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ABSTRACT

Genetic algorithms (GA) are search algorithms based on the mechanism of natural

selection and natural genetics. In the past, FPGAs have been widely used for

implementing Hardware GAs (HGA) to provide speedups of up to three orders

of magnitude as compared to their software counterpart implementation. In this

paper, we propose a new reconfigurable implementation of an HGA on a VirtexII

Pro FPGA. We use the run time partial reconfiguration (RTR) technology to

implement a reconfigurable fitness function and we evaluate the experimental

results comparing them to previous HGA implementations.

Keywords — FPGA, Run-Time Partial module-based Reconfiguration, Re-

configurable computing, Genetic Algorithms
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1. INTRODUCTION

1.1 Genetic Algorithms

A genetic algorithm (GA) is a technique which is used to find exact or approxi-

mate solutions to optimization and search problems. They have been developed

by John Holland in his effort to abstract and explain the adaptive process of nat-

ural systems and design artificial software systems based on these mechanisms[1].

These algorithms found application in many areas due to their efficiency in find-

ing exact or approximate solutions to optimization problems. This efficiency is

an outcome of the qualities genetic algorithm are based on :

• They start their searching procedure not from a single point but from a

population of points. In contrast to other heuristic methods, they span

their search space in different directions. This characteristic, gives the

genetic algorithms a better chance in avoiding a local optimal.

• They use an objective function - the fitness function - and do not require any

auxiliary knowledge on the problem they are deployed to solve. Starting

from a population of candidate solutions they make random changes to

them and then evaluate the produced population of solutions using the

fitness function.

• Work with the coding of the parameter set and not the parameters them-

selves. This enable the genetic algorithm to manipulate many parameters



1.1 Genetic Algorithms Introduction

simultaneously.

• Finally, they use probabilistic transition rules and not deterministic rules.

With propability introduced in the transition rules the GA search process

gains more flexibility avoiding local optimums.

Due to these characteristics and their performance, genetic algorithms have

been efficiently applied to various NP-complete problems. Recently, the Traveling

Salesman Problem(TSP) has become a target of the GA community [2]. The

GAs has also been applied to boolean satisfiability (SAT) problems [3]. Those

real life problems exploit great interest from scientists as they generate huge

search space expoitations, resulting in great complexities and requiring serious

amount of calculations. As shown in those researches, for small GA parameters,

the required execution time, which provides an acceptable solution, is in the scale

of seconds.

Fig. 1.1: Genetic Algorithm Flowchart
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Despite the GA ability to provide good aproximate solutions to NP-complete

problems, its algorithmic structure is simple. Fig. 1 illustrates a genetic algorithm

flowchart. Each of the shown modules performs a simple operation:

1. The Initiallize the population module is responsible for the population

initialization. Given the population size and members coding, this unit

randomly produces a new population. This is a population of solutions on

which the algorithm will start the searching process. The randomness of

the initial population is essential for the GA to perform well and span its

searching space in different directions.

2. The fitness module performs the evaluation of the chromosome. This

objective evaluation function is responsible for the representation of the

problem. The entire genetic algorithm will operate on the chromosomes

evaluation results of the fitness function. The chromosomes that are highly

evaluated will be advanced and eventually form a solution while the rest

will be destroyed.

3. The sequencer module promotes chromosomes to the selection unit. This

is not a GA basic module but we included it in the figure in order to make

a connection to the hardware GAs.

4. The selection module decides which of the sequenced chromosomes will ad-

vance. This unit operates according Darwins theory of evolution. Darwin

stated that only the best chromosomes should survive and create new off-

springs. Therefore, the selection unit, judging the sequenced chromosomes

fitness value, should advance to the next unit only the best chromosomes.

5. The mutation and crossover modules perform the mutation and crossover

of the selected parents chromosomes in order to produce their offsprings.
12
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The GA performance greatly depends on those two GA operators. There

are many ways how to do crossover and mutation. In our case, concerning

crossover, we used a single point random crossover - one crossover point

is randomly selected, binary string from beginning of chromosome to the

crossover point is copied from one parent, the rest is copied from the second

parent.

Fig. 1.2: Crossover

Concerning mutation, we used random bit inversion - the selected bits are

inverted.

