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Abstract

The subject of this thesis is the implementation of an efficient method to

detect QRS complexes in real ECG recordings. Specifically, anatomy of the

human heart along with a theoretical background of the interpretation of

a typical ECG is presented. Two algorithms were selected for clustering.

The first one is categorized in Ant Colony Optimization Algorithms and is

called Ant Colony Optimization Clustering. The second one is the popular

K-means clustering algorithm. An extensive description of both algorithms

is presented along with the results from tests using synthetic data sets. A

method of transforming an ECG in a more smooth and easy-to-read form

is described. This method is applied to real ECG signals and the resulting

data are clustered using both algorithms. Results of the time cost and QRS

complex detection accuracy are given.



Contents

1 Introduction 2

2 The human heart 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Anatomy of the human heart . . . . . . . . . . . . . . . . . . 5
2.3 The Cardiac Cycle . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The Electrocardiogram (ECG) 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Origin of electrical current in the heart . . . . . . . . . . . . . 16
3.3 The ECG components . . . . . . . . . . . . . . . . . . . . . . 22

4 Clustering methods 36
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Ant Colony Optimization Algorithm . . . . . . . . . . 37
4.2.2 Ant Colony Optimization Clustering . . . . . . . . . . 41

4.3 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 QRS Complex detection 64
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Method proposed . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Data (ECG) selection . . . . . . . . . . . . . . . . . . . . . . . 72

6 Results 74
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Conclusions and Future Work 90

References 92

1



Chapter 1

Introduction

In medical science there is always the need for better tools in the section of

diagnosis. One of the most significant organs in the human body, the heart,

is a subject of research. In order to diagnose a heart disease an electrocar-

diogram (ECG) recording the myocardium electrical activity on the body

surface, is used. ECG is a periodic signal. Typically, the various features

presented on an ECG are labeled using the letters P, Q, R, S, and T. A

diagnosis is based on features extracted from the timing and morphology of

such findings. Therefore, ECG detection is very important for the doctors as

a guide to correct clinical diagnosis[1].

The detection of QRS complex on an ECG signal has been a subject of

research for the past three decades. The most important pieces of information

on an ECG signal can be found during the P wave, the QRS complex and

the T wave[2][3]. These include the positions and/or magnitude of the PR,

QRS, QT and ST intervals and the PR and the ST segments. The detection

of QRS complexes is a difficult task because of various reasons, such as a

2



CHAPTER 1. INTRODUCTION 3

noise signal and power-line interference. To properly evaluate an ECG, the

aforementioned problems must be overcome.

There have been several studies dealing with QRS complex detection for

ECG signals. Pan and Tompkins [4] proposed an algorithm (the so-called

PT method) to recognize QRS complexes. Also, the Wavelet Transforms

(WT) has been proposed as method for detecting QRS complexes[5]. The

Geometrical Matching Approach algorithm has been proposed to detect the

ECG beat[6]. Based on the estimation of the first-order derivative, the SVW

algorithm has also been proposed[7].

In this work, ECG is transformed with a method that keeps the morpho-

logical characteristics and additionally provides noise reduction. Candidate

QRS complexes are evaluated through that process and the need for discrim-

inating real complexes was created.

There is a large variety of clustering algorithms with different charac-

teristics. In terms of this thesis two algorithms were used: Ant Colony

Optimization Clustering and K-means clustering.

In chapter 2 the anatomy of the human heart and its function are de-

scribed. Chapter 3 summarizes the particulars of ECG signal recording

while in chapter 4 two methods of clustering are proposed and compared.

In chapter 5 a method of transformation of ECG signals for QRS complex

detection is proposed. The application of this method on real ECG signals

is detailed in Chapter 6. Finally in chapter 7 conclusions and future work

are presented.



Chapter 2

The human heart

2.1 Introduction

The human heart is a muscular organ responsible for pumping blood through

the blood vessels by periodic contractions. The term cardiac (as in cardiol-

ogy) means “related to the heart” and comes from the Greek word, “kardia”,

for heart.

The heart of a vertebrate is composed of cardiac muscle, an involuntary

striated muscle tissue which is found only within this organ. The average

human heart, beating at 72 beats per minute, will beat approximately 2.5

billion times during a lifetime. It weighs on average 250 g to 300 g in women

and 300 g to 350 g in men (Fig.2.1)[8].

4
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2.2 Anatomy of the human heart

Venous blood enters the right atrium (RA) of the heart through the supe-

rior vena cava (SVC) and inferior vena cava (IVC)(Fig.2.1). The right

atrium has a relatively thin muscular wall and easily expands with blood as

it fills. Because of its high compliance, the RA pressure is normally very

low (0 − 3 mmHg). It also undergoes spontaneous contractions to aid in

the filling of the right ventricle (RV). Blood passes from the RA to the

RV through the tricuspid valve. The free wall of the right ventricle is not

as thick as the left ventricle, and anatomically it wraps itself around part

of the larger, and thicker, left ventricle. The RV wall, however, is thicker

and more muscular than the RA, so that when it contracts, it can develop

considerably more pressure (∼ 25 mmHg) than the RA. As the RV contracts

and generates pressure, blood leaves the RV, flows across an open semilunar

pulmonic valve, and enters the pulmonary artery that distributes the out-

put of the right ventricle to the lungs where exchange of oxygen and carbon

dioxide occur.

The pulmonic valve, like all healthy heart valves, permits blood to flow in

only one direction. Blood returns to the heart from the lungs through four

pulmonary veins that enter the left atrium (LA). This chamber is similar to

the RA in that it is very distensible, although the blood pressure within the

LA is several mmHg higher than the RA (6− 10 mmHg in the LA compared

to 0− 3 mmHg in the RA).
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Figure 2.1: The human heart.

Blood flows from the LA, across

the mitral valve, and into the left

ventricle (LV). The LV wall is

very thick so that it can generate

high pressures when it contracts

(normally ∼ 120 mmHg at rest

). When the LV contracts, blood

is expelled through the semilunar

aortic valve and into the aorta,

which then distributes blood to the

arterial system[9]

.

The tricuspid and mitral valves (also called atrioventricular, or AV valves)

have fibrous strands (chordae tendineae) on their leaflets that attach to pap-

illary muscles located on the respective ventricular walls. The papillary mus-

cles contract during ventricular contraction and generate tension on the valve

leaflets via the chordae tendineae to prevent the AV valves from bulging back

into the atria and becoming incompetent. The semilunar valves (pulmonic

and aortic) do not have analogous attachments[10].
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2.3 The Cardiac Cycle

A single cycle of cardiac activity can be divided into two basic phases. The

first phase is diastole, which represents ventricular filling and a brief period

just prior to filling at which time the ventricles are relaxing. The second

phase is systole, which represents cardiac contraction and ejection of blood

from the ventricles[10].

To analyze these two phases in more detail, the cardiac cycle is usually

divided into seven stages[11].

The seven stages of the cardiac cycle in brief:

• Stage 1 - Atrial Contraction

• Stage 2 - Isovolumetric Contraction

• Stage 3 - Rapid Ejection

• Stage 4 - Reduced Ejection

• Stage 5 - Isovolumetric Relaxation

• Stage 6 - Rapid Filling

• Stage 7 - Reduced Filling
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Figure 2.2: The Cardiac Cycle.

The Seven Stages

Atrial Contraction (Stage 1)

This is the first stage of the cardiac cycle which represents electrical depolar-

ization of the atria. Atrial depolarization then causes contraction of the atrial

musculature. As the atria contract, the pressure within the atrial chambers

increases, which forces more blood flow across the open atrioventricular (AV)

valves, leading to a rapid flow of blood into the ventricles. Blood does not
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flow back into the vena cava because of inertial effects of the venous return

and because the wave of contraction through the atria moves toward the AV

valve thereby having a “milking effect”(Fig.2.3)[12].

Figure 2.3: Atrial contraction.

