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Abstract

The advent of reconfigurable computing has benefited numerous application do-

mains. Its inherent parallelism along with the in-the-field customization offers an

unprecedented opportunity to exploit the features characterizing each application.

Field Programmable Gate Arrays (FPGAs) are some of the stronger representatives

of reconfigurable computing. The SRAM-based nature of many FPGA families al-

lows for their potentially unlimited programming similar to the way the traditional

memories are programmed. A technology using this inherent characteristic that has

been incorporated in some specific FPGA families is called partial reconfiguration.

It allows for the reprogramming of part(s) of the FPGA chip without disturbing the

rest of its operation even during run-time.

FPGAs have been widely adopted in embedded systems. Partial reconfiguration

technology can leverage these systems by swapping in and out task modules that are

not needed to co-exist in the chip at the same time. A task module can be down-

loaded only when needed during the system operation, i.e. on demand, allowing for

area savings and potentially low power consumption. To this direction the available

hardware should be managed in an effective way regarding efficiency and ease-of-use.

This can be offered by an operating system. Several embedded systems have been

equipped with an OS running on a software processor, but, none to limited research

has been conducted on OS that control the partial reconfiguration of the hardware.

In particular, an OS can help to simplify the interaction between the software appli-

cation and the IP cores in the same way a traditional OS manages the access to the

I/O peripherals. The task management can be carried out by the OS running on a
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processor coupled with the reconfigurable fabric within the same chip in order to keep

the development complexity low and also to relieve the developer from the difficult

task to deal with the details of the hardware and the complex partial reconfiguration

technology.
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Chapter 1

Introduction

In this chapter, an introduction is made about FPGAs, embedded operating systems,

partial reconfiguration and their advantages.

1.1 Field Programmable Gate Arrays

FPGAs are an integrated circuits that can be easily configured by the end-user to

execute many different applications. The FPGA configuration is generally specified

using a hardware description language (HDL), similar to that used for an application-

specific integrated circuit (ASIC). FPGAs can be used to implement any logical func-

tion that an ASIC could perform. The ability to update the functionality after ship-

ping, and the low non-recurring engineering costs relative to an ASIC design (not

withstanding the generally higher unit cost), offer advantages for many applications.

In contrast, FPGAs have generally been slower, less energy efficient and achieved less

functionality than theis ASIC counterparts. However, the bridge is quickly closing

due to improvements in technology of semi-conductors.
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FPGAs contain programmable logic components called “configurable logic blocks”,

and a hierarchy of reconfigurable interconnects that allow the blocks to be “wired to-

gether”. Logic blocks can be configured to perform complex combinational functions,

or merely simple logic gates like AND and XOR. In most FPGAs, the logic blocks also

include memory elements, which may be simple flip-flops or more complete blocks of

memory. Many FPGAs contain embedded processors allowing for great flexibility.

The generic structure of an FPGA is seen in Figure 1.1

Figure 1.1: Internal structure of an FPGA
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Applications of FPGAs include digital signal processing, software-defined radio,

aerospace and defense systems, ASIC prototyping, medical imaging, computer vision,

speech recognition, cryptography, bioinformatics, computer hardware emulation, ra-

dio astronomy and a growing range of other domains.

1.2 Embedded Operating Systems

An operating system for embedded computer systems undertake tasks such as memory

management, task scheduling, hardware device interaction, handling filesystems and

data, and allows for user-system interaction through a graphical or command line

interface. Such operating systems are especially designed to be compact and efficient,

excluding many functions, provided by traditional operating systems, or providing

alternatives with reduced functionality. They are also possible to integrate real time

support, making in order to run real-time applications. There is a wide variety of

embedded operating systems [14]. For the purpose of this thesis, the embedded Linux

was used due to its widespread use [9].

Embedded systems generally have in general limited resources available; they in-

corporate much less RAM and secondary storage than desktop computers and are

likely to use flash memory instead of a hard drive. Embedded Linux can be config-

ured and optimized to target specific hardware configurations and usage situations.

These optimizations can include reducing the number of device drivers and software

applications as well as offering alternatives, thus reducing the kernel size and making

it more lightweight. Some of the advantages of using Linux in embedded systems are

listed below [36]:
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• The open source, universal and Posix1-compliant nature of Linux, offers the ca-

pability of developing highly customized and highly portable applications, with

reduced development and deployment costs and without having to “lock-in” to

a single proprietary supplier. Development and debugging can be performed

with GNU C and C++ compilers and the GNU debugger. The GNU debugger

can be used in various connection schemes in combination with the Chipscope

Pro Logic Analyzer [5] to offer full debug visibility.

• Offers a range of powerful capabilities including memory protection, processes,

threads and extensive networking facilities

• Dynamically linked device drivers may not be covered by GPL [22] and so, their

source code need not be disclosed with binary versions of the driver. Moreover,

Glibc2 is licensed under lesser GPL [23]. As most applications link to Glibc

to access the required kernel functionality, they are free from GPL licensing

requirements. This flexible licensing model enables the mixing of proprietary

device drivers and application code with the Linux kernel and libraries, which

opens up a wider set of applications to use on Linux.

• It provides the capability of dynamically loading driver modules on demand.

This allows for a small kernel which boots faster but still offers the required

functionality needed at the time.

• Existing device drivers for hardware peripheral IP cores, developed by Xilinx,

1Posix is the name of a family of related standards specified by the IEEE to define the application
programming interface (API), along with shell and utilities interfaces for software compatible with
variants of the Unix operating system

2Glibc is an important system call library used by most applications to provide an interface to
the kernel
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can be easily adapted to higher OS functions due to their modular and generic

properties as shown in Figure 1.2

Figure 1.2: Linux device drivers can be built on top of lower-level drivers provided

by Xilinx

1.3 Partial Reconfiguration

Partial Reconfiguration (PR) provides the ability to reconfigure selected areas of an

FPGA. This can be done either when the design is operational and the device is active

(known as dynamic partial reconfiguration), or when the device is inactive(known as

static partial reconfiguration). PR gives the ability to adapt hardware algorithms,

share the same hardware amongst different applications, increase resource utilization,

and to update hardware remotely.
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Some of the benefits of PR are:

• Increased System Performance: PR provides support for different versions

of hardware designs, ready to be instantiated at any time. Thus, it is

possible to use optimized versions of a design for different situations, while

the rest of the system remains unaffected and continues to run without

performance loss.

• Reduced Power Consumption: Power consumption can be reduced by sim-

ply loading a less power-consuming version of the design, or a blank bit-

stream when the particular device is not needed, therefore reducing static

leakages.

• Adaptability: PR-supporting systems can adapt to changes in their environ-

ment, their input data or their mission specifications. This capability

makes the system more efficient as compared to a generic one, which can-

not be optimal for a number of different situations.

• Self Test and upgradability: Self test components can be instantiated on

demand to check the integrity of the system and, if deemed necessary,

the faulty module can be reconfigured to resume its correct operation.

Hardware updates are also simplified, without the need for re-configuring

the entire device. This can be performed either locally or remotely.

• Hardware Virtualization: PR provides the user with a number of functions

ready to be used, that can be either present in the hardware or ready to

be instantiated. This capability allows for smaller and cheaper FPGAs to
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be used, as hardware modules can be swapped-in to fit the user’s needs.

Many Xilinx FPGAs support partial reconfiguration, from the Virtex 5 to the low-

end Spartan 3/E family. For the purpose of this thesis, we used a XUP Virtex-II

PRO FPGA based board from Digilent. Xilinx supports two basic styles of partial

reconfiguration, module-based and difference-based. In this present thesis, we used

the module-based approach.

1.3.1 Module Based Partial Reconfiguration

Module-based partial reconfiguration uses modular design concepts to reconfigure

large blocks of logic. These distinct blocks are known as partially reconfigurable

modules (PRM). These modules are loaded in special regions, defined statically, called

partially reconfigurable regions (PRR). Partial bitstreams, which are created during

system design for each PRM, are used to reconfigure the region and a blank bit-

stream is used to recant any previous configuration. A default PRM is used during

system synthesis and initial configuration. This design flow introduces a number of

limitations listed below:

• Communication access to the PRR is performed through special pre-defined

static buses called Bus Macros. They ensure that after the PR operation is

completed, the PRR will still be accessible by the rest of the system. All

signals coming in or out from a PRR, must go through a bus macro, with the

exception of clock signals. They are placed on the boundary of the PRR, either

from the left or right size, and have a fixed direction of signal(right-to-left or

left-to-right). They can be enabled or disabled (thus temporarily disconnecting
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the PRR from the rest of the system) by a BusMacro enable signal.

• The size of the PRR depends on the size of the largest module to be configured

in it. This limits available resources for the rest of the system, due to the fact

that even when small modules are used in the PRR, the unused resources are

still binded.

• The height of the PRR occupies the entire length of the columns in the Virtex-II

PRO. So it is impossible to implement more than one PRR in the same column.

1.3.2 Difference Based Partial Reconfiguration

Difference-based partial reconfiguration is a method for making small changes in

FPGA design such as changing LUT equations and Block Ram (BRAM) contents.

Application of this method demands the modification of the device layout and routing

through the use of low-level software (FPGA Editor). The result is a single partial

bitstream that contains only the differences between layouts. This allows for fast

reconfiguration of the device but introduces two limitations:

• Difficulty to change routing of the design.

• Limited range of applications due to the fact that it applies to simple designs,

with minor differences.
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1.3.3 Applications of Partial Reconfiguration

Several application domains are being studied in order to explore the benefits gained

from their implementation with partial reconfiguration technology. PR is the cor-

nerstone for power-efficient and cost-effective software-defined radios (SDRs) [21].

Through the Joint Tactical Radio System (JTRS) Program, SDRs are becoming a

reality for the defense industries as an effective and necessary tool for communica-

tion. SDRs satisfy the JTRS standard by having both a software-reprogrammable

operating environment and the ability to support multiple channels and networks

simultaneously. Current implementations of open Software Communications Archi-

tecture (SCA) enabled SDR modems with multiple channels require multiple sets of

processing resources and a dedicated set of hardware for each channel. The more

channels SDR must support, the more dedicated resources are needed. This has a

great impact on space, weight, power consumption, and cost savings. With partial

reconfiguration technology, the ability to implement an SDR modem using shared

resources, in order to support multiple waveforms, is realized.

Another usage is in the mitigation and recovery from single-event upsets (SEU).

In-orbit, space-based, and extra-terrestrial applications have a high probability of

experiencing SEUs. By performing partial reconfiguration, in conjunction with read-

back3, a system can detect and repair SEUs in the configuration memory without

disrupting its operations or completely reconfiguring the FPGA.

3Readback is the process of reading the internal configuration memory data to verify that current
configuration data is correct
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Implementation of cryptographic systems, can also benefit from PR. It gives the

ability to support a range of cryptographic algorithms, without the need for having

all of them integrated in the design. The system can swap in and out algorithms

on demand, to respond to many different variables. This allows for smaller and

inexpensive FPGAs to be used, as well as simpler designs, which results in reduced

cost.

1.4 Combining Embedded Linux and Partial Re-

configuration

By combining the capabilities of Embedded Linux and Partial Reconfiguration, the

latter is elevated from being low-level and complex to being easily expressed and

automated. As a result:

• Reconfiguration operation is controlled with simple commands i.e. “open”,

“write” and “close”. This relieves the researcher developing an application with

PR technology, from dealing with the details of the complex PR technology.

