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Abstract

Feature detectors are schemes that locate and describe points or regions of
‘interest’ in an image. Today there are numerous machine vision applications needing
efficient feature detectors that can work on Real-time; moreover, since this detection
is one of the most time consuming tasks in several vision devices, the speed of the
feature detection schemes severally affects the effectiveness of the complete systems.
As a result, feature detectors are increasingly being implemented in state-of-the-art
FPGAs. This thesis describes an FPGA-based implementation of the SURF (Speeded-
Up Robust Features) detector introduced by Bay, Ess, Tuytelaars and Van Gool; this
algorithm is considered to be the most efficient feature detector algorithm available.

This implementation can support processing of standard video (640 x 480 pixels) at
up to 56 frames per second while it outperforms a state-of-the-art dual-core Intel CPU
by at least 8 times. Moreover, the proposed system, which is clocked at 200MHz and
consumes less than 20W, supports constantly a frame rate only 20% lower than the
peak rate of a high-end GPU executing the same basic algorithm; the specified GPU
consists of 128 floating point CPUs, clocked at 1.35GHz and consumes more than
200W.
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Chapter 1

Introduction

Human vision is a complex combination of physical, psychological and neurological
processes that allows us to interact with our environment. We use vision effortlessly
to detect, identify and track objects, to navigate and to create a conceptual map of our
surroundings.

The goal of computer vision is to design computer systems that are capable of
performing these tasks both accurately and efficiently using a minimal amount of time
and resources. Current computer vision systems are far from matching the flexibility
of biological visual systems. However they have been successfully applied in areas
such as manufacturing, medicine and robotics to perform object recognition, scene
reconstruction and motion tracking among many others.

Part of research in computer vision focuses on developing algorithms that can
locate and describe points or regions of ‘interests’ (features) in an image. The idea is
that if a structure in an image (such as part of an object or a texture) can be described
by a limited set of features, and this set is scale and rotation invariant, then the
features can be used to identify and match the same structure in different images.

Once a set of features is detected in an image, the characteristics of the image
around the features can be encoded description vectors. These description vectors, for
example, can be computed independently for two images. Description vectors can
also be used to index a database of object descriptors to perform object recognition.
Features and descriptors are usually computed in the preliminary stages of systems for
object recognition, object tracking, motion analysis and video indexing.

What constitutes a feature depends to a large extent on what is the intended
use for the information that is extracted from the images. For example, different
application may have different requirements for the robustness of the features to
changes in viewing conditions. In general, feature detectors try to achieve invariance
to changes in illumination, scale, location, 2D rotation and even affine or perspective
transformations. In addition, features should be distinctive so the features
corresponding to different structures can be easily distinguished.

As the complexity of vision task increases, the processing time and computer
resources required to perform it, are increased respectively. In particular, embedded
vision systems, like the ones used in autonomous robot navigation need to process
large amounts of data in real-time. For this reason, many vision algorithms have been
ported to integrated circuits such as Application-Specific Integrated Circuits (ASICs)
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and Field-Programmable Gate Arrays (FPGAS) [21]. Integrated circuits often referred
to simply as hardware, can increase the speed of vision algorithms by one to three
orders of magnitude when compared to the speed achieved in general-purpose
processors.

Hardware implementation of vision algorithms can achieve this increase in
speed because of the inherent parallelism of many of the operations involved in
processing an image. For example, convolution of an image with a two-dimensional
filter is implemented in a general-purpose processor as a series of multiplication and
additions where only one coefficient of the filter is processes at a time. Thus, several
cycles are required to produce a result for a single image pixel. On the other hand, in a
hardware implementation all coefficients in the filter could potentially be processed at
the same time, as long as there are enough resources to implement the necessary
multipliers and adders. Moreover, since many of the processes in a vision system are
relatively independent of each other, the system can be pipelined so that several
processes are executed at the same time, which greatly increases the throughput of
data.

The amount of resources available to implement operations in hardware is
often limited by factors such as cost, weight and power consumption. Thus, it is
important to design an implementation of the algorithm that is carefully crafted to
balance the need of accuracy and numerical precision with an efficient use of the
hardware resources. For this purpose, many hardware designs use a fixed-point
representation instead of the floating point representation used in general-purpose
processors.

The extensive use of feature detectors as preliminary stages of vision
applications, coupled with the capacity and speed of current FPGAs, have led to the
development of smart camera systems with integrated feature detection stages. These
systems can preprocess incoming video from a camera and provide real-time
information to subsequent processing stages.

This thesis describes an FPGA-based implementation of a scale and rotation
invariant detector and one part of feature descriptor introduced by Herbert Bay,
Andreas Ess, Tinne Tuytelaars, Luc Van Gool [1], referred to in the literature as
SURF(Speeded-Up Robust Features). This thesis is organized as follows: Chapter 2
introduces the feature detector, field-programmable gate arrays and gives a brief
review of the design methodology. Chapter 3 provides a detailed description of the
design of the detector, including a discussion on the fixed-point arithmetic. Chapter 4
presents the results obtained from the completed system and Chapter 5 presents the
conclusions of the project and discusses possible directions for future work.

12
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Chapter 2

Background

This chapter introduces some of the concepts applied throughout this thesis. Section
2.1 provides a brief overview of the methods developed for feature detection
encountered in the literature, with focus on those based on image intensity that
achieve invariance to scale, viewing conditions and other transformations. Section 2.2
describes SURF feature detector and descriptor. Section 2.3 gives an overview of the
algorithm in steps. Section 2.4 introduces Field-Programmable Gate Arrays (FPGAS).
Section 2.5 discusses some of the existing FPGA-based, GPU-based vision systems.
Section 2.6 presents the design methodology.

2.1 Feature detectors

The literature on feature detectors is extensive. The detection algorithms can be based
on image characteristics such as contours, intensity and phase (refers to the phase
response of a complex-value filter applied to an image), as well as on parametric
models (efficient models associated to features such as edges, corners, vertices by
searching the parameters of the model that best approximate the observed grey level
image intensities). A complete description of the existing methods and the evaluation
criterion of different interest point detectors are explained in [43]. Despite their
differences, all methods attempt to achieve invariance to changes in viewpoint to
facilitate the description and matching of objects across images.

Most intensity-based feature detectors can be traced back to the work of
Moravec [3]. His method observes the average changes in image intensity over a local
window, result from shifting the window over the image. The features are the points
at which the image intensity changes in more than one direction. Lowe [4, 5]
proposed SIFT (Scale Invariant Feature Transform) which is the most recent feature
detector.

In general, the size of objects can vary significantly between images and thus
algorithms that search for features at a single scale miss important information present
at other scales. Many of the methods that achieve invariance to scale changes analyze
images at multiple scales using image pyramids [6]. Image pyramids are hierarchical
structures that represent an image at different resolutions. The different ‘levels’ of the
pyramid are formed by convolving the original image with filters at different scales.

13
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Since Gaussian filters attenuate high-frequency components, each level can be sub-
sampled to reduce the amount of effort required to compute the next level. The
number of levels and the type of filters used depend on the application. Often
different levels of the pyramid are combined to form different representations, as in
the case of difference-of-Gaussians pyramid, where each level is formed by
subtracting adjacent levels of Gaussian pyramid.

There are numerous approaches that explore ways to detect features that are
invariant to scale changes. Crowley and Parker [7] presented a multi-scale
representation of shapes in an image, constructed by detecting peaks and ridges in a
pyramid of difference-of-Gaussians. Their algorithm forms a multi-scale tree that
describes shape by linking adjacent peaks and ridges across different levels of the
pyramid. Linderberg has done extensive work on the optimal scales for feature
selection [8, 9, 10, 11]. He proposed a method to detect blob-like structures over scale
space [10] and later studied how feature detection with automatic scale selection can
be formulated for various kinds of features based on scale spaces formed by
normalized differential operators [11].

Harris and Stephens [12] improved Moravec’s idea to make the detection
more robust to noise and nearby changes. Their method used a second moment matrix
to describe the image gradient in Gaussian window centered at a pixel position. This
detector is robust to rotation and translation, however its performance degrades as the
change in scale becomes more significant because image derivatives are sensitive to
changes in the size of local structure. Mikolajczyk and Schmid [13] extended Harri’s
approach to achieve invariance to scale. Their methods use a scale-normalized second
moment matrix and select points at which the matrix presents two large eigenvalues.
The characteristic scale for each point is the scale at which the Laplacian achieves an
extremum. Shokoufandeh, Marsic and Dickinson [14] developed a scale-invariant
method that captures the salient regions of an object using a wavelet transform at
different scales.

SIFT by Lowe [5] use four major stages of computation to generate the set of
image features. Scale-space extrema detection stage searches over all scales and
image locations. It is implemented efficiently by using a difference of Gaussian
function to identify potential interest points that are invariant to scale and rotation.
Key-point localization stage fits each candidate location by a 3D quadratic function to
determine the location and scale and then enforcing the condition that the Hessian
matrix of the image intensity presents two large eigenvalues. Orientation assignment
stage assigns an orientation at each feature based on the dominant directions of the
local gradients. Key-point descriptor stage measure local image gradients at the
selected scale in the region around each key-point and these gradients transformed
into a representation that allows for significant levels of local shape distortion and
change in illumination.