Atrial contraction normally ac-

counts for about 10% of left ven-

tricular filling when a person is at

rest because most of ventricular

filling occurs prior to atrial con-

traction as blood passively flows

from the pulmonary veins, into

the left atrium, then into the left

ventricle through the open mitral

valve.

At high heart rates, however, the atrial contraction may account for up to

40% of ventricular filling. This is sometimes referred to as the ”atrial kick.”

The atrial contribution to ventricular filling varies inversely with duration of

ventricular diastole and directly with atrial contractility[13].

Isovolumetric Contraction (Stage 2)

All Valves Closed

This stage of the cardiac cycle begins with the triggering of excitation-

contraction coupling, myocyte contraction and a rapid increase in intraven-

tricular pressure. Early in this stage, the rate of pressure development be-

comes maximal. This is referred to as maximal dP/dt[12].
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During the time period between the closure of the AV valves and the

opening of the aortic and pulmonic valves, ventricular pressure rises rapidly

without a change in ventricular volume (i.e., no ejection occurs).

Figure 2.4: Isovolumetric contrac-

tion.

Ventricular volume does not

change because all valves are

closed during this stage. Con-

traction, therefore, is said to be

“isovolumic” or “isovolumetric”.

Individual myocyte contraction,

however, is not necessarily isomet-

ric because individual myocyte

are undergoing length changes.

Therefore, ventricular chamber geometry changes considerably as the

heart becomes more spheroid in shape; circumference increases and atrial

base-to-apex length decreases (Fig.2.4)[13].

Rapid Ejection (Stage 3)

This stage represents the initial and rapid ejection of blood into the aorta

and pulmonary arteries from the left and right ventricles, respectively. Ejec-

tion begins when the intraventricular pressures exceed the pressures within

the aorta and pulmonary artery, which causes the aortic and pulmonic valves

to open. Blood is ejected because the total energy of the blood within the

ventricle exceeds the total energy of blood within the aorta. In other words,
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there is an energy gradient to propel blood into the aorta and pulmonary

artery from their respective ventricles. During this stage, ventricular pres-

sure normally exceeds outflow tract pressure by a few mmHg. This pressure

gradient across the valve is ordinarily low because of the relatively large valve

opening (i.e., low resistance). Maximal outflow velocity is reached early in

the ejection stage, and maximal (systolic) aortic and pulmonary artery pres-

sures are achieved[12].

Figure 2.5: Rapid ejection.

Left atrial pressure initially de-

creases as the atrial base is pulled

downward, expanding the atrial

chamber. Blood continues to

flow into the atria from their re-

spective venous inflow tracts and

the atrial pressures begin to rise,

and continue to rise until the AV

valves open at the end of stage 5

(Fig.2.5)[13]

.

Reduced Ejection (Stage 4)

Approximately 200 msec after the beginning of ventricular contraction, ven-

tricular repolarization occurs. Repolarization leads to a decline in ventric-

ular active tension and therefore the rate of ejection (ventricular emptying)

falls[12].
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Figure 2.6: Reduced ejection.

Ventricular pressure falls slightly

below outflow tract pressure; how-

ever, outward flow still occurs

due to kinetic (or inertial) en-

ergy of the blood. Left atrial

and right atrial pressures gradu-

ally rise due to continued venous

return from the lungs and from the

systemic circulation, respectively

(Fig.2.6)[13]

.

Isovolumetric Relaxation (Stage 5)

All Valves Closed

When the intraventricular pressures fall sufficiently at the end of stage

4, the aortic and pulmonic valves abruptly close (aortic precedes pulmonic).

Valve closure is associated with a small backflow of blood into the ventri-

cles and a characteristic notch n the aortic and pulmonary artery pressure

tracings[12].

After valve closure, the aortic and pulmonary artery pressures rise slightly

(dicrotic wave) following by a slow decline in pressure.



CHAPTER 2. THE HUMAN HEART 13

Figure 2.7: Isovolumentric relax-

ation.

The rate of pressure decline in

the ventricles is determined by

the rate of relaxation of the

muscle fibers, which is termed

lusitropy. This relaxation is reg-

ulated largely by the sarcoplas-

mic reticulum that are responsible

for rapidly re-sequestering calcium

following contraction (Fig.2.7)[13]

.

Rapid Filling (Stage 6)

A-V Valves Open

As the ventricles continue to relax at the end of stage 5, the intraventric-

ular pressures will at some point fall below their respective atrial pressures.

Figure 2.8: Rapid filling.

When this occurs, the AV valves

rapidly open and ventricular filling

begins[12].

Despite the inflow of blood from

the atria, intraventricular pressure

continues to briefly fall because the

ventricles are still undergoing re-

laxation.
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Once the ventricles are completely relaxed, their pressures will slowly rise

as they fill with blood from the atria (Fig.2.8)[13].

Reduced Filling (Stage 7)

A-V Valves Open

As the ventricles continue to fill with blood and expand, they become less

compliant and the intraventricular pressures rise. This reduces the pressure

gradient across the AV valves so that the rate of filling falls[12].

Figure 2.9: Reduced filling (diasta-

sis).

In normal, resting hearts, the ven-

tricle is about 90% filled by the

end of this stage. In other words,

about 90% of ventricular filling

occurs before atrial contraction

(stage 1)[13]. Aortic pressure and

pulmonary arterial pressures con-

tinue to fall during this period

(Fig.2.9).



Chapter 3

The Electrocardiogram (ECG)

3.1 Introduction

An Electrocardiogram (ECG) is composed of a series of waves ordered into

some repeatable pattern. The height of the tracing represents millivolts while

the width of the ECG macs a time interval. An ECG is composed of a series

of waves, intervals and segments.

Figure 3.1: A typical ECG

15
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• A wave is every deflection on the ECG.

• A segment is the region between two waves.

• An interval includes one segment and one or more waves.

While waves are fairly self-explanatory, intervals measure time from the

start of one wave to the start of another wave (an interval includes at least

one wave) and segments measure time between waves (waves are not included

in a segment)[14].

Timed interpretation of an ECG was once incumbent to a stylus and

paper speed. Computational analysis now allows considerable study of the

heart rate variability. A typical electrocardiograph runs at a paper speed of

25 mm/s, although faster paper speeds are occasionally used. Each small

block of ECG paper is 1 mm2. At a paper speed of 25 mm/s, one small block

of ECG paper translates into 0.04 s (or 40 ms). Five small blocks make up

one large block, which translates into 0.20 s (or 200 ms). Hence, there are 5

large blocks per second. A diagnostic quality 12 lead ECG is calibrated at

10 mm/mV, so 1 mm translates into 0.1 mV. A calibration signal should be

included with every record. A standard signal of 1 mV must move the stylus

vertically 1 cm, that is two large squares on ECG paper[15].

3.2 Origin of electrical current in the heart

Flow of Electrical Current

Typically, the heart is located in the middle of the chest to the left of the

mediastinum. The sinoatrial (SA) node is located in the top of the right
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atrium, the atrioventricular (AV) node is located in the bottom of the atrium,

and the bundle branches conduct through the septum and ventricles. Because

of this normal flow, the direction of the electrical flow (vector) is mainly

downward, from right to left (Fig.3.2)[14].

Figure 3.2: Flow of electrical current.

Impulse origin and atrial depolarization

When the SA node, a pacemaker cell, fires off an impulse, the impulse travels

down and toward the right and left atria. The direction – or vector – of this

flow looks like Fig.3.3. The electrical flow is translated to the ECG as the P

wave[14].
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Figure 3.3: Atrial depolarization.

Septal depolarization

The electrical flow stops briefly at the AV node, and then travels quickly

down the common bundle (Bundle of His) and through the right and left

bundle branches to the interventricular septum. The depolarization of the

septum causes a small negative deflection a q wave in some leads; and a

small positive deflection or “r” wave in others (Fig.3.4)[14].

Figure 3.4: Septal depolarization.
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Apical and early ventricular depolarization

After depolarizing the septum, the impulse moves downward and to the left.

