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Abstract

One fundamental data mining task in the structural analysis of a social network is the
ability to predict future links between its members. This task is formalized as the ”link
prediction problem”. State-of-the-art solutions to the link prediction problem rely on
analyzing the topological properties of the social graph and can be computationally
expensive; coupled with the massive size of real-world social networks, this mandates
the use of scalable parallel algorithms. In this thesis, we present the novel design
and implementation of two state-of-the-art link prediction methods (based on node-
neighborhood intersections and path counting) in the highly-scalable Map/Reduce
parallel framework, using the Hadoop open-source implementation. Our experimental
results with several large, real-life social graphs on SoftNet’s Hadoop cluster verify
the effectiveness of our approach.
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Chapter 1

Introduction

Network science is a scientific discipline that studies network representations of phys-
ical, biological and social phenomena and seeks to discover common principles that
govern network behavior. A network is a set of entities, which are pairwise connected
with links. In computer science, networks are represented as graphs, where the enti-
ties correspond to vertices which are connected with edges. Networks model different
forms of associations among entities and we see many examples in the real world.
Examples include the World Wide Web, where the vertices are the web pages and
links from one page to another form edges; social networks, where the vertices are
people and edges express some sort of acquaintance like friendship or relativity; co-
authorship networks, where the vertices are scientists in a particular discipline and
edges connect those who have co-authored a paper; collaboration networks, where the
vertices are employees and edges are formed between those who have worked in com-
mon projects; biological networks that express relations among proteins or neurons.
(Newman [3] has a thorough study on networks).

The goal of network analysts is to model the interactions among the entities and
discover interesting patterns, by focusing on the properties of real world networks.
This is the area of research knows as graph mining. Patterns that have been discov-
ered include the small world effect, the shrinking diameter and many others. One
important property of networks is that they evolve over time with edges appearing or
disappearing. The problem of predicting a future snapshot of a graph is formulated
as the link prediction problem. Many algorihms have been introduced that solve this
problem taking advantage of the structure of the graph.

One problem with the study of real world networks is that they are extremely
large, extending from hundreds of edges to billions of edges (Yahoo Web). Obvi-
ously, it is difficult to apply sequential algorithms to analyze these graphs. This size
restraint has lead to the development of parallelization architectures. One recent
and effective framework that permits the development of parallelized algorithms is
Hadoop. Hadoop provides us with a distributed filesystem and the implementation
of the map/reduce progamming model, as well as all the necessary libraries that are
needed in order for a compute cluster to function. Its main advantage is that it sepa-
rates the parallelization code from the business logic, thus making easy for anyone to
create and execute a parallel algorithm. Additionally it poses no restrictions regard-
ing the number of computer nodes that the cluster should have, something that has
been an issue in older architectures.

The object of our work is solving the link prediction problem with the development
of parallel algorithms in the map/reduce model. We implemented two algorithms who
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6 CHAPTER 1. INTRODUCTION

take advantage of the topological structure of the graph, by examining paths. For
every pair of vertices, they calculate a score, which refers to the probability that these
two vertices will form a link. By defining a threshold, one can create a future snapshot
of the graph, by adding links between vertices that their proximity score exceeds this
threshold. The chanllenge, has not been to create and evaluate a new link prediction
method, but to parallelize an existing one in Hadoop API, so that it can be used for
large datasets.

The first algorithm is based on the Jaccard coefficient. For two nodes, the Jac-
card coefficient compares their neighborhoods. It is defined as the fraction of the
intersection of their neighborhoods, divided by the union of their neighborhoods. We
extended this definition by extending the neighborhoods of the nodes at a given depth
d. The new neighborhoods will contain vertices that are d hops away of the source
vertex. In this way we have improved the quality of the predictor, as the new proba-
bility takes into account longer paths. If there is a probability of connection between
two nodes based on paths of length 1, then the probability is heightened if we examine
longer paths.

The second algorithm is based on the Katz index. For two vertices, the Katz index
provides a score by counting the total number of paths between them. The paths are
given a weight according to their length.

This thesis is organized as follows. Chapter 2 describes the background knowledge
and related work regarding our work. This includes graph theory (2.1), graph mining
(2.2), link prediction 2.3, Jaccard Coefficient (2.4), Katz Index (2.5) and the Hadoop
framework (2.6). The description of our Map/Reduce algorithm of Extended Jaccard
Coefficient lies in Chapter 3 and the one of Katz Index in Chapter 4. Finally, Chapter
5 contains the experiments for every Map/Reduce algorithm that we conducted in
several real graphs, along with interesting results.



Chapter 2

Background and Related
Work

2.1 Graph Theory

Graphs are mathematical structures used to model pairwise relations between objects
from a certain collection. A graph is a collection of objects, where some pairs of
the objects are connected by links. The objects are called vertices or nodes and the
links are called edges or arcs. The edges may be directed (assymetric) or undirected
(symmetric). The corresponding graphs are called directed or digraphs and undirected
graphs. Of course, we can represent an undirected graph as directed if we have two
edges between every pair of nodes, one for each direction. The edges may carry
weights, that could represent costs, length, capacities or other quantities depending
on the problem. These edges define a graph as weighted. Graphs can be either cyclic,
meaning they contain closed loops of edges or acyclic meaning they do not. Also, we
can define a subgraph of a graph G, which is a graph whose vertex set is a subset of
G, and whose adjacency relation is a subset of G restricted to the new vertex subset.
In the other direction, a supergraph of a graph G is a graph of which G is a subgraph.
Graphs may also be partitioned in natural ways. Bipartite graphs are graphs whose
vertices are divided into two disjoint sets U and V , such that every edge connects a
vertex from U to one in V .

2.1.1 Graph Representation

The two most commonly used data structures for representing a graph G = (V, E)
are the adjacency list and the adjacency matrix.

The adjacency list is implemented as an array of |V | lists, with one list of desti-
nation nodes for each source node. The vertices in each adjacency list are typically
stored in an arbitrary order. In directed graphs the sum of the lengths of all adjacency
lists is |E|, while in undirected graphs it is 2 · |E|. This happens because in undirected
graphs, each edge (u, v), is stored in the list of node u, as well as in the list of node v.

The adjacency matrix is a two dimensional boolean matrix, of length |V | × |V |.
It is assumed that the identities of vertices vary from 0. . . |V |. A matrix entry (i, j)
indicates if there is an edge from vertex i to j. Formally, we define the adjacency ma-

trix A = (aij), where aij =
{

1 if (i, j) ∈ E,
0 otherwise

. Adjacency matrices of undirected

graphs are symmetric, as for every edge (i, j), there also exists an edge (j, i). The

7



8 CHAPTER 2. BACKGROUND AND RELATED WORK

transposed adjacency matrix of A = (aij) is the matrix AT = (aT
ij) = (aji).

Adjacency lists are usually preferable for sparse matrices, where |E| << |V |2 [8],
because they occupy less space, as they do not use any space for edges that are not
present. Respectively, adjacency matrices are preferred when the graph is dense and
|E| ' |V |2. Because each entry of matrix requires one bit, they can be represented in a
compact way occupying |V |2/8 bytes. The adjacency matrix requires Θ(V 2) memory,
independent of the number of the edges in the graph, while the adjacency list requires
Θ(V + E) memory. Although the adjacency list representation is asymptotically at
least as efficient as the adjacency matrix representation, the simplicity of an adjacency
matrix may make it preferable when graphs are reasonably small. For a more extensive
study on graph theory see [7].

2.1.2 Definitions and Graph Metrics

Some important definitions and metrics that are used in network analysis are:

- path: an alternating sequence of vertices and edges, beginning and ending with
a vertex, where each vertex is incident to both the edge that precedes it and
the edge that follows it in the sequence. The length of a path is the number of
edges traversed.

- degree: number of edges incident to the vertex. The degree is not necessarily
equal to the number of vertices adjacent to a vertex, since there may be more
than one edge between any two vertices. Such a graph is called a multigraph.
In directed graphs, there is in-degree and out-degree for every vertex, which are
the numbers of incoming and outgoing edges respectively.

- diameter: the greatest distance between any pair of vertices; it is equal to the
length of the longest shortest path between any two vertices.

- betweenness of node i: the number of shortest paths between pairs of other
vertices that run through i. It is a measure of the influence of a node over the
flow of information between other nodes, especially in cases where information
flow over a network follows the shortest available path. [9].

- clustering coefficient: the probability that a connected triple of nodes is
actually a triangle. It describes the tendency to form clusters (fully connected
subgraphs) in a graph and is a measure of the likelihood that two associates of
a node are associates themselves. [10, 11]. Formally, it is equal to:

C =
3 × number of triangles

number of connected triples of vertices
(2.1)

- connected component: a maximal connected subgraph, meaning a subgraph
in which any two vertices are connected to each other by paths. In a directed
graph each vertex has both an out-component and in-component, which are the
sets of vertices that it can reach and it can be reached from.

2.2 Graph Mining

Graph mining is the process of finding and extracting useful information like patterns
from structured data that can be represented as a graph. It helps us in interpreting
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the laws under which behave real-world networks and understand the structure of
links.

Important patterns regarding the structure and function of networks arise from
the study of the basic metrics that we described in Section 2.1.2.

Milgram developed a theory in 1967 [12, 13] suggesting that human society is
a small world type network characterized by short path lengths. The Small World
Effect, which is associated with the phrase “six degrees of separation”, is the phe-
nomenon that the average diameter of a graph is small, typically around 6 [14, 15, 16].
Leskovec et al. [17] proved that in real graphs the diameter shrinks and stabilizes over
time as the graph grows. Recent work by Kang et al. [18, 30] has used the Hadoop
framework in order to compute the diameter and effective diameter of massive graphs
of Tera and Peta-byte size, achieving excellent scale up.

Typically, real networks have degree distributions which are highly right skewed,
meaning that most of the vertices have low-degree, but there is a small number of
nodes with high degree and are known as “hubs”. Often, the degree distributions
of some networks like the World Wide Web or social networks follow a power law
distribution or exponential form [19, 20, 21, 22, 23]. The densification power law is
described by the relation P (k) ∼ k−a, where a is a constant. Time evolving graphs
also follow the densification power law, with the equation e(t) ∼ n(t)a, where e(t) are
the edges and n(t) are the nodes, according to [17].

As can be seen from Equation (2.1), in order to compute the clustering coefficient
for a graph, first we need to count the triangles that exist. Several algorithms have
been proposed for counting triangles in graphs [32]. Tsourakakis et al. [33] developed
a hadoop algorithm, named “Doulion” that counts triangles in large scale graphs.

A giant connected component (GCC) is formed nearly at all real networks; that
is a set of nodes that consists the majority of the graph. In the graph generator
of Erdos-Renyi (1960), edges are randomly inserted between nodes and at a critical
point there is a high probability for a GCC to emerge in the graph ([24]). Kumar
et al. [25] and McGlohon et al. [31] study components other than the GCC. Some
large-scale algorithms for detecting connected components include [26, 27, 28, 29].

Recently, Faloutsos et al. [30] released “PEGASUS” (Peta-Scale Graph Mining
System), which implements several algorithms in Hadoop, one of which is detecting
connected components. The other graph mining algorithms that are implemented in
this project are diameter estimation, PageRank and Random Walks with Restarts
(RWR). The main idea is that all the four algorithms can be solved using matrix-
vector multiplications. So, the “heart” of their project is the parallelization of this
operation. Using the parallelized matrix-vector multiplication in hadoop, they man-
aged to implement these graph mining tasks.

2.3 Link Prediction

Link prediction is a graph mining task that aims to predict the occurence of new
edges in a graph after a certain interval of time. Given a snapshot of a graph at a
timestamp t, the goal is to predict the evolution of the graph at a timestamp t′ > t.
The heart of the problem is to compute scores for every pair of non-connected nodes,
which makes it an O(n2) problem.

The structural features of a graph can provide sufficient information that can be
used to predict new links. Liben-Nowell and Kleinberg have published a survey [34]
through which, they analyze and compare some of the most important topological
metrics that can be used for link prediction. Each metric computes a score for each
pair of unconnected vertices. This score stands for the possibility that two vertices
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will connect in the future. The methods are divided into two categories; those that
are based on neighborhoods and those that are based on paths. The first are also
called local and the second global methods. Local methods predict a link occurence
by examining the number of common neighbors or paths of length 2. Global meth-
ods explore longer paths and predict a link occurence based on the sum of the total
number of paths, which are weighted by their length. Hence, the global methods are
natural extensions of the local ones. Let G(V, E) be a graph. In order to define the
methods that are based on the neighborhoods of the nodes, let us suppose that Γ(x)
and Γ(y) are the neighborhoods of two nodes x, y ∈ G(V,E).

