
TECHNICAL UNIVERSITY OF CRETE

Visual-Feature-based Self-Localization for
Robotic Soccer

Eleftherios A. Chatzilaris
A thesis submitted in partial fulfillment for the

Diploma Degree

in the

Department of Electronic and Computer Engineering

Thesis committee:

Michail G. Lagoudakis, Supervisor

Nikolaos Vlassis

Antonios Deligiannakis

Chania, October 2009

http://www.tuc.gr/
http://www.tuc.gr/hmmy-deparment.html

``Ουδέν κακόν αμιγές καλού.''

TECHNICAL UNIVERSITY OF CRETE

Abstract
Department of Electronic and Computer Engineering

by Eleftherios A. Chatzilaris

The ability of Robot Self-Localization is a central problem in the context of RoboCup, the

annual international robotic soccer competition. Each robot player needs to know its own

current location in the field not only for legal play (preventing leaving the field or entering the

own goal area as illegal defender), but also for team play (coordination with teammates, at-

tack/defense formations). Localization in the Standard Platform League (SPL), where all par-

ticipating teams consist of identical Aldebaran Nao humanoid robots, must rely on a limited

number of visual field features (the two goals and the field line markings) and is hindered

by the frequent penalizations which are equivalent to the well-known problem of ``robot

kidnapping". This thesis describes a localization method for the SPL based on Monte-Carlo

Localization with the Auxiliary Particle Filter. The required motion and observation models

for the Nao robot are learned using statistical methods and extensive experimentation to

adapt to the current locomotion and recognition abilities of the robot and special attention

has been given to efficiency issues for on-board execution. The proposed method provides

fairly accurate localization estimates for effective play in both the simulated (Webots) and

the real SPL fields, and has been used extensively by Kouretes, the RoboCup team of the

Technical University of Crete.

http://www.tuc.gr/
http://www.tuc.gr/hmmy-deparment.html

Περίληψη
Η ικανότητα του αυτοπροσδιορισμού θέσης ενός ρομπότ είναι ένα κεντρικό ζήτημα στο πλαίσιο

του ετήσιου διεθνή διαγωνισμού ρομποτικού ποδοσφαίρου RoboCup. Κάθε παίκτης-ρομπότ

πρέπει να γνωρίζει τη δική του τρέχουσα θέση μέσα στο γήπεδο, όχι μόνο για ναπαίζει σύμφωνα

με τους κανόνες (αποφυγή αποχώρησης από τα όρια του γηπέδου ή εισχώρησης στη μικρή

περιοχή του δικού του τέρματος ως παράνομος αμυντικός), αλλά και για ομαδικό παιχνίδι

(συντονισμός με τους συμπαίκτες, σχηματισμοί επίθεσης/άμυνας). Ο προσδιορισμός θέσης στο

πρωτάθλημα Standard Platform League (SPL), όπου όλες οι συμμετέχουσες ομάδες αποτελούνται

από όμοια AldebaranNao ανθρωποειδή ρομπότ, βασίζεται σε ένανπεριορισμένο αριθμό οπτικών

χαρακτηριστικών γηπέδου (τα δύο τέρματα και οι γραμμές του γηπέδου) και δυσχεραίνεται από

τις συχνές ποινές που είναι ισοδύναμες με το γνωστό πρόβλημα της "απαγωγής του ρομπότ"

(robot kidnapping). Η παρούσα διπλωματική εργασία περιγράφει μια μέθοδο για αυτοπροσδιο-

ρισμό θέσης στο πρωτάθλημα SPL που βασίζεται στον αλγόριθμο εντοπισμού Monte-Carlo με

βοηθη-τικό φίλτρο σωματιδίων (Auxiliary Particle Filter). Τα απαιτούμενα μοντέλα κίνησης και

παρατήρησης για το ρομπότ Nao εξάγονται με τη χρήση στατιστικών μεθόδων και εκτεταμένο

πειραματισμό για να προσαρμόζονται στις τρέχουσες ικανότητες κίνησης και αναγνώρισης του

ρομπότ και ιδιαίτερη προσοχή έχει δοθεί σε θέματα απόδοσης για την εκτέλεση των αλγορίθμων

πάνω στο ίδιο το ρομπότ. Η προτεινόμενη μέθοδος παρέχει αρκετά ακριβείς εκτιμήσεις θέσης

για αποτελεσματικόπαιχνίδι τόσο στηνπροσομοίωση (Webots), όσο και στοπραγματικό γήπεδο

του SPL, και έχει χρησιμοποιηθεί εκτενώς από τους Κουρήτες, την ομάδα ρομποτικούποδοσφαί-

ρου του Πολυτεχνείου Κρήτης.

Contents

Abstract iv

List of Figures ix

Abbreviations xi

1 Introduction 1
1.1 Motivation . 1

1.1.1 Thesis Outline . 1

2 Background 3
2.1 RoboCup . 3

2.1.1 RoboCup Soccer . 3
2.1.2 RoboCup Rescue . 7
2.1.3 Robocup@Home . 9
2.1.4 Robocup Junior . 9

2.2 Kouretes Team . 9
2.3 Nao® the Robot . 10
2.4 Probabilistic Robotics . 12

2.4.1 Particles Filter . 13

3 Problem statement 15
3.1 Localization Types . 15
3.2 The need of Localization in SPL . 15
3.3 Environment Specification . 16
3.4 Probabilistic Localization Essential Ingredients . 16
3.5 Our problem . 17
3.6 Related Work . 18

4 The proposed approach 25
4.1 Motion Modeling . 25
4.2 Observation Modeling . 26
4.3 Localization . 26

4.3.1 SIR Localization . 27
4.3.2 AUXiliary filter . 28
4.3.3 Other Techniques . 31

4.4 Visual Feature Extraction - Observation . 31

5 Implementation 33
5.1 Localization . 33

5.1.1 Motion Model in XML . 34

vii

Contents viii

5.1.2 Update particles Weights . 35
5.1.3 Importance Sampling . 36

5.2 Measurements extraction . 38
5.3 Simulation Agent . 41

5.3.1 Matlab Scripts . 41

6 Results 43
6.1 Expirenments . 43

6.1.1 In the simulation environment . 43
6.2 Localization Expirenments . 45

6.2.1 In the simulation environment . 45
6.3 Goal Recognition . 47

7 Conclusions 53
7.1 Conclusions . 53

7.1.1 The quality of observations . 53
7.2 Lessons learned . 53
7.3 Future work . 53

Bibliography 55

List of Figures

2.1 Kouretes playing in RoboCup2009 . 4
2.2 A game at the small size league . 5
2.3 A game at the Middle Size league from RoboCup2009 6
2.4 KidSize robots playing at the Humanoid league . 6
2.5 A soccer game at the simulation. 7
2.6 A robot in the RoboCup rescue artificial environment. 8
2.7 Kouretes at RoboCup 2009, Graz, Austria . 10
2.8 Nao V3 Academic Edition . 11
2.9 The ``particle'' representation used by particle filters. 13

3.1 Scale diagram of the entire SPL field. 17
3.2 Dimensions of the SPL goals (top and side view). 17
3.3 Our Field Coordinate system. 18
3.4 Nao Team Devils Observation and Particle filter Localization 19
3.5 Belief state of the robot in Cerberus MCL algorithm 20
3.6 B-Human particle filters approach . 21
3.7 Team Humboldt's Particles Filter. 22
3.8 Team Humboldt's constraint based localization approach 22

6.1 200 repetitions of the action walk 10 steps . 44
6.2 Distance measurements in a grid of the field . 45
6.3 Distance measurements in a grid of the field . 46
6.4 Error in Distance measurements, error of the fitted function 47
6.5 Cyclic path, 400 particles, limited observations . 48
6.6 Error in the Cyclic path, 400 particles, limited observations 48
6.7 Difficult path, 200 particles, full-range scan observations 49
6.8 Error 200 particles, full-range scan observations . 49
6.9 Difficult path, 200 particles, observations without scanning 50
6.10 Error, 200 particles, observations without scanning 50
6.11 Recognizing Goal posts in webots . 51
6.12 Recognizing Goal posts in real environment . 52

ix

Abbreviations

SPL Standard Platform League

SIR Sampling Importance Resampling

MCL Monte Carlo Localization

xi

Chapter 1

Introduction

This thesis addresses the problem of self-localization in a robotic field. The ability of Robot Self-

Localization is a central problem in the context of RoboCup, the annual international robotic soccer

competition. Each robot player needs to know its own current location in the field not only for le-

gal play (preventing leaving the field or entering the own goal area as illegal defender), but also for

team play (coordination with teammates, attack/defense formations). Localization in the Standard

Platform League (SPL), where all participating teams consist of identical Aldebaran Nao humanoid

robots, must rely on a limited number of visual field features (the two goals and the field line mark-

ings) and is hindered by the frequent penalizations which are equivalent to the well-known problem

of ``robot kidnapping". This thesis describes a localization method for the SPL based on Monte-

Carlo Localization with the Auxiliary Particle Filter. The required motion and observation models

for the Nao robot are learned using statistical methods and extensive experimentation to adapt to

the current locomotion and recognition abilities of the robot and special attention has been given to

efficiency issues for on-board execution. The proposed method provides fairly accurate localization

estimates for effective play in both the simulated (Webots) and the real SPL fields, and has been used

extensively by Kouretes, the RoboCup team of the Technical University of Crete.

1.1 Motivation

The lack of a localization system in our team was the first motivation for constructing such a system.

1.2 Thesis Outline

Chapter 2 provides the necessary background of the ideas this thesis builds upon.

Chapter 3 discusses the problem at the RoboCup environment.

Chapter 4 introduces our approach and the algorithms that we chose.

1

Chapter 1. Introduction 2

Chapter 5 discusses the implementation and the ideas that where used.

Chapter 6 demonstrates the ability of the system to localize in the simulated field along with the real

environment.

Chapter 7 concludes this thesis with a brief summary.

Chapter 2

Background

2.1 RoboCup

The Robocup is an annual international robotics competition. The basic concept is to promote artifi-

cial intelligence and robotics research through soccer games between robots. Initial idea introduced

back in 1993 and the first official competition was held in Nagoya, Japanm in 1997. The Robocup

Competition has a long-term vision:

``By the year 2050, to develop a team of fully autonomous humanoid robots that can win against the

human world soccer champions''.

Using robotic soccer as the benchmark domain all robotic problems come to surface and thru this

competition newly proposed technologies are being tested and benchmarked potentially for use in

other domains as well. In order for a robotic team to play effective robotic soccer, various tech-

nologies have to be integrated. Technologies must address the basic problems of robotics which are

perception, cognition, action, and coordination. So, researchers around the world develop, examine

and, integrate the state-of-the-art technologies of artificial intelligence and robotic research in aiming

to solve many robotics problems.