• The ability to dynamically load device drivers on demand, combined with the

partial reconfiguration capability of the Virtex-II Pro FPGA, allows for features

like “hot-swapping” devices at run time.

• Access to the reconfiguration bitstreams is simplified, regardless of whether they

are located in a local memory-based file, or, in a remote network filesystem.

• Complete operations may be performed by chaining multiple Linux tools and
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utilities to implement network functionalities such as bitstream compression and

encryption, managing multiple FPGAs, downloading bitstreams from a server

and so on.
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Chapter 2

Related Work

There exist several projects that employed an Operating System to leverage applica-

tions implemented on a partially reconfigurable system. In this chapter we describe

these projects we continue with the previous work that has been conducted in the

Microprocessor and Hardware Laboratory of the Technical University of Crete.

2.1 Related work on OS

John Williams [37] provided an abstraction layer for the Xilinx Internal Configuration

Access Port (ICAP), and showed some ways in which it can be used to implement

dynamic self-reconfiguring systems. He integrated the device by using the standard

device driver architecture and developed a simple character-based device driver, which

implements the read(), write() and ioctl() system calls. Also he demonstrated the

power and ease-of-use of the linux shell.
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Throughput (Mbps) Bitstream Reconfiguration

Cryptography Slices Xilkernel uClinux Size Time

Algorithm SW HW SW HW (Bytes) (msec)

Des 499 0.24 3.52 0.24 1.12 62896 318

Triple-Des 815 0.08 2.09 0.08 1.09 65116 323

RC4 614 0.95 3.22 1.18 2.10 70832 347

Table 2.1: Evaluation of a Dynamically Reconfigurable Cryptography platform

Lagger et. al [28] developed a dynamically reconfigurable platform for cryptog-

raphy. The supported algorithms were DES, Triple DES and RC4. He deployed the

Xilinx Xilkernel environment and the uCLinux port for the Microblaze, on a Xilinx

Virtex-II 1000 FPGA. Execution times of the algorithms (implemented as both a soft-

ware program running on the processor and a hardware co-processor) were measured

and compared as a result of this project. These are presented in table 2.1.

Brebner [29] was one of the first to propose an operating system approach for

partially reconfigurable hardware. He introduced the term of Swappable Logic Units

(SLU), which can be described as position-independent tasks that are swapped in and

out by the operating system.

Kosciuszkiewicz et. al [33] worked on the run-time management of reconfigurable

hardware tasks under the supervision of a Linux OS. His implementation consists of

a master Microblaze processor, running the operating system, with 8 Picoblaze co-

processors as the reconfigurable resources. The proposed system offers transparent

integration of reconfigurable resources within the software design and execution flow.
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New applications to be executed can either bind a co-processor or create a software

process, allowing for legacy applications to benefit from hardware acceleration.

Steiger et. al [31] discuss design issues for reconfigurable hardware operating

systems and the problem of online scheduling hard real-time tasks to partially re-

configurable devices. He developed two online scheduling heuristics for the two area

models under consideration1.

Santambrogio et. al [34] proposed a methodology for the design of dynamically re-

configurable systems in which the reconfiguration management is completely assigned

to an Operating System reconfiguration support. They present two extentions to a

Linux kernel regarding reconfiguration support and reconfiguration management and

present experimental results from a prototype implementation.

Berkeley University developed an extended Linux kernel that treats FPGA re-

sources as native computational resources on reconfigurable computers such as BEE2,

called BORPH [1]. It provides integral operating system supports for FPGA designs,

such as the ability for an FPGA design to read/write to the standard Linux file sys-

tem. A user process in BORPH, can either be a software program running on a

processor, or a hardware design running on a FPGA, also called “hardware process”.

BORPH uses regions of FPGA fabric, called hardware regions, as computation units

to spawn hardware processes.

11D and 2D. In 1D, tasks can be allocated anywhere along the horizontal device dimension, while
in 2D allows for allocations anywhere on the hardware task area
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2.2 Related work in our lab

Anifantis [27] conducted an experimental analysis on the reconfiguration delays in a

Virtex-II Pro FPGA. He followed the Difference-Based design flow and provided the

break-down delays to reconfigure a single frame. His results verified the theoritical

values provided by the manufacturer.

Effraimidis [30] implemented an autonomous, partially reconfigurable, genetic al-

gorithm system, supporting the change of the objective function at run-time. This

allows for the theoritical support of a potentially unlimited number of objective func-

tions with the ability to change them during run-time.

G. Nikoloudakis [32] implemented a partially reconfigurable cryptography system,

supporting multiple algorithms, on a Virtex-II Pro FPGA. He provided several mea-

surements of the reconfiguration time. The cryptographic cores used in that project,

are employed in this thesis as well.
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Chapter 3

Dynamic Reconfiguration of

FPGAs

In this chapter, we describe the way partial reconfiguration is supported and executed

on the Virtex-II Pro FPGAalong with some useful applications of this technology.

3.1 Xilinx Virtex-II Pro FPGA

The FPGA platform used in this thesis was the XUPV2P board by Digilent [8] with a

Xilinx Virtex-II Pro FPGA. The FPGA is organized as a column based array of logic

elements. The basic element is the configurable logic block (CLB) which contains

look-up tables (LUT) as the basic function generators, flip-flops, multiplexers and

gates. The periphery of the FPGA is occupied by input/output blocks (IOB) which

are responsible for managing the FPGA pins. Except for CLBs and IOBs, the FPGA

contains several specialized circuits such as Block SelectRAM (BRAM) resources,

multiplier blocks and Digital Clock Manager (DCM) modules. The interconnections
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between these circuits is accomplished by programmable routing resources organized

in a hierarchical Global Routing Matrix (GRM), which is controlled by programmable

routing switches. Since the FPGA is a two dimensional array, addressing the logic

elements can be accomplished by using the Cartesian coordinates with two axes, the

horizontal X and the vertical Y. The beginning of the axes is located at the lower left

corner of the FPGA (X=0, Y=0). A simple diagram of the internal architecture of

the FPGA is shown in figure 3.1

Configuration of the FPGA is accomplished by programming the logic elements

and their interconnections. This information is stored in the configuration memory.

It is organized in vertical configuration frames of one bit width whereas the length

depends on the device. The frame is the smallest configuration unit and affects

elements throughout the entire length of the FPGA. It has 1756 frames and each

frame consists of 6592 bits.
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Figure 3.1: Internal Architecture of the Virtex-II Pro FPGA
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3.1.1 Internal Configuration Access Port

The internal configuration access port (ICAP) is used to perform partial reconfigu-

ration of the FPGA. It allows for reading and writing the configuration data of the

FPGA and can only perform partial reconfiguration. The input and output ports of

the ICAP are one byte wide, while the maximum frequency of operation is 100MHz.

In previous publications of the vendor a lowest frequency (66MHz) was reported in

the best case (Busy signal deactivated). The interface of the ICAP is displayed in

Figure 3.2

Figure 3.2: ICAP interface
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In order to allow access to the ICAP by an embedded microprocessor (either

Microblaze or PowerPC), the vendor’s HWICAP IP core is used, allowing a user to

modify the FPGA circuit structure by writing software programs. The HWICAP

core is provided with EDK. This core is an OPB slave peripheral which instantiates

the ICAP discussed previously. It includes a 18KBits BRAM out of which, only

2KB can be used as a temporary configuration buffer, due to addressing limitations.

Modification of the configuration data is performed at frame level, because a frame is

the smallest addressable segment in which the FPGA allows configuration data to be

read and written. Reconfiguration is performed using a read-modify-write mechanism.

To modify an FPGA circuit, the peripheral determines the configuration frames that

must be modified, and then reads each frame one at a time into one Block RAM

attached to the ICAP. The contents of each frame are modified and then written back

to the ICAP. This is repeated for each frame. Although a single CLB, LUT or flip-

flop can be modified, the underlying mechanism requires that the full column be read

into Block RAM. This implies that other logic in the same column can be modified.

In most cases, this effect can be ignored. When the frame is written back to the

configuration memory the sections of the column that were not modified are written

with the same data. Because the FPGA memory cells have glitchless transitions,

when rewritten, the unmodified logic will continue to operate uninterrupted.
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3.2 Process of Dynamic Reconfiguration

3.2.1 Implementation Strategies

There are different ways to implement dynamic reconfiguration of an FPGA, based

on where the bitstreams are stored and who initiates the process. The possible ways

are summarised below:

• Exo-Reconfigurable: In this case, reconfiguration is initiated by an external

host. The bitstreams are located on the host and are transferred to the

FPGA either through the JTAG or the SelectMAP external interface. This

method of reconfiguration is depicted in Figure 3.3

Figure 3.3: Exo-Reconfigurable
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• Endo-Reconfigurable: In this case, the decision to initiate the reconfigura-

tion and the reconfiguration process itself are controlled internally by the

system. The partial bitstreams are stored in a Compact Flash or other

external memory, and a processor reads them and performs the reconfig-

uration process. This method of reconfiguration is depicted in Figure 3.4

Figure 3.4: Endo-Reconfigurable

• Hybrid: This case is some combination of the previous two ways. The system

can contain the partial bitstreams, but it has the capability to look for

missing or updated bitstreams on a remote host.
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For the purpose of this thesis, we used the Endo-Reconfigurable approach1.It can

be easily expanded to support a hybrid version, by integrating an ethernet interface

allowing to download bitstreams from the Internet.

3.2.2 Required Steps

The process of dynamic reconfiguration, requires the transfer of the partial bitstreams

from their external storage area, e.g. the Compact Flash, to the ICAP, so that the

configuration memory can be modified. This process includes the following steps:

• Transferring the partial bitstreams from the Compact Flash to a temporary

buffer in the DDR RAM.

• Transferring the contents of the buffer to the Block Ram of the ICAP core.

• Reading, modifying and writing the frames of the configuration memory of the

FPGA.

1More details are contained in the following section
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Chapter 4

Initial Attempts and Problems

With Porting the OS on the FPGA

The selection and configuration of an appropriate linux kernel for our case, required

many unsuccessful attempts with different distributions1. The basic concept was to

get a Linux kernel and filesystem, set up on a Compact Flash card, that would enable

us to boot the operating system by, simply, powering up the board. Our initial

approach was the uClinux [25] distribution. uClinux is a special port of the Linux

kernel targeting systems without a memory management unit (MMU). It supports a

variety of target processors, including the Microblaze CPU, supported by Xilinx. The

uClinux port for the Xilinx Microblaze CPU was done by Dr John Williams [15]. By

doing some research, we came across PetaLogix [20], an embedded Linux solutions

provider founded by Dr Williams, who provides an updated and more featured version

of the uClinux distribution, called PetaLinux for the Microblaze. This distribution

1Technical details on the problems are located in Appendix A
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provides an automated BSP generator to automatically target Linux systems to a

particular custom hardware platform, self-contained GCC cross-compiler and cross-

debugger toolchains, and application and kernel module generator. Thus, we decided

to proceed using this distribution2.

The process of successfully building a working kernel for our board, involved over-

coming several problems. Since, the XUP Virtex-II Pro board is not included in the

reference designs, we followed the Tutorial Guide on how to create a design from

scratch. The default system configuration proposed by the guide required the pres-

ence of an Ethernet MAC Controller and a Flash 2Mx32 peripheral. We were unable

to include either of these peripherals. The default installation of the EDK 9.1 tools

does not include a license for the Ethernet MAC peripheral and the Base System

Builder Wizard does not provide an option for including the Flash 2Mx32 peripheral,

as described in the guide. Nevertheless, we decided to proceed.