14
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2.2 SURF detector

The system described in this thesis implements the Surf interest point detection and
orientation assignment at each detected interest point [1]. The Surf detector consists
of two basic distinct parts. Fist part called interest point detection and second known
as interest point description. Both parts are based on the use of integral images as
made popular by Viola and Jones [15]. This section presents the concept of integral
images, the interest point detection and description from a theoretical standpoint.

2.2.1 Integral Images

Much of the performance increase in SURF can be attributed to the use of an
intermediate image representation known as ‘Integral Image’ [15]. The integral image
is computed rapidly from an input image and is used to speed up the calculation of
any upright rectangular area. Given an input image | (grayscale representation) and a
point (x,y) the integral image Is is calculated by the sum of the values between the
point and the origin. Formally this can be defined by the formula:

(xy) = Zio(ZiZ 1Y) 1)

Using the integral image, the task of calculating the area of an upright
rectangular region is reduced to four operations. If we consider a rectangle bounded
by vertices A, B, C, D as in Figure 1, the sum of pixel intensities is calculated by:

Y'=A+D-(C+B) (2.2)

AW

NV

Figure 2.1: Integral Image Computation
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Cols
y :>
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I=C-A+B-D

Figure 2.2: Area computation using integral images

Since computation time is invariant to change in size this approach is
particularly useful when large areas are required. SURF makes good use of this
property to perform fast convolutions of varying size box filter at constant time. Once
the integral image has been computed, it takes three additions and four memory
accesses to calculate the sum of the intensities over any upright, rectangular area.

2.2.2 Interest Point Detection

The SURF detector is based on the determinant of a Hessian-matrix approximation
because of its good performance in accuracy. In order to motivate the use of the
Hessian, we consider a continuous function of two variables such that the value of the
function at (x,y) is given by f(x,y). The Hessian matrix is the matrix of partial
derivatives of the function f and the determinant of the matrix are presented by the
next equations.

o ot
| ex2  6xey
6x0y  Oy>
det() = &0 (e 2
et(H) = 52 oy (Gxey) @4

The value of the determinant is used to classify maximum and minimum of the
function f. Since the determinant is the product of eigenvalues of the Hessian we can
classify the points based on the sign of the result. If the determinant is negative then
the eigenvalues have different signs and hence the point is not a local extremum
(minimum or maximum). If it is positive then either both eigenvalues are positive or
both are negative and in either case the point is classified as an extremum (Leading
Minot Test theorem) [16].
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Translating this theory to work with images rather than a continuous function
is a simple task. The function f(x,y) is replaced by the image pixel intensity function
I(x,y). The calculation of the second order partial derivatives of the image becomes by
convolution with an appropriate kernel. In the case of SURF the second order scale
normalized Gaussian is the chosen filter as it allows analysis over scales. We can
construct kernels for the Gaussian derivatives in X,y and combined xy direction such
that we calculate the four entries of the Hessian matrix. Use of the Gaussian allows
varying the amount of smoothing during the convolution stage so that the determinant
is calculated at different scales. Furthermore, since the Gaussian is a circularly
symmetric function, convolution with the kernel allows for rotation invariance.
Gaussians are optimal for scale-space analysis [17, 18]. Hessian matrix as function of
both space x = (x,y) and scale o.

Lyx(x,0) ny (x,0)

A&x0) =11 (o) L,,x0)

(2.5)

Here Lux(X,0) refers to the convolution of the second order Gaussian derivative

62 . . . .
#(:) with the image at point x=(x,y) and similarly for L,y and L. These
derivatives are known as Laplacian of Gaussians. Thus, determinant of Hessian is

calculated for each pixel and this value is used to find interest points.

Bay [1] proposed an approximation to the Laplacian of Gaussians by using
box filter representations of the respective kernels. The use of these filters in
combination with the use of integral images described in previous section increases
the performance. To quantify the difference we can consider the number of array
accesses and operations required in the convolution. For a 9x9 filter we would require
81 array accesses and operations for the original real valued filter and only 8 for the
box filter representation. As the filter is increased in size, the computation cost
increases significantly for the original Lapalacian while the cost for box filters is
independent of size.

Figure 2.3 gives a brief explanation of box filters and how these are
implemented in an image. For the D,y filter the white regions with a value of -1 and
the black with a value of 1 and the remaining areas are not weighted at all. The Dyx
and Dyy filters are weighted similarly but with the white regions have a value of -1
and the black with a value of 2. Simple weighting allows for rapid calculation of areas
but in using these weights we need to address the difference in response values
between the original and approximated kernels. Bay [1] proposes the following
formula as an accurate approximation for the Hessian determinant using the
approximated Gaussians:

det(Happrox) = Dxnyy - (O.ngy)z (26)

17
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Figure 2.3: Laplacian of Gaussian Approximation. Top Row: Discretised and

cropped second order derivatives in the x, y and xy-directions. Bottom Row:
Weighted Box filter approximations in the x, y and xy-directions(Dxx, Dyy, Dxy)

The necessity of finding objects under different scales leads to the introduction
of scale-space concept [19]. A scale-space is a continuous function which can be used
to find maximum and minimum across all possible scales [20]. In computer vision the
scale-space is typically implemented as an image pyramid where the input image is
iteratively convolved with Gaussian kernel and repeatedly sub-sampled. In SURF
scale-space is created by applying kernels of increasing size to the original image.
This allows for multiple layers of the scale-space pyramid to be processed
simultaneously and negates the need to subsample the image hence providing
performance increase. The difference between approach with image pyramid and
SURF approach is shown in Figure 2.4.

=

Scale
Heale

Figure 2.4: Image pyramids vs SURF approach
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The scale-space is divided into a number of octaves, where an octave refers to
a series of response maps of covering a doubling of scale. Each octave is divided into
four intervals and filter size is given equation (2.7). The lowest level of the scale-
space is obtained from the output of the 9x9 filters shown in Figure 2.5. These filters
correspond to a real valued Gaussian with 6=1.2. Subsequent layers are obtained by
up-scaling the filters while maintaining the same filter layout ratio. As the filter size
increases, the value of associated Gaussian scale also increased and is calculated by
next formula:

Filter Size = 3(2°ctavexinterval + 1) 2.7)

Base Filter Scale

: .12
Oapprox = Current Filter Size- = Current Filter Size ry (2.8)

Base Filter Size

When constructing larger filters, there are a number of factors which must be
taken into consideration. The increase in size is restricted by the length of the positive
and negative lobes of second order Gaussian derivatives. In the approximated filters
the lobe size is set at one third the side length of the filter and refers to the shorter side
length of the weighted black and white regions. Since we require the presence of a
central pixel, the dimensions must be increased equally around this location and hence
the lobe size can increase by a minimum of 2. Since there are three lobes in each filter
which must be the same size, the smallest step size between consecutive filters is 6.
Figure 2.5 presents the structure and the size of subsequent filters.

The construction of the scale space starts with 9x9 filter, which calculate the
blob response of the image for the smallest scale. Then filters with sizes 15x15, 21x21
and 27x27 are applied, by which more than a scale of 2 has been achieved. But this is
needed, as a 3D non-maximum suppression is applied both spatially and over
neighboring scales. Hence, the first and last Hessian response map in the stack cannot
contain such maxima themselves, as they are used for reasons of comparison only.
Similar considerations hold for the others octaves. For each new octave, the filter size
increase is doubled (going from 6 to 12 to 24). At the same time the sampling
intervals between processing pixels for the extraction of the interest points are
doubled as well as for every new octave. This reduces the computation time and the
loss in accuracy is comparable to the image sub-sampling of the traditional
approaches (image pyramids). The filter sizes for the second octave are 15, 27, 39, 51
and for the third octave 27, 51, 75, 99.

Once the responses are calculated for each layer of the scale-space, they are
scale-normalized. For the approximated filters, scale-normalization is achieved by
dividing the responses by the filter area. This leads to perfect scale-invariance.
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Figure 2.5: Filter Structure. Subsequent filter’s sizes differ by a minimum of 6 to
preserve filter structure

Final part of detection consists of interest point localization. This task is
divided into three steps. Firstly, the determinants are compared to a predetermined
threshold and localization is not performed for values under this threshold. Increasing
the threshold lowers the number of detected interest points, leaving only the strongest
while decreasing this threshold allows more interest points to be detected.

After the previous process, a non-maximal suppression is performed to find a
set of candidate interest points. To do this each pixel in the scale-space is compared to
its 26 neighbors, comprised of the 8 points in the native scale and the 9 in each of the
scales above and below (non-maximal suppression in a 3x3x3 neighborhood). Before
these comparisons, we have found the maximum value in the 3x3 region between the
two intermediate intervals of each octave. Figure 2.6 describes then non-maximal
suppression step. Essentially, algorithm finds the maximum value and if it is less than
threshold, the localization is not performed. Scale space interpolation is especially
important in our case, as the difference between the first layers of every octave is
relatively large.