1.2 Hardware Genetic Algorithms

Historically, various hardware genetic algorithm implementations have been de-

signed for FPGAs. As shown in a recent research [4] published in the FPGA

conference, more than 15 different hardware approaches were published the last

10 years. This tendency indicates a rising need for a performance improvement

on the software genetic algorithms. This need for an hardware implementation

arises from the overwhelming computational complexity of certain problems that

causes unacceptable delays in the optimization process of software implementa-

tions. The speed advantage of hardware and its ability to parallelize offers great

advantages to genetic algorithms overcoming those problems. Speedups up to 3

orders of magnitude have been observed when frequently used software routines

were implemented in hardware by way of reprogrammable field-programmable

gate arrays (FPGAs)[5].
13
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1.3 Run Time Partial Reconfiguration

The past few years, many vendors have introduced and added the Run Time

Partial Reconfiguration (RTR) technology to certain FPGAs. This technology

provides great adaptability, adding general purpose features to an instance based

architecture, with the trade-off of the reconfiguration overhead. The RTR tech-

nology enables the device to be partially reconfigured on the fly, leaving intact

placement and routing of the rest of the design and without interrupting its

normal operation.

There are two main partial reconfiguration methods supported by xilinx, the

difference based and the module based. The difference of these methods is the

programmed area of the reconfiguration bitstreams.

• In module based, the target area is an entire region. The created par-

tial bitstreams reprogram the entire region even if small changes where

required. This increases the reconfiguration overhead as the reconfigura-

tion and introduces large reconfiguration delays. This method is essential

for reconfiguring large areas of the FPGA.

• In difference based, the target area are the FPGA LUTs. The created

partial bitstreams reprogram only the parts that need to be changed. There-

fore, this method allows faster reprograming as it is only affecting the logic

that requires modifications. This method is essential for reconfiguring small

parts of the FPGA.

In our project we used an XUP virtexII pro and depending on the FPGA

device there are various reconfiguration features. Specifically, this board doesn’t

support 2-D reconfiguration as the supported reconfiguration is column based. It

14
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is mandatory to floorplan two reconfigurable regions on the same column. This

is because the reconfiguration bitstreams affect the entire columns operation[6].

Partial reconfiguration can either be implemented through the JTAG or with

the use of an embedded processor through ICAP. The JTAP reconfiguration

requires the presence of an external PC while the other method, refered as

self-reconfiguration, doesn’t. In the self-reconfiguration method, the partial bit-

streams are loaded from a ROM device and are written to Internal Configuration

Access Port(ICAP) in order to perform the reconfiguration. The On-Chip Pe-

ripheral Bus Hardware ICAP (OPB HWICAP) enables the embedded processor

to perform the reconfiguration with the read-modify-write mechanism. It reads

the internal memory, modifies the data he read according to the partial bitstream

and then writes them back to the internal memory[7].

The theoritical advantages of using dynamic reconfiguration are mostly fo-

cused on speed, power and flexibility. Specifically, the advantages are:

1. Task Speed - the use of RTR for a co-processor region enables the device

to migrate more functions without being constrained by the amount of

hardware available. Therefore you have the option to instantiate a more

optimized function to obtain a speedup.

2. Power Consumption - this is obtained either by loading blank bitstreams

in the PRR that are not used and therefore reducing the static leakages of

the components or by loading a more optimized design that will reduce the

dynamic power consumption.

3. Survivability - The reconfiguration can be used to detect and restore or

relocate damaged functions.

4. Mission Change - The subsystems of the architecture can be changed to
15
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fit to different missions requirements.

5. Enviroment Change - The system can adopt to the enviromental changes.

6. Algorithm adaptive change - The reconfiguration enables the device to

implement algorithms with different constraints and parameters. It makes

the necessary changes on the algorithm to fit to the task requirements.

7. On-line system test and self-healing - The RTR allows the generation

of a Built-In Self Test at runtime to confirm and evaluate the ability to

continue operating. In case of fault detection the the entire design or the

corrupted module can be reconfigured to correct their operation.

8. Hardware virtualization - All functional block are not at the same time

instantiated in the device. Virtually, the user has the support of all those

functions but physically there are not present.

1.4 A new generation of HGA

With the use of the RTR technology we present a dynamically reconfigurable

HGA that solves various problems efficiently exploiting the device resources.

Compared to the prior state of art, this architecture dynamically loads the re-

quested fitness function from a ROM device, changing the target problem and

overcoming the devices area constrain problem. Furthermore, it has the ability

to incrementaly build its fitness function reducing the total reconfiguration over-

head. Applying the RTR technology on HGAs, this design can solve almost any

problem.