The contest in the latest, 13th, edition (Robocup 2009 in Graz, Austria) had four major divisions,

each with a number of leagues:

2.1.1 RoboCup Soccer

The main focus of the RoboCup Soccer activities is competitive soccer. Here robots are built and

programmed in order to play autonomously or semi-autonomously, Soccer. This competition had

five leagues:

3

Chapter 2. Background 4

Figure 2.1: Kouretes playing in RoboCup2009

Standard Platform League

The RoboCup Standard Platform League (SPL) is a league, in which all teams compete with identical

robots, namely the Aldebaran Nao humanoid robots. Therefore, the teams concentrate on software

development only, while still using state-of-the-art robots. The robots operate fully autonomously,

i.e. there is no external control, neither by humans nor by computers. The soccer field is built

on a total carpet area of length 7.4m and width 5.4m, but the soccer field by itself is approximate

6m by 4m. Together with white field lines like a real soccer field there are 2 goal one in yellow

color and one in sky blue color. In latest Robocup 2009 competition only ceiling lights were used,

a significant change from previous years were the lighting conditions were changed by spot lights.

Each robotic team has it's own robots and for these robots absolutely no modifications or additions

to the robot hardware are allowed. No additional hardware is permitted including off-board sensing

or processing systems. Only the use of alternative memory sticks in replacement of the supplied

memory stick is a allowed. The robots can communicate thru wireless network but only with a

bandwidth of up to 500kbps. A game controller agent is also used in order to control the robots

state as long as the game state. In the figure 2.1.1 we can see an example of an SPL game where our

team Kouretes is playing in the field.

So for a game each team must have 3 robots, one goal keeper and two field players. A game consists

of two halfs; each half lasts for 10 minutes. Also a penalty kick shoot-out is used to determine the

outcome of a tied game when an outcome is required. There are strict rules applied by referees

during the game. If a robot does not ``obey'' these rules and performs and illegal action, is penalized

and removed for some seconds from the field. Some of these illegal actions are about pushing other

robots and grabbing the ball for an amount of time or enter its own goal area as a defender. These

rules are modified and change every year in order to fulfill the special needs of a robotic soccer.

So for the competiting teams having already solved many of the hardware problems by the robot

Chapter 2. Background 5

manufacturer, have to deal with software problems and focus on making their algorithms run in

real-time on the embedded computer system of the robot.

Small Size League

A Small Size robot soccer game takes place between two teams of five robots each. The robot, must

fit within an 180mm diameter circle and must be no higher than 15cm unless they use on-board

vision. The robots play soccer on a green carpeted field 2.2 that is 4.9m long by 3.4m wide with an

orange golf ball. Robots come in two types, those with local (on-board) vision and those with global

vision. Global vision robots, the most common variety, use an overhead camera, which is attached

to a camera bar located 4m above the playing surface. Local vision robots have their camera on-

board. The vision information is either processed on-board the robot or is transmitted to off-field PC

for processing. Typically, the off-field PC also performs most, if not all, of the processing required

for coordination and control of the robots.

Figure 2.2: A game at the small size league

Middle Size League

In the Middle Size league, two teams of up to 5 robots play soccer on an 18x12 meter indoor field

2.1.1. Each robot is equipped with sensors and an on-board computer to analyze the current game

situation and successfully play soccer. Through wireless communication they can establish inter-

team cooperation and receive all referee commands. But no external intervention by humans is

allowed, except for substitutions.

Chapter 2. Background 6

Figure 2.3: A game at the Middle Size league from RoboCup2009

Figure 2.4: KidSize robots playing at the Humanoid league

Humanoid League

The Humanoid League is one of the most dynamically progressing leagues and the one closest to the

2050 goal. In this league, autonomous robots with a human-like body plan and human-like senses

play soccer against each other. In addition to soccer competitions technical challenges take place.

The robots are divided into two size classes: KidSize 2.1.1 (30-60cm height) and TeenSize (100-

160cm height). Dynamic walking, running, and kicking the ball while maintaining balance, visual

perception of the ball, other players, and the field, self-localization, and team play are among the

many research issues investigated in this league.

Chapter 2. Background 7

Figure 2.5: A soccer game at the simulation.

Simulation League

Without the necessity to maintain any robot hardware, the RoboCup Simulation League focuses

mostly on team strategy. In the 2D Simulation League two teams of eleven autonomous software

programs (agents) each play soccer in a two-dimensional virtual soccer stadium represented by a

central server, called SoccerServer. This server knows everything about the game, i.e. the current

position of all players and the ball, the physics and so on. The game further relies on the communi-

cation between the server and each agent. On the one hand each player receives relative and noisy

input of his virtual sensors (visual, acoustic, and physical) and may on the other hand perform some

basic commands (like dashing, turning, or kicking) in order to influence its environment.

The grand challenge in the Simulation League is to determine in all possible world states (derived

from the sensor input by calculating a sight on the world as absolute and noise-free as possible)

the best possible action to execute. The 3D simulation competition increases the realism of the

simulated environment used in other simulation leagues by adding an extra dimension and more

complex physics. In 2008, the introduction of a Nao robot model to the simulation gave another

perspective to the league, since researchers could test their algorithms and ideas before trying them

on the real robots. The interest in the 3D simulation competition is growing fast and research is

slowly getting back to the design and implementation of multi-agent higher-level behaviors based

on solid low-level behavior architectures for realistic humanoid robot teams.

2.1.2 RoboCup Rescue

Disaster rescue is a challenging domain involving very large numbers of heterogeneous agents in

a hostile environment 2.1.2. The intention of the RoboCupRescue division is to promote research

and development in this significant domain on topics such as multi-agent team-work coordination,

physical robotic agents for search and rescue, information infrastructures, personal digital assistants,

standard simulator and decision support systems, evaluation benchmarks for rescue strategies and

Chapter 2. Background 8

Figure 2.6: A robot in the RoboCup rescue artificial environment.

robotic systems, and integration into comprehensive system. RoboCup Rescue is divided into the

robot and simulation leagues.

RoboCup Rescue Robot League

Robots explore a specially constructed disaster site, including mannequins with various signs of life,

such as waving hands, shouting noises, and body heat, hidden amongst stairs, platforms and building

rubble. The robots, some under human control, must find and approach the victims, identify their

signs of life and produce a map of the site showing where the victims are located. The aim is to

provide human rescuers with enough information to safely perform a rescue. Each team is scored

based on the quality of its maps, the accuracy of the victim information, and the number of victims

found.

RoboCup Rescue Simulation League

The league is composed of three competitions: the virtual robot competition, the agent competition,

and the infrastructure competition.

In a virtual robot competition run, a team of simulated robots has to explore, map and clear a block-

sized disaster area, featuring both carefully modeled indoor / outdoor environments. Robots and

sensors used in this competition closely mirror platform and devices currently used in physical

robots.

The Agent competition involves scoring competing agent coordination algorithms on different maps

of the Robocup Rescue simulation platform. The challenge in this case involves developing coordi-

nation algorithms that will enable teams of Ambulances, Police Forces, and Fire Brigades to save as

many civilians as possible and extinguish fires in a city where an earthquake has just happened.

Chapter 2. Background 9

The Infrastructure competition involves evaluating tools and simulators developed for the simulation

platform and for simulating disaster management problems in general. Here, the intent is to build

up realistic simulators and tools that could be used to enhance the basic Robocup Rescue simulator

and expand upon it.

2.1.3 Robocup@Home

RoboCup@Home is a new league inside the RoboCup competitions that focuses on real-world ap-

plications and human-machine interaction with autonomous robots. The aim is to foster the devel-

opment of useful robotic applications that can assist humans in everyday life.The ultimate scenario

is the real world itself. To build up the required technologies gradually a basic home environment

is provided as a general scenario. In Robocup 2009 the world was consisted of a living room and a

kitchen.

2.1.4 Robocup Junior

RoboCup Junior or RCJ is a project-oriented educational initiative that supports local, regional, and

international robotic events for young students up to the age of 19. It is designed to introduce

RoboCup to primary and secondary school children, as well as undergraduates who do not have the

resources to get involved in the senior leagues of RoboCup. The focus of RCJ is on education.

RCJ stands apart from other robotics programs for young students for several reasons. First, RCJ is

focused more on education than competition. Second, the RCJ challenges remain the same from

one year to the next, providing a scaffolded learning environment in which students can develop

more sophisticated solutions as they grow and expand their knowledge. Third, the RCJ challenges

-- soccer, rescue, and dance -- are familiar; spectators can watch and understand what they are

observing, without needing explanations of complicated rules. Fourth, RCJ delves more deeply into

computer science and programming due to its emphasis on autonomous robots. Fifth, RCJ sits at

the entry-level of the international RoboCup initiative, which is strongly committed to education and

involvement of young people in technology.

2.2 Kouretes Team

Kouretes is the first RoboCup team in Greece and was founded at the the Technical University of

Crete back in 2006. The team is leaded by prof. Michail G. Lagoudakis and Prof. Nikolaos Vlassis

and consist of mainly undergraduate students both from the Electronic and Computer Engineering

department, and from department of Production Engineering and Management. The team partici-

pates in the SPL league and also in the simulation. The first participation of the team was in Robocup

2006 in Bremen, Germany when still the Four-Legged Sony AIBO robots were used and participated

in the Technical Challenges. Next year the team participated also in the Four-Legged league of the

RoboCup German Open 2007 competition in Hannover, Germany and ranked in the 7th/8th place.

Chapter 2. Background 10

Figure 2.7: Kouretes at RoboCup 2009, Graz, Austria

Months later the team's participation in the MSRS Simulation Challenge at RoboCup 2007 in Atlanta

led to the placement of the team at the 2nd place worldwide. In the RoboCup 2008 in Suzhou, China

team participated and won two trophies: 1st place in the SPL-MSRS league and 3rd place in the SPL-

Nao league. In 2009 the team participated both at the RoboCup German Open 2009 competition in

Hannover and in the RoboCup 2009 in Graz, Austria in the SPL league.

2.3 Nao® the Robot

Nao is an autonomous, programmable, medium-sized humanoid robot, developed by the French

company Aldebaran Robotics, a start-up headquartered in Paris, after 3 years of research[1]. The first

version ``V1'' of the robot was deployed only for academic use and with special offers for robocup

teams in the first quarter of 2008. Some months later a better version of the Robot, named ``V2''

replaced the too fragile first version. In Robocup 2008 that version was used however there were still

many weakness to the robot structure leading to many broken robots. Eventually ``V3'' version that

was released in first quarter of 2009 and the company replaced the old version, overcame many of

the primary problems. The new robots were very solid and strong and were used to all competitions

in 2009.

Nao is a unique combination of hardware and software in a modern design. Nao stands tall in all

points amongst its robotic brethren. The hardware has been built from the ground up with the latest

technologies and features a large number of precise actuators and wide range of sensors. Nao is a

Chapter 2. Background 11

Figure 2.8: Nao V3 Academic Edition

58 cm (23") tall biped robot and weights about 4.3 kgs. The limited Robocup edition has 21 degrees

of freedom. It carries a tiny computer using a x86 AMD Geode 500MHz CPU with 256 mb SDRAM

and for storage a 2 GB usb flash memory module. The OS that comes with is Embedded Linux (32

bit x86 ELF) OS using a custom OpenEmbedded based distribution. The robot is powered by a 6-cell

lithium-Ion battery pack giving about 90 minutes of power. For connectivity both wired and wireless

adapters are provided.