This results in a large waveform either an R wave or an S wave (Fig.3.5)[14].

Figure 3.5: Apical and early ventricular depolarization

Late ventricular depolarization

The final stage of depolarization takes place in the furthest stretches of the

ventricle. The electrical stimulus moves upward, resulting in either a taller

R wave or a smaller S wave (Fig.3.6)[14].

Figure 3.6: Late ventricular depolarization.
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Ventricular repolarization

Finally, the electrical stimulus is completed, ending depolarization. The ions

in the cells move back into their normal resting positions, from top to bottom,

causing the T wave (Fig.3.7)[14].

Figure 3.7: Ventricular repolarization.

The whole cardiac cycle

1. Atrial depolarization (P wave).

2. Septal depolarization (Q wave).

3. Early ventricular depolarization (R/S wave).

4. Late ventricular depolarization (S/R wave).

5. Ventricular repolarization (T wave).
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Figure 3.8: The whole cardiac cycle
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3.3 The ECG components

Each portion of a heartbeat produces a different deflection on an ECG. These

deflections are recorded as a series of positive and negative waves.

The Isoelectric Line

There is a part of the normal ECG rhythm that is electrically neutral - there

is nothing electrically happening in the heart during that period. This is

called the “isoelectric” line. This is a straight line passing from the end of

the T wave and the beginning of the next P wave (Fig.3.9).

Figure 3.9: Baseline or Isoelectric Line
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The P Wave

The P wave begins with the first deviation from baseline and finishes when

the wave meets the baseline once again. While the P wave is an electrical

representation and not mechanical, a P wave strongly suggests that the atria

have followed through with a contraction (Fig.3.10)[16].

The P wave indicates atrial depolarization. Its shape is round and smooth

and the width of the normal P wave is less than 2.5 mm (0.11 seconds). The

height of the normal P wave is less than 3 mm (0.3 mV).

Figure 3.10: The P Wave.
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The PR Interval

The PR segment is the part of the ECG between the end of the P wave and

the beginning of the QRS complex. The PR segment signifies the time taken

to stimulate the slow AV junction. This delay allows for atrial kick. The PR

segment also serves as a guide for the isoelectric line (Fig.3.11).

Figure 3.11: The PR Interval.

The PR Segment

The PR interval is measured from the start of the P wave to the start of

the QRS complex. While it might appear obvious that this is indeed a PQ

interval, a Q wave is not always present on an ECG tracing. For consistency,

the term “PR interval” is used whether a Q wave exists or not (Fig.3.12).
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If the P wave is consistently followed by a QRS complex across a con-

sistent PR interval, this is strong evidence that the originating impulse is

supraventricular. A consistent PR interval is often sufficient to declare that

this is a supraventricular rhythm[16].

The time from the beginning of atrial depolarization to the beginning of

ventricular depolarization. Normal duration of the PR segment is 3 to 5 mm

(0.12 to 0.20 seconds).

Figure 3.12: The PR Segment.
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The QRS Complex

ECG interpretation relies heavily on the QRS complex. The QRS complex

represents the depolarization of the ventricles. The repolarization of the atria

is lost within the QRS complex (Fig.3.13).

Figure 3.13: The QRS Complex.

Three distinct waveforms are often present in a normal QRS complex

representing ventricular depolarization. Depolarization of the ventricular

septum begins first from left part of the heart to the right. This early depo-

larization causes a small downward deflection called a Q wave. A Q wave is

the first negative deflection of the QRS complex that is not preceded by a R
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wave. A normal Q wave is narrow and small in amplitude. Note that a wide

and/or deep Q wave may signify a previous myocardial infarction (MI).

Following the depolarization of the interventricular septum, ventricular

depolarization then progresses from the endocardium through to the epi-

cardium across both ventricles producing an R wave and an S wave. An R

wave is the first positive deflection of the QRS complex. An S wave is the

first wave after the R wave that dips below the baseline (isoelectric line).

The end of the S wave occurs where the S wave begins to flatten out. This

is called the J point (Fig.3.13)[16]. Various QRS Complex morphologies are

represented in Figure 3.14. As a convention all these different morphologies

are defined as QRS complexes.

Figure 3.14: Various QRS Complex Morphologies.

The QRS Complex represents ventricular depolarization. Normal width

is less than 3 mm and rarely less than 1.5 mm (0.12 seconds and rarely less

than 0.06 seconds).
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The Q Wave and The QT Interval

A normal Q wave represents a depolarization of the ventricular septum, which

usually travels from left to right. When present, a Q wave is the first down-

ward. While ST segment deviation is a sign of present events, a prominent

Q wave points to an MI that has already occurred, recently to some time ago

(Fig.3.15).

A long QT interval wider than 1/2 the R-R interval is a significant risk

factor for developing hemodynamically unstable dysrhythmias such as ven-

tricular tachycardia and torsades de pointes. A prolonged QT interval is also

associated with a higher incidence of sudden death.

The concern around a longer QT interval centers around the possibility

of the next QRS coming at the tail end of the T wave, called an R-on-T

phenomenon. This phenomenon can potentially cause dangerous dysrhyth-

mias. Causes of prolonged QT intervals include long QT syndrome, antiar-

rythmics such as quinidine and procainamide, tricyclic antidepressants, and

hypokalemia[16].
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Figure 3.15: The Normal Q Wave and QT Interval.

The ST Segment

Between the QRS complex and the T wave, lies the ST segment. The ST

segment represents early repolarization of the ventricles. Early repolarization

includes a plateau phase where the cardiac cell membrane potential does

not change. ECG leads do not record any electrical activity during early

repolarization. The ST segment is usually aligned with the isoelectric line.

Determining where the ST segment begins is determined by the J point.

The J point, the juncture of the QRS and the ST segment, defines the starting

point of the ST segment. The J point marks where the QRS complex changes
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direction, forming a notch or bump in the ECG tracing. The ST segment is

evaluated for any deviation from the ECG baseline 0.04 seconds after the J

point (Fig.3.16).

Figure 3.16: The ST Segment.

While ST deviations may be normal for some individuals, usually they

are a sign of either myocardial ischemia, myocardial infarction and/or cardiac

disease[16], making them an important finding in ECG interpretation.

ST depression of 1 mm or more in two contiguous leads (neighboring

leads) is suggestive of myocardial ischemia, injury or infarction. ST elevation

of 1 mm or more in two contiguous leads is highly suggestive of a myocardial
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injury or infarction. Note that ST changes (elevation or depression) are

highly suggestive of the acute coronary events that are happening at the

time an ECG is taken.

The presence of ST elevation in several leads of a 12 lead ECG suggests

pericarditis. Ventricular rhythms and supraventricular rhythms with left

bundle branch block have wide and bizarre QRS complexes, making the

detection of ST changes very difficult[16].

Figure 3.17: Various types of ST Segment Deviations.

The T Wave

A T wave usually follows every QRS complex. The T wave corresponds to

the repolarization of the ventricle. The T wave is typically about 0.10 to

0.25 seconds wide with an amplitude less than 5 mm. While ventricular

depolarization occurs rapidly producing a tall QRS complex, ventricular re-

polarization is spread over a longer interval, resulting in a shorter and broader

T wave (Fig.3.18).

The T wave is, under normal conditions, slightly asymmetrical and usu-
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ally larger than the P wave. The T wave is normally upright in lead II. Note

that as heart rates increase, the P wave and the T wave begin to share the

same space on an ECG. The larger T wave often covers the P wave. Note

that the T wave is rarely notched. A notched T wave may also contain a P

wave trying to show itself.

Figure 3.18: The T Wave.

Abnormally shaped T waves can indicate acute cardiac ischemia, elec-

trolyte imbalances, and cardiac disease related medication. For example,

peaked T waves can occur early during periods of myocardial ischemia and

infarction. Cardiac ischemia may cause the T wave to invert. Electrolyte im-
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balances can also affect the T wave. Hyperkalemia is often associated with

peaked T waves and can flatten the T wave. Quinidine can widen the T wave

while digitalis can flatten the T wave.