16
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1.5 Contributions of these Work

The contributions of this work are :

• Optimization of an HGA and parameterization of its features for maximum

problem support

• Implementation of reconfigurable general purpose mathematical unit (HGA

fitness function) that replaces the GAs fitness function providing support

to numerous different fitness functions

• Presentation of a new PRM architecture to reduce bus macro usage

• Effective use of RTR for real-life problem

• Illustration of the RTR advantages: better area utilization and speed per-

formance, mission change and power optimization

• Autonomous operation through self-reconfiguration

• This work is the first to exploit RTR on the GA problem

17



2. STATE OF THE ART

2.1 Hardware Genetic Algorithms

The last twenty years various implementations on hardware genetic algorithms

were introduced. The characteristics that distinguished those implementation

where their parameters range (i.e. population size, member width) and the in-

stantiated fitness function. Despite the differences of those implementations, they

all shared one similarity. All the HGAs solved a single problem with one fitness

function type.

Scotts et al [5] proposed and implemented a general HGA on a BORG proto-

typing board which consisted of 5 Xilinx XC4000 FPGAs. This design exploited

effective parallelism and coarse-grained pipelining. Their target problem was to

maximize the result of a mathematical function.

Koonar et al [8] developed a reconfigurable GA for VLSI CAD design. This

work presents a GA architecture for circuit partitioning in VLSI physical design

automation. They used a Virtex board to synthesize the design and to provide

the necessary autonomy.

Emam et al [9] proposed a genetic algorithm on non-linear adaptive filters for

the purpose of blind signal separation. Their target device was an UniDaq -PCI

-PC board, and they report the performance of the designed GA without the pres-

ence of a fitness function, claiming that the performance of this implementation

is determined by its fitness function.
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Narayanan et al [10] developed genetic algorithm modules for intelligent sys-

tems. They present the design of two libraries (HDL and VHDL) of hardware

modules for a GA system. These libraries were based on a Matlab library. In

this work they optimize two polynomial functions with different combinations of

modules contained in the library and evaluates the results.

Tommiska et al [11], in a recent project, designed an HGA with Altera Hard-

ware Description Language (AHDL). The GA run on a PC card and was con-

nected to the CPU through PCI bus. This design was also downloaded on an

FPGA. They achieved an improvment rate of 200x vs software.

We conducted a research on all up to date HGA FPGA implementations and

we present all the intresting information in the following table.

The table information as well as additional information on HGA implemen-

tations can be found in a recent research [4].

19
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Hardware Genetic Algorithm FPGA Implementations

HGA Problem Type Supported Fitness Functions

Vavouras [4] et al arithmetic operations 6

Koonar [8] et al VLSI circuit partitioning 1

Tang [12] et al arithmetic operations 1

Aporntewan [13] et al arithmetic operations 1

Tommiska [11] et al arithmetic operations 1

Emam [9] et al blind signal separation 1

Scott [5] et al arithmetic operations 6

Mostafa [14] et al arithmetic operations 1

Martin [15] et al arithmetic operations 1

Koza [16] et al minimal sorting network 1

Heywood [17] et al arithmetic operations 1

Perkins [18] et al signal processing 1

Lei [19] et al arithmetic operations 1

So [20] et al video encoding hardware 1

Graham [21] et al traveling salesman 1

Glette [22] et al image recognition 1

Shackleford [23] et al arithmetic operations 1

Tab. 2.1: Hardware Genetic Algorithm FPGA Implementations

2.2 Genetic Algorithm Applications

GAs have been efficiently applied to various NP-complete problems to provide

fast aproximate solutions. Recently, the Traveling Salesman Problem(TSP) has

become a target of the GA community [2]. The GAs have been applied to boolean

20
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satisfiability (SAT) problems [3]. Both problems generate great interest from

scientists as they can address huge search space expoitations. This results in

great complexity and requires serious amounts of calculations, hence execution

time. As shown in recent literature even for small GA parameters, the required

execution time, which provides an acceptable solution, is in the scale of seconds.

The RECOPS[24] was started in 2007 - one of the largest projects in Dynamic

Partial Reconfiguration (DPR). This project evaluates the advantages of this

technology in military electronics applications. The experiments performed on a

wide range of applications such as:

• Image acquisition and transfer

• Electronic Warfare

• Image Processing

• Front end processing

• Short Range Radio Modem

• Software Defined Radio transmitter

• Software Defined Radio receiver

Finally, GAs have been succesfully applied to other engineering and computer

sience [25]. They provide solution to problems such as:

• Electromagnetic System Design

• Optimization problems in Aerodynamic Design

• Load Balancing in the Process Industry

• Optimization in computational fluid dynamics
21
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2.3 Run Time Partial Reconfiguration

During the last decade, Run Time Partial Reconfiguration technology has been

widely studied as a research topic. A strong example of this tendency is the

RECOPS[24] project(Reconfiguring Programmable Devices for Military Hard-

ware). This project began in 2007 and its goal was to examine the potential

advantages of the usage of RTR in military applications. This project covered

most of the fields of military applications by experimenting in the previously

mentioned(paragraph 2.2) applications and emphasizing on the Software Defined

Radio (SDR).