A

Scale —_—

Figure 2.6: Non-Maximal Suppression
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The final step of interest point localization involves interpolating the nearby
data to find the location in both space and scale to sub-pixel accuracy. This is done by
fitting a 3D quadratic as proposed by Brown [39]. In order to do this we express the
determinant of the Hessian function H(x,y,c), as a Taylor expansion up to quadratic
terms centered at detected location. This is expressed as:

oHT

< T 0%H
0x

1
+EX ?X (2.9)

H(x) = H+

The interpolated location of the extremum (candidate interest point resulted by
non-maximal suppression), x=(x,y,c), is found by taking initially the derivative of
function in equation 2.9 and setting it to zero such that:

02H~1 @H
0x2 )%

X = - (2.10)

The derivatives are approximated by finite differences of neighboring pixels of
the candidate interest point’s neighboring determinant values. The result of equation
(2.10) is a vector with three values. These three values determine the exact position of
the interest point (x,y,scale). In case all three values are less than 0.5 they are adjusted
as following: x and y are multiplied with the sampling interval (described previously),
the result of the multiplication is added to x and y respectively and the final results are
rounded to the nearest integers. The new scale is computed based on equation (2.8). In
this formula the requested filter size is computed by equation (2.7) while the interval
value represents the actual scale of the reported point.

2.2.3 Interest Point Description

The SURF descriptor describes how the pixel’s intensities are distributed within a
scale dependent neighborhood of each interest point detected by the detection part.
Extraction of the descriptor is divided into two distinct tasks. First each interest point
is assigned an orientation before a scale dependent window is constructed in which a
64-dimensional vector is extracted. All calculations for the descriptor are based on
measurements relative to the detected scale in order to achieve scale invariant results.
In this work is implemented only the orientation assignment.

In order to achieve invariance to image rotation each detected interest point is
assigned a reproducible orientation. Extraction of the descriptor components is
performed relative to this direction so it is important that this direction has to be
repeatable under varying conditions. To determine the orientation, the concept of
Haar Wavelets is used.
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Haar wavelets are filters which used in combination with integral images in
order to increase robustness and decrease computation time. These simple filters
represented by figure 2.7 can be used to find gradients in the x and y directions. The
left filter computes the response in the x-direction and the right in the y-direction.
Weights are 1 for black regions and -1 for white.

Figure 2.7: Haar Wavelets

Haar wavelet responses of size 4c are calculated for a set of pixels within a
radius of 6o, where o refers to the scale of the detected interest point (o is a rounded
value of detected decimal value of scale). The set of pixels is determined by sampling
those from within the circle using a step of c. The responses are normalized by value
that follows Gaussian distribution with standard deviation of 2.5¢ where o is the
detected scale, centered at the interest point. The weighted responses are represented
as points in vector space with the x-response and y-response as values. For each X,y-
response we compute the orientation of the formed vector. The set of pixels around
interesting point as mentioned previously, is described by X,y-response and the
respective orientation. The dominant orientation is selected by rotating a circle

A
segment covering an angle of 3 around the origin, every 11 degrees. At each circle

position, the x and y-responses for which the orientation belongs to angle space of a
specific circle segment, are summed and used to form a new vector. We compute the
length of the summed x and y-responses and the orientation of the vector formed by
these summed responses, for every circle segment. The longest vector among all
circle segments, gives its orientation to the interest point. The process of orientation
assignment is described by the Figure 2.8.

adx

w
Figure 2.8: Orientation assignment with a sliding window of 3
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2.3 Algorithm

This section describes the basic steps of detection and orientation task processes.
1. Calculate the integral image representation.

2. Calculate the determinant response map into scale-space level.

3. Scale normalization of the determinant response map

4. Perform non maximal suppression to localize interest points in scale-
space.

5. Result of non-maximal suppression compared to a predetermined
threshold.

6. Interest point localization into scale-space based on equation (2.10)

7. Calculate the orientation of each interest point.

2.4 Field-programmable gate arrays (FPGAS)

A field-programmable gate array (FPGA) is a semiconductor device that contains
programmable logic components, programmable interconnects, memory blocks and
I/0 elements [22] Figure 2.10. Modern FPGAs contain also include dedicated
arithmetic circuitry, such as embedded multipliers and adders, and microprocessors
either as fixed embedded components (‘hard’ processors) or software module (‘soft’
processors).

The basic programmable unit of an FPGA is a look-up table (LUT). The latest
families of FPGAs such virtex-5 contain six-input LUTs, which can implement any
basic logic function of up to six input variables (AND, OR, NOT, XOR, etc.).
Register elements around the LUTs hold the values of the signals until some specified
condition is met (generally a clock edge). LUTs and registers are combined into logic
blocks to control both functionality and timing. Figure 2.9 shows the structure of a
generic logic block. It includes multiplexers to choose between inputs and outputs,
and a carry chain that can be used to cascade several blocks for implementation of fast
adders and multipliers. Complex circuits can be designed by combining the
functionality of multiple logic blocks. Thus, the processing power of an FPGA is
directly related to the number of logic block it contains.
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Figure 2.10: Structure of a generic FPGA.

Hardware description language such as VHDL and Verilog allow designers to
specify the desired behavior of the circuit in terms of basic logic functions, or more
operations such as counters and multipliers. In addition, FPGA vendors offer
intellectual property (IP) cores that implement commonly used functions, and that are
optimized for their target FPGA architectures. FPGA vendors offer also software tools
that can analyze the description of the circuit, decide on the optimal routing and
allocation of resources, and translate the information into a bit-stream that can be
downloaded onto the chip to configure it.

2.5 Other vision systems on FPGAs and GPUs

FPGAs and GPUs are increasingly being used for feature extraction and other vision
tasks to improve the performance of real-time systems. The most recent FPGA-based
systems implement tasks such as stereo disparity estimation [23, 24], optic flow
computation [25], template matching [26] and gesture recognition [27, 28], among
others.
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Among the FPGA-based feature detectors in the literature, many implement
Tomasi and Kanadi’s corner detector [29] as an initial stage for tracking [30, 31, 32,
33]. This detector is robust to rotation and translation, but not to changes in scale. Se
[34] use the scale invariant SIFT features [4] for localization and terrain modeling in
the ExoMars. Their system can compute SIFT locations for a 640x480 image in 60 ms
using a Xilinx Virtex Il FPGA. Bouganis [35] compute corner locations using
complex steerable wavelets at four different scales and orientations. Sift and Surf are
also implemented in GPUs [36, 37]. GPU-SIFT took on average 30 ms for the
detection of 1000 features in 1024x768 resolution and GPU-SURF takes for 500
features in 640x480 resolution 11.7 ms. Recently, a CPU-based parallel algorithm was
presented [41]. The testing system of this implementation was equipped with an Intel
Core Cuo P8600 at 2.4 Ghz and it was able to extract and represent features (only
orientation part of this task is performed by our implementation) from 640x480 image
at a rate of 33 frames per second.

2.6 Design Methodology

The design of the feature detector started by dividing the algorithm into functional
modules and implementing them in C(using OpenCv library) using floating point
arithmetic. This provides valuable information on the types of operations involved in
the algorithm, as well as the dynamic range and precision of the parameters and
intermediate results. The source code we used for the evaluation has been downloaded
directly from [42] and it is distributed under the GNU General Public License v4.

Once the floating point implementation was tested and verified, a fixed point
version of the algorithm was derived from the floating point implementation by
limiting the range and the precision of all intermediate results to an explicit number of
integer and fractional bits. This fixed point implementation was used to study the
effect of fixed point arithmetic on the algorithm, to determine which parameters and
intermediate results affected the final results most significantly, and to select the
optimal number of bits to represent each quantity. This information was used to
design the hardware architecture and to code the description of the circuit in VHDL.

Once coded, each module in hardware design underwent several stages of
verification. First, the VHDL descriptors were simulated in Modelsim using specially
designed testbenches verify that all control signals and arithmetic results occurred at
the correct cycles (cycle-true verification). Second, intermediate results from the
Modelsim simulations were saved into text files and then they were compared to the
corresponding results in the fixed-point implementation.

The development tools used in this project were ModelSim 6.3f, Xilinx ISE
10.1, OpenCV library and gcc compiler(4.3.4).
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2.7 Summary

This chapter introduces some of the concepts applied throughout this thesis, presents a
brief literature review on feature detection algorithms and FPGA-based, GPU-based
vision systems and discusses the design methodology in the implementation of the
hardware system.

Features are points or regions of interest in an image. There are numerous
approaches to feature detection, however they all attempt to achieve invariance to
viewing conditions to facilitate the description and matching of objects across images.
Modern feature detection algorithms are robust to rotation and translation, as well as,
to changes in scale transformations.