Figure 3.19: Normal and Abnormal T Waves.

All morphologies of T waves, from normal to peaked to inverted can

be found in healthy individuals without any evidence of disease, cardiac or

otherwise. This makes the T wave a weak sign for any diagnosis. The T wave

must be placed along side other clinical evidence. Rarely would treatment

be based solely on the shape of the T wave[16].

The U Wave

Occasionally, another wave, the U wave, is recorded immediately following

the T wave and before the P wave. The U wave has yet to be fully explained

but current studies suggest it represents a final stage of repolarization of

certain ventricular cells in the mid-myocardium. The U wave will most often

be oriented in the same direction as the T wave with an amplitude less than
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2 mm. An abnormal U wave is inverted or tall with an amplitude of 2 mm

or more[16].

An abnormally tall U wave is associated with conditions such as hy-

pokalemia, diabetes, ventricular hypertrophy, and cardiomyopathy. Cardiac

medications such as digoxin and quinidine can also cause a tall U wave[17].

Figure 3.20: The whole ECG waveform with all waves, intervals and

segments.

Normal, abnormal parameters for every ECG component with possible

causes of them are shown below (Table 3.1).
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Table 3.1: Outlines the parameters that define normal and abnormal

ECG components



Chapter 4

Clustering methods

4.1 Introduction

Cluster analysis or clustering is the assignment of a set of observations into

subsets (called clusters) so that observations in the same cluster are simi-

lar in some sense. Clustering is a method of unsupervised learning, and a

common technique for statistical data analysis used in many fields, includ-

ing machine learning, data mining, pattern recognition, image analysis and

bioinformatics.

Besides the term clustering, there are number of terms with similar mean-

ings, including automatic classification, numerical taxonomy, botryology and

typological analysis.

Many clustering algorithms require specification of the number of clusters

to produce in the input data set, prior to execution of the algorithm. Barring

knowledge of the proper value beforehand, the appropriate value must be

determined, a problem for which a number of techniques have been developed.

36
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In this thesis, two algorithms were implemented and tested for clustering:

Ant Colony Optimization Clustering (ACOC) and K-means.

4.2 Ant Colony Optimization

ACO is a probabilistic technique for solving computational problems which

can be reduced to finding good paths through graphs. It is part of the swarm

intelligence algorithms category.

Initially proposed by Marco Dorigo in 1992 in his PhD thesis[19], the

first algorithm was used for finding an optimal path in a graph, based on the

behavior of ants seeking a path between their nest and a source of food. The

original idea has since been diversified to solve a wider class of numerical

problems[20].

4.2.1 Ant Colony Optimization Algorithm

In nature, ants initially wander randomly, and upon finding food return to

their colony while laying down pheromone trails. Pheromone is a chemical

substance for communicating information between ants. The pheromone

trails are reinforced by other artificial ants and validated over time (ACO has

been applied successfully to a range of different combinatorial optimization

problems recently)[20]. If other ants find a pheromone trail, they are likely

not to keep travelling at random, but to instead follow it, returning to the

nest and reinforcing it if they eventually find food.

Over time, however, pheromone begins to evaporate, making the current

path less attractive to ants. The more time it takes for an ant to travel
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down a path and back again, the more pheromone evaporates. A short path,

by comparison, is crossed in a faster rate, and the associated pheromone

level remains high because it is laid on the path as fast or faster than it can

evaporate. Pheromone evaporation provides the advantage of avoiding the

convergence to a locally optimal solution. If pheromone did not evaporate,

the path selected by the first ant would tend to be increasingly more attrac-

tive to the rest of them. In that case, the exploration of the solution space

would be constrained to a local extreme.

Thus, when one ant finds a short path from the colony to a food source,

other ants are more likely to follow that path, and eventually all ants follow

that path. The idea of the ACO is to mimic this behavior with “simulated

ants” walking around a graph that is a representation of the problem to solve.

In a series of experiments on a colony of ants with a choice between two

unequal length paths leading to a source of food, biologists have observed

that ants tended to use the shortest route. A model explaining the behavior

of ants while searching for food can be described as follows:

1. Each ant initially runs more or less randomly around the colony.

2. If it discovers a food source, it returns directly to the nest, depositing

pheromone on the path it uses.

3. Pheromone attracts nearby ants making them follow, more or less di-

rectly, the track.

4. Returning to the colony, these ants will strengthen the route.
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Figure 4.1: Ant movement.

5. If two different routes can be used to reach the same food source, the

shorter one will be, in the same time, traveled by more ants than the

longer one.

6. Pheromone on the shortest route will remain at a high level, attracting

more ants.

7. Pheromone on the longer route will eventually diminish.

8. Finally, all the ants will be obliged to use the shortest route.

Ants use their environment as a medium of communication. They ex-

change information indirectly by depositing pheromones, detailing the status

of their search. This provides positive feedback (the deposit of pheromone

attracts other ants that will strengthen it themselves) and negative feed-

back (dissipation of pheromone by evaporation prevents ants from following
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a path). Theoretically, if the quantity of pheromone remained the same on all

edges over time, no route would be finally selected. However, because of the

feedback, a slight variation on an edge will be amplified and thus propagate

across all possible routes. The algorithm will move from an unstable state in

which no edge is more attractive than another, to a stable state where edges

with high pheromone levels form the solution of the problem[20].

The Ant colony optimization algorithm have been applied to many combi-

natorial optimization problems, ranging from the quadratic assignment prob-

lem to folding proteins or vehicle routing. A lot of derived methods have been

adapted to solving dynamic problems with real variables, stochastic prob-

lems, multi-targets and parallel implementations. It has also been used to

produce near-optimal solutions to the travelling salesman problem[21]. This

method has an advantage over simulated annealing and genetic algorithm

approaches of similar problems where the graph may change dynamically;

the ant colony algorithm can be run seamlessly and adapt to changes in

real time. This is of interest in network routing and urban transportation

systems.

Figure 4.2: ACO applied on TSP problem (four steps).
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4.2.2 Ant Colony Optimization Clustering

In the ACOC algorithm, a weighted graph (V,E) is built where the vertexes

represent the data to be clustered (V) and the weight of the edges between

vertexes (E) is the acceptance rate between two data points. The ants tra-

verse the graph and update the pheromone on the paths they cross. The

graph is modified by gradually omitting some edges whose pheromone values

are below a threshold. The strong connected components of the updated

graph are computed every ten iterations to form the data clusters. The

algorithm finally selects the clustering with the best performance.

Several quantities are defined to implement ACOC[23].

• τij(t) : represents the amount of pheromone between stage i and j at

time t,

• nij : a problem-dependent heuristic function that evaluates the quality

of local path (i, j),

• pkij(t): the transition probability for ant k to select the path (i, j) at

time t, which depends on the amount of pheromone on trail (i, j) τij(t)

and the value of heuristic function(nij).

• α, β: two parameters which decide respectively the effect proportion of

τij(t) and nij on ants selecting path.

Set of data items

We use S = (O,A) to denote a set of n data items,where:

• O = {O1, O2, . . . On} represents the data set objects,
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• A = {A1, A2, . . . Ar} represents the attributes of data objects, where

∀i, i ∈ (1, 2, . . . n),∃aik, k ∈ (1, 2, . . . r) denotes the attribute Ak of Oi,

thereforeAk could be denoted as a r-dimensional vector (ai1, ai2, . . . air),

i ∈ {1, 2, . . . n}.