The first results are already published [26] and the RTR technology was char-

acterized as promising. The theoritical advantages of the RTR were compared

to the practical experimental measurments. Unfortunately, apart from the addi-

tional flexibility the RTR brings on to HW, the classical area, speed and power

improvements were depended on the application and therefore not deterministi-

cally resulting in an imporvement for the application. On the other hand, they

claimed that the tested application can benefit from RTR for online system test,

survivability, and hardware virtualization.
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3. HGA DESIGN

The project is separeted into two parts which at the end are combined to form a

new generation self reconfigurable architecture to support multiple fitness func-

tions in genetic algorithms.

3.1 Design issues

For the design implementation we used the Xilinx Design tools ISE 9.1, EDK

9.1 and Planahead 10.1. The design flow was guided by the Early Acces Partial

Reconfiguration (EAPR) [27] laboratories documentation. This simplified RTR

design flow is available thanks to Planahead [28]. Planahead provides a graphical

user-friendly enviroment that simplifies the RTR design flow. In addition, it

supports incremental designing. With this feature, the designer can partially

modify the design, leaving placement of the rest intact and thereby shortening

design iterations, maintaining the required performance.

3.2 Hardware genetic algorithm without PR

Starting the optimization process, the first step was to increase the HGAs sup-

ported parameter range. The goal was to fully parametrize the algorithms at-

tributes in order to support the maximum possible number of parameters for the

target device [29] features. This was not straightforward, since the increased pa-
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New Hardware Genetic Algorithm Attributes

Attribute Value Range

Memory 4096*46bits

Population size 32

Max Supported Population Size 2044

Member Width 10 bit

Fitness Width 36 bit

Sum of Fitness Width 46 bit

HGA Max Clock Frequency 127 MHz

Tab. 3.1: New HGA Attributes

rameters introduced a considerable degradation in the clock frequency. This was

mitigated by code optimization. We found that the part of the algorithm that

caused the clock frequency reduction was the comparison of a members fitness

value with a threshold set by the selection unit. We then replaced this com-

parison by a subtraction and a 1-bit comparison, used to identify whether the

subtractions result was positive or negative. Unavoidably, we had to add an extra

Finite State Machine (FSM) state to handle the operations.

After the design parametrization, larger chromosomes were tested. Specifi-

cally, we tested 10bit member width with 36bit fitness function width as shown

in Table II. This was a significant modification compared to the previous imple-

mentation [4], which used only 4bit members and 14bits fitness function width.

Furthermore, with these parameters we increased the population distinct

members without increasing their population size. This is because with 4-bit

members there is a maximum of 16 different members represented, therefore du-

plicating the same members on a population of 32 members, whereas with 10-bit

24



3.2 Hardware genetic algorithm without PR HGA Design

members this duplication is avoided. This accretion in the disctinct population

members gives the GA increased efficiency as it avoids a premature convergence

to a local optimum. The genetic algorithm will perform well and achieve better

results as the rate of population convergence will be less than the rate of search

space reduction [30].

Additional modifications were made to the selection module. We changed the

selection process in order to accelerate its decision. We focused on the selection

because it is the unit with worst throughput and affects the efficiency of the

entire pipelined architecture. We modified this unit in order to operate faster

and changed its selection criteria. The new criteria is the average fitness value

of the population members. The selection unit will iterate until either it finds a

member which fitness value is above a threshold, or it reaches an iteration limit

which will force the unit to select a random member.

Finally, there were some slight deviations from the GA theory in the crossover

and mutation module. After the crossover, the second offspring was not an result

of the crossover operation, but the second parent.

The analysis of each module structure and operation is explained in the fol-

lowing sections.

25



3.2 Hardware genetic algorithm without PR HGA Design

Fig. 3.1: Hardware Genetic algorithm (Population Sequencer)

3.2.1 Population Sequencer

The population sequencer module is responsible for the retrieve of the population

members. It has a Finite State Machine (FSM) to handle the required operations

of this module. These operations are the initiallization of certain parameters and

the sequencing of members to the next module.

Specifically, during the initiallization process, the population sequencer re-

quests from the memory the population size from the previously determined ad-

dress. After the initiallization, it starts requesting population members from the

memory. It has an internal counter that starts counting from 0 to the population

size. When the counter reaches the population size limit it resets and starts all

over again, requesting from 0.