The methods that are based on the neighborhoods of the nodes include:

- Common Neighbors: score(x, y) = |Γ(x) ∩ Γ(y)|.

- Jaccard Coefficient: score(x, y) = |Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| .

- Adamic/Adar Coefficient ([35]): score(x, y) =
∑

z
1

log(frequency(z)) , where z is a
feature shared by x, y.

- Preferential Attachment ([36, 37]): score(x, y) = |Γ(x)| · |Γ(y)|

The methods that are based on paths include:

- Katz [5]: score(x, y) =
∑∞

l=1 βl · |paths
〈l〉
x,y|, where l is the length of a path, β a

user defined variable and |paths
〈l〉
x,y| is the number of paths of length l between

x and y.

- Hitting Time: Hx,y is the expected number of steps for a random walk starting
from x to reach y.

- Symmetric Commute Time: Cx,y = Hx,y + Hy,x

- rooted PageRank: the probability of y in a random walk that returns to x with
probability a at each step, moving to a random neighbor with probability 1−a.

- SimRank ([38]): score(x, y) = γ · Σa∈Γ(x)Σb∈Γ(y)s(a,b)

|Γ(x)|·|Γ(y)| , where γ ∈ [0, 1] and
s(a, b) =1, if a = b.

We elaborate further on Jaccard Coefficient and Katz, as they play a critical role
in the thesis.

The clustering coefficient quantifies the effect of clustering or transitivity that
networks have. This property states that two vertices that are both neighbors to a
third vertex have a higher probability of also being neighbors to one another. So,
the clustering coefficient is a natural predictor of links. Another topological measure
that can be used to predict links more effectively than the clustering coefficient is the
generalized clustering coefficient according to [39]. Unlike the clustering coefficient
(2.1), it measures the formation of cycles instead of triangles. It also expresses the
proximity of two nodes by examining paths of length k instead of 2. It is defined as:

C(k) =
number of cycles of length k

number of paths of length k
(2.2)

Tong et al. defined in [40] a node-node and a group-group proximity based on
random walks, where the second refers to the proximity of two groups of nodes. Let
G(V, E) be a graph. A random walk starts from a node x and randomly moves
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to a neighbor of y with a probability c. The proximity Prox(x, y) of two nodes
x, y ∈ G(V, E) is defined as the probability for a random walk that starts from x,
to visit y before it returns to x. Suppose that the graph is directed. Then, the
prediction of a link between nodes x and y would depend on the relation Prox(x, y)+
Prox(y, x) > threshold. If the group-group proximity is used, then a link between x
and y would depend on Prox(N(x), N(y)) + Prox(N(y), N(x)) > threshold, if N(x)
and N(y) are the neighborhoods of x and y resprectively. Finally, the direction of
an edge between a linked pair can be predicted by the result of the two equations
Prox(x, y) > Prox(y, x) and Prox(x, y) > Prox(y, x). In the first case, the edge goes
from x to y and in the second it goes backwards.

O’Madadhain et al. [41] construct local conditional probability models, based on
attribute and structural features. They predict the participation of actors in events.
The structural features that are used for prediction are the one described in [34].

A number of approaches define a probabilistic model over the graph that can
be used for link prediction among other applications. These approaches perform
probabilistic inference and capture the correlations among the links. The models
could be based on Markov random fields [43] or on relational representations like
Relational Markov Networks [44] and Markov Logic Networks [45].

2.4 Jaccard Coefficient

The Jaccard similarity coefficient, also known as the Jaccard index (coefficient de
communauté by Paul Jaccard [4]), is a statistical measure used for comparing the
similarity of sample sets and it is widely used in information retrieval [6].

Let s1 and s2 be two sets. Then, the jaccard coefficient measures the number of
“features” that both s1 and s2 have, compared to the number of features that either
s1 or s2 has. Let G(V, E) be a graph and two nodes x, y ∈ G(V,E). If the two sets
s1 and s2 represent the neighborhoods Γ (x) and Γ (y) of x and y respectively, then
we can consider as “features” the neighbors of the nodes. In this case we define the
jaccard coefficient as the cardinality of the union of the neighborhoods of x and y,
divided by the cardinality of the intersection of the neighborhoods of x and y.

J (x, y) =
|Γ (x) ∩ Γ (y) |
|Γ (x) ∪ Γ (y) |

(2.3)

J. Bank and B. Cole [46] have created a map/reduce algorithm that calculates
the jaccard similarity coefficient. They use as dataset the pages of wikipedia and run
their algorithm twice. The first computes the similarity between pages and the second
computes the similarity between users.

As explained in section 2.3, the Jaccard coefficient can be used for link predic-
tion. It is a similarity score between two nodes, that expresses the possibility of the
appearance of a potential edge between these nodes [34].

2.5 Katz Score

The Katz index was originally used in the field of sociology as a popularity index
between two subjects. Examining a social group, we can create a graph representing
it with nodes to be people and edges to appear between individuals that are somehow
related. The Katz index provides a score for every pair of actors, by counting the total
connections between them. Each connection, however, is given a weight, according
to its length. The greater the length, the weaker the connection. How much weaker
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the connection becomes with increasing length depends on an attenuation factor.
Mathematically, the Katz index for two nodes x and y that belong to a graph G(V, E)
is expressed by the formula:

score(x, y) =
∞∑

l=1

βl · |paths〈l〉x,y| (2.4)

As explained in section 2.3, the Katz index can be used in link prediction. This
status is indicative of the similarity of two nodes and can determine a potential edge
[34].

Acar et al. [47] used the Katz method for link prediction in weighted and un-
weighted bipartite graphs. Matrix and tensor based methods were used. A low-rank
approximation based on truncated Singular Value Decomposition was the basis upon
the matrix-based methods. For the tensor-based methods they considered a CAN-
DECOMP/PARAFAC (CP) decomposition. Note that the Katz scores for all pairs
of nodes can be expressed in matrix terms as follows. Let Â be the adjacency ma-
trix of the graph and Ŝ the matrix with the Katz scores, then Ŝ =

∑∞
l=1 βl · Âl =

(I − β · Â)−1 − I.
The above matrix solution of the Katz index is interpreted in the following way.

For matrices whose elements are 0 or 1, powers of A have as elements the numbers
of chains of corresponding lengths going from i through intermediaries to j. Thus, A2

= (a2
ij), where a2

ij =
∑

k aik · aki; each component, aik · aki, of a2
ij is equal to one

if and only if i chooses k and k chooses j, i.e., there is a chain of length two from i
to j. Higher powers of A have similar interpretations. The column sums of A give
the numbers of direct links between all the nodes and the individual corresponding
to each column. Also, the column sums of A2 give the numbers of two-step links;
column sums of A3, numbers of three-step links etc. As a result, the Katz index may
be constructed by adding to the direct links all the two-step, three-step links etc, using
appropriate weights, which are represented by the parameter βl. Hence, the matrix Ŝ
that we seek is given by the relation Ŝ = β ·A+β2 ·A2+β3 ·A3+. . .+βl ·Al = Â)−1−I

2.6 Map/Reduce and Hadoop

Many computations that process a large amount of raw data, need to be distributed
across several machines in order to finish in a reasonable amount of time. This is-
sue can be addressed by an open source framework, called Hadoop [1] that supports
data intensive distributed applications. Hadoop is a project of the Apache Soft-
ware Foundation that parallelizes data processing across many nodes in a compute
cluster, speeding up large computations and hiding I/O latency through increased
concurrency. The advantages of this model lie in its ability to deal with the issues
of distributing the data, handling failures, load balancing among the cluster, thus
separating the business logic from the parallelization code; hence, developers are free
to focus on application logic.

The hadoop project includes various subprojects that provide complemetary ser-
vices. These are:

- Common: a set of utilities that support the other subprojects. It provides a dis-
tributed filesystem, RPC (Remote Procedure Call), persistent data structures,
serialization libraries and support for the MapReduce distributed computing
metaphor.
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- MapReduce: a distributed data processing model and execution environment
that runs on compute clusters.

- HDFS: a distributed filesystem that provides high throughput access to appli-
cation data.

- Chukwa: a distributed data collection and analysis system.

- Hive: a data warehouse infrastructure that provides a query language based on
SQL.

- Pig: a high level data flow language and execution framework for parallel com-
putation. It is built on top of Common.

- ZooKeeper: a high performance coordination service for distributed applica-
tions.

Hadoop implements the MapReduce programming model [2]. The user of this
library needs to implement two functions – map and reduce – to perform a compu-
tation. Each input record is converted into a key/value pair. A map operation is
applied to each input record and produces a set of intermediate key/value pairs. The
map outputs are grouped and sorted by key. A reduce operation is applied to all
values that share the same key, in order to combine the derived data appropriately.

HDFS is a file system designed to store large files across multiple machines. Stor-
age reliability is achieved with the data replication on several nodes. Three processes
control the HDFS services. Namenode manages the filesystem namespace and regu-
lates access to files by clients. It is a single point of failure for an HDFS installation,
as if it goes down the system is offline. It is responsible for operations like opening,
closing and renaming of files and directories available via an RPC interface. Also, it
determines the mapping of blocks to Datanodes. Secondary Namenode is a process
that regularly connects to the Namenode and downloads a snapshot of its directory
information, which is then saved to a directory. The Secondary Namenode is used
together with the edit log of the Namenode to create an up-to-date directory struc-
ture. Datanode is a process that provides block storage and retrieval services like
serving read/write requests from clients and performing block creation, deletion and
replication upon instruction from the Namenode.

The Hadoop framework provides two processes that handle the execution of MapRe-
duce jobs. TaskTracker manages the execution of individual map and reduce tasks
on a compute node in the cluster and JobTracker accepts job submissions, provides
job monitoring and control and manages the distribution of tasks to the TaskTracker
nodes.

When a MapReduce job is submitted by the user, it is decomposed into a number
of tasks. The user is responsible for submitting the job configuration in order to
provide the framework with a series of necessary parameters regarding the job, like
the input and output destination in HDFS, the input and output format, the classes
that contain the map and reduce functions and the JAR file(s) that contain the map
and reduce functions and any support classes. Then, the input is splitted according
to the HDFS block size (typically 64 MB) and distributed across the map tasks. If the
input is N files, then at least there will be N map tasks. The map tasks are executed
and produce the intermediate key/value pairs according to the map function that is
specified by the user. Each map function receives one record (line) from the split and
process it accordingly. Then, follows the shuffle phase where the map outputs are
partitioned and sorted. The shuffle output for each partition is sorted. Afterwards,
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the reduce tasks start with input the data that correspond to their partition. Each
reduce function is called once for each input unique key with all the values that
share that key. The reduce tasks emit key/value pairs, which are written to output
directory. The number of output files in the directory will be as many as the number
of reduce tasks that were executed.

A large variety of input formats are supplied by the framework. The major dis-
tinctions are between textual and binary input formats. The available formats are:

- KeyValueTextInputFormat: key/value pairs, one per line.

- TextInputFormat: the key is the byte offset of the line and the value is the line.

- NLineInputFormat: similar to KeyValueTextInputFormat, but the splits are
based on N lines of input rather that Y bytes of input.

- MultiFileInputFormat: an abstract class that lets user implement an input for-
mat that aggregates multiple files into one split.

- SequenceFileInputFormat: the input file is a Hadoop sequence file, containing
serialized key/value pairs.

Hadoop provides its own set of data types that are optimized for network serial-
ization and correspond to the known Java built-in data types. Of course, the user
can define custom data types if necessary. The data types that are used as keys need
to implement the WritableComparable and the data types that are used as values
need to implement the Writable interface, which is a subset of WritableComparable.
The Writable interface implements the methods that are used for serialization and
deserialization of the objects and the WritableComparable implements additionally
the methods that are used for the comparison of the keys. The most common Hadoop
data types are:

- Text: equivalent to String.

- IntWritable: equivalent to Integer.

- VIntWritable: used for integer values stored in variable-length format. Such
values take between 1-5 bytes. Smaller values take fewer bytes.

- LongWritable: equivalent to Long.

- VLongWritable: used for long values stored in variable-length format. Such
values take between 1-5 bytes. Smaller values take fewer bytes.

- FloatWritable: equivalent to Float.

- DoubleWritable: equvalent to Double.

- ByteWritable: equivalent to Byte.

- BytesWritable: used for byte arrays.

- BooleanWritable: equivalent to Boolean.