The system described in this thesis is an FPGA-based implementation of the
interest point detection and orientation assignment part of SURF detector introduced
by Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool [1]. This system is
implemented in Virtex5 vsx240T FPGA device. The use of FPGAs is expected to
increase the speed of the feature detector considerably, at the expense of loss of
numerical precision. Chapter 3 provides a detailed description of the design of the
hardware implementation. Chapter 4 lists the hardware resources for each processing
module, computational time for software, hardware and compares the accuracy of the
results. Chapter 5 presents some ideas to improve performance in terms of speed and
hardware resources.
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Chapter 3

Hardware Design

This chapter describes the implementation of the interest point detector on Virtex5
vsx240T board and presents the reasoning behind the most important design
decisions. Section 3.1 describes a high-level overview of the system. Section 3.2, 3.3,
3.4, 3.5, 3.6 and 3.7 provide a detailed description of the core modules of the feature
detector. Section 3.8 discusses the methods and difficulties in translating an algorithm
designed for floating-point computation into a fixed-point design suitable for
implementation on FPGAs. Finally, the design was successfully placed & routed in
the device Virtex5 vix200T. The device choice was determined by the memory-
intensive nature of our application.

3.1 System Overview

Figure 3.1 shows the high-level architecture of the system. Input image is converted
to a grayscale representation and all processing stages of detector use these pixel
values. The system can process images of a standard video (640x480 pixels).

The core of the detector consists of the main three stages described in chapter
2. The first stage computes the integral representation of the input image. The second
stage finds the interest points. This stage is divided into three basic parts. First part
computes the determinant response map and accesses the integral image module. It is
important to mention that sequential memory accesses guarantee the maximum speed
in terms of hardware design. The second part performs a non-maximal suppression
and the third part is the interest point localization while determinant calculation
continues its process. The latter stage computes the orientation of the interest points
extracted from previous stages (stored into BRAMS).

One of the considerations of the design of the detector was to allow for
scalability. For example, whenever possible the bit-widths of the parameters and
intermediate signals have been defined as generic parameters, to allow for easier
modification in case different numerical precision is required. DSP multipliers were
extensively used for all required multiplications using LogicCore generator (optimal
pipeline stages were also used to increase speed) and all look-up tables were
implemented using slice LUTSs.
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Figure 3.1: High-level Architecture of feature detector

3.2 Grayscale Image Module

Grayscale image contains one value per pixel described by eight bits. The large
amount of on-chip memory in Virtex5 vsx240T board allows grayscale image to be
loaded (prefetching) while detection and orientation parts continue their process using
integral image representation.

A partition in two parts of the grayscale image leads to better memory
utilization. Total number of pixels in 640x480 image dimension is 307200. Thus, first
part of grayscale image contains 2718 (262144) pixel values of eight bits and
converted to rows means 640x400 (256000) and second part contains 216 (65536)
pixel values where can stored the last 80 rows of image (640x80 = 51200). The
number of bits without partitioning is 524288*8 because 524288 positions are
required to store 307200 pixel values in power of two addressing. A little waste of
memory is unavoidable but a gain of 1.5 Mbit is achieved compared to an
unpartitioned memory scheme. Figure 3.2 represents the partitioned grayscale image
and its ports. The signal sel is referred to the selection of first or second part for
reading or writing based on the values of respective addresses.

The integral image representation is computed and stored to integral image
module (section 3.3). The processing tasks (detection and orientation) communicate
only with the integral image module. Thus, a new frame can be loaded to grayscale
image module after integral image computation. Integral image is not the critical part
of the whole procedure as it requires only 1.5ms to complete.
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Figure 3.2: Grayscale Image.

3.3 Integral Image Module

The integral image module computes the integral representation of grayscale supplied
input image and described in Chapter 2. In addition, this module handles integral
images. Pixel values are normalized by factor of 255 in software. However, in our
fixed-point implementation we normalize by a factor of 256 in order to replace the
division with a simple bit-shifting while not loosing significant accuracy.

Integral image is divided into five parts. Each part holds 640x100 pixels
except for the last which holds 640x80 elements. Each integrated pixel is a 32-bit
value with the last eight bits as a fractional part. This specific partition of integral
image into five parts achieves both better utilization of on-chip memory and allows
more cores of detection to process the same image. Each memory part has 2°16
(65536) positions and stores 640x100 (64000) integrated pixels except for the last
which uses the 640x80 positions of the fifth part. Thus, this scheme is able to load a
complete frame (640x480 pixels) on the available BRAMSs of vsx240T device and
also it is possible the parallel processing of image data. Figure 3.3 depicts integral
image module and how communicates with detection and orientation tasks.

This module reads the values of the integral image. The inputs are the two
points in image (row_one,col one) , (row_one,col two) , (row_two,col one) ,
(row_two,col_two) for each detection core and the outputs the four respective integral
pixel intensities of the image. Row_one, row_two must be converted to the respective
number of elements. For example, if row has as value 2, it means that 2*640
elements, beginning row from value 0 and for a 640x480 image. This conversion is
done using a look-up table of 100 positions.
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Image part one

First Core
Row_one,Row_two valueA,valueB
Col_one,Col_two valueC,valueD

Image part two
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Image part four
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Col_one,Col_two valueC,valueD
Image part five

Figure 3.3: Integral Image Module.

A critical point for interest point detection in order to be parallelized is that
box integral function (computes any rectangular area intensity) reads elements from
rows with different odd number. Thus, a partition in odd and even rows for each of
the previous memory parts leads to x2speedup as in each cycle we now process two
rows considering only the interest point detection (not the orientation part of the
algorithm). This module can process more rows if we can satisfy the condition of non-
overlapping rows between the five parts of the integral image.

3.4 Determinant Module

The determinant module computes the determinant at each pixel location for all scales
based on different filter sizes. Figure 3.4 represents Determinant Module’s
architecture.

In chapter 2 was analyzed the notion of scale-space and a specific scale is
represented by a specific number of octave and interval. Each octave and interval is
used to retrieve a set of coefficients from look-up tables. These coefficients form the
dimensions of box filters and one constant used to perform division by the method of
multiplication. A detailed explanation of these look-up tables is provided in Section
3.4.1.

The first image processing in this stage finds the parameters for specific
octave and interval. Second stage computes the eight rectangular area intensities that
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required computing the elements of the Hessian Matrix (Dyx, Dyy, Dyy) applying filters
shown in Figure 2.3. These results used by the final stage to calculate the determinant
of the matrix based on equation (2.6).

Octave
interval

3.4.1 Retrieve Parameters Module

Retrieve
Parameters

paramsx

step

Box Integral
Calculation

Determinant
Calculation

Figure 3.4: Determinant Module

Determinant

Octave,interv

Each octave and interval represents a discrete value of scale. The concept of scale-
space explained in detail in Chapter 2. For a specific scale are applied box filters with
the respective dimensions. These dimensions are located in look-up tables. Figure 3.5
represents the filter lengths for the different octaves and intervals. It becomes clear in
this figure that second and last scale in each octave is repeated in next octave with
different sampling step (sampling interval) in space. Finally, the number of detected
points decays quickly for new octave and three octaves are enough to describe the
important information of the image.

Octaves

27 51 75 |99
15 27 | 39 |51
9 15 | 21 |27
4 N
Scale

Figure 3.5: Filter lengths for different octaves and scales

Box filters are centered to current processing pixel and different values are
required to compute the responses. A normalization factor is used for each response, it
is constant and pre-computed for each scale.
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3.4.2 Box Integral Calculation Module

Basic unit of this module is the Boxintegral function. This function communicates
with  Integral Image module, performs four memory accesses, three
additions/subtractions and calculates the intensity of a rectangular area. Totally, eight
rectangular area calculations are required, two for Dxx, two for Dyy and four for Dxy.

A logic unit based on filter parameters and current pixel position computes
the inputs of eight calls of boxintegral function. The whole process is represented by
Figure 3.6. These eight values of rectangular areas pixel intensities are stored in
buffers in order to be forwarded to the next processing module. The respective
processing pixel (row, column, interval) and the normalizing factor for the current
interval are also stored in buffers. Determinant calculation module begins when the
eight rectangular areas have been calculated. The necessity of using multipliers with
pipeline stages leads to make a fully pipelined determinant calculation module and
buffers are used for storing intermediate results.

a)

m (xy) m
1 1 -3 1 1

b)

Figure 3.6: Description of Dxx,Dyy,Dxy computation process

a)Dxx, similarly for Dyy, b) Dxy
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3.4.3 Determinant Calculation Module

This module performs three basic operations. Initially, it computes Dxx, Dyy, Dxy.
Dxy requires only additions/subtractions. Dxx, Dyy are using a multiplier by 3 with
pipeline stages. Dxy is normalized by using the normalizing factor and after Dxx and
Dyy are computed, then they are also normalized. Normalization is a division by filter
area (constant) which is implemented with the method of multiplication with the
inverted value of normalizing factor (filter area). It results improvement both in speed
as division circuit adds latency and in hardware resources utilization.

Finally the equation 2.6 computes the determinant of approximated Hessian
matrix. All operations are performed using multipliers with optimal number of
pipeline stages. Making this unit pipelined allows the calculation of determinants
every eight cycles as the numbers of rectangular areas with an initial delay of 21
cycles.