Difference between data items

The difference between two data items Oi and Oj is defined as:

diff(i, j) =
r∑

k=1

dist(aik, ajk), i, j = 1, 2, . . . n, (4.1)

where dist is the euclidean distance between aik and ajk (4.2).

dist(aik, ajk) =

√√√√ r∑
k=1

(Aik − Ajk)2. (4.2)

Similarity between data items

For two data items Oi and Oj, we use Sim(i, j) to denote their similarity:

sim(i, j) = 1− diff(i, j)

max diff
(4.3)

The closer two items aik and ajk are, the smaller the diff(i, j) is and the

larger the sim(i, j) is.
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Here

max diff = max
1≤i,j≤n

diff(i, j)

denotes the largest difference among the data items

We use avesim(i) and max sim(i) to denote the average and maximum sim-

ilarity of Oi with all the other data items:

avesim(i) =
1

n− 1

n∑
j=1

sim(i, j) (4.4)

max sim(i) = max
1≤j≤n

sim(i, j) (4.5)

Acceptance rate between data items

We use accept(i, j) to denote the acceptance rate of data item Oi to Oj:

accept(i, j) = sim(i, j)− 1

2
[avesim(i) +maxsim(i)] (4.6)

Using accept(i, j) as the weight of the edge(i, j), we can form a weighted

digraph as the initial pheromone graph. These values will be updated in every

iteration via an ant crossing by any given edge. The value of accept(i, j) may

be negative or zero which means Oi rejects Oj. In this case, this edge is

treated as an invalid one and it will not be included in E (E is the set of

valid edges of graph). E is updated in each iteration and some of the edges

with pheromone less than a certain threshold are removed from the graph[22].
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Heuristic function

ηij indicates the “attractivity” of an edge (i, j) towards the ants. The more

similar two objects are, the higher preference an edge should have. Therefore,

ηij is defined as:

ηij = sim(i, j) (4.7)

In every iteration, the movement of ants causes changes in the graph. Because

of these changes, each ant may not be allowed to travel to a specific vertex.

Thus ηij is calculated on every iteration with respect to the subset of edges

that an ant can cross. This is done in order to avoid rejecting edges of the

graph too early.

Probability function

A probability function is used to facilitate the selection of the “right” path

when an ant reaches a crossing between three or more edges. The next node

j is selected using the following formula:

j =


arg{maxu∈allowedk

[ταiu(t)η
β
iu]}, when q ≤ q0

selected by probability pkij(t), otherwise.

(4.8)

where allowedk is the set of vertexes that can be selected by the k-th

ant, q0 is a threshold for the vertex connected by the edge with the largest

amount of pheromone to be selected. In each iteration, a random number is

generated and compared with q0. q0 value is typically 0.9 meaning that the
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next path will be selected according to the amount of pheromone on it for

90% of the time mostly, and 10% of the time according to pkij(t) function.

When q ≥ q0 , data item j is selected by the probability function defined as:

pkij(t) =



ταij(t)η
β
ij(t)∑

r∈allowedk
ταir(t)η

β
ir(t)

j ∈ allowedk

0 otherwise.

(4.9)

otherwise the ant selects the vertex connected by the edge with the largest

amount of pheromone[23].

Pheromone updating

After each iteration, the pheromone on the edges of the graph is updated

according to the following formula:

τij(t+ 1) = (1− ρ) · τij(t) +
m∑
k=1

∆τ kij (4.10)

ρ ∈ (0, 1) is a constant called coefficient of evaporation. At each iteration

the pheromone on the edges of the graph will be evaporated with a rate of

ρ. The increment of τij by ant k is denoted as ∆τ kij and can be found using:

∆τ kij =


Q · sim(i, j), if ant k passes path(i, j)

0 otherwise.

(4.11)
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Q is a constant with a typical value of 10. This value is used to increase the

pheromone value on the path that was crossed by each ant.

It can easily be seen from 4.11 that the more ants pass through an edge,

the more pheromone is deposited on it, and the edge will have higher prob-

ability to be included in the final graph.

Update of the parameters α, β adaptively

In 4.9 α, β determine the relative influence of the trail strength τij and the

heuristic information ηij. At the initial stage of the algorithm, the pheromone

value on each edge is relatively small. The ants should select the path mainly

according to the heuristic information ηij. Therefore, the value of β should be

relatively large. After some iterations, the pheromone values on the edges are

increased, and as a result their influence becomes more and more important.

Therefore, the value of α should become relatively large. Since the adjust-

ment of the values of α and β is based on the distribution of the pheromone

on edges, in 4.12 τave is defined as the average amount of pheromone on the

pheromone graph and in 4.13 ψ is defined as the variance of pheromone levels

on the graph[22].

τave =

∑
(i,j)∈E τij

|E|
(4.12)

ψ =
1

|E|

[ ∑
(i,j)∈E

(τave − τij)2

] 1
2

(4.13)
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Using the pheromone distributing weight , the algorithm updates the

value of α, β as follows:

α = e−ψ, β =
1

α
(4.14)

Acceleration of convergence and avoidance of local minima can be achieved by

adapting α, β. Furthermore, since the amount of pheromone is an important

measure for data clustering, the pheromone distributing weight ψ is also a

critical factor to terminate the algorithm[22].



CHAPTER 4. CLUSTERING METHODS 48

Figure 4.3: Flow chart of ACOC algorithm.
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4.3 K-means Clustering

In statistics and machine learning, K-means clustering is a method of cluster

analysis which aims to partition n observations into k clusters in which each

observation belongs to the cluster with the nearest mean. It is similar to

the expectation-maximization algorithm for Gaussian mixtures in that they

both attempt to find the centers of natural clusters in the data.

A non-hierarchical approach to forming good clusters is to specify a de-

sired number of clusters, say, k, then assign each case (object) to one of k

clusters so as to minimize a measure of dispersion within the clusters. A

very common measure is the sum of distances or sum of squared Euclidean

distances from the mean of each cluster. The problem can be set up as an

integer programming problem but because solving integer programs with a

large number of variables is time consuming, clusters are often computed us-

ing a fast, heuristic method that generally produces good (but not necessarily

optimal) solutions. The Lloyd K-means algorithm is one such method[24].

The k-means clustering algorithm is commonly used in computer vision

as a means for image segmentation. The results of the segmentation are

used to aid border detection and object recognition. In this context, the

standard Euclidean distance is usually insufficient in forming the clusters.

Instead, a weighted distance measure utilizing pixel coordinates, RGB pixel

color and/or intensity, and image texture is commonly used.

In addition, k-means is used in image recognition and therefore in pattern

recognition as it is fast and mostly accurate after many iterations.
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Figure 4.4: Steps of K-means (Centroids are marked as circles and data

as squares. Different colors are used for each cluster).

Some modern applications of k-means are implemented in decision-making

systems and data mining in complex web environments[24].

Given a set of observations (x1, x2, . . . , xn), where each observation is a

d-dimensional real vector, representing the various features of a datapoint,

then k-means clustering aims to partition the n observations into k sets

(k < n) S = {S1, S2, . . . , Sk} so as to minimize the within-cluster sum of
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squares(WCSS):

min
S

k∑
i=1

∑
xj∈Si

||xj − ~µi||2 (4.15)

where ~µi is the mean of Si.

The most common algorithm uses an iterative refinement technique. Due

to its ubiquity it is often called the k-means algorithm; it is also referred to

as Lloyd’s algorithm, particularly in the computer science community.

Given an initial set of k means m
(1)
1 , . . . ,m

(1)
k , which may be specified

randomly, by some heuristic, or be k items from the data set in question, the

algorithm proceeds by repeating these two steps:

• Assignment step: each observation is assigned to the cluster with the

closest mean.

S
(t)
i = {xj : ||xj −m(t)

i || ≤ ||xj −m
(t)
i∗ || ∀i∗ = 1, . . . , k} (4.16)

• Update step: calculate the new means of each cluster to be the centroid

of the observations.

m
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj (4.17)

The algorithm converges when the assignments on clusters no longer change.
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Figure 4.5: Flow chart of K-means algorithm.
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4.4 Comparison

In order to compare the two algorithms and finally select the most appro-

priate one, they were both tested in five synthetic data sets. All data sets

consisted of two-dimensional data that belong to a normal distribution:

N (µ, σ2). (4.18)

where µ is the mean and σ is the standard deviation.

