
Technical University of Crete

Department of Electronic and Computer Engineering

A reasoner for querying
temporal ontologies

Dissertation Thesis

Nikos Maris

review committee:

Assoc. Prof. Euripides Petrakis (supervisor),

Dept. of Electronic and Comp. Engineering TUC

Prof. Stavros Christodoulakis,

Dept. of Electronic and Comp. Engineering, TUC

Assist. Prof. Nikos Papadakis,

Dept of Sciences, TEI of Crete

Abstract

Dealing with information that changes with time is a critical issue in
Knowledge Representation. Existing research efforts limit to temporal in-
formation representation and querying in temporal databases. However, the
advent of the semantic web over the last few years calls for the representa-
tion of temporal information based on temporal ontologies and for querying
this information using temporal query languages such as TOQL [7]. How-
ever, even the most elaborate querying approaches (such as those referred to
above) only support temporal queries that is explicitly represented in a tem-
poral ontology. They cannot provide answers cencerning information that
can be influenced from existing information. For example, if the price of
a product at time ‘t’ is ‘p’ a temporal query language should be able to
inference that the price of the product (unless changed) will still be ‘p’ at
later time. This is exactly the problem this work is dealing with. We ex-
tent “TOQL” (the Temporal Ontology Query Language developed at the
Intelligence Systems Laboratory of TUC) with reasoning capillarities so that
TOQL can answer queries for information that that can be inferenced from
information represented in the underlying temporal ontology. The reasoner
developed to support TOQL implements an action theory based on “Event
Calculus” in Prolog.

Keywords : ontologies, logic programming, temporal reasoning

Περίληψη

H αναπαράσταση πληροφοριών που αλλάζουν με την πάροδο του χρό-
νου είναι ένα σημαντικό ζήτημα στον χώρο της Αναπαράστασης Γνώσης.
Ενώ η έρευνα πάνω σε χρονικές βάσεις δεδομένων συνεχίζεται, πρόσφα-
τες εξελίξεις στον χώρο του Σημασιολογικού Ιστού προτείνουν εναλλακτι-
κές προσεγγίσεις όπως την TOQL, μια γλώσσα επερωτήσεων σε χρονικές
οντολογίες. Η παρούσα εργασία επεκτείνει την TOQL για να εξάγει γνώση
από τις υπάρχουσες πληροφορίες βασιζόμενη στην υπόθεση πώς οτι δεν
αλλάζει, θα έχει την ίδια τιμή σε επόμενη χρονική στιγμή. Το νέο υποσύ-
στημα της TOQL βασίζεται στο Event Calculus και είναι υλοποιημένο σε
Prolog.

Contents

1 Introduction 9

1.1 Motivation . 11

1.2 Problem Definition . 11

1.3 Contributions of this work . 11

1.4 Limitations . 12

1.5 Outline . 12

2 Background 13

2.1 Knowledge Representation . 13

2.1.1 Ontologies . 13

2.1.2 Temporal Ontologies 14

2.2 Reasoning . 17

2.2.1 Temporal reasoning . 17

2.2.2 Event Calculus . 19

2.2.3 Prolog . 20

2.3 Temporal Ontology Query Language 21

2.3.1 TOQL over ontologies 22

2.3.2 TOQL over 4D-fluents 24

3 Temporal reasoner 28

3.1 Mapping between 4D-fluents and Event Calculus 28

3.2 Implementation . 29

4 TOQL extensions 33

4.1 TOQL implementation . 35

4.2 TOQL2 implementation . 39

5 Conclusion and future work 44

A TOQL2 grammar in BNF 49

5

6 CONTENTS

B Sample temporal ontology 54

B.1 Static part of schema . 54
B.2 Temporal part of schema: basic 54
B.3 Temporal part of schema: actions 55
B.4 Temporal part of schema: fluents 55
B.5 All individuals . 55

List of Figures

1.1 Semantic web stack . 9

2.1 A system for querying ontologies 14
2.2 Sample individuals of the 4D-fluents schema 15
2.3 Sample temporal ontology in TOQL notation 16
2.4 Allen operators . 25
2.5 Overlapping events in TOQL 27

3.1 Mapping of instances between 4D-fluents and Event Calculus . 29

4.1 Sesame architecture . 35
4.2 Internal structure of TOQL 36
4.3 Important classes for code generation 38
4.4 Notation of OWL individuals 41
4.5 A temporal relation in the 4D-fluents schema 42

7

List of Tables

2.1 Predicates of Simple Event Calculus 19
2.2 Mapping between database relations and ontology concepts . . 22
2.3 TOQL query with object and datatype properties 23
2.4 TOQL syntax for inner and nested queries 23
2.5 Query with timeslices . 24
2.6 TOQL query equivalent to that of table 2.5 25
2.7 TOQL query with an Allen operator 26
2.8 TOQL query with the TIME operator 26
2.9 Result of the query of table 2.8 26
2.10 TOQL query with a temporal object property 26
2.11 TOQL query with a temporal datatype property 27

4.1 TOQL2 query #1 . 33
4.2 TOQL2 query #2 . 34
4.3 TOQL2 query #3 . 34
4.4 TOQL2 query #4 . 35
4.5 OWL basic semantics to SeRQL path expressions 37
4.6 TOQL2 query . 40
4.7 SeRQL query equivalent to TOQL2 query of table 4.6 41

5.1 TOQL2 query . 45
5.2 “TOQL3” query equivalent to TOQL2 query of table 5.1 . . . 45

8

Chapter 1

Introduction

The semantic web is a vision of information that is understandable by
computers, so that computers can perform more of the tedious work of finding
and combining information on the web. Due to the complexity and variety of
applications, experts on different technologies provide different definitions of
the semantic web. The figure below illustrates the building blocks - in terms
of technological resources - of what is referred to as the fourth version of the
“semantic web stack”1.

User interface and applications

Trust

Crypto

Character set: UnicodeIdentifiers: URI

Syntax: XML

Data interchange: RDF

Taxonomies: RDFS

Rules: SWRLOntology: OWL
Query:
SPARQL

Unifying Logic

Proof

Figure 1.1: Semantic web stack

1Introduced by Tim Berners-Lee at 2006 on his speech “AI and the semantic web”:
http://www.w3.org/2006/Talks/0718-aaai-tbl/Overview.html#(14)

9

http://www.w3.org/2006/Talks/0718-aaai-tbl/Overview.html#(14)

10 CHAPTER 1. INTRODUCTION

Each component exploits and uses the capabilities of the components
below. However, the application developer is not limited to use only the top
component, but can use the component that fits to his needs. The building
blocks of the semantic web [2] are :

1. Uniform Resource Identifier (URI) is a compact string of characters
used to identify or name a resource on the Internet. URIs are defined
in schemes defining a specific syntax and associated protocols.

2. Unicode: an industry standard allowing computers to consistently rep-
resent and manipulate text expressed in most of the world’s writing
systems. UTF-8 is the standard character encoding for unicode.

3. Extensible Markup Language (XML) provides a uniform framework for
interchange of data and meta-data between applications but not any
means of talking about the semantics (meaning) of data. XML Schema
is a language for providing and restricting the structure and content of
elements contained within XML documents.

4. Resource Description Framework (RDF) is a simple language for ex-
pressing data models which refers to objects (called “resources”) and
their relationships.

5. RDF Schema is a vocabulary for describing properties and classes of
RDF-based resources, with semantics for generalized-hierarchies of such
properties and classes.

6. Web Ontology Language (OWL) is a family of knowledge representa-
tion languages that can express more complex domains than RDFS
can.

7. Simple Protocol and RDF Query Language (SPARQL) is the standard
language for querying RDF graphs.

8. The rules, unifying logic, proof and trust layers enable the writing of
application-specific declarative knowledge, increase users’ confidence
in Semantic Web agents and enable secure activities between agents.
For logic to be useful on the Web it should be machine-processable and
usable in conjunction with other data. Therefore, there is ongoing work
on representing logical knowledge and proofs in XML (like RuleML)
and OWL (like SWRL).

9. An intuitive User Interface allows users to take advantage of the above
technologies.

1.1. MOTIVATION 11

The identifiers, the character set and the syntax are already components
of the (hypertext) web and the data interchange, the taxonomies and the
ontologies are well established components of the semantic web. However, the
query and the rules components were introduced only in the fourth version of
the “semantic web stack”. Although, there is a standard RDF query language
(SPARQL), there is an increasing need for query languages that are aware
of the OWL semantics (ontology query languages).

1.1 Motivation

In OWL there is no notion of space and time, which are basic concepts
of common sense. Although some temporal OWL extensions have been pro-
posed [23], current query systems do not return the value of an OWL property
at an arbitrary time point unless it is explicitly represented in the underlying
ontology representation. .

1.2 Problem Definition

The Temporal Ontology Query Language (TOQL) [7] can be used to
query temporal ontologies based on a specific OWL extension [23], but it
cannot infer knowledge from existing information. For example, in a sample
ontology which states only that the price of product X is set to 50 euro at
time 2004 and to 60 euro at time 2006, the price of product X at time 2008
remains at 60 euro. In some domains, it is preferable to allow overlapping
events but return at most one value in queries like getting all prices of product
X at 2008.

1.3 Contributions of this work

Reasoning in OWL is provided by a Description Logic reasoner. Temporal
ontologies are usually based on a Temporal Description Logic which is the
combination of a Description Logic with a temporal logic [16]. This work
instead, translates the temporal part of an ontology to instances of a temporal
logic. The temporal logic used is called “Event Calculus” and expresses the
knowledge that everything that does not change, will have the same value at a
later time. As a proof of concept, a reasoner is implemented to handle the AT
operator of TOQL [7]. This work implements TOQL2 which is an extension
of TOQL where the AT operator is handled by the reasoner (if only the
temporal operant is owl:functional). Alongside, the TOQL syntax is extended

12 CHAPTER 1. INTRODUCTION

to support the AT operator within the SELECT clause. Additionally, our
mapping enables a temporal ontology to use extensions of Event Calculus
[20].