26
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Fig. 3.2: Hardware Genetic algorithm (Random Number Generator)

3.2.2 Random Number Generator

The random number generator module is generating random numbers for the

crossover&mutation and selection modules. This module has a more complex

FSM than the population sequencer unit. The implemented algorithm for the

pseudo random number generation is based on the 150-150-90... hybrid CA de-

scribed in Serra et al.

Specifically, the operation of this unit requires a random seed. During the

initialization process, it requests this seed from the Memory. Afterwards, and

based on this number it starts generating random numbers. Those numbers are

used for the calculation of the mutation probability and the crossover point.

27
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Fig. 3.3: Hardware Genetic algorithm (Selection)

3.2.3 Selection

The selection unit is responsible for the selection of the surviving population

members. It has a complex FSM to handle the various calculations needed to

choose the surviving parents. The implemented algorithm for the members se-

lection is based on the roulette wheel. The parents that are most likely to be

selected are those with the largest fitness value.

The FSM starts with the calculation of the number that it will use as a

threshold for the selection process. This threshold is the average fitness value of

the entire population. In order to avoid a time consuming division we calculated

this number by assuming that the population size is a power of 2. Under this

assumption we can find the average number by right shifting the sum of fitness

value by log
2
(population size).

After the calculation of the threshold, the selection unit recieves the sequenced

members and evaluates them until it finds two members that pass it. The maxi-

mum number of evaluated members per choice is constrained by a number in order

to constrain the maximum delay and add some randomness to the selection.
28
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Fig. 3.4: Hardware Genetic algorithm (Crossover and Mutation)

3.2.4 Crossover & Mutation

The crossover& mutation module is responsible for mutating and performing the

crossover to the parental members in order to generate the two new offsprings

for the new population. The FSM handles the initialization and the application

of the above mentioned genetic parameters. The implemented algorithm uses a

one-point random place crossover and multiple bit inversion (mutation).

The entire process starts by fetching the mutation and crossover probabilities

from the Memory module. When the initialization is complete, this module waits

for the selected parents. When the selected parents are recieved it performs the

mutation and crossover according to the probabilities. This probabilities recieved

formulate a threshold and are compared to the random numbers recieved from

the generator to define the crossover point and the mutated bits.
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Fig. 3.5: Hardware Genetic algorithm (Memory)

3.2.5 Memory

This unit is the front-end and back-end memory controller of HGA. It handles all

the incoming requests of the HGA modules and the PowerPC. To handle those

operations it uses an FSM unit giving the highest priority to the modules that

perform the least memory transactions.

Specifiacally, this unit recieves a request and an acknoledge signal from the

other HGA modules. When a request signal is high and according to the modules

priority, the memory module decides and serves the most important request.

In our case, the sequencer has the least priority as it is constantly requesting

numbers.
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Fig. 3.6: Hardware Genetic algorithm (Fitness)

3.2.6 Fitness

Finally, this unit is the larger unit in terms of resources utilization (see table 3.2).

This unit has an FSM to handle the initialization process, the fitness evaluation

process of the offsprings and the accumulation of the population fitness values.

The process starts with the initialization of three parameters: population size,

sum of fitness of the initial population and the number of generations. This pa-

rameters are essential for the operation of the fitness module. After the initializa-

tion, it recieves the offsprings from the crossover&mutation module, it evaluates

their fitness value and writes them to the memory, accumulating their fitness.
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3.2 Hardware genetic algorithm without PR HGA Design

3.2.7 Modules Features

The following table shows certain important features for the hardware genetic

algorithm modules retrieved from the ISE synthesis report.

HGA Module Features

Module Slices Flip Flop LUT MULT Max.Frequency

Population Sequencer 76 99 74 0 198.620MHz

Random Number Generator 28 39 37 0 486.665MHz

Selection 309 110 555 0 213.847MHz

Crossover&Mutation 57 58 89 0 305.535MHz

Fitness 505 434 932 10 153.994MHz

Memory 90 129 135 0 248.139MHz

Tab. 3.2: HGA Module Features
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3.3 Applying PR to create a reconfigurable fitness function

To begin with, we replaced the HGA fitness function with a reconfigurable math-

ematical unit. This unit comprises of 4 partially reconfigurable regions (PRR).

We were constrained to the specific number of PRRs because the VirtexII Pro

FPGA doesn’t support 2D reconfiguration. It is mandatory to assign two dif-

ferent PRRs on the same column [6]. In each region a partially reconfigured

module (PRM) is loaded. Each module applies simple mathematical equations

to the inserted binary number. Furthermore, each module has 32-bit input and

output values and it is designed to process numbers ranging from 1-64 bits. It

has 32-bit interface but it internally reproduces up to 64 bit number. This affects

the mathematical unit performance as it needs 2 clock cycles to create a 64 bit

number.