Nao is full of sensors. In the head of the nao there are two CMOS digital cameras mounted. Their

maximum resolution is 640x480 at a frame rate of 30 fps. Also 2 speakers and 2 microphones are

mounted at the ears of the robot. Additionally 4 ultrasound sensors exist in the front side of the

chest in order to detect obstacles. There are also a 2 axis gyrometer and a 3 axis accelerometer in

the chest of the robot. In each foot there is an array of force sensitive resistors giving information

about the pressure that is applied to the feet. Bumper at the end of the feet are provided to detect

small collisions. Besides all these there are 21 strong variable force motors provide enough power

in order to make the robot move naturally. In each of these joints there are position sensors for

tracking the exact position of the joint.

Nao can be programmed and controlled using Linux, Windows or Mac OS and comes with complete

Chapter 2. Background 12

software and documentation. Apart from the robot hardware, Aldebaran robotics provides a pro-

gramming framework, called NaoQi. This is also a middleware that runs on the robot and controls

the low level systems and also making safety checks. Naoqi provides low level API to access the

robotic hardware, control the joint and retrieve real time time information from the sensors. In addi-

tion there is high level API which allows users to make Nao walk and balance. Naoqi is a distributed

environment witch allows parallel, sequential or event driven execution.

2.4 Probabilistic Robotics

In modern robotics probabilistic methods are used to reduce the uncertainty of complex non-linear

systems. State estimationmethods are used to discover the distribution that describes the position of

the robot in the environment. As state we assume the triplet (x, y, θ) where x, y are the coordinates

in the field and θ is the orientation of the robot. That state changes as the robot moves and must be

updated and corrected. The Bayesean approach provides the mathematical tools needed to address

that problem. More specifically, the Bayes filtering can solve the problem of estimating the state of

the system using sensor measurements in an optimum way. The concept behind Bayesean filtering

is to estimate recursively the probability of the state using date collect by the sensors and information

about the actions taken by the robot that change the state on purpose. The filtering is performed at

each time step using data about the last actions performed at and the most recent observation zt.

The posterior at a time t is called belief and is defined by:

Bel(xt) = p(xt | at−1, zt,a0, z0)

We assume that the dynamic system is Markovian, the observations and the actions are independent

of past measurements and actions given the current state. Using this assumption the posterior can

be found following two rules. A prediction rule and an update rule. When the robot performs an

action the state of the system is predicted recursively according to

Bel(xt) =
∫

p(xt | xt−1, at−1)Bel(xt−1)dxt−1

whereas an observation zt is made, the state is updated according to

Bel(xt) = a

∫
p(zt | xt)Bel(xt)dxt

where a is a normalizing constant that makes the belief to sum up to one. The Bayesian filter is an

abstract concept and provides a probabilistic framework for recursive state estimation. To implement

Bayes filters, one has to specify the probability distributions p(xt | xt−1, at−1) and p(zt | xt) to

describe the stochastic transition and observation model of the system.

Chapter 2. Background 13

2.4.1 Particles Filter

A sample-based approach is to represent belief by sets of samples or particles. The key advantage of

particle filters is their ability to represent arbitrary probability densities. These types of filters have

shown to converge to the true posterior even in non-Gaussian, non-linear dynamic systems. They

are very efficcient since they focus their resources, the particles, on regions with high likelihood. In

the figure 2.9 is a particle representation used by particle filters [2]. The lower right graph shows

samples drawn from a Gaussian random variable, X. These samples are passed through the nonlinear

function shown in the upper right graph. The resulting samples (particles) are distributed according

to the random variable Y. More specific the belief Bel(xt) is represented by a set St of N weighted

samples distributed according to Bel(xt):

St = {〈x(i)
t , w

(i)
t 〉 | i = 1, . . . , N}

Each xi
t is the state and the wi

t is the non-negative importance weight, witch sum up to one. The

basic form of the particle filter realize the recursive bayes filter according to a sampling procedure

refered as Sampling Importance Resampling (SIR)[3].

Figure 2.9: The ``particle'' representation used by particle filters.

Chapter 2. Background 14

Chapter 3

Problem statement

3.1 Localization Types

Perception is the process by which a robot maps sensor measurements into internal representations

of the environment. Localization is one of the most pervasive perception problems in robotics.

The localization problem can be categorized in three categories of increasing difficulty. First is the

tracking problem, where the initial position of the robot is known and the goal is to track the position

of the robot as it moves. More difficult is the global localization problem in which the initial robot

position is unknown. Finally, the most difficult, but also common in Robocup, is the kidnapping

problem, where the robot may be removed and replaced at a random position without any notice

and without being informed of the relocation.

The robot has to localize itself using sensor data. In our problem sensor data consist of information

about landmarks of the environment. Sensor data represents the relative distance and angle the

robots camera observes a landmark. Using this info and the exact position of the landmarks in the

field we try to localize the robot.

3.2 The need of Localization in SPL

In the SPL league robots can play without localization, as long as they do not collide with other robots.

In the latest Robocup games there were good teams that they were scoring goals easily using the

simple rule: align ball to the opponent's goal and kick. But, in practice such simple approaches

cannot lead to effective play, as there are more problems that must be solved.

First, the robots must not leave the field, because, when they do so, they are penalized for 30 seconds

and are removed from the field. In addition, the robots must not enter their own goal areas, except

for the goalie defending the team's goal. When other defending robots enter the area, according

to the Illegal Defender Rule, they are penalized and removed from the field for 30 seconds. Also,

the goalie must not leave the goal area, because he is penalized in the same way. This penalty is

15

Chapter 3. Problem statement 16

called the ``Standard Removal Penalty'' and after these 30 seconds pass, an assistant referee places

the robot back in the field at the halfway line as close to the sideline as possible on the side of the

field farthest from the ball with the robot facing the opposite sideline. So, if a goalie is penalized for

some reason, he will be placed away from his goal and he has to find a way to return to its goal as

soon as possible. It becomes clear that a robot without localization will be penalized most of the

time. Furthermore, a penalized goalie will be unable to return to his goal without localization.

Second, there are two ways for initial robot placement in the field before kick-off: autonomous

placement and manual placement. In the autonomous placement the robots have a maximum of 30

seconds to reach their initial position on their own. The robots that are autonomously placed in legal

positions have the opportunity to be much closer to the ball resulting in a significant advantage over

manually placed robots. Apparently, autonomous placement cannot succeed without localization.

Third, having accurate localization gives a team the ability to develop more complex strategies and

use formations through comminucation of their current position at all times. Skills, such as passing

the ball to a teammate or kicking towards the opponent goal, are greatly facilitated in this case,

as there is no need for direct observation of the teammate or the opponent goal. Teams without

localization are doomed to using simple, non-sophisticated team strategies.

3.3 Environment Specification

In the robotic soccer, the robots are playing soccer in specialized soccer fields. The SPL field is 4m

wide and 6m long. There are two goals in the field, one in yellow color and one in sky blue color

with known dimensions (width 1.4m and height 0.8m). In addition, field lines exist in the field and

they represent some areas of special interest. Apart from the field limits rectangle, there are two

small goal areas one in front of each goal, one center circle, the middle line, and two spot (penalty

kick) points, all with known positions and dimensions in mm as shown in Figure 3.3.

A robot is successfuly localized in the SPL field if it knows its coordinates (x, y) and its orientation θ.

Therefore, the variables we need to track for localization are (x, y, θ). Looking the field from above

we define as the coordinate center point (0, 0) the center of the center circle of the field, as axis x

the straight line that passes through the centers of the goal with positive side the side of the yellow

goal, as axis y the vertical line that passes longwise the middle line, and as orientation θ = 0 when

the robot's chest is facing the yellow goal. This coordinate system is shown in Figure 3.3.

3.4 Probabilistic Localization Essential Ingredients

In order to develop a probabilistic approach to solve the localization problem, we have to derive an

observation model and amotion model. The observation model will provide the distribution p(z | x̄)

of the observation z with respect to the current location of the robot x̄ = (x, y, θ). The motion model

will provide the distribution p(x̄t | x̄t−1, a) that describes the resulting location x̄t = (xt, yt, θt) of

the robot, with respect to the action a executed in the current location x̄t−1.

Chapter 3. Problem statement 17

Figure 3.1: Scale diagram of the entire SPL field.

1400

6

10
0

400

40
0

800

50

Figure 3.2: Dimensions of the SPL goals (top and side view).

3.5 Our problem

Our goal is to find a sound method for localization in the SPL field. Towards this end, we divide the

problem in three stages:

� Object recognition and motion library. Even though this is not directly related to localization,

Chapter 3. Problem statement 18

Figure 3.3: Our Field Coordinate system.

we need at least a basic object recognition module and a library of basic locomotion actions.

The object recognition module process the camera images and returns the type of landmark

recognized and the estimated distance and bearing to that landmark. The motion library needs

to include motions for walking forward and for turning left and right.

� Extraction of observation and motion models. Probabilistic approaches to localization need

these two models, which depend on the abilities and the accuracy of the object recognition

model and the motion library, but also on robot and environment characteristics (surface

frictions, area illumination, motor strength, etc.). Therefore, we need a systematic way of

extracting the observation and motion model in any circumstance.

� Localization. This is the core problem of tracking the location of the robot (x, y, θ) at all times

given the actions executed and the observations perceived and using the observation and

motion models.

3.6 Related Work

All around the world there are many publications about self-localization. We will focus mainly in

the Robocup community were the problem that has to be solved is the same as ours. This year in

Chapter 3. Problem statement 19

the SPL league at RoboCup 2009, there were 25 teams participating many of them participating for

their first time. Some teams were having localization techniques in their attempt to play effectively

soccer. Regarding their team description papers team use many localization techniques and different

approaches. Basically most of the teams use particle filters and a smaller group uses kalman filters.

Bellow we will see the Localization approaches of some of the teams:

� TT-UT Austin Villa 2009 [?] from the University of Texas at Austin. They have used Monte

Carlo Localization technique with Negative Information. Also they can recognize field lines

and use them in addition to the other features of the field. The negative information is used

to update the particles even if an observation of a landmark is expected but not seen. This

is very useful in the field environment were the number of features is small. To improve this

this year have developed a line observation technique and incorporated line observations into

the algorithm using the distance and heading to the nearest point of the line.

� Nao Devils[?] from the Robotics Research Institute, TU Dortmund University, Germany.

This team took the second place at the Robocup 2009 competition in the SPL league. They

have developed a vision-basedMonte Carlo localization system and an approach to detect field

features without using artificial landmarks. They made use of cooperative world modeling and

localization on concepts based on multi-robot SLAM. In addition the use probabilistic physics

simulation and estimation to improve the robot's state estimation and odometry information.

Figure 3.4: Nao Team Devils Observation and Particle filter Localization

� TJark[?] from the Robot and Intelligent System Laboratory Tongji University. Their localiza-

tion part is based on Monte Carlo Localization and Kalman filter. The self-locator of robot is

based on Monte Carlo Localization, while the ball locator is based on Kalman filter. For MCL

method, the support that it’s more robust to observation error and systematic error. One of

their research on localization is how to adopt lines information into their MCL self locator,

including the line crossings and line fragments. However, objects such as line crossings are

actually non-unique, and bring a matching problem. They have tried several approaches, and

one of them is to apply a Unique Landmark Memory Map(ULMM). They try thru historical

observation information to discriminate the non-unique landmarks. The basic idea of this ap-

proach is that the robot position and the selected crossing under certain observation should

Chapter 3. Problem statement 20

match with the short-term unique landmarks observation memory. They are implementing

this approach through two ways: one is to use objects relationship and select the correct

crossings by a decision tree; another is a Bayesian evaluation, selecting the best crossing to

maximum a possibility function. Currently they are still working on evaluating which method

is better.