1.4 Limitations

As the reasoner is based on Event Calculus, the semantics of the AT
operator are skeptical which means that the predicate has to be true at
least in the whole time interval. Thus, there is no alternative operator with
credulous semantics which means that the predicate has to be true only in
a subset of this interval. Additionally, the reasoner ensures that “a product
can not have many prices” and not that “a product can not have many prices
set by the same company”.

1.5 Outline

Chapter 2 provides an introduction to reasoning, analyses TOQL and the
requirements for a TOQL-valid temporal ontology. Chapter 3 presents the
reasoner and its underlying theory. TOQL2 is presented in chapter 4 and
future work is discussed in chapter 5.

Chapter 2

Background

2.1 Knowledge Representation

A Knowledge Base differs from a database in that the extracted infor-
mation is usually not explicitly stored in the database but is inferred from
facts of a logical theory. Attempting to describe the richness of the natural
world is the driving force behind an area in AI called Knowledge represen-
tation (KR)[9]. Formal logic is the usual framework as it provides semantics
that are not open to the subjective intuition of a person nor to different in-
terpretations by different people (or programs)[2]. Section 2.2 outlines the
Description logics that have become a cornerstone of the Semantic Web for
their use in the design of ontologies [5].

2.1.1 Ontologies

An ontology is a formal representation of a domain through concepts and
relations between these concepts. A language for describing ontologies defines
vocabulary terms (classes and properties) and the relations between them
(relations between classes, relations between properties and relations between
classes and properties). An instance of a class is called an individual.The Web
Ontology Language (OWL) is a family of knowledge representation languages
that have been proposed to deal with various aspects of KR :

1. OWL-Lite was designed to support those users primarily needing a
classification hierarchy and simple constraints.

2. OWL-DL (where DL stands for ”Description Logic”) is supported by
a DL reasoner.

13

14 CHAPTER 2. BACKGROUND

3. The complete OWL language (called OWL-Full in order to distinguish
it from the subsets) provides full compatibility with RDF Schema but
adding support of reasoning services is like solving the halting problem.

In order for a query language to support the expressiveness of OWL-
DL, the query evaluation procedure works closely with a Description Logic
reasoner as shown in figure 2.1. For example, OWL-SAIQL [14] uses Pellet
[21] to answer queries like returning all named subclasses of a class. The
usual services of a DL reasoner include computing the subsumption hierarchy
between classes (classification), answering queries, testing the consistency of
class description and finding explanations for inconsistencies. Pellet and most
DL reasoners are based on the tableaux algorithm which reduces reasoning
services to satisfiability checking [5].

semantic web application

query language

query system
storage systemreasoner

Figure 2.1: A system for querying ontologies

2.1.2 Temporal Ontologies

OWL is based on binary relations (relations connecting two instances
with no time dimension) making the representation of time a difficult matter
to deal with. For example, specifying “the price of Product1” in a dynamic
domain where the price of a Product varies over time, is meaningless. 4D-
fluents [23] is a formalism based on OWL-DL that can represent knowledge
like “Company1 was producing Product1 from 2001 to 2005 and was selling it
for 50 euro” as shown on figure 2.2. Each part of a temporal relation (action
like “produces”) is not an entity, but a temporal instance of an entity (a
timeslice is an individual of the class Timeslice). For example, in the sentence
“the price of Product1 at 2001 is 50 euro”, “Product1 at 2001” is a timeslice
of Product1 and price is a property of timeslices of Product (a fluent of
Product).

2.1. KNOWLEDGE REPRESENTATION 15

produces P1T1

TimeSlice

price: 10.0

C1T1

TimeSlice

Company1

Company

name: C1

Product1

Product

tsTimeSliceOf tsTimeSliceOf

TimeInterval1

TimeInterval

startValue: 2001
endValue: 2005tsTimeInterval tsTimeInterval

Figure 2.2: Sample individuals of the 4D-fluents schema

This work deals with overlapping events as shown below where a prop-
erty (like the price of a product) should have at most one value at a time.
For example, from the following events we want to derive that the price of
Product4 at time 2005 is 60 euro. The reasoning process we use is introduced
in section 2.2 and analysed in chapter 3.

TOQL notation [7] enables the representation of temporal ontologies
without requiring knowledge of the 4D-fluents mechanism. In figure 2.3 small
boxes represent primitive XML data types, squares represent OWL classes,
simple arrows represent static properties and marked arrows represent tem-
poral properties. This notation shows for example that ‘productName’ is a
fluent and ‘produces’ is an action.

16 CHAPTER 2. BACKGROUND

Product productNameprice

produces

Company

Employee

hasEmployee

companyName

salary employeeName

hasStoresAtCountry

Figure 2.3: Sample temporal ontology in TOQL notation

This work has been tested over a sample temporal ontology presented in
appendix B in the Manchester OWL syntax [12]. In our ontology, a TimeIn-
terval has a startValue and an endValue. Each of these two integers corre-
sponds to a number of seconds after a fixed time point (for example 1/1/1970
00:00). It is assumed that the conversion between this measurement of time
and a human readable format is done in the application layer. If an individual
has a startValue X and an endValue ‘-1’, then the time interval is interpreted
as (X, +∞). Time points can be viewed as incomplete information where the
application that fills the ontology does not know when the action stopped
having an effect. Additionally, in this work the 4D-fluents schema is subject
to the following restrictions :

1. The class TimeSlice should not be domain or range of any property
except for tsTimeSliceOf.

2. Class TimeInterval should not be domain or range of any property
except for tsTimeInterval, startValue and endValue.

The major disadvantage of 4D-fluents is prolification of objects [23]. An-
other approach is to treat the ordinary individuals as timeslices [13]. How-
ever, in that case, the application developer can not find what is temporal
based only on the ontlogy schema.

2.2. REASONING 17

2.2 Reasoning

2.2.1 Temporal reasoning

Generally, each logical system comes with both a syntactic component,
which among other things determines the notion of a formula, and a semantic
component, which determines the notion of logical validity. The logically
valid formulas of a system are sometimes called the theorems of the system.
A logical system is decidable if there is an effective method for determining
whether arbitrary formulas are theorems of the logical system. For example,
propositional logic is decidable, because the truth-table method can be used
for satisfiability checking, in other words, to determine whether an arbitrary
propositional formula is logically valid.

Commonsense reasoning, the branch of artificial intelligence concerned
with replicating basic cognitive processes, can contribute to the advance-
ment of reasoning services of the semantic web. When designing an agent in
artificial intelligence, the knowledge of the domain cannot always be repre-
sented statically. In a dynamic world, the effects of an action are associated
not only with the action but also with dynamic parameters of the environ-
ment, like time. To formalize a dynamic world, one essential thing is, not
only to specify what will change, but also what will not change due to an
action. As there is a very large number of such axioms, it is very easy for
the designer to leave out a necessary axiom, or to forget to modify all ap-
propriate axioms, when the description of the world changes. This problem
(known as the frame problem[18]) is considered to be equivalent to listing all
preconditions of an action (known as the qualification problem) or to listing
all effects of an action (known as the ramification problem).

Action theories aim at providing more general solutions to the frame
problem (which poses major difficulties in commonsense reasoning) without
always admitting decidability. Undecidability in action theories is usually re-
solved by letting the researcher solve the problem instead of providing auto-
mated reasoning. Two action-oriented programming languages are Golog[15]
and Flux[22]. In contrast with action theories, Description logics, the logics
behind OWL, aim at increasing their expressiveness while retaining decid-
ability [5].

There are three main approaches to the representation of temporal infor-
mation in the AI literature [17]:

1. the so-called “method of temporal arguments” like Situation Calculus
[18] simply extends functions and predicates of First-Order-Logic to
include time as the additional argument.

18 CHAPTER 2. BACKGROUND

2. “modal temporal logics” like Linear Temporal Logic [19] are extensions
of the propositional or predicate calculus with modal temporal oper-
ators. As there is a correspondence between simple DLs and modal
logics, there is also a correspondence between expressive DLs and ex-
pressive modal temporal logics.

3. “reified temporal logics”1 like Event Calculus [20] describe standard
propositions of some initial language (e.g., the classical first-order) as
objects denoting propositional terms [17]. Propositional terms are re-
lated to temporal objects or other propositional terms through an ad-
ditional sort of “meta-predicates” (predicates about predicates).

Description logics (DLs) form a family of logics used for the representa-
tion of the knowledge of an application domain. All DLs are based on the
same syntax and semantics[5]. Research on a DL usually involves the for-
mal definition of its syntax, its semantics and its computational complexity
as regards a reasoning service. In description logics, a distinction is drawn
between the so-called TBox (terminological box) and the ABox (assertional
box). In general, the TBox contains sentences describing concept hierarchies
(concepts and relations between concepts) while the ABox contains ”ground”
sentences, stating relations between individuals and concepts and relations
between individuals. For example, the statement “Every employee is a per-
son” is part of the TBox, while the statement ‘Bob is an employee” is part
of the ABox.

Temporal extensions of DLs [6, 10, 4] are called Temporal Description
Logics and differ on [4]:

• whether they support time-points or time intervals

• whether the temporal information is embedded thus forming sequences
of events or it is stated explicitly (through temporal operators). In the
last case :

– the ontology may have a static and a temporal part or each entity
may be a collection of temporal “parts”

Since Description Logics allow only unary and binary relations, in Tempo-
ral Description Logics times (when something happened) or “situations” are
removed from the syntax and instead are part of the implicit quantification2

1For the importance of Reified Temporal Logics and for the domains they can represent,
see [17]

2Most Temporal Description Logics correspond to modal temporal logics.