Fig. 3.7: Mathematical Unit Structure

We implemented three PRM for each PRR: multiplier, adder and the zero

unit.
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All the PRMs route their output to the final adding unit. The ADD unit sum-

marizes the results of the functional PRMs. The first column of PRMs also routes

their output to the sequential PRM, as shown in figure 3. This sequential process-

ing produces complex mathematical equations. Considering it performance, the

mathematical unit is pipelined and its performance is affected by the downloaded

mathematical units. Each PRM needs 2-4 cycles(1 cycles for 1-32 bit input and

2 cycles for 33-64 bit input) to create the I/O numbers + X cycles the function

execution. For example the achived throughput for 32bit input, 64 bit output and

4 cycles for the function execution would be: 64bit/((1+2+4)cycles*127MHz) =

719 Mbps.

Partial Reconfiguration Region Resources

Site Type Available

LUT 1216

FF 1216

SLICE 608

MULT18X18 4

RAMB16 4

Tab. 3.3: PRR Resources

The internal structure of each PRM is constituted of three modules: The

inputdata module which recieves 32bit numbers and gradually forms the input

number. The function module which evaluates our input numbers and the out-

putdata module which dissolves the output number of the function into 32bit

numbers, passing them to the next module. The synchronization of the PRMs

is achieved through the write signals. When the write signal is High the next

module stores the 32bit input data. The following figure shows the PRM struc-
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ture.

Fig. 3.8: PRM STRUCTURE

The inputdata and outputdata modules are very important for a dynamic

reconfiguration project. They minimize the required Bus Macros (BM) for the

communication between PRRs. The BM presence in the PRRs constrain their

shape, as well as the designers options. A reduction in the BMs provide greater

flexibility to the design floorplan and a better routing.

This mathematical unit is fully pipelined and its throughput is limited by

the slowest module. It also provides some extra features: 1) a fixed number can

be saved in each module, 2) the functioning collumns and the input range are

controlled by a register and 3) it has an internal reset signal.

The designing choices of the mathematical unit are made with respect to gen-

erality. This architecture is a platform, that thanks to RTR technology, can solve

various np-complete problems. Depending on the modeling of the problem, only

the necessary fitness evaluation modules need to be designed and downloaded.

With the RTR technology, an accurate problem modeling and the implementa-

tion of the corresponding fitness evaluation module the FPGA can be transformed
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into a multiple np-complete problem solving device.

3.4 Combining HGA and RTR to form the New generation HGA

3.4.1 Design Flow

Our RTR design flow followed the EAPR [27] lab 3 guideline. This guideline

was strictly followed to avoid any unwanted problems and succesfully create a

dynamically partial reconfigurable project. In the following text the design flow

steps and certain tips are introduced:

1. We created a processor system with the EDK design tool. An proces-

sor and OPB HWICAP is required in a RTR project to execute the self-

reconfiguration operations.

2. Create the custom logic peripherals IP. This peripheral will implement our

algorithm, in our case the hardware genetic algorithm, and it is splitted in

two parts - the static and the dynamically reconfigurable.

3. Synthesize the previously created IP. In this step it is very important to

group our static logic under one module. This is mandatory for the pro-

duction of an succesfully speed and area globally optimized netlist. The

partial synthesised vhdl files produced an partial optimized netlist which

cause placement and routing problems in their finally assemply. By synthe-

sizing all the static logic together, you produce an more optimized netlist

producing a better placement and routing for the design. On the other

hand, the dynamically reconfigurable vhdl files can only be synthesized

separately.
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The creation of an more optimized netlist can be achieved by changing

certain synthesise process options in ISE. Those options are:

SynthesisOptions(TAB)− > OptimizationEffort− > High

XilinxSpecificOptions(TAB)− > PackI/ORegistersintoIOBs− > No

XilinxSpecificOptions(TAB)− > AddI/OBuffers− > unchecked

4. Connect the processor system and the IP under a top level design. We

synthesized the top level having instantiated the dynamically reconfigurable

logic as black boxes. This will perserve the hierachy for these modules and

it will be used in the Planahead design tool for the floorplanning.

5. Create a Planahead project. Import in the project the all the created netlist

files , create the are groups and place all the dynamically reconfigured com-

ponents and their bus macros. The following figure illustrates the placement

used in our design.