3.5 Non-maximal Suppression Module

The non-maximal suppression module finds the interest points all over the scales.
There are three main cores that find and localize exactly the interest points both in
scale and in space. Figure 3.7 presents the overview of this module and in the next
sections will be described the internal structure of these sub-cores. The most
significant parts are the store determinant module which differs from software
implementation and matrix inversion (sub-core of interest point localization module
and implemented with single precision floating point arithmetic instead of the double
precision of the software implementation).

rowA,columnA rowB,columnB
detA,detB
Store rowA columnA
Octave,interva Determinants | TOWB,columnB _ Interest Point| space(x,y
Row,column.d Comparison | row,col \| Localization |  scale
LN Unit maxvly/
detA,detB

Figure 3.7: Non-maximal suppression overview
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3.5.1 Store Determinant Module

In section 3.4 was mentioned that determinants are calculated for each pixel location
(space), octave and interval which represent a discrete value of scale. The necessity
of this module is that determinant response map in software implementation is stored
into a matrix with total size equal to image size multiplied with the number of
octaves*intervals.

A modification in sequence of the determinant computation allows for a better
utilization of on chip memory while enables the non-maximal suppression to be
executed in parallel with the determinant calculation.

Based on the values that non-maximal suppression module needs to perform
its function, determinants are computed for one octave, for each pixel location and for
four intervals (octaves are splitted into intervals). This module needs the determinants
of five rows for all intervals to begin the processing stage. Three rows are needed to
find the maximum determinant in 3x3 regions of two intermediate intervals of each
octave. The two neighboring rows of these three rows are needed to find if the value
from previous comparison is indeed the maximum value among neighboring pixels
determinants of interval that maximum value was detected and neighboring intervals.
Dividing the determinant response map every three rows we have to store also the
previous and the next row of these three rows in order to perform the whole process of
this module.

The main reason for the previous modification was the limited on chip
memory in comparison with the size of determinant response map. The fact that this
module functions independently from the determinant module leads to the usage of
two extra ‘store’ structures of five rows size as previously described. The determinant
module continues its processing stage while non-maximal suppression module
process one of these ‘store structures’. Figure 3.8 presents the general architecture of
‘store” structure and this is repeated for all intervals (totally 4) of each octave.

Structure one of five rows

Structure two of five rows

< /
—1_ Structure three of five rows

— - _—
[~ 5 T
\%\\\{\j/r_en FSM AddreS§§§

Figure 3.8: Store determinant basic structure
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Inputs are write and read addresses and respective enables for each five_row module.

A Finite State Machine is used to select which component of five rows is
available to write the determinants. Also, it computes which of these three
components is ready so as the non-maximal suppression will start the processing. It
writes for each ‘five row’ structure the value of the row which is stored in second row
and it is the starting row of the next processing modules. This value is used to
compute the pixel position in image resolution, based on the relative position in five
row ‘store’ structure. In addition, write address computation is relative to current state
of fsm. Table 3.1 depicts the values of signals for all states.

Sta | addres | addres | address | one_e | two_e | three_e | ready | ready | ready_
te |s_one |s_two | _three nable | nable | nable _one | _two | three

A 640 X 1 0 0 0 0 0

B | 2*640 X 1 0 0 0 0 0

C| 3*640 0 X 1 1 0 0 0 0

D | 4*640 640 X 1 1 0 0 0 0

E x| 2*640 X 0 1 0 1 0 0

F x| 3*640 0 0 1 1 1 0 0

G x| 4*640 640 0 1 1 1 0 0

H X X 2*640 0 0 1 0 1 0

| 0 X 3*640 1 0 1 0 1 0

K 640 X 4*640 1 0 1 0 1 0

L| 2*640 X X 1 0 0 0 0 1

M | 3*640 0 X 1 1 0 0 0 1

N | 4*640 640 X 1 1 0 0 0 1

Table 3.1: FSM signals

Enable signals write the determinant to one or two of these three ‘store’
structures and the value of interval select one of these four basic structures. The
structure of Figure 3.8 is repeated for four intervals. Next section analyzes more how
the reading of stored determinants becomes. State changes when the determinants for
all elements of one row are computed. A,B,C states are used only for the first three
rows and only other states are used for rest rows of image. As mentioned, each
five_row structure used to perform 3x3 comparisons. Therefore, for each structure
the value of first row from 3 is stored and supplied to next module.

3.5.2 Comparison Unit Module

This module performs the non-maximal suppression and finds candidate interest
points as previously described. It is divided into two different comparison sub-units.
The first sub-unit finds the maximum value in 3x3 regions of two intermediate
intervals. One FSM which is based on initial values of row, column, produces all nine
values of row, column to complete its function for two intervals. A second sub-unit,
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using the row, column of detected maximum value from previous sub-unit, is enabled
if maximum value is greater than a predetermined threshold, and produces the
addresses for all nine values of neighboring pixels both for detected interval and for
neighboring intervals. A general overview of this module is represented by Figure 3.9
and describes the main inputs and outputs needed to communicate with the store
determinant module.

| | rowA,columnA
detA,detB _
First Second rowB,columnB
. Row,column .
— Comparison Comparison
) Interval,max_valu )
row,col_en Unit Unit
column row,col
| Column maxvalue
Counterx3

Figure 3.9: Comparison Module overview

Determinant response map is divided into 3x3 regions. Row is given from
previous module and it already comes every three rows. Column counter is enabled
when a 3x3 region is processed and interest point is detected and localized. Next
module makes the localization and the next 3x3 region is provided to comparison
module until all regions of five_row structure are completely processed.

3.5.3 Interest Point Localization Module

As mentioned previously, the scale takes discrete values due to the nature of
implemented box filters. The space is also discrete as pixels are in discrete positions
in the image. The difference between neighboring discrete values of scale enforces the
use of the interpolation method described in chapter 2.

This method needs the creation of two matrices which have as elements
derivatives approximated by finite differences of neighboring pixels not only in space
but also in scale (neighboring intervals). After the matrix creation using again the
store determinant module to read the determinants, we have one symmetric 3x3
matrix and one 3x1 matrix. It is performed a matrix inversion of the 3x3 matrix and
then a matrix multiplication of the inverted matrix with the 3x1 matrix. The result is a
3x1 matrix containing factors which they are used to adjust both pixel location and
scale if the values of these factors are not greater than 0.5. Figure 3.10 provides an
overview based on the aforementioned and components are explained further down.
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Figure 3.10: Interest Point Localization overview

Matrix creation reads determinants of neighboring pixels. It implements
additions/subtractions, simple multiplication by two and division by four with left and
right shifts respectively. FSM produces the neighboring pixels needed to create the
elements of the two matrices.

Matrix inversion has many difficulties to be implemented successfully in
hardware. Especially in our case where all matrix values belong to space [0, 1) the
determinant of the 3x3 matrix is a very small number. This results to an inverted
determinant which is a large number and can’t be represented easily by fixed point
arithmetic. Therefore, matrix inversion works with floating point numbers of single
precision. Firstly, matrix elements are converted from fixed point to single precision
floating point numbers. Using floating point adders, multipliers and divide units, we
have to take advantage of pipeline provided by these units and limit the number of
these. In addition floating point units require more cycles to produce the results but it
doesn’t affect the whole processing time as it becomes parallel with determinant
computation. Finally, FSM controls the results from floating point units and
determines also their inputs in order to perform correctly matrix inversion.

Position and scale adjustment uses the three elements produced by matrix
multiplication, the initial position and the scale of the detected interest point are
changed if the absolute values of these are not greater than 0.5. Firstly, these floating
point values are converted to a fixed point representation. Each octave has a sampling
interval (step) as explained in section 2.2.2, this step is multiplied with two from the
converted results of matrix multiplication and are used to adjust the pixel position.
Box filter size and scale are determined by octave and interval as shown in equation
2.7 and 2.8. Based on these equations comes the next equation which presents how
the scale adjustment becomes.

Scale = 1;—2 * (3 * (2°¢avetl « (interval + adjust + 1) + 1)) (3.1)
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In previous equation, the factor 1.2/9 is converted to a fixed point
representation, ‘adjust’ is one element from previous matrix multiplication (relative to
scale), multiplications are implemented and scale adjustment is completed.

Finally, the detected interest points which contain the pixel position and scale
are stored in the devices’s-on-chip memory. Once interest point detection part has
finished, every interest point is supplied to next processing module which assigns an
orientation to each point.

3.6 Detection using a dual core implementation

The large amount of available hardware resources in Virtex5 vsx240T device allows
the two cores of feature detection module described in section 3.4 and 3.5 to be ported
in the same FPGA. Some changes relative to the first and last row of each processing
core are implemented.

The partition of the image as explained in section 3.3 facilitates the use of two
cores without additional storage requirements. Rows used from first and second core
belong to different parts of image. Thus, each core begins the processing stage from
different initial rows and finishes also in different rows. Clearly, the initial rows for
first core are the starting processing rows of the algorithm (applied filters must not
exceed image dimension) and the final rows for second core are the ending rows of
the algorithm.