Silhouette

In order to evaluate the performance of the two algorithms the silhouette

function was used. Silhouette refers to a method of interpretation and vali-

dation of clusters of data. The technique provides a graphical representation

of how well each object lies within its cluster[25].

This technique calculates the silhouette width for each sample, average

silhouette width for each cluster and overall average silhouette width for a

total data set. The average silhouette width is applied for evaluation of

clustering validity and also could be used to decide how good is the number

of selected clusters.

For each datum, i let a(i) be the average “dissimilarity” of i with all other

data within the same cluster. Any measure of dissimilarity can be used but

distance measures are the most common. We can interpret a(i) as how well

matched i is to the cluster it is assigned (the smaller the value, the better

the matching). Then the average dissimilarity of i with the data of another
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single cluster is found. The process is repeated for every cluster that i is

not a member of. The cluster with the lowest average dissimilarity to i is

denoted by b(i). This cluster is said to be the neighbouring cluster of i as it

is, aside from the cluster i is assigned, the cluster i fits best in.

s(i) =
b(i)− a(i)

max (a(i), b(i))
(4.19)

which can be written as:

s(i) =


1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i)− 1, if a(i) > b(i)

(4.20)

From the above definition it is clear that −1 ≤ s(i) ≤ 1.

For s(i) to be close to one we require a(i) << b(i). A small value of a(i)

means i is well matched to its cluster. Furthermore, a large b(i) implies that

i is badly matched to its neighbouring cluster. Thus an s(i) close to one

means that the datum is well clustered. If s(i) is close to negative one, then

by the same reasoning it can be seen that i would be more appropriate if it

was clustered in its neighbouring cluster. An s(i) near zero indicates that

the datum is on the border of two natural clusters.

The average s(i) of a cluster is a measure of how tightly all data are

grouped in the cluster they are. Thus the average s(i) of the entire dataset

is a measure of how appropriately the data has been clustered. If there are

too many or too few clusters some of the clusters will display much narrower
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silhouettes than the rest.

Data Set Preparation

All data sets were mapped to [0, 1] using a logarithmic transformation. The

Euclidean distance metric used in both ACOC and K-means gives erroneous

results when data sets are scaled differently across the features of the data

set. The following steps were used:

An offset was determined:

offset = 1−min(V ), (4.21)

where V is the given data set.

Addition of the offset to the data set

Vnew = V + offset, (4.22)

where Vnew is the new data set.

Finally the new data set was created,

Vfinal =
log Vnew

log (ceil(max(V )))
, (4.23)

where ceil is the next largest integer.
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Synthetic data sets

Data set 1

The first data set consists of five types of data which are:[N (2, 12),N (2, 12)],

[N (6, 12),N (6, 12)], [N (11, 12),N (11, 12)], [N (11, 12),N (2, 12)], [N (2, 12),

N (11, 12)], which respectively belong to normal distribution (4.18).

In this data set it is obvious (Fig.4.6) that the five data types are clearly

distinguished and as a result the outcome of the clustering of both algorithms

(Fig.4.6) is characterized by high silhouette values (Table 4.2).

Both algorithms construct the same number of clusters but ACOC algo-

rithm converges in the solution much earlier than k-means (Table 4.1).Graph

before and after application of ACOC is presented (Fig.4.7).

Figure 4.6: Data set 1, final clusters with ACOC and K-means.
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Figure 4.7: Graph before and after ACOC.

Data set 2

The second data set consists of three types of data which are: [N (1, 12),

N (1, 12)], [N (12, 12),N (12, 12)], [N (1, 12),N (5, 12)], which respectively be-

long to normal distribution (4.18).

In this data set it is obvious (Fig.4.8) that the two of three data types

are close to each other and we expect that it will be difficult to cluster them

efficiently. ACOC and k-means converge to a solution with two clusters.

The performance (silhouette value) is relatively the same although ACO

converges much earlier (Table 4.2). Graph before and after application of

ACOC is presented (Fig.4.9).
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Figure 4.8: Data set 2, final clusters with ACOC and K-means.

Figure 4.9: Graph before and after ACOC.
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Data set 3

The third data set consists of three types of data which are: [N (1, 12),

N (1, 12)], [N (7, 12),N (3, 12)], [N (1, 12),N (1, 32)], which respectively belong

to normal distribution (4.18).

In this data set it is obvious (Fig.4.10) that the two of three data types

are so close to each other so that it is extremely difficult to decide whether

some of them belong to the one data type or the other and we expect that

it will be difficult to cluster them efficiently.

Both algorithms converge in solutions with more clusters than the real

ones (Fig.4.10). However ACOC is faster than k-means (Table 4.1). Graph

before and after application of ACOC is presented (Fig.4.11).

Figure 4.10: Data set 3, final clusters with ACOC and K-means.
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Figure 4.11: Graph before and after ACOC.

Data set 4

The fourth data set consists of four types of data which are: [N (1, 12),

N (11, 12)], [N (.5, 12),N (2, 12)], [N (4, 12),N (.5, 12)], [N (11, 12),N (1, 12)],

which respectively belong to normal distribution (4.18).

In this data set it is obvious (Fig.4.12) that the three of four data types are

relatively close to each other. ACOC algorithm clusters the mixed data into

five groups and k-means converges to a solution with four clusters (Fig.4.12).

However ACOC is faster than k-means and converges earlier (Table 4.1).

Graph before and after application of ACOC is presented (Fig.4.9).
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Figure 4.12: Data set 4, final clusters with ACOC and K-means.

Figure 4.13: Graph before and after ACOC.
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Set No.of data
Clusters Cpu time (sec.)

Real ACOC K-means ACOC K-means
1 100 5 5 5 5.53 22.73
2 60 4 2 2 4.04 18.96
3 60 3 6 5 3.74 22.93
4 80 4 4 4 5.69 20.49

Table 4.1: Clusters, cpu time ACOC vs K-means (cpu time and clusters
are average values).

Set No.of data
Silhouette Iterations

ACOC K-means ACOC K-means
1 100 0.80 0.80 200 2000
2 60 0.70 0.65 200 2000
3 60 0.50 0.55 200 2000
4 80 0.72 0.70 200 2000

Table 4.2: Silhouette, iterations ACOC vs K-means (silhouette and it-
erations are average values).

In all synthetic data sets figures (4.6, 4.8, 4.10, 4.12), data are transformed

in [0, 1]. This happens because a logarithmic mapping technique was applied

to the synthetic data sets (see section 4.4).

Selection

In order to select the more efficient algorithm for this thesis the following

factors were taken into consideration :

• Time complexity,

• Number of parameters needed to set1,

1Nine parameters for ACOC four for K-means
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• Perfomance of the algorithms for certain data sets using silhouette

(4.4),

• Precision in clustering.

Despite the fact that K-means is fast there is no guarantee that it will

converge to the global optimum, and the result may depend on the initial

clusters. As the algorithm is usually very fast, it is common to run it multiple

times with different starting conditions.

ACOC is a heuristic algorithm too, but it converges to the final clustering

(with sufficient precision) fast enough with its first initialization, without the

need of running multiple times.

In the above synthetic data sets ACOC was always faster than K-means.

Also, ACOC has a great advantage in precision of clustering. This is proved

by the ability of ACOC to discriminate groups of data that are close to each

other as different clusters. In addition to the little time that ACOC needs to

converge in the solution, the stability of the algorithm is a factor that has to

be mentioned. The lack of “a priori” knowledge of the groups of data and as

a result the parametrs’ adjustment is also a great advantage of ACOC against

K-means in this type of data. If we assume “a priori” knowledge of the data

groups K-means is always faster that ACOC but there is a need for precise

numbering of the clusters that will be formed. This is a senior drawback

of the K-means algorithm which limits its usage for large data sets without

knowing the exact number of clusters. ACOC’s only disadvantage is the

sensitivity of its parameters. Anyone who lacks knowledge of the algorithm

cannot adjust its parameters easily enough.



