j I),

where N ((·);m,C) denotes a multivariate Gaussian distribution of mean vector

m and covariance matrix C, assumed diagonal for simplicity. Let y := wTh.

Then,

f(y;w) =
J∑

j=1

pjN (y;wTmj, σ
2
j ||w||2),

i.e., a mixture of univariate Gaussians (throughout, || · || denotes the Euclidean

norm). Consider

min
||w||2=P

Pr[|y| < γ] ⇐⇒

min
||w||2=P

J∑
j=1

pj

∫ γ

−γ

N (y;wTmj, σ
2
j ||w||2) ⇐⇒

min
||w||2=P

J∑
j=1

pj

∫ γ

−γ

N (y;wTmj, σ
2
j P ).
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2.1 NP-HARDNESS

Claim 1: Computing min||w||2=P Pr[|y| < γ] is NP-hard.

Proof 1: Consider the special case where σj = σ, pj = 1/J , ∀j. Using the

Cauchy-Schwartz inequality, it can be shown (cf. [9]) that

|wTmj| − ε||w|| ≤ |wThj| ≤

|wTmj|+ ε||w||,∀hj ∈ Bε(mj),

where Bε(mj) denotes a ball of radius ε centered at mj . Let hj be drawn from the

j-th component pdf N (h;mj, σ
2I). Given ε and δ > 0, we can pick σ = σ(ε, δ)

such that Pr[hj ∈ Bε(mj)] ≥ 1− δ. Let

pout(w) :=
1

J

J∑
j=1

pout|j(w), p∗out := min
||w||2=P

pout(w),

where pout|j(w) := Pr[|wThj| < γ]. With 1(condition) denoting the indicator

function, and Ehj
[·] the expectation conditioned on the j-th component,

pout|j(w) = Ehj
[1(|wThj| < γ)].

For hj ∈ Bε(mj), it holds

|wTmj|+ ε||w|| < γ ⇒ |wThj| < γ,
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and therefore

1(|wTmj| < γ − ε||w||) ≤ 1(|wThj| < γ).

It follows that, for all hj ,

1(|wTmj| < γ − ε||w||)1(hj ∈ Bε(mj)) ≤ 1(|wThj| < γ).

Taking Ehj
[·] we obtain

(1− δ)1(|wTmj| < γ − ε||w||) ≤ pout|j(w).

In a similar vain, for hj ∈ Bε(mj), it holds

|wThj| < γ ⇒ |wTmj| − ε||w|| < γ,

and therefore

1(|wThj| < γ) ≤ 1(|wTmj| < γ + ε||w||).

It follows that, for all hj ,

1(|wThj| < γ) ≤ 1(|wTmj| < γ + ε||w||)1(hj ∈ Bε(mj))+

1− 1(hj ∈ Bε(mj)),

where the last term is a trivial upper bound that applies to the complement of

Bε(mj). Again taking Ehj
[·] we obtain

pout|j(w) ≤ (1− δ)1(|wTmj| < γ + ε||w||) + δ.
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Combining the two inequalities, we have

(1− δ)1(|wTmj| < γ − ε||w||) ≤ pout|j(w) ≤

(1− δ)1(|wTmj| < γ + ε||w||) + δ,

Averaging out over j and taking the minimum over w with ||w|| = √
P yields

1− δ

J
min

||w||=√P

J∑
j=1

1(|wTmj| < γ − ε
√

P ) ≤ p∗out(γ) ≤

1− δ

J
min

||w||=√P

J∑
j=1

1(|wTmj| < γ + ε
√

P ) + δ,

where we have also made explicit that p∗out depends on γ. It follows that

p∗out(t− ε
√

P )− δ ≤ 1− δ

J
min

||w||=√P

J∑
j=1

1(|wTmj| < t) ≤

p∗out(t + ε
√

P ),

for all t ∈ (ε
√

P, 1 − ε
√

P ). Notice now that p∗out(·) is a continuous function,

whereas

1− δ

J
min

||w||=√P

J∑
j=1

1(|wTmj| < t)

only takes discrete values, separated by 1−δ
J

. Recall that ε > 0, δ > 0, but oth-

erwise up to our control. Pick 0 < δ < 1
J+1

(which implies δ < 1−δ
J

) and ε

sufficiently small to sandwich 1−δ
J

min||w||=√P

∑J
j=1 1(|wTmj| < t) within an in-

terval strictly less than 1−δ
J

. This leaves no ambiguity - computing p∗out(t± ε
√

P )
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pin-points the exact value of min||w||=√P

∑J
j=1 1(|wTmj| < t). In particular, this

answers the question of whether or not it is possible to find a w of norm
√

P such

that |wTmj| ≥ t, ∀j ∈ {1, · · · , J}. The latter is the decidability version of a

problem shown to be NP-hard in [7] for J ≥ N .