� Cerberus 2009[?] from the Department of Computer Engineering, Turkey. This employs a

vision based Monte Carlo Localization (MCL) system. They use MCL with a set of practical

extensions (X-MCL). The first extension is to overcome problems and compensate for errors

in sensor readings and is using inter-percept distance as a similarity measure in addition to the

distances and orientations of individual percepts. Another extension they use is the number

of perceived objects to adjust confidences of particles. They calculate the confidence that is

reduced when the number of perceived objects is small and increased when the number of

percepts is high. Since the overall confidence of a particle is calculated as the multiplication of

likelihoods of individual perceptions, this adjustment prevents a particle from being assigned

with a smaller confidence value calculated from a cascade of highly confident perceptions

where a single perception with lower confidence would have a higher confidence value. In

addition to that their third extension is related with the resampling phase where the number of

particles in successor sample set is determined proportional to the last calculated confidence

of the estimated pose. Finally, their window size in which the particles are spread into is

inversely proportional to the confidence of estimated pose 3.6.

Figure 3.5: Belief state of the robot in Cerberus MCL algorithm

� B-Human[?] from the University of Bremen, Germany. Thats the winner team in the SPL

league at the RoboCup 2009. Comming from the humanoid league andwith a lot of experience

they have made the most complete system among the teams. For self-localization, B-Human

uses a vision-based particle filter based on the Monte Carlo method as it is a proven approach

to provide accurate results in such an environment. Additionally, their algorithm is able to

deal with the kidnaped robot problem, which often occurs in RoboCup scenarios. For a faster

re-establishment of a reasonable position estimate after a kidnaping, they have implemented

the Augmented MCL approach. In the figure 3.6 is an illustration of their particle-based rep-

resentation of the robot pose and the ball position and velocity. Each gray box denotes one

possible pose of the robot; light boxes are more likely than dark boxes. The black box shows

Chapter 3. Problem statement 21

the resulting robot pose from the filter. The dots with arrows describe the ball samples (de-

scribing position and velocity of a ball). The orange one is the resulting ball estimate.

Figure 3.6: B-Human particle filters approach

� SPQR [?]fromDepartment of Computer and System Sciences University of Rome "La Sapienza'',

Italy. Their approach to localization uses a probabilistic technique based on particle filters.

They have compared different solutions based on particle filters, investigating the use of two

different strategies: the well known Sample Importance Resampling (SIR) filter, and the Auxil-

iary Variable Particle filter (APF). As a result of the experiments performed, they have detected

situations where one strategy is better than the other as well as hints about the use of sensor

resetting, that is common in this kind of implementations.

For the Nao robots, they have integrated in the localization technique information about the

game state (or in general about the task state), aiming at choosing the localization strategy

and parameter setting that are more suitable for the current situation. Their Localization is

based on perception of known landmarks: goal poles, lines and corners, for which different

sensor models are used in the particle filter implementation. Moreover they are developing

more sophisticated mechanism in proposal selection of Particle Filter algorithm that use the

result from a Kalman Filter. The aim of this is to use a more informative distribution rather

than approaches from previous years.

� NAO-Team Humboldt 2009 [?]the RoboCup NAO Team of Humboldt-University of Berlin.

Their work on localization is quite interesting. They have developed two different methods

for self�localization: monte-carlo localization based on particle filter and a constraint self-

localization method. In the first method they have use a random set of particles in the field

to describe the robot's position. Then they update the particles based on distance and angle

measurements from recognized objects, after they resample the particles population. Next

they calculate the largest cluster of particles and for that reason they draw a grid over the

field and calculate the number of particles in each grid cell. From the cell with the highest

amount of particles the average of the coordinates of particles is calculated resulting in the

most possible robot's position estimation. In figure 3.6 we can see in the left image the greed

over the particles estimation, and right the estimated robot's position. They noticed that

the largest cluster jumps occasionally to adjacent cells. So If there other cells having nearly

number of particles as the largest one then they draw again a new grid shifted by 50 percent

Chapter 3. Problem statement 22

regarding the first one. Then they locate the largest cluster in both grids and calculate the

average of the particles. This resulted in a dramatic reduction in the possibility of the largest

cluster jumping between the grid cells.

Figure 3.7: Team Humboldt's Particles Filter.

Their second method was a constraint based localization approach using instead of particles,

constraint functions. They consider percepts from flags, goals and from lines. The shape of

the constraint is determined by the kind of sensor data and expected sensor noise, which is

dependent from the percept distance. After having generated all constraints, they propagate

the constraints with each other as long as there are no more constraints or the resulting

solution space becomes empty. The position belief of the robot is stored in form of constraints

as well and propagated with the sensory constraints as well. If, for some steps, the belief

doesn’t fit to the sensory constraints, or even if no new sensory data are available, the belief

constraint boarders are increased at first. If sensory data remain inconsistent, they reset the

belief to the sensor data constraints. In figure 3.6 we can see the constraints, generated from

percepts (pictures show the algorithm on an Aibo field). In the left a circular constraint as

generated from flag percepts and right a line constraint, generated from line percepts.

Figure 3.8: Team Humboldt's constraint based localization approach

� The Northern Bites 2009 [?]from the Department of Computer Science Bowdoin College,

Brunswick, USA. They are based on the bearings and distances to vision percepts, and their

robots localize their position on the field using an Extended Kalman Filter (EKF), which models

the robot’s x, y position on the field, as well as the robot’s heading. Though they experimented

with a particle filter to improve our ability to localize from ambiguous data such as unidentified

Chapter 3. Problem statement 23

line intersections, they found that the limited processor of the Nao was not fast enough to

achieve the desired number of particles. In addition to modeling the robot’s location, the EKF

also models the position of the ball on the field, using both locally measured vision percepts,

as well as teammate ball reports.

Chapter 4

The proposed approach

4.1 Motion Modeling

As the robotmoves in the field, wemust find away to describe it's motion. Because of the uncertainty

of the motion in the real world the position that the robot will be after it's motion is unknown. We

came up with a probabilistic kinematic model, or motion model that will describe the transition

model of the motion. The model describes the posterior distribution over kinematic states that a

robot assume when executing a motion action. This distribution is described in our method by

samples, the particles. So in simple words this model describes the way the particles will be after

a motion, therefore the possible position of the robot.That model includes information about the

distance the direction, and the orientation (ρ, θ, φ) at which the robot will be after a motion regarding

with respect to the previous pose.

Because the robots locomotion actions can be almost omni-directional and wanting to reduce the

number of different walking motions and to ease the problem we quantize these motions into steps.

So in this problem a walking motion is described by its name (walk straight, turn, side step) and the

number of steps that will be executed. Negative number of steps indicate motion in the opposite

direction.

Instead of using a velocity motion model we selected the odometry motion model, because our

robots locomotion velocity is slow. So in order to extract our odometry motion model several rep-

etitions of a number of the above walking motions were performed. Initially the best way to extract

the exact position of the robot before and after the motion is to use the robot in a simulated envi-

ronment, in our case in Webots Robotic Simulator[4]. From the simulator it was possible to retrieve

the exact position and orientation of the robot in the simulated robotic field. As long as we could

retrieve initial and final position and orientation, distance and direction of the motion was extracted.

The distance ρ was calculated using the Euclidean distance between these points and the direction

φ using a variation of the arctangent function, the two-argument function atan2 to find the direction

from one point to the other. The rotation θ was calculated by the minimum difference of the angles,

before and after. Because of the uncertainty of the motion the results were noisy.

25

Chapter 4. The proposed approach 26

To model these distributions three basic common distributions were examined. A univariate Gaus-

sian distribution with two parameters of mean and deviation, a mixture of Gaussian using four pa-

rameters and a Multivariate Gaussian distribution. Experimental results shown that the simplest

univariate Gaussian distribution is enough to represent the robots motion model, quite well simple

and fast.

So the motion model describes the distance, the direction, and the orientation after action relative

to previous pose as following:

ρ̂ = dρ + N(Mρ, σρ)

φ̂ = dφ + N(Mφ, σφ)

θ̂ = dθ + N(Mθ, σθ)

(4.1)

And a probable pose after that motion using the above is:
x′

y′

θ′

 =


x + ρ̂ cos(φ̂ + θ)

y + ρ̂ sin(φ + θ)

θ̂ + θ

 (4.2)

4.2 Observation Modeling

In many robotics applications, features correspond to distinct objects in the physical world. In

robotics, those physical objects are also called landmarks. The most common model for processing

landmarks assumes that the sensor can measure the range and the bearing of the landmark relative

to the robot. The observation model describes the probability of a measurement to be accurate or

not. Generally we try to model the error of the measurements.

In the beggining in the simulation we described the error of the measurements only by a deviation

factor. The idea was simple. When we are close to a landmark the observation error is small and

when we are away is big. The deviation was variable based on the distance from a landmark.

However when finally we had data from real observations the error could not described by this

simple model. So in the end we modeled the error by fitting an line equation to the error in order

to describe the systematic error and the absolute difference that the error had from that line we

considered it as the deviation of the error.

4.3 Localization

We tried to solve the localization problem in the robocup field with the help of a probabilistic method.

The Monte Carlo Localization method [2, 5--7] using particles was the one that we examined. Par-

ticles are being used to represent the probable position (x, y) and orientation (θ), or else in one

word the pose (x, y, θ) of the robot inside the field. The basis of the method is to construct a sample

based representation of the probability distributions function using particles. More specifically these

Chapter 4. The proposed approach 27

particles are being used as samples of an unknown distribution represent the probability distribution

of the robot. This distribution is unknown, is non-Gaussian, basically because of our system's com-

plexity and uncertainties. When an action is taken the pose of the robots is changing according to

some model. Moreover when an observation arrives that constrains the possible pose of the robot

in the field.

4.3.1 SIR Localization

The basic SIR algorithm [3] that was used is divided in three stages:

� Prediction Stage: In this stage we try to predict the probability distribution of the pose of

the moving robot after a motion, modeling the effect of noise of the action. The particles are

modified according to a model that describes the motion, including the addition of noise in

order to simulate the effect of noise in the real world.

� Update Stage: Use of observation info to estimate the position of the robot after the motion.

Basically weighting the population of the propagated particles using measured data about

recognized features of the field extracted from camera images. This will result with particles

with high weight in a position that is constraint by the measurements and will minimize the

weight of the other particles.

� Resampling: In this stage we resample the particles population according to their weight.

We draw with replacement particles from the distribution created by weighting the particles

at the previous stage. The probability of drawing each particle is given by its importance

weight. Resample transforms a particle set of the particles into another set of the same size,

but with different distribution. Whereas before the particles were distributed according to a

belief, after the resampling they are distributed according to a posterior belief.

