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ABSTRACT

Although emotion detection from speech is a relatively new field of research, it has many potential applica-
tions. In human-computer or human-human interaction systems, emotion recognition systems could pro-
vide users with improved services by being adaptive to their emotions. In virtual worlds, emotion recogni-
tion could help simulate more realistic avatar interaction. In this thesis we study automatic emotion recog-
nition from speech signals and build systems capable of detecting the emotional state of a speaker. We
examine a set of new cepstral features based on Teager energy operator and compare their performance
with existing cepstral representations. We compare the discriminatory capability of sets with prosodic fea-
tures created from five different feature selection methods and using these sets we evaluate the performance
of several classifiers and their combinations. Also we design a system capable of using both cepstral and
prosodic features for speech emotion recognition. This system combines decisions made by individual
classifiers and shows a significant improvement in classification accuracy.
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CHAPTER 1

INTRODUCTION

The work of this thesis focuses on automatic emotion recognition from speech signals. For most people,
speech is the most natural and efficient manner of exchanging information. The emotional and physical
states of a speaker are known as paralinguistic aspects of speech. Although the emotional state does not
alter the linguistic content, it is an important factor in human communication, because it provides feedback
information in many applications; below we mention some of those.

In human-robotic interfaces (HRI), robots can be taught to interact with humans and recognise their
emotions. Robotic pets, for example, should be able to understand the emotional and health status of their
commander and modify their actions accordingly. Such a robot is Robovie [1], which is capable of detect-
ing and moderating tension.

In call-centers, speech emotion recognition helps to detect problems that arise from an unsatisfactory
course of interaction. A frustrated customer is typically offered the assistance of human operators or some
reconciliation strategy [2].

In intelligent spoken tutoring systems, detecting and adapting to students’ emotions is considered to
be an important strategy for closing the performance gap between human and computer tutors [3]. Studies
in educational psychology point out that students’ emotions can impact their performance and learning

In spoken dialogue research, it is beneficial to enable the systems not only to recognize the content
encoded in user’s response, but also to extract information about the emotional state of the user by analyz-
ing how these responses have been spoken.

Since we tackle the problem of speech emotion recognition as a pattern recognition task, we follow in
broad lines the following approach:

� Consider an emotional model (e.g., discrete or continuous)

� Start analyzing one or more of the available speech emotion databases

� Extract a set of features

� Train a classifier in order to make statements on the test data

Each of these steps is actually a point where a decision needs to be made. The first two problems can
be regarded as a whole, since there are not many available databases, so the emotional model in most cases
will be the one used for the recording of the used database.

When it comes to feature extraction, the methods differ with regard to the features types (e.g., pro-
sodic, spectral, and linguistic) and unit of analysis. Some researchers use features extracted in a frame base,
some use entire utterances and some take an intermediate approach, for instance segments between pauses
or words. It was proven that many times fusion of features from different levels can lead to improved
recognition.

Choosing a classification technique based on literature is also not trivial. So far researchers have
used different classification methods. Since everybody is doing emotion recognition in their own way, it
should be possible to compare all approaches and to find advantages and disadvantages of each, and later
on come with a version that takes the best decisions at each point. However, coming to a conclusion from
the previous work is not straightforward. This is mainly because researchers use different databases, many
of them unavailable for all researchers, and after using different features and classification techniques they
report the results in different manners, so it becomes impossible to know for sure which method was better.

The metrics to rate an emotion recognition system are usually dominated by the accuracy of detecting
the right emotion. To summarize, our purpose is to create a speech emotion recognition system that is able
to perform emotion recognition from speech, and tackle at least part of the problems that arise in each of the
previously described steps. There are many methods, many approaches, many experimental settings, so
taking the right decision becomes a very challenging task. We are in search for a good model for emotion
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recognition, that can benefit from the information from previous research and therefore is robust and gen-
eral.

This thesis is organised as follows. The subject and the main problems in the field were presented in
introduction. In CHAPTER 2 we give an overview of the related work. In the first part we present the
most important emotion models. We proceed with reviewing some popular emotional speech databases and
the database we choose to work with. In the third section of the second chapter we present several ways of
describing the speech signal. This is done in terms of speech features: prosodic, spectral, voice quality and
linguistic. A section describing some of the frequently used machine learning methods used so far in emo-
tion recognition from speech follows.

In CHAPTER 3 we design a system based in Gaussian mixture models capable for emotion recogni-
tion using only cepstral features. We introduce a new cepstral representation of speech signals based on the
non-linear Teager-energy operator. We compare the performance of the new feature set to the performance
of Mel frequency cepstral coefficients and another feature set called T-MFCC.

Moving on, in CHAPTER 4, we design a speech-emotion recognition system based exclusively on
statistics of prosodic features. We test many feature-selection algorithms in order to eliminate redundant
features. With the feature sets created by feature-selection algorithm, we train and evaluate three popular
classifiers: naive Bayes, fuzzy k-NN, and linear discriminant analysis. We also investigate the improve-
ment gained by their combinations under fixed combining rules.

In CHAPTER 5, we extend the experiments of CHAPTER 4 by testing ensemble-classification algo-
rithms using prosodic features. Ensemble algorithms use multiple models to obtain better predictive perfor-
mance than could be obtained from any of the constituent models. Their performance is promising and
comparable to the performance of Gaussian mixtures in CHAPTER 3.

CHAPTER 6 is an attempt to combine all the previously designed systems by fusing their decisions.
We get a significant improvement in classification accuracy by their combination.

The thesis ends with our conclusions. Chapter 7 is about lessons learned as well as unanswered ques-
tions and solutions still to be found. Directions for further research are given within this last chapter.
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CHAPTER 2

EMOTION RECOGNITION BASICS

In this chapter we present the main ideas behind the process of recognising emotions. In Section 2.1, we
review the main emotion theories and models. In Section 2.2, we present the work developed with regards
to speech emotional databases. Section 2.3 presents most of the features used in classification and their
variations with respect to emotions. Emotion classification approaches are discussed in Section 2.4.

2.1. EMOTIONS

The human speech communication consists of two channels, the explicit channel and the implicit channel.
The first transmits explicit messages (‘‘What was said’’) and the second transmits implicit messages about
the speakers themselves (‘‘How was it said’’). Although scientists invested enormous efforts in under-
standing the explicit channel through automatic speech recognition (ASR), still much research is needed to
reliably decode the implicit channel. The obvious goal of emotion recognition is to assign category labels
that identify emotional states. An emotion is generally a mental and physiological state associated with a
wide variety of feelings, thoughts, and behavior. There is no agreement on a set of basic emotions, though
numerous taxonomies have been proposed. Some categorizations include:

� ‘‘Cognitive’’ versus ‘‘non-cognitive’’ emotions

� Instinctual emotions (from the amygdala), versus cognitive emotions (from the pre-frontal cortex)

� Basic versus complex: where base emotions lead to more complex ones

� Categorization based on duration: Some emotions occur over a period of seconds (e.g., surprise)
where others can last for years (e.g., love)

� Categorization based on activation (arousal), potency(power), and valence (pleasure). It’s worth
mentioning the difficulty in emotion recognition to distinguish anger and happiness. This pair of
emotions differ only in the valence dimension [4].

Some categories do appear in almost every list of ‘‘basic’’ emotions − like happiness, sadness, fear,
anger, surprise and disgust. It is no doubt that they are key points of reference. It is probably best to
describe them as archetypal emotions, which reflect the fact that they are undeniably the obvious examples
of emotion. Although the archetypal emotions are important, they cover rather a small part of emotional
life. It is a pragmatic problem to find a set of terms that covers a wider range without being unmanageable.

2.2. EMOTIONAL SPEECH DATABASES

A record of emotional speech data is useful for emotional speech analysis. For this purpose, a list of emo-
tional speech data collections is overviewed in [5]. Regarding [5], it is evident that the research on emo-
tional speech recognition is limited to the emotions at which we referenced above as ‘‘basic".

Three kinds of speech are observed. Natural speech is simply spontaneous speech in which all emo-
tions are real. Simulated or acted speech is speech expressed in a professionally deliberated manner.
Finally, elicited speech is speech in which the emotions are induced. The elicited speech is neither neutral
nor simulated.

Emotion recognition from natural speech, which is the goal in practice, is much more difficult than
emotion recognition from acted speech due to the much larger variation of emotional expressions in a natu-
ral conversation. Unfortunately, natural speech databases for emotion recognition (e.g. from call centers)
are seldom public available due to the privacy of speakers. In addition, the acquisition and labeling of a
large size database is very expensive. Among the most popular emotional speech databases, in the sense
that they serve as speech corpus for many researches, are the German database of emotional speech [2],
danish emotional speech database (DES) [6] and speech under simulated and actual stress database
(SUSAS) [7].
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TABLE 2.1
Amount of recordings for each emotion from the EmoDB

_______________________________________________________________________________________
Neutral Happiness Anger Sadness Fear Disgust Boredom Total_______________________________________________________________________________________

80 65 125 55 55 40 80 500_______________________________________________________________________________________
16% 13% 25% 11% 11% 8% 16% 100%_______________________________________________________________________________________










2.2.1. The German Emotional Speech Database

The database we chose to work with is the German database of emotional speech. Hereafter, we will refer
to it as EmoDB. EmoDB is a recorded database of emotional utterances spoken by actors (i.e., simulated
speech utterances). It is developed by the Technical University, Institute for Speech and Communication,
Department of Communication Science, Berlin. This database contains recordings, sampled at 16KHz,
from 5 actors and 5 actresses, 10 different sentences of 7 kinds of emotions: anger, boredom, disgust, fear,
happiness, sadness, and neutral.

Mean recognition rates of 20 participants that were asked to classify the emotional state are shown in
Figure 2.1. They were presented with the utterances in random order in front of a computer monitor. They
were allowed to listen to each sample only once before they had to decide in which emotional state the
speaker had been and how convincing the performance was.

0
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0.4

0.6

0.8

1

anger neutral fear boredom happiness sadness disgust
Emotion

Recognition rate

Figure 2.1: Recognition rates by humans

The database consists of totally 500 speech samples. The amount of recordings from each emotion for the
Berlin database is shown in Table 2.1. From these 500 speech samples in this database we make a database
that correspond to anger, happiness, neutral, disgust, and sadness to come up with 231 files (Table 2.2).
We chose these 5 emotions because they appear in almost every list of ‘‘basic’’ emotions. The EmoDB is
one of the most often used databases in the context of emotion recognition from speech, and also one of the
few for which some results can be compared.

A web interface was developed to present the database of emotional speech. All the available infor-
mation of the speech database can be accessed via the internet: http://www.expressive-speech.net/emoDB/.

2.3. SPEECH FEATURES

An important task in emotion classification from speech is to get a clear expression of emotions in the fea-
ture space. That is, several features should be selected according to their discriminatory capabilities. Since
speech signal is time-varying, the analysis should be a time-frequency analysis. Often, in order to analyse
signals, we model them as random processes and we assume that are wide sense stationary (WSS) pro-
cesses, i.e., its mean and autocorrelation, do not vary with a shift in the time origin. In the speech signal,

TABLE 2.2

The number of selected audio files from EmoDB in the emotional states of interest and the total amount of
data used.
_______________________________________________________________________________________

Anger Happiness Neutral Sadness Disgust Total_______________________________________________________________________________________
52 54 62 35 28 231_______________________________________________________________________________________
22% 23% 27% 15% 13% 100%_______________________________________________________________________________________









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however, we have to cut the whole signal into blocks to obtain short time stationarity. The process of cut-
ting a signal into blocks assuming wide sense stationarity is called short-term processing of speech signals
while the features derived over periods equal to one frame are called short-term features.