2.2 SPECIAL CASE: J = 1

When there is only one Gaussian kernel (J = 1), minimizing Pr[|y| < γ] un-

der ||w||2 = P reduces to maximizing |wTm1| under the same constraint. From

the Cauchy-Schwartz inequality, the optimum w is simply m1 scaled to power

P (note there is freedom to choose the sign; if m1 = 0, then any w on the

sphere of radius
√

P is equally good). The solution is trivial in this case - but

also interesting in the following way: If one draws a large number of channel

vectors, then 1 − Pr[|y| < γ] is an estimate of the fraction of terminals that will

be served, thus picking w to minimize Pr[|y| < γ] approximately maximizes the

number of terminals served in the “large sample” regime (the fraction converges to

1−Pr[|y| < γ] under quite general ergodic mixing conditions, and notably when

the channel vectors are drawn from a product distribution with N (h;m1, σ
2
1I) as

marginal). This is interesting, because even if the channel vectors are exactly

known at the transmitter, exactly maximizing the number of terminals served is

NP-hard in this case, and even approximate solutions are non-trivial, see [6]. Thus,
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when the number of terminals is large, we can approximately maximize the num-

ber of terminals served by matching the weight vector to the mean vector; but

exactly maximizing the number of terminals served is prohibitive, even when all

channel vectors are known exactly at the transmitter.

Remark 1: The above two results generalize to the complex case (channel ele-

ments and weights are both complex-valued), using results from [7] and [8].

2.3 CASE: J = 2, GENERAL N

By adding a second Gaussian kernel in the channel vector model, the problem of

minimizing the outage probability becomes non-trivial:

min
||w||2=P

2∑
j=1

pj

∫ γ

−γ

N (y;wTmj, σ
2
j P ). ⇐⇒

min
||w||2=P

2∑
j=1

pj

[
Q

(−γ−wTmj

σj

)
−Q

(
γ−wTmj

σj

)]
.

Let

M(w) =
2∑

j=1

pj

[
Q

(−γ−wTmj

σj

)
−Q

(
γ−wTmj

σj

)]
,

Then, wo = arg min||w||2=P M (w) will lie on the subspace V , spanned by the

mean vectors m1,m2 (otherwise, power allocated in a direction out of V would be

wasted). Then wTmj can be parameterized as ||w||||mj|| cos(∠w−∠mj), where

∠x := arccos(xTvr/||x||||vr||) is the angle between a vector x and a reference
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vector vr in the two dimentional space V . For simplicity we may take vr =

m1/||m1||, and the objective function becomes

M(∠w) =
2∑

j=1

pj

[
Q

(−γ−√P ||mj|| cos(∠w−∠mj)

σj

)

−Q
(

γ−√P ||mj|| cos(∠w−∠mj)

σj

)]
,

and ∠wo = arg min||w||2=P M(∠w) determines wo = arg min||w||2=P M (w) as

follows:

wo =
√

PVQVTvr,

where

Q :=




cos(∠w) − sin(∠w)

sin(∠w) cos(∠w)




is a rotation matrix, V := [v1,v2] is the orthonormal basis of V and vr is the

reference vector used above.

We can therefore find the optimal ∠wo and wo (up to desired accuracy) by

performing one-dimensional fine grid search of M(∠w). Alternatively, we can

use a relatively coarser grid search, followed by a steepest descent iteration. The

objective function

M(w) =
J∑

j=1

pj

[
Q

(−γ−wTmj

σj

)
−Q

(
γ−wTmj

σj

)]
,

is differentiable with

∇M(w) =
J∑

j=1

pjmj

σ2
j

√
2π

[
e

(−γ−wT mj)2

2σ2
j − e

(γ−wT mj)2

2σ2
j

]
.
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In our experiments, the results of coarser grid search followed by steepest descent

were comparable to those obtained using fine grid search.