Fig. 3.9: PlanAhead Placement

6. Finally, run a DRC check and execute the PR flow commands to produce

the static and partial bitstreams.
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3.4.2 Structure and Modifications

Applying the RTR to the modified HGA we created a new generation HGA that

supports multiple fitness functions. We replaced the fitness function of the HGA

presented in 3.1 with a reconfigurable mathematical unit we introduced in section

3.2. The outcome of this act is shown in figure 3.10.

Fig. 3.10: Top Level Structure

As shown in the figure 3.10 various modification were made to the previous

HGA architecture. The reasons behind the design decisions are:

• We needed an embedded processor to perform the self reconfiguration and
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handle the I/O requirements. This forced us to create an basic system in

EDK with the following specifications:

1. A Power PC

2. A RS232 peripheral to support the communication with the PC through

the serial port

3. An OPBHICAP peripheral to support the reconfiguration procedure

with its simple interface commands

4. A System ACE peripheral to control the CF ROM where the bit-

streams are saved.

5. A OPB2DCR bridge and a DCR bus. We utilized DCR registers

to make the opb signals external to the EDK project avoiding any

problems

• The new generation HGA will be an OPB custom logic peripheral and its

reconfigurable regions must be brought to the Top level. For these reasons,

this peripheral must be connected with the System under a top level module.

The peripheral must be withdrawn from inside the System and externally

connect to the DCR bus and therefore connect indirectly to the OPB.

• The DCM must be removed from inside the EDK project and instantiated in

the Top level. This is performed for the Design Tools to identify the Global

clock. In addition, if this step is not performed, the synthesis operation in

Planahead will exit with an error refering to the DCM.
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4. IMPLEMENTATION RESULTS OF THE NEW

GENERATION HGA

The implementation results are separeted into two section - the static and the

partial comparison. We found that it was more convenient to compare the new

generation HGA execution results and area features separately in those sections.

The HGA we are comparing to is the Vavouras et al HGA [4].

4.1 Static comparison

In this section we compare the execution results and the algorithmic performance

of our HGA. In order to accuratelly compare those two implementations we used

the following parameteres.

HGA parameters

Parameter Value

Member Width 10

Maximux Fitness Width 36

Population Size 32

Clock Frequency 100MHz

Number of Generations 100

Tab. 4.1: HGA parameters



4.1 Static comparison Implementation Results of the New Generation HGA

The results indicate an improved execution time for the new generation HGA.

Specifically, our implementation required 178000 clock cycles for 100 generations

while the vavouras et al [4]HGA required 218000cycles. The calculated speedup

is:

Vavouras execution time=218000cycles/90MHz=2.42 msec

Our execution time=51603cycles/100MHz=0.51msec.

Speedup = 4.7.

Apart from that, our implementation acquired a faster convergence to the

global optimum. As shown in the figures our generation convergence point ranged

from 7 generations while in Vavouras et al HGA the convergence point ranged

from 22-28.

Generations Convergence Points (Population Size 32)

HGA Function Generations Convergence Point

Vavouras x 22

Vavouras x + 5 25

Vavouras 2 ∗ x 28

Vavouras x2 22

Our x 7

Our x + 5 7

Our 2 ∗ x 7

Our x2 7

Tab. 4.2: Generations Convergence Points
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4.2 Partial comparison

The new generations HGA area requirements where increased in comparison to

the previous HGA. These differences are shown in the following table.

XCV2P30 Device Utilization

HGA LUT FF SLICE MULT18x18 RAMB16

Vavouras 11% 7 % 16 % 11 % 7 %

Our 36.9% 37.5 % 37.5 % 11.7 % 37.5 %

Tab. 4.3: XCV2P30 Device Utilization

This accretion in the device utilization features was the result of the PRRs

and the bus macros. The partially reconfigurable regions we commited for recon-

figuration purposes increased the device constrained features. The static design

could not utilize those regions even if the loaded PRM where blank bits. So it

is more appropriate for the comparison of the HGAs utilized device resources to

add the constrained features(shown in table 4.4) of the each PRR to the total

amount of utilizated resources.
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Partial Reconfiguration Region Resources

Site Type Available

LUT 1216

FF 1216

SLICE 608

MULT18X18 4

RAMB16 4

Tab. 4.4: Table IV. PRR Resources

The size of those reconfigurable regions was determined by two factors - the

needed resources of the largest PRM and the bus macro placement.
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5. EXPERIMENTAL RESULTS

5.1 Genetic Algorithm Performance

In this section we show the experimental results after exhaustive experiments

with different genetic parameters. We illustrate how the size and variety of the

initial population affects its performance, reducing the generations needed for the

genetic algorithm convergence.