- NullWritable: equivalent to null.

The map and the reduce functions have 4 parameters. The key, the value, the
output collector and the reporter. The output collector is the object used to emit
the key/value pairs. The reporter object provides the mechanism for informing the
framework of the current status of the job. If a job takes too long to complete, it is
useful to inform the framework that it is still working through the reporter, so that
the framework will not kill it.



Chapter 3

Extended Jaccard Algorithm

3.1 Introduction

As already mentioned in section 2.4, the Jaccard similarity score can be used as a
proximity measure, providing us with the probability of two nodes to become neigh-
bors. Thus, it can help us predict a future snapshot of the graph by linking the
vertices that have a probability higher than a threshold.

The Jaccard coefficient is one of the measures that are based on the topological
structure of the graph. This is shown by the fact that the score is depending on the
neighborhoods of the nodes. Let G(V,E) be a graph, x, y be two nodes such that
x, y ∈ G(V, E) and Γ(x) and Γ(y) be the neighborhoods of x and y. We define the
Jaccard coefficient as the cardinality of the union of the neighborhoods of nodes x
and y, divided by the cardinality of the intersection of the neighborhoods of x and y.

J (x, y) =
|Γ (x) ∩ Γ (y) |
|Γ (x) ∪ Γ (y) |

(3.1)

The Jaccard coefficient is considered to belong to the local methods of link predic-
tion. Recall here that local methods are those that examine paths of length 2, while
global methods explore longer paths. We have extended the classic definition of the
algorithm by calculating extended neighborhoods Γd(x) at 1 . . . d hops for each node
x, thus converting this predictor to a global method. The notion behind that is that,
if links are likely to occur between nodes connected by a short path (of length 2),
they might be more likely to occur between nodes connected by longer paths as well.

The new neighborhoods for each node, will contain the vertices that are 1 . . . d
hops away. For example, a node z ∈ G(V, E) belongs to the neighborhood of a node
x if there is an outgoing edge from x to z (x → z), or an outgoing path from x to
z of some length (x → . . . → z). Furthermore, our work is specialized in directed
graphs. However, it can easily be applied in undirected ones, simply by treating an
undirected graph as directed; each edge between two vertices becomes two edges,
one from the first vertex to the other and vice versa. However, this technique does
not take advantage of the characteristic of symmetry that applies to an undirected
network graph. The new equation that describes our algorithm is:

J(x, y) =
|Γd(x) ∩ Γd(y)|
|Γd(x) ∪ Γd(y)|

(3.2)

The program runs with 6 parameters; the input file, the number of hops d, the
number of nodes of the graph, the number of nodes that participate in edges, the

15
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number of the reducers and the option to compress the output data or not. The
input file must be in the form of an edge file e.g. node1 node2, where each line of the
file declares an edge from the first node to the second. It is assumed that the identities
of the nodes of the graph are positive integers. The number of hops d determines the
depth of the neighborhoods to extend. The option of compression is applied to the
output data that are binary, which can easily be compressed in order to save space.

The algorithm is programmed in chained Map/Reduce jobs. The fact that com-
plicated calculations are needed in order to find and compare the neighborhoods at
extended depths has imposed this code style. As described in section 3.2 we have
divided our program in four Map/Reduce stages, where the output of each stage
becomes the input for the following.

The notation that is used in the following sections to express the key/value pairs
of the map/reduce framework is: the keys are underlined and the values are inside a
parenthesis e.g. key, (value). Additional key notation is summarized in Table 3.1

Symbol Definition
G Directed graph
Gd Directed graph with extended neighborhoods at 1 . . . d hops
V Vertices
E Edges
n |V | - number of nodes of the graph
m |E| - number of edges of the graph
nx number of edges that start from node x, i.e. number of outgoing neigh-

bors of node x
nR number of reducers
dmax max hop of neighborhoods
dcurrent current hop of neighborhoods
Γ(x) neighborhood of node x
Γd(x) extended neighborhood of node x at d hops
A Adjacency matrix of graph G
Ad Adjacency matrix of graph Gd

~r row of matrix A
~cd column of matrix Ad

~cT
d transposed column of matrix Ad

~cd(k) column k of matrix Ad

~cT
d (k) transposed column k of matrix Ad

Mk Matrix that is produced from the outer product of ~cd(k) and ~cT
d (k)

M Sum of all matrices Mk

~rM row of matrix M
~rMk

row of matrix Mk

Sx |Γ (X) | - size of neighborhood of node x
J(x, y) Jaccard coefficient of node pair x, y
Pi Partition i that corresponds to reducer i

Table 3.1: Definions of Symbols and Acronyms
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Figure 3.1: Extended Jaccard Coefficient Execution Flow

3.2 Description of the Algorithm

In this algorithm we want to find the extended neighborhoods of all nodes and calcu-
late the intersection and the union of these neighborhoods for each pair.

The basis of our algorithm has been the work of Bank et al. [46], who have
also created a hadoop algorithm for the simple Jaccard coefficient. The difference is
that they only compare the direct neighborhoods of the nodes, while we extend the
neighborhoods at various hops.

A figure summarizing the execution flow of our algorithm is 3.1.
We use one map/reduce stage to find the extended neighborhoods. This task is

done by combining neighbors of depth 1 with neighbors of depth d to find neighbors
of depth d + 1. This code is stage 1 (3.2.3). This stage is called iteratively as many
times as the depth of the neighborhoods that we want to find.

After the completion of stage 1, we have at our disposal the extended neighbor-
hoods for all nodes. Actually, we have key/value pairs that represent edges of length
1 . . . d. For each pair, the key contains the identity of the source node and the value
the identity of the destination node. Each node pair contains additional information
about the length and the direction of their link. What is left to do is assemble the
values for each key in order to create its neighborhood and then combine the neigh-
borhoods of all keys in a way that will give us the desired similarity score. The first
task is easily done by another map/reduce stage, which is stage 2 (3.2.4). Obviously,
we will need another map/reduce stage to do the second task, as we need to combine
the keys with each other.

There are many possible solutions, that can handle the problem of calculating the
Jaccard coefficient, having as input the neighborhood of each node. There are divided
into two categories. The first includes solutions based on adjacency list representations
and the second are matrix based ideas.

Let us suppose that we have a map/reduce stage, whose reduce method assembles
destination nodes (values) that are fetched to a source nodes (key). This method can
easily create a list containing these destination nodes for every source node. A list
of this type is the neighborhood at depth 1 . . . d for a source node. Next, we want
to somehow compare every neighborhood with all the others in order to compute the
Jaccard coefficient for every possible node pair.

A possible implementation is to create composite keys, that represent a node pair.
So, each reducer that receives an input key u will create |V | − 1 output keys, of
which the first argument will be u and the second argument will be the the identity
of every other node in G(V,E). The output value for every key/value pair will be
the neighborhood of node u. The key/value pairs emitted should comply with the
restraint that there is not a 1-hop edge between u and v. In this way, we would
not compute scores for connected node pairs. As a result for every key (u, v), there
would be two values. The first would be the neighborhood of u and the second the
neighborhood of v. Using another map/reduce stage, where the map method would
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simply read and emit, we could easily compute the desired score. The reduce method,
would receive, as we said, two values for every key (u, v), that would represent the
neighborhoods of u and v. The comparison of the two neighborhoods can give us the
number of their intersection and union, hence the Jaccard coefficient. Nevertheless,
if |V | is the number of the nodes of the graph and |E| is the number of edges, then
the total number of keys would be (|V | − 1)2 − |E|, assuming that the graph is not a
multigraph (there are not parallel edges that connect the same nodes). Unfortunately,
this method is extremely inefficient because of the large number of key/value pairs
emitted. Each node has its neighborhood emitted as many times as the number of
the unconnected nodes that it has and this is inefficient, as the data transfered is
enormous in comparison to the graph size. Even if the neighborhoods are encoded in
bitmaps, the I/O operations for this amount of data is a bottleneck for the algorithm.

Another way is to use a single reducer that would read all the nodes with their
neighborhoods and could then compare them in order to find the jaccard coefficient
for the unconnected pairs. This method is also problematic since it places a limit to
the size of the graph that we could use, depending on the available memory of the
computer, as the reducer would have to store all the neighborhoods.

The procedure that we followed is slightly different and is based on the matrix
representation of the graph G(V, E). The neighborhoods can easily be represented
as an adjacency matrix Ad, with size [N × N ], if N is the number of the nodes of
the graph. Ad holds the neighbors at depth 1 . . . d for each node. The goal is to
create a matrix M , with size [N × N ], that would contain the intersections of the
neighborhoods.

Our proposal is this. Each element (i, j) of the matrix M is the inner product of
a row ~rd(i) the transposed ~rT

d (j). So, all we need to do is multiply matrix Ad with
its transposed AT

d .
The matrix Ad, is made in stage 2 (3.2.4) and the matrix M in stage 3 (3.2.5).
The union of the neighborhoods is also needed in order to compute the jaccard

coefficient. The union for two nodes x and y is found using the equation:

|Γd(x) ∪ Γd(y)| = |Γd(x)|+ |Γd(y)| − |Γd(x) ∩ Γd(y)| (3.3)

Consequently, we need to find |Γd(x)| and |Γd(y)|. These are estimated in stage 2
(3.2.4), simply by adding the neighbors of each node.

Finally, we have the matrix M with the intersections of the neighborhoods and the
number of neighbors Sv for each node v. All that is left to do is calculate the jaccard
coefficient for extended paths. Stage 4 (3.2.6) outputs pairs of nodes accompanied by
their connect probability, which is expressed by the jaccard coefficient. Combining
the equations (3.2) and (3.3) we get:

J(x, y) =
|Γd(x) ∩ Γd(y)|

|Γd(x)|+ |Γd(y)| − |Γd(x) ∩ Γd(y)|
(3.4)

This stage also reads the adjacency matrix A, which was constructed in stage 2 (3.2.4).
Matrix A is read so as the algorithm does not output pairs of nodes that are already
neighbors.

Our matrix-based implementation differs from the implementation of Bank et. al
[46] and can easily be applied to both directed and undirected graphs.

In the remainder of this chapter, we discuss the data preparation procedure, the
detailed description of a custom Writable variable that we used and the description
of each one of the four stages of the algorithm along with their pseudocode. In every
map/reduce stage described further down, it is given the input and output types of
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the variables and also an example of the key/value pairs that are read and written.
A key is underlined and a value that goes with this key is inside a parenthesis.

3.2.1 Data Preparation

As discussed in Section (3.1), the input of the program is an edge file representing a
graph, where the node are positive integers. If the graph has N nodes, their identities
need to have values that vary from 0 to N − 1, in order to construct the adjacency
matrix. Because this is not often the case, we have implemented a simple map/reduce
algorithm that assigns new identities to the nodes and creates a new edge file.

At first, taking as input the edge file we create a node file that contains only the
identities of the nodes of the graph. Setting the number of reducers to 1, the one
reducer receives the node identities sorted. Afterwards, we read the sorted node file
and assign new identities from 0 to N − 1 to the nodes. Finally, we read the new
node file and the original edge file and create a new edge file, suitable for our jaccard
algorithm.

3.2.2 NodePair Writable

Our need to categorize paths based on their direction and depth, led us to implement
a custom Writable variable, which we named “NodePair”. This variable is created in
order to help us emit composite values and is used to express paths. It contains three
fields; depth, nodeId and direction. Depth shows the distance (in number of hops)
between two nodes, nodeId is the identity of a node and direction shows if the edge
is outgoing (direction=1) or incoming (direction=0). So, in order to emit an path “1
2” of depth d, where the identities of the nodes are 1 and 2 respectively, in the form
of a key/value pair, the key would be 1 and the value would be of type NodePair
with fields: depth = d, nodeId = 2, direction = 1.

The class NodePair implements the following methods:

- associated constructors. All Writable implementations must have a default con-
structor so that the MapReduce framework can instatiate them.

- setters and getters for the variables.

- toString: returns the String representation of the variable. It is called to write
the reducer’ s output to the HDFS filesystem, if the output format is TextOut-
putFormat.

- readF ields: deserializes the bytes from the input stream by delegating to each
object. It is called by a mapper to read from the HDFS.

- write: serializes each object in turn to the output stream. It is called by the
collect() function and writes the variable to the HDFS, if the output format is
SequenceFileOutputFormat.

- compareTo: defines the comparison convention for two objects and imposes the
ordering. It is created because NodePair is an implementation of WritableCom-
parable.

- equals: defines the equality convention for two objects.