Short-term features are estimated on a frame basis, i.e.,

f s (n;m)= s(n) w(n −m) (2.1)

where s(n) is the speech signal and w(m − n) is a window of length N w ending at sample m. Acoustic fea-
tures can be categorized in: prosodic, spectral, and voice quality features.

2.3.1. Prosodic features

Prosody expresses the rhythm, stress, and intonation of speech. Emotional prosody is the expression of
feelings using prosodic elements of speech. Pitch, loudness, speaking rate, durations, pause and rhythm are
all perceived characteristics of prosody.

Pitch signal

Pitch is an auditory perceptual property that allows the ordering of sounds on a frequency-related scale [8].
Pitch may be quantified as a frequency, but pitch is not a purely objective physical property; it is a subjec-
tive psycho-acoustical attribute of sound. Pitch frequency or fundamental frequency, F 0, of the phonation
is the vibration rate and pitch period, T 0, is the time elapsed between two successive vocal fold openings.

A pitch detector is an essential component in a variety of speech processing systems and provides
necessary information about the nature of the excitation source for speech coding. The pitch contour of an
utterance is useful for recognizing speakers, determination of their emotion state, for voice activity detec-
tion task, and many other applications.

Various pitch-detection algorithms have been developed: modified autocorrelation method [9], cep-
strum method [10], robust algorithm for pitch tracking (RAPT) [11], average magnitude difference function
method (AMDF) [12], SIFT [13], etc. Most of them have very high accuracy for voiced pitch estimation,
but the error rate considering voicing decision is still quite high [14].

Loudness

Loudness is the quality of a sound that is primarily a psychological correlate of physical strength (ampli-
tude). More formally, it is defined as ‘‘that attribute of auditory sensation in terms of which sounds can be
ordered on a scale extending from quiet to loud’’ [15]. Sound energy is perceived as loudness and is related
to emotional intensity.

Duration features

Duration features correlate with the speaking style, e.g., speaking rate, duration, pauses. The speech rate is
calculated as the inverse duration of the voiced part of speech determined by the presence of pitch pulses
[16].

2.3.2. Spectral features

Spectral features are frequency-related features calculated using the speech spectrum. Number of harmon-
ics, formant, mel-frequency cepstral coefficients (MFCC), and linear predictive cepstral coefficients
(LPCC) fall in the category of spectral features.

Number of harmonics

The number of harmonics due to non-linear air flow in the vocal tract that produces the speech signal are
useful spectral features. Harmonics are multiple integers of fundamental frequency. A method for finding
the number of harmonics from the speech signal was proposed by [17], where they introduced the Teager-
energy operator.
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Formants

The formants are one of the quantitative characteristics of the vocal-tract. In the frequency domain, the
location of vocal tract resonances depends upon the shape and the physical dimensions of the vocal tract.
Since the resonances tend to ‘‘form’’ the overall spectrum, speech scientists refer to them as formants. A
simple method to estimate formants relies on linear predictive analysis [18].

Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients (MFCC) are coefficients that collectively make up the mel-frequency
cepstrum. The mel-frequency cepstrum (MFC) is a representation of the short-term power spectrum of a
sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency.
The mel scale is a perceptual scale of pitches judged by listeners to be equal in distance from one another.

Linear Predictive Analysis and Linear Predictive Cepstral Coefficients

The basic idea behind linear predictive analysis is that a specific speech sample at the current time can be
approximated as a linear combination of past speech samples. Through minimizing the sum of squared dis-
tances (over a finite interval) between the actual speech samples and linear predicted values a unique set of
parameters or predictor coefficients can be determined. In reality the actual predictor coefficients are never
used in recognition, since they typically show high variance. The predictor coefficients are transformed to
a more robust set of parameters known as linear predictive coding coefficients (LPCC). The principal
advantage of cepstral coefficients is that they are generally decorrelated and this allows diagonal covari-
ances to be used in statistical models like hidden Markov models (HMM) and Gaussian mixtures models
(GMM).

2.3.3. Voice quality features

Studies on voice quality report that there is a strong correlation between voice-quality features and emo-
tions. Jitter, shimmer, and harmonics to noise ratio (HNR) are voice-quality features extracted from a
speech signal. Jitter measures cycle to cycle variation of period length while shimmer measures cycle to
cycle variations of peak or average amplitude. HNR measures the degree of periodicity in a sound. Appli-
cations involving these features can be found in [19] and [20].

2.3.4. Cues to emotion

The contour of selected short-term acoustic features is affected by emotional states. A short-term feature
contour is formed by assigning the feature value computed on a frame basis to all samples belonging to the
frame. For example, the energy contour is given by

e(n)=E s (m) , n =m −N w + 1, . . . , m (2.2)

where E s (m)= 1/N w Σ n =m − 1
m  f s (n;m) 2 is the short-time speech energy. The contour trends (i.e., its

plateaux, rising or falling slopes) are valuable features for emotion recognition, because they describe the
temporal characteristics of an emotion.

If features for an entire speech segment are to be analyzed, statistical functions like mean, median,
minimum, maximum, standard deviation, or more seldom third or fourth standardized moments are applied
to the extracted contours. Table 2.3 presents a summary of the effects of several emotional states on
selected acoustic features [5]. The results are based on few studies, therefore, it is advisable to consider the
table as a set of empirical expectations and not a set of established results.

2.4. EMOTION CLASSIFICATION TECHNIQUES

There is a theorem on supervised machine learning called No free lunch theorem [21]. It states that in a
noise-free scenario, where the loss function is the misclassification rate, if one is interested in off-training-
set error, then there are no a priori distinctions between learning algorithms. In other words there is no best
classifiers in general, but the choice of classifier depends on the problem at hand; it is important to test
many of them before choosing one.
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TABLE 2.3
Effects of several emotion states on selected acoustic features.

_______________________________________________________________________________________
Pitch Intensity Timing_______________________________________________________________________________________
Mean Range Variance Contour Mean Range Speech Rate Transmis-

sion dura-
tion_______________________________________________________________________________________

Anger >> > >> >> M , > F > < M , > F <
Disgust < > M , < F < << M , < F

Fear >> > ↑ � << M , < F <
Joy > > > ↓ > > <
Sadness < < < ↑ < < > M , < F <_______________________________________________________________________________________















































Explanation of symbols: >: increases, <: decreases, =: no change from neutral, ↑: inclines, ↓: declines. The subscripts
M and F stands for males and females respectively.

A large variety of machine learning algorithms (classifiers) are used for recognition of several emo-
tional states from speech. The most frequently used are support vector machines (SVM) and artificial neu-
ral networks (ANN). A rapidly evolving area in pattern recognition research is the combination of classi-
fiers to build the so-called classifier ensembles. For a number of reasons (ranging from statistical to com-
putational and representational aspects) ensembles tend to outperform single classifiers.

2.5. CONCLUSIONS

After presenting the most recent trends in emotion recognition from speech, it became clear that there is no
recipe on how to develop a successful emotion recognition system. For almost all decisions that one can
made there are pros and cons. For the future, it would be good if some standards for emotional databases
will be considered and followed, which will facilitate the comparison between different results. There is
still place for feature set optimization.
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CHAPTER 3

EMOTIONAL SPEECH CLASSIFICATION USING
NON LINEAR TEAGER ENERGY BASED FEATURES

In this Chapter, a new set of feature parameters based on the Teager-energy operator (TEO) is introduced.
These new feature parameters are motivated by the MFCC and Teager energy based mel frequency cep-
strum coefficients (T-MFCC). We call this new features Teager energy mel frequency cepstrum coeffi-
cients (TEMFCC). TEMFCC outperform MFCC and T-MFCC in the presence of noise at low SNR values.
Also we study how to improve the classification performance of a system by combining the results of dif-
ferent classifiers, each one based on different spectral features.

3.1. INTRODUCTION

Traditional theories of speech production are based on a linearization of pressure and volume velocity rela-
tions. Furthermore, these values are assumed constant within a given cross section of the vocal tract, i.e.,
one dimensional plane wave assumption. The linear model assumption neglects the influence of any non-
acoustic motion of the fluid medium.

3.2. TEAGER ENERGY FEATURES

3.2.1. Aeroacoustic Flow in the Vocal Tract

There is an increasing collection of evidence suggesting that non-acoustic fluid motion can significantly
influence the sound field. For example, measurements by Teager [22] reveal the presence of separated air-
flow within the vocal tract. Separated flow occurs when a region of fast moving fluid, a jet, detaches from
regions of relatively motionless fluid. When this occurs, viscous forces create a tendency for the fluid to
rotate and create vortices. The vortices can convert downstream at speeds much slower (∼90% slower)
than acoustic propagation speed. Jet flow and vortices thus fall in the category of non-acoustic behavior.

Teager made a hypothesis on the presence of non-acoustic phenomenon in the vocal tract and made
extensive measures which showed that the airflow velocity is not uniform across the cross section. These
measurements are clearly inconsistent with planar one-dimensional acoustic flow velocity.[17].

3.2.2. Teager Energy Operator

Motivated by the measurements of Teager, Kaiser re-examined the source filter theory in light of aeroa-
coustic theories, giving further credence to a ‘jet-cavity flow’ paradigm in the vocal tract. Kaiser hypothe-
sized that the interaction of the jet flow and vortices with the vocal tract cavity is responsible for much of
the speech fine structure. He proposed the need for time-frequency analysis methods that can track rapid
signal energy changes within a glottal cycle. This led to the definition of TEO based on a definition of
energy that accounts for the energy in the system that generated the signal [23].

For continuous-time real signals TEO is defined as

ΨR (x(t))= x
.
(t)2 − x(t) x

..
(t) (3.1)

and for discrete-time real signals as

ΨR (x(n))= x 2 (n)− x(n − 1) x(n + 1) (3.2)

TEO has been extended to cover complex signals. As an energy operator, we expect to always give posi-
tive values, but this is not always the case for all signals.

In [24] the definition for continuous time complex signals is

ΨC (x(t))=ΨR (Re(x(t))+ΨR (Im(x(t))) (3.3)

and for discrete time complex signals is
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ΨC (x(n))=ΨR (Re(x(n))+ΨR (Im(x(n))) (3.4)

This means that the Teager energy of a complex signal is the sum of the energy of real and imaginary parts
of the signal.

3.2.3. Existing Work

TEO is frequently used in the development of feature representations based on non-linear transformations.
[25] developed a system for detection of human stress and emotions based on TEO and LFPC.[26] also
developed a set of features derived from TEO for stress classification. [27] proposed a feature set called
Teager energy cepstrum coefficients (TECC) that use TEO and a constant Q-gammatone filter-bank.