However several issues emerged The default setup of PetaLinux, consists of a two-

stage bootloader. The first stage, called FS-Boot, gets integrated, as an EDK Software

Project, within the download bitstream and requires the presence of the Flash Mem-

ory component mentioned previously. Errors occured during the compilation of FS-

Boot, within the EDK tool as well as during the compilation of the kernel, regarding

the missing Flash peripheral. Thus, we decided not to build the FS-Boot, disable the

Memory Technology Devices (that were enabled in accordance to the guide) and con-

tinue with the compilation of the kernel. Further issues emerged. We had to manually

edit the file sumversion.c to include the missing library <linux/limits.h>, in order to

eliminate a compilation error regarding the undeclared variable “PATH MAX” This

2Version 0.30 was the latest at that time
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resolved the error and the compilation procedure continued. However, new problems

occured concerning the second-stage bootloader called U-Boot. By default, U-Boot

searches for a kernel on a network mount, through an ethernet interface. However,

this didn’t suit our case due to the absence of the Ethernet component and was not

in accordance to our initial idea of set-up 3. This caused many errors during compi-

lation. Modifying the U-Boot bootloader to load the kernel from a Compact Flash

was more difficult and time-consuming than expected and therefore, was abandoned

as an idea. So, we continued by disabling U-Boot, to see if we could get a working

kernel, that we could download on the board by using the download option of the

xmd software included in EDK. We managed to successfully build and download a

working Petalinux kernel on the board using the Xilinx USB Platform cable. Table

4.1 presents the tools used for this first unsuccessful attempt.

Due to the problems mentioned above and the limitations imposed by them, an

alternative had to be found. The lower performance of Microblaze as compared with

the hard core PowerPC, induced us to use the PowerPC core of the Virtex-II Pro

FPGA. An attempt was made to use a modified version of the uCLinux distribution

with support for the PowerPC [10]. However, this attempt caused numerous problems

and was abandoned. Then, we came across a guide from the department of Computer

Science and Engineering of the University of Washington [17], demonstrating the way

to port a Linux kernel, version 2.4.26, for the Power PC on the XUP board and

build a filesystem with many tools ready to be used from the operating system. This

distribution includes only the kernel sources and not the necessary tools to compile

them. Since the host and target architectures are different, the use of a cross compiler

3A presence of a host system would be essential in this case in order to boot the kernel
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was necessary. Crosstool was selected, according to the tutorial. The procedure was

completed rather smoothly and provided an autonomous system with the ability

to configure and boot without the need for a host system. However, two issues

emerged. There was no driver support for the HWICAP IP core and a simple driver

had to be written to allow communication with our OPB DCR SOCKET IP core,

which is used for extending the OPB bus (allowing us to connect our reconfigurable

modules to our system). An attempt was made to integrate the driver sources for

the HWICAP, written by Dr. Williams for the Microblaze port of uCLinux. As a

result, the HWICAP was recognized during the boot of the Linux kernel but correct

functionally was not tested because a better alternative was found. Table 4.2 presents

the tools used for this second attempt.

During research, we came across the open source Linux project from Xilinx. This

Linux project features:

• A very modern Linux kernel (ver. 2.6.29 at the time)

• Integrated device drivers for a variety of Xilinx IP cores (including the HW-

ICAP)

• Easy configuration of the kernel by using a Device Tree4

Thus, we decided to proceed with the open source Linux project from Xilinx. Infor-

mation about the tools used for this attempt can be found in table 4.3.

4It includes vital information about the system assembly including bus addresses, inter-connection
details etc. making it easier to set up the system and develop drivers.
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Component Name Version

Operating System Petalinux [20] 0.30rc1

Host Operating System Ubuntu [24] 8.10

Cross Compiler Built-in 3.4.1

Filesystem RAM Filesystem N/A

Xilinx Tools ISE/EDK 9.1

Table 4.1: Initial Attempt

Component Name Version

Operating System Linux 2.4 for PowerPC [12] 2.4.26

Host Operating System Ubuntu [24] 8.10

Cross Compiler Cross-Tool [3] 0.43 (gcc version 3.4.4)

Filesystem Busybox [4] 1.14.3

Xilinx Tools ISE/EDK 9.1

Table 4.2: Second Attempt

Component Name Version

Operating System Xilinx OSL [18] 2.6.29

Host Operating System Ubuntu [24] 8.10

Cross Compiler ELDK [6] gcc 4.2.2

Filesystem Busybox [4] 1.14.3

Xilinx Tools ISE/EDK 9.1

Table 4.3: Successful Attempt
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Chapter 5

Running the OS on a Virtex-II Pro

FPGA

In this chapter, we describe the system setup, and the procedure for compiling and

properly setting up the Linux kernel, on a XUP Virtex-II Pro FPGA.

5.1 Setting up the host system

The need for compiling a Linux kernel necessitated that all the necessary tools for

building the system, had to be setup in a Linux-based host system. These tools

consist of the Xilinx ISE SP2 and EDK 9.1 SP2 software with PR support, Xilinx

PlanAhead 10.1.8 and a cross-compiler, used for compiling the software for the Pow-

erPC architecture. The Linux distribution chosen for the host system was Ubuntu

8.10 32-bit Desktop edition with kernel version 2.6.27, due to its ease of use and ex-

cellent community support. It was installed on an Intel Core 2 duo system, running

at 2.5 GHz with 4 GBs of RAM.

29



5.1.1 Setting up the Xilinx Software

The installation of the Xilinx tools, consists of firstly installing the software and then

installing the platform cable driver for downloading designs on the board.

The installation of the software was completed rather smoothly, by running the

Linux installer scripts located in the setup folder. The selected destination folders in

which the tools were installed are /opt/Xilinx/ISE and /opt/Xilinx/EDK. In order for

the user to be able to update the software, the folder permissions had to be changed

for full access with the following command:

chmod -R 0777 /folder.

The installation of the PR support was completed according to the instructions found

on the Partial Reconfiguration Early Access software tools [19] web site. The instal-

lation of service pack 2 for the ISE tool was necessary because of the lack of support

of the PR design flow in the newer versions, of the tools.

The installation of the cable driver proved to be quite problematic. The driver

provided by Xilinx was designed to work in the enterprise editions of the RedHat and

SUSE linux distributions. Therefore an alternative had to be found. After many un-

successful attempts, we finally came across a library [35], based on the libusb project,

which allows the tools to access the JTAG cable without the need for a proprietary

kernel module. The library was compiled with the make command and was utilized

using the export command to set the LD PRELOAD1 environment variable as follows:

export LD PRELOAD=/path/to/libusb-driver.so.

1The environment variable used by the Xilinx tools to locate the JTAG driver

30



The installation of PlanAhead was successful, however it did not function properly.

So the installation of PlanAhead on a windows platform was necessary.

5.1.2 Setting up the cross compiler

Since the architectures of the host machine and target board are different, the use

of a cross-compiler for the target architecture is required. Researching the web,

we came across the Embedded Linux Development Kit [6] (ELDK) maintained by

DENX Software Engineering [7]. The ELDK includes the GNU cross development

tools (gcc ver. 4.2.2, glibc ver. 2.8.90), such as the compilers, binutils, gdb, etc., and a

number of pre-built target tools and libraries necessary to provide some functionality

on the target system. It is provided for free use with full source code, including

all patches, extensions, programs and scripts used to build the tools. We proceeded

with downloading the appropriate version for our target CPU (PowerPC AMCC 4xx

without FPU support) and installing it on our host system by using the following

command

./install -d /opt/ELDK/ ppc 4xx

After we successfully installed ELDK, two more steps were necessary to complete the

setup.

• The first is to set up the path to the cross compiler executables by using the

command:

export PATH=/opt/ELDK/usr/bin:/opt/ELDK/bin:$PATH
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• The second one is to set up the environment variable CROSS COMPILE by

using the command:

export CROSS COMPILE=ppc 4xx-

After performing these steps2, the host system is ready to compile the required linux

kernel sources and test programs.

5.2 Configuring and Compiling the Linux Kernel

5.2.1 Process of building the Operating System

Building the entire Operating System requires the partitioning and formatting of the

Compact flash, the compilation of a Linux kernel and the creation of the filesystem.

5.2.1.1 Configuring the Compact Flash

The Compact Flash must be partitioned into three parts. One FAT partition, which

holds the system.ace for configure the FPGA, one swap partition required by the Linux

system and, finally, an ext2 partition which hosts the filesystem of the Operating

System, as well as the partial bitstreams. A Compact Flash of 1GB in size was used.

For partitioning the CF, the tool fdisk was used, which is a menu driven program

for the creation and manipulation of partition tables. After successfully creating the

partition table, the partitions were formatted using the following commands3:

• mkdosfs -s 64 -F 16 -R 1 /dev/sdc1 for the FAT partition

2Setting these variables is necessary each time a new linux console is launched
3The device files used in the commands may vary depending on the setup of the host machine
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• mkswap /dev/sdc2 for the swap partition

• mke2fs /dev/sdc3 for the filesystem partition

5.2.1.2 Building the Linux kernel

The process of configuring and compiling the Linux kernel requires several steps.

Here is a simple outline for a base system setup, supporting a minimum set of the

requirements without reconfiguration support:

1. Download the Linux kernel and the device tree generator from the Xilinx git

tree repository [26]

2. Create the system setup with Xilinx EDK.

3. Setup the Xilinx EDK to use the device-tree generator.

4. Generate a device tree for the specific system setup.

5. Copy the .dts file to the /arch/powerpc/boot/dts folder of Linux kernel source

tree.

6. Configure the kernel.

7. Build the kernel.

8. Load and run the kernel on the board.

In more detail:

• System setup: The base system setup consists of the following configuration

– PowerPC running at 100MHz
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– JTAG debug

– No Data and Instruction On Chip Memory

– Cache enabled for instructions and data with burst mode enabled

– OPB UARTLITE with 38400 baudrate and interrupt enabled

– OPB SYSACE Compact Flash controller with interrupt enabled

– 128MB PLB DDR RAM to be used as main memory for Linux

– PLB BRAM IF CNTRL 16 KB for the Linux bootloader to be stored

in

The system is then synthesized and the bitstream is created.

• Setup the Device Tree Generator in Xilinx EDK: Setting up the device-

tree consists of simply copying the bsp in parent directory of the edk

project,selecting it in the Software Platform Settings dialog box, and set-

ting the following values in OS and Libraries sub-menu:

– console device : RS232 uart

– bootargs : console=ttyUL0 root=/dev/xsa3 rw4 . These can be easily

changed to fit different needs

• Configuring the kernel: The easiest way to get an initial configuration for

our board was to use a provided default configuration for a different board(virtex4)

which, however uses the same PowerPC. This can be easily done with the

following command:

4The first argument indicates that we are using the uartlite core, the second tells the kernel
to search for a file system on the third partition of the Compact Flash and the third mounts the
filesystem with read-write capability
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make ARCH=powerpc 40x/virtex4 defconfig

Some modifications had to be made to fully support our base system, con-

sisting of enabling some Device Drivers. This can be easily done through

a configuration menu, accessed with the following command:

make ARCH=powerpc menuconfig

The following device drivers were enabled, by navigating to the appropriate

menus:

– Xilinx SystemACE support (located in Device Drivers→ Block De-

vices)

– Xilinx uartlite serial port support (located in Device Drivers→ Char-

acter Devices→ Serial drivers)

• Building the kernel: Building the kernel is accomplished by simply running

the following command:

make ARCH=powerpc simpleImage.virtex405-xup

where virtex405-xup is the name we gave to the .dts file generated pre-

viously. The device-tree is built into the kernel and is read during boot

by the enabled device drivers, for configuration. The output file is named

simpleImage.virtex405-xup.elf and is located in the /arch/powerpc/boot

directory. We copy this file in the EDK project directory.