- hashCode: returns the hash code of an object. It is used by the HashPartitioner
(default partitioner of MapReduce) to choose a reduce partition.
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3.2.3 Stage 1

Stage 1 reads from an input edge file node pairs at 1 hop and creates pairs at 2 . . . dmax

hops. This stage is executed iteratively and every time it extends the depth by 1, so
in order to compute pairs at dmax hops, the stage is called dmax-1 times.

The pseudocode of this stage is Algorithms 3.2.1 and 3.2.2.

Map
Input Types: LongWritable, Text
Output Types: IntWritable, NodePair

x y → x, (1 y 1)
y, (1 x 0)

x dcur y dir → x, (dcur y dir)

(3.5)

The pseudocode for this section is Algorithms 3.2.3 and 3.2.4 The input of this map
method is the input file, which represents a graph G (V, E) and is in the form of an
edge file e.g. “x y”, where each line of the file declares an edge from the first node to
the second. For each input edge “x y”, where x and y are positive integers, it outputs
two pairs; the first is the outgoing edge from x, and the second is the incoming edge
to y. As this stage is executed again and again the output of every iteration becomes
the input of the next one. The output value is of type NodePair, as we want to
discriminate pairs of nodes of different distances and directions.
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Algorithm 3.2.1: Map - Stage 1(line)

1 : global finalDepth, currentDepth
2 : local outputLey, outputV alue
3 : local id1, id2, d, direction
4 :
5 : if currentDepth = 1 then
6 : id1, id2← parseValue(value)
7 : outputKey ← id1
8 : setNodeId(outputV alue, id2)
9 : setDepth(outputV alue, 1)
10 : setDirection(outputV alue, 1)
11 : output (outputKey, outputV alue)
12 :
13 : outputKey ← id2
14 : setNodeId(outputV alue, id1)
15 : setDirection(outputV alue, 0)
16 : output (outputKey, outputV alue)
17 : else
18 : id1, id2, d, direction← parseValue(value)
19 : outputKey ← id1
20 : setNodeId(outputV alue, id2)
21 : setDepth(outputV alue, d)
22 : setDirection(outputV alue, direction)
23 : output (outputKey, outputV alue)

Reduce
Input Types: IntWritable, NodePair
Output Types: IntWritable, NodePair

x {(1 y direction)} x {(1 y direction)}
. . . → . . .
x {(dcur y direction)} x {(dcur+1 y direction)}

(3.6)

This reduce method takes as input, pairs of depth 1. . . dcurrent, depending on the
current iteration. Its job is to combine the pairs of depth 1 with the ones of depth
dcurrent, in order to create pairs of depth dcurrent+1. It also removes duplicate pairs
if any, and eliminates pairs of depth dcurrent that are also present at smaller depths.

In order to do so, for each node-key, it keeps in separate lists, its neighbors at
1-hop (list1), 1. . . dcurrent−1 hops (list2) and dcurrent hops (list3). The list of nodes
at dcurrent hops contains the ones that were produced in the last iteration (lines 7-28
in pseudocode). At first, the reducer compares list3 with list1 and list2, in order
to remove duplicate elements from list3 that also exist in list1 or list2 (lines 30-
35). Afterwards, it combines the list of 1-hop neighbors with the list of dcurrent-hop
neighbors, to produce pairs that are at a distance of dcurrent+1-hops. New pairs come
from incoming 1-hop nodes to outgoing dcurrent-hop nodes (lines 41-57). The output
is pairs of nodes at 1. . . dcurrent+1 hops. If we go through the first iteration, then
in order to produce pairs of distance 2, we combine the incoming 1-hop neighbors
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Figure 3.2: Extended Jaccard Coefficient Stage 1

with the outgoing 1-hop neighbors of a node. Again, the data type of the value is
NodePair, as the pairs of nodes that are emitted differ in distance and direction.
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Algorithm 3.2.2: Reduce - Stage 1(key, valueList)

1 : global currentDepth
2 : local depth1InList, depth1OutList
3 : local depthMediumList, depthMediumList
4 : local depthMaxInList, depthMaxOutList
5 : local value, depth, direction, outputV alue, node1, node2
6 :
7 : while hasNext(valueList)
8 : value← getNext(valueList)
9 : direction← getDirection(value)
10 : depth← getDepth(value)
11 :
12 : if direction = in and depth = 1
13 : insert(depth1InList, value)
14 : else if direction = out and depth = 1
15 : insert(depth1OutList, value)
16 : else if direction = in and depth < currentDepth
17 : insert(depthMediumInList, value)
18 : else if direction = out and depth < currentDepth
19 : insert(depthMediumOutList, value)
20 : else if direction = in and depth = currentDepth
21 : insert(depthMaxInList, value)
22 : else if direction = out and depth = currentDepth
23 : insert(depthMaxOutList, value)
24 :
25 : if depth! = currentDepth
26 : output (key, value)
27 : end if
28 : end loop
29 :
30 : removeDuplicates(depthMaxInList, depthMediumInList)
31 : removeDuplicates(depthMaxOutList, depthMediumOutList)
32 : removeDuplicates(depthMaxInList, depth1InList)
33 : removeDuplicates(depthMaxOutList, depth1OutList)
34 : clear(depthMediumInList)
35 : clear(depthMediumOutList)
36 :
37 : for i← 0 to size(depthMaxInList)
38 : outputV alue← get(i, depthMaxInList)
39 : output (key, outputV alue)
40 :
41 : for each node2 ∈ depthMaxOutList
42 : for each node1 ∈ depth1InList
43 : if node1! = node2 then
44 : key ← getId(node1)
45 : setId(outputV alue,getId(node2))
46 : setDirection(outputV alue, out)
47 : setDepth(outputV alue, currentDepth + 1)
48 : output (key, outputV alue)
49 :
50 : key ← getId(node2)
51 : setId(outputV alue,getId(node1))
52 : setDirection(outputV alue, in)
53 : output (key, outputV alue)
54 : end if
55 : end for
56 : output (key, node2)
57 : end for
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3.2.4 Stage 2

Stage 2 performs two operations. It calculates the size Sx of the neighborhood of each
node x and constructs the two adjacency matrices A and Ad.

Sx will be used to find the size of union of the neighborhoods of each unconnected
pair through the Equation (3.3) in stage 4 (3.2.6).

Matrix A represents the original graph G, whereas matrix Ad represents the graph
Gd with extended neighborhoods at dmax hops. Matrix A is read in stage 4 (3.2.6)
that calculates the jaccard coefficient. It is used to prevent the prediction of edges
that already exist in G.

Matrix Ad is read in stage 3 (3.2.5) and is used to calculate the matrix M . Recall
that the value of an element (i, j) of M is equal to the intersection of the neighbor-
hoods of nodes i and j.

The pseudocode for this section is Algorithms 3.2.3 and 3.2.4

Map
Input Types: Text, Text
Output Types: IntWritable, NodePair

x {(1 y direction)} x {(1 y direction)}
. . . → . . .
x {(dmax y direction)} x {(dmax y direction)}

(3.7)

This map method reads the output of stage 1. It reads pairs of nodes of depth
1. . . dmax and emits them unchanged.

Algorithm 3.2.3: Map - Stage 2(key, value)

1 : local outputKey, outputV alue
2 :
3 : outputKey ← key
4 : outputV alue← value
5 : output (outputKey, outputV alue)

Reduce
Input Types: IntWritable, NodePair
Output Types: Text, BytesWritable

x {(1 y direction)}
. . . →
x {(dmax y direction)}

x (0 ~cd(x)) (directory intersection)

blockI x (1 x ~r(x)) (directory union− row)
0 0 (2 x Sx)
. . .
nblocks 0 (2 x Sx)

(3.8)
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Figure 3.3: Extended Jaccard Coefficient Stage 2

This reduce method receives as input, pairs of nodes of depth 1. . . dmax. As men-
tioned earlier, we need the adjacency matrices A and Ad. Actually, we need the rows
of A and the columns of Ad. Because of the fact that the graph is directed, a row
i of the adjacency matrix contains the outgoing neighbors of node i and a column j
contains the incoming neighbors of node j. Let the input key of a reducer be k. The
outgoing 1-hop neighbors of k will form the row k of the adjacency matrix A (lines
14-16) and the incoming 1 . . . dmax-hop neighbors of k will form the column k of the
adjacency matrix Ad (lines 12-13).

Simply counting all the outgoing neighbors of a node k, we get the size of the
neighborhood Sk (line 21).

Matrix A is divided into blocks of rows. The key of the output key/value pair
representing a row ~r of the adjacency matrix A, is the block identity that this row
belongs to and the value is the row (lines 33-35).

The neighborhood size of a node k, Sk must be available to all nodes, hence to
all partitions. As a result, the key/value pair representing Sk is replicated to all
partitions (lines 24-27). Because of the fact that the output key of the rows ~r of A is
the block identity of the row, we realize that we will have as many reduce functions
as the number of blocks. As a result the number of partitions that the S must be
replicated to is equal to the number of blocks.

The rows ~r of A and the neighborhood sizes S are emitted and stored in the
directory “union-rows”, so that only stage 4 reads them. The columns ~cd of Ad are
emitted and stored in directory “intersections”, so that only stage 3 reads it. The
rows ~r and the columns ~cd are constructed with the use of a byte array; its length
is equal to n/8 bytes, as we need 1 bit for every node in the graph. A bit b in the
byte array is 1, if and only if there is an edge between node-key and the node with
identity b. In order to distinguish the three output types of key/value pairs (rows of
A, columns of Ad and the neighborhood size Sk), we have made the convention that
the first number of the output value serves as an identifier. If it is equal to 0, then
the value is a column of Ad, if it is equal to 1 it is a row of A and if it is 2 the value
is of type Sk.
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Algorithm 3.2.4: Reduce - Stage 2(key, valueList)

1 : global nReducers
2 : local rowBitmap, columnBitmap, neighborhoodBitmap, nblocks
3 : local value, nodeId, direction, depth, blocki
4 : local outputKey, outputV alue, outputV alue2
5 :
6 : while hasNext(valueList)
7 : value← getNext(valueList)
8 : nodeId← getId(value)
9 : direction← getDirection(value)
10 : depth← getDepth(value)
11 :
12 : if direction = in then
13 : setBit(columnBitmap, nodeId)
14 : else if depth = 1 then
15 : setBit(rowBitmap, nodeId)
16 : else
17 : setBit(neighborhoodBitmap, nodeId)
18 : end if
19 : end loop
20 :
21 : neighborhoodSize← countBits(rowBitmap)+

countBits(neighborhoodBitmap)
22 : outputV alue← concat(2, key, neighborhoodSize)
23 :
24 : for i← 0 to nblocks
25 : outputKey ← concat(i, 0)
26 : output (outputKey, outputV alue)
27 : end for
28 :
29 : outputKey ← key
30 : outputV alue← concat(0, columnBitmap)
31 : output (outputKey, outputV alue)
32 :
33 : blocki← nblocks/key
34 : outputKey ← concat(blocki, key)
35 : outputV alue← concat(1, key, rowBitmap)
36 : output (outputKey, outputV alue)
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Figure 3.4: Extended Jaccard Coefficient Stage 3

3.2.5 Stage 3

In stage 3 we read the replicated matrices Ad that were produced in stage 2 (directory
“intersections”) and create the intersection matrix M . An element (i, j) of M comes
from the product (i, j) =

∑N
k=0(i, k)×(k, j), where (i, k) and (k, j) are elements of Ad

and AT
d respectively. This is explained with the following notion. (i, k) shows whether

node k has i as an incoming neighbor, or not. Respectively, (k, j) shows whether k
has j as an incoming neighbor, or not. If the above statements are both true, then i
and j have one common neighbor, which is node k. Repeating, for all k ∈ [0, N ], we
get the intersection of i and j.