Algorithm 1 SIR particle filter algorithm

Input: action a, observation z, a set of particles S = [xi, wi : i = 1 . . . N]
Output: updated particles Ŝ

For i = 1 . . . N { Prediction after motion a }
x̂i = predict(xi, a)

End For
For i = 1 . . . N { Update using observation z }

wi = Update(xi, z)
End For
a = 1PN

i=1 wi
{ Normalize weights }

For i = 1 . . . N
ŵi = a · wi

End For
Index = Resample(w1, w2 . . . wN) { Resample particles population }
Ŝ = S(Index) { Propagate particles according to the index }

Chapter 4. The proposed approach 28

4.3.2 AUXiliary filter

Based on the simple SIR algorithm the auxiliary particle filter [8, 9] uses exactly the same stages but

in a different way. The initial particles set is duplicated and is processed thru prediction and update

stages. But in the third stage of resampling the algorithm resamples from the initially population

using the importance weights of the second weighted population. As a result the initially particles

population is filtered and cleaned from particles that would finally end up in regions of low proba-

bility, whereas regions of high probability are strengthened with more particles. After that the new

particles population continues as input the SIR algorithm.

Algorithm 2 AUXiliary particle filter algorithm

Input: action a, observation z, a set of particles S = [xi, wi : i = 1 . . . N]
Output: updated particles Ŝ
Local: S′ = [x′

i, w
′
i : i = 1 . . . N] a second set of particles

For i = 1 . . . N { Prediction after motion a }
x′

i = predict(xi, a)
End For
For i = 1 . . . N { Update using observation z }

ywi = Update(x′
i, z)

End For
a = 1PN

i=1 w′
i

{ Normalize weights }
For i = 1 . . . N

ŵ′
i = a · ywi

End For
For i = 1 . . . N { Normalize weights }

ŵ′
i = w′

iPN
i=1 w′

i

End For

Index = Resample(w′
1, w

′
2 . . . w′

N) { Resample weights from AUX particles }
Si = Si(Index) { Propagate S set particles according to the index }

For i = 1 . . . N { Prediction after motion a }
x̂i = predict(xi, a)

End For
For i = 1 . . . N { Update using observation z }

wi = Update(xi, z)
End For
a = 1PN

i=1 wi
{ Normalize weights }

For i = 1 . . . N
ŵi = a · wi

End For

Index = Resample(w1, w2 . . . wN) { Resample particles population }
Ŝ = S(Index) { Propagate particles according to the index}

Chapter 4. The proposed approach 29

Prediction

So having the above motion model it was possible to predict the robots pose after some movements

in the field. But as it can be seen it the figure . . . after some movements the uncertainty of the robots

position grows unbounded. Even if the starting position could be known the end position will be

finally unknown. Here is where the next stage of update comes.

Algorithm 3 Robot translation with noise

Input: action a, observation z, a set of particles S = [pi{x, y, φ}, wi : i = 1 . . . N]

Motion Model
Translation distance ρ(a), ρ(a)error, σ(a)ρerror

Translation direction θ(a), θ(a)error, σ(a)θerror

Rotation Φ(a), Φ(a)error, σ(a)Φerror

Output: updated particles Ŝ
For i = 1 . . . N { For each particle }

Etrs = ρ + N(ρerror, σρ)
Edir = θ + N(θerror, σθ)
xi = xi + cos(Edir + φi) ∗ Etrs

yi = yi + sin(Edir + φi) ∗ Etrs

φi = φi + Φ + N(Φerror, σΦ)
wi = 1

N
End For

Update - Particles Weighting

In order to reduce the growing uncertainty of the particles, observations are used to evaluate each

of the particles. In our approach observations of known landmarks in the robotic field are being

used. As it will be described later the recognized field's landmarks are the blue and yellow goals of

the field, whole or only their goal posts. The observations consist of information about the distance

from a landmark and the angle, according to the robots chest direction, that was recognized. That

angle is also known as bearing angle.

The basic idea behind of the update is that we compare the particles data with the observation data.

The most a particle ``fits'' with the observation measurements the more probable it becomes to be

the robots position. Even hear because of the noisy feature of the observation measurements we also

model them and thats our observation model. To model the measurements noise two parameters

were used to describe the deviation of the noise in distance and bearing respectively.

The weighting function consist of the product of three simple probability functions. In the first

function the each particle is weighted according to the distance from a landmark. Assuming ρ is the

measurement of distance between robot and landmark and σρ is the deviation of the measurement,

ρi is the distance the particle has from the same landmark. The function is:

P (xt+1
i | xt

i, ρ) =
1√
2πσρ

e
−(ρi−ρ)2

2σ2
ρ (4.3)

Chapter 4. The proposed approach 30

The second function we compare the bearing of the particles with the angle that was measured. The

bearing of the particle θi is being calculated using the atan2 function and like above the function is:

P (xt+1
i | xt

i, θ) =
1√

2πσθ
e

−(θi−θ)2

2σ2
θ (4.4)

The third and last function that was used weight the particles according to the visibility of each

landmark. Even if the field of view of the robot in the horizontal level is about 40 degrees the head

of the robot is movable able to scan at a range of 240 degrees in a search for landmarks. But also

there is a blank range that cannot be observed in the back of the robot. So for each particle we

examine the visibility of a landmark in a position. With these probability we examine the event of

being in some positions inside the field were some landmarks are not visible and also we can model

the ability of the observation stage in recognizing landmarks.

Wanting to improve our filtering system we also use negative information filtering. We assume that

if a observed landmark is not visible by a particle's pose then this particle probably is not correct.

So we filter our particles additionally with the next probabilities:

V = Feature V isible

O = Feature Observed

P (O | V̄), P (Ō | V̄)

P (O | V) = 1 − P (O | V̄)

P (Ō | V) = 1 − P (Ō | V̄)

(4.5)

The final product know as the importance weight is being calculated using the above:

P (xt+1
i | xt

i, ρ, θ, V) =
1√
2πσρ

e
−(ρi−ρ)2

2σ2
ρ

1√
2πσθ

e
−(θi−θ)2

2σ2
θ P (Ot+1 | Vt+1) (4.6)

Resampling - Propagation

Having weighted the particles population it is necessary to wipe out the particles that have low

weight and keep particles that fit better in the distribution, in order to be represent the distribution.

In this procedure a new population of particles is being produced using samples from the original.

The probability of choosing each particle it is given by it's weight. So the distribution of the particles

changes from the original belief to the posterior bel(xt+1) = P (xt+1
i | xt

i, ρ, θ, V)bel(xt) after the

resampling. The purpose of this procedure is to force the particles limited population to posterior

belief. If resampling stage was missing the particles will finally end up in regions of low probabil-

ity thus their population will not represent either approximate the posterior belief. The resulting

particles population possesses many duplicates because the particles are drawn with replacement.

Chapter 4. The proposed approach 31

4.3.3 Other Techniques

Besides the basic algorithm that was used some helpfull techniques were also used.

Random Particles

When the algorithm accidentally discard all particles and moves them away from the correct pose

then injecting random particles is one solution to overcome that problem. The number of the injected

particles can be variable and also the deviation of the particles spread. Also in a kidnaping problem

when the position of the robot is changed radically the particles population that was initially focused

in a area near the previous position will eventually die because the observation will extirpate the

particles weight. Then spreading some of the particles all over the field probable will reach a position

when they will survive. So in the next update circle and resample we particles will grow near the

correct position. Also with this technique with smaller spread noise is helping the system when

the orientation of the particles is not correct. Witch mean that the particles will be propagated in a

wrong direction and finally will lose their weight. But spreading some particles near and also putting

some noise to the rotation angle solves that problem.

Particles from observation

Another technique to enrich the particles population with particles that most probable are in the

correct position is to create particles that fit in the observation data. This is done in a simple way.

A grid scan is deployed in the field. In each of the points of the grid for different orientation the

weighting procedure is done. Then that particle goes in a ordered set. In the end the best of these

particles are inserted into the particles population. This trick can also help in the kidnaping problem

meaning that the particles population will grow near a good position.

4.4 Visual Feature Extraction - Observation

The basic sensing system of the Nao robot usable to the Observation is the imaging sensor or more

common the head-mounted camera's. After image processing the camera sensing system is used

for extracting range and bearing measurement of field's visual features. As visual features of the

field are some physical and known object landmarks. The measures include info about the range

and the bearing of a recognized landmark relative to the sensor, or in this case the robot itself. The

landmarks that were used are the field's goal posts and the goals generally. The goals are painted

blue or better sky-blue and yellow and can be easily separated from the environment.

Initially the camera is used to capture images from the environment. The camera sensor has small

field of view 58 degrees diagonal and 46.4 degrees horizontal so the visible environment is limited.

To overcome that problem and expand the range of the sensing system the robots head motion

system has been used, able to turn 240 degrees from one to the other side. Thus the total horizontal

Chapter 4. The proposed approach 32

range of sensing became 286.4 degrees including the 46.4 horizontal field of view of the camera. In

the head scanning procedure that was followed in each head pose captured images were processed.

Computer vision helped in the processing of camera images. Color segmentation method was used

to segment feature colors from the environment. These were also the color segmentation method

also used by Kouretes team in latest Robocup events. In order to have the better possible observation

a color focusing method was used. At first an image is being captured using the naoqi framework to

access the camera. After that image is scanned in a grid searching for a specific color. If the amount

of pixels that have been found having that color is above a threshold then the center of these pixels

is being calculated and also the divergence of them to the image center. Knowing the divergence of

them to the image center horizontally and vertically a tracking method was used trying to turn the

image in order to center the observed landmark. This focusing steps were repeated few times and

in 3 to 5 repetitions the landmark was focused.

Having basically the goals focused in the camera image the next stage was started. In these stage

measurements about the distance from a goal post and also the bearing from it are being extracted.

The calculation of these measurement from the captured image is quite simple. The key idea behind

the distance calculation method to use the triangle that is shaped beginning from the camera sensor

in the head of the robot to the lower point of the goalpost end in the feet of the robot. In that triangle

the robots feet are in the same level with the base of the goal posts. The height of the robot can

be found in every configuration using naoqi framework. Then the angle between the robot's body

and the straight line from the camera sensor to the base of the camera can be calculated using 2

angles. The known pitch angle of the robots head and the angle as a part of the camera's field of

view. Because the first angle, the head pitch, is aligned with the center of the camera, it is essential

to add the angle that forms in the captured image. This angle is a part of the vertical field of view and

is calculated using the number of pixels from the end of the goalpost's base in divergence of image's

center and translating this to an angle as saw in figure Then using trigonometry and specifically

the tangent of the above angle and the robot's height it is straight forward to calculate the distance

to the goalpost.

Experimental results initially in the webots simulation environment shown satisfactory results. Al-

though theoretically the results should be accurate the

Chapter 5

Implementation

In theory algorithms seems to work but in practice they have to be implemented and also tested.

For this purpose functions and classes were programmed. Being the robot the final destination of

this implementation the programming language C++ was chosen being the optimum choice from

the available of the Naoqi platforms SDK. In addition python scripts were also used to control the

behavior of the robot and make remote calls to module's functions. For extracting statistical data and

preliminary algorithms evaluation matlab code had also been written. This mathematic tool gave us

the ability to visualize with plots the numerous variables and evaluate procedures.

In the beginning the localization attempt was written in matlab scripts. The algorithm was imple-

mented quite fast and easy and gave the first positive results. The whole project was divided in two

main parts. The Localization part and the Vision - features extraction part. For these parts modules

were made for the naoqi platform having final goal to be executed inside the robot. For debugging

purposes the modules were build in remote mode as separated executables. However the built

mode can easily change and instead of executable, libraries can be built.