• Loading and Running the kernel: Loading the kernel to the board requires

the creation of .ace file that is loaded during power up of the board from the
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Compact Flash. It programs the FPGA and loads the Linux bootloader

on the PowerPC that ultimately boots the system. This file is created by

running the following command:

xmd -tcl genace.tcl -opt genace.opt

The file genace.opt includes several arguments passed to the xmd tool for

successfully creating the .ace file for our board. These are:

– jprog

– target ppc hw

– hw implementation/download.bit

– elf simpleImage.virtex405-xup.elf

– board user

– configdevice devicenr 1 idcode 0x127e093 irlength 14 partname xc2vp30

– debugdevice devicenr 1 cpunr 1

– ace system.ace

The resulting file is then copied on a FAT partition on the CF and finally loaded

during power-up.

5.2.1.3 Creating the filesystem

For creating the root filesystem, Busybox [4] 1.14.3 was used. BusyBox combines

tiny versions of many common UNIX utilities into a single small executable. It

provides replacements for most of the utilities usually found in GNU fileutils, shel-

lutils, etc. These utilities generally have fewer options than their full-featured GNU
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cousins; however, the options that are included provide the expected functionality

and behave similar with their GNU counterparts. Busybox provides a fairly complete

environment for any small or embedded system, fully customizable by providing the

capability to include or exclude tools during compilation. The process of building the

filesystem consists of the following steps, according to the guide from the University

of Washington:

1. Configure Busybox: This is done by issuing the following command:

make menuconfig

The default configuration was used, except for 2 changes:

• Setting the cross compiler prefix (Busybox Settings→Build Options→Cross

Compiler Prefix)

• Setting the installation path (Busybox Settings→Installation Options→Busybox

installation prefix)

2. Modify and run installation script: An installation script “mkrootfs.sh” from

Klingauf5 [13] was used for easier creation of the filesystem. This script deletes

any existing files in the destination folder, creates all the necessary folders,

copies the /etc folder provided by Klingauf and builds Busybox. Certain paths

had to be altered as follows:

• LFS=/installation/path/xup rootfs

• CC=ppc 4xx- (Cross Compiler prefix)

5The files downloaded from Klingauf have DOS newlines. They had to be replaced with Unix
newlines for proper functioning
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• TARGET PREFIX=/opt/ELDK/ppc 4xx

• BUILD TOOLS=/opt/ELDK/

• PPC KERNEL VERSION=2.6.29

The script is executed with the following command

./mkrootfs.sh as root.

3. Last modifications We also had to overwrite the file /etc/inittab with the

following commands, in order to correctly configure the serial console output

and define the commands to be executed during the initialization, shutdown

and restart of the system:

::sysinit:/etc/init.d/rcS

#::askfirst:-/bin/sh

::ctrlaltdel:/sbin/reboot

::shutdown:/sbin/swapoff -a

::shutdown:/bin/umount -a -r

::restart:/sbin/init

#::respawn:/sbin/getty 38400 tts/0

::respawn:-/bin/sh

It was necessary to create a special device file for console in the /dev directory.

This can be easily done with by using the mknod command:

mknod /dev/console c 5 1
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Afterwards, the filesystem is ready to be copied on the third partition of the

Compact Flash which hosts the filesystem of the OS.
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Chapter 6

Development of the OS-based

Infrastructure

Due to missing elements (like the HWICAP,OPB/DCR Socket IP cores and inability

to access the custom peripheral OPB/DCR socket) that restricted us from having

a fully functional system, further steps were required in order to fully support the

DPR operation, and access the registers of the OPB/DCR socket IP for writing and

reading data, to and from the PRMs. In this chapter, we describe the process of

implementing the system to support all the necessary functionality.

In order to fully develop the functional infrastructure, we proceeded with imple-

menting a small reconfigurable system, with an adder and multiplier as the partially

reconfigurable modules, placed in the same PRR. They perform addition and multi-

plication1 and, both, have two 32-bit wide inputs and produce a 32 bit wide result.

The procedure of creating a Linux-based, dynamically reconfigurable system, based

1The multiplier performed the operation on the 16 lower bits to ensure that the outcome would
be 32 bits wide
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on the design flow proposed by Xilinx in the EAPR Lounge [19], can be outlined by

the following steps:

• Create a processor system with EDK

• Create the custom logic IPs, to be used as the PRMs, and synthesize them.

• Connect the processor system and the IP under a top-level design. The dynam-

ically reconfigurable logic have been instantiated as “black boxes”. The DCMs

are removed from the EDK project and instantiated in the top-level design, so

that the design tools can recognize the clock signals.

• Use Planahead to place the PRRs and bus macros, run DRC rules check and

run the necessary commands to execute the PR flow. This results in the full

and partial bitstreams.

• Use the device tree generated file from the first step (as described in chapter 5)

to compile the kernel.

• Integrate the Linux kernel with the full bitstream.

Below follows a description of certain key points in the process.
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6.1 Implementation of dynamically reconfigurable

system

The base system, of our design (as described in chapter 4) is depicted in Figure 6.1:

Figure 6.1: Base System Setup
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It consists of:

• A PowerPC, running at 100 MHz

• A DDR controller, supporting a DDR RAM of 128MB in size. It serves as the

system memory. The Linux kernel gets expanded here allowing it to boot. It

is also used by our test program as storage for a temporary buffer, where the

partial bitstreams are loaded from the Compact Flash

• RS-232 for communicating with the host PC. It serves as input and output for

the Linux console, allowing the user to issue commands to the operating system.

The baud rate was set at 38400Kbps.

• An OPB-DCR Socket. This peripheral extends the OPB Bus interface by mak-

ing it external and allows access to the bus macro enable pin, by using the

DCR. This allows for the easy connection of the peripheral where our partial

reconfiguration modules are swapped in.

• A SYSACE Controller. This peripheral allows the use of Compact Flash as

storage space for the initial system bitstream as well as the partial bitstreams.

It is also used as storage for the root filesystem of our Linux operating system.

• The HWICAP module. As described in Chapter 3, the HWICAP module makes

it possible for the processor to access the ICAP. The Linux Device Driver for the

HWICAP core, which is integrated in the kernel sources, had to be enabled from

the Configure menu of the Linux kernel (located in Device Drivers→Character

Devices).
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6.1.1 Assigning the PRR and bus macros

Placing a PRR in the FPGA has to follow some restrictions:

1. Outside the PRR, a space of two slice column must be left, to allow the place-

ment of bus macros.

2. The sides of the PRR must not be placed on the FPGA border to allow signal

accessing I/O buffers to be routed successfully.

3. The PRR must not cross slice-columns in the area of the ICAP (located in the

bottom right corner of the FPGA) as this causes random freezes of the system.

The peripherals used in this initial attempt are very simple. The resource require-

ments are rather small and, thus, a small PRR was required. Bus macros were used

to connect the OPB bus extension, provided by the OPB DCR socket, and the PRR.

The bus macros were placed on the left side of the PRR and, therefore, bus macros

with direction left-to-right were chosen for the input signals and right-to-left for the

output signals. The PRR and bus macros can be seen in Figure 6.2

6.1.2 Placement of the DCMs

The system makes use of two DCMs to produce the necessary clock signals for the

DDR and the system clock. These DCMs must be instantiated manually in order for

the design tools to recognize the clock signals correctly and route them through the

global clock nets. The DCMs were assigned to positions X2Y0 and X2Y1.
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Figure 6.2: Placement of the PRR and bus macros for the adder/multiplier

6.2 Booting the System and checking functionality

After successfully compiling the Linux kernel and integrating with the system design,

we proceeded with booting-up the board. The process was completed successfully

except for a few issues.

The HWICAP was recognized by the kernel and the appropriate linux driver was

loaded to support it, remapping it to a virtual address. However, a special device

file binded to the HWICAP major device number2 had to be created, to allow users

to instantiate the ICAP in their programs. This can be easily done by using the

following command:

mknod /dev/console c 258 1

2The major device number is used to differentiate the system devices. The minor number is used
to differentiate different instantiations of the same device type
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The major number 258 is pre-selected in the HWICAP driver. The HWICAP driver

allows access to the ICAP with the use of four simple operations depicted in Table

6.1:

Method Functionality

open Open the port and initialize for access

release Release the port

write Write a bitstream to the configuration processor

read Read a data stream from the configuration processor

Table 6.1: ICAP access operations

After being opened, the port is initialized and accessed to avoid a corrupted first

read which may occur with some hardware. The port is left in a desynched state,

requiring that a synch sequence will be transmitted before any valid configuration

data. A user will have exclusive access to the device while it remains open, and the

state of the ICAP cannot be guaranteed after the device is closed.

The second issue that emerged, involved the detection and remapping of the OPB

DCR socket peripheral, which allowed us to access to the PRR. During boot there

was no detection and it was not contained in the list with the loaded devices3. In

order to make the device detectable by the operating system, a simple driver had

to be written4. This driver was based on a Xilinx application note, describing the

procedure of integrating a specific EDK peripheral into Linux [11]. During boot, it

3The probed devices can be easily viewed by using the cat /proc/devices command
4Source code for this driver is included in Appendix C

46



parses the device tree to find all the necessary attributes, like physical addresses. It

provides the operations shown in Table 6.2.

Method Functionality

open Open the socket and initialize for access

release Release the socket

write Write a value to a register of the custom peripheral

read Read a value from a register of the custom peripheral

ioctl Defines the read or data offset of the read and write addresses

for the peripheral registers. It also disables and enables

the Bus Macros

Table 6.2: OPB DCR Socket access methods

Currently, the driver supports 12 registers for read and write. It can be easily

updated to support any number of registers. It was integrated in the kernel sources

by copying the source code in the kernel drivers directory and modifying the Makefile

to include the sources. We created a special character device in the filesystem with

the command

mknod /dev/console c 177 1

Then, compilation and booting of the system was successful and the peripheral was

correctly probed and remapped. A simple program was written verify the function-

ality, that writes two operands and reads the result.
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We then proceeded to test the reconfiguration process. The procedure followed in

the test program is as follows:

1. Open the socket and the ICAP devices

2. Open the partial bitstreams and store them in temporary buffers in the DDR.

We manipulate the bitstream files as any file by using the functions “fopen”,

“fclose”, “fread” etc.

3. Write two operands in the two inputs of the mathematical function.

4. Read the result.

5. Disable the bus macros, in order to disconnect the PRR from the rest of the

system.

6. Write the partial bitstream of the other math function by using the command

fwrite(bit buffer, sizeof(char), fileLen, icap);

where bit buffer is a void* buffer containing the previously read bitstream,

sizeof(char) defines the size of a single element to be written, fileLen is the size

of the buffer in bytes and icap is the file pointer to the ICAP device.