Matrix Ad is divided in blocks of rows. Every reducer receives a block and calcu-
lates and emits the same block of rows of matrix M . In order to calculate a row of
M , we need the whole matrix AT

d , as a row of M comes from the multiplication of a
row of Ad with all the columns of AT

d . As a result, matrix AT
d is replicated as many

times as the number of blocks.
The pseudocode for this section is Algorithms 3.2.5 and 3.2.6

Map
Input Types: Text, Text
Output Types: Text, BytesWritable

0 (0 ~cd(x))
k (0 ~cd(k)) → . . .

nblocks (0 ~cd(x))
(3.9)

The input of this map method is the directory “intersection” (output of stage 3). The
input is key/value pairs that correspond to columns ~cd of the matrix Ad. The output
key is the identity of a block-i and the output value the column ~cd. Every column
must be replicated to all blocks in order for the reducer to make the multiplication
(lines 6-9).
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Algorithm 3.2.5: Map - Stage 3(key, value)

1 : global nnodes, nreducers, nblocks
3 :
4 : outputV alue← value
5 :
6 : for blocki← 0 to nblocks
7 : outputKey ← blocki
8 : output (outputKey, outputV alue)
9 : end for

Reduce
Input Types: IntWritable, BytesWritable
Output Types: Text, BytesWritable

blocki (~cd(0)) blocki start (0 start ~rM (start))
. . . → . . .

blocki (~cd(N)) blocki stop (0 stop ~rM (stop))
(3.10)

Each reducer of stage 3 is designed to create a block of rows of the matrix M . If
we have nB blocks, each reducer receives split = N/nB lines. If blocki is the block
identity, then the reducer will calculate the lines from start = split ∗ blocki until
stop = start + split.

The key of each reducer is a block identity. The values that are fetched to the
key correspond to multiple columns of Ad. The reducer needs to calculate only the
rows start . . . stop of matrix M . Hence, for a column ~c that arrives, the reducer
multiplies the bits start . . . stop of ~c with ~c and produces rows start . . . stop of M. As
more columns come the new rows start . . . stop are added to the previous ones (lines
10-16).

The output is the calculated submatrix of M and is read by stage 4 (3.2.6). Matrix
M is split in the blocks of rows, in the same way as matrix Ad. The output key is
composite and contains two attributes. The first is the block identity of a row ~rM

and the second is the row identity. The output value is the row ~rM (lines 18-23).
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Algorithm 3.2.6: Reduce - Stage 3(key, valueList)

1 : global nodeNumber, nreducers, nblocks
2 : local blocki, startRowId, endRowId
3 :
4 : matrixSplit← nodeNumber/nblocks
5 : startRowId← matrixSplit ∗ key
6 : endRowId← startRowId + matrixSplit
7 :
8 : local column, intersectionSubmatrix
9 :
10 : while hasNext(valueList)
11 : column← getNext(valueList)
12 : for rowid← startRowId to endRowId
13 : intersectionMatrix[rowid]← intersectionMatrix[rowid]+
14 : multiply(rowid, column)
15 : end for
16 : end loop
17 :
18 : blocki ← key
19 : for rowid← startRowId to endRowId
20 : outputKey ← concat(blocki, rowId)
21 : outputV alue← concat(0, key, intersectionMatrix[rowid])
22 : output (outputKey, outputV alue)
23 : end for

An Alternative Strategy
It is obvious that the matrix multiplication performed is based on the creation of
horizontal blocks. Another strategy tested, was to split the matrix in rectangular
blocks. Each reducer would then compute a block of the final matrix. This technique
allows a higher level of parallelization, but also increases network traffic. Suppose
that we have blocks (bi, bk) of matrix A and blocks (bk, bj) of matrix B and we want
to compute blocks (bi, bj) of matrix C. Each block (bi, bj) needs all blocks (bi, bk) and
all (bk, bj). Suppose that the adjacency matrix has NB blocks and N rows. A block
(bi, bk) of A needs to be copied to all reducers R(ib, kb, jb). This is NB ∗N key/value
pairs. Similarly, a block (bk, bj) of B needs to be copied to all reducers R(ib, kb, jb).
This is another NB ∗N key/value pairs. In total we have 2∗NB ∗N key/value pairs.

In the strategy followed, a block (bi, bk) goes to reducer R(bi, bk). A block (bk, bj)
is copied to all reducers R(bi, bk), so NB ∗N key/value pairs. It has turned out that
a lower level of parallelization with less network transfers performs better.

3.2.6 Stage 4

Stage 4 produces the Jaccard coefficient for every unconnected pair of nodes by com-
paring their extended neighborhoods at dmax hops. The formula of the Jaccard coef-
ficient is shown in (3.2). The size of the intersections of the neighborhoods at 1 . . . d
hops of two nodes i and j is given by the element (i, j) of matrix M that was produced
in the previous stage. The union of the neighborhoods of two nodes x and y at 1 . . . d
hops is given by the formula:

Γd(x ∪ y) = Γd(x) + Γd(y)− Γd(x ∩ y) (3.11)
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Figure 3.5: Extended Jaccard Coefficient Stage 4

Respectively the size of the unions of the neighborhoods is:

|Γd(x ∪ y)| = |Γd(x)|+ |Γd(y)| − |Γd(x ∩ y)| (3.12)

We have already calculated |Γd(x)| (Sx) in stage 3, so we have all the necessary
information available.

The pseudocode for this section is Algorithms 3.2.7, 3.2.8, 3.2.9, 3.2.10 and 3.2.11

Map
Input Types: Text, Text
Output Types: Text, Text

blocki i (0 i ~rM ) → blocki i (0 i ~rM )

blocki i (1 i ~r) → blocki i (1 i ~r)

blocki 0 (2 i Si) → blocki 0 (2 i Si)

(3.13)

This map method reads key/value pairs from two different directories. The first
directory, “union-rows”, was created in stage 2 and the second directory is the output
of stage 3. “union-rows” contains the neighborhood sizes S and the rows ~r of the
adjacency matrix A. The output of stage 3 contains the rows ~rM of the matrix M . In
this stage we have also created a custom partitioner, a key comparator and a group
comparator. The data is read by the mappers and is passed into the partitioner,
which in turn distributes it accordingly to the reducers.

The key of every input key/value pair is composite and contains two numbers
separated by a blank character. The first is the block identity and the second is the
identity of the node. The second argument is added in order for the key comparator
to invoke the sorting of the rows. The output of this map method is the same as the
input.

Algorithm 3.2.7: Map - Stage 4(key, value)

1 : outputKey ← key
2 : outputV alue← value
3 : output (outputKey, outputV alue)
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Partition
Our goal is to supply each reducer with a portion of rows of A, the same portion of
rows of M and all the neighborhood sizes S. Because of the fact that the data do not
come sorted by row/node identity into the reducer, obliges us to keep it in memory,
which is impossible especially if we are dealing with extremely large datasets. For
this reason, we implement a custom partitioner and a key comparator.

The partitioner reads the composite key of each pair and distributes the data to
the reducers according to the first token of it (partition id). As already mentioned
in the above map section, the partition identity corresponds to a block of matrix.
A different way to partition the rows of the two matrices into the reducers could be
with the use of a simple hash function of modulo. This was our initial approach, but
was abandoned because it created many random I/O operations. This makes sense
as every chunk of data, contains a sequential part of the matrix. A hash function of
modulo means that a reducer needs to copy its input, row by row and usually from
different mappers. As a result a large number of small reads is being performed and
many random I/Os occur because it is highly likely that all the reducers need a part
of the same mapper.

After the partitioning, a key comparator is executed. With the use of the com-
parator we impose the sorting of the data. In order to compute the Jaccard coefficient
between a node with identity i and its neighbors, we need the row i of A, the row i
of M and the Sj for the neighbors of i. Using the comparator, all this information
come together, so each reducer does not need to store in memory all the rows for
a block of the matrices A and M that receives. The comparator first compares the
block identities, to ensure that each partition receives only the pairs that correspond
to it. Afterwards, it does a secondary sort by the row identities, so that the elements
will reach the reducer sorted. However, this secondary sort is not sufficient, because
for every ~r(i) and ~rM (i) that come, we need to have already received all the Sj , which
does not happen for sure. For this reason, we created a “trick” for the partitioner.
We have inserted number 0 to the composite key of the pairs of Sj , in the place of
node identity (second argument of the composite key). In this way, the secondary
sort will always bring first the Sj to the reducer. Hence, the calculations can be done
on the fly, as when we have a ~r(i) and a ~rM (i) at our disposal, the Sj have already
arrived. To summarize, the partitioner is responsible for the correct distribution of
the key/value pairs across the machines of our cluster.

Finally, a group comparator is executed. This comparator groups all the values
for a key, so that the reducer receives all the values that share the same key together.

Algorithm 3.2.8: Partitioner - Stage 4(key, value)

1 : global partitionNumber
2 : blockId← parseArguments(key)
3 : return (blockId % partitionNumber)
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Algorithm 3.2.9: Key Comparator - Stage 4(var1, var2)

1 : partitionId1, rowId1← parseArguments(var1)
2 : partitionId2, rowId2← parseArguments(var2)
3 :
4 : if partitionId1! = partitionId2 then
5 : return (compare(partitionId1, partitionId2))
6 : end if
7 : return (compare(rowId1, rowId2))

Algorithm 3.2.10: Group Comparator - Stage 4(var1, var2)

1 : partitionId1← parseArguments(var1)
2 : partitionId2← parseArguments(var2)
3 :
4 : return (compare(partitionId1, partitionId2))

Reduce
Input Types: Text, BytesWritable
Output Types: Text, FloatWritable

blocki i (0 i ~rM (i))
blocki i (1 i ~r(i))
blocki 0 {(2 j Sj)}

→ J(i, j) = |Γ(i)∩Γ(j)|
|Γ(i)∪Γ(j)| (3.14)

This reduce method receives key/value pairs that are: rows ~r(i) of the adjacency
matrix A, rows ~rM (i) of the matrix M and the sizes of the neighborhoods of all the
nodes Sj . As mentioned in the above partition section, first arrive all the Sj and then
come the rows sorted by their row identity. Again, this is very helpful as we only keep
in memory one byte array for a row ~r, one integer array for a row ~rM and one integer
array for the Sj . The first two arrays are overwritten when new ~r and ~rM arrive.

The workflow of the reducer goes as follows. For every node i first arrive all the
neighborhood sizes S and are stored (lines8-10). Then, come in turns a row ~r(i)
(lines 14-17) and a row ~rM (i) (lines 11-14). After the arrays that are used to store
them are filled, we iterate through the elements j of ~rM (i) and calculate the Jaccard
coefficient for every pair (i, j) that are not present in ~r(i) (lines 19-31). Pairs with
probability higher than a threshold θ are permitted to pass, meaning that they have
a good chance of linking together in the future.
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Algorithm 3.2.11: Reducer - Stage 5(key, valueList)

1 : global reducersNumber, nodeNumber
2 : local rowBitmap, intersectionArray, unionArray
3 : local valueType, nodeId, isRow, isIntersection, jaccard
4 : local outputKey, outputV alue
5 :
6 : while hasNext(valueList)
7 : valueType← analyzeValue(value)
8 : if valueType ∈ Si then
9 : nodeId, neighborsNumber ← analyzeValue(value)
10 : add(unionArray, nodeId, neighborsNumber)
11 : else if valueType ∈ ~M then
12 : nodeId, intersectionArray ← analyzeValue(value)
13 : isIntersection← true
14 : else
15 : rowBitmap← value
16 : isRow ← true
17 : end if
18 :
19 : if isIntersection = true and isRow = true
20 : for id← nodeId + 1 to nodeNumber
21 : intersection← getValue(intersectionArray, id)
22 : union← getValue(unionArray, id)+

getValue(unionArray, nodeId)
23 : jaccard← intersection/(union− intersection)
24 : if isNeighbor(id, rowBitmap) = false then
25 : outputKey ← concatenate(nodeId, id)
26 : outputV alue← jaccard
27 : if jaccard > θ then
28 : output (outputKey, outputV alue)
29 : end if
30 : end if
31 : end for
32 : isIntersection← false
33 : isRow ← false
34 : init(intersectionArray)
35 : end if
36 : end loop

An Alternative Strategy
As mentioned above, the input key of the key/value pairs of the map method has been
the block identity. However, this was not our initial approach, where the key was the
node identity. Every reducer, would then receive a row ~r of A, a row ~rM of M and all
the neighborhood sizes S and the use of the custom partitioner would be unnecessary.
Although this implementation is much simpler, the size of the intermediate data is
enormous. The neighborhood sizes S, which are used for the calculation of the size
of the union of the neighborhoods, must be replicated N times, if the input graph
has N nodes. This means that the key/value pairs transferred are N2, something
that makes the algorithm very inefficient. In contradiction, in the best case that the
number of blocks is equal to the number of reducers (nR) available, the neighborhood
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sizes S need to be replicated nR, which is a great improvement in time and space
complexity.



Chapter 4

Katz Algorithm

4.1 Introduction

Katz measure is a method that is based on the ensemble of all paths. It explores
long paths for every node and relates the link occurence probability to the sum of
total number of paths between two vertices weighed by the path length. This method
directly sums over a collection of paths, exponentially dampened by length to count
short paths more heavily. The Katz score is one of the measures that are based on
the topological structure of the graph. Also, it is a global measure as it explore long
paths.