As modules are considered the Naoqi Modules. These are initially generated by a program called

module generator provided by the Naoqi SDK. The module generator generates code structures and

base c++ files needed to communicate with the naoqi. Module generator generates projects with

code structures and base c++ files. From the generate project two possible binaries can derive: an

executable that can connect the naoqi server, or a library that can link to the main executable (add

it in autoload.ini). Module generator manages the links and paths, so that you programmer really

focuses on the functionalities. In order the modules api to be accessible from the outside method

must be bounded because only these methods can be called by another module.

Below will be explained the programming structure that was followed.

5.1 Localization

A basic class was generated to include themethods needed for the localization. That class was named

KLocalization. Firstly some helping structures were also made in order to organize the amount of

33

Chapter 5. Implementation 34

variable needed by the MCL algorithms.

A structure was made to keep a particles data. It consist of four double variable two for the x, y

position the orientation of the robot and on last to store the weight of the particle. A compare

operator was made to make possible to compare the particles based on their weight, something that

is needed by other methods. But because of the particles are usually processed in vectors or only

the weight's of the set is needed, for example in the resample stage, another structure was created

having only pointers to double arrays and one integer to keep the size of the arrays. These structures

are name partcl and parts respectively. Also a belief structure was made having almost the same

data but for other purpose.

For the features of the environment a structure called also feature was made to storage the position

of a landmark as two doubles and it's signature as a string.

Furthermore some other structures were made for keeping the models. A basic usefull type name

RandVar was made to help the organization of statistical data. It includes three double variable,

one to store a value and the other two describing its mean error and the deviation of this error

respectively.

For the Motion model a structure was made (KMotionModel) having a sting name an integer about

the number of robots steps and three randvar variable named Distance Direction and Rotation. Lastly

the Observation model held in a structure (KObservationModel) with one feature type variable for

the recognized landmark and two randvar variable for the Distance and the Bearing.

The KLocalization class also has variables. The basic are the Particles population and a second one

for the auxiliary particle filter. For keeping all the motion modeling data a map of string to vector

of KObservationModel structures was used. Another map for the Features was used with string to

KObservationModel structures pairs. Strings were used as a signatures and also as keys to make

easier the accessing to models data.

The Whole localization system consists of several functions. We will try to focus more into the

localization circle functions but also explain and describe the purpose and the use of the other

functions.

Looking from the beginning an initialization function programmed to initialize any Klocalization in-

stance. In that function several initialization where made. Here was where the features of the envi-

ronment were pushed into the features map. Also the particles were initialized with initial positions

uniformly distributed in the field. For extracting random variable the newran library was used.

5.1.1 Motion Model in XML

Furthermore the motion model data were loaded using another function. That function (LoadMo-

tionModelXML) reads from an xml the statistical data and loads them to the map for the motion

model. The tinyxml library was used to load the data. Additionally for these loading process a small

number of functions were made and they exist in the Kxmlutil.h file. These are basically tinyxml

Chapter 5. Implementation 35

example . . . ref . . . functions for reading elements and attributes using tinyxml functions. Some of

them were changed to extract randvar structures from the attributes of the xml elements.

The xml file must have the following structure.

<?xml vers ion = " 1 . 0 " ? >

<Walk> S t r

<NumOFSteps_5>

<Distance Val = " 30 " Emean= " 4 .1245 " EDev= " 0 .0180 " / >

<Direc t i on Val = " 0 . 0 " Emean= " -0 . 0086 " EDev= " 0 .0006 " / >

<Rotat ion Val = " 0 . 0 " Emean= " -0 . 0006 " EDev= " 0 .0003 " / >

< / NumOFSteps_5>

< / Walk>

<Turn>Turn Motion

<NumOFSteps_ -1 >

<Distance Val = " 1 . 0 " Emean= " -0 . 1224 " EDev= " 0 .6327 " / >

<Direc t i on Val = " - 4 . 0 " Emean= " -0 . 0665 " EDev= " 0 .0502 " / >

<Rotat ion Val = " 0 . 0 " Emean= " 0 .2028 " EDev= " 0 .0006 " / >

< / NumOFSteps_ -1 >

< / Turn>

Listing 5.1: KMotionModel stored in XML. In these file only two motions are shown. The

first indicates forward motion of five steps and the other right turn of one step.

The basic motions are three, the Walk the Turn and the side steps. For a different number of steps

a motion model must be statistically calculated from experiments. Then it should be stored to the

above xml file. These xml file give as the ability to store and easily load motion modeling data about

different surface the robot can walk.

Ending with initialization phase we will continue with the basic SIR functions and in the meantime

other useful functions will be described.

The first stage of the filter is the prediction. A function called predict was made and have as inputs a

parts structure reference and a KMotionModel structure. In this function in a for loop every particle

is moved according to the motion model. More specific two temporary variables keep the value of

distance and direction for the motion. In these variables gaussian noise is added according to the

motion model. Then the coordinates of the particle are changed to the old one adding the noise.

Also the in the rotation of the particles is added the respective noise.

In the next stage the Update function was implemented to weight the particles according to the ob-

servation. This function has as input a parts structure reference and a vector of KObservationModel

structures. Here the weight is calculated for its particle in a for loop. In the beginning a check is

been done for the existence of observations. If no observation exists then these particle will be only

weighted according to the visibility of a landmark or not.

5.1.2 Update particles Weights

If there are observations then the update is done in the following way: First the overall weight of the

particle is one. Then a loop iterates in the observation vector and for each iteration the probability is

Chapter 5. Implementation 36

calculated and multiplied to the overall weight. First the visibility of the examined landmark by the

particle is checked and a ratio variable is set. If the landmark is visible by the particle the ratio takes

as value the probability of being observable if a landmark is visible P (O | V) or else the P (O | V̄).

After the distance of the particle is calculated. This value is used then to calculate the

P (xt+1
i | xt

i, ρ) =
1√
2πσρ

e
−(ρi−ρ)2

2σ2
ρ (5.1)

probability of being in that position. A function named normpdf was implemented to calculate that

probability. Next the bearing of the particle is calculated and simiraly the probability of the particles

bearing to the observation bearing is calculated and multiplied to the overall weight. In the end the

overall weight is set to the particle's weight variable.

5.1.3 Importance Sampling

The resampling algorithm need the overall weight of the particles to sum to one. Thus a normalization

function wasmade in witch the overall sum is calculated and then each particle weight is divide to the

sum to be normalized. In the case where the particles are having zero weight these function returns

false value else true. That event of zero weight in the particles means that after the update stage the

particles are having to little probability and they can not represent the distribution. These is usually

caused in an kidnapping event were the position of the robot is changed and will be discussed latter.

Continuing the third stage the resample stage was implemented in two parts, two functions. With

the first function an index of the particles that should be propagated was produced. To produce that

index an multinomiaR name function implemented for that scope. The initially code was written by

Arnaud Doucet and Nando de Freitas in matlab script we ported that code to c++. Because the initial

script was inmatlab some other functions were alsomade to replace thematlab ones. These included

a function (CumSum) that calculated the cumulative sum of a table and another (FlipCumProd) to

calculate the cumulative product and return it with reverse order. More specifically the index is an

array that keep the index number of the particle that will be copied in each position.

The produced index then is used as input by another function (Propagate) as well as the particles set.

Here firstly the particles data are copied to temporary vectors. Then, in a for loop, using the index

as guide, values are copied particle's info about the propagated set is replacing the original set.

Besides these function other other function were made: A function to spread the particles was

made in order to spread some particles around the distribution because the resampling stage tries

to focuses in a spot. This function takes as inputs a reference to partcls structure two double variables

with the deviation that we want to spread the particles one for the position spread and another one

for the rotation and at last one integer value for the percent of the particles that will be spread.

Another one function was made to generate particles that fit in observation data. Since some times

the number of observations is above three witch means that probable the position where the robot

could easily and singularly be found. This function looks a like the update function because generally

does the same weighting procedure but not in a particles population. The idea of generating new

Chapter 5. Implementation 37

particles is to put a particle in different positions in the field and weight it. So like a grid, on the field,

a double for loop sets a particle is different positions. Then the particle is weighted regarding its po-

sitions as in the update stage using the For the bearing another for loop sets the particles orientation

to different values. For each of these values the probability using the bearing weighting procedure

is checked. The most probable orientation then is being chosen and set to the particles. After that

the overall weight calculated and set to the particle weight value. This temporary particle then is

pushed to a particles priority queue. These was feasible because a comparator was implemented

for the particle structure. Moreover if the queue exceeds a specific size then the particle with the

smaller weight is popped out. At the end we have a queue with the best possible particles. These

particles later are inserted to the original set replacing randomly particles from the original set.

The Basic function that uses all the above functions directly or indirectly had was the LocalizationStep

function. That function had as inputs the number of steps the string name of a motion and a vector

with observations. For the selection of the MotionModel that will be chosen another function was

made to search and finally select the best existing model for the searching string and number of

steps. The search was done first looking for that string as a key to the motion models map and if

found then searched into the included vectors for a motion model with the exact number of steps. If

the specific number of steps no model can be found then the closest one is chosen and the number

of iterations if needed will be calculated.

After the selection of the motion model then all the data for the localization are accessible and the

algorithm can start. Firstly the Particles are copied to the Auxiliary Particles structures then these

particles are forwarded into the SpreadParticles method to be spread. After the prediction of them

is done using the predict function and if needed by the motion model it is repeated. In continue the

update function is called with the observations as an input. After the weighting, the particles weights

are normalized and then resample. Here the resample function is called with inputs the Auxiliary

particles and an array named index for the results to be stored and then the propagation is called

with input that index array but for particles the original set. Thus the original particles are chosen and

resampled. But these particles have not moved at all, so the SIR algorithm starts from the beginning

using the prediction function again, the update and also the normalize. But before the resample

stage a belief about the best position estimate is been searched. As best estimate we assume the

particle with the maximum weight. After founding the maximum weighted particle the belief of the

localization is being set and the resample stage continues. These LocalizationStep function returns

a belief structure with the best estimate position and orientation for the robot.

In the top of this KLocalization a control systemwas needed. That system is the same the kselflocalize

module. In that some additional function were made. Some of them where used to communicate

with the webots module witch will be explained later. Using a definition in the code we can manage

the module to exlude the use of the webots module in order to run exclusively to the real robot.

A function was made to control the robots motion given the name of motion that we want to execute

together with the number of steps. This function uses the naoqi motion module to execute the three

basic motions, ``walk, turn, side step''.

Another two useful function for extracting observation data were made. One for the simulation

and one from the observation module. The function ExtractFakeObservations as it's name say was

Chapter 5. Implementation 38

creating observations using the exact position of the robot. Thus the distance and the bearing was

the most accurate that could exist. The distance was calculated using the Euclidean distance from

the point were the robot was and the bearing using the atan2 function. Then the fake measurements

were packet in KObservationModel structures and then inserted to a vector.

The function ExtractRealObservations used to call the Observe method of the Vision module and

the only think that made was to take the results coming from the above call and packet them to

KObservationModel structures and then inserted to the observation vector.