2.4 CASE: J = 3, GENERAL N

The case of three Gaussian kernels in the channel model is a practical upper

bound on computing the globally optimal beamforming weight vector through

grid search of the objective function

M(w) =
3∑

j=1

pj

[
Q

(−γ−wTmj

σj

)
−Q

(
γ−wTmj

σj

)]
.

Again, wo = arg min||w||2=P M (w) will lie on the subspace V , spanned by the

mean vectors m1,m2,m3. Let V := [v1,v2,v3] be an orthonormal basis of

subspace V . We can use spherical coordinates (r, θ, φ) to write the weight and

mean vectors as:

w =
√

PVr̂θw,φw , mj = ||mj ||Vr̂θj ,φj
,

where

r̂θj ,φj
=




cos(θj) sin(φj)

sin(θj) sin(φj)

cos(φj)




is the spherical position vector, θj is the angle between the projection of the jth

mean vector on v1v2 plane and v1, and φj is the angle between the jth mean vector

and v3.
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Now, exactly as in case of J = 2, we may writeM(w) as a function of θw and

φw and perform a two-dimentional fine grid search in M(θw, φw) to efficiently

compute {θwo , φwo} = arg min||w||2=P M (θw, φw). The optimal beamformng

vector is then given by wo =
√

PVr̂θwo ,φwo
.

2.5 COMPLEX CASE: J = 2, GENERAL N

We now generalize to the complex case.

f(h) =
J∑

j=1

pjCN (h;mj, σ
2
j I),

where CN ((·);m,C) denotes a complex multivariate Gaussian distribution of

mean vector m and covariance matrix C, assumed diagonal for simplicity. Let

z := wHh, where H denotes Hermitian (conjugate) transpose. Then

f(z;w) =
J∑

j=1

pjCN (z;wHmj, σ
2
j ||w||2).

The optimal beamforming vector can be found by,

min
||w||2=P

Pr[|z| < γ] ⇐⇒

min
||w||2=P

J∑
j=1

pj

∫∫

A

CN (z;wHmj, σ
2
j ||w||2),

where A is a disc of radius γ in the complex plane. The above integral is given by

[11]
∫∫

A

CN (z;wHmj, σ
2
j ||w||2)=P

[(
γ

σj||w||
)2∣∣∣∣

2

,

( |wHmj|
σj||w||

)2]
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where P [χ2|2, λ] is the cdf of the non-central χ2 distribution with two degrees of

freedom and non-centrality parameter λ. Let

C(w) :=
J∑

j=1

pjP
[(

γ

σj||w||
)2∣∣∣∣

2

,

( |wHmj|
σj||w||

)2]
.

Again, wo = arg min||w||2=P C (w) will lie on the subspace spanned by the com-

plex mean vectors m1,m2. Thus, all candidate beamforming vectors are w =

c1m1 + c2m2, with c1, c2 complex numbers such that ||w||2 = P . We can use this

constraint to find a relationship between c1 and c2:

||w||2 = P ⇐⇒

(c∗1m
H
1 + c∗2m

H
2 )(c1m1 + c2m2) = P ⇐⇒

|c1|2||m1||2 + |c2|2||m2||2 + 2<{c∗1c2m
H
1 m2)} = P.

Using the rotational invariance of the outage probability in the complex plane

Pr[|wHh| < γ] = Pr[|ejωwHh| < γ] we can take c2 to be real without loss of

generality. Thus:

|c1|2||m1||2 + c2
2||m2||2 + 2c2<{c∗1mH

1 m2)} = P.

We can now compute the optimal beamforming vector by performing a two-

dimensional grid search in C (w) -one dimension for ∠c1 ∈ [0, 2π) and one for

|c1| ∈ (0,
√

P/||m1||). For every c1, we can compute c2 through the constraint
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equation

c21,2 =
−β ±

√
β2 − 4αγ

2α
,

where

α = ||m2||2,

β = 2<{c∗1mH
1 m2},

γ = |c1|2||m1||2 − P.

Note that we need to check only one root for c2: For every c1, c
′
1 = −c1 ∈ C it is

easy to see that c21 = −c2
′
2 ⇒ c1m1 + c21m2 = −(c′1m1 + c2

′
2m2) ⇒ w = −w′.

These two beamforming vectors are equivalent in terms of minimizing the outage

probability because C(w) = C(−w) = C(w′).