Suppose that we have a graph G(V,E), where V stands for the vertices and E for
the edges of the graph. Then the katz score of a potential link between nodes x and
y ∈ G is defined as follows:

score(x, y) =
∞∑

l=1

βl · |paths〈l〉x,y| (4.1)

paths
〈l〉
x,y is the set of all length-l paths from x to y and β > 0 is a user defined

parameter.
Our algorithm is designed for directed graphs. This means that a path from x to

y does not necessarily imply a path from y to x. However, it can also be applied to
undirected graphs; each undirected edge from x to y is treated as two edges, one from
x to y and one from y to x.

The program runs with 4 parameters; the input file, the path length L, β and the
number of reducers. The input file must be in the form of an edge file e.g. node1 node2,
where each line of the file declares an edge from the first node to the second. It is
assumed that the identities of the nodes of the graph are positive integers. L tells
the program to calculate paths of length-L for every node. If we want to examine
paths between all nodes of the graph, a parameter L of about 6 should be sufficient
according to the “Small World Effect”. β is a number in the range (0, 1].

The algorithm is programmed in the form of chained map/reduce jobs. The fact
that complicated calculations are needed in order to find and combine the length-l
paths has imposed us this code style. As described in section 4.2 we have divided our
program into two map/reduce stages.

The notation that is used in the following sections to express the key/value pairs
of the map/reduce framework is: the keys are underlined and the values are inside a
parenthesis e.g. key, (value). Additional key notation is summarized in Table 4.1

35
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Symbol Definition
G Directed graph
V Vertices
E Edges
n |V | - number of nodes of the graph
m |E| - number of edges of the graph
L maximum length of the paths that we calculate
(x, y)l path from node x to node y of length-l
l length of a path
c tha katz score of a path

Table 4.1: Definions of Symbols and Acronyms

Figure 4.1: Katz Score Execution Flow

4.2 Description of the Algorithm

In this algorithm we want to find paths of length L and then apply the Katz formula
(4.1) in order to find a score, which can be used as a predictor of future links.

A figure summarizing the execution flow of our algorithm is 4.3.
At First, for every pair of nodes x and y we need to calculate the number of paths

of length l = 0 . . . L that exist between them and then multiply each one with the
factor βl, so as to calculate every term of the sum. Finally, we add the terms and we
get the Katz score for that pair.

The first stage (4.2.3) is executed iteratively and at each iteration the paths are
extended by 1. Parallel paths of different lengths are grouped into one key/value pair
in order to reduce the size of data. The key of every key/value pair is a source node
and the value is composite. It contains the destination node of the path, the term
Σβl · |paths|l and the intermediate nodes of the path. The intermediate nodes are
taken into account in order to avoid cycles.

After the first stage computes paths of length L, the second stage (4.2.4) is ex-
ecuted. The reducer of the second stage adds the different terms of the sum that
contain the values that share the same key and produces the final score that corre-
sponds to the probability of link occurence between the two nodes.

In the remainder of this chapter, we discuss the detailed description of two custom
Writable variables that we used and the description of each one of the two stages of the
algorithm along with their pseudocode. In every map/reduce stage described further
down, it is given the input and output types of the variables and also an example of
the key/value pairs that are read and written.

4.2.1 GraphPath1 Writable

Our need to categorize paths based on their length and direction and our need
to count them, led us to implement a custom Writable variable, which we named
“GraphPath”. This variable is created in order to help us emit composite values and
is used to express paths. It contains five fields; nodeId, pathLength, count, direction,
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and previousNodeIds. nodeId is the identity of a destination node, pathLength
is the length of the current path, count is the katz score for this path, direction
shows if the path is outgoing (direction=1) or incoming (direction=0) considering
as source the node-key and previousNodeIds holds the intermediate nodes of the
path. previousNodeIds is used to avoid cycles. Suppose that we want to emit a path
“1 2” of length 3, with intermediate nodes the 3 and 4, in the form of a key/value
pair, with the use of GraphPath variable as value. Then, the key would be 1 and the
fields of the value would be: nodeId = 2, length = 3, count = β3 · 1, direction =
1 and previousNodeIds = (3 4)

The class GraphPath1, implements the following methods:

- associated constructors. All Writable implementations must have a default con-
structor so that the MapReduce framework can instatiate them.

- setters and getters for the variables.

- addPreviousNodeId: adds a node identity to the list of the intermediate nodes
of a path. This method is called at the construction and expansion of a path.

- addPreviousNodeIds: adds to the variable new intermediate nodes of a new
path. It is called when two paths are concatenated to one.

- toString: returns the String representation of the variable. It is called to write
the reducer’ s output to the HDFS filesystem, if the output format is TextOut-
putFormat.

- readF ields: deserializes the bytes from the input stream by delegating to each
object. It is called by a mapper to read from the HDFS.

- write: serializes each object in turn to the output stream. It is called by the
collect() function and writes the variable to the HDFS, if the output format is
SequenceFileOutputFormat.

- compareTo: defines the comparison convention for two objects and imposes the
ordering. It is created because GraphPath is an implementation of Writable-
Comparable.

- equals: defines the equality convention for two objects.

- hashCode: returns the hash code of an object. It is used by the HashPartitioner
(default partitioner of MapReduce) to choose a reduce partition.

4.2.2 GraphPath2 Writable

This variable serves the same purpose as the the variable GraphPath1. The difference
is that we use this writable at stage 2, where we need less information for every path.
So, this variable is identical to the one in 4.2.1, but has fewer fields. GraphPath2
contains two fields; pathLength and count. As above, pathLength is the length of
the path and count is the Katz score for this path. Often, GraphPath2 carries paths
of several lengths. In this occasion pathLenth is useless. This attribute helps us spot
the original edges of the graph (pathLength=1). Hence, at stage 2 we can reject
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paths that are already connected edges. The paths that reach stage 2 always have an
outgoing direction, so we also do not need field direction. Finally, the intermediate
nodes of the path serve no purpose as the cycles have been detected and avoided, so
also the field previousNodeIds is useless. The class GraphPath2, implements the
following methods:

- associated constructors. All Writable implementations must have a default con-
structor so that the MapReduce framework can instatiate them.

- setters and getters for the variables.

- toString: returns the String representation of the variable. It is called to write
the reducer’ s output to the HDFS filesystem, if the output format is TextOut-
putFormat.

- readF ields: deserializes the bytes from the input stream by delegating to each
object. It is called by a mapper to read from the HDFS.

- write: serializes each object in turn to the output stream. It is called by the
collect() function and writes the variable to the HDFS, if the output format is
SequenceFileOutputFormat.

- compareTo: defines the comparison convention for two objects and imposes the
ordering. It is created because GraphPath is an implementation of Writable-
Comparable.

- equals: defines the equality convention for two objects.

- hashCode: returns the hash code of an object. It is used by the HashPartitioner
(default partitioner of MapReduce) to choose a reduce partition.

4.2.3 Stage 1

Stage 1 of the algorithm is executed iteratively; it reads various paths between all
nodes and expands them by 1 if needed. During the first iteration, it reads the input
file that represents a graph G(V,E) and produces paths of length 2. If the input
argument L is greater that 2, then it is executed again and again, as many times as
L. Obviously the output of each iteration, becomes the input for the next.

Map
Input Types: LongWritable, Text
Output Types: IntWritable, GraphPath1

x y → x, (y 1 0 1 ())
y, (x 1 0 0 ())

x y l c dir (prevIds) → x, (y l c dir (prevIds))

(4.2)

The input of this map method is a file that contains the original edges of the graph
and the generated paths, if any (from a previous iteration). In the first case, it
reads data of type “nodeId1 (nodeId2)”, while in the second case, data of type
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Figure 4.2: Katz Score Stage 1

“nodeId1 (nodeId2 pathLength count direction (previousNodeIds))”. In the first
case, it constructs two objects of data type GraphPath1 for every edge; one to declare
the outgoing edge from nodeId1 (direction=1) and one to declare the incoming edge
to nodeId2 (direction=0) (lines 4-17). In the second case, it constructs one object
for every path and emits it unchanged (lines 18-27).

Recall that the data type GraphPath1 is of the form
nodeId length count direction (previousNodeIds).

Algorithm 4.2.1: Mapper - Stage 1(key, value)

1 : global length
2 : local outputKey, outputV alue
3 :
4 : if length = 2 then
5 : id1, id2← parseValue(value)
6 : outputKey ← id1
7 : setNodeId(outputV alue, id2)
8 : setLength(outputV alue, 1)
9 : setCount(outputV alue, 0)
10 : setDirection(outputV alue, 1)
11 : setPreviousIds(outputV alue, ”()”)
12 : output (outputKey, outputV alue)
13 :
14 : outputKey ← id2
15 : setNodeId(outputV alue, id1)
16 : setDirection(outputV alue, 0)
17 : output (outputKey, outputV alue)
18 : else
19 : id1, id2, l, count, direction, previousIds← parseValue(value)
20 : outputKey ← id1
21 : setNodeId(outputV alue, id2)
22 : setLength(outputV alue, l)
23 : setCount(outputV alue, count)
24 : setDirection(outputV alue, direction)
25 : setPreviousIds(outputV alue, previousIds)
26 : output (outputKey, outputV alue)
27 : end if

Reduce
Input Types: IntWritable, GraphPath1
Output Types: IntWritable, GraphPath1
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x yi 0 c dir (prevIds) → x, (yi 0 c dir ())
. . .

x yi l c dir (prevIds) → x, (yi l c dir ())
. . .

x yi Lcur c dir (prevIds) → x, (yi Lcur + 1 c dir (prevIds))

(4.3)

This reduce method takes as input the output of the above map method (4.2). Let
L be the maximum length of paths that we want to calculate and Lcurrent be the
length of paths that we have calculated. Then each reducer receives all paths with
length 0. . .Lcurrent for a node. It maintains 4 lists; the first (“originalInPairs”) stores
the original incoming edges (length=1), the second (“originalOutPairs”) the original
outgoing edges (length=1), the third (“producedPairs”) the paths that were produced
in the last iteration (length=Lcurrent-1) and the fourth (“intermediatePairs”) the
paths that have been produced in previous iterations (length< Lcurrent) (lines 6-20).

Each record of the list “intermediatePairs”, contains paths of various lengths.
Their Katz measure is calculated and the field with the previous node identities is
deleted as it is no more useful. The paths are then emitted (lines 22-27).

Afterwards, we combine the incoming length 1 edges with the paths of length
Lcurrent to create new paths of length Lcurrent + 1. For every node-key, we create a
path from an incoming to an outgoing neighbor. For example, suppose that the key
is node x and x has one incoming neighbor, which is node-y. Also, x has one path
at z and one at w. Then, after the execution of the reducer, there will have been
produced two new paths, which will be y → z and y → w. Also, for every new path
y → z we check to see if we have created a cycle, by comparing the route of the path
x → z, so that it does not contain node y. If a cycle is detected, then the path is
rejected (lines 29-50).

All the paths of length 0. . .Lcurrent+1 are emitted.

Recall that the data type GraphPath1 is of the form
nodeId length count direction (previousNodeIds).
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Algorithm 4.2.2: Reducer - Stage 1(key, valueList)

1 : global L,Lcurrent

2 : local originalInPairs, originalOutPairs
3 : local intermediatePairs, producedPairs
4 : local outputKey, outputV alue
5 :
6 : while hasNext(valueList)
7 : value← getNext(valueList)
8 : if getLength(value) = 1 then
9 : if getDirection(value) = 0 then
10 : addList(originalInPairs, value)
11 : else
12 : addList(originalOutPairs, value)
13 : end if
14 : else if getLength(value) = Lcurrent then
15 : addList(producedPairs, value)
16 : else if getLength(value) < Lcurrent

17 : and not contains(originalOutPairs, value) then
18 : addList(intermediatePairs, value)
19 : end if
20 : end loop
21 :
22 : while hasNext(intermediatePairs)
23 : outputKey ← key
24 : outputV alue← getNext(intermediatePairs)
25 : setPrevIds(outputV alue, null)
26 : output (outputKey, outputV alue)
27 : end loop
28 :
29 : if Lcurrent = 2 then
30 : producedPairs← originalOutPairs
31 : end if
32 :
33 : for node2 ∈ producedPairs do
34 : for node1 ∈ originalInPairs do
35 : if node1! = node2 then
36 : outputKey ← node1
37 : setId(outputV alue, node2)
38 : setDirection(outputV alue, 1)
39 : setLength(outputV alue, Lcurrent + 1)
40 : setPrevIds(getPrevIds(node2))
41 : addCheckPrevIds(outputV alue, node1)
42 : output (outputKey, outputV alue)
43 : end if
44 : end for
45 : if not contains(originalOutPairs, node2) then
46 : outputKey ← key
47 : outputV alue← node2
48 : output (outputKey, outputV alue)
49 : end if
50 : end for
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Figure 4.3: Katz Score Stage 2

4.2.4 Stage 2

After the successful extension of paths at the desired length by stage 1, stage 2 is
called. Here, we assemble all the paths and calculate the final katz score.