The key advantage of TEO that lead to their extended use in stress and emotion classification, is their
potential to reflect the nonlinear airflow structure of speech production under stressful conditions.

3.3. MFCC AND T-MFCC FEATURE PARAMETERS

TEMFCC are motivated by MFCC and T-MFCC. MFCC and T-MFCC mimic the human perception pro-
cess that responds with better frequency resolution to lower frequency range and relatively low frequency
resolution in high frequency range.

MFCC

The computation of MFCC requires the following steps:

1) The speech waveform is first windowed with an analysis window w(n), and the STFT, S( n̂ ,ω k ) is
computed:

S( n̂ ,ω k )=
m = −�
Σ
�

s(m) w( n̂ −m) e− jω k m (3.5)

where ω k = N
2π___ k with N the DFT length.

2) The magnitude of S( n̂ ,ω k ) is then weighted by a mel filter bank V l (ω k ). This filter bank is com-
posed by a series of filter frequency responses whose center frequencies and bandwidths roughly
match those of the auditory critical band filters. That is the so-called mel frequency wrapping. An
example of such a filter is shown in Figure 3.1.

3) The next step in determining the mel-cepstrum is to compute the energy in the STFT weighted by
each mel-scale filter frequency response. The result energies are given for each speech frame at time
n and for lth mel-scale filter, V l (ω k ), l = 1, . . . , L, as

MC( n̂ ,l)=
A l

1___
k =Ll

Σ
Ul

V l (ω k ) S( n̂ ,ω k ) 
2

log
(Amplitude)

Frequency (Hz)

1

0.5

4000

Figure 3.1: Triangular mel-scale filter bank with 24 filters following the mel-scale in the range [0-400] Hz
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s(n̂)
Mel

Spectrum

Sub
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energy

log(•) DCT(•) MFCC

Figure 3.2: Flowchart diagram for the computation of MFCC. s( n̂) is a frame from the pre-processed
speech signal s(n).

where L is the total number of filters, and L l , U l denote the lower and upper frequency indices
respectively over which each filter is nonzero, and

A l =
k =Ll

Σ
Ul

V l (ω k ) 2

is a normalizing factor for the lth mel-filter. This factor is needed so that for a perfectly flat input
Fourier spectrum will produce a flat mel-cepstrum.

4) For each frame, a discrete cosine transform of the log of the magnitude of the filter outputs is com-
puted to form the function MFCC( n̂ ,k), i.e.:

k = 1,2, . . . , Nc

MFCC( n̂ ,k)=
R
1__

l = 1
Σ
L

log(MC( n̂ ,l)) cos


 L

k(l − 0.5)_________ π




Figure 3.2 is a flowchart diagram describing the computation of MFCC.

T-MFCC

T-MFCC feature parameters were developed for Language Identification (LID). Language identification
refers to the task of identifying an unknown language from the test utterances. The computation of T-
MFCC requires the following steps:

1) The speech signal s(n) is first passed through a pre-processing stage, which includes frame blocking,
hamming windowing with an analysis window w(n), and pre-emphasis, to give the pre-processed
speech signal s( n̂).

2) Next we calculate the Teager energy of s( n̂):

ΨR (s( n̂))= s 2 ( n̂)− s( n̂ − 1) s( n̂ + 1)

3) The magnitude spectrum of T-MFCC is computed and wraped to Mel frequency scale followed by
log compression and DCT computation:

k = 1,2, . . . , Nc

T-MFCC ( n̂ ,k)=
l = 1
Σ
L

log(Ψ 1 (l)) cos


 L

k(l − 0.5)_________ π




where Ψ 1 (l) is the filterbank output of F{ΨR (s( n̂)) } and T-MFCC( n̂ ,k) is the k th T-MFCC.

Figure 3.3 is a flowchart diagram describing the computation of T-MFCC.

s(n̂) TEO(•)

Mel

frequency

wrapping

log(•) DCT(•) T - MFCC

Figure 3.3: Flowchart diagram for the computation of T-MFCC. s( n̂) is a frame from the pre-processed
speech signal s(n).
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3.4. TEMFCC FEATURE PARAMETERS

The first step in the computation of TEMFCC is the same as in the computation of MFCC and T-MFCC.
After the first step we come up the signal S( n̂ ,ω), described in Equation (3.5).

In the next step, the TEO of S( n̂ ,ω k ), ΨC (S( n̂ ,ω k )), is computed. Because S( n̂ ,ω k ) is complex we
use Equation (3.4) for the computation of TEO. The magnitude of ΨC (S( n̂ ,ω k )), ΨC (S( n̂ ,ω k )) , is
then weighted (multiplied in frequency domain) by a filter bank V l (ω k ) following the mel-scale (see Fig-
ure 3.1).

Then we compute the energy in ΨC (S( n̂ ,ω k )) weighted by each mel-scale filter frequency response.
The resulting energies are given for each speech frame at time n and for lth mel-scale filter, V l (ω k ), with
(l = 1, . . . , L) as

e( n̂ ,l)=
k =Ll

Σ
Ul

V l (ω k )ΨC (S( n̂ ,ω k ))  (3.6)

where L is the total number of filters, and L l , U l denote the lower and upper frequency indices respectively
over which each filter is non zero.

At the last step, the discrete cosine transform (DCT) of the log magnitude of the filter outputs for
each frame is computed to form the TEMFCC( n̂ ,k), i.e.,

k = 1, . . . , Nc

TEMFCC( n̂ ,k)=
R
1__

l = 1
Σ
R

log(e( n̂ ,l)) cos


 L

k(l − 0.5)_________




(3.7)

The first 12 TEMFCC( n̂ ,k) , k = 1, . . . , 12, coefficients are used in the feature vector. The first and second
order differentials could be appended. Figure 3.4 shows a flowchart diagram for the computation of TEM-
FCC.

3.5. DIFFERENCES AMONG TEMFCC, MFCC AND T-MFCC

As mentioned earlier, TEMFCC are motivated by MFCC and T-MFCC. The main differences among them
are in the energy measure used in Equation 3.6. TEMFCC use Teager energy of STFT of the input signal,
ΨC (S( n̂ ,ω k )), MFCC use the STFT of the input signal, S( n̂ ,ω k ), and T-MFCC use Teager energy in time
domain to determine the spectrum.

3.6. EXPERIMENTAL RESULTS

In this section, we explore the robustness of the proposed features and their combination with other spectral
features. We artificially inject two types of noise to the speech signal and then compute their recognition
accuracy through the system depicted in Figure 3.5. Also, we compare their performance to that of MFCC
and T-MFCC.

3.6.1. Speech Data Corpus

We have created the ‘‘EmoDB+Noise’’ database by adding pink and white noise to the test set of EmoDB
database (Figure 3.6).

3.6.2. Feature Extraction

In detail, the classification of speech into emotional classes is frame based. Every speech signal is divided
into frames, windowed with an analysis window w(n −m), m = 1, . . . , M. The analysis frame (window)
duration is 30ms and the frame increment 15ms. Every frame is then represented by three feature vectors:

� MFCC with 12 coefficients

� TEMFCC with 12 coefficients

� T-MFCC with 12 coefficients

12



s(n̂)

FFT(•)

TEO(•)

mel-frequency

wrapping

log(•)
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take first

derivative

dTEMFCC(s(n))

YES

NO

take first

derivative

ddTEMFCC(s(n̂)) TEMFCC(sp (n))

YES NO

Figure 3.4: Flowchart diagram describing the computation of TEMFCC.

signal + noise

preprocessing feature extraction

model training

classification

output

Figure 3.5: Generic block diagram of the classification system used to explore the robustness of new fea-
ture set.

excluding the zeroth cepstrum coefficient c 0 and augmented with their 1st and 2nd time derivatives. There-
fore, feature vectors belong to space R 36.

One of the key advantages of using differential parameters, such as delta cepstrum or delta-delta cep-
strum, is that the differencing operation removes the effect of simple linear filtering on the parameter val-
ues, thereby making them less sensitive to channel shaping effects that might occur in a speech communica-
tion system.

13



EmoDB+Noise

EmoDB
+

White Noise

EmoDB
+

Pink Noise

Figure 3.6: The ‘‘EmoDB+Noise’’ database consists of two sub-databases; ‘‘EmoDB+White Noise’’ and
‘‘EmoDB+Pink Noise’’ databases where samples were distorted with white and pink noise respectively at
several SNR levels.

frame 1 frame 2 frame 3 . . . frame N

speech signal

Ω 1

Ω 2

Ω 3

y

x

Figure 3.7: The classification of signals is frame based. The emotional class where the signal belongs is
the class where the majority of its frames belongs to. In this Figure the final decision is Ω 1 class.

These frames are then classified into emotional states according to the maximum a posteriori proba-
bility (MAP) rule and the emotional class where the test signal belongs is the class where the majority of its
frames belongs to. For example in Figure 3.7 the majority of frames belongs to Ω 1 class, so the final deci-
sion for the test signal is class Ω 1.

3.7. MODEL TRAINING

Gaussian mixtures models (GMM) were used to estimate the probability density function (pdf) of feature
vectors in each emotional state. One problem we are faced when using GMM for classification is how to
choose the number of mixture components M. The CLUSTER software package has been used to automat-
ically estimate model parameters from feature vectors representing speech frames. CLUSTER is an unsu-
pervised algorithm for GMM that is based on the expectation maximization algorithm (EM) and the mini-
mum description length (MDL) criterion. This process is essentially similar to conventional clustering
except that it allows cluster parameters to be accurately estimated even when the clusters overlap signifi-
cantly. For more details see the original paper [29]*.

3.8. ANALYSIS OF RESULTS

In summary, we have applied TEMFCC, MFCC, and T-MFCC features to the ‘‘EmoDB+Noise’’ database.
The recognition rate is calculated by 5-fold cross-validation, where 80% of data where used for training and
20% for validation (testing). When using the k-fold method, the training dataset is randomly partitioned
into k groups. The learning algorithm is then trained k times, using all of the training set data points except
those in the k th group. The form of the algorithm is as follows:
__________________

* also refer to https://engineering.purdue.edu/˜bouman/software/cluster/ for an implementation of the algorithm in C and full descrip-
tion of theory
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TABLE 3.1
Recognition rates of MFCC, TEMFCC, and T-MFCC for various SNR levels under white noise.

_______________________________________________________________________________________
White Noise_______________________________________________________________________________________

SNR dB MFCC TEMFCC T-MFCC_______________________________________________________________________________________
5 0.18 0.32 0.18_______________________________________________________________________________________

15 0.36 0.43 0.26_______________________________________________________________________________________
25 0.53 0.59 0.42_______________________________________________________________________________________
35 0.74 0.71 0.59_______________________________________________________________________________________
45 0.74 0.73 0.62_______________________________________________________________________________________
55 0.76 0.72 0.63_______________________________________________________________________________________

























































TABLE 3.2
Recognition rates of MFCC, TEMFCC, and T-MFCC for various SNR levels under pink noise.