2.2. REASONING 19

with only one ordering relation [23]. Our approach is to translate individ-
uals of an OWL-DL ontology (a temporal ontology based on 4D-fluents) to
facts of the action theory Event Calculus and provide query answering over
a temporal Abox like:

1. getting the companies for which person A worked for over the time
interval C.

2. getting the value of a datatype property X at the time point Z.

2.2.2 Event Calculus

Our reasoner is based on the action theory Event Calculus3. As there are
multiple versions of Event calculus [20], the analysis below presents the pred-
icates of Simple Event Calculus. Event calculus records the events that have
taken place and it comprises of events (or actions), fluents and time points.
Time points are natural numbers which means that time is ordered, discrete
and unbounded. A fluent is a predicate like fluentName1(objectID1) and
an action is a predicate like actionName1(objectID1, objectID2).

Predicate Meaning

Initiates(A, f, x, t)
if action A is executed at time t,
then f will have value x at time point t

Terminates(A, f, x, t)
if action A is executed at time t,
then f will not have value x after the time point t

HoldsAt(f, x, t)
fluent f has value x
at time point t

Initially(f, x) fluent f has value x in the beginning
HappensAt(A, t) action A is executed at time point t
t1 < t2 time point t1 is before time point t2

Table 2.1: Predicates of Simple Event Calculus

The definition of the ‘HoldsAt’ “meta-predicate” for an arbitrary fluent
f is presented with the following rules which state that a fluent will have the
same value unless it changes.

3For an analysis of Event Calculus from a logic programming
point of view, read the white paper of Michiel Van Lambalgen :
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.4993&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.4993&rep=rep1&type=pdf

20 CHAPTER 2. BACKGROUND

Started(t1, f, x, t2)← ∃a :HappensAt(a, t1) ∧ Initiates(a, f, x, t1) ∧ (t1 < t2)

Clipped(t1, f, x, t2)← ∃a, t :HappensAt(a, t) ∧ (t1 < t < t2)∧

Terminates(a, f, x, t)

HoldsAt(f, x, t)←(Initially(f, x) ∧ (0 < t) ∧ ¬Clipped(0, f, x, t))∨

(∃t1 : Started(t1, f, x, t) ∧ ¬Clipped(t1, f, x, t))

For example, from the following facts it is inferred that fluent f has the
value x for the time interval (t1, t2] :
Initiates(A, f, x, t1)
HappensAt(A, t1)
Terminates(A, f, x, t2)

2.2.3 Prolog

Prolog was the chosen implementation language for rapid prototyping as
it is a logic programming language. Alternative future implementations are
discussed in chapter 5. In mathematical logic, a literal is an atomic formula
(positive literal) or its negation (negative literal) and a clause is a disjunction
of literals. A useful subset of First Order Logic is Horn clauses [11] which
have at most one positive literal like ¬a ∨ ¬b ∨ g. This Horn clause can be
interpreted as “to prove g, prove a and prove b” where g is called the head
of the clause (or the goal) and a ∧ b is called the body of the clause (or the
subgoals). A prolog program is a set of Horn clauses and execution is trig-
gered by running a query over the head of a clause. For example, the prolog
query descendant(bob, X) returns all descendants of “bob”.

Prolog is a declarative language as it attempts to minimize side effects by
describing what the program should accomplish, rather than describing how
to accomplish it. The prolog execution algorithm has to be sound, complete
and effective which makes it rather complicated. Its basic concepts are :

1. Unification is the association (binding) of variables (which always start
with an upper case letter) with values (which always start with a lower
case letter). Variables that receive a value are said to be instantiated.

2. Resolution condenses the traditional syllogisms of logical inference down
to the rule “If C1 and C2 are Horn clauses and the head of C1 matches
one of the terms in the body of C2, then the term in C2 is replaced by
the body of C1”. Prolog uses this rule as a computational step called

2.3. TEMPORAL ONTOLOGY QUERY LANGUAGE 21

SLD resolution for which there is a proof of soundness and completeness
[3].

3. Backtracking is an algorithm for finding all (or some) solutions to some
computational problem by incrementally building candidates to the
solutions, and abandoning each partial candidate c (“backtracks”) as
soon as it determines that c cannot possibly be completed to a valid
solution.

Prolog compilers translate prolog code to low-level code of the standard
Prolog Virtual Machine called Warren Abstract Machine (WAM) [1]. WAM
implementations map the abstract machine into a general purpose computer
architecture or design specific architectures to execute more efficiently WAM
programs. The WAM instruction set can be divided into control instructions
related to backtracking and unify instructions. Goal expansion and resolution
is done recursively and at least in the first step some variables are unified with
the values of the given query (like “bob” in the query descendant(bob, X)). In
each step, the resulting disjunctive conjunctions can be viewed as different
nodes at the same level of a tree, called the SLD-tree4. As a result, the
problem of query evaluation is reduced to finding all facts of the prolog
Knowledge Base that satisfy a node in the SLD-tree. Two search strategies
are possible:

1. Forward chaining, derive the goal from the axioms.

2. Backward chaining, start with the goal and attempt to resolve them
working backwards.

Due to the inefficiency of forward chaining when the facts are much more
than the rules, Prolog’s search strategy is backward chaining which usually
follows a depth-first backtracking algorithm for each solution.

2.3 Temporal Ontology Query Language

Temporal ontologies are based on the idea of temporal databases. Some
of the suggestions for the design of a temporal database query language5 are
that it should be based on formal semantics, independent of the underly-
ing structure (for example optimization techniques) and consistent with the

4It should be noted that the SLD-tree is not really a tree but a graph as it is not always
acyclic.

5For details, consider the white paper of Richard Snodgrass written at 1992:
http://www.cs.arizona.edu/ rts/initiatives/tsql2/tsqldesignapproach.pdf

http://www.cs.arizona.edu/~rts/initiatives/tsql2/tsqldesignapproach.pdf

22 CHAPTER 2. BACKGROUND

widely used SQL. In the Semantic Web, query languages should increase their
expressiveness while keeping their syntax simple to learn and consequently
less error-prone. For example, on the one hand eRQL (easy RDF Query Lan-
guage) has too limited expressiveness and on the other hand SeRQL (Sesame
RDF Query Language) requires a good understanding of RDF in order for
the user to write path expressions that match specific paths through the un-
derlying RDF graph. TOQL (Temporal Ontology Query Language) achieves
this goal by introducing an additional abstraction level on top of SeRQL in
order to provide the expressiveness of SeRQL without requiring knowledge of
RDF. In TOQL [7] we showed that TOQL queries are translated into SeRQL
equivalent ones using the TOQL interpreter.

TOQL is an ontology query language with syntax resembling a subset of
the ‘SELECT’ syntax of SQL. It supports the basic OWL concepts which
are the classes, the object properties and the datatype properties. It requires
knowledge of the OWL schema (no knowledge of RDF is required) and in
case of a temporal ontology, notation like that of figure 2.3 can be used to
ignore the details of the 4D-fluents KR.

The syntax of TOQL is a subset of the ‘SELECT’ syntax of SQL aug-
mented to support temporal relations. Tables representing concepts corre-
spond to classes and tables representing relations correspond to object prop-
erties. Attributes correspond to datatype properties. In addition, 1:1 and 1:N
relations correspond to object properties. The table below summarizes the
mapping between database relations and ontology concepts used by TOQL.

Relational Database Ontology

Table representing concept Class
Table representing N/M relation Object Property
1/N, 1/1 relations Object Property
Attribute Datatype Property

Table 2.2: Mapping between database relations and ontology concepts

2.3.1 TOQL over ontologies

In TOQL, all classes should be declared in the FROM clause separated
with commas where they can be renamed with the AS operator, just like
in SQL. To access a datatype property (a property connecting an individual
with a value) we write its name or X.PropertyName where PropertyName

is the name of the property and X is the name of the class as defined in
the FROM clause. To access object properties (properties connecting two

2.3. TEMPORAL ONTOLOGY QUERY LANGUAGE 23

classes) we use the pattern DomainClassName.objectPropertyName:Range-

ClassName. The syntax is shown in appendix A where from the SELECT,
FROM, WHERE, OFFSET and LIMIT clauses only SELECT and FROM
are mandatory. The (unique) name of a class instance is accessed using the
name of the class itself (without reference to a property) in the SELECT
clause. To get a table where columns are all datatype properties of a class
except for the unique name, the wildcard character ‘*’ can be used (e.g.
Company.*).

The following query returns “C1” and “C2” which are the names of com-
panies with stores in Greece.

SELECT Company.companyName
FROM Company, Country
WHERE Company.hasStoresAt : Country AND Country LIKE “Greece”

Table 2.3: TOQL query with object and datatype properties

Result:

companyName

C1
C2

TOQL also supports inner and nested queries. For example, the result of
the “UNION ALL” operator is the combination of the results of both queries
even if it contains duplicate tuples.

Inner Queries

Query Query Query Query
MINUS UNION UNION ALL INTERSECT
Query Query Query Query

Nested Queries

SELECT ... SELECT ... SELECT ... SELECT ...
FROM ... FROM ... FROM ... FROM ...
WHERE EXISTS WHERE ... CO1 WHERE ... CO1 WHERE ...
(Query) ALL (Query) ANY (Query) IN (Query)

Table 2.4: TOQL syntax for inner and nested queries

1CO: comparison operator can be any of ‘=’, ‘! =’, ‘<’, ‘>’, ‘<=’, ‘>=’

24 CHAPTER 2. BACKGROUND

In an inner query, a class declared in the FROM clause of one subquery
can not be used in the other subquery without declaring it again. In con-
trast, a nested query inherits the class declarations, so the subquery should
not declare the same classes again. Another feature of TOQL is the LIKE
operator that checks whether a value matches a specified pattern of charac-
ters surrounded with double quotes. Optionally, wild-card characters ‘*’ can
be used to match zero or more arbitrary characters. The ‘=’ operator can
compare numbers but not strings, whereas the LIKE operator supports both
comparisons. Note that all keywords are case not sensitive.