Chapter 5

QRS Complex detection

5.1 Introduction

The duration, amplitude and morphology of the QRS complex is significant

for the diagnosis of cardiac arrhythmias, conduction abnormalities, ventric-

ular hypertrophy, myocardial infarction and other disease states. In this

chapter the collection and the transformation of the real data sets (ECG)

are described. The problem of QRS complex detection is a relatively difficult

one because of the variety of different morphologies that can be encountered.

There was a need for transforming the ECG to another form that is charac-

terized by less noise, holds the morphology of the initial data and finally is

suitable for clustering. Many techniques were used for this purpose that are

analyzed extensively.

64
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5.2 Method proposed

The period of QRS complexes in an ECG is not stable because of many rea-

sons. In pathological cases, like Atrial Fibrillation, the interval RR varies[26].

An important factor that intensifies this change is the state of the patient,

because they might “be stressed” or move during the recording of the ECG.

Thus, the algorithm that was used for the detection of QRS complexes,

in the ECG that were studied, is based on the statistical characteristics of

the ECG and not on likely periodicities.

In order to become noise free, Fourier transformation is applied on the

ECG. In the inverse Fourier transformation, the components that correspond

to the 80% of total energy of signal are used while all remainder become zero.

The result is a more smooth varying time series.

Figure 5.1: ECG before smoothing with Fourier transform.
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Figure 5.2: ECG after inverse Fourier transform.

Then, a Possible QRS complexes is selected which corresponds to a QRS

complex and this complex is used as a template in order to the remainder

clusters be recognized. This process in detail:

Step 1

Local maxima are collected from the ECG using a simple first derivative

check:

ecg(i) > ecg(i− 1), ecg(i) > ecg(i− 2)

and

ecg(i) > ecg(i+ 1), ecg(i) > ecg(i+ 2)
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Figure 5.3: Possible QRS complexes remaining after step one.

Step 2

The voltage range recorded in the ECG around the points found in step 1 is

calculated for a duration of 0.125 seconds.

Step 3

Since the QRS complex is the most intense variation on an ECG, the part of

the ECG that contains it is expected to vary greatly in voltage. All possible

QRS complexes from the second step are classified per range. The top 25%

of them are selected.



CHAPTER 5. QRS COMPLEX DETECTION 68

Figure 5.4: Possible QRS complexes remaining after step three. The

ECG comes from a patient with supra ventricular arrhythmia

Step 4

Waveforms of 0.125 sec length were taken from the ECG around each possible

QRS complex. By logarithmic transformation, the values of these waveforms

change in the interval [0, 1]. This technique has been described in chapter 4.

This process maintains the morphology of each waveform, changing only

its width so higher QRS complexes are not rejected by the process of selection.

The degree of correlation of dissimilar QRS complexes decreases .
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Figure 5.5: Two possible QRS complexes before and after logarithmic

transformation. The red line is an ectopic heart beat which is not eval-

uated during diagnosis. The blue line corresponds to a normal complex.

The degree of correlation decreases.

Step 5

For each waveform of the fourth step, its correlation with the rest is calcu-

lated, using the following formula:

R(i, j) =
C(i, j)√

C(i, i) · C(j, j)
(5.1)
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where C is the covariance matrix of the two possible QRS complexes and R

is a 2x2 matrix.

Figure 5.6: The QRS complex that finally was selected for the scanning

of the ECG

The waveform that mostly “describes” the form of the QRS complexes

presented in the ECG, is chosen as the one with the highest sum of correlation

within all of the waveforms from step 4. This is called a QRS template. After

the selection of the template, the whole ECG is scanned and the correlation

between the ECG and the template is calculated (Fig.5.6). A typical result

of this process is shown in the following figure.
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Figure 5.7: The correlation of the ECG with the template QRS complex.

Maximum values are shown in the rest of the QRS complexes

Finally, the problem of detecting the presence of QRS complexes has

been converted to a problem of finding greatest values of correlation. The

newly acquired signal is much smoother than the initial ECG. Sweeping

the time series of the correlation, its derivative is examined along with a

simple threshold value rejection rule. The waveforms that fulfill the following

requirements are defined as candidate complexes:

|Correlation(i)| ≥ 0.3

Correlation(i) > Correlation(i− 1)

Correlation(i) > Correlation(i− 2)

Correlation(i) > Correlation(i+ 1)

Correlation(i) > Correlation(i+ 2)

where i is the ith window of 0.125 seconds in the ECG
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The possible QRS complexes that have remained are converted in pairs

of values, where the x-component is the correlation with the template and

the y-component is the normalized to [0, 1] voltage range around the possible

QRS complex.

Figure 5.8: Figure of correlation with the template QRS complex in

comparison with the range around each possible QRS complex.

So by applying a clustering algorithm to these transformed data, the true

QRS complexes are found by forming a cluster that contains the template

QRS complex.

5.3 Data (ECG) selection

The following four ECG databases were used for testing the algorithms:



CHAPTER 5. QRS COMPLEX DETECTION 73

• Normal Sinus (NS). This database is located in http://www.physionet.

org/physiobank/database/nsrdb/.

• Atrial Fibrillation (AF). This database is located in http://www.

physionet.org/physiobank/database/afdb/.

• ST Change (STC). This database is located in http://www.physionet.

org/physiobank/database/stdb/.

• Supra ventricular arrhythmia (SVA). This database is located in

http://www.physionet.org/physiobank/database/svdb/.

http://www.physionet.org/physiobank/database/nsrdb/
http://www.physionet.org/physiobank/database/nsrdb/
http://www.physionet.org/physiobank/database/afdb/
http://www.physionet.org/physiobank/database/afdb/
http://www.physionet.org/physiobank/database/stdb/
http://www.physionet.org/physiobank/database/stdb/
http://www.physionet.org/physiobank/database/svdb/


Chapter 6

Results

6.1 Introduction

The problem of detecting QRS complexes has been converted to a problem

of finding the greatest values of correlation and then the data clustering

algorithms that are described in chapter 4 are applied in the transformed

data. The group with the higher correlation with the template QRS complex

has to be a separate cluster and as a result this cluster finally contains the

QRS complexes of the ECG.

6.2 Results

Two records from each disease that were selected are presented in the results.

The QRS complexes belong in the same group with the template, while the

rest of them are not real QRS complexes.

Therefore, the clustering performance can be judged by how well the QRS
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complexes cluster is isolated from the rest of the data set.

Normal Sinus (NS)

Record: 100 Lead: 2

In the first record the possible QRS complexes form three groups which

are away from each other. This leads to an efficient clustering with both

ACOC and K-means (Fig.6.1). The result of the application of the two

algorithms in this record is almost perfect (Table 6.1). However, ACOC is

faster than K-means (Table 6.2).

Figure 6.1: Possible QRS complexes and clustering with ACOC and K-

means (The green dot in the second and third plot is the template).
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Figure 6.2: Possible QRS complexes detection in the ECG (Only a small

part is presented).

Record: 102 Lead: 1

In this record the possible QRS complexes form three or four groups,

which are relatively close to each other. This leads to a clustering with more

errors by ACOC algorithm than by K-means (Fig.6.3). The precision of

the QRS complex detection is lower with ACOC than K-means. However

the percentage of the real QRS detected with ACOC is about 88% which is

satisfactory (Table 6.1). Time cost of K-means is much more than of ACOC

(Table 6.2). In Fig.6.4 a part of the ECG is presented.
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Figure 6.3: Possible QRS complexes and clustering with ACOC and K-

means (The green dot in the second and third plot is the template).

Figure 6.4: Possible QRS complexes detection in the ECG (Four peaks

are not detected with ACOC vs one with K-means).
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Atrial Fibrillation (AF)

Record: 04015 Lead: 1

In this record the possible QRS complexes form three or four groups,

which are distinct (Fig.6.5). This leads to a satisfactory clustering with both

algorithms. Their precision in QRS complex detection is almost identical

with a light advantage of K-means (Table 6.1). However, in time cost ACOC

has a great advantage (Table 6.2).