7. Re-enable the bus macros.

8. Test the newly reconfigured core by checking correct functionality

9. Repeat from step 5
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Reading and storing the partial bitstreams immediately with the beginning of the

program, and then using the temporary buffers to reprogram the FPGA, acts as a

form of prefetching. The bitstreams remain loaded in the DDR RAM, ready to be

used, which is much faster compared to the Compact Flash.
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Chapter 7

Running a real application on the

OS-based System

After successfully setting up the infrastructure to support DPR, we proceeded with

the implementation of the final test system. For the purpose of this thesis, we used

the encryption cores, used in the thesis of G. Nikoloudakis [32].

7.1 Background on Cryptographic Algorithms

Today’s digital age makes the protection of data against malicious users extremely

important. Safely storing the data and transmitting it over insecure networks de-

mands the encryption of data. As a test application for this thesis, we have used two

of the most popular encryption algorithms; Triple-DES and AES. The algorithms

were selected due to the following reasons:

• Widely used in data encryption
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• Implementation of a unified encryption platform will enable us to study the

application of dynamic reconfiguration in:

– Implementation of algorithms with significant computational load and

complexity

– Dynamic swapping of algorithms with varying resource requirements

– Implementation of algorithms whose co-existence in the system is impos-

sible due to a lack in availabe resources.

These algorithms belong in the class of Symmetric-Key encryption algorithms.

Basic functionality of this type of encryption is depicted in Figure 7.1:

Figure 7.1: Symmetric Key Encryption Algorithms

These algorithms are also known as private-key algorithms because their security

depends on the encryption/decryption key which is known only by the sender and

the receiver of the message.

51



7.2 Integrating the Encryption Cores in the sys-

tem

During the process of integrating the encryption cores in our system, an issue emerged.

The maximum frequencies supported by all the different components of the system

are shown in table 7.1.

Component Maximum Frequency (MHz)

Static System 100

Triple-DES 170

AES 79.3

Table 7.1: Maximum operating frequencies

We proceeded with implementing the optimal configuration for these cores. We

added an additional DCM to the two already present in the system, and configured

them to output two additional clock signals (besides the system clock set at 100MHz,

the clk90 and ddr90 clock signals were required for the DDR controller). Thus,

there were 5 clock signals present in the system. Although the procedure of creating

the system went rather smoothly, the final step of creating the static and partial

bitstreams resulted in error concerning short-circuits in the system. Several attempts

were made to resolve this issue, including different placement of the PRR, the Bus

macros and the DCMs, as well as selecting a high placer and router effort level.

Finally, we decided to use a common clock for the two cores, set at 50 MHz. This

resulted in a successful generation of the static and partial bitstreams. Thus we
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decided to proceed with this clock configuration.We followed the process already

described in Chapter 6. A few details are shown below.

7.2.1 Resource Requirements

The slice resource requirements for the every system component (table 7.2). The

FPGA provides 13696 slices and our system occupies 13669 or a 99.8% of the avail-

able resources. It is obvious that a static version of our system, supporting the two

algorithms, would make it impossible to support any additional logic or encryption al-

gorithms. The dynamically reconfigurable version, however, supports a great number

of algorithms (theoretically, any algorithm with size equal to the AES). This allows

for great system flexibility.

Component Required Slices % of FPGA slices

Static System 2152 out of 13696 15.71%

AES 9671 out of 13696 70.61%

Triple-DES 1846 out of 13696 13.48%

Total 13669 99.8

Table 7.2: Percentage of FPGA slice usage
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7.2.2 Placement of the Encryption PRR

The size of the PRR is determined by the size of the largest design; in this case the

AES algorithm. Table 7.3 illustrates the slice requirements of these algorithms1.

Algorithm Slices % of PRR slices

AES 9671 of 9920 97.48%

Triple-DES 1846 of 9920 18.61%

Table 7.3: Percentage of PRR usage

This table shows two disadvantages of the Module-based design flow:

1. Acquision of resources that may go unused by any of the PRMs but are, also,

unavailable to the rest of the system since they are a part of the PRR

2. Each reconfiguration traverses the entire PRR even though some parts do not

contain any logic.

1The PRR could not be set at exactly the size of the AES algorithm. This is due to the different
limitations concerning PRR placement
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Resource allocation of the two algorithms within the PRR are shown in Tables

7.4 and 7.5.

Site Type Available Required % Utilization

LUT 19840 15853 79.90

FF 19840 1678 8.46

SLICE 9920 9671 97.49

MULT18X18 92 0 0

RAMB16 92 0 0

TBUF 4960 0 0

Table 7.4: PRR usage for the AES

Site Type Available Required % Utilization

LUT 19840 3026 15.25

FF 19840 1718 8.66

SLICE 9920 1846 18.61

MULT18X18 92 0 0

RAMB16 92 0 0

TBUF 4960 0 0

Table 7.5: PRR usage for the DES
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Placement of the PRR, must conform to the restrictions described in Chapter 5.

For purposes of direct comparison of our experimental results with the results of [32],

we used the same exact PRR placement. The coordinates of the PRR are X10 Y154

to X80 Y5. We chose AES as the active reconfigurable module.

The placement of the PRR is depicted in Figure 7.2
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Figure 7.2: Placement of the Encryption PRR
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7.2.3 Placement of the Bus Macros

The Bus Macros used are the same with those used in the initial attempt described

in Chapter 5, since we are using OPB Bus compatible peripherals in both cases. We

made a small modification in the encryption cores, adding a 4-bit output signal, used

as input for the LEDs found on the XUP board. We used this signal as a mean of

ensuring that the reconfiguration process is completed successfully. Since any signal

(besides the clock signals) that comes in or out of a PRR has to pass through a bus

macro, an extra Bus Macro was added. The number and types of Bus Macros used

are shown in Table 7.6

Type Size Number of BMs Type of BMs

Input Data Bus 32 bit 4 Left-to-Right

Output Data Bus 32 bit 4 Right-to-Left with Enable

Address Bus 32 bit 4 Left-to-Right

Input Control Signals 8 bit 2 Left-to-Right

LED Signals 4 bit 1 Right-to-Left with Enable

Total 108 bit 15

Table 7.6: Bus Macros

The placement of the Bus Macros is shown in Figures 7.3 and 7.4. The Bus Macro

for the LED signals, had to be placed in the lower left corner of the PRR. This was

necessary as the LED output pins are located in the right side of the FPGA and thus,

placing it there resulted in the least possible obstruction for the system routing.
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Figure 7.3: Placement of the Encryption Bus Macros

Figure 7.4: Placement of the led Bus Macro

59



7.3 Testing the system

After successfully integrating the encryption cores to the existing Linux-based infras-

tructure, we proceeded with system testing. System boot was completed successfully.

Since correct functionality of the cores was thoroughly tested by G. Nikoloudakis [32],

a simple program was written that performs an encryption with the default PRM

loaded (AES), displays the result, swaps to the Triple-DES, performs an encryption,

displays the result and then swaps back to the AES module. This process is repeated

in an infinite loop.

During initial attempts, the encrypted data produced by these two algorithms were

incorrect. Trying to resolve this problem, we realized that it was necessary to write

the reconfiguration bitstreams two times in a row, before accessing the peripheral.

This was the only way to perform a successful reconfiguration. The causes for this

were not found. A guess about it is that due to the size of the PRR and, therefore,

the size of the bitstreams, there is a limitation in the HWICAP linux driver, since

the Planahead design tool (used for bitstream generation) and the HWICAP module

version are exactly the same with the ones used by G. Nikoloudakis.

After modifying the test application to perform the reconfiguration call twice, we

were able to get correct encrypted data for both the AES and DES cores.
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Chapter 8

Experimental Results

In this chapter, we describe the experimental results that were extracted during sys-

tem testing.

8.1 Methodology

For the purpose of measuring the time needed to perform the reconfigurations, we

used the software function int gettimeofday(struct timeval *tv, struct timezone *tz);

which is defined in the libraries <time.h> and <sys/time.h>. This function gives

the number of seconds and microseconds since the Epoch1 and thus, through the use

of two timeval arguments, we can measure elapsed time in microsecond precision.

100:00:00 UTC, January 1, 1970
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8.2 Analysis of Results

The process of dynamic reconfiguration includes two steps, as described previously:

• Transferring the bitstream in a buffer stored in the DDR RAM.

• Writing the bitstream to the ICAP.

During experimental testing and online research, we realised that Linux uses a

dynamic amount of the available free RAM, as a cache, in order to store transferred

pages from the CF and have them available for possible future usage. Thus, we made

two measurements for the time needed to transfer the bitstreams, an initial read

and a cached read. Also, the PowerPC processor offers the possibility of enabling and

disabling the onboard cache (16KB Instuction cache and 16KB Data cache). We made

measurements with the CPU cache both enabled and disabled, in order to examine

its impact to the general system performance. After creating the system and partial

bitstreams, we noticed that, even though the netlists used for the reconfigurable

modules, the position of the PRR and the placement of the Bus Macros were exactly

the same, the resulting bitstreams of the reconfigurable modules for the two systems

varied slightly in size. The sizes of the bitstreams are depicted in Table 8.1:
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Reconfigurable Bitstream Size (bytes) Bitstream Size (bytes)

Modules (CPU Cache Disabled) (CPU Cache Enabled)

AES 752245 755393

DES 743289 752177

Blank Encrypt 741862 744790

Adder 124478 125250

Multiplier 130991 130955

Blank Math 124513 124449

Table 8.1: Bitstream Sizes

Tables 8.2 and 8.3 contains the times measured with the CPU cache disabled and

Tables 8.4 and 8.5 contains the times measured with the CPU cache enabled. These

values are depicted in Figures 8.1 and 8.2 as well. In Figure 8.3 we present a direct

comparison of the performance increase we achieved by enabling the CPU cache, in

combination with the DDR-RAM cache provided by the Linux kernel.
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Partial tCFtoDDR tDDRtoCM tTOTAL

Bitstreams (msec) (msec) (msec)

AES 795.6181 144.5136 940.1317

DES 789.0413 141.2400 930.2813

Blank Encrypt 786.3364 142.84 929.1764

Adder 132.0619 26.8564 158.9183

Multiplier 136.1577 28.2064 164.3641

Blank Math 132.3275 27.0257 159.3532

Table 8.2: Results with CPU cache disabled. Direct transfer of bitstream from the

CF

Partial tCFtoDDR tDDRtoCM tTOTAL

Bitstreams (msec) (msec) (msec)

AES 32.1553 144.5136 176.6689

DES 31.5876 141.2400 172.8276

Blank Encrypt 31.5234 142.84 174.3634

Adder 5.7270 26.8564 32.5834

Multiplier 6.0622 28.2064 34.2685

Blank Math 5.9139 27.0257 32.9396

Table 8.3: Results with CPU cache disabled. Cached read of bitstream from the

DDR-RAM cache
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Partial tCFtoDDR tDDRtoCM tTOTAL

Bitstreams (msec) (msec) (msec)

AES 709.4078 124.0119 833.4197

DES 704.7288 123.6254 828.3542

Blank Encrypt 698.2548 122.9256 821.1804

Adder 116.6073 21.9517 138.5590

Multiplier 120.5624 22.6724 143.2348

Blank Math 116.6983 21.6132 138.3115

Table 8.4: Results with CPU cache enabled. Direct transfer of bitstream from the

CF

Partial tCFtoDDR tDDRtoCM tTOTAL

Bitstreams (msec) (msec) (msec)

AES 15.5578 124.0119 139.5698

DES 15.4021 123.6254 139.0275

Blank Encrypt 15.2073 122.9256 138.1329

Adder 2.5864 21.9517 24.5381

Multiplier 2.7138 22.6724 25.3863

Blank Math 2.6666 21.6132 24.2798

Table 8.5: Results with CPU cache enabled. Cached read of bitstream from the

DDR-RAM cache
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Figure 8.1: Measured Times with CPU cache disabled

Figure 8.2: Measured Times with CPU cache enabled

66



Figure 8.3: Comparison of measured times with CPU cache disabled and enabled.