2.3.2 TOQL over 4D-fluents

Typically to retrieve the companies John has worked for, one should be
aware of the 4D-fluents mechanism and ask for all timeslices (instances) of
class Company and all timeslices of Employee and then query on the object
property hasEmployee that connects those instances :

SELECT Company.companyName
FROM Company, Employee, TimeSlice AS T1, TimeSlice AS T2
WHERE T1.tsTimeSliceOf:Company AND T2.tsTimeSliceOf:Employee
AND T1.hasEmployee:T2 AND Employee.employeeName LIKE “John”

Table 2.5: Query with timeslices

This is a rather complicated expression and it requires the user to be
familiar with the implementation of time at the level of the ontology (the
4D-fluents KR in this work). However, TOQL is a high level language hiding
the implementation of time at the ontology level. As such, the user does not
need to be aware of the details of the 4D-fluents mechanism. An ontology
implementing the 4D-fluents mechanism consists of two parts: the static
part, which is the initial ontology (classes, properties, instances), and the
dynamic part, consisting of the 4D-fluents schema and temporal relations.
TOQL supports “high level functionality” in order to deal with both the
static and the dynamic part without requiring from the user to be aware of
the 4D-fluents mechanism. The previous query can be expressed as:

2.3. TEMPORAL ONTOLOGY QUERY LANGUAGE 25

SELECT Company.companyName
FROM Company, Employee
WHERE Company.hasEmployee:Employee
AND Employee.employeeName LIKE “John”

Table 2.6: TOQL query equivalent to that of table 2.5

This query is much easier to write than the first one and the answer
based on our ontology is “C1” and “C2”. Notice that TOQL does not sup-
port queries with timeslices and the object property hasEmployee is treated
as its domain was the class Company and its range was the class Employee.
In fact the object property hasEmployee is a temporal property and has do-
main the class TimeSlice (instances of the class TimeSlice that are timeslices
of Company) and range the class TimeSlice (instances of the class TimeSlice
that are timeslices of Employee).

Allen operators :

Moreover, TOQL supports Allen operators between time intervals.

x before y / y after x

x meets y / y metBy x

x overlaps y / y overlappedBy x

x starts y / y startedBy x

x during y / y contains x

x ends y / y endedBy x

x

x

x

x

x

x

y

x

y

x equals y

Figure 2.4: Allen operators

In our ontology, “Product3” is named “P3” for the time interval (3, 7] and
renamed to “P3x” for the time interval (8, 13]. The following query returns
“Product3” as the Product which was renamed from “P3” to “P3x”. Note
that TOQL queries that use Allen operators do not consider events with no
ending time point.

26 CHAPTER 2. BACKGROUND

SELECT Product
FROM Product
WHERE Product.productName LIKE “P3”
BEFORE Product.productName LIKE “P3x”

Table 2.7: TOQL query with an Allen operator

TIME operator :

TOQL also provides the TIME operator that returns the asserted time
interval (the starting and ending time points) of the returned timeslices.

SELECT Company.companyName, Company.hasEmployee.TIME
FROM Company, Employee
WHERE Company.hasEmployee:Employee

Table 2.8: TOQL query with the TIME operator

The result of the query above is the time interval each company had an
employee.

companyName hasEmployee startValue hasEmployee endValue

C2 3 7
C1 6 10
C1 1 5

Table 2.9: Result of the query of table 2.8

AT operator :

Finally, TOQL provides the AT operator in order to keep only the results
that hold over a given time point or time interval. For example, the following
query returns the Companies that produce Products for the time interval
[2001,2005] and the corresponding Products (in this case “Company1” and
“Product1”).

SELECT Company, Product
FROM Company, Product
WHERE Company.produces : Product AT(2002,2004)

Table 2.10: TOQL query with a temporal object property

2.3. TEMPORAL ONTOLOGY QUERY LANGUAGE 27

TOQL evaluates this query by finding the right timeslices whose timein-
terval has startValue equal or less than 2002 and endValue equal or greater
than 2004. A similar process is taken for the evaluation of temporal datatype
properties in the WHERE clause like the query below which returns the prod-
ucts whose price at time 9 is 50 euro.

SELECT Product
FROM Product
WHERE Product.price LIKE “50” AT(9)

Table 2.11: TOQL query with a temporal datatype property

Suppose that the price of a product varies over time. As shown in the
following figure, Product4 is sold at 50 euro for the time interval (2, +∞) and
at 60 euro for the time interval (4, +∞). Although TOQL returns “Prod-
uct4”, there is no product with price set at 50 euro at the time point ‘9’.
In other words, the right answer is null (the empty table). In order to deal
with this problem, this work implements a temporal reasoner. Generally, the
problem is that TOQL knows nothing about instances at specific time or
interval unless explicitely defined and stored in the ontology (values cannot
be inferred from existing ones and this problem is solved by integrating a
reasoner within TOQL).

Figure 2.5: Overlapping events in TOQL

Chapter 3

Temporal reasoner

3.1 Mapping between 4D-fluents and Event

Calculus

A known limitation of the 4D-fluents KR [23] is that it does not represent
the knowledge that everything that does not change, will have the same value
at a later time. Thus, the 4D-fluents KR can not represent property that
have at most one value at a time. The following mapping between 4D-
fluents and Event Calculus enriches the 4D-fluents KR with this restriction
which is applied over fluents and actions. In order to use the reasoner to
infer knowledge from information expressed in OWL-DL, the temporal part
of the ontology is translated to prolog predicates. This also means that if
an event is added to the ontology, this addition has to be reflected to the
prolog predicates. As shown below, datatype properties of timeslices are
mapped to fluents of Event Calculus, object properties connecting timeslices
are mapped to actions, startValue is the time point of the predicate initiates

and endValue is the time point of the predicate terminates.

28

3.2. IMPLEMENTATION 29

produces P1T1

TimeSlice

price: 10.0

C1T1

TimeSlice

Company1

Company

name: C1

Product1

Product

tsTimeSliceOf tsTimeSliceOf

TimeInterval1

TimeInterval

startValue: 2001
endValue: 2005tsTimeInterval tsTimeInterval f luent

action
t ime points

Figure 3.1: Mapping of instances between 4D-fluents and Event Calculus

3.2 Implementation

The reasoner implements the action theory Event Calculus where it re-
moves the predicate Initially and adds the predicate Releases [20]. Note
that the predicate happensAt comes with the predicate Initiates but is not
related to the predicate Terminates. In other words, no action is needed to
“disable” a fluent. Through Event Calculus, the reasoner ensures that each
property has at most one value at a time by enforcing that a property will
have the same value unless it changes.

Started(t1, f, x, t2)← ∃a : happensAt(a, t1)∧

Initiates(a, f, x, t1)∧

(t1 < t2)

Releases(a, f, x, t)← ∃a′, y : happensAt(a′, t)∧

Initiates(a′, f, y, t)∧

y 6= x

Clipped(t1, f, x, t2)← (t1 < t < t2)∧

∃a, t : (Terminates(a, f, x, t)∨

Releases(a, f, x, t))

HoldsAt(f, x, t)← ∃t1 : Started(t1, f, x, t)∧

¬ Clipped(t1, f, x, t)

HoldsBetween(f, x, t1, t2)← ∃t : Started(t, f, x, t1)∧

¬ Clipped(t, f, x, t2)

In addition, fluents are not considered as relational (where their values
can be true or false) but as functional (where for each time point, each

30 CHAPTER 3. TEMPORAL REASONER

fluent has at most one value). Finally the predicate HoldsAt can be used to
find the value of a fluent at a specific time point. Accordingly, the predicate
HoldsBetween can be used to find the value of a fluent at a specific time
interval. Its semantics are skeptical and not credulous which means that the
predicate has to be true at least in the whole time interval and not only in a
part of this interval.

This prototype serves as a proof of concept without dealing with opti-
mization of performance, so the reasoner is implemented in SWI-Prolog and
accessed through the java-to-prolog interface (JPL)1. In the output predi-
cates, T1 is the starting time point and T2 is the ending time point which
should be an integer. If T2 is not an integer (for example the string ‘a’)
then the time interval (T1,T2] is interpreted as (T1, +∞). Each argument
in Prolog can always be used as an input (notated as ‘+’), always as an out-
put (notated as ‘-’) or sometimes as an input and sometimes as an output
(notated as ‘?’).

In order for the reasoner to evaluate queries, the prolog Knowledge Base
has to be instantiated. The prolog interface of the reasoner is composed of 3
predicates for instantiation and 3 for inference.

purpose prolog predicates

Instantiation
keepNewInitiates(+A, +F, +V, +Tinit,−CA,−CV)

happensAt(+A, +T)
terminates(+A, +F, +V, +Tterm)

Inference
holds(?F, ?V, +T1, +T2)

holds(−F, +Comparator, +V, +T1, +T2)
actionHolds(−F,−V, +T1, +T2)

keepNewInitiates(+A, +F, +V, +T,−CA,−CV)
The predicates keepNewInitiates and happensAt are used to add an
event. An inconsistency is reported when a new event has the same
fluent and starting time point with another one but different fluent
value. In other words, the predicate keepNewInitiates returns the
action that conflicts with the new one and the value of the fluent
according to that action. If it returns nothing then there is no incon-
sistency and the new event is added to the prolog Knowledge Base.

happensAt(+A, +T)
The predicates keepNewInitiates and happensAt are used to add an

1JPL is part of the SWI-Prolog distribution : http://www.swi-prolog.org/

http://www.swi-prolog.org/

3.2. IMPLEMENTATION 31

event. Although the semantics of the predicate happensAt could be
merged with those of initiates, all extensions of Event Calculus are
based on these semantics.

terminates(+A, +F, +V, +T)
It is used optionally to specify when the event stops having an effect.

holds(?F, ?V, +T1, +T2)
It is true for the facts where fluent F has value V for the entire time
interval (T1,T2] and not only during a part of this interval. If T2 is not
an integer (like the letter ‘a’), then it is true for the facts where fluent
F has value V for the time point T2. If both fluent F and value V
are outputs of the same prolog query, then the predicate actionHolds

should be used.

holds(−F, +Comparator, +V, +T1, +T2)
This predicate compares the value of fluents F at (T1,T2] with V

using the given Comparator as a comparison operator. It returns
the fluents F for whom the comparison is true. If V is a number,
then the Comparator can be one of ‘=’, ‘! =’, ‘<’, ‘>’, ‘<=’, ‘>=’.
This predicate can also be used to check if the value of fluent F at
(T1,T2] matches a regular expression limited to the use of wildcards.
The wildcards partition the regular expression to many strings which
are represented as a list of strings in argument V . In this case, the
Comparator declares whether there is a prefix or a suffix in the regular
expression by taking one of the following values:
0 means that there is no prefix and no postfix
1 means that there is a prefix but no postfix
2 means that there is no prefix and there is a postfix
3 means that there is a prefix and a postfix

actionHolds(−F,−V, +T1, +T2)
Same as holds but it uses both fluent F and value V as output of the
same prolog query.