_______________________________________________________________________________________
Pink Noise_______________________________________________________________________________________

SNR dB MFCC TEMFCC T-MFCC_______________________________________________________________________________________
5 0.26 0.29 0.26_______________________________________________________________________________________

15 0.45 0.49 0.44_______________________________________________________________________________________
25 0.70 0.70 0.57_______________________________________________________________________________________
35 0.80 0.78 0.63_______________________________________________________________________________________
45 0.79 0.77 0.67_______________________________________________________________________________________
55 0.82 0.77 0.65_______________________________________________________________________________________

























































� Divide the training set into k partitions.

� For each k:

� Make T the dataset that contains all training data points except those in the k th group.

� Train the algorithm using T as the training set.

� Test the trained algorithm, using the k th set as the test set. Record the number of errors.

� Report the mean error over all k test sets.

3.8.1. TEMFCC vs MFCC vs T-MFCC

Tables 3.1 and 3.2 presents the recognition results. In case of white noise and SNR values lower than
30dB, TEMFCC have the best performance. As SNR values increase, MFCC better performance. T-
MFCC have the overall lowest recognition rate in case of white noise. In case of pink noise the results are
slightly different, i.e., TEMFCC have the best performance for values lower than 25dB, while MFCC per-
form better than TEMFCC and T-MFCC as SNR values increase. Again, T-MFCC have the overall lowest
recognition rate in the range [0dB, 55dB].

The improvement by using TEMFCC over MFCC, for white noise, in the range [5dB,30dB] varies
from ∼43% to ∼10%. The improvement by using TEMFCC over MFCC, for pink noise, in the range
[5dB,20dB] varies from ∼10% to ∼8%. A graphical representation of tables 3.1 and 3.2 is shown in Figure
3.8.

3.8.2. Mean and Max Fixed Combining Rules

One possible way to improve the classification performance of a system is to combine the results of
individuals classifiers under fixed combining rules. The fixed combining rules make use of the fact that
some classifiers are able to output not just labels or numbers, but also confidences.

Consider a set of different classifiers ek , k = 1, . . . , K, and a set of classes ω j , j= 1, . . . , J. In our
case, the confidence Pk

j (x) of sample x with respect to class ω j is defined as Pk
j (x)=P k (ω j /x), where the

subscript k refers to classifier ek . Every classifier k is able to output a decision for the test sample x in the
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Figure 3.8: Graphical comparison of performance between MFCC and TEMFCC with the presence of (a)
white and (b) pink noise for SNR values in the range [5,55].

form Pk
j (x), j= 1, . . . , J. The following average value can be used as a new estimation of combined classi-

fier E mean:

P Emean
(ω j /x)=

K
1__

k = 1
Σ
K

P k (ω j /x) , j= 1, . . . , J (3.8)

The final decision made by E mean is:

E mean (x)= j , for which P Emean
(ω j /x)=

i = {1, . . . , J}
argmax P Emean

(ω i /x) (3.9)

In case of max rule the following probabilities must be computed in order to take the final decision:

P Emax
(ω j /x)=

{k = 1, . . . , K}
argmax P k (ω j /x) , j= 1, . . . , J (3.10)

Then the final decision of combined classifiers E max has the form:

E max (x)= j ,for which P Emax
(ω j /x)=

{i = 1, . . . , J}
argmax P Emax

(ω i /x) (3.11)
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TABLE 3.3
Feature vectors used to train each classifiers.

_______________________________________________________________________________________
e 1 e 2 e 3_______________________________________________________________________________________

TEMFCC MFCC T-MFCC_______________________________________________________________________________________



  



3.8.3. Combining TEMFCC,MFCC, and T-MFCC under Mean and Max Combining Rules

We combine the results of classifiers e 1, e 2, and e 3 under the fixed combining rules (3.9), (3.11), in differ-
ent noise environments. For this purpose we designed the system depicted in Figure 3.9.

signal + noise

preprocessing feature extraction

classifier e 1

classifier e 2

classifier e 3

c
o
m
b
i
n
e
r

output

Figure 3.9: Generic block diagram used to combine three different classifiers

The first environment is white additive gaussian noise and the second pink additive noise. Every classifier
is based on GMM and is trained with different feature vector. Table 3.3 shows the feature vector used to
train each classifier. The following cases of combinations remain the same for both white and pink noise
environments:

1st case: e 1, e 2, and e 3

2nd case: e 1 and e 2

3rd case: e 1 and e 3

Table 3.4 shows the above combinations.

TABLE 3.4
Combinations between classifiers.

_______________________________________________________________________________________
Case Combination_______________________________________________________________________________________
1st e 1 combined with e 2 and e 3_______________________________________________________________________________________
2nd e 1 combined with e 2_______________________________________________________________________________________
3rd e 1 combined with e 3_______________________________________________________________________________________



















3.8.4. Results of Combinations

In both environments, the recognition accuracy of mean and max combiners is the same. The results of
combinations are shown in Tables 3.5 and 3.6. Figures 3.10(a), 3.10(b), 3.10(c), and Figures 3.11(a),
3.11(b), 3.11(c) are graphical representations of Tables 3.5 and 3.6 respectively.

White noise

In the range [5dB, 15dB] e 1 has the best performance. At 25dB performances of e 1, (e 1 ,e 2 ) and
(e 1 ,e 2 ,e 3 ) is the same and also are the greatest. For values grater than 30dB, e 2 has the best performance.
For SNR values 35dB and 55dB, e 2 has the greater recognition accuracy. At 55dB combination (e 1 ,e 2)
has the greater accuracy.
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TABLE 3.5
Recognition rates for the combinations of classifiers in case of white noise.

_______________________________________________________________________________________
White noise_______________________________________________________________________________________

SNR dB (e 1 ,e 2 ,e 3)

mean

(e 1 ,e 2 ,e 3)

max

(e 1 ,e 2 )
mean

(e 1 ,e 2 )
max

(e 1 ,e 3 )
mean

(e 1 ,e 3 )
max

_______________________________________________________________________________________
5 0.22 0.22 0.24 0.24 0.28 0.28_______________________________________________________________________________________

15 0.37 0.37 0.39 0.39 0.41 0.41_______________________________________________________________________________________
25 0.59 0.59 0.59 0.59 0.57 0.57_______________________________________________________________________________________
35 0.72 0.72 0.72 0.72 0.71 0.71_______________________________________________________________________________________
45 0.73 0.73 0.77 0.77 0.72 0.72_______________________________________________________________________________________
55 0.74 0.74 0.75 0.75 0.71 0.71_______________________________________________________________________________________




























































































0

0.2

0.4

0.6

0.8

1

5 15 25 35 45 55

Recognition accuracy

SNR dB

mean(e 1 ,e 2 ,e 3 )
max(e 1 ,e 2 ,e 3 )

MFCC
TEMFCC
T-MFCC

Figure 3.10(a): Recognition rates for the combinations of classifiers e 1 ,e 2 ,e 3in the presence of white
noise.

Pink noise

For the case of pink noise the results are slightly different. In the range [5dB, 15dB] the combination
(e 1 ,e 3 ) has the best performance. For 25dB the performance of e 1 and e 2 is the best. For values grater
than 30dB e 1 has the best performance. It’s worth mentioning that in the range [ 45dB,55dB] combination
of (e 1 ,e 2 ) is greater than (e 1 ,e 2 ,e 3 ). e 3 ’s performance decreases the recognition accuracy of (e 1 ,e 2 ,e 3 )
because e 3 has the lowest recognition rate among all individual classifiers.

An important requirement for combiners comes out from the analysis of the above results: individual
classifiers should not be strongly correlated in their misclassification. That is, classifiers should not
‘‘agree’’ with each other when they misclassify a sample, or at least should not assign the same incorrect
class to a sample. If this requirement holds, combiners perform better than the best individual classifier.
This happens in white noise, for the combination (e 1 ,e 3) and SNR value equal to 45dB. This requirement
can be satisfied to a certain extend by[30]:

(1) using different feature vector representations for the samples

(2) using different classification principles for each individual classifier.

Using different representations (feature sets) leads, in many cases, to a reduction in the correlation
between the outputs of individual classifiers, since there is almost always less correlation between the input
vectors using different representations than when using the same set of features. Different classifiers usu-
ally use different assumptions about the structure of the data and the stochastic model that generates it.
This leads to a different estimate of the a posteriori probabilities especially around the Bayes decision
boundaries.
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Figure 3.10(b): Recognition rates for the combinations of classifiers e 1 ,e 2in the presence of white noise.
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Figure 3.10(c): Recognition rates for the combinations of classifiers e 1 ,e 3in the presence of white noise.

TABLE 3.6
Recognition rates for the combinations of classifiers in case of pink noise.

_______________________________________________________________________________________
Pink noise_______________________________________________________________________________________

SNR dB (e 1 ,e 2 ,e 3)

mean

(e 1 ,e 2 ,e 3)

max

(e 1 ,e 2 )
mean

(e 1 ,e 2 )
max

(e 1 ,e 3 )
mean

(e 1 ,e 3 )
max

_______________________________________________________________________________________
5 0.25 0.25 0.25 0.25 0.26 0.26_______________________________________________________________________________________

15 0.47 0.47 0.44 0.44 0.49 0.49_______________________________________________________________________________________
25 0.68 0.68 0.69 0.69 0.63 0.63_______________________________________________________________________________________
35 0.73 0.73 0.72 0.72 0.69 0.69_______________________________________________________________________________________
45 0.76 0.76 0.77 0.77 0.71 0.71_______________________________________________________________________________________
55 0.72 0.72 0.75 0.75 0.70 0.70_______________________________________________________________________________________




























































































3.9. CONCLUSIONS

In this Chapter we addressed the implementation of an automatic emotion-state recognition system capable
of working in noise environments, using cepstral features extracted from an audio signal. The experiments
were carried out using the EmoDB speech corpus. A new feature representation based on TEO was intro-
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Figure 3.11(a): Recognition rates for the combinations of classifiers e 1 ,e 2 ,e 3in the presence of pink noise.
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Figure 3.11(b): Recognition rates for the combinations of classifiers e 1 ,e 2in the presence of pink noise.
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Figure 3.11(c): Recognition rates for the combinations of classifiers e 1 ,e 3in the presence of pink noise.
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duced and combined with existing features (MFCC and T-MFCC) made possible the enhancement of the
overall performance of system in the presence of white and pink noise. Also, combinations between differ-
ent spectral features showed that we can improve the recognition accuracy of a classification. A necessary
requirement for the combined classifiers is that they must be uncorrelated in their misclassification. The
requirement for ‘‘disagreement independence’’ among classifiers is fulfilled in the experiments of CHAP-
TER 7.
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CHAPTER 4

EMOTION SPEECH CLASSIFICATION AND FEATURE SELECTION
USING PROSODIC, ENERGY, AND SPECTRAL FEATURES

In Chapter 2, we presented many features for speech emotion recognition. However, there is no agreement
on a fixed set of features although many of them are common in the majority of researches and perform
remarkably well. In this study, we compare the discriminatory capability of sets with prosodic, energy and
spectral features created from five different feature selection methods and using these sets we evaluate the
performance of several classifiers and their combinations.