Map
Input Types: Text, Text
Output Types: Text, GraphPath2

x yi 0 c dir (prevIds) → x yi, (0 c)
. . .

x yi l c dir (prevIds) → x yi, (l c)
. . .

x yi L c dir (prevIds) → x yi, (L c)

(4.4)

This map method reads paths of various lengths. The key is the identity of the
node-source of the path and the value is the identity of the node-destination of the
path. The value also contains information about the path such as its length, direc-
tion, Katz score and the intermediate nodes of the path. Since, the paths have been
correctly calculated in stage 1 and all the paths are outgoing, we do not need the fields
“direction” and “previousNodeIds”. So, for every key/value pair that we receive as
input, we modify the key and value as follows. The key becomes composite and con-
tains both identities of the path (source and destination) and the value contains the
path length and the Katz score. The attribute path length is valid only for length 1
paths, because one pair of nodes may represent paths of different lengths. The writable
variable GraphPath2 is used as value in the key/valye pairs, as also described in 4.2.2.

Algorithm 4.2.3: Mapper - Stage 2(key, value)

1 : local outputKey, outputV alue
2 :
3 : id1← key
4 : id2, length, count← parseValue(value)
5 :
6 : outputKey ← concatenate(id1, id2)
7 : setLength(outputV alue, length)
8 : setCount(outputV alue, count)
9 :
10 : output (outputKey, outputV alue)

Reduce
Input Types: Text, GraphPath2
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Output Types: Text, FloatWritable

x y, (l c0)
. . . → score(x, y) =

∑I
0 ci

x y, (l cI)
(4.5)

This reduce method receives key/value pairs, of which the key contains the end nodes
of a path and the values are paths of various lengths. Each value has its attribute
count pointing to the Katz score. The reducer just adds the attributes count of all
the values that receives, resulting to the final Katz score of the path (lines 3-9). It
outputs the source and destination node identity, accompanied with the final Katz
score, if the score is higher than a threshold θ.

Algorithm 4.2.4: Reducer - Stage 2(key, valueList)

1 : local score, outputKey, outputV alue
2 :
3 : while hasNext(valueList)
4 : value← getNext(valueList)
5 : if getPathLength(value) = 1 then
6 : return
7 : end if
8 : score← score + getCount(value)
9 : end loop
10 :
11 : if score > θ then
12 : outputKey ← key
13 : outputV alue← score
14 : output (outputKey, outputV alue)
15 : end if



Chapter 5

Experiments and Results

5.1 Data Sets and Experimental Methodology

We run our experiments in our compute cluster, which is composed of 13 nodes. What
we want to measure, is the performance of our algorithms and the accuracy of our
predictions. The performance depends on many parameters, like the size of the input
graph, the length of the paths that we examine and the number of the compute nodes
running concurrently. Changing either of these, results in different execution times
and different output sizes.

We used as input five graphs of different sizes. These are described in Table (5.1).
There is a wide collection of graphs in [49] and [50]. “Wiki-Vote” was published by
Leskovec et. al in [51, 52], “Cond-Mat” by Leskovec et. al in [53], “Cit-HepPh” by
Leskovec et. al in [?] and Hehrke et. al in [?], “Trust Epinions” by Massa et. al in
[56] and “Gnutella” by Leskovec et. al in [57] and Ripeanu et. al in [58].

Name Type Nodes Edges Effective
Diameter

Network
Description

Wiki-Vote Directed 7115 103629 3.8 vote
CondMat Undirected 23133 186936 6.6 co-authorship
HepPh Directed 34596 421578 5 citation
TrustEpinions Directed 49288 487183 5 social
Gnutella Directed 62586 147892 6.7 peer to peer

Table 5.1: Networks used for experiments

In this section, we investigate how bigger graphs and larger paths affect the per-
formance, and the scale-up that we achieve by adding more nodes in our cluster. As
we can see from the Table 5.1, the effective diameter for the graphs that we exam-
ine varies from 3.8 to 6.7, which is explained by the “Small World Effect”. In our
experiments, we chose the average length of paths to be 3, in order to examine a
sufficient amount of the graph but not the whole. Also, in experiments where the
parameter that changes is the path length, we have set an upper limit of 4, so as to
avoid examining all the possible paths between nodes.

Furthermore, we will try to measure the precision and recall of our two algorithms
in order to evaluate the Jaccard and Katz methods of prediction. Given two times-
tamps of the co-authorship network condMat at year 2003 and 2005, we will try to
predict the new edges of the graph at 2005, by using the graph of 2003 as input to
our program.

44
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The term precision in statistics is a measure of fidelity, while the term recall is
a measure of completeness. In link prediction, precision is defined as the number of
correctly predicted edges divided by the total number of predicted edges.

Precision =
number of correctly predicted edges

number of predicted edges
(5.1)

Recall is defined as the number of correctly predicted edges divided by the actual
number of new edges added in the graph.

Precision =
number of correctly predicted edges

number of new edges
(5.2)

The structure of the rest of this section goes as follows. In subsection 5.2 and 5.3 lie
the experiments for the Extended Jaccard Coefficient and the Katz Score algorithms
that we conducted using the graphs of Table 5.1. In subsection 5.4 we try to explain
the experiments and figure out the patterns behind their behavior.

5.2 Extended Jaccard Algorithm’s Experiments

At first, we investigate how the size of the input graph affects the execution time.
Running in our hadoop cluster of 13 nodes and examining neighborhoods of depth 3
we get the following results.

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 33 126.5
Stage 1 (iteration 2) 221 1533
Stage 2 167 21.4
Stage 3 100 202.8
Stage 4 70 162.5
Total 591 2046.2

Table 5.2: Jaccard Coefficient, Wiki-Vote, depth=3

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 42 131.7
Stage 1 (iteration 2) 259 1677
Stage 2 234 162.6
Stage 3 205 2141
Stage 4 93 85.6
Total 833 4197.9

Table 5.3: Jaccard Coefficient, Cond-Mat, depth=3
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Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 98 263
Stage 1 (iteration 2) 356 1770
Stage 2 191 341
Stage 3 348 4775
Stage 4 76 97.4
Total 1069 7246.4

Table 5.4: Jaccard Coefficient, HepPh, depth=3

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 40 1155
Stage 1 (iteration 2) 1157 31472
Stage 2 2740 668.7
Stage 3 3440 9700
Stage 4 220 32.7
Total 7597 43028.4

Table 5.5: Jaccard Coefficient, Trust Graph, depth=3

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 32 21.2
Stage 1 (iteration 2) 41 81.9
Stage 2 840 1000
Stage 3 1080 15670
Stage 4 2028 0.15
Total 4021 16773.25

Table 5.6: Jaccard Coefficient, Gnutella Graph, depth=3

Figure 5.1 summarizes the results.

Let us choose graph HepPh and run our algorithm, extending each time the neigh-
borhoods of the nodes at different depths. The results are:

Stage Running Time (sec) Output Data (MB)
Stage 1 35 16
Stage 2 37 341.5
Stage 3 100 4775
Stage 4 61 0.8
Total 233 5133.3

Table 5.7: Jaccard Coefficient, HepPh, depth=1
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Figure 5.1: Graph Size vs Time (Jaccard Coefficient)

Stage Running Time (sec) Output Data (MB)
Stage 1 37 263
Stage 2 42 341.5
Stage 3 123 4775
Stage 4 71 17.2
Total 273 5396.7

Table 5.8: Jaccard Coefficient, HepPh, depth=2

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 98 263
Stage 1 (iteration 2) 356 1770
Stage 2 191 341
Stage 3 348 4775
Stage 4 76 97.4
Total 1069 7246.4

Table 5.9: Jaccard Coefficient, HepPh, depth=3
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Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 38 263
Stage 1 (iteration 2) 853 1770
Stage 1 (iteration 3) 1980 6319
Stage 2 949 341.5
Stage 3 763 4775
Stage 4 212 254.4
Total 4795 13722.9

Table 5.10: Jaccard Coefficient, HepPh, depth=4

Figure 5.2 summarizes the results.

Figure 5.2: Neighborhood Depth vs Time (Jaccard Coefficient)

Next we want to measure the rank of parallelism that we have achieved. We run
our algorithm with input the graph HepPh, extending its neighborhoods at depth 3
with various number of compute nodes, starting from 1 and reaching 5. The running
times were:

Stage Running Time (sec) Output Data (MB)
Stage 1 (Iteration 1) 271 263
Stage 1 (Iteration 2) 2817 1770
Stage 2 353 308.3
Stage 3 1455 4775
Stage 4 4832 97.4
Total 9728 6876.7

Table 5.11: Jaccard Coefficient, HepPh, depth=3, Nodes=1
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Stage Running Time (sec) Output Data (MB)
Stage 1 (Iteration 1) 105 263
Stage 1 (Iteration 2) 2017 1770
Stage 2 258 308.3
Stage 3 1129 4775
Stage 4 1378 97.4
Total 4887 6876.7

Table 5.12: Jaccard Coefficient, HepPh, depth=3, Nodes=2

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 80 263
Stage 1 (iteration 2) 1125 1770
Stage 2 151 308.3
Stage 3 1093 4775
Stage 4 787 97.4
Total 3236 6876.7

Table 5.13: Jaccard Coefficient, HepPh, depth=3, Nodes=3

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 65 263
Stage 1 (iteration 2) 729 1770
Stage 2 168 311
Stage 3 925 4775
Stage 4 495 97.4
Total 2382 6876.7

Table 5.14: Jaccard Coefficient, HepPh, depth=3, Nodes=4

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 42 263
Stage 1 (iteration 2) 430 1770
Stage 2 123 311
Stage 3 598 4775
Stage 4 193 97.4
Total 1386 6876.7

Table 5.15: Jaccard Coefficient, HepPh, depth=3, Nodes=5

Figure 5.3 summarizes the results.

Finally, we evaluated our predictor by calculating the presicion and recall that
is achieved. The input graph is the 2003 timestamp of the collaboration matrix
CondMat. Using this, we will try to predict the 2005 timestamp of CondMat. The
graph of 2003 contains 31163 nodes and 120029 edges. The graph of 2005 contains
40421 nodes and 175693 edges. The jaccard coefficient does not predict the appearance
of new nodes, just the appearance of new edges among the existing nodes. The
algorithm was run with different depth as input. The matrix summarizing the results
is:
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Figure 5.3: Number of Compute Nodes vs Time (Jaccard Coefficient)

Depth Precision Recall (MB)
depth=1 0.008 0.003
depth=2 0.007 0.006
depth=3 0.006 0.008
depth=4 0.004 0.011

Table 5.16: Jaccard Coefficient, Prediction Evaluation

The Figure of the precision/recall is 5.4.
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Figure 5.4: Depth vs Precision/Recall (Jaccard Coefficient)
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5.3 Katz Algorithm’s Experiments

There follow the same experiments for the katz score as the ones made in subsection
5.2 for the jaccard coefficient. Again the parameters that affect the performance is
the size of the graph, the length of the paths that we examine and the number of
compute nodes available in the cluster.

The following matrices show how the size of the input graph affects the execution
time. These experiments were executed in 13 compute nodes.

Stage Running Time (sec) Output Data (MB)
Stage 1 (Iteration 1) 26 160
Stage 1 (Iteration 2) 110 4146
Stage 2 180 191.4
Total 316 4497.4

Table 5.17: Katz Score, Wiki-Vote, length=3

Stage Running Time (sec) Output Data (MB)
Stage 1 (Iteration 1) 36 158
Stage 1 (Iteration 2) 90 2981
Stage 2 70 0.1
Total 196 3139.1

Table 5.18: Katz Score, cond-Mat, length=3

Stage Running Time (sec) Output Data (MB)
Stage 1 (Iteration 1) 73 253.2
Stage 1 (Iteration 2) 726 3111
Stage 2 183 63.5
Total 982 3427.7

Table 5.19: Katz Score, HepPh, length=3

Stage Running Time (sec) Output Data (MB)
Stage 1 (Iteration 1) 54 1159
Stage 1 (Iteration 2) 3724 78669
Stage 2 8346 960
Total 12124 80788

Table 5.20: Katz Score, Trust Network, length=3

Stage Running Time (sec) Output Data (MB)
Stage 1 (Iteration 1) 51 22.9
Stage 1 (Iteration 2) 98 94.4
Stage 2 107 0.1
Total 256 117.4

Table 5.21: Katz Score, Gnutella, length=3
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Figure 5.5 summarizes the results.