For example, providing that currency is euro and that the name of a time
point is the number of seconds passed after a common time point, the follow-
ing prolog queries are examples of all possible uses of the output predicates:

1. holds(‘productName’(‘Product1’),V,‘3’,a) returns the name of the prod-
uct with ID ‘Product1’ at the time point 3.

2. holds(‘price’(ID),‘22’,‘9’,a) returns the product whose price at the time
point 4 was 22.

32 CHAPTER 3. TEMPORAL REASONER

3. holds(‘productName’(ID),1,[‘P’,‘a’],‘4’,a) returns the products whose
name follows the pattern ‘P*a*’ at the time point 4

4. actionHolds(‘produces’(ID1),ID2,‘4’,a) returns the IDs of companies
that produce a product at the time point 4 and the IDs of these prod-
ucts. As a result, each company returned produces exactly one product.

The complexity of the predicate Holds depends on the fluent used. The
reasoner checks all timeslices of this fluent to find if there is a timeslice in the
given time interval with a different fluent value. Thus the complexity of the
predicate Holds is Ω(nf) where nf is the number of individuals of class X
where “tsTimeSliceOf only X” is the domain of fluent f . The evaluation of
the predicate actionHolds depends on the action used as it starts by finding
all individuals id of class X where “tsTimeSliceOf only X” is the domain of
action a. Then the goal for each individual found is : holds(a(id),V,t1,t2).
Thus the complexity of the predicate actionHolds is Ω(n2

a) where na is the
number of individuals of class X where “tsTimeSliceOf only X” is the domain
of action a.

Chapter 4

TOQL extensions

TOQL2 is an extension of TOQL where the AT operator is handled by
the reasoner presented in the previous chapter. Additionally, the syntax has
been extended to support the AT operator in the SELECT clause to sim-
plify the composition of some queries. TOQL2 has been tested over a sample
temporal ontology presented in appendix B in the Manchester OWL syntax
[12]. The following queries explain how the new semantics of the AT operator
affect the result of the query.

Query example #1:

In our ontology the price of “Product2” is ‘15’ for the time interval (6,10)
and ‘16’ for the time interval (8,15). This query returns the price of “Prod-
uct2” at the time interval [9,10] which is ‘16’. TOQL2 has changed the se-
mantics of the AT operator from finding the price of “Product2” that holds
over the given time interval or time point to enforcing that the price of “Prod-
uct2” will have the same value unless it changes. The AT operator is handled
by the reasoner described in the previous chapter which adds the restriction
that a fluent can not have many values at the same time. This restriction
is applied only over functional fluents (and functional actions), thus the on-
tology developer can choose if he wants this restriction. For example, in our
ontology, although it is not conceptually right, a company can produce at
most one product at a time.

SELECT Product.price AT(9,10) AS current price
FROM Product
WHERE Product LIKE “Product2”

Table 4.1: TOQL2 query #1

33

34 CHAPTER 4. TOQL EXTENSIONS

Query example #2:

The result of the query states that company “C1” produces the product
“Product1” at the time point ‘2’. Although, TOQL would return the prod-
ucts “Product1” and “Product4”, TOQL2 returns only the product “Prod-
uct1”.

SELECT Product
FROM Company, Product
WHERE Company.produces:Product AT(2)
AND Company.companyName LIKE “C1”

Table 4.2: TOQL2 query #2

Query example #3:

Although all productNames start with the letter ‘P’, the property pro-

ductName is temporal, so we use the AT operator. This query returns the
names of the companies that produce products at the time point ‘7’ whose
name starts with ‘P’. Also it returns the names of the corresponding prod-
ucts.

SELECT Company.companyName, Product.productName
FROM Company, Product
WHERE Company.produces:Product AT(7)
AND Product.productName LIKE “P*” AT(7)

Table 4.3: TOQL2 query #3

companyName productName

C1 P2
C2 P3

As in SeRQL, the pattern is not a regular expression as the only meta-
character allowed is the wildcard character. However, in TOQL2 comparisons
are always case sensitive.

Query example #4:

This query returns “Product3” whose price at time point 9 equals the
salary of an employee. TOQL2 can compare two datatype properties (only

4.1. TOQL IMPLEMENTATION 35

through nested queries) and a datatype property with a constant value. Be-
fore analyzing the implementation of the AT operator, the implementation
of TOQL is presented.

SELECT Product
FROM Company, Product, Employee
WHERE Company.produces : Product
AND Product.price AT(9) =
ANY (SELECT salary FROM Employee)

Table 4.4: TOQL2 query #4

4.1 TOQL implementation

Sesame is a framework for querying and analyzing RDF data which pro-
vides a Storage And Inference Layer (SAIL) API that separates the query
language from the storage device used (in-memory storage, disk-based stor-
age, RDBMS)1. In other words, a SeRQL or SPARQL query can be translated
into an SQL query under certain circumstances. Additionally, although the
middleware OpenLink Virtuoso2 enables querying over a quad store (where
each “tuple” has 4 columns), the query language that can be used is a subset
of SPARQL. As SPARQL uses triple patterns (a whitespace-separated list
of a subject, predicate and object), there is no added expressivity on using
Virtuoso for temporal querying.

Figure 4.1: Sesame architecture

A TOQL query is translated to a SeRQL (Sesame RDF Query Language)
query which is a query language provided by Sesame. The figure below shows
all components needed for the evaluation of a TOQL query.

1The architecture of sesame can be found here :
http://www.openrdf.org/doc/sesame/users/userguide.html#d0e129

2The architecture of Virtuoso can be found here :
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VirtSesame2Provider

http://www.openrdf.org
http://virtuoso.openlinksw.com

36 CHAPTER 4. TOQL EXTENSIONS

Ontology
schema
in memory

Java
objects
generat ion

4D-fluents
expansion

SeRQL
objects
generat ion

TOQL query

ontology

intermediate
code

result

Jena

Sesame

SeRQL query

BYACC/J
generated
Parser

Figure 4.2: Internal structure of TOQL

SeRQL is an SQL-like language that supports two query modes, referred
to as “Select Query” returning a table of values and “Construct Query” re-
turning an RDF graph (a part of the Knowledge Base). Typically, a SeRQL
“Select Query” can be built-upon from one and up to seven clauses: SE-
LECT, FROM, FROM CONTEXT, WHERE, LIMIT, OFFSET and USING
NAMESPACE. Construct queries support exactly the same clauses but start
with CONSTRUCT instead of SELECT. Except from the first clause, SE-
LECT or CONSTRUCT, the remaining clauses are optional. The FROM
clause specifies a path expression. Path expressions are expressions that
match specific paths through an RDF graph like :
{Person} ex:worksFor {Company} rdf:type {ex:ITCompany}

The words surrounded by curly brackets represent the nodes in the RDF
graph, the rest represents the edges in the graph. The nodes and edges in
the path expressions can be variables, URIs and literals. In SeRQL queries,
multiple path expressions can be specified by separating them with commas.

4.1. TOQL IMPLEMENTATION 37

For example, the path expression shown before can also be written down as
two smaller path expressions:
{Person} ex:worksFor {Company},
{Company} rdf:type {ex:ITCompany}

Every class and every property in a TOQL query is represented by a path
expression in SeRQL.

Resource Generated Path Expression

Class {Class name} rdf:type {namespace :Class}
Object Property {DomainClassName}

namespace: ObjectPropertyName {RangeClassName}
Datatype Property {DomainClassName}

namespace: DatatypePropertyName
{DatatypePropertyName}

Table 4.5: OWL basic semantics to SeRQL path expressions

TOQL knows the ontology schema in order to distinguish temporal from
non-temporal properties. The ontology schema is loaded through Jena1 which
is also a storage system like Sesame but provides an API (Application Pro-
gramming Interface) for loading and manipulating an OWL ontology.

As SeRQL does not support TOQL’s temporal features (the Allen op-
erators, the AT operator and the TIME operator), it is not aware of the
4D-fluents mechanism. Thus the interpreter translates TOQL queries that
use temporal operators to rather complicated SeRQL queries that does not
use temporal operators. TOQL is implemented in Java as most tools for
RDF and OWL. The building blocks of TOQL1 are :

1. Parser : Jflex generated the lexical analyzer and BYACC/J generated
the parser which returns parsed code as a list. This list is an alternative
structure of the TOQL query, called intermediate code, which separates
parsing from code generation.

2. Java objects generation : Intermediate code nodes map to object
of various java classes. An object called “upperQuery” of the class
Query holds all these objects. As shown in figure 4.3, a Query has

1Jena is an RDF and OWL framework : http://jena.sourceforge.net/
1A description of the intermediate code types and of the class hierarchy of java objects

can be found at [7]

http://jena.sourceforge.net/

38 CHAPTER 4. TOQL EXTENSIONS

many TupleQueries which has a list for each part of a TOQL query
(the SELECT part, the FROM part and the WHERE part).