4.1. FEATURE EXTRACTION

The primary features extracted from each speech sample are the pitch, speech rate, energy, and first three
formant frequencies. Pitch, speech rate and formants frequencies belong to prosodic and spectral features
respectively. The pitch contour is derived by applying the robust algorithm for pitch tracking (RAPT)
described in [11]. The RAPT fundamental frequency estimation algorithm uses the normalized cross corre-
lation function and dynamic programming. The speech rate is calculated as the inverse duration of the
voiced part of speech determined by the presence of speech samples [16]. For estimating the 3 formant
contours we use the method proposed in [31]. The formant frequencies are computed by peak-picking the
linear predictive coding (LPC) spectrum. To get accurate estimates of the formant frequencies, one needs
to choose the LPC order properly depending on the sampling frequency. In our case, we had a sampling
frequency F s of 16000kHz and the LPC order chosen was 16. To estimate the energy contour, a simple
short-term energy function has been used. All the aforementioned feature, were extracted from speech
frames of duration 30ms.

The trends of contours from the aforementioned features, i.e., falling and rising slopes, plateaux at
minima and maxima, contain valuable information about the emotional states. These trends can be com-
puted using the first derivative of the contour according to the algorithm shown in Figure 4.1. In order to
compute the above sets for a function g(n), the first derivative of the smoothed contour, ĝ(n), is computed
from the finite difference � ĝ(n)= ĝ(n + 1)− ĝ(n). The smoothing process can be done by using the mov-
ing average algorithm. Let S f , S r be the subset of domain points at the rising and falling slopes of the con-
tour respectively, and S mi , S ma the subset of domain points of plateaux at minima and maxima.

u 1 = 10% max(� ĝ(n))
u 2 = 50% max( ĝ(n))

if (� ĝ(n)  � u 1 ) {
if ( ĝ(n) < u 2 ) { n∈ S mi }
else { n∈ S ma }

}
else if ( � ĝ(n) < − u 1 ) { n∈ S f }
else if ( � ĝ(n) > u 1 ) { n∈ S r }

Figure 4.1: Algorithm for detecting plateaus and slopes of a smoothed contour ĝ(n).

In this algorithm, u 1 is a threshold that allows the distinction between plateaus and slopes. The distinction
between plateaus at minima and maxima is done using threshold u 2.

4.1.1. Fundamental Frequency Features

We obtain the following statistics from the pitch contour of speech samples. The pitch contour is smoothed
using a moving average filter with window width 5.

[1-6] mean, median, min, max, range, interquartile range of pitch values

[7-10] mean, median, min, max value of rising slopes
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[11-14] mean, median, min, max value of falling slopes

[15-18] mean, median, min, max value of plateaus at minima

[19-22] mean, median, min, max value of plateaus at maxima

[23-26] mean, median, min, max duration of rising slopes

[27-30] mean, median, min, max duration of falling slopes

[31-34] mean, median, min, max duration of plateaus at minima

[35-38] mean, median, min, max duration of plateaus at maxima

[39] speech rate

4.1.2. Energy Features

Energy features are statistical properties of the energy contour. We calculate the following energy features.

[40-45] mean, median, min, max, range, interquartile range of energy values

[46-49] mean, median, min, max value of rising slopes

[50-53] mean, median, min, max value of falling slopes

[54-57] mean, median, min, max value of plateaus at minima

[58-61] mean, median, min, max value of plateaus at maxima

[62-65] mean, median, min, max duration of rising slopes

[66-69] mean, median, min, max duration of falling slopes

[70-73] mean, median, min, max duration of plateaus at minima

[74-77] mean, median, min, max duration of plateaus at maxima

4.1.3. Spectral Features

The set of spectral features contains statistical properties of the first three formant frequencies.

[78-83] mean, median, min, max, range and interquartile range of first formant

[84-89] mean, median, min, max, range and interquartile range of second formant

[90-95] mean, median, min, max, range and interquartile range of third formant

From now on all features will be referenced by their corresponding indices.

4.2. CLASSIFICATION APPROACH

In contrast with the frame-based classification method followed in Chapter 3, here we follow an utterance
based classification approach. Remember that when we decide in a frame basis, the final label for the utter-
ance is taken to be the majority of its’ frame labels.

To make it more clear, suppose that s(n) is the speech signal. In Chapter 3, s(n) was partitioned in
short frames s f (n;m)= s(n) w(m − n), where w(n −m) is a window of length N w ending at sample m [32].
Each frame was represented by a feature vector x�i with the cepstral coefficients. The classifier was trained
using x�i’s, where i is the frame index, and the final decision of classifier is about frame s f (n). In order to
make the final decision about the class label of s(n) we look at the class labels of its frames, s f (n) and
decide using simple majority vote.

On the other hand, in this Chapter each frame is represented by a real number x i , e.g., the short-time
frame energy or fundamental frequency value for that frame, and the classifier is trained using statistics
taken over all N frames x i , i = 1, . . . , N. It’s input is of the form:
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where f is a statistic, like mean or variance, and X a vector composed with the feature values x i that repre-
sents the frames of speech signal s(n).

The number of frames N is a varying parameter. In our case, N is equal to the total number of frames
in speech signal. Our choice was influenced by the fact that mean duration of speech signals in our data-
base is 2.8s. We assumed that 2.8s is a typical duration for utterances and during this period the emotional
state of a speaker remains the same. In Figure 4.2 we show histogram of the durations of speech samples in
our database. If the speech utterances have larger duration, one should partition the speech signal in
smaller parts that represent utterances and decide about their class labels. In that case, the final decision for
a phrase p = {u 1∪ . . . ∪u N } is a simple majority rule of the utterance labels u j , j= 1, . . . , N that is
decomposed, where N is the number of utterances.

4.3. ANALYSIS OF SINGLE FEATURES

The classification performance of each feature in isolation is rated according to the probability of correct
classification achieved by the classifier in use. We test five classifiers; Naive Bayes, fuzzy k-NN, Linear
Discriminant classifier, and their combinations under the mean and max combining rules. Mean and max
combiners have a generic block diagram as this shown in Figure 3.5. The decision logic of each rule is
implemented in the combiner block.
All the above classifiers are able to output information in the measurement level; every classifier e assigns
to each class C i from the set {C 1 , . . . , C M}, where M is the total number of classes, a value to measure the
degree that sample x comes from that class. In other words they are able to output probabilities of the form
P(C i /x).

Naive Bayes classifier is a simple probabilistic classifier based on applying Bayes’s theorem (from
Bayesian statistics) with strong (naive) independence assumptions. In case of naive bayes classifier, we
apply kernel density estimation to estimate the pdf of each feature using gaussian kernels. The bandwidth h
of kernel density estimation for naive Bayes was chosen to be h = (4σ̂

5
/3N)

1/5
, where N is the number of

samples and σ̂ the sample standard deviation of the samples. The main difference between k-NN and fuzzy
k-NN is that fuzzy k-NN assigns class membership to a sample vector x rather than assigning the vector to a
particular class. Also the assigned memberships of x are influence by the inverse of the distances from the
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Figure 4.3: Single feature evaluation using as criterion the probability of correct classification fuzzy 3-NN
classifier achieves. Sorting is in ascending order.

nearest neighbors and their class memberships [33]. Linear discriminant classifier fits multivariate gaus-
sian distributions p(xC k ) with diagonal covariance matrix estimate and classifies each sample according

to Bayes posterior probabilities P(C k x)=
p(x)

p(xC k ) p(C k )______________.

Let en , n = 1, . . . , N, be the set of classifiers, C i , i = 1, . . . , M, the set of classes, and E the com-
biner. Also let P n (C i /x) be the output of classifier n. Mean combiner calculates the following probabili-

ties P E (C i /x)= 1/NΣ n = 1
N P n (C i /x) and takes his final decision E(x) as E(x)= argmax i = 1,... ,M P E (C i /x).

Another alternative is to use the median rule. Median combiner calculates the median values of P n (C i /x),
i = 1,... ,M, P E (C i x)=median{P 1 (C i x) ,P 2 (C i x) , . . . , P N (C i x) }, and takes the decision accord-
ing to E(x)= argmax i = 1,... ,M P E (C i /x).

The probability of correct classification rate was estimated using 10 fold cross-validation. The first
15 features with the highest recognition rates in case of fuzzy 3-NN classifier are (we reference them with
their indices): 44, 57, 56, 48, 17, 39, 40, 3, 50, 45, 52, 42, 58, 60,and 46. In Figure 4.3, the features are
sorted in ascending order according to the probability of correct classification.

In the case of the Naive Bayes classifier, the first 15 features with highest recognition rates are: 45,
46, 52, 39, 56, 9, 42, 48, 58, 61, 31,44, 60, 17, and 3. In Figure 4.4, the features are sorted in ascending
order according to the probability of correct classification.

In the case of the linear discriminant classifier, the group of fifteen features with highest recognition
accuracies are: 47, 56, 43,49, 31, 45, 52, 59, 48, 17, 46, 50, 60, 3, and 44. In Figure 4.5, the features are
sorted in ascending order according to the probability of correct classification.

For the mean and median combining rules the best 15 features are 48, 51, 44, 39, 50, 3, 40, 56, 17,
45, 42, 52, 60, 58, 46 and 39, 49, 40, 50, 56, 3, 44, 45, 42, 31, 48, 46, 58, 60, 17 respectively. In Figures
4.6-4.7, the features are sorted in ascending order according to the probability of correct classification.
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Figure 4.4: Single feature evaluation using as criterion the probability of correct classification Naive Bayes
classifier achieves, when the pdf of each feature is modeled using normal kernel distribution. Sorting is in
ascending order.
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Figure 4.5: Single feature evaluation using as criterion the probability of correct classification a linear dis-
criminant (LDC) classifier achieves. Sorting is in ascending order.
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Figure 4.6: Single feature evaluation using as criterion the probability of correct classification the mean
combiner of fuzzy k-NN, naive Bayes and LDC classifiers acheives. Sorting is in ascending order.
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Figure 4.7: Single feature evaluation using as criterion the probability of correct classification the median
combiner of fuzzy k-NN, naive Bayes and LDC classifiers acheives. Sorting is in ascending order.

Features with indices 3, 17, 44, 45, 46, 48, 52, 56, and 60 are common in the list of 15 best features
for all classifiers, both individual and their combinations. Features 3 and 15 refer to statistics of the pitch
contour while the remaining to statistics of the energy contour.

4.4. AUTOMATIC FEATURE SELECTION

The feature vector as described in Section 4.1 contains a lot of features, many of them probably redundant.
The purpose of feature selection techniques is to select a subset of relevant features for building robust clas-
sifiers. By removing the most irrelevant and redundant features from the data, feature-selection helps
improve the performance of learning models by:

� eliminating the effect of the curse of dimensionality.

� enhancing generalization capability.

� speeding up learning process.

� improving model interpretability.
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Our aim is to reduce the original dimensionality of samples from R 95 to R 15, i.e., select 15 features
out from 95. For this purpose we examine several feature selection algorithms and train classifiers to test
their recognition accuracy using the reduced feature sets.