Figure 6.5: Possible QRS complexes and clustering with ACOC and K-

means (The green dot in the second and third plot is the template).
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Figure 6.6: Possible QRS complexes detection in the ECG (Two peaks

are not detected with ACOC).

Record: 04015 Lead: 2

In this record the possible QRS complexes form three or four groups,

which are not distinct. However, the group with the template is clearly

distinct. Although ACOC behaves like a binary classifier, a satisfactory

clustering is achieved by both algorithms (Fig.6.7). Their precision in QRS

complex detection is almost identical with a light advantage of ACOC (Table

6.1). ACOC is better in time cost (Table 6.2).
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Figure 6.7: Possible QRS complexes and clustering with ACOC and K-

means (The green dot in the second and third plot is the template).

Figure 6.8: Possible QRS complexes detection in the ECG (One peak is

not detected with K-means).
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ST Change (STC)

Record: 302 Lead: 1

In this record the possible QRS complexes form two or three groups,

which are distinct. A satisfactory clustering is achieved by both algorithms

(Fig.6.9). Their precision in QRS complex detection is almost identical with a

light advantage of ACOC (Table 6.1). ACOC is faster than K-means (Table

6.2). An erroneous QRS complex detection from both algorithms is pre-

sented. A false peak is detected by K-means (Fig.6.10).

Figure 6.9: Possible QRS complexes and clustering with ACOC and K-

means (The green dot in the second and third plot is the template).
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Figure 6.10: Possible QRS complexes detection in the ECG (False de-

tection of peak with K-means).

Record: 303 Lead: 2

In this record the Possible QRS complexes form two or three groups,

which are distinct. Although ACOC behaves like a binary classifier, a satis-

factory clustering is achieved by both algorithms (Fig.6.11). Their precision

in QRS complex detection is almost identical with a light advantage of K-

means (Table 6.1). ACOC is faster than K-means (Table 6.2). However, in

this part of the ECG the noise is sometimes greater than the QRS complex

(Fig.6.12).
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Figure 6.11: Possible QRS complexes and clustering with ACOC and

K-means (The green dot in the second and third plot is the template).

Figure 6.12: Possible QRS complexes detection in the ECG (Only a

small part is presented).
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Supra Ventricular Arrhythmia (SVA)

Record: 800 Lead: 1

In this record the possible QRS complexes form two or three groups,

which are distinct. Both algorithms behave like a binary classifier,although a

satisfactory clustering is achieved (Fig.6.13). Their precision in QRS complex

detection is identical (Table 6.1). ACOC is faster than K-means (Table 6.2).

Figure 6.13: Possible QRS complexes and clustering with ACOC and

K-means (The green dot in the second and third plot is the template).
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Figure 6.14: Possible QRS complexes detection in the ECG (Only a

small part is presented).

Record: 802 Lead: 2

In this record the possible QRS complexes form two, which are distinct.

A satisfactory clustering is achieved by both algorithms (Fig.6.15). Their

precision in QRS complex detection is almost identical with a light advantage

of K-means (Table 6.1). However, ACOC is faster than K-means (Table 6.2).

An erroneous QRS complex detection from ACOC is presented (Fig.6.16).
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Figure 6.15: Possible QRS complexes and clustering with ACOC and

K-means (The green dot in the second and third plot is the template).

Figure 6.16: Possible QRS complexes detection in the ECG (Peak not

detected with ACOC).



CHAPTER 6. RESULTS 87

Disease Rec. Lead
QRS Complexes

Detected
Real

Percentage (%)
ACOC K-means ACOC K-means

NS

100 2 109 109 110 99.09 99.09
102 1 95 100 108 87.96 92.59
103 1 104 104 104 100 100
103 2 104 104 104 100 100
106 1 100 100 100 100 100

Average - - 102.4 103.4 105.2 97.41 98.34

AF

04015 1 128 130 132 96.97 98.48
04015 2 128 127 132 96.97 96.21
04043 1 156 156 157 99.36 99.36
04043 2 154 154 155 99.35 99.35
04048 2 107 107 107 100 100

Average - - 134.6 134.8 136.6 98.53 98.68

ST

302 1 96 95 97 98.97 97.94
303 2 128 129 130 98.46 99.23
304 1 79 79 80 98.75 98.75
305 2 82 82 83 98.79 98.79
306 1 95 95 95 100 100

Average - - 96 96 97 98.99 98.94

SVA

800 1 94 94 95 98.95 98.95
802 2 89 90 90 98.95 100
803 2 97 99 107 90.65 92.52
804 1 108 108 109 99.08 99.08
804 2 130 131 132 98.48 99.24

Average - - 103.6 104.4 106.6 97.22 97.96

Average - - 109.15 109.65 111.35 98.04 98.48

Table 6.1: QRS complexes detected, real and percentage of correct de-
tection ACOC vs K-means (average values).

In the transformed real data sets the performance of ACOC algorithm was

similar to K-means. The clusters that finally formed by the two algorithms

were not always the same but the cluster with the template QRS complex

was always discriminated efficiently enough. This lead to an efficient QRS
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complex detection with high percentage of real peaks found. Both algorithms

has advantages and drawbacks.

Disease Rec. Lead
Cpu time (s)

ACOC K-means

NS

100 2 16.10 23.26
102 2 20.58 24.56
103 1 8.39 23.05
103 2 6.36 23.65
106 1 13.87 38.16

Average - - 13.06 26.54

AF

04015 1 8.71 42.68
04015 2 20.72 38.29
04043 1 5.49 23.72
04043 2 4,44 25.23
04048 2 5.83 29.13

Average - - 9.04 31.81

ST

302 1 18.25 22.84
303 2 18.58 29.49
304 1 5.07 27.13
305 2 4.15 36.12
306 1 6.97 23.61

Average - - 10.6 27.84

SVA

800 1 14.8 24.12
802 2 8.41 20.11
803 2 5.53 24.08
804 1 3.75 30.61
804 2 4.83 31.77

Average - - 7.46 26.14

Average - - 10.04 28.08

Table 6.2: Cpu time for various ECG (ACOC vs K-means).

ACOC was faster in all data sets that was tested providing a suitable al-

gorithm for fast QRS complex detection and furthermore, for a tool in a real

time diagnostic system. As an unsupervised method of clustering, there was
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no need for providing ACOC with parameters that required previous knowl-

edge of the data set. However, in large data sets with difficult to discriminate

data, there was a need for adjusting the parameters of the algorithm so as

to converge in an acceptable solution. Trial and error method was used for

selecting the best parameters for such data sets which is a significant draw-

back because it requires complete knowledge of the formulas and the form of

the algorithm.

On the other side, K-means is an efficient and fast algorithm that in most

of the cases clusters the transformed ECG data quite well. The algorithm is

usually very fast if the number of the clusters is provided. If not, K-means

needs to run multiple times for different number of clusters till achieving the

best convergence. This is the major drawback of the algorithm as time cost

raises. Also K-means has to be run with a large value of iterations as its

initialization is not reliable and can lead to a possible erroneous result.
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Conclusions and Future Work

ECG signals were processed, after being transformed and clustered, in order

to detect the QRS complexes.

Most QRS complexes were detected using both ACOC and K-means while

computationsl time was significantly lower using the ACOC algorithm.

According to the results and findings coming from the process, the com-

plete method is considered as a reliable method of detecting QRS complexes

in a typical ECG with high rates of real QRS detection achieved (over 90%).

Finally, in terms of future work there are many options. Implementation

of the algorithm in high performance FPGA and its use in combination with

an electrocardiograph can result in a complete near real time diagnostic tool

for assisting medical diagnosis.

The adaptive adjustment of all the parameters of the ACOC algorithm

could make clustering more efficient with the smaller time cost.

The overall method could find application in detecting more features on

the ECG, for example, the T wave. This could be done by subtracting the
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already detected QRS complexes, and reapplying the techniques used for

QRS complex detection to the remaining signal.
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