The ending rows of first core and the initial rows of second core are
determined based on the values needed by each core. We decide the last processing
row of first core to be the 242 for each octave. However, we need neighboring rows of
242 and the ending rows will be different than 242. In addition, different steps for
each octave create different ending rows. Same concept was followed to create the
starting rows of second core. It is important to mention that interest point localization
functions for every three rows. Thus, 242 is the first row of these three rows and
comparison unit needs one extra row than these three rows to complete its process.
Also different steps (sampling intervals) for each octave have as consequence
different neighboring rows. Starting and ending rows for each processing core are
described by Table 3.2.

octave 0 1 2
first_core_init_row 14 26 50
first_core_final_row 250 258 274
second_core_init_row 246 250 258
second_core_final_row 466 454 430

Table 3.2: Dual Core borders
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Finally, last changes are needed for the fsm of store determinant module
described in section 3.5.1. The first core completes its process when last row
determinants are computed and interest point localization for the last three rows is
performed (242 and after) then the second core begins its process from the rows of
table 3.2 with a modified version of fsm described in Table 3.1. First processing row
IS needed only for comparison unit. In first core, the first processing row is the
starting row of the three rows needed for localization and comparison. In second core,
the first processing row is the previously neighboring row of these three rows needed
by localization unit. These reasons lead to the modified version of previous FSM.

Stat | addres | addres | address | one_e | two_e | three_e | ready | ready | ready_
e s_one |s_two | _three nable | nable | nable _one | _two | three
A 0 X X 1 0 0 0 0 0
B 640 X X 1 0 0 0 0 0
C 2*640 X X 1 0 0 0 0 0
D 3*640 0 X 1 1 0 0 0 0
E 4*640 640 X 1 1 0 0 0 0
F x| 2*640 X 0 1 0 1 0 0
G x| 3*640 0 0 1 1 1 0 0
H x| 4*640 640 0 0 1 1 0 0
| X X 2*640 0 0 1 0 1 0
K 0 X 3*640 1 0 1 0 1 0
L 640 X 4*640 1 0 1 0 1 0
M 3*640 X X 1 0 0 0 0 1
N 4*640 0 X 1 1 0 0 0 1
(0] 0 640 X 1 1 0 0 0 1

Table 3.3: Modified FSM for second core.

3.7 Orientation Assignment Module

This module implements the orientation assignment task for each interesting point as
described in section 2.2.3.  This section provides a more detailed description both
in algorithm and in hardware implementation. The main purpose of this task is to
achieve the rotation invariance of the detected features.

Scale invariance is guaranteed by using the scale of each interest point.
Responses from Haar wavelets are computed for all pixels in a radius of 66 (where
is the scale) around interesting point with step equal to o between neighboring pixels.
In addition, haar responses are weighted with Gaussian values which are stored in a
look-up table of size 7x7. It is also computed an orientation operation as described in
section 2.2.3, for each pixel. The notion of Haar wavelets was introduced in Chapter
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2. Wavelets are filters implemented using the Boxintegral function which described in
section 3.4.2. The basic components of this module are depicted in next figure.

X,y Pixel X HaarX,Y HaarX Orientation
scale generator Y Responses HaarY Module
‘ ‘ HaarX orien ‘ ‘

HaarY tation

Store X,Y,orientation

Module
H HaarX
ead
HaarY
. . enable
orientation
Dominant Orientation
Search

Figure 3.11: Orientation assignment

3.7.1 HaarX,Y Module

The Haar wavelets are shown in Figure 2.7. The size of these filters are 4¢ and each
haar response either in x or in y dimension requires the intensities of two rectangular
areas (boxintegral) and one subtraction. Totally, 16 memory accesses required to
compute Haar responses which are weighted finally with the same Gaussian value
retrieved by a look-up table based on the pixel position. After analyzing Haar
responses, we limit the memory accesses from 16 to 12 by storing some intermediate
results. These weighted values are supplied to orientation module and they are also
stored in a structure explained later. When a pixel is processed by this module, a pixel
generator is enabled and haar responses are calculated for a new pixel.

3.7.2 Pixel Generator Module

We have to compute the orientation and haar responses for all pixels around
interest point with step o in radius of 6c. This module is an FSM which begins from
initial state the position (0,0) and takes all pixels in radius of 6 (for example (0,1),(0,-
1) etc). These values are multiplied with the scale in order to take all pixels in a radius
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of 60 and added to the interesting point position. According to absolute values of
pixels generated by FSM is calculated the position of the Gaussian value in a look-up
table and used by HaarX,Y module. Totally 109 pixels are processed and are supplied
to the next module.

3.7.3 Orientation Module

The orientation module finds the angle of a vector (X,Y) where X,Y are the Haar
responses in x and in y-dimension respectively. The angle of the vector is calculated
using the arctan function. The inputs of the arctan are only positive and the result is
based on the quadrant that belongs the vector as shown in Table 3.4.

sign(X) + - + -
sign(Y) + + - -
angle atan(Y/X) | pi-atan(-Y/X) 2*pi-atan(-Y/X) | pi+atan(Y/X)

Table 3.4: Angle of vector(X,Y)

The question is how the arctan is implemented in hardware as it is an
expensive function in terms of cost and time. The Xilinx LogicCORE implements a
generalized coordinate rotational digital computer (CORDIC) algorithm. ArcTan is
selected among others functional configurations. A detailed information about the
input and the output data representation is given in product specification of cordic
LogicCore [38]. Latency is directly proportional to output width for every arctan
calculation. Pipeline implementation of cordic core allow to increase throughput but it
requires a buffer to store the signs of X,Y because result have to be adjusted
according to Table 3.4. When a new vector is inserted to arctan function module, its
sign is stored in a FIFO and when arctan is calculated, we read its sign from FIFO and
return the angle of the vector. Implementation of arctan using LogicCORE is
equipped with enable and done signals which used to write and read the signs in FIFO
buffer respectively.

In addition, inputs of arctan implementation from Xilinx logicCORE belong to
[-1, 1] space value. Gaussian weighted HaarX, HaarY responses have a different
range which exceeds the previous values. Normalization of these responses is
required. This process finds the biggest value between HaarX and HaarY and
performs respective right shifts (division by powers of two). In order to limit the
impact in accuracy, normalization is performed based on which range belongs the
biggest value. For example if it belongs to (1,2] one right shift is performed, (2,4]
two right shifts etc.
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3.7.4 Store X,Y,Orientation Module

In software implementation all these 109 vector values (X,Y,orientation) are stored in
one vector and these vector values are used from a loop which slides a pi/3 window
around the feature point with a step of 0.2 in space [0,2x]. The above computation
increases significantly the number of memory accesses. In the hardware
implementation this vector is stored into seven different memories and seven
processing units, run in parallel as will be explained in the next section.

It becomes clear from previous section that Haar responses are calculated
before the respective angle. This leads to separate the storing procedure for Haar
responses and for orientation. Two different write addresses are stored in registers.
Write address is increased for haar response memory when new responses are
computed from HaarX,Y module while write address for angle when new angle is
produced by orientation module. Also, some logic is used to select which from the
seven memories must be selected based on the value of write address. Finally, all 109
vectors and angles are stored in this structure. The last and most complex part of this
task is the dominant orientation search. Figure 3.12 represents the seven parts of one
vector with 109 values performing fourteen memory accesses and using seven dual-
port rams per cycle instead of one.

1t nd 3ra Ath

Vector
109 values

ot bth Tth

Figure 3.12: Vector partition

3.7.5 Dominant Orientation Module

Firstly, the space [0,2x] is divided in windows of size /3 beginning from [0,7/3] and
increasing by 0.2 until all space is covered. This is simply implemented by using a
counter with a step of 0.2.
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The one vector in software implementation is separated into seven and it
allows a parallel processing. Seven units read the angles and check if they belong to
current window, they perform the additions of weighted HaarX, HaarY responses and
form a new vector. Also, it is performed a normalization to space [-1, 1] of these sums
before arctan implementation computes the angle. If the vector length is longer than
previous vectors lengths, this forms the new dominant orientation. This process is
repeated for all windows in space [0,2z]. The vector which forms the dominant
orientation is computed. Finally this vector is processed by orientation module and the
angle of dominant orientation is calculated.

3.8 Fixed-point representation analysis

Although a floating-point representation can achieve great precision and large
dynamic ranges, it is often prohibitive to use floating-point operators in an FPGA
implementation because of the large amount of hardware resources required to
implement the normalization operations. This becomes critical in hardware vision
systems where operators are replicated numerous times and used in parallel to
increase the speed of the system.

In vision algorithms, parameters and intermediate results rarely exploit the
entire capacity of a floating-point representation. As a result, it is possible to study
their precision and dynamic ranges to determine the optimal number of integer and
fractional bits that need to be allocated to represent them in fixed point format. Larger
bit-widths result in smaller quantization errors, however they require larger operators.
In our case floating point representation for one module is used due to the fact that the
dynamic range of these numbers is too large.

In general, finding the optimal bit widths for each variable is a complex
multivariable optimization problem that requires knowledge of both the algorithm and
the target hardware platform. Among others, the following conditions have to be
taken into account:

e Some variable have a larger impact on the final results than others, and so the
most critical should have larger bit-widths.

e Different input images may yield different optimal widths.

e An efficient implementation must take into account the relative size of the
operations associated with each variable and how many times these operations
are repeated throughout the circuit, to try to minimize the width of the
operations that require most resources.

e In FPGAs, memory blocks and dedicated arithmetic circuitry, such as
embedded multipliers and adders, are optimized for signals of certain sizes
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(usually powers of 2), often the remaining resources cannot be used for other
operations. To avoid waste of resources, signals should be kept in standard
sizes whenever possible.