3. 4D-fluents expansion : Expressions with temporal operators are re-
placed with objects through adding timeslices and time intervals to the
query (to fields of the class Query). In this phase, an object of the
class FromNode corresponds to a path expression. Every class and ev-
ery property in a TOQL query is represented by a path expression in
SeRQL.

4. SeRQL objects generation : Objects of the class Query are copied
to a new object of the class FinalQuery which deals with fixing incon-
sistencies between some Java objects and the syntax of SeRQL. Then
the object of the class FinalQuery traverses all of its objects to generate
the SeRQL query.

SelectNode

Query

TupleQuery

IntermediateCode

FinalQuery

FromNode

WhereNode

ListNode

− type : String

inner

1..*

nested

* *

*

*

*

Figure 4.3: Important classes for code generation

In case of an inner query like “Query1 UNION Query2”, each subquery
is saved as a Query. And in case of a nested query, the subquery is saved as
a Tuplequery, except for the simple case (with no inner or nested operators)
where the query is held both by a Query and a Tuplequery.

4.2. TOQL2 IMPLEMENTATION 39

4.2 TOQL2 implementation

This work uses Pellet [21] to classify the ontology. For example, if the
temporal relation “Man is married with Woman” is symmetric, a reasoner
is needed to infer the temporal relation “Woman is married with Man”. In
other words, TOQL2 can answer queries like getting all women that are
married with men (and their men) at 2007, although the temporal relation
“Woman is married with Man” is not explicitly stated in the ontology. Ad-
ditionally, the events of the ontology are loaded to the reasoner presented on
chapter 3 which handles the AT operator if only the operant is temporal and
owl:functional.

TOQL2 has changed the first two phases of TOQL which involve parsing
and java objects generation.
Parser :

1. Parsing of an expression that includes the AT operator (in the SELECT
or the WHERE clause) generates a ListNode of type “callReasoner”, if
only the expression has a functional fluent or action.

Java objects generation :

1. The class TupleQuery processes the intermediate code. When a ListN-

ode of type “callReasoner” is reached, a prolog query is generated and
sent to the reasoner.

2. The reasoner answers and the results are expressed in the WHERE
clause.

40 CHAPTER 4. TOQL EXTENSIONS

As an example, consider the following condition in the WHERE clause :

Company.produces : Product AT(4)

Generated prolog query : actionHolds(produces(Company), P roduct, 4,−).

Reasoner’s answer :

Company Product
Company1 Product4
Company2 Product3

Condition in place of the previous one :

(
(Company Like “Company1” AND Product Like “Product4”)

OR
(Company Like “Company2” AND Product Like “Product3”)

)

As stated in the beginning of this chapter, the TOQL’s syntax has been
extended to support the AT operator in the SELECT clause to simplify the
composition of some queries. The evaluation of a TOQL2 query that uses
the AT operator in the SELECT clause is split in the following steps :

1. SELECT clauses that use the AT operator are saved in a list L and
replaced with their identifier.

2. The SeRQL query is generated and executed.

3. The reasoner is called for each element of list L and the results of the
prolog queries are expressed as WHERE clauses.

4. The modified SELECT clauses are replaced with their initial form ex-
cept for the AT operator.

As an example, consider the following TOQL2 query :

SELECT Product.productName AT(2)
FROM Product

Table 4.6: TOQL2 query

4.2. TOQL2 IMPLEMENTATION 41

1. The SELECT clause “SELECT Product.productName AT(2)” is re-
placed with the clause “SELECT Product”.

2. The result of the generated SeRQL query is “Product1”.

3. The prolog query holds(′productName′(′Product1′), V,′ 2′, a) returns
the value “P1”.

4. The SELECT clause “SELECT Product” is changed to “SELECT
Product.productName”.

SELECT productName ProductSlice 1
FROM {ProductSlice 1} ex1:productName {productName ProductSlice 1},
{Product} rdf:type {ex1:Product},
{ProductSlice 1} rdf:type {ex1:TimeSlice},
{ProductSlice 1} ex1:tsTimeSliceOf {Product}
WHERE (productName ProductSlice 1 Like “P1”)
USING NAMESPACE ex1= <http://www.semanticweb.org/ontologies/
2008/4/Ontology1211440295085.owl#>

Table 4.7: SeRQL query equivalent to TOQL2 query of table 4.6

In order for TOQL2 to provide Abox reasoning (i.e. reasoning based only
on relations between individuals and not between concepts) for expressions
that use the AT operator , the individuals of the temporal part of the ontology
are translated to into prolog predicates as stated in section 3.1. The notation
below is used to provide an example of this translation.

ID of idividual
OWL class

DatatypeProperty: Value
DatatypeProperty: Value
...

ID of idividual
OWL class

DatatypeProperty: Value
DatatypeProperty: Value
...

ObjectProperty

Figure 4.4: Notation of OWL individuals

TOQL2 uses Jena to get all fluentProperties and TOQL queries (that do
not use the AT operator) to get all individuals of the OWL classes TimeSlice
and TimeInterval. A sample domain is one where a company named C1
produces Product1 and sells it for 10.0 euro from 2001 to 2005.

42 CHAPTER 4. TOQL EXTENSIONS

tsTimeSliceOf

tsTimeSliceOf

produces

tsTimeInterval

tsTimeInterval

TimeInterval1
TimeInterval

startValue: 2001
endValue: 2005

Company1
Company

companyName: C1

C1T1
TimeSlice

P1T1
TimeSlice

price: 10.0

Product1
Product

Figure 4.5: A temporal relation in the 4D-fluents schema

Note that the companyName is not on the temporal part of the ontology.
“Price” is a fluent and “produces” is an action. The TOQL2 interpreter
generates the following prolog predicates which ensure that “A Product has
the same name until is changes, thus it can not have many names at a time”:

1. keepNewInitiates(‘produces’(‘C1’,‘Product1’), ‘price’(‘Product1’),
‘10.0’, ‘2001’, ‘produces’(ID1,ID2), V).

2. assert(happensAt(‘produces’(‘C1’,‘Product1’),‘2001’)).
3. assert(terminates(‘produces’(‘C1’,‘Product1’),‘price’(‘Product1’),

‘10.0’,‘2005’)).

Also, the TOQL2 interpreter generates the following prolog predicates

4.2. TOQL2 IMPLEMENTATION 43

which ensure that “A Company produces the same product until it change
product, thus it can not produce many Products at a time”:

1. keepNewInitiates(‘produces’(‘C1’,‘Product1’), ‘produces’(‘C1’),
‘Product1’, ‘2001’, ‘produces’(ID1,ID2), V).

2. assert(happensAt(‘produces’(‘C1’,‘Product1’),‘2001’)).
3. assert(terminates(‘produces’(‘C1’,‘Product1’),‘produces’(‘C1’),

‘Product1’,‘2005’)).

Chapter 5

Conclusion and future work

Since OWL allows only unary and binary relations, information that
changes over time can not be easily represented. In the 4D-fluents KR
(Knowledge Representation) [23] the ontology has a static and a tempo-
ral part (a static and a temporal Tbox as well as a static and a temporal
Abox). A known [23] limitation of the 4D-fluents KR is that it can not rep-
resent temporal cardinality constraints like restricting each product to have
at most one value at a time. As the Temporal Ontology Query Language
(TOQL)[7] answers temporal queries by finding all events that occured on
an interval that includes time Y, it cannot provide the needed functionality.

Although, our approach is not to prevent the insertion of overlapping
events, on queries like “Which are the prices of product X at time Y?” we
return at most one result as we find the last event that occured on an interval
that includes time Y. Queries like the above are written in TOQL2 which
extends the semantics of the AT operator of TOQL. First we translate the
temporal Abox to instances of a prolog Knowledge Base. Then in queries
where the temporal property that uses the AT operator is functional, the
AT operator is handled by our Prolog reasoner. Our reasoner is based on
Event Calculus which represents the knowledge that everything that does
not change, will have the same value at a later time. In queries like getting
the price of a product, the time complexity of the reasoner is linear to how
many times the price of this product has changed.

Future work includes a better reasoning process and a better query lan-
guage :

• Reasoner : faster implementation and extensions of Event Calculus

• TOQL2 : Allen operators over time points, removal of ontology schema
loading, refactoring of error handling, schema awareness, update mech-
anism

44

45

Faster implementation :

TOQL2 replaces a query that used the AT operator with a query that
does not use the AT operator by partially evaluating the initial query and
then letting sesame evaluate the generated query. An alternative approach
is to express the Event Calculus rules as conditions in the WHERE clause
as shown in table 5.2, thus avoiding partial evaluation which is now done
by the prolog compiler. However, this requires two new operators instead of
the TIME operator. Additionally, translating the AT operator from TOQL
to TOQL and finally to SeRQL enables the combination of the AT operator
with schema aware queries.

SELECT fixedValue
FROM Product
WHERE fixedValue2 = ‘5’
AND productName AT(3) LIKE “P*”

Table 5.1: TOQL2 query

SELECT X.fixedValue
FROM Product AS X
WHERE (X.t1 < 3 AND
(X.t2 > 3 OR
NOT EXISTS(

SELECT productName
FROM Product
WHERE X.t1 < t1 AND t1 < 3
AND productName != X.productName)))

AND X.productName LIKE “P*”
AND X.fixedValue2 = ‘5’

Table 5.2: “TOQL3” query equivalent to TOQL2 query of table 5.1

Extensions of Event Calculus :

Our mapping enables a temporal ontology to use extensions of Event
Calculus [20]. Additionally, TOQL2 can be extended to support qualitative
spatio-temporal reasoning like answering the query “which Book is on Table
X at the time point T”. The knowledge that has to be represented is when
the positions of Books and Tables changed and which are the coordinates of
the Book or Table that moved. The coordinates can be expressed as fluents

46 CHAPTER 5. CONCLUSION AND FUTURE WORK

whose values are measured in relation with a fixed point in a 2 dimensional
space. Although the movement of a Book or a Table is assumed to occur in
zero-time, there are extensions of Event Calculus [20] that can cope with the
so called “actions with continuous change”.