The top function witch also was binded to be callable from other modules is the TestLocalizatin

function. That function was called using and ALValue input type. That input consists of a string and

a number of steps. The function call the DoMotion with these arguments to make the robot move.

Then after the motion an Extract Observations function is called to collect observation data. Then

the LocalizationStep runs the algorithm of localization to localize the robot and return its belief about

the position the robot most probable is in.

In order to visualize the results a gui wasmade only for displaying the belief and the particles weights.

A robocup field was draw using opencv drawing methods. In the top of that image particles were

also drawn as long as the robots belief. An example can be shown in the figure OpenCv gave

us the ability to easily save images of the field the particles on it and the track that the robots belief

followed. For the visualization purpose four functions were made to draw the field in the begging

the particles the belief and the real position in the simulation testing.

Also when running in the simulation the position error was easily calculate and set to a ALvalue

structure which the TestLocalization method was returning.

MoreOver a function was made to evaluate and extract date for modeling the Observation module.

The ObservationModeling function was made to take measurements in different positions in a field.

The measurement were then saved to a file as well as the exact position of the robot for further

statistical processing.

5.2 Measurements extraction

For the observations extraction another module was made. This module has as role to provide

measurements about distance and bearing scanning the visible area and processing captured im-

ages. Because the feature recognition belongs to the computer vision area was separated from the

localization. The module name is Kobserver.

This module includes all the necessary functions needed to export measurements info from the

environment the robot sees. Also this module has some testing functions. Three other module are

needed from Kobserver. A motion proxy for the head motion a VideoInput proxy for accessing the

camera and a log proxy to output so info messages. In the initialization of the module a call to the

VideoModule is done to initialize the video input module with resolution, colorspace and frames per

second parameters.

Chapter 5. Implementation 39

We will start to analyze the functions starting from the lower level. As previously said the goals are

recognized by their color. That is the reason that we first segment the image to desired colors, in

our case skyblue and yellow. The segmentation technique was derived from the Kouretes image

processing architecture used by our team ref. So a segmentation class intanse was used in order to

segment the image. In the segmentation class there wera also coded the rules needed to seperate

the color, witch is also called colortable. These rules were made using the Kouretes Color Classi-

fication tool a long with with images captured from the robots camera. Rules were produced from

images captured from the webots simulation 3D environment as well as real field environment in

our laboratory.

In a function named checkcolor with input the value of the color tha will be checked the process

starts. Here is called a method from the VideoInput module witch can be found is in two formats

for local and remote call. For this reason definition blocks were made to be compiled for each case

using just a define. After the image data is returned, is stored in a IpImage structure witch is a opecv

structure for images.

In order to focus the selected color to the center of the image color tracking method was used.

Firstly in an execute named function the some parameters about the center of the colored pixel was

calculated. More spefiticaly in the execute function a grid scan is perfomed segmenting pixels for the

desired color and in paraller calculating the sum of these pixels horizontally and vertically also they

are counted. Then the mean of these pixels in horizontal and vertical give as two variable inticates

the center of the color's blob. In addition the center of the blob regarding the center of the image is

calculated.

These values will are used later to center the blob in the captured imagemoving the head respectively.

These task is done in the track function. Here is calculated the motion that the head joints must have

in order to center the blob, and like that focuses probable to a field's goal.

For the extracting measurenments other two functios have implemented. The one finds out the the

usefull pixels to calculate the distance and the other uses that info to calculate the distance and the

bearing.

The first function is calle ExtractGoalPostsPixels and takes as input the color of the pixels that will

be searched. The concept here is to find out the beggining pixels of a goal posts base. So a scan is

deployed in starting from left to right and from the bottom of the image to the top pixels. If pixels

with the desired color are found and a number of other pixel above of them are also the same color,

witch probable is a goal post then the position of the first instance is saved in a array having the

lenght as the width of the image and is named points. After that array is scanned for its lower points.

That is done calcultating the difference in the values between neightboor values, it is the derivative.

If a minimum is found it is inserted in a table its value and the index position it was found. If another

minimum is found later is examined if it is closed to the firtst the it replaces it if it is away enough then

this low point represents the other goalpost so that is saved in the next to the first maximun. In the

end of these procedure a two by two table consist of the values of the lower pixels of the goalposts

in the processed image. These four values are then inserted to a ALValue array and returned.

Chapter 5. Implementation 40

The second function is called GoalPostsDistance it takes as in put the searched color and a boolean

value named topcamera witch indicates with witch camera the image was captured. Purpuse of this

function is to calculate the distance to the goalpost as well as the bearing to them. Inside the funtion

the ExtractGoalPostsPixels is called and the two minimum pixel values are returned. We assume

that they represend the lower goalpost pixels in the image. The naoqi api provides a function that

calculates the position of a robots parts in regard to a known space. So we chose to find out the

position of the head reagarding the foot of the robot. The function return the position of the three

coordinates of the robot head. One of them is the height especially needed to calculate the distance.

Also another one is needed to calculate the bending angle of the body. Moreover the headpitch and

headyaw angles were retrieved using the getposition function for these joints.

For the distance calculation first the angles were calculated. A phi angle is calculated, and represends

the angle between the straight line of robot's head to goal post's base and the robot's body. That

angle consists of the headpitch anlge and the angle as a part of the field of view of the camera. To cal-

culate the second one the height in pixels witch the color of the goal starts and was previously found

is needed. First the ratio of the pixel to the height of the image is found and wanting the divergence

form the center of the image the value is substracted from 0.5. That value then is multiplied with

the horizontal field of view to finaly result in the angle from the center of captured image. Another

one angle is calculated and is named theta that angle is created by the potential forward-backward

bending of the robot. This is calculated using the atan of the height and the divergence value from

the vertical position. Having all the parameters of the triangle known the distance can be calculated

using the tan of the angle that consist of the headpitch the phi and theta multipied by the height of

the robot. If the second cammera is used then the above angle differs by 30 degrees because and

also is in lower position.

For the bearing equally procedure was followed but hear only an angle was needed. So the using the

position as the width were the lower pixel was found the angle regarding the center of the image as

a part of the horizontal field of view angle is found. Adding the robot headyaw angle alue we have

bearing angle.

These values are pushed in a ALValue data structure and later that structure is returned.

The basic function that executes the functions described above is the Observe function. This is the

function tha the kselflocalize module calls in order to retrieve observations. The concept behind

these function is to scan all the visible range moving around the head and trying to take measuren-

ments. A table with values of head positions is used as a guide to turn the head around. The head is

seted in each position. Then we check for each color respectively. Using the checkcolor function a

search for the specific color is done and if the color is found then the track function tryes to focus the

robots head to the recognized blob. The check and track function are called 5 times until the robot's

head converges to a position having the blob as closest as possible to the center of the image. As

the goal is focused the measurenments are take using the GoalPostsDistance function if 4 values

are returned the we assume that both goal posts are recognizes. If only two values returned then

we assume that the generally the goal is recognized. Then for each of the recognized landmarks

three values are pushed to an ALValue structure. The signature (string) of the recognized landmark

and the distance and bearing values. Then a check is done for the other goal color and the same

Chapter 5. Implementation 41

procedure is executed but with input the other goals color. Then the robot's head is moved to the

next position and the same procedure is done. In the end the alvalue structure will include all the

observations that were extracted and this structure is returned.

Besides the Observe function there is another usefull function for testin perpuses. This function

named DisplayImage makes possible for someone to see thru the robot's camera. Besides that a

segmended image is also dispayed and the goaldistance fuction is also called. The camera image

is saved in the opencv's iplimage and dispayed by opencv functions. Furthermore image saving

function was programmed to be called whem the space key be pressed.

5.3 Simulation Agent

Along with the naoqi sdk aldebaran robotics had provided an binary executable for the webots sim-

ulation environment. That client makes the simulation run the naoqi platform so what ever runs to

the simulation as a part of a naoqi module it can be run theoritacaly and to the real robot. Benefiting

from the ability of loading libraries using the naoqi and our knoledge on programming webots clients

we made a special module. That module had access to webots simulator API. We had include we-

bots header files about emmiter, receiver, and gps devices and linked with the webots libraries in the

compilation. With that trick we could retrive usefull data from theses devices as well as to control

the simulation environmet. So in the beggining the most usefull device tha we enables was the gps

devices. Using that inside our module we manage to retrieve the exact position of the robot in the

simulated field. Besides that we patched a webots supervisor client to be usefull. More specifically

using its receiver the supervisor could here to remote commands and the one tha was implemented

made possible the placing of the robot in any position and direction inside the field. Then inside our

module using the emmitter we could teleport the robot wherever we want.

Although we had all these we also wanted to retrive the robots orientation. But no compass device

was existing in the robot. So we added one compass device to the robot patching the nao's vrml

model. Then we included the headers needed for the compass device and we enabled the device.

Besides these functions a function to collect statistical data easily was made. The concept is to

make the robot move save it's position and oriantation and transfer the robot to its initial position.

Setting a value we could set the number of repeatition of the motion we want to execute. So saving

the initiall and the finall position of a motion we collected statistical data about the robots motion.

These repeative procedure was made for all the neccesary motions. In each case an txt file was

produced keeping the initial position and orientation as well as the finall position.

5.3.1 Matlab Scripts

In order to make our life easier matlab scripts were also used. In the beggingng the whole architec-

ture was implemented in matlab. Using fake observation but good motion model the localization

algorithm was tested. After starting to work withe the real robot and writing c++ the localization

slowly ported to c++

Chapter 5. Implementation 42

Still some usefull scripts are used. To calculate the mean an the deviation o the robots motions and

to be saved in an xml like format a simple scripts was used. Also wanting to find the error function

for the observation correction matlab code was writen.

Chapter 6

Results

6.1 Expirenments

We have made a lot of expirenments trying to calibrate our systems parameters. Below will describe

some of the expirenments and the results of them.

6.1.1 In the simulation environment

Most of the expirements were taken place in the simulation environment. Here we extracted motion

models and observation models.

Motion Model extraction

Using our webots client we run a number of expirements for each available action. After the end

of the action the robot was repositioned to the initially position. For each repetition we record the

initial and the end pose in a file. In the figure 6.1.1 we can see the initial and end poses of the robot

of all the repetitions along with the histograms of the distance the Direction and the Rotation relative

to the motion. Then from these files we extracted the motion model of each motion and we save it

in an XML file to use in the Localization.

Observation Model extraction

Again using webots and our object recognition module we have try to evaluate our environment

measurements. The process was simple. We set the robot in positions several positions of a grid of

the field and with several orientations and we are asking the robot to scan the visible area for goals.

Then we collect all these data and knowing the position of the robot we can extract the error in the

43

Chapter 6. Results 44

0 0.5 1

−0.2

0

0.2

0.4

0.6

X (m)

Z
 (

m
)

0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

Distance Histogram
Mean:0.801370 Deviation: 0.027671

−10 0 10 20 30 40
0

20

40

60

80

100

Direction Histogram
Mean:0.683147 Deviation: 4.245039

−20 0 20 40
0

10

20

30

40

50

60

Rotation Histogram
Mean:−0.603974 Deviation: 8.000280

./naoqiStatistics/naofwalk.txt 200 samples

Figure 6.1: 200 repetitions of the action walk 10 steps

measurements. Int the figure 6.1.1 we can see from left to the right: Real Distance to the skyblue

goal's left post, Measured distance, Mean Error of measurements, Deviation of the error.