2.6 GENERAL COVARIANCE MATRIX CASE

Up to this point we have made the assumption that channel vectors are drawn

from a Gaussian mixture distribution with diagonal covariance matrix. In general,

one may have to drop that assumption to best fit his channel model. In that case,

f(h) =
∑J

j=1 pjCN (h;mj,Cj) and the minimization problem becomes:

min
||w||2=P

J∑
j=1

pj

∫∫

A

CN (z;wHmj,w
HCjw).
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Note that the optimal beamforming vector no longer lies on the subspace spanned

by the J mean vectors since w affects not only the mean of each univariate Gaus-

sian in the mixture, but its variance as well. We will only consider a special but

important case in the sequel.

2.6.1 SPECIAL CASE: REAL-VALUED, J=1

The problem of minimizing the outage probability when J = 1 becomes non-

trivial in the general covariance matrix case. The outage probability is given by

M(w) =

∫ γ

−γ

N (y;wTm,wTCw).

Consider problem

Q : min
||w||2=P

M(w).

Claim 2: The optimal beamforming vector, wo = arg min||w||2=P M(w), will lie

on the subspace spanned by the mean vector m and the principal eigenvector of

the covariance matrix C.

Proof 2: The minimization problem Q can equivalently be written as:

Q′ : min
|c|≤√P ||m||

M




arg maxwTCw

s.t : ||w||2 = P

wTm = c




.
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Let

wo(c) := arg maxwTCw

s.t : ||w||2 = P

wTm = c

Every w that satisfies the above constrains is equidistant from c·m
||m||2 and can be

written as:

w =
c ·m
||m||2 + v,

with vTm = 0 and ||v||2 = P − c2/||m||2. The maximization problem can be

reformulated in terms of v as:

vo(c) := arg max[mTCm(c2/||m||2)2 + vTCv]

s.t : ||v||2 = P − c2/||m||2

vTm = 0

which is equivalent to

vo(c) := arg maxvTCv

s.t : ||v||2 = P − c2/||m||2

vTm = 0,
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since mTCm(c2/||m||2)2 is a constant. Furthermore, C can be written as:

C =UTDU

= (Um + U′)TD(Um + U′)

= Um
TDUm + U′TDU′,

where Um = mmT

||m||2 U and U′ = U− mmT

||m||2 U, are the parallel and perpendicular to

m components of U respectively. Substituting, we have:

vo(c) := arg maxvTUm
TDUmv + vTU′TDU′v

s.t : ||v||2 = P − c2/||m||2

vTm = 0,

which yields

vo(c) := arg maxvTU′TDU′v

s.t : ||v||2 = P − c2/||m||2

vTm = 0,

since vTUm
TDUmv = 0. The solution to the latter problem is:

vo(c) =

√
P − c2

||m||2

||u′1||
· u′1

=

√
P − c2

||m||2

||u1 − u1
T m

||m||2 ·m||
· (u1 − u1

Tm

||m||2 ·m),

where u1
′ and u1 are the principal eigenvectors of U′TDU′ and C respectively.

Consequently, wo(c) = vo(c) + c·m
||m||2 will lie in the subspace spanned by [m,u1].
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The above analysis holds for every c in [−√P ||m||,√P ||m||], and that completes

the proof.

In order to find the optimal beamforming vector in the general covariance matrix

case we only need to perform one-dimensional fine grid search in M(
√

PVQ(θ)VTvr),

where

Q(θ) :=




cos(θ) − sin(θ)

sin(θ) cos(θ)




is a rotation matrix, V is the orthonormal basis of the subspace spanned by the

mean vector and the principal eigenvector of the covariance matrix, and vr is a

reference vector in that space.

2.7 MARKOV APPROXIMATION

From Markov’s inequality we have that Pr[x ≥ t] ≤ t−1E[x], for any non-

negative random variable. We can thus consider approximating (the real case is

considered for simplicity, but the approach generalizes to the complex case)

min
||w||2=P

Pr[|y| < γ] ⇐⇒ max
||w||2=P

Pr[|y| ≥ γ] ⇐⇒

max
||w||2=P

Pr[y2 ≥ γ2]

by

max
||w||2=P

E[y2],
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thus maximizing an upper bound on the actual objective function (when put in

maximization form). Now,

E[y2] =
J∑

j=1

pj

(
(wTmj)

2 + σ2
j P

)
,

thus we may

max
||w||2=P

J∑
j=1

pj(w
Tmj)

2.