There are three approaches for feature selection algorithms: filters, wrappers and hybrid. Filter
approaches use general characteristics of data to select a subset of features according to a reasonable crite-
rion that is independent of the problem. Wrapper approaches use estimated accuracy of a classifier to
obtain feature subsets. Hybrid approaches try to utilize different evaluation criteria of two approaches in
different search stages. We focus on filter-type feature-selection algorithms which have better generaliza-
tion properties and can be computed easily and efficiently. The feature selection methods we examine are:

� Fischer’s discriminant ratio (FDR)

� Relief-F

� three algorithms based on mutual information, but using different criteria:

− mutual information based feature selection (MIFS)

− maximum-relevance-minimum-redundancy (MRMR)

− conditional mutual information maximization (CMIM)

In the following subsections we make a brief review of the examined feature-selection algorithms.

4.4.1. Fisher’s Discriminant Ratio

FDR [34] is commonly employed to quantify the discriminatory powers of individual features between two
equal probable classes and is independent of the type of class distribution.

Let m 1, m 2 and σ1
2, σ2

2 be the respective mean and variances values associated with a feature in the
one dimensional, two-classes problem. The FDR for this feature is defined as:

FDR =
σ1

2 +σ2
2

(m 1 −m 2 )2
__________

The higher is the score, the more important becomes the feature. FDR can be extended easily for multi
class problems. One possibility is

FDRl =
i
Σ
M

i� j
Σ
M

σi
2 +σj

2

(m i −m j )2
__________

where the subscripts i, j refer to the mean and variance corresponding to the feature l under investigation for
the classes i, j respectively.

4.4.2. Relief-F

Relief-F [35] is a multi-class generalization of Relief [36] and assigns scores to features based on how well
they separate training samples from their nearest neighbours belonging to their class and to opposite
classes.

The algorithm constructs iteratively a weight vector for each feature, which is initially equal to zero.
The number of iterations m is a user-defined parameter. At each iteration, selects one sample, adds to the
weight the difference between that sample and the samples from the opposite classes in the k nearest neigh-
bours and subtracts the difference between that sample and its nearest neighbours from the same class. A
user defined parameters in Relief-F algorithm is the number k of nearest samples to examine. A good
choice is to start with k = 10 and investigate the stability and reliability of Relief ranks and weights for vari-
ous values of k.

4.4.3. Feature Selection with Mutual Information

A common approach in feature selection is to use the mutual information between the features and the class
label. Let X (feature), and Y (label), be two random variables. Mutual information I(X;Y), measures the
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amount of information shared by X and Y. It can be shown that the Bayes error of predicting Y from X is
lower-bounded by Fano’s inequality [37], and upper-bounded by half the conditional entropy:

log(Y)
H(Y)− I(X;Y)− 1________________ �P(g(X) �Y) �

2
1__ H(YX) (4.1)

where X, Y are vectors and H(X), H(XY), I(X;Y) denote the entropy, conditional entropy and mutual
information respectively, and g(x) denotes the decision of the classifier.

To understand what I(X;Y) actually means, we must first understand entropy. Qualitatively, entropy
is a measure of uncertainty − the higher the entropy, the more uncertain one is about a random variable
[38]. Information theory measures information content in bits. One bit of information is enough to answer
a yes/no question about which one has no idea, such as the flip of a fair coin. If the possible answers to a
question are v i , i = 1, . . . , n, and have probabilities P(v i ), then the entropy of the actual answer V is given
by:

H(V)=−
i = 1
Σ
n

P(v i ) log 2 P(v i ) , V =






vn

.

.

.
v 1







(4.2)

In (4.2) the term log 2 P(v i ) denotes the amount of information associated with answer v i and the average
information content of the various answers is weighted by the probabilities of the answers. For example,
for the case of tossing a fair coin where the possible answers are two, v 1 = ‘‘head’’ and v 2 = ‘‘tail’’, we get

H(V)=−
2
1__ log 2 2

1__ −
2
1__ log 2 2

1__ = 1, V =


v 2

v 1




which means that the content of information for the answer is 1 bit. If the coin is loaded to give 99% head
and 1% tail we get H(0.99,0.01)= 0.08 bit. As the probability of head goes to 1 the amount of informa-
tion of a possible answer goes to 0.

The mutual information of two random variables, X,Y, is a quantity that measures the mutual depen-
dence of the two variables. For discrete random variables is defined as

I(X;Y)=
i = 1
Σ
N

j = 1
Σ
M

P XY (x i ,y j ) log


 P X (x i ) P Y (y i )

p(x i ,y i )_____________




(4.3)

where P XY is the join pdf of X and Y, and P X , P Y the marginal pdf’s of X, Y respectively. Mutual informa-
tion is related to entropy with the following equalities

I(X;Y)=H(X)−H(XY) (4.4a)

=H(Y)−H(YX) (4.4b)

Conditional entropy, H(YX), is a measure of what X does not say about Y. Thus the right side of (4.4b)
can be read as ‘‘the amount of uncertainty in Y which is removed by knowing X’’.

Returning to (4.1), we see that the first inequality states that for any function g(X) of the inputs, the
probability of error is lower bounded by an expression dependent on the mutual information. As the mutual
information grows, the bound is minimized;whether or not the bound can reached depends on the ability of
our classifier, i.e., the function g(X). Our task is therefore to select k features from a pool of n,
{X 1 ,X 2 , . . . , X n }, such that their joint mutual information I(X 1, . . . , n ;Y) is maximized.

In order to know if we should include a feature, we must be able to compute the mutual informations
I(X 1,... ,n ;Y). The computation of I(X 1, . . . , n ;Y) is expensive and difficult. We could assume feature inde-
pendence between X i’s and rank the features in descending order according to a criterion Jn (X n ;Y). In
general, it is widely recognised that a good set of features should not only be individually relevant, but also
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should not be redundant with respect to each other;features should not be highly correlated. Among several
criteria, we choose to apply the following:

MIFS Battiti [39] proposed the mutual information based feature selection criterion:

JMIFS = I(X n ;Y)−β
k = 1
Σ

n − 1

I(X n ;X k )

where β is an adjustable parameters, which must be set experimentally. Using β= 0 is equivalent
to selecting features independently, while a larger value will place more emphasis on reducing
inter-feature dependencies.

MRMR Peng [40] proposed the maximum-relevance-minimum-redundancy. Two different criteria are
used to combine relevance and redundancy and lead to the selection of a new feature:

JMRMR = I(X n ;Y)−
n − 1

1_____
k = 1
Σ

n − 1

I(X n ;X k ) ,

known also as mutual information difference criterion (MID) and

JMRMR =

n − 1
1_____

k = 1
Σ

n − 1

I(X n ;X k )

I(X n ;Y)_________________ ,

known also as mutual information quotient (MIQ). It can be seen that MRMR when using the
MID criterion is a special case of MIFS with β= 1/(n − 1). We used the MIQ criterion.

CMIM Conditional mutual information maximization is probably the most well-known and was pro-
posed by Fleuret [41]:

JCMIM =
k

min[I(X n ;YX k )]

= I(X n ;Y)−
k

max[I(X n ;X k )− I(X n ;X k Y)]

CMIM examines the information between a feature and the target, conditioned on each current
feature.

4.5. EXPERIMENTAL RESULTS

A total of 95 features have been calculated from 231 speech utterances from EmoDB, to form the dataset D
(see Talbe 2.2). We test the algorithms Fisher’s score, Relief-F, MIFS, MRMR, and CMIM on D with the
aim of selecting 15 features out of 95. With the feature sets selected by the aforementioned algorithms, we
train and compare the performance of five classifiers: fuzzy k-NN, naive Bayes, LDC classifier and their
combinations under mean and median combining rules, on the task of speech classification in five emo-
tional states (see Table 2.2).

The probability of correct classification was estimated using 10 fold crossvalidation, where 10% of
data were used for testing and 90% for training. The features selected by each algorithm are shown in
Table 4.1. Each column in that table represents the feature set created by the algorithm whose name is writ-
ten at the start of the column.

All algorithms revisited here except from FDR criterion, need extra user-defined parameters and tun-
ing. Relif-F needs to be supplied as input with the number k of nearest samples to search for. After experi-
menting with values of k in the range 5�k�20 we found that k = 5 leads to a feature set with the highest
recognition accuracy for all classifiers. Feature-selection algorithms based on mutual information deal with
continues variable in different ways. A possible solution is to discretize the continuous variables and that is
the method we followed in order to deal with the continuous case. We discretize a continuous variable X
using a method based on quantiles of the values in X. Quantile-based transformation has the advantages of
stability and independence of transformation of input values. The number of quantization levels we choose
for the algorithms MIFS, MRMR, and CMIM is 5.
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TABLE 4.1
15 best features selected by the examined algorithms

_______________________________________________________________________________________
FDR Relief MIFS MRMR CMIM_______________________________________________________________________________________
63 57 45 45 45
82 39 17 77 17
33 45 77 9 78
74 49 63 17 85
94 40 85 61 79
72 46 36 79 51
80 50 71 43 43
15 58 67 44 31
75 42 75 71 90
87 43 33 31 93
81 48 25 92 77
29 59 74 38 89
37 60 29 65 20
91 51 92 3 87
93 47 94 51 26_______________________________________________________________________________________
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Indices in table are references to features presented in Section 4.1

TABLE 4.2
Recognition rates of classifiers in combination with feature selection algorithms.

_________________________________________________________________
FDR Relief MIFS MRMR CMIM______________________________________________________________________________________

fuzzy k-NN 0.32 0.39 0.33 0.44 0.48
Naive Bayes 0.25 0.38 0.47 0.63 0.6

LDC 0.25 0.39 0.5 0.50 0.58
mean combiner 0.32 0.37 0.46 0.59 0.61

median combiner 0.31 0.38 0.50 0.61 0.60______________________________________________________________________________________


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

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Figure 4.8: Selecting 15 features with FDR method. The progression of recognition accuracy as wee add
new features from the selected ones.

The recognition rates of classifiers using the feature vector selected by each algorithm are shown in
Table 4.2. In Figures 4.8-4.12 we show the progression of recognition accuracies of classifiers with respect
to a feature selection algorithm, as we add new features to the set from the selected ones.

Looking at the tables and Figure of Section 4.5, we can make the following observations:
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Figure 4.9: Selecting 15 features with Relief-F method. The progression of recognition accuracy as we add
new features from the selected ones. Mean combiner outperforms the other classifiers at every step.
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Figure 4.10: Selecting 15 features with MIFS method. LDC classifier has the highest recognition rate with
naive Bayes having the lowest.

(1) FDR features lead to the lowest classification rates among the feature sets selected by the algorithms.
We have to mention that mean and median combiners don’t outperform the individual classifiers.
One possible explanation is that the features selected by FDR lead the classifiers to do the same mis-
classification results.

(2) Classifiers have their minimum classification accuracy with feature sets selected by Relief-F and
FDR. Fuzzy 3-NN has its maximum classification accuracy with CMIM feature set. The perfor-
mances of the other classifiers lie between 0.37 and 0.39. Combinations don’t have higher recogni-
tion rate that individual classifiers.

(3) In case of MIFS, median combiner and LDC are the best classifiers. Fuzzy k-NN has by far the worst
recognition accuracy in this case; it has 10% less accuracy than the other classifiers.