Allen operators over time points :

If an individual has a startValue X and an endValue ‘-1’, then the time
interval is considered as (X, +∞). TOQL2 replaces Allen operators with
inequalities between the startValue and the endValue of the corresponding
time intervals but it does not take into account that one of the time intervals
or both may have no ending time point. In other words, TOQL and TOQL2
do not support queries with Allen operators over time intervals whose end-
Value is infinite.

Refactoring of error handling :

The use of a static property X with the TIME operator raises the error
“Property is not a fluent” which should be more general like “The value of
property X does not depend on time”. Additionally, the same error should
be raised when a static property is used as an argument of an Allen operator.

However, restricting a static property X through the AT operator should
not raise the error “Property is not a fluent” but a warning like “The AT
operator over the property X is useless”. If two temporal properties have a
common OWL class in their domain or range, then we define them as con-

nected and many connected properties form a set. If no property (in the
SELECT or the WHERE clause) of a set uses a temporal operator, then
the warning “Expected a temporal operator (the TIME, the AT or an Allen
operator)” should be raised.

Removal of ontology schema loading :

TOQL2 needs to distinguish between temporal and static OWL proper-
ties to treat them accordingly. To deal with this problem, TOQL2 loads
the whole ontology schema to memory via Jena. A change in the ontology
schema requires reloading the schema into memory in order for TOQL2 to
return the right results. Alternatively, the classes and properties of a query
can be checked if they conform to the ontology schema when needed. In
other words, Jena can be used at each TOQL2 query (at the phase of java
objects generation) without saving the ontology schema in memory.

47

Schema awareness :

As stated in [8] “a query language should be aware of the structure it is
querying and capable of exploiting this structure for type checking, optimiza-
tion, inheritance, etc”. SeRQL supports RDF Schema semantics through the
following operators in the WHERE clause :

1. X subClassOf Y : class X is a sub-class of Y

2. X subPropertyOf Y : property X is a sub-property of Y

3. X instanceOf Y : X is an individual of class Y

Additionally, the application developer can choose to get only the direct
subclasses (and not the whole class subtree) through the operator direct-

SubClassOf. Similarly, SeRQL provides the operators directSubPropertyOf

and directInstanceOf. Likewise, TOQL2 can provide queries based on the
knowledge that already has, like:

1. Does property X depend on time?

2. Is property X temporal and functional (restricted to have at most one
value at a time)?

3. Which are the properties of class X?

Update mechanism :

TOQL2 can be enhanced to support not only queries for information re-
trieval but also update operations on OWL individuals. However, sesame
supports only queries for information retrieval and as of 2008 most semantic
web applications update data directly via APIs provided by specific storage
systems. Thus, TOQL2 can provide INSERT/UPDATE/DELETE state-
ments through the “Repository API” of sesame.

Query:

UPDATE Company, Product
SET Company.companyName = “C7”
WHERE Company.produces:Product AT(3)
AND productName AT(2003) LIKE “P1”

48 CHAPTER 5. CONCLUSION AND FUTURE WORK

A sample process for the above query is :

1. The UPDATE query is translated to the following SELECT query
which returns the value “Company1”.

SELECT Company
FROM Company, Product
WHERE Company.produces:Product AT(3)
AND productName AT(2003) LIKE “P1”

2. The “Repository API” is used to change the RDF triple (Company1,
companyName,C1) to (Company1,companyName,C7).

Obviously, the use of the AT operator in clauses other than the WHERE
clause needs special treatment. Additionally, if Event Calculus is not embed-
ded in TOQL2 (which is the approach of a faster implementation discussed
above), the prolog Knowledge Base will have to be updated.

Appendix A

TOQL2 grammar in BNF

The compiler-compiler used is BYACC/J, a variant of Berkeley YACC
that supports actions expressed in java. Note that the symbols with only
upper case letters are terminal symbols and obviously the empty rules have
useful actions.

ParseUnit:

Query

;

Query:

TupleQuerySet

;

TupleQuerySet:

beforeTupleQueries TupleQueries afterTupleQueries

;

beforeTupleQueries:/* empty */

;

afterTupleQueries:/* empty */

;

TupleQueries:

TupleQuery TupleQuerySetCont

;

TupleQuerySetCont:

/* empty */

| SetOperator TupleQueries

;

TupleQuery:

’(’ TupleQuerySet ’)’

| SelectQuery

49

50 APPENDIX A. TOQL2 GRAMMAR IN BNF

;

SetOperator:

UNION

| UNION ALL

| MINUS

| INTERSECT

;

SelectQuery:

SELECT SelectQueryBody

| SELECT DISTINCT SelectQueryBody

| error SelectQueryBody

;

SelectQueryBody:

Projection

| Projection QueryBody

;

Projection:

/* empty */

| STAR

| ProjectionElemList

;

ProjectionElemList:

ProjectionElem1 mayhave1

;

mayhave1:

/* empty */

| ’,’ ProjectionElemList

;

ProjectionElem1:

ValueExpr2

| ValueExpr2 AtOperators

| ValueExpr2 AtOperators AS NAME

| ValueExpr2 AS NAME

;

QueryBody:

FROM FromPathExpr

| error FromPathExpr

;

FromPathExpr:

PathExprList

| PathExprList WHERE WhereBoolExpr

51

| PathExprList LIMIT INTNUM

| PathExprList LIMIT INTNUM OFFSET INTNUM

| PathExprList OFFSET INTNUM

;

WhereBoolExpr:

BooleanExpr

| BooleanExpr LIMIT INTNUM

| BooleanExpr LIMIT INTNUM OFFSET INTNUM

| BooleanExpr OFFSET INTNUM

| error

;

PathExprList:

PathExpr

| PathExpr ’,’ PathExprList

| error

;

PathExpr:

NAME

| NAME AS NAME

;

ValueExpr:

Var

;

ValueExpr2:

SelectVar

;

ValueExpr3:

NAME

| NAME ’.’ NAME

| FLOATNUM

| INTNUM

;

BooleanExpr:

OrExpr

;

OrExpr:

AndExpr

| AndExpr OR BooleanExpr

;

AndExpr:

BooleanElem

52 APPENDIX A. TOQL2 GRAMMAR IN BNF

| BooleanElem AND AndExpr

| BooleanElem2 AtOperators

| BooleanElem2 AtOperators AND AndExpr

| atExpr AtOperators COMP atExpr AtOperators

| atExpr AtOperators COMP atExpr AtOperators AND AndExpr

| atExpr AtOperators COMP ValueExpr3

| atExpr AtOperators COMP ValueExpr3 AND AndExpr

| nested

| BooleanElem2 AllenOperators BooleanElem2

| BooleanElem2 AllenOperators BooleanElem2 AND AndExpr

;

Cont:

’(’ TupleQuerySet ’)’

| ’(’ TupleQuerySet ’)’ AND AndExpr

;

nested: atExpr AtOperators COMP ALL Cont afterNestedQuery

| atExpr AtOperators COMP ANY Cont afterNestedQuery

| atExpr AtOperators IN Cont afterNestedQuery

;

AtOperators:

AT ’(’ INTNUM ’)’

| AT ’(’ INTNUM ’,’ INTNUM ’)’

| AT ’(’ DATE ’)’

| AT ’(’ DATE ’,’ DATE ’)’

;

AllenOperators:

BEFORE

| AFTER

| EQUALS

| MEETS

| METBY

| OVERLAPS

| OVERLAPPEDBY

| DURING

| CONTAINS

| STARTS

| STARTEDBY

| ENDS

| ENDEDBY

;

BooleanElem:

53

’(’ BooleanExpr ’)’

| TRUE

| FALSE

| NOT BooleanElem

| ValueExpr CompOp ANY ’(’ TupleQuerySet ’)’

| EXISTS ’(’ TupleQuerySet ’)’

| ValueExpr CompOp ALL ’(’ TupleQuerySet ’)’

| ValueExpr IN ’(’ TupleQuerySet ’)’

| ValueExpr

| BooleanElem2

;

BooleanElem2:

ValueExpr LIKE STATICSTRING

| ValueExpr LIKE STATICSTRING IGNORECASE

| NAME ’.’ NAME ’:’ NAME

| ValueExpr CompOp ValueExpr3

;

atExpr:

Var

;

Var:

NAME

| NAME ’.’ NAME

;

SelectVar:

NAME ’.’ TIME

| NAME ’.’ NAME ’.’ TIME

| NAME

;

COMP:

CompOp

;

CompOp:

E

| NE

| L

| LE

| G

| GE

;

Appendix B

Sample temporal ontology

B.1 Static part of schema

Class: Company
Class: Product
Class: Employee
Class: Country
DataProperty: companyName

Domain: Company
Range: string

DataProperty: employeeName
Domain: Employee
Range: string

DataProperty: salary
Domain: Employee
Range: decimal

ObjectProperty: hasStoresAt
Domain: Company
Range: Country

B.2 Temporal part of schema: basic

Class: TimeSlice
Class: TimeInterval
DataProperty: startValue

Domain: TimeInterval
Range: int

DataProperty: endValue

54

B.3. TEMPORAL PART OF SCHEMA: ACTIONS 55

Domain: TimeInterval
Range: int

ObjectProperty: tsTimeInterval
Domain: TimeSlice
Range: TimeInterval

ObjectProperty: tsTimeSliceOf
Domain: TimeSlice
Range: TimeSlice

B.3 Temporal part of schema: actions

ObjectProperty: hasEmployee
Characteristics: Functional
Domain: tsTimeSliceOf only Company
Range: tsTimeSliceOf only Employee