Tables 8.6 and 8.7 makes a comparison between these times, illustrating the per-

formance increase for each bitstream, as well as on average, that was achieved by

enabling the CPU cache.
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Partial Bitstreams CFtoDDR DDRtoCM Total Time

AES 10.84% 14.19% 11.35%

DES 10.6% 12.47% 10.96%

Blank Encrypt 11.2% 13.94% 11.62%

Adder 11.7% 18.26% 12.81%

Multiplier 11.45% 19.62% 12.86%

Blank Math 11.81% 20.03% 13.2%

Average: 11.27% 16.48% 12.22%

Table 8.6: Improvement by enabling CPU Cache. Direct transfer of bitstream from

the CF

Partial Bitstreams CFtoDDR DDRtoCM Total Time

AES 51.62% 14.19% 21%

DES 51.24% 12.47% 19.56%

Blank Encrypt 51.76% 13.94% 20.78%

Adder 54.84% 18.26% 24.69%

Multiplier 55.23% 19.62% 25.92%

Blank Math 54.91% 20.03% 26.29%

Average: 53.27% 16.48% 23.09%

Table 8.7: Improvement by enabling CPU Cache. Cached read of bitstream from the

DDR-RAM cache
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Tables 8.8 and 8.9 illustrate information extracted from the experimental results

that can be used for estimating reconfiguration times for future designs. Reconfig-

uration time per ColumnSlice is included due to the fact that reconfiguration on a

Virtex-II Pro FPGA, re-programs the entire Column of the FPGA. The encryption

cores occupy 72 Columns of the FPGA and 9920 slices, while the mathematical cores

occupy only 12 Columns and 384 slices.

Partial Time(msec) per Time (msec) Time (msec)

Bitstreams KB of Bitstream per Slices per ColumnSlice

AES 1.2798 0.0948 13.0574

DES 1.2816 0.0938 12.9206

Blank Encrypt 1.2826 0.0937 12.9052

Adder 1.3073 0.4138 13.2432

Multiplier 1.2849 0.4280 13.6970

Blank Math 1.3105 0.4150 13.2794

Average: 1.2911 – 13.1838

Table 8.8: Elementary Reconfiguration Times with CPU cache disabled
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Partial Time(msec) per Time (msec) Time (msec)

Bitstreams KB of Bitstream per Slices per ColumnSlice

AES 1.1298 0.0840 11.5753

DES 1.1277 0.0835 11.5049

Blank Encrypt 1.1290 0.0828 11.4053

Adder 1.1328 0.3608 11.5466

Multiplier 1.1200 0.3730 11.9362

Blank Math 1.1381 0.3602 11.5260

Average: 1.1296 – 11.5824

Table 8.9: Elementary Reconfiguration Times with CPU cache enabled

One observation that can be made is that the Reconfiguration time per number

of slices increases as the designs get smaller. This can be explained by the fact that

during reconfiguration, the entire column of the FPGA gets reprogrammed. The time

required to re-program an FPGA Column can be seen in the third column of tables

8.8 and 8.9 and is about 13.2 msec (with enabled CPU cache) and 11.6 msec (with

disabled CPU Cache). If the PRR extends to a large portion of a Column, then the

required time to reconfigure a single slice of the design is reduced (as it reconfigures

more design slices per column). Thus, the time required to reconfigure a single slice

of the Encryption cores is much smaller than the time required for the mathematical

cores (which are quite smaller in size).
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In table 8.10, we present the Throughput of the Compact Flash and the HWICAP

peripheral as extracted from the previous measurements.

Without Cache With Cache

CFtoDDR 0.9023 MB/sec 1.0213 MB/sec

DDRtoICAP 4.6965 MB/sec 5.64 MB/sec

Table 8.10: Transfer Rates
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8.2.1 Comparison with non-OS Implementation

In the following tables, we make a comparison between our implementation and the

implementation of G. Nikoloudakis. The cores used in both implementations were

exactly the same. We only show the results taken with the CPU cache disabled as

this was the case with the other implementation.

Present Implementation Nikoloudakis [32]

CF to DDR CF to PLB BRAM

4.6965 MB/sec 1.15 MB/sec

DDR to ICAP PLB BRAM to ICAP

0.9023 MB/sec 0.260 MB/sec

Table 8.11: Comparison of transfer rates

Present Implementation Nikoloudakis [32]

Time/slice of PRR 0.0941 ms 0.360924215 ms

Time/KB of bitstream 1.2911 ms 5.074729498 ms

Time/ColumnSlice 13.1838 ms 49.72733628 ms

Table 8.12: Comparison of elementary Reconfiguration Times
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Present Implementation Nikoloudakis [32] Improvement

Bitstream Transfer(sec) 0.795618 2.782043 3.4967x

Write Bitstream to CM(sec) 0.144514 0.620120 4.2910x

Total(sec) 0.940132 3.402163 3.6188x

Table 8.13: Comparison for the AES Encryption core

Present Implementation Nikoloudakis [32] Improvement

Bitstream Transfer(sec) 0.789041 2.720075 3.4473x

Write Bitstream to CM(sec) 0.141240 0.605509 4.2871x

Total(sec) 0.930281 3.325583 3.5748x

Table 8.14: Comparison for the DES Encryption core

Present Implementation Nikoloudakis [32] Improvement

Bitstream Transfer(sec) 0.786336 2.500617 3.18x

Write Bitstream to CM(sec) 0.143457 0.557390 3.8854x

Total(sec) 0.929176 3.058007 3.2911x

Table 8.15: Comparison for the Blank bitstream
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Chapter 9

Conclusions and Future Work

For the purpose of this thesis, we implemented an autonomous Linux-based Dynamic

Reconfiguration Task Manager. The system supports virtually any type of reconfig-

urable peripheral that can fit in the FPGA with no changes in system set-up. We

described the process of implementing such a system as well as overcoming different

problems and issues that may emerge.

The experimental results were quite promising. They showed a great improvement

in all areas regarding dynamic reconfiguration, compared to a non-os implementation,

thus reducing the impact of DPR in system performance. The use of the much

faster DDR (compared to the CF) as a temporary storage buffer greatly reduces

the overhead of reconfiguration as it eliminates the need of constanly retrieving the

bitstreams from the Compact Flash.

As part of future work, the following modifications can be implemented, reducing

the cost of DPR :

• Taking advantage of the memory management performed by Linux, by retriev-
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ing the bitstreams during system boot. The bitstreams are then stored in the

RAM cache. User applications will retrieve the bitstreams from the cache and

not from the CF, thus eliminating the need to re-transfer them from the CF

• Implementing a DMA controller for the transfer of the bitstreams from the CF

to the DDR and from the DDR to the ICAP without the need of the processor.

• Dividing the PRR into smaller PRRs, thus resulting in smaller bitstreams.

• Improving the OPB/DCR socket driver and extending it to support multiple

instantiations of the peripheral, thus allowing for more PRRs to be attached to

the system. This provides the capability to add different types of reconfigurable

peripherals for various operations.

• Extending the system by adding Ethernet support (making it possible to retrieve

bitstreams from a network and/or updating local bitstreams)

• Applying encryption and/or compression to bitstreams, thus increasing security

and size of bitstreams.
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Appendix A

In Appendix A, we describe the process of compiling the two unsuccesful attempts, the

problems we faced and the solutions found. The first attempt was with the Petalinux

provided by Petalogix [20].The most current version at the time was 0.30rc1.

The Petalinux distribution provides all the necessary tools and compilers for com-

piling the kernel sources as well as versions 2.4 and 2.6 of the Linux kernel. We

downloaded the sources from the official size and extracted them. Since, the XUP

Virtex-II Pro is not included in the reference designs, we followed the Tutorial Guide

on how to create a design from scratch.

A.1 Compiling the Petalinux 2.6 kernel version

1. The first step is to set up the appropriate environment variables for Petalinux.

This can be easily done with the following command:

source ./settings.sh

2. Next, we created a new vendor and platform combination for our target system.

The first attempt was to use the 2.6 version of the kernel as it is newer and more
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optimized. Thus we issued the following command:

petalinux-new-platform -v Xilinx -p XUPV2P -k 2.6

which sets up a new platform “XUPV2P” under vendor name “Xilinx” for the

2.6 kernel. This platform can be removed by using the “petalinux-remove-

platform” command

3. Following, the next step is to set up our newly created platform as the current

build target, as this allows the user to edit and subsequently save the settings

configured for this platform. This can be done by using the menuconfig tool to

select the platform from the Vendor/Product Selection menu.

Figure A.1: Setting the Platform as the target system

82



After saving and exiting from the menuconfig tool, a default configuration for

our system is created. It provides a baseline to start configuring the plat-

form. Before creating the hardware project, we need to set up a Hardware

Design Project Directory. This can be done by changing directory to the

$PETALINUX/hardware/user-platforms/ and creating a new directory to host

our project. We then have to copy the Petalinux bsp files (located in $Petal-

inux/hardware/edk user repository/) into our project directory, or create a

symbolic link using the following command:

ln -s ../../edk user repository edk user repository

4. Next, we proceed with creating our hardware platform through the use of the

EDK design tool. The system configuration we used is as follows:

• A Microblaze processor, running at 100MHz with 8KB of local memory

and enabled cache.

• OPB UARTLITE peripheral with 115200 baudrate and interrupt enabled.

• 128MB MCH OPB DDR RAM to be used as main memory for Linux

• One OPB Timer with 32 counter bit width and interrupt enabled

• 8KB Data and 8KB Instruction cache for the DDR RAM.

The Tutorial guide, also listed an Ethernet MAC peripheral but it was excluded

from our design due to a lack of license.

Certain modifications were required before proceeding with the generation of

libraries and netlists:
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• Edit the debug module peripheral to disable the UART Interface on OPB.

• Enable interrupt for the debug module by setting its interrupt Net to “de-

bug module interrupt” and adding it to the opb intc’s list of connected

interrupts.

• Include the Petalinux BSP. This is done by setting the Repository periph-

eral (located in the Project Options dialog box) to /path/to/Petalinux/

hardware/project/dir/edk user repository

• Add FS-Boot bootloader. This is done by creating a new Software Applica-

tion in the EDK,adding the existing files located in $Petalinux/hardware/fs-

boot and editing the Compiler Options for this application to match the

ones depicted in the following table: The FS-Boot Application was marked

Attribute Value

Environment

Application Mode executable

Output ELF file default value

Linker Script Use default Linker Script

Debug and Optimisation

Optimization Level Size Optimized (-Os)

Advance

Other Compiler Options to Append -Wall

Table A.1: FS-Boot Compiler Options
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to Initialize the processor’s BRAM.