(4) In case of MRMR naive Bayes, mean and median combiners achieve a recognition rate greater or
equal to 60%, with naive Bayes having the highest (63%) and fuzzy k-NN the lowest (44%). Also
with the feature selected by MRMR we have the highest recognition accuracy all the experiments; the
performance of naive Bayes.
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Figure 4.11: Selecting 15 features with MRMR method. The performance of all classifiers increases from
the seventh step above 40%. The recognition accuracy of naive Bayes’s classifier tends to retain around
50% from the seventh step till the end.
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Figure 4.11: Selecting 15 features with CMIM method. With this method median combiner achieves the
highest recognition accuracy in the experiment.

(5) With CMIM the performance of all classifiers increased. Mean, LDC, and fuzzy k-NN achieve their
highest performance with CMIM compared to feature sets created by the other methods.

(6) The feature-selection algorithms and classifier pairs that achieved the best classification rate in the
experiment are shown below:

� fuzzy k-NN − CMIM

� naive Bayes − MRMR

� LDC − CMIM

4.6. CONCLUSIONS

Feature selection has been a research topic with practical significance in many areas such as statistics, pat-
tern recognition, machine learning, and data mining. In this Chapter we presented five feature-selection
algorithms of the filter model: FDR, Relief-F, MRMR, MIFS, and CMIM. We select 15 out of 95 statistics
of prosodic features from the speech signal using the aforementioned algorithms and evaluate their perfor-
mance using as criterion the classification accuracy achieved by three individual classifiers: fuzzy k-NN,
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naive Bayes, and LDC. Also, we combine classification decisions of individual classifiers about speech
utterances to derive a more robust speech emotion recognition system.

From the results of experiments, we conclude that without knowledge of the pattern recognition prob-
lem, there is no best feature set. Many feature selection algorithms should be used and with the feature
selected, more than one classifiers should be evaluated.

34



CHAPTER 5

EMOTION CLASSIFICATION USING ENSEMBLE METHODS AND CART TREES

Most pattern recognition methods based on feature vectors, use a natural measure of distance, between such
vectors, called metric, in order to classify samples. Examples of such algorithms are k-NN, neural net-
works, etc.

However, there are cases where we can’t use metric methods for classification, for example if the
classification problem involves nominal data. In this case we can use a special type of classifier called
decision tree. They are attractive types of models for three main reasons:

1) they have an intuitive representation

2) because decision trees of the fact that are non-parametric techniques, there is no need for the user to
intervene on the data

3) there exist scalable algorithms for decision-tree construction models.

In the next section we introduce the concept of decision tree, and the concept of ensemble classification
using decision trees.

5.1. DECISION TREES

Decision trees are a large class of nonlinear classifiers in which samples are classified into classes through a
series of questions. A decision tree can be represented with an acyclic graph in the form of a tree. The root
of the tree does not have any incoming edges. Every other node N has exactly one incoming edge and B
outgoing edges which connect this node with subsequent nodes. The number B of outgoing edges from a
node is called the node’s branching factor. A node with branching factor B = 0 is called leaf, otherwise is
called an internal node. The subsequent nodes that an internal node N is connected with are called its chil-
dren.

The classification of a sample begins at the root node, which asks for the value of a particular prop-
erty of the sample. Based on that answer, we follow the appropriate link to a descent node. The next step
is to make the decision at the appropriate subsequent node, which can be considered the root of a sub-tree.
We continue this way until we reach a leaf node, which has no further question. Each leaf node bears a cat-
egory label and the test sample is assigned the category of the leaf node reached.

5.1.1. Binary Classification Trees

The most popular decision trees are binary classification trees (BCTs) where the internal and root nodes
have a branching factor B = 2. One reason for their popularity is that any decision tree with B > 2 can be
transformed into a binary decision tree. In these trees the sequence of questions to be answered is of the
form ‘‘is feature x i �α?’’ where α is a threshold value. This leads to a partition of the input space into
hyper-rectangles with sides parallel to axes. The basic idea behind an BCT is demonstrated in Figure 5.1
where two dimensional samples are classified into four classes . Figure 5.2 shows a decision tree for the
partition of Figure 5.1.

5.1.2. Classification and Regression Trees

The order in which features are tested in the BCTs plays an important role for the classification perfor-
mance of the tree. For example an obvious question for the tree of Figure 5.2 is why to consider x 1 as the
first tested feature and not x 2. This question is answered by Classification and Regression Trees (CART), a
generic decision tree learning algorithm.

The scheme used in decision-tree learning for selecting attributes is designed to minimize the depth
of the final tree. The idea is to pick the most informative feature, in the sense that it goes as far as possible
toward providing an exact classification. In the terminology of decision trees such features lead to ‘‘purer’’
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Figure 5.1: Decision tree partition of the space.
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Figure 5.2: An example of decision tree for the case of Figure 5.1.

splits compared to the ancestor’s node. One suitable measure is the amount of information provided by that
feature.

5.1.3. Choosing Feature Tests

Let N be a node in a BCT and N l , N r its children respectively (Figure 5.3). Also let X N be the set associ-
ated with node N that is split into subsets X Nl

, X Nr
associated with N l and N r respectively (Figure 5.4). For

every split the following are true:

N

N l

y

N r

n

Figure 5.3: A binary split of node N into two descendant nodes N l and N r .

36



X Nl X Nr

X N
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While we are growing a BCT we seek for a property test T at each node N that makes data reaching N l and
N r as ‘‘pure’’ as possible. Thus we need a definition of impurity for a node. Motivated by information
theory (see Section 4.4.3), we define the information impurity i(N) of node N as:

i(N)=−
j
Σ P̂(ω j N) log 2 P̂(ω j N) (5.1)

where P̂(ω j N) is the fraction of patterns at node N that are in category ω j . The above definition has the
property that i(N)= 0 when all the patterns that reach the node N bears the same label, and is large if the
categories are equally presented. This is nothing else but the entropy associated with node N and subset
X N .

The key question now is given a tree down to node N, what value s should we chose for the property
test T at N? An obvious heuristic is to chose the test that decreases the impurity of node’s children as much
as possible. The decrease in node impurity is defined as

∆i(s , N)= i(N)− P̂ l i(N l )− (1− P̂ l ) i(N r ) (5.2)

where s is the one of the possible split values for test T, N l , N r are the left and right descendant nodes,
i(N l ), i(N r ) their impurities, and P̂ l the fraction of patterns at node N that will go to N l when the property
test T is used. Then the best value s * for T is the one that maximizes ∆i(s , N).

5.1.4. Stop Splitting Rule

If a tree is grown fully until each leaf node corresponds to the lowest impurity, then it has been over fitted.
A possible stop-split criterion is to adopt a threshold β and stop splitting if the maximum value of ∆i(s , N),
over all possible splits s, is less than β. Other alternatives is to stop splitting when the node represents
fewer than some fixed percentage of points of the total training set.

5.1.5. Class Assignment Rule

For the choice of label in leaf nodes we can use the simple majority rule, i.e., the leaf is labeled asω i where

i = arg
j

maxP̂(ω j N)

In other words, the leaf node N is assigned to the class where the majority of samples in X N belongs to.

5.1.6. CART Implementation Issues

CART algorithm uses loops in a multi-dimensional space, in order to select the best split for each node. At
each node, every feature x j is processed in order to find the best split value for the question x j < s j . The best
choice of split value for a test T associated with feature x j is found using the following procedure:

� consider each feature x j at a time

� order the values in vector x j in descending order
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ALGORITHM: CART

IN: Q×R matrix X where rows are samples and columns are variables

OUT: binary classification tree G

� begin with the root node, i.e., X root(G) =X

� for each new node N

� for every feature x j

� for every split value s

� generate X Nl
and X Nr

w.r.t the answer in ‘‘ x j �s ?’’

� compute the impurity decrease

� choose s leading to the maximum decrease w.r.t  x j

� choose x j and associated s leading to the overall maximum decrease of impurity

� if stop splitting criterion is true, declare node N as leaf and assign to it a label using the major-
ity rule

� else if stop splitting criterion is false, generate two children nodes N l and N r with associated
subsets X Nl

and X Nr
, depending on the answer to question x j �s

� return tree G

Figure 5.5: Pseudocode describing the tree growing algorithm CART.

� for each vector x j calculate the possible splitting values s j as the middle of adjacent values
(xj

i + xj
i + 1 )/2

� among all questions x j �s j choose the value s j with highest change of impurity

� repeat the procedure for the next feature vector x j + 1

Figure 5.5 shows the CART algorithm in pseudocode form. The main point in CART is that every node in
the tree tries to solve a maximization problem of the form

xj �s, j = 1, . . . , R
argmax [i(N)− P̂ l i(N l )− P̂ r i(N r )].

5.2. ENSEMBLE LEARNING

In the previous sections we described methods where only one hypothesis is used to predict the output of a
classification. The key idea behind ensemble learning is the selection of an ensemble of hypotheses and
their combination. For example we can generate thousand CART classifiers and choose the best hypothesis
for the classification of a new sample.

The motivation for ensemble learning is the following. Consider an ensemble of M = 5 hypotheses
and suppose that we combine their predictions using simple majority voting. For the ensemble to misclas-
sify a new example, at least three of five hypotheses have to misclassify it. Two well known methods of
ensemble learning are boosting and bagging.

5.2.1. Boosting

Boosting introduces the concept of weighted training set. A weighted training set is a set of training sam-
ples, where each sample x i has a weight w i � 0 associated with it. As w i increases, the sample becomes
more important during the learning process.

The boosting algorithm takes as input a training set of N samples S = {(x 1 ,y 1 ) , . . . , (xN ,yN ) }
where x i is an instance drawn from some space X and y i is the class label associated with x i , where y i takes
discrete values from the set {1, . . . , K}, and a weak classifier L. Weak classifiers always returns a hypoth-
esis on the training set with accuracy that is slightly better than random guessing (i.e., 50%± ε for binary
classification).
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ALGORITHM: ADABOOST.M1

IN: K, number of classes

Y = {1, . . . , K}, set with cardinality K with the number of possible labels

S, set of N training samples {(x 1 ,y 1 ) , . . . , (xN ,yN ) } where y i∈Y

L, weak classifier

OUT: final hypothesis h fin (x)

� initialize weight vector w� = [w i , . . . , w N ], i.e., w�(i)= 1/N

� for m = 1 to M do

� h
�

m �L(S ,w�)

� εm �0

� for j= 1 to N do

� if h
�

m (x j ) �y j then εm �εm +w�( j)

� else w�( j) �w�( j)×εm /(1− εm )

� normalize w�

� z m �log(1− εm )/εm

� return h fin (x)= arg
y∈Y
max

m:h
�

m (x)= y
Σ z m

Figure 5.6: The ADABOOST.M1 variant of the boosting method for ensemble learning. The algorithm
generates hypotheses by successively re-weighting the training examples.

Boosting starts with w i = 1 for all samples x i , i = 1, . . . , N, in the training set. Hypothesis h 1 comes
out using the initial weighted training set. According to h 1, some samples will be correctly classified and
other will be misclassified. We would like the second hypothesis, h 2, to perform better on the misclassified
samples, so we increase their weights while decreasing weights of correctly classified samples. From the
new weighted training set, comes out hypothesis h 2. The same process continues until the creation of M
hypothesis, where M is a user defined input to the boosting procedure. Final ensemble hypothesis is a
weighted-majority combination of all M hypotheses, each one weighted according to its performance on the
training set.