ObjectProperty: produces
Characteristics: Functional
Domain: tsTimeSliceOf only Company
Range: tsTimeSliceOf only Product

B.4 Temporal part of schema: fluents

DataProperty: price
Characteristics: Functional
Domain: tsTimeSliceOf only Product
Range: decimal

DataProperty: productName
Characteristics: Functional
Domain: tsTimeSliceOf only Product
Range: string

B.5 All individuals

Individual: TimePoint1

Types: TimeInterval

Facts:

endValue "-1"^^xsd:int,

startValue "2"^^xsd:int

Individual: Company1

56 APPENDIX B. SAMPLE TEMPORAL ONTOLOGY

Types: Company

Facts:

hasStoresAt Greece,

companyName "C1"^^xsd:string

Individual: C1T3

Types: TimeSlice

Facts:

tsTimeInterval TimePoint1,

tsTimeSliceOf Company1,

produces Product4TimeSlice1

Individual: C2T1

Types: TimeSlice

Facts:

hasEmployee E3T1,

tsTimeInterval TimeInterval3,

tsTimeSliceOf Company2,

produces Product3TimeSlice1

Individual: E1T1

Types: TimeSlice

Facts:

tsTimeInterval TimeInterval1,

tsTimeSliceOf Employee1

Individual: TimeInterval3

Types: TimeInterval

Facts:

endValue "7"^^xsd:int,

startValue "3"^^xsd:int

Individual: Product4TimeSlice1

Types: TimeSlice

Facts:

tsTimeInterval TimePoint1,

tsTimeSliceOf Product4,

price "50"^^xsd:decimal,

productName "P4"

Individual: TimeInterval2

Types: TimeInterval

Facts:

endValue "10"^^xsd:int,

startValue "6"^^xsd:int

Individual: Employee1

Types: Employee

B.5. ALL INDIVIDUALS 57

Facts:

salary "22.0"^^xsd:decimal,

employeeName "John"^^xsd:string

Individual: C1T4

Types: TimeSlice

Facts:

tsTimeInterval TimePoint2,

tsTimeSliceOf Company1,

produces Product4TimeSlice2

Individual: Product4TimeSlice2

Types: TimeSlice

Facts:

tsTimeInterval TimePoint2,

tsTimeSliceOf Product4,

price "60"^^xsd:decimal,

productName "P4new"

Individual: Product3TimeSlice2

Types: TimeSlice

Facts:

tsTimeInterval TimeInterval4,

tsTimeSliceOf Product3,

price "22.0"^^xsd:decimal,

productName "P3x"^^xsd:string

Individual: Product3TimeSlice1

Types: TimeSlice

Facts:

tsTimeInterval TimeInterval3,

tsTimeSliceOf Product3,

price "21"^^xsd:decimal,

productName "P3"

Individual: TimePoint2

Types: TimeInterval

Facts:

endValue "-1"^^xsd:int,

startValue "4"^^xsd:int

Individual: TimeInterval4

Types: TimeInterval

Facts:

endValue "13"^^xsd:int,

startValue "8"^^xsd:int

Individual: C2T2

58 APPENDIX B. SAMPLE TEMPORAL ONTOLOGY

Types: TimeSlice

Facts:

tsTimeInterval TimeInterval4,

tsTimeSliceOf Company2,

produces Product3TimeSlice2

Individual: Product2TimeSlice1

Types: TimeSlice

Facts:

tsTimeInterval TimeInterval2,

tsTimeSliceOf Product2,

price "15.0"^^xsd:decimal,

productName "P2"^^xsd:string

Individual: OverlappingTimeInterval

Types: TimeInterval

Facts:

endValue "15"^^xsd:int,

startValue "8"^^xsd:int

Individual: Employee3

Types: Employee

Facts:

salary "30"^^xsd:decimal,

employeeName "John"^^xsd:string

Individual: Product2

Types: Product

Individual: E3T1

Types: TimeSlice

Facts:

tsTimeInterval TimeInterval3,

tsTimeSliceOf Employee3

Individual: C1T2

Types: TimeSlice

Facts:

hasEmployee E2T2,

tsTimeInterval TimeInterval2,

tsTimeSliceOf Company1,

produces Product2TimeSlice1

Individual: Product2OverlappingSlice

Types: TimeSlice

Facts:

tsTimeInterval OverlappingTimeInterval,

tsTimeSliceOf Product2,

B.5. ALL INDIVIDUALS 59

price "16"^^xsd:decimal,

productName "P2new"^^xsd:string

Individual: C1T1

Types: TimeSlice

Facts:

hasEmployee E1T1,

tsTimeInterval TimeInterval1,

tsTimeSliceOf Company1,

produces Product1TimeSlice1

Individual: C1T5

Types: TimeSlice

Facts:

tsTimeInterval OverlappingTimeInterval,

tsTimeSliceOf Company1,

produces Product2OverlappingSlice

Individual: Product1TimeSlice1

Types: TimeSlice

Facts:

tsTimeInterval TimeInterval1,

tsTimeSliceOf Product1,

price "10.0"^^xsd:decimal,

productName "P1"^^xsd:string

Individual: TimeInterval1

Types: TimeInterval

Facts:

endValue "5"^^xsd:int,

startValue "1"^^xsd:int

Individual: E2T2

Types: TimeSlice

Facts:

tsTimeInterval TimeInterval2,

tsTimeSliceOf Employee2

Individual: Product4

Types: Product

Individual: Product1

Types: Product

Individual: Employee2

Types: Employee

Facts:

salary "15.0"^^xsd:decimal,

employeeName "Mark"^^xsd:string

60 APPENDIX B. SAMPLE TEMPORAL ONTOLOGY

Individual: Product3

Types: Product

Individual: Company2

Types: Company

Facts:

hasStoresAt Greece,

companyName "C2"^^xsd:string

Individual: Greece

Types: Country

Bibliography

[1] Hassan Äıt-Kaci. Warren’s abstract machine: a tutorial reconstruction.
MIT Press, 1991. 21

[2] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer.
MIT Press, 2nd edition, 2008. 10, 13

[3] Krzysztof R. Apt and M. H. van Emden. Contributions to the theory
of logic programming. J. ACM, 29(3):841–862, 1982. 21

[4] Alessandro Artale and Enrico Franconi. Handbook of time and temporal

reasoning in artificial intelligence, chapter Temporal Description Logics.
MIT Press, 2000. 18

[5] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:

Theory, Implementation, and Applications. Cambridge University Press,
2003. 13, 14, 17, 18

[6] Franz Baader, Ralf Küsters, and Frank Wolter. Extensions to description
logics. pages 219–261, 2003. 18

[7] Evdoxios Baratis, Euripides G.M. Petrakis, and Nikolaos Papadakis.
TOQL: Querying temporal information in ontologies. Technical Report
TR-TUC-ISL-02-2008, Department of Electronic and Computer Engi-
neering, Technical University of Crete, Greece, 2008. 4, 11, 15, 22, 37,
44

[8] Jeen Broekstra and Arjohn Kampman. SeRQL: A second generation
RDF query language. In In Proc. SWAD-Europe Workshop on Semantic

Web Storage and Retrieval, pages 13–14, 2003. 47

[9] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a knowl-
edge representation. AI Magazine, 14:17–33, 1993. 13

61

62 BIBLIOGRAPHY

[10] Dov Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev.
Many-dimensional modal logics: theory and applications. Studies in
Logic, 148. Elsevier Science, 2003. 18

[11] Alfred Horn. On sentences which are true of direct unions of algebras.
Journal of Symbolic Logic, 16(1):14–21, 1951. 20

[12] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector,
Robert Stevens, and Hai Wang. The Manchester OWL syntax. In
OWLED2006 Second Workshop on OWL Experiences and Directions,
Athens, GA, USA, 2006. 16, 33

[13] Hans-Ulrich Krieger. Where temporal description logics fail: Repre-
senting temporally-changing relationships. In Andreas Dengel, Karsten
Berns, Thomas M. Breuel, Frank Bomarius, and Thomas Roth-
Berghofer, editors, KI, volume 5243 of Lecture Notes in Computer Sci-

ence, pages 249–257. Springer, 2008. 16

[14] Alexander Kubias, Simon Schenk, Steffen Staab, and Jeff Z. Pan. OWL
SAIQL - An OWL-DL query language for ontology extraction. In Chris-
tine Golbreich, Aditya Kalyanpur, and Bijan Parsia, editors, OWLED,
volume 258 of CEUR Workshop Proceedings. CEUR-WS.org, 2007. 14

[15] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard B. Scherl. GOLOG: A logic programming language for
dynamic domains. J. Log. Program., 31(1-3):59–83, 1997. 17

[16] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal
Description Logics: A survey. In TIME, pages 3–14. IEEE Computer
Society, 2008. 11

[17] Jixin Ma and Brian Knight. Reified temporal logics: An overview. Artif.

Intell. Rev., 15(3):189–217, 2001. 17, 18

[18] J. Mccarthy and P. J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence, 4:463–502,
1969. 17

[19] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57.
IEEE, 1977. 18

[20] Murray Shanahan. The event calculus explained. In Artificial Intelli-

gence Today, pages 409–430. 1999. 12, 18, 19, 29, 45, 46

BIBLIOGRAPHY 63

[21] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,
and Yarden Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem.,
5(2):51–53, 2007. 14, 39

[22] Michael Thielscher. FLUX: A logic programming method for reasoning
agents. TPLP, 5(4-5):533–565, 2005. 17

[23] Christopher Welty, Richard Fikes, and Selene Makarios. A reusable
ontology for fluents in OWL. Frontiers in Artificial Intelligence and

Applications, 150:226–236, 2006. 11, 14, 16, 19, 28, 44