The rest of this section describes the inputs and the outputs of previously
explained hardware modules from the point of fixed-point representation. A mixed
fixed-point and floating point arithmetic was used.

Initially, floating point implementation normalizes pixel values in space [0,1)
by dividing with 256. In fixed point implementation considering the whole pixel value
(eight bit) as a fractional part, it is almost equal to divide with 255. Integral image
pixels are represented by 32 bit values. The eight least significant bits form the
fractional part and the rest twenty four the integer part.

During determinant calculation, a mixed fixed-point arithmetic is
implemented. The floating point version of algorithm was used to determine the bit
widths of intermediate results for test images. Intermediate results before
normalization, after normalization, constant inverse factor and determinant fixed point
representation are presented in Table 3.5.

# of bits sign integer part fractional part
constant inverse 0 0 42
Dxx_bef 1 11 8
Dyy_bef 1 11 8
Dxy_bef 1 11

Dxx,Dyy,Dxy 1 0 31
determinant 1 0 31

Table 3.5: Determinant Module fixed-point representation

As mentioned previously, Dxx,Dyy,Dxy are normalized to space [0,1). This is
done by dividing with a constant relative to the applied filter. Constants are pre-
calculated and the range of these numbers requires 42 bits only fractional part as it is
always less than one and positive. Therefore, all factors (Dxx,Dyy,Dxy) used in
determinant calculation are less than one and the determinant is also less than one. A
fractional part of 31 bits is been used and one bit for sign.

The next processing module is the non-maximal suppression. Determinant
values are used to perform a series of comparisons. If these comparisons locate an
interest point, interpolation module adjusts the location both in scale and in space. As
described a matrix inversion is difficult in hardware especially when elements of
matrix are less than one due to limited accuracy. Three multiplications of numbers
belong to previous space may result a zero value. Fixed point implementation of this
module leads to detected interest points which are neighboring with software detected
interest points or some interest points were not detected because of required dynamic
range of numbers in matrix inversion. Fixed-point to single floating point converters
were used, floating point (adders, multipliers, dividers) units were limited to the

44



Speeded-Up Robust Features Implementation

minimum required number in terms of hardware resources and float to fixed
converters. Determinant values are converted to single precision floating-point
numbers and factors of interest point localization from floating point to fixed point.
Finally, next Table presents the pixel location and scale value bit widths of detected
interest points.

# of bits integer part | fractional part
X 10 0

y 10 0

scale 7 25

Table 3.6: Interest point representation

Pixel position has a decimal value after localization. However, both
orientation and description assignment use a rounded value of pixel which is stored in
this form. On the other hand, the scale value is used rounded by orientation
assignment and as decimal value by description part.

Orientation is computed for each interest point. The process was described in
previous chapters. Inputs and output of arctan function are represented in fixed-point
arithmetic and the orientation is also in fixed-point. Input and output ranges and bit
widths of arc tan module are shown in Table 3.7. Normalization unit as described in
section 3.7.3 scale the inputs of arctan to range [-1, 1]. Inputs of this unit are the
Gaussian weighted Haar responses and the summations from Dominant Orienatation
module (section 3.7.5). Orientation is the final result of this task.

Range sign integer part fractional part

X -1<=X<=1 1 1 30

Y -1<=Y<=1 1 1 30

arctan(Y/X) -pi<=phase<=pi 1 2 29

orientation | O<=orientation<=2pi 1 3 28
Table 3.7: Orientation assignment representation

sign integer part fractional part

gaus_HaarX 5 27

gaus_HaarY 1 5 27

sumX 1 8 24

sumY 1 8 24

normX 1 1 30

normY 1 1 30

Table 3.8: Normalization Unit representation
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Finally, the Gaussian weights are pre-computed and stored into look-up tables
as described in previous section. These values are positive and less than one so 25 bits
of fractional part are used to represent these numbers.

3.9 Image prefetching

In order to be able to support video at relatively high rates we pipelined the image
loading with the image processing tasks. Therefore, we have two distinct memory
banks and while we store the input image in one of them we process the previously
stored image which has already been placed in the other bank. When the processing
(which takes much longer than the image loading) is completed the two banks change
roles. The image loading is explained through section 3.2 and 3.3.
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Chapter 4

Results

This chapter presents a quantitative evaluation of the performance of the feature
detector. Section 4.1 lists the hardware resources used in the system. Section 4.2
compares the computational speed of the system against the speed of software
implementation. Finally, Section 4.3 compares the location, scale and orientation of
the features detected in hardware with values from floating point software
implementation.

4.1 Hardware utilization

Tables 4.1, 4.2 and 4.3 list the amount and kinds of hardware resources used in the
system. Table 4.1 and 4.2 list the resources used in each of the modules described in
Chapter 3(sections 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7). The numbers in parenthesis indicate
the percentage of the total resources of that kind available in Virtex5 vsx240T FPGA.
As reference, this FPGA includes 149760 slice registers, LUTs,, 960 bonded 10Bs,
516 Block RAM/FIFO, 32 BUFG/BUFGCTRLSs and 1056 DSP48Es.

As seen in Table 4.3, the available resources in the Virtex5 vsx240T are not
fully utilized except for the on-chip memory, utilizing around 90% available memory.
This is due to the fact that the integral of an image with dimension 640x480 requires a
large amount of memory. Integral image module is common for detection and
orientation task.

Selected Device:
Virtex5 vsx240T (speed grade -2)

Module Slice Registers Slice LUTs | Block RAM | DSP48Es
Integral Image 365 (0%) 2892 (1%) 290 (56%) 0 (0%)
Grayscale Image 5 (0%) 60 (0%) 80 (15%) 0 (0%)
Retrieve Parameters 10 (0%) 94 (0%) 0 (0%) 0 (0%)
Box Integral Calculation 51 (0%) 281 (0%) 0 (0%) 0 (0%)
Det Calculation 1089 (0%) 818 (0%) 7 (1%) 13 (1%)
Store Determinants 0 (0%) 0 (0%) 24 (4%) 0 (0%)
Comparison Unit 522 (0%) 1150 (0%) 0 (0%) 0 (0%)
|_Point localization 4714 (3%) 4048 (2%) 0 (0%) 12 (1%)

Table 4.1: Resource utilization for Interest point detection sub-modules
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Selected Device:

Virtex5 vsx240T (speed grade -2)

Slice Slice Block

Module Registers LUTs RAM DSP48Es
Orientation 3208 (2%) 3349(2%) 0 (0%) 0 (0%)
Store X,Y,Orientation + Dominant 5204

Orientation 836 (1%) (3%) 21 (4%) 8 (1%)
HaarXY 141 (1%) 139(1%) 0 (0%) 0 (0%)
Pixel_Generator 23 (1%) 52 (1%) 0 (0%) 0(0%)
Used Multipliers 0 (0%) 0 (0%) 0 (0%) 18(1%)

Table 4.2: Resource utilization for Orientation assignment sub-modules

Selected Device:

Virtex5 vsx240T (speed grade -2)

Slice Slice Slice LUT-FF | Block
Module Registers LUTs pairs RAM DSP48Es
DualCorelnterest point 17257 435
detection 13447(8%) (11%) 20310 (13%) (84%) 50 (4%)
12496 308
Orientation assignment 6832 (4%) (8%) 12394 (8%) (59%) 18(1%)
Table 4.3: Resource utilization for Virtex5 vsx240T device
Selected Device:
Virtex5 vfx200T (speed grade -2)
Slice Slice Slice LUT-FF Block
Module Registers LUTs pairs RAM DSP48Es
DualCorelnterest point 17257 435
detection 13447(10%) (14%) 20310 (16%) (95%) | 50 (13%)
12496 308
Orientation assignment 6832 (5%) (10%) 12394 (10%) (67%) 18(4%)

Table 4.4: Resource utilization for Virtex5 vix200T device

Finally, Table 4.4 presents the hardware utilization in virtex5 vix200T device.
This device is cheaper than vsx240T and it is obvious that our design reach the 95%
of available BRAMs instead of 84% in vsx240T.

4.2 Performance

One of the most important measures in the evaluation of a hardware implementation

is how it compares to a software implementation in terms of speed.

Table 4.5 presents the overall speedup and Table 4.6 shows the processing
time for the hardware system and the floating-point software implementation for the
case of six different images as far as interest point detection. Table 4.7 refers to
orientation assignment time. The hardware processing time refers to a post place and
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route implementation of the proposing scheme in the Virtex5 vsx240T device. The
processing times for the software implementation were measured using Vtune (a
commercial application for software performance analysis) running on a 2.4 GHz
Pentium IV processor with a 4 GB of memory. The processing time of the hardware
were computed for clock rates of 198.464 MHz for the dual core interest point
detection and orientation tasks using the next formula. Clock rate remains the same
for both devices.