• Configure the system software settings with following attributes:

Attribute Value

Processor Parameters, Driver

and Interrupt Handlers

xmdstub peripheral none

OS and Library Settings petalinux

PetaLinux version 1.00b

OS and Library

lmb memory dlmb cntlr

main memory DDR 128MB 16MX64 rank1 row13 col9 cl2 5

main memory bank 0

stdout RS232 Uart 1

stdin RS232 Uart 1

Table A.2: Software Platform Settings

5. We, then, proceeded to configure the Petalinux. The Petalinux distribution

includes a special script which allows for automated synchronisation of hardware

and software system configurations. From within the edk project directory, we

issued the following command:

petalinux-copy-autoconfig
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We then proceeded by invoking the menuconfig tool by issuing the following

command from within the $Petalinux/software/petalinux-dist directory:

make menuconfig

We then enabled the Customize Kernel Settings and Customize Vendor/User

Settings optionsA.2.

Figure A.2: Settings Options

These options allow for configuration of the Linux kernel and Vendor/User

Settings. We made the following changes, according to the guide, by navigating

to the appropriate menus

• In Kernel Settings we made the following modifications:

– Disabled the GPIO driver (located in Device Drivers→Character Devices→Xilinx

OPB GPIO Support)
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– Enabled the UARTLITE console support (located in Device Drivers →

Character Devices → Xilinx uartlite serial port support and Support

for console on Xilinx uartlite serial port)

– Disabled Networking support as there were no network devices present

in our system (located in Networking → Networking Support)

– Enabled support for Intel/Sharp flash chips (located in Device Drivers

→ Memory Technology Devices(MTD) → RAM/ROM/FLASH chip

drivers → Detect non-CFI AMD/JEDEC-compatible flash chips)

• In Vendor/User Settings we enabled the Build U-Boot option (located in

System Settings)

We, then, re-run the menuconfig tool to update the settings and proceeded with

the compilation of the kernel

yes ‘‘ ’’ | make oldconfig dep

make all

After running the “make all” command an error occured about an undeclared

variable called “PATH MAX”. By doing some research, we modified the sumver-

sion.c file located in $PETALINUX/software/petalinux-dist/scripts/mod/ by

adding the following line in the beginning of the file:

#include <linux/limits.h>

This eliminated the error and compilation proceeded. A new error occured

concerning jedec probe.c file. Disabling support for the Intel/Sharp flash chips
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eliminated the error (There are no flash components in our system, so disabling

this driver has no effect on the functionality of the system).

Compilation carried on but another error occured concerning a syntax error in

the petalinux-uboot-config script

u-boot/petalinux-uboot-config: line 177: + : syntax error:

operand expected (error token is " ")

By examining the source code of the petalinux-uboot-config script, we found out

that this error concerned a FLASH Memory which was unavailable on our board.

Thus, we proceeded by disabling the build U-boot option which allowed for

correct compilation of the Linux kernel. However, due to the problems described

above and the limitations they impose (the need to manually download the

kernel on the board by using the xmd software), we deciced to try the 2.4

version of the kernel.

A.2 Compiling the Petalinux 2.4 kernel version

Compiling the 2.4 version requires the same steps as described above except for a few

differences.

• The creation of the new platform is accomplished by using the following com-

mand

petalinux-new-platform -v Xilinx -p XUPV2P -k 2.4

88



• Setting the Platform as the target system now requires setting the Kernel Ver-

sion to linux-2.4.x (figure A.3)

Figure A.3: Setting the Platform as the target system

The other settings were configured as described previously with a few changes

in the kernel paths. During compilation an error occured, concerning an unde-

clared variable “CONFIG XILINX FLASH START”. During research for a solution,

we came along a workaround solution to this problem by defining two random val-

ues for CONFIG XILINX FLASH START and CONFIG XILINX FLASH SIZE in

the auto-config.in file located in $PETALINUX/software/petalinux-dist/linux-2.4.x/

arch/microblaze/platform/Xilinx-XUPV2P/
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for example :

define hex CONFIG XILINX FLASH START 0x82000000

define hex CONFIG XILINX FLASH SIZE 0x00800000

This resolved the issue, however correct functionality of the kernel cannot be guar-

anteed. However, a new error occured, concerning undeclared functions regarding the

ethernet connectivity during U-Boot bootloader compilation. Enabling Networking

support and enabling network devices resulted in further error regarding the absence

of declared peripheral addresses. Thus, we disabled the compilation of the U-Boot

bootloader to see if we could compile the kernel. This resulted in a successful compi-

lation of the kernel, which we downloaded on the board by using the xmd command.

The Petalinux distribution was therefore abandoned as an idea, as it didn’t meet

the specifications set for this thesis.
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Appendix B

B.1 Compiling PowerPC Linux 2.4

The second attempt on compiling a Linux kernel was based on a guide by the depart-

ment of Computer Science and Engineering at the University of Washington [17].

Since the architectures of the host machine and target board are different, the use

of a cross-compiler for the target architecture is required. The Crosstool [3] toolchain

was selected. After downloading and unzipping the tarball of the latest version (0.43)

at the time of this document, we proceeded by editing the appropriate download/build

script for our architecture. More specifically, the changes made are:

• The line RESULT TOP=/opt/crosstool was replaced by

RESULT TOP=$PREFIX/crosstool

• The line

eval ’cat powerpc-405.dat gcc-3.4.1-glibc-2.3.3.dat’ sh all.sh --notest

was replaced by
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eval ‘cat powerpc-405.dat gcc-3.4.4-glibc-2.3.3.dat‘ sh all.sh --notest

We then set the following environment variables in a linux console and executed the

script:

export TARGET=powerpc-405-linux

export PREFIX=<target directory>/$TARGET

unset LD LIBRARY PATH

sh demo-ppc405.sh

In order for the script to function correctly, we had to downgrade the gcc compiler to

version 3.4.

The final step was to add the cross-compiler’s bin directory to the compiler search

path by running export PATH=$PREFIX/bin:$PATH in a console. This has to be

done each time a new console is open.

The process of configuring and compiling the kernel, requires several different

steps, as shown below:

1. Firstly, a baseline system must be created in EDK so that the bitstream and

base support package (BSP) can be created. The configuration we used for our

system is shown below:

• PowerPC 405 at 300MHz

• JTAG debug

• No Data OCM

• No Instruction OCM
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• Cache Enabled for instructions and data with burst enabled.

• OPB UART 16500 with interrupt

• OPB Sysace with interrupt

• PLB 128MB DDR without interrupt

• PLB BRAM IF CNTRL (128 KB)

The ppc405 0 bootloop was selected as the default application to initialize the

BRAM and then, Generate Bitstream was selected to create the netlist and the

download bitstream.

2. We, then proceeded with the generation of the Base Support System or BSP.

It is a set of files required so that Linux will compile and contain the required

drivers and .h files for our system. We made the following changes in the

software platform and settings menu:

• Under Software Platform, we set ppc405 0 to use linux: linux mvl31 ver-

sion 1.01a

• Under Library/OS Parameters we set MEM SIZE = 0x08000000 for our

128MB RAM, PLB CLOCK FREQ HZ = 100000000 and TARGET DIR

= /path/to/store/generated/bsp/files.

• We added all devices that Linux should know about(under connected periphs):

RS232, SysACE, OPB interrupt controller.

We, then, continued with generation of the BSP files by clicking Generate Li-

braries and BSPs in the Tools menu. The resulting BSP files were tarred up.
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3. The next step involves retrieving the Linux sources using bitkeeper [2], installing

the BSP, and patching the kernel.

• Retrieving the kernel sources was performed by using bitkeeper:

./bkf clone bk://ppc.bkbits.net/linuxppc 2 4 devel

linuxppc-2.4.26

• Installing the BSP files was performed by untarring the archive created in

step 2 in the root directory of the kernel sources

• In order for the kernel to compile successfully for our target system, it

was necessary to apply a patch located on the website of the tutorial. The

archive was untarred in the kernel sources and the touchup linuxppc tree.sh

shell script was executed.

4. The final step involves configuring and compiling the Linux Kernel. As the de-

fault configuration to base our system, we used the ML310 Linux configuration

file on the Xilinx website [16]. We downloaded and untarred the configuration

file in <linux kernel src dir>/arch/ppc/boot/images/. We made the follow-

ing modifications to the Makefile (located in the root directory of the kernel

sources):

ARCH := ppc

CROSS COMPILE = powerpc-405-linux-gnu-

Running “make oldconfig” imports the default configurations from the down-

loaded config file. Based on this configuration, we changed the following set-

tings:
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• “console=ttyS0,38400 root=/dev/xsysace/disc0/part3 rw” as the Default

bootloader kernel arguments (located in General Setup). This tells the

kernel to look for a console on the ttyS0 device at 38400 baudrate, to look

for a filesystem on the third partition of the compact flash and mount the

filesystem with read and write privileges.

• Disabled Xilinx on-chip GPIO (located in Character Devices)

The Linux kernel was successfully compiled by issuing the following commands:

make dep

make zImage.initrd

B.2 Integrating the Icap Driver

In order for the operating system to correctly probe and set up the HWICAP module,

it is necessary to provide drivers for it and integrate them in the kernel sources.

We decided to integrate the HWICAP linux driver found in the kernel sources of

the uCLinux [15]. We copied the files to the <linux kernel src dir>/drivers/misc

directory. In order to integrate it in the kernel, the following steps were necessary:

• Correct the path of the EXTRA CFLAGS in the Makefile of the driver to point

to the correct xilinx ocp (-I$(TOPDIR)/arch/ppc/xilinx ocp).
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• Add the following lines in the Config.in file located in the misc directory:

if [ ‘‘$CONFIG 40x’’ = ‘‘y’’ ]; then

tristate ’Xilinx ICAP driver’ CONFIG XILINX HWICAP

fi

• Add the following lines to the Makefile located in the misc directory:

mod-subdirs += xilinx hwicap

subdir-$(CONFIG XILINX HWICAP) += xilinx hwicap

obj-$(CONFIG XILINX HWICAP) += xilinx hwicap/xilinx hwicap.o

• Add the following line to the Config.in file located in < linux kernel src dir/arch/ppc/

source drivers/misc/Config.in

• Add the following lines to the adapter.c file located in xilinx hwicap folder

source drivers/misc/Config.in

• Add the missing files xpacket fifo l v2 00 a.c, xpacket fifo l v2 00 a.h, xpacket fifo v2 00 a.c

and xpacket fifo v2 00 a.h to the arch/ppc/xilinx ocp folder. These files can be

easily found by searching the internet.
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Appendix C

C.1 OPB/DCR Socket Device Driver

Below follows the device driver we developed in order to support the OPB/DCR

socket peripheral which was needed for accessing the reconfigurable peripherals. It is

implemented by two files, socket.c and socket.h

socket.c:

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/version.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/xilinx_devices.h>
#include <asm/dcr.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>

#include "socket.h"

/*
* The major device number used by this driver.
*/

#define SOCKET_DEV_MAJ 177

#define REG_CTRL_ENABLE 0x00000001
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#define REG_CTRL_DISABLE 0x00000000
#define NUM_REGS 1
#define REG_SOCKET_ADDR 0
#define REG_CTRL 1

#define DRIVER_NAME "socket"
#define DRIVER_DESCRIPTION "Xilinx OPB/DCR Socket driver"
#define DRIVER_VERSION "1.00a"

/*
* The OPB/DCR Socket has DCR interface to its bus macros enable input. This
* macro allows for direct access to the dcr interface
*/