After we must find a way to describe the error relative to the distance. So we take all the measure-

ments from the 2D environment and we put them in a array with 2 collumns. Then we sort the

rows by the real distance. Then having that data with distances relative to measured distances we

calculate the error relative to the distances. In the figure 6.2.1 we can see the error relative to the

distance. Moreover we try to fit a function to that error to describe the mean value of the error

regarding the distance. The absolute difference that this function has from the measured data we

consider it like the deviation of the error. We also try to fit a quadratic variable to that data. The

parameters of these fitted functions both for the mean error and the deviation are saved to a XML

file in order to be used from the Localization. Simiraly with the distance error modeling we model

the Bearing modeling extracting the paremeters of the functions and saving them to XML.

Chapter 6. Results 45

−5
0

5

x 10
6

−2

0

2

x 10
6

0

2000

4000

Width (m)

Real2D SkyblueLeft Wrong 15 of 572, 2.62238%

Height (m) −5
0

5

x 10
6

−2

0

2

x 10
6

0

2000

4000

Width (m)

Mean2D SkyblueLeft

Height (m)

−5
0

5

x 10
6

−2

0

2

x 10
6

−1000

0

1000

2000

Width (m)

MeanError2D SkyblueLeft

Height (m) −5
0

5

x 10
6

−2

0

2

x 10
6

0

500

1000

1500

2000

Width (m)

DevError2D SkyblueLeft

Height (m)

Figure 6.2: Distance measurements in a grid of the field

6.2 Localization Expirenments

6.2.1 In the simulation environment

We have tried different scenarios to test are localization algorithm to the simulation environment.

In most of the expirenments we set the robot to an unknown pose. Then we run our algorithm and

we try to take observations from the environment. In scenarios when we allow the robot to scan as

much as possible observations the algorithm have result in very small error in position estimation.

Also when we limit the number of observations to the number visible from the robot without turning

the head the results are also good and enough for our purpose.

In the figurefig:error we can see an localization attempt with a cyclic walking scenario. In that

expirement we have not enabled all the available extensions and we where trying to estimate the

parameters of our particle spreading method. However even not complete and perfect the error

6.2.1 could be consider enough.

After a lot of experimentation and parameters calibration we made some expirements we the best

possible results. Again here we have scenarios with the largest observed range along with the lim-

ited. Additionally the scenario was so difficult and uncertain that some times the robot crashes in a

Chapter 6. Results 46

−5
0

5

x 10
6

−2

0

2

x 10
6

0

2000

4000

Width (m)

Real2D SkyblueLeft Wrong 15 of 572, 2.62238%

Height (m) −5
0

5

x 10
6

−2

0

2

x 10
6

0

2000

4000

Width (m)

Mean2D SkyblueLeft

Height (m)

−5
0

5

x 10
6

−2

0

2

x 10
6

−1000

0

1000

2000

Width (m)

MeanError2D SkyblueLeft

Height (m) −5
0

5

x 10
6

−2

0

2

x 10
6

0

500

1000

1500

2000

Width (m)

DevError2D SkyblueLeft

Height (m)

Figure 6.3: Distance measurements in a grid of the field

goalpost.

In the figures ?? we can see the path that the robot followed along with the estimated path derived

from the robots beliefs. The mean value of the distance error is very low and that experiment could

be fulfill our expectations for robot localization, and practically proves the success of our localization

attempt.

Moreover we run expirenments when we limit the robots head scanning range to zero ?? , resulting

in recognizing objects only in the range of the field of view of it's camera. We allowed the head to

turn only to the point tha could focus in an object. The results were quite interesting and here we

see the importance of the motion model when the particles are moving in the right direction, and

even if there is no observation the estimation error is low.

Full range Limited range

Mean Position Error 71,18 mm 210.78 mm

Chapter 6. Results 47

−1000 0 1000 2000 3000 4000 5000 6000 7000 8000
−400

−300

−200

−100

0

100

200

300

400

500

y = 0.063296*x − 157.67

Real Distance

E
rr

or

SkyblueLeft

Error
Quadratic

−1000 0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

300

350

400

450

y = 1.6403e−05*x2 − 0.11531*x + 358.9

Abs Error SkyblueLeft
Doubled Deviation

Figure 6.4: Error in Distance measurements, error of the fitted function

6.3 Goal Recognition

In order to have a complete localization system we needed at least a goal recognition system. Using

our Kouretes Color Classification tenchique we could extract segmented images. But not all the

images were perfect segmented for several reasons. Our recognition algorithm had to be tuned in

order to recognize correct as better as possible the goals.

So when the segmentation noise is low and at least a goalpost is full inside the segmented image is

easy for use to extract the distance and the bearing to that goalpost. Even if a goal post is too close

to the robot and we can not see all it's height if we recognize which goalpost is (left or right), we

can measure the relative distance and bearing.

Chapter 6. Results 48

Figure 6.5: Cyclic path, 400 particles, limited observations

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

D
is

ta
nc

e
er

ro
r

Steps

Figure 6.6: Error in the Cyclic path, 400 particles, limited observations

Chapter 6. Results 49

Figure 6.7: Difficult path, 200 particles, full-range scan observations

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

Steps

D
is

ta
nc

e
er

ro
r(

m
m

)

Figure 6.8: Error 200 particles, full-range scan observations

Chapter 6. Results 50

Figure 6.9: Difficult path, 200 particles, observations without scanning

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

D
is

ta
nc

e
er

ro
r

Steps

Figure 6.10: Error, 200 particles, observations without scanning

Chapter 6. Results 51

Figure 6.11: Recognizing Goal posts in webots

Chapter 6. Results 52

Figure 6.12: Recognizing Goal posts in real environment

Chapter 7

Conclusions

7.1 Conclusions

The method presented in this thesis, has a number of advantages that makes it a good candidate

for the real world in a Robocup field. The accuracy of localizing in the field is varying regarding the

number of features that are observed. However the error of the estimated position is far enough for

our purpose.

7.1.1 The quality of observations

The quality of observations play a serious role in the localization. If we can not trust what the robots

sees then is better no to use an observation.

7.2 Lessons learned

The worst think about robotics is that in the real world everything is completely different from the

simulation. As for us the lack of a real field in the university in a specialized space in the end was

the basic problem.

7.3 Future work

There is a number of features that will be implemented and will make the system more reliable and

faster:

� Regarding the robots estimated position, the localization system can ask for observations in a

specific range in order find as quickly as possible more observation.

53

Chapter 7. Conclusions 54

� We can recognize a possible fall using robots sensors and this event could result in more

particle spreading in the area where the robot fall.

Bibliography

[1] David Gouaillier and Pierre Blazevic. A mechatronic platform, the Aldebaran robotics humanoid

robot. 32nd IEEE Annual Conference on Industrial Electronics, IECON 2006, pages 4049--4053,

November 2006. ISSN 1553-572X. doi: 10.1109/IECON.2006.347816.

[2] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization for mobile robots.

Artificial Intelligence, 128(1-2):99--141, 2000.

[3] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-gaussian

bayesian state estimation. Radar and Signal Processing, IEE Proceedings F, 140(2):107--113, 1993.

URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=210672.

[4] O.Michel. Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems,

1(1):39--42, 2004.

[5] "M. Betke and K. Gurvits". "mobile robot localization using landmarks", "1994". URL "citeseer.ist.

psu.edu/betke94mobile.html".

[6] Ioannis M. Rekleitis. A particle filter tutorial for mobile robot localization. Technical Report TR-

CIM-04-02, Centre for Intelligent Machines, McGill University, 3480 University St., Montreal,

Québec, CANADA H3A 2A7, 2004.

[7] Arnaud Doucet, Nando De Freitas, and Neil Gordon, editors. Sequential Monte Carlo methods

in practice. 2001. URL http://www.worldcatlibraries.org/wcpa/servlet/WLAHoldingServlet;

jsessionid=4C45474A5C0E58167BABE2E351EBBCAA.three?query=no:45024472&

sessionid=4C45474A5C0E58167BABE2E351EBBCAA.three&recno=1&zip=50014.

[8] Michael K. Pitt and Neil Shephard. Filtering via simulation: Auxiliary particle filters. Journal of

the American Statistical Association, 94(446):590--599, 1999. URL http://www.jstor.org/stable/

2670179.

[9] Nikos Vlassis, Bas Terwijn, and Ben Kröse. Auxiliary particle filter robot localization from high-

dimensional sensor observations. In in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA, pages 7--12, 2002.

55

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=210672
"citeseer.ist.psu.edu/betke94mobile.html"
"citeseer.ist.psu.edu/betke94mobile.html"
http://www.worldcatlibraries.org/wcpa/servlet/WLAHoldingServlet;jsessionid=4C45474A5C0E58167BABE2E351EBBCAA.three?query=no:45024472&sessionid=4C45474A5C0E58167BABE2E351EBBCAA.three&recno=1&zip=50014
http://www.worldcatlibraries.org/wcpa/servlet/WLAHoldingServlet;jsessionid=4C45474A5C0E58167BABE2E351EBBCAA.three?query=no:45024472&sessionid=4C45474A5C0E58167BABE2E351EBBCAA.three&recno=1&zip=50014
http://www.worldcatlibraries.org/wcpa/servlet/WLAHoldingServlet;jsessionid=4C45474A5C0E58167BABE2E351EBBCAA.three?query=no:45024472&sessionid=4C45474A5C0E58167BABE2E351EBBCAA.three&recno=1&zip=50014
http://www.jstor.org/stable/2670179
http://www.jstor.org/stable/2670179

	Abstract
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.1.1 Thesis Outline

	2 Background
	2.1 RoboCup
	2.1.1 RoboCup Soccer
	2.1.2 RoboCup Rescue
	2.1.3 Robocup@Home
	2.1.4 Robocup Junior

	2.2 Kouretes Team
	2.3 NaoÂ글 琀栀攀 刀漀戀漀�
	2.4 Probabilistic Robotics
	2.4.1 Particles Filter

	3 Problem statement
	3.1 Localization Types
	3.2 The need of Localization in SPL
	3.3 Environment Specification
	3.4 Probabilistic Localization Essential Ingredients
	3.5 Our problem
	3.6 Related Work

	4 The proposed approach
	4.1 Motion Modeling
	4.2 Observation Modeling
	4.3 Localization
	4.3.1 SIR Localization
	4.3.2 AUXiliary filter
	4.3.3 Other Techniques

	4.4 Visual Feature Extraction - Observation

	5 Implementation
	5.1 Localization
	5.1.1 Motion Model in XML
	5.1.2 Update particles Weights
	5.1.3 Importance Sampling

	5.2 Measurements extraction
	5.3 Simulation Agent
	5.3.1 Matlab Scripts

	6 Results
	6.1 Expirenments
	6.1.1 In the simulation environment

	6.2 Localization Expirenments
	6.2.1 In the simulation environment

	6.3 Goal Recognition

	7 Conclusions
	7.1 Conclusions
	7.1.1 The quality of observations

	7.2 Lessons learned
	7.3 Future work

	Bibliography