Figure 5.5: Graph Size vs Time (Katz Score)

The following matrices show how the length of the paths examined affect the execution
time and the output size of the algorithm. These experiments were executed in 13
compute nodes.

Stage Running Time (sec) Output Data (MB)
Stage 1 51 72.9
Stage 2 35 4.5
Total 86 77.4

Table 5.22: Katz Score, HepPh, length=2

Stage Running Time (sec) Output Data (MB)
Stage 1 (Iteration 1) 55 253.2
Stage 1 (Iteration 2) 726 3111
Stage 2 183 63.5
Total 982 3427.7

Table 5.23: Katz Score, HepPh, length=3
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Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 34 253.2
Stage 1 (iteration 2) 708 3123
Stage 1 (iteration 3) 6600 37915
Stage 2 6025 305.2
Total 13367 41596.4

Table 5.24: Katz Score, HepPh, length=4

Figure 5.6 summarizes the results.

Figure 5.6: Path Length vs Time (Katz Score)

Next, we will measure the scale up that we have achieved. We run our algorithm
with input the graph HepPh, examining paths of length=3 with a changing number
of compute nodes, starting from 1 and reaching 5. The running times are:

Stage Running Time (sec) Output Data (MB)
Stage 1 (Iteration 1) 72 253.2
Stage 1 (Iteration 2) 504 3111
Stage 2 4011 88.7
Total 4587 3452.9

Table 5.25: Katz Score, HepPh, length=3, Nodes=1
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Stage Running Time (sec) Output Data (MB)
Stage 1 (Iteration 1) 50 253.2
Stage 1 (Iteration 2) 155 3111
Stage 2 1719 88.7
Total 1924 3452.9

Table 5.26: Katz Score, HepPh, length=3, Nodes=2

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 39 253.2
Stage 1 (iteration 2) 116 3111
Stage 2 1128 88.7
Total 1283 3452.9

Table 5.27: Katz Score, HepPh, length=3, Nodes=3

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 34 253.2
Stage 1 (iteration 2) 87 3111
Stage 2 740 88.7
Total 861 3452.9

Table 5.28: Katz Score, HepPh, length=3, Nodes=4

Stage Running Time (sec) Output Data (MB)
Stage 1 (iteration 1) 27 253.2
Stage 1 (iteration 2) 79 3111
Stage 2 530 88.7
Total 636 3452.9

Table 5.29: Katz Score, HepPh, length=3, Nodes=5

Figure 5.7 summarizes the results
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Figure 5.7: Number of Compute Nodes vs Time (Katz Score)

Finally, we will calculate the presicion and recall that is achieved by running
our algorithm on an actual graph. The input graph is the 2003 timestamp of the
collaboration matrix CondMat. Using this, we will try to predict the 2005 timestamp
of CondMat. The graph of 2003 contains 31163 nodes and 120029 edges. The graph
of 2005 contains 40421 nodes and 175693 edges. The Katz score doesn’ t predict the
appearance of new nodes, just the appearance of new edges among the existing nodes.
The algorithm was run 3 times; at each time it examined paths of different length,
so as to see how the length of the paths affect the quality of our predictions. There
follow two matrices summarizing the results, one with β = 0, 3 and one with β = 0, 5.

Length Precision Recall (MB)
length=2 0.038 0.003
length=3 0.025 0.006
length=4 0.014 0.012

Table 5.30: Katz Score, Prediction Evaluation, β=0.3

Length Precision Recall (MB)
length=2 0.029 0.008
length=3 0.022 0.018
length=4 0.016 0.026

Table 5.31: Katz Score, Prediction Evaluation, β=0.5

The figure of precision/recall for the Katz measure is 5.8.
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Figure 5.8: Path Length vs Precision/Recall (Katz Score)

5.4 Discussion of Results

Some very interesting conclusions can be deducted from the experiments in subsec-
tions 5.2 and 5.3.

Figure 5.1 shows how the size of the input graph affects the performance. As we
can see, the overall performance is strongly affected by stage 3. Recall that stage 3
(3.2.5) does a matrix multiplication and produces the matrix with the intersections
of the neighborhoods. The adjacency matrix is split in horizontal blocks, where
each one contains some rows of the matrix. As the graph size increases, so does the
adjacency matrix. Maintaining the same number of reducers, means that each reducer
receives and outputs larger blocks. Hence, the in-memory computations and the I/O
operations increase and as a result the overall time increases. The only case that stage
3 is not the most time consuming stage is for graph “Gnutella”. Here, stage 4 takes
more time to complete. This is explained by the fact that Gnutella is very sparse,
hence the adjacency matrix A that is read by stage 3, is possible to contain many zero
rows, which are not written in the filesystem. On the contrary, the output matrix
(M) of stage 3 is complete, meaning that stage 3 reads more data, in comparison to
the other graphs.

Also notice the small decrease of execution time for stage 2, in the graph Gnutella
in comparison to the one of graph Trust. This is explained by the fact that this graph
has a lot fewer edges. Gnutella has 147,892 edges, while Trust has 487,183. This
means that stage 2 receives less node-pairs at hops 1 . . . 3. This is also shown by the
output data of stage 1 in Table 5.6, where is equal to 81.9 MB. In comparison, graph
Trust Epinions (5.5) outputs 31.5 GB. So, the density of a graph is a parameter
affecting the execution time.

Observing Figure 5.2 we see that the neighborhood depth also affects the perfor-
mance. Here, stage 1 is the one that more or less controls the overall execution time.
As we extend more the neighborhood depth, so do the neighbors of each node and
respectively the size of the output data of stage 1. We also see the effectiveness of
using the matrix based implementation of our algorithm in comparison to the list
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based implementation in the execution time of stage 3. As the depth increases, the
time increases almost linearly, while for example the time of stage 1 increases at a
higher rate. This is explained by the constant space that is required for the matrix
storage.

Figure 5.2 shows the scale up, or in other words the rank of parallelization that
we have achieved. The major improvement is observed in stage 4 (3.2.6). Stage 4
receives the adjacency matrix A of the graph (without the neighborhood extension),
the matrix M with the intersections of the neighborhoods of the nodes and the size
of the neighborhood of each node v, Sv. Let us remind that a custom partitioner is
used, in order to sort the incoming data. Each reducer receives a portion of A, the
same portion of M and the corresponding Sv. They are sorted, so as to come by
row id and then the jaccard coefficient is calculated. Having less compute nodes and
therefore less reducers means that each reducer receives a bigger portion of A and M .
The bottleneck here that increases dramatically the execution time is the sorting of
the data.

Also, we see that the fluctuation in time of the“heavy” stage of our algorithm,
stage 3, is not big. This happens because there may be more in-memory computations,
but the I/O operations are decreased drammatically. With one compute node and
four reducers the adjacency matrix is replicated four times and stage 3 reads far less
data. Given the fact that the input graph isn’ t too big, the I/O operations play a
more important role.

Finally, the execution time of the other stages decreases linearly, converging to a
constant value. Here we have a tradeoff between parallelization and network traffic. If
we run this experiment in more compute nodes, we may even observe a slight increase
in time, which would be explained by the network traffic and the overhead of starting
new tasks. A good balance between all these parameters offers the best performance.

The last task is to evaluate the extended Jaccard coefficient in real graphs. We
run experiments extending the neighborhoods at depths varying from 1 to 4. The
results match with those at the work of Z. Huang et al. in [48]. Precision and recall
are defined by the equations 5.1 and 5.2.

As neighborhood depth increases, the precision decreases and the recall increases.
When we explore longer paths, the size of the neighborhoods increases and so does the
number of predicted edges, often exceeding the number of the actual new edges. As the
number of the predicted edges goes bigger, we predict more correctly the appearance
of new edges. However, predicted edges are increasing at a bigger rate than the
correct edges. So, as we explore neighborhoods at bigger depths, the denominator of
the precision increases more than the nominator and the precision decreases.

On the other hand the denominator of recall is always constant and equal to the
actual number of new edges. Hence, bigger depths cause a bigger nominator and the
recall increases.

In figure 5.5, we observe how the graph size affects the execution time of Katz
algorithm. Here, we find paths of length 3 and the stage that controls the performance
is stage 2 (4.2.4). The main reason behind the steep increase of the curve is the
I/O operations. As we can see from Table 5.20, the output data of stage 1 (2nd

iteration) for Trust Epinions is 79 GB. Probably, there is the case of many random
I/O operations and a lot of network traffic. This amount of data is expected as this
graph is dense, having 49,288 nodes and 487,183 edges. Watch that graph Gnutella
runs much faster than graph trust. This happens because Gnutella is very sparse,
having only 147,892 edges in 62,586 and effective diameter equal to 6.7. So with paths
of length 3, each vertex explores almost less than the half of the vertices.

Figure 5.6 shows the effect of the path length on the performance of the algorithm.
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Again, the bottleneck here is the reads and writes of massive data in HDFS. The
problem is that we emit paths of different lengths from one node to another, separately.
For example, for length=4, in the third iteration of stage 1, we cannot merge paths of
length 1, with the ones of length 2 and 3, because we need the length-1 and length-3
paths to compute paths of length 4. Also, every path contains additional information
about the route of the path, in order to prevent the creation of cycles. Examining
Table 5.24 we see that the intermediate data that are produced are 37.9 GB.

Figure 5.7 shows the scale up that we achieves our algorithm, by running exper-
iments in 1 . . . 5 compute nodes. As we can see the time is decreasing linearly as we
add more compute nodes, converging to a constant value.

Finally, we evaluated the reliability of the Katz score in link prediction. We
measured the precision and recall extending paths from 2 to 4, using two values for β,
0.3 and 0.5. β assigns a weight to each path, with longer paths having lower weights.
For both values of β, as we explore longer paths the number of our predictions becomes
bigger and so do the correct predictions. However, the number of predictions rises at
a higher rate than the one of the correct predictions. Hence, the precision decreases
with the increase of path length. On the contrary, recall increases as the nominator
(correct predictions) increases, while the denominator stays the same (new edges).
We also observe that precision and recall decrease and increase linearly.



Chapter 6

Conclusions and Future Work

The motivation of our work has been to develop a parallel Map/Reduce algorithm
in Hadoop to handle a graph mining task. This task was chosen to be link predic-
tion, which predicts the occurence of future edges in a given graph. Link prediction
has many applications in network theory according to the relations that a network
expresses. Such include recommendation systems, social network analysis and the
discovery of patterns in a computer network traffic.

However, sequential algorithms cannot address the problem of data that occurs
in real world networks. Hadoop is a tool that offers us the possibility to easily write
parallel algorithms without caring about parallelization details like the communication
of machines, the distribution of data, the replication and fault tolerance. All that is
needed for a programmer, is to supply the implementation of a map and a reduce
function. Hadoop is a powerfull tool and has already been used in graph mining
algorithms like counting triangles ([33]), detecting components, finding the diatemer
([30]), link prediction ([46]) etc.

The contribution of our work is to supply two scalable algorithms that predict links
among nodes by exploring paths of several lengths; the extended Jaccard coefficient
and the Katz score. We performed several experiments in graphs with sizes from
7,000 to 60,000 nodes and deducted interesting results.

The experimental process has led us to the conclusion that the performance of
our parallel algorithms is totally controlled by the I/O operations which are pretty
heavy due to the large size of intermediate data that they produce, especially in dense
graphs. However, we have proved through experimental studies that they scale up
well and can be used in massive graphs, if we have a big cluster at our disposal.

Future work could focus on the effort of reducing the size of the intermediate data
by adopting techniques of data compression or implementations that compute ma-
trix approximations. Furthermore, future work includes the development in Hadoop
of more link prediction algorithms like the Adamic/Adar coefficient or more graph
mining tasks like finding the betweeness centrality of nodes.

59



Bibliography

[1] http://hadoop.apache.org

[2] J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large Clus-
ters. OSDI, 2004

[3] M. Newman. The Structure and Function of Complex Networks. SIAM Review
45: 167-256, 2003

[4] Paul Jaccard (1901). Étude comarative de la distribution florale dans une portion
des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37,
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