Fig. 5.1: GA Results Population size 32 Function = x



5.1 Genetic Algorithm Performance Experimental Results

Fig. 5.2: GA Results Population size 32 Function = x + 5

Fig. 5.3: GA Results Population size 32 Function = 2*x
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Fig. 5.4: GA Results Population size 32 Function = xˆ 2

Fig. 5.5: GA Results Population size 512 Function = x
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Fig. 5.6: GA Results Population size 512 Function = x + 5

Fig. 5.7: GA Results Population size 512 Function = 2*x
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Fig. 5.8: GA Results Population size 512 Function = xˆ 2

Fig. 5.9: GA Results Population size 2044 Function = x
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Fig. 5.10: GA Results Population size 2044 Function = x + 5

Fig. 5.11: GA Results Population size 2044 Function = 2*x
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Fig. 5.12: GA Results Population size 2044 Function = xˆ 2

As shown in the above figures, in all cases the genetic algorithm converged to

the global optimum after approximately 6-26 generations. The generations need

for the convergence where different among the tested population sizes. The larger

population sizes caused a slower but more mature congvergence.

Fig. 5.13: Hardware Genetic Algorithm Performance
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5.2 Reconfiguration Overhead

One of the most important tradeoffs of the partial reconfiguration technology

is the reconfiguration overhead. This is the time needed for the reconfiguration

process of an partially reconfigurable block. The hardware components that are

used in the reconfiguration process are the Compact Flash and OPB ICAP. Both

components introduce unacceptable delays for an real time applications reaching

up to hundreds msec.

In addition to those problems, a recent research article [26] shows that the

theoritical throughput of the OPB ICAP differs from the practical. After careful

experiments they measured the following throughputs for OPB ICAP:

ICAP throuputs

ICAP MODE Practical Theoritical

8 bit 32.4Mbit/s 0.75 Gbit/s

Tab. 5.1: ICAP throuputs
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The reconfiguration timings of our design will be measured according to the

results of a relative work [31] and the Virtex-II Pro FPGA user guide manual

[29]. Firts we calculate the time needed from one partial bitstream to be loaded

from the Compact Flash to the PowerPC BRAM. Second we calculate the time

needed for the reconfiguration of one partial bitstream. Finally we summarize

those times to conclude for the total reconfiguration time.

Concerning the CF the, each transaction with it is memory hungry and the

SysAce controller performance deviates from the theoritical. The theoritical

trhoughput is 8 MB/s but the measured practical throughput was 0,3 MB/s

[31]. In our setup, for the dynamic reconfiguration procedure, we firstly load the

bitstream from the CF into the PowerPC bram. The CF transaction time is:

Bitstream Size = 141728 Bytes = 0,000135162 MB

SysAce Throughput = 0.3 MB/s

Transaction Time = 45,054 msec

Afterwards, the PowerPC write the loaded bitstream to the ICAP. According

to their timing results [31] for the reconfiguration of each frame, our calculated

time is:

Frame Length = 206 (32-bit words) = 824 Bytes

Number of Frames = Bitstream Size / Frame Length = 172

Reconfiguration Time (8 first frames) = 75 msec

Reconfiguration Time of each following frame = 6ms

Reconfiguration Time (172 frames)= (8/8)*75 msec + (164/1)*6 msec

= 1.059 sec

From the above calculation we found that the total reconfiguration time is:

Total Reconfiguration Time = 45.054 msec + 1.059 sec = 1.103 sec
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6. CONCLUSION & FUTURE WORK

This paper presents new approach towards HGAs with the application of RTR.

It shows a way to create an autonomous self-reconfiguring system that supports

a large variety of fitness functions. Due to the generality of the HGA architec-

ture we had a performance disadvantage towards other instance specific HGAs.

This is because the instance specific architectures utilized maximum hardware

parallelization. Nonetheless, this trade-off is relatively small vs the advantages

gained.

Furthermore, this work is part of a larger problem to be solved, such as VLSI

optimization, image processing and others. We propose a general intergrated

solver that doesn’t require the pre-loading of all functions in the FPGA and

has the ability to deal with different type of problems. In addition to this we

demonstrate certain changes that can be made on the previous static HGA imple-

mentation [4] to not only increase its performance but also make it a dynamically

reconfigurable general purpose HGA.

In the future, we can increase the reconfigurable module support of the Com-

pact Flash bitstream library. This would integrate this system and supply the

user with additional reconfiguration options. The user can select a bitstream

from a larger variety of modules to download in the PRRs. This would increase

the support of the problems the HGA can solve.

We can also evaluate changes in the fitness function during a single run, as it



Conclusion & Future Work

is already supported in hardware.

Further acceleration of the selection process of the HGA to increase the

throughput rate and acquire more competitive results to other implementation.
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