Solution of the latter problem is easy. Let

D := diag([
√

p1, · · · ,
√

pJ ]), M := [m1, · · · ,mJ ]T ,

then wapp = arg max||w||2=P E[y2] is given by the principal right singular vector

of the matrix DM scaled to power P . Of course, wo does not in general solve

the original problem of minimizing outage (maximizing service) probability; but

it is interesting to note that in the special case of J = 1 (single Gaussian Kernel)

it does. Also note that wo is not
∑J

j=1 pjmj normalized to power P , as quick

intuition would perhaps suggest. To appreciate this, consider for example what

happens when J = 2, p1 = p2 = 1/2, and m2 = −m1.



3. NUMERICAL RESULTS

3.1 REAL CASE

In the cases when J = 2 and J = 3 we can efficiently compute the optimal beam-

forming vector by performing low-dimensional fine grid search, as already shown.

In this case, we can evaluate how far is the solution based on Markov approxima-

tion from the optimal one. In four different scenarios for each case (J = 2, J = 3),

we computed wopt = arg min||w||2=P M (w) and wapp = arg max||w||2=P E[y2]

through a fine grid search algorithm and the Markov approximation respectively.

The parameters for the different scenarios are given below. The results are sum-

marized in Figs. 3.1 - 3.8, where curves are parameterized by the number of

transmit antennas, N .

3.1.1 ANGLE BETWEEN MEAN VECTORS (J=2)

Fig. 3.1 plots outage probability results for p1 = p2 = 1/2, σ2
1 = σ2

2 = 1,

||m1||2 = ||m2||2 = N , ||w||2 = P = 4, as φ̂ := ∠m2 − ∠m1 varies in [0, π).
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Fig. 3.1: Angle between mean vectors(J = 2): Outage Probability as a function of the

angle: M(wopt) and M(wapr) versus φ̂.

3.1.2 MAGNITUDE OF MEAN VECTORS (J=2)

Fig. 3.2 plots outage probability results for p1 = p2 = 1/2, σ2
1 = σ2

2 = 1,

φ̂ = π/3, ||m1||2 = N , ||w||2 = P = 4, as ||m2|| varies in (0, 10].

3.1.3 VARIANCE OF THE GAUSSIAN KERNELS (J=2)

Fig. 3.3 plots outage probability results for p1 = p2 = 1/2, φ̂ = π/3, ||m1||2 =

||m2||2 = N , σ2
1 = 1, ||w||2 = P = 4, as σ2

2 varies in (0, 10].

3.1.4 MIXTURE PROBABILITY (J=2)

Fig. 3.4 plots outage probability results for σ2
1 = σ2

2 = 1, ||m1||2 = ||m2||2 = N

φ̂ = π/3, ||w||2 = P = 4, as p1 varies in [0.1, 0.9].
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Fig. 3.2: Magnitude of mean vectors(J = 2): Outage Probability as a function of the

magnitude: M(wopt) and M(wapr) versus ||m2||.

3.1.5 ANGLE BETWEEN MEAN VECTORS (J=3)

Fig. 3.5 plots outage probability results for pj = 1/3, σ2
j = 1, ||mj||2 = N, ∀j,

(θ1, φ1) = (π
4
, π

4
), (θ2, φ2) = (3π

4
, π

4
), θ3 = π

4
, ||w||2 = P = 4, as φ3 varies in

[0, π).

3.1.6 MAGNITUDE OF MEAN VECTORS (J=3)

Fig. 3.6 plots outage probability results for pj = 1/3, σ2
j = 1, ∀j, (θ1, φ1) =

(π
4
, π

4
), (θ2, φ2) = (3π

4
, π

4
), (θ3, φ3) = (π

2
, π

2
), ||m1||2 = ||m2||2 = N , ||w||2 =

P = 4, as ||m3|| varies in (0, 5].
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Fig. 3.3: Variance of the Gaussian Kernels(J = 2): Outage Probability as a function of

the variance: M(wopt) and M(wapr) versus σ2
2 .

3.1.7 VARIANCE OF THE GAUSSIAN KERNELS (J=3)

Fig. 3.7 plots outage probability results for pj = 1/3, ||mj||2 = N, ∀j, (θ1, φ1) =

(π
4
, π

4
), (θ2, φ2) = (3π

4
, π

4
), (θ3, φ3) = (π

2
, π

2
), σ2

1 = 2, σ2
2 = 1, ||w||2 = P = 4, as

σ2
3 varies in (0, 5].