Hardware time = (# of cycles) x (;

clock rat
Interest
Points Orient. Overall
Input Speedup Speedup Speedup
image_one 10,7 9,3 9,9
image_two 8,4 8,9 8,7
image_three 8,3 8,1 8,2
image_four 9,8 8 8,7
image_five 9,2 10,9 10,1
image_six 8,7 9,8 9,3

Table 4.5: Speedup

4.3 Accuracy

The fixed-point arithmetic used in the hardware implementation of the feature
detector introduces errors in location, scale and orientation of the detected features.
The main reason for these errors in the detected interest points is that some rounding
errors occurred during determinant calculation. This was due to our slightly different
accuracy used when implementing the three multiplications in equation 2.6. To
provide a quantitive measure of these errors, the results obtained from Modelsim
simulation of six test images, shown in Figure 4.1 and 4.2, were compared against the
results obtained from processing the same images with the original floating-point
software implementation.

Table 4.6 shows the numbers of features detected in each test image by the
software (it also follows the modification of division by the factor of 256 for pixel
intensity) and hardware implementation. Moreover, the total number of common
detected points (position takes integer value) and the variance of scale for the
common points (decimal value) are computed. Finally, the variance of orientation for
the common interest points is also computed and orientation results presented in Table
4.7. After examining the results for numerous 640 x 480 images we have figured that
in all cases the number of missing or additional points of interest reported by our
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approach was always less than 1% of the overall reported images. At the same time
the scale and orientation error introduced was always less that 0.01%.

Software | Points of | Points of
Hardware time interest interest
Input time (ms) (ms) (hw) (sw) commons | scale_variance
image_one 7.551 ms 80.97ms 1634 1635 1609 0.0014744
image_two 7.555 ms 63.5ms 1681 1677 1666 | 6.24121x107-5
image_three | 7.561 ms 62.47ms 1722 1713 1704 0.000524633
image_four 7.550ms | 73.71ms 1823 1822 1808 0.000640449
image_five 7.555ms | 69.47ms 1508 1502 1493 0.00038069
image_six 7.55 ms 65.4 ms 1704 1708 1693 0.000785097
Table 4.6: Interest point results
Software time Orientation
Input Hardware time (ms) (ms) Variance
image_one 9.902 ms 91.72 ms 0.00579719
image_two 10.255 ms 90.82 ms 0.0199012
image_three 10.494 ms 84.8 ms 0.01785
image_four 11.165 ms 89.4 ms 0.0169975
image_five 9.190 ms 100 ms 0.0296172
image_six 10.45 ms 102.5 ms 0.0245929

Table 4.7: Orientation Assignment results

These results are also compared to the initial software implementation (where
pixel intensity is divided by 255). In this case, the missing points are 6% of overall
detected points while scale and orientation errors are always less than 0.1%. It was
difficult to predict the repercussions of these errors in performance of overall scheme
because feature description is not yet implemented and we can’t evaluate the effect in
matching of features between different images. In chapter 5, we propose a slight
different implementation which affects only one functional module and will improve

our results.

4.4 Post place and Route verification

We performed a post-place and route simulation otherwise known as timing

simulation on our design to verify that the functionality is correct after the place and
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route. This process uses the post-place and route simulation model (a structural
SIMPRIM-based VHDL file) and a standard delay format (SDF) file generated by
NetGen. The SDF file contains true timing delay information of the design.

After getting the timing simulation model of our design we were able to run
the same tetbenches we ran during the functional verification of the design and verify
the correct results.

4.5 Tested Images

We tested our detector using images provides by Mikolajczyk [40] resized to 640x480
dimension and converted to a grayscale image. Second image set presents first image
set under different viewing conditions such as rotation, light and zoom.

Figure 4.1: Image set one
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Figure 4.3: Software Interest points
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Figure 4.5: Software Interest points (oriented)
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Figure 4.6: Hardware Interest points (oriented)
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Chapter 5

Conclusions and Future Work

This thesis presents an FPGA-based implementation of SURF detector presented in
[1]. The feature detector provides the location, scale and orientation of interest points
in frames at a rate of 130 frames per second for detection part and at a rate of 95
frames per second for orientation assignment part.

5.1 Summary of Contributions

This is, to the best knowledge of the author, the first implementation of this scheme in
an FPGA. Our innovative system can support processing of standard video (640 x 480
pixels) at up to 56 frames per second while it outperforms a state-of-the-art Intel CPU
by at least 8 times. Moreover, the proposed system, which is clocked at 200MHz and
consumes less than 20W, supports a frame rate which is less that 20% lower than that
of a high-end GPU executing the same basic algorithm, the specified GPU consists of
128 floating point CPUs, clocked at 1.35GHz and consumes more than 200W.

The SURF detector produces features that are robust to image rotation and
translation, as well as to significant changes in illumination and scale deformations.
This performance, however, doesn’t provide real-time processing. The fact many
operations in hardware can be performed in parallel make it an ideal candidate for
implementation.

Field-programmable gate arrays (FPGAs) offer a good hardware development
platform because they can be easily reprogrammed to fit the requirements of a given
application. This is particularly useful in the early stages of implementation of a new
design since correction and additional features can be added in short periods of time.

The main challenge with implementing a complex algorithm in hardware is to
balance the need for numerical precision with an efficient use of the available
hardware resources. This implementation of the feature detector uses a combination of
fixed-point and floating-point numerical representation limiting the number of
floating-point units in terms of hardware resources. The results obtained from
comparing the hardware implementation and the floating-point software model show
that the location, scale and orientation achieve results with high-accuracy.
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Comparison with

other schemes Performance in (fps) Detection | Orientation | Description
CPU(2.4 GHz) original

software 6.5 (640x480) v v x
GPU-based SURF 85 (640x480, 500 features) v v v
Multi-core CPU SURF | 33 (640x480) v v v

FPGA-based SIFT on

exomars robot 16.5 (640x480) v x x

33 fps (1000 features,

GPU-based SIFT 1024x768) v x x

56 fps (640x480, 1500+

Our FPGA-based SURF | features) v v x

Table 5.1 Performance comparison

Table 5.1 describes mainly the performance in terms of speed with other

recently implemented detection systems and our software implementation. The
number of detected features affects the processing time for orientation task directly
proportional. Consequently, the number of detected interest points is reduced using an
appropriate value of threshold and processing time is reduced only for orientation task
as the detection is independent of this value because it is used by modules which are
executed in parallel. More details are given in hardware design of section 3.5.

5.2

Future Work

There is enough room for improvements and refinements, both in hardware resources
and in the processing speed. The following are a few ideas to guide any future work
on this system.

Accuracy in detected points as mentioned in section 4.3 can be improved.
Determinant module (section 3.4) uses the results of boxintegral function
which compute the intensity of any rectangular area. Dxx, Dyy, Dxy are
intermediate results with eight bits fractional part (division by 256). We can
concern these values as integer numbers without fractional part and perform
division by 255 (multiplication with the inverse number of 255), increasing the
bits of fractional part. We use only extra multipliers and multipliers with extra
input bits. This module is also pipelined and doesn’t affect the overall
processing time. This modification will limit the errors in number of detected
points.

‘Store’ Determinant module (section 3.5.1) utilizes a large amount of on-chip
memory. As mentioned in section 3.5.1, determinant response map is divided
into 3x3 regions and the neighboring pixel determinants are needed to perform
interest point localization. This implementation stores all determinants for five
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rows and interest point localization module divides these five rows into 3x3
regions. It becomes obvious that only five columns are needed to perform the
localization of a 3x3 region. Thus, columns are divided into a similar way as
five rows. This modification can reduce the used on-chip memory by a factor
of 70%.

Use of floating point units is expensive in terms of hardware resources. The
two cores of interest point detection use two modules of interest point
localization which consist of floating point units. It becomes obvious from
simulations that the two cores can use the same interest point localization
module as these processing units of two cores never function at the same time.
Thus, reduction of hardware resources is achieved.

Interest point detection in first octave is the most consuming part of detection
for three octaves (5.8 ms from 7.55 ms for first test image). Moreover, applied
box filters for the first octave require less previous and next rows for the
current row determinant calculation. This conclusion in combination with the
decreased on-chip memory of ‘store’ determinants module and an efficient use
of interest point localization module can parallelize the detection only for the
first octave in four parts. Thus, the detection time for first octave (5.8 ms) can
be reduced by a factor around two.

Efficient use of orientation module (section 3.7.3). Orientation module is a
pipelined unit and it is used every 12 cycles when new HaarX, HaarY (section
3.7.3) are computed or every 8 cycles when new sumX, sumY (section 3.7.5)
are computed. As orientation module is the most expensive part of orientation
assignment, we have to take advantage of the pipeline. Image is already
partitioned and we can have two orientation assignment cores using the same
arctan unit. This leads to improvement of time performance by factor of two
using only more DSP multipliers which can also be limited as these units
aren’t be used every cycle. Also, more than 65% of interest points belong to
first octave. For this octave, it is possible to process the interest points from
the four parts mentioned in previous bullet, parallel. Thus, almost 2/3 of the
time required for orientation assignment can be reduced by a factor of 4.
Description part of SURF.

Combination with a classification system.

Combination of detector with video interfaces to create a smart camera
system.
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