#define xilinx_opbdcrsocket_out_be32(driverdata, offset, val) \
dcr_write(driverdata->dcr_host, offset, val)

/*
* The OPB/DCR Socket device structure. Only a single instance is
* provided for.
*/

struct socket_dev *socket_dev;
int socket_debug=0;
/*
* socket_open:
* The user has opened /dev/socket
*/

int socket_open(struct inode *inode, struct file *filp)
{

struct socket_dev *dev; /* device information */
int retval;

retval = 0;
dev = container_of(inode->i_cdev, struct socket_dev, cdev);
filp->private_data = dev; /* for other methods */

mutex_lock(&dev->mutex);

/*
* Only one writer and only one reader of the device.
*/

switch (filp->f_flags & O_ACCMODE) {
case O_RDONLY:

if (dev->readers) {
retval = -EBUSY;
goto out;

} else {
dev->readers++;

}
break;

case O_WRONLY:
if (dev->writers) {

retval = -EBUSY;
goto out;

} else {
dev->writers++;
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}
break;

case O_RDWR:
default:

if (dev->writers || dev->readers) {
retval = -EBUSY;
goto out;

} else {
dev->writers++;
dev->readers++;

}
}

dev->write_to=0;
dev->read_from=0;
out:

mutex_unlock(&dev->mutex);
return retval;

}

/*
* socket_release:
* The user has closed the device file.
*/

static int socket_release(struct inode *inode, struct file *filp)
{

struct socket_dev *dev = filp->private_data;

mutex_lock(&dev->mutex);

/*
* Only one writer and only one reader of the device.
*/

switch (filp->f_flags & O_ACCMODE) {
case O_RDONLY:

dev->readers--;
break;

case O_WRONLY:
dev->writers--;
break;

case O_RDWR:
default:

dev->writers--;
dev->readers--;

}

mutex_unlock(&dev->mutex);
return 0;

}

/*
* socket_read:
* A userspace read of the device file. Copy one of the receive
* buffers to userspace
*/

ssize_t socket_read(struct file *filp, char __user *buf, size_t count,
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loff_t *f_pos)
{

struct socket_dev *dev = filp->private_data;
ssize_t retval = 0;
//struct llex_rx_buff *rx_buff;
void* buff;

int val;
int err;

buff = kmalloc(count + 1, GFP_KERNEL);
mutex_lock(&dev->mutex);

if (socket_debug) {
printk(KERN_INFO "\n%s: START: f_pos %lld count %d\n",

__FILE__, *f_pos, count);
}
/*
* Copy this buffer to user space.
*/

val=in_be32(socket_dev->mapaddr+socket_dev->read_from);
memcpy(buff, &val, 4);

err = copy_to_user(buf, buff, 4);
if (err < 0) {

printk(KERN_INFO
"There was a mistake in moving data to userspace");

goto out;
}
count -= 4;
buf += 4;
*f_pos += 4;
retval += 4;

out:

mutex_unlock(&dev->mutex);
return retval;

}

/*
* socket_write:
* A userspace write to the device file.
*/

ssize_t socket_write(struct file *filp, const char __user *buf,
size_t count, loff_t *f_pos)

{
struct socket_dev *dev = filp->private_data;
ssize_t retval = 0;
void * buffer;

int val;
mutex_lock(&dev->mutex);

buffer = kmalloc(count + 1, GFP_KERNEL);
if (buffer == NULL) {

retval = -ENOMEM;
goto out;
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}
memset(buffer, 0, 4);
if (copy_from_user(buffer, buf, count)) {

retval = -EFAULT;
goto out;

}
memcpy(&val,buf,4);

out_be32(socket_dev->mapaddr+socket_dev->write_to,val);
retval = 4;

*f_pos += count;

out:
mutex_unlock(&dev->mutex);
return retval;

}

/*
* socket_ioctl:
* This function is used to set the write and read offset to
* the base address of the device, in order to read from any
* different peripheral registers. It is also used to disable
* and enable the bus macros.
*/

int socket_ioctl(struct inode *inode, struct file *filp, unsigned int cmd,
unsigned long arg)

{
switch(cmd){
case 0:
socket_dev->write_to=0;
break;
case 1:
socket_dev->write_to=4;
break;
case 2:
socket_dev->write_to=8;
break;
case 3:
socket_dev->write_to=12;
break;
case 4:
socket_dev->write_to=16;
break;
case 5:
socket_dev->write_to=20;
break;
case 6:
socket_dev->write_to=24;
break;
case 7:
socket_dev->write_to=28;
break;
case 8:
socket_dev->write_to=32;
break;
case 9:
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socket_dev->write_to=36;
break;
case 10:
socket_dev->write_to=40;
break;
case 11:
socket_dev->write_to=44;
break;
case 12:
socket_dev->write_to=48;
break;

case 13:
socket_dev->read_from=0;
break;
case 14:
socket_dev->read_from=4;
break;
case 15:
socket_dev->read_from=8;
break;
case 16:
socket_dev->read_from=12;
break;
case 17:
socket_dev->read_from=16;
break;
case 18:
socket_dev->read_from=20;
break;
case 19:
socket_dev->read_from=24;
break;
case 20:
socket_dev->read_from=28;
break;
case 21:
socket_dev->read_from=32;
break;
case 22:
socket_dev->read_from=36;
break;
case 23:
socket_dev->read_from=40;
break;
case 24:
socket_dev->read_from=44;
break;
case 25:
socket_dev->read_from=48;
break;

case 26:
dcr_write(socket_dev->dcr_host,0,REG_CTRL_DISABLE);
break;
case 27:
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dcr_write(socket_dev->dcr_host,0,REG_CTRL_ENABLE);
}
return cmd;
}

struct file_operations socket_fops = {
.owner = THIS_MODULE,
.read = socket_read,
.write = socket_write,
.open = socket_open,
.release = socket_release,

.ioctl = socket_ioctl,
};

/*
* Remove the driver hooks from the system.
*/

static void socket_remove(void)
{

dev_t devno;
if (socket_dev->mapaddr) {

iounmap(socket_dev->mapaddr);
}

kfree(socket_dev);

devno = MKDEV(SOCKET_DEV_MAJ, 0);
unregister_chrdev_region(devno, 1);

}

/*
* socket_setup:
* Hook the driver into the filesystem and perform hardware setup.
*/

static int socket_setup (struct socket_dev *socket_dev,dcr_host_t dcr_host,
unsigned int dcr_start, unsigned int dcr_len)

{
dev_t devno;
int err;

devno = MKDEV(SOCKET_DEV_MAJ, 0);
socket_dev->devno = devno;
err = register_chrdev_region(devno, 1, "socket");
if (err < 0) {

printk(KERN_ERR "%s: Unable to register chrdev %d.\n",
DRIVER_NAME, SOCKET_DEV_MAJ);

goto cleanup;
}
/*
* Memory Map SOCKET core to a virtual address
*/

socket_dev->mapaddr = ioremap(socket_dev->physaddr, socket_dev->addrsize);
printk("%s: phys addr : 0x%08x mapped to 0x%08x.\n", DRIVER_NAME,

(u32)socket_dev->physaddr, (u32)socket_dev->mapaddr);
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socket_dev->dcr_start = dcr_start;
socket_dev->dcr_len = dcr_len;
socket_dev->dcr_host = dcr_host;

/* Turn on the bus macros */
socket_dev->reg_ctrl_default = REG_CTRL_ENABLE;

printk("%s: OPB/DCR DCR address: 0x%0x\n", DRIVER_NAME,
socket_dev->dcr_start);

xilinx_opbdcrsocket_out_be32(socket_dev, 0,
socket_dev->reg_ctrl_default);

/*
* Plug the character device into the filesystem
*/

cdev_init(&socket_dev->cdev, &socket_fops);
socket_dev->cdev.owner = THIS_MODULE;
err = cdev_add(&socket_dev->cdev, devno, 1);
if (err) {

printk(KERN_NOTICE "Error %d adding %s", err, DRIVER_NAME);
goto cleanup;

}
cleanup:

if (err) {
socket_remove();

}
return err;

}

/*
* Initialize the driver
* This function is called as the result of an Open Firmware (device tree)
* match of an entry in socket_of_match[] against
* linux/arch/powerpc/boot/dts/virtex405-xup.dts which contains an
* "xlnx,opb-dcr-socket" compatible entry.
*/

static int __devinit socket_of_probe (struct of_device *ofdev,
const struct of_device_id *match)

{
struct resource r_mem;
int err;

int start, len;
dcr_host_t dcr_host;

printk(KERN_INFO "Device Tree Probing \’%s\’\n",
ofdev->node->name);

/*
* Allocate a private structure to manage this device.
*/

socket_dev = kmalloc(sizeof(struct socket_dev), GFP_KERNEL);
if (socket_dev == NULL) {

return -ENOMEM;
}
memset(socket_dev, 0, sizeof(struct socket_dev));
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mutex_init(&socket_dev->mutex);

/*
* What is the physical address of the peripheral?
*/

err = of_address_to_resource(ofdev->node, 0, &r_mem);
if (err) {

dev_warn(&ofdev->dev, "invalid address\n");
return err;

}
socket_dev->physaddr = r_mem.start;
socket_dev->addrsize = r_mem.end - r_mem.start + 1;

//Setting up dcr interface
start = dcr_resource_start(ofdev->node, 0);
len = dcr_resource_len(ofdev->node, 0);
dcr_host = dcr_map(ofdev->node, start, len);
if (!DCR_MAP_OK(dcr_host)) {
dev_err(&ofdev->dev, "invalid address\n");
return -ENODEV;
}

err = socket_setup(socket_dev, dcr_host, start, len);

return err;
}

static int __devexit socket_of_remove(struct of_device *dev)
{

socket_remove();
return 0;

}

/*
* List of items which might be found in the device tree which could
* be serviced by this driver.
*/

static struct of_device_id socket_of_match[] = {
{ .compatible = "xlnx,opb-dcr-socket", },
{}

};

MODULE_DEVICE_TABLE(of, socket_of_match);

static struct of_platform_driver socket_of_driver = {
.name = DRIVER_NAME,
.match_table = socket_of_match,
.probe = socket_of_probe,
.remove = __devexit_p(socket_of_remove)

};

/*
* Absolute initialization entry point for the driver.
* Everything begins here.
*/

static int __init socket_init(void)
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{
int status;
status = of_register_platform_driver(&socket_of_driver);
return status;

}

static void __exit socket_cleanup(void)
{

of_unregister_platform_driver(&socket_of_driver);
}

module_init(socket_init);
module_exit(socket_cleanup);

MODULE_AUTHOR("Spanakis Manolis");
MODULE_DESCRIPTION(DRIVER_DESCRIPTION);
MODULE_LICENSE("GPL");
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socket.h:

#ifndef __SOCKET_H__
#define __SOCKET_H__

/*
* The socket device structure.
*/

struct socket_dev
{
int readers;
int writers;

dcr_host_t dcr_host;
unsigned int dcr_start;
unsigned int dcr_len;

/*
* Device information
*/

u32 reg_ctrl_default;
int write_to;
int read_from;
void *mapaddr; /* virtual address of socket core */
unsigned physaddr; /* bus address of socket core */
unsigned addrsize; /* Size of periph. address space */
dev_t devno;
struct mutex mutex;
struct cdev cdev;

};

#endif
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