3.1.8 MIXTURE PROBABILITY (J=3)

Fig. 3.8 plots outage probability results for σ2
j = 1, ||mj||2 = N, ∀j, (θ1, φ1) =

(π
4
, π

4
), (θ2, φ2) = (3π

4
, π

4
), (θ3, φ3) = (π

2
, π

2
), p1 = p2 = (1− p3)/2,,||w||2 = P =

4, as p3 varies in [0.1, 0.9].
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Fig. 3.4: Mixture Probability(J = 2): Outage Probability as a function of the mixture

probability: M(wopt) and M(wapr) versus p1.

3.2 COMPLEX CASE

We now turn to the complex case. Only J = 2 kernels are considered. The results

are summarized in Figs. 3.9 - 3.12, where curves are parameterized by the number

of transmit antennas, N .

3.2.1 ANGLE BETWEEN MEAN VECTORS

Fig. 3.9 plots outage probability results for p1 = p2 = 1/2, σ2
1 = σ2

2 = 1,

||m1||2 = ||m2||2 = N , ||w||2 = P = 1, as the angle between the mean vectors,

θ, varies in [0, π).
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Fig. 3.5: Angle between mean vectors(J = 3): Outage Probability as a function of the

angle: M(wopt) and M(wapr) versus φ3.

3.2.2 MAGNITUDE OF MEAN VECTORS

Fig. 3.10 plots outage probability results for p1 = p2 = 1/2, σ2
1 = σ2

2 = 1,

θ = π/3, ||m1||2 = N , ||w||2 = P = 1, as ||m2|| varies in (0, 5].

3.2.3 VARIANCE OF THE GAUSSIAN KERNELS

Fig. 3.11 plots outage probability results for p1 = p2 = 1/2, θ = π/3, ||m1||2 =

||m2||2 = N , σ2
1 = 1, ||w||2 = P = 1, as σ2

2 varies in (0, 5].

3.2.4 MIXTURE PROBABILITY

Fig. 3.12 plots outage probability results for σ2
1 = σ2

2 = 1, ||m1||2 = ||m2||2 =

N θ = π/3, ||w||2 = P = 1, as p1 varies in[0.1, 0.9].
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Fig. 3.6: Magnitude of mean vectors(J = 3): Outage Probability as a function of the

magnitude: M(wopt) and M(wapr) versus ||m3||.
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Fig. 3.7: Variance of the Gaussian Kernels(J = 3): Outage Probability as a function of

the variance: M(wopt) and M(wapr) versus σ2
3 .
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Fig. 3.8: Mixture Probability(J = 3): Outage Probability as a function of the mixture

probability: M(wopt) and M(wapr) versus p3.
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Fig. 3.9: Angle between mean vectors: Outage Probability as a function of the angle:

C(wopt) and C(wapr) versus θ.
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Fig. 3.10: Magnitude of mean vectors: Outage Probability as a function of the magnitude:

C(wopt) and C(wapr) versus ||m2||.
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Fig. 3.11: Variance of the Gaussian Kernels: Outage Probability as a function of the vari-

ance: C(wopt) and C(wapr) versus σ2
2 .
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Fig. 3.12: Mixture Probability: Outage Probability as a function of the mixture probabil-

ity: C(wopt) and C(wapr) versus p1.



4. CONCLUSIONS

The multicast beamforming problem was considered from the viewpoint of min-

imizing outage probability subject to a transmit power constraint. In a multicast

context, the channel is naturally modeled as a Gaussian mixture, as opposed to a

single Gaussian distribution. The different Gaussian kernels model user clusters

of different means (locations) and variances (spreads). It was shown that min-

imizing outage probability subject to a transmit power constraint is an NP-hard

problem when the number of Gaussian kernels, J , is greater than or equal to the

number of transmit antennas, N . Through dimensionality reduction, it was also

shown that the problem is practically tractable for 2 − 3 Gaussian kernels. An

approximate solution based on the Markov inequality was also proposed.

In the real case, the Markov approximation can be very accurate, but appears

sensitive to near-far and mixture probability imbalance effects. For a large number

of transmit antennas, N , the Markov approximation brakes down in the presence

of such imbalances - the gap from the optimal solution is significant. The reason

is that the principal right singular vector of the matrix DM then tends to align
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with the dominant component(s), effectively ignoring weaker ones.

Interestingly, the Markov approximation seems to be far more accurate in the

complex case. This corroborates findings in [5], which showed that related ap-

proximation problems are easier in the complex case.
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