5.2.1.1. ADABOOST

Arguably, the best known boosting method is ADABOOST. ADABOOST is an iterative procedure that
combines many weak classifiers in order to increase the overall classification accuracy. ADABOOST has
many variations, such as ADABOOST.M1 for classification problems where each classifier can attain a
weighted error of no more than 1/2, ADABOOST.M2 for those weak classifiers that cannot achieve this
error (for regression problems), among many others. In the next subsubsections we describe
ADABOOST.M1 and ADABOOST.M2.

5.2.1.2. ADABOOST.M1

Figure 5.6 describes the ADABOOST.M1 algorithm. One important theoretical property about
ADABOOST.M1 is that if weak hypotheses consistently have error only slightly better than 1/2, the error
of the final hypothesis h final drops to zero exponentially.

The main disadvantage of ADABOOST.M1 is that it is unable to handle weak hypotheses with error
grater than 1/2. The expected error of a hypothesis which randomly guesses the label is 1− 1/K, where K
is the number of possible labels. Thus ADABOOST.M1 requirement for K = 2 is that the prediction is just
slightly better than random guessing. However, when K > 2, the requirement is much difficult to be met.
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5.2.1.3. ADABOOST.M2

ADABOOST.M2 attempts to overcome the difficulty of ADABOOST.M1 when K > 2. Also
ADABOOST.M2 introduces a more complex requirement for the performance of the weak classifier.
Rather than using the prediction error as ADABOOST does, it introduces the concept of pseudo-loss. More
formally, a mislabel is a pair (i ,y) where i is the index of a training sample and y is an incorrect label asso-
ciated with example i. Let B be the set of all mislabels:

B = {(i ,y) :i ∈ {1, . . . , K}, y�y i } (5.4)

A mislabel distribution is a distribution defined over the set B of all mislabels. At each iteration m of
boosting, ADABOOST.M2 (Figure 5.7) supplies the weak classifier L with a mislabel distribution D m. In
response L output a ‘‘soft’’ hypotheses h

�
m :X�[0,1] K . The j th component of this vector represents a

‘‘degree of belief’’ that the correct label is j. The components with values close to 1 or 0 correspond to
those labels considered to be plausible or implausible, respectively.

Intuitively, (i ,y) represents a binary question of the form: ‘‘Do you predict that the label associated
with sample x i is y i (the correct label) or y (one of the incorrect labels)?’’ With this interpretation, the
weight w�m (i ,y) assigned to this mislabel represents the importance of distinguishing incorrect labels y on
sample x i .

Hypothesis h
�

m is interpreted as a set of ‘‘plausible’’ labels for a given sample x. Intuitively, it is eas-
ier for the weak learner to identify a set of labels which may plausibly be correct, rather than selecting a sin-
gle label. If h

�
m (x i ,y i )= 1 and h

�
m (x i ,y)= 0, then h

�
m has correctly predicted that x i’s label is y i , and not y

(since h
�

m deems y i to ‘‘plausible’’ and y ‘‘implausible’’). Similarly, if h
�

m (x i ,y i )= 0 and h
�

m (x i ,y)= 1,
then h

�
m has incorrectly made the opposite prediction. If h

�
m (x i ,y i )= h

�
m (x i ,y), then h

�
m is taken to be a

random guess.

Now the pseudo-loss of hypothesis h
�

m with respect to weights w�m is defined as:

εm = 2
1__

(i ,y)∈B
Σ w�m (i ,y)(1− h

�
m (x i ,y i )+ h

�
m (x i ,y)) (5.5)

The goal of the weak learner is to minimize the pseudo-loss. The pseudo-loss function is minimized when
correct labels y i are given values near 1 and incorrect labels y�y i values near 0. The final combined
hypothesis h fin (x), for a given example x, chooses the single label which occurs most frequently in the
plausible label sets chosen by the weak hypotheses (possibly giving more or less weight to some of the
weak hypotheses). In Figure 5.7 the algorithm for ADABOOST.M2 is presented.

5.2.2. Bagging

Bagging, which stands for bootstrap aggregating, is another popular ensemble learning method and one of
the earliest in the field. Diversity of classifiers in bagging is obtained by using bootstrapped replicas of the
training data. That is, different data sets are randomly chosen with replacement from the entire dataset.
Each training dataset is used to train different classifiers of the same type. Individual classifiers are then
combined by taking the majority vote of their decisions. For any given sample, the class chosen by most
classifiers is the final ensemble decision. Since training datasets may overlap, additional measures can be
used to increase diversity. Pseudocode of Bagging algorithm is provided in Figure 5.8.

5.2.3. Random Forests

Random forests, proposed by [42], and add an additional layer of randomness to bagging. Random forests
use CART trees as weak classifiers. In addition to constructing each tree using a different bootstrap train-
ing set of data, random forest change the process of constructing CART tress. In CART trees, each node is
split using the best split among all feature variables. In random forests, each node is split using the best
among a subset of feature variables randomly chosen at that node. This somewhat counterintuitive strategy
turns out to perform very well compared to many other classifiers, including discriminant analysis, support
vector machines and neural networks.
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ALGORITHM: ADABOOST.M2

IN: S, set of N samples {(x 1 ,y 1 ) , . . . , (xN ,yN ) }

K, number of classes

Y = {1, . . . , K}, set with cardinality K with the number of possible labels

L, weak classifier

OUT: final hypothesis h fin (x)

� Let B = {(i ,y) :i∈{1,... ,N},y�y i }

� initialize w�1 (x ,y)= 1/B for (i ,y)∈B

� for m = 1 to M do

� h
�

m �L(w�m ,S)

� calculate pseudo-loss εm as

εm �1/2
(i ,y)∈B
Σ w�m (i ,y)(1− h

�
m (x i ,y i )

+ h
�

m (x i ,y))

� βm �εm /(1− εm )

� βm �βm
2
1___ (1+ h

�

m (xi ,yi )− h
�

m (xi ,y))

� w�m + 1 (i ,y) �w�m (i ,y)×βm, for every (i ,y)∈B

� normalize w�m + 1

� return h fin (x)= arg
y∈Y
max

m:h
�

m(x) = y
Σ log

βm

1____ h
�

m (x ,y)

Figure 5.7: The ADABOOST.M2 variant of the boosting method for ensemble learning. ADABOOST.M2
overcomes the difficulties of ADABOOST.M1 for the multiclass classification case.

ALGORITHM: BAGGING

IN: K, number of classes

Y = {1, . . . , K}, set with cardinality K containing the number of possible labels

S, set of N samples {(x 1 ,y 1 ) , . . . , (xN ,yN ) }, y i∈Y

L, weak classifier

OUT: final hypothesis h fin

� for m = 1 to M

� generate bootstrap training set S ′m with size n ′�N, by sampling examples from S uniformly
and with replacement

� h m �L(S ′m )

� for i = 1 to N

� let vm, j =


0,

1,

otherwise

if h
�

m (x i ) decides j , j∈Y

� obtain total vote received by each class, V j =
m = 1
Σ
M

vm, j , for every j∈Y

� choose the class that receives the highest total vote as the final classification

Figure 5.8: The Bagging algorithm.
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ALGORITHM: random forests

IN: S, set of N samples {(x 1 ,y 1 ) , . . . , (xN ,yN ) }

K, number of classes

Y = {1, . . . , K}, set with cardinality K with the number of possible labels

L, weak classifier

OUT: final hypothesis h fin (x)

� for m = 1 to M

� generate bootstrap training set S ′m with size n ′�N, by sampling examples from S uniformly
and with replacement

� h
�

m �L(S ′m ,n ′), i.e., grow a complete CART tree with the following modification: at each
node, rather than choosing the best split among all feature variables, randomly sample
n s =  log 2 N + 1 of the feature variables and choose the best split from among those.

� for i = 1 to N

� let vm, j =


0,

1,

otherwise

if h
�

m (x i ) decides j , j∈Y

� obtain total vote received by each class, V j =
m = 1
Σ
M

vm, j , for every j∈Y

� choose the class that receives the highest total vote as the final classification

Figure 5.9: Random forests algorithm uses a different split criterion for the construction of classification
tree.

Breiman’s recommended size for the random subset is N s =  log 2 (N)+ 1. Thus, with 100 feature
variables, every time that a tree node needs to be split, a random sample of 11 features is drawn. The ran-
dom forests algorithm is presented in Figure 5.9.

5.3. EXPERIMENTAL RESULTS

We compared the performance of previous ensemble classification algorithms, i.e., BAGGING,
ADABOOST.M2, and random forests using the EmoDB database. Initially, each speech sample x i was
represented by a column vector x�i∈R 95 composed by fundamental frequency features, energy features,
spectral features, and several statistics derived from their contours. The framework for this experiment is
the same as CHAPTER 4 (see Section 4.1 for details about the extracted features and Section 4.3 for the
classification approach).

In order to eliminate redundant features, we ran the MIFS feature selection algorithm (see Section
4.4.3 for details) and selected 15 out of 95 initial features. Thus, after feature selection, each speech sample
x i is represented by a column vector x�i∈R 15. Features selected by MIFS are presented in Table 5.1.

All algorithms used CART trees as weak classifiers. We ran each algorithm for i = 330 iterations. At
each iteration i, the ensemble size for each algorithm is i, i.e., tested algorithms train i weak classifiers and
use their predictions to take the final decision for this iteration. Figure 5.10 shows the probability of correct
classification of the algorithms as a function of the ensemble size i. The x-axis shows the number of rounds
and the y-axis the test error of each algorithm.

Accuracy of ADABOOST.M2 is increasing until iteration i = 100, where it reaches its maximum
value; thereafter it’s accuracy tends to stabilize around 0.4422. ADABOOST.M2 is unable to keep up with

TABLE 5.1
Selected features by MIFS algorithm

_______________________________________________________________________________________
45 17 77 63 85 36 71 67 75 33 25 74 29 92 94_______________________________________________________________________________________               

Indices in table are references to features presented in Section 4.1
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Figure 5.10: Comparison of learning methods using CART as the weak classifier.

the other two ensemble methods and never reaches the recognition accuracies of either BAGGING or ran-
dom forests.

BAGGING and Random Forests reach their maximum performance in the range 100 < i < 170.
There does not seem to be any significant advantage of using random forest over BAGGING from recogni-
tion accuracy point of view.

5.4. CONCLUSIONS

The presented ensemble algorithms has been proved to produce very promising results. The experiments
performed on the EmoDB database showed that bagging and random forest achieve a maximum classifica-
tion accuracy of 69% and 67% respectively, using features selected by the MIFS algorithm. We believe
that ensemble classification techniques are promising classifiers in the task of emotion speech recognition
and should be further investigated in the future.
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CHAPTER 6

COMBINING SPECTRAL, PROSODIC, AND ENERGY
FEATURES FOR SPEECH EMOTION RECOGNITION

In this Chapter we show how a state of the art speech-emotion recognition system can be improved by
combing spectral, prosodic, and energy features. We exploit the combination of our proposed TEMFCC
features (refer to Section 3.4 for details) with statistics extracted from the pitch, formant frequencies, and
short-time energy contours (refer to Section 4.1 for details). Specifically, we train three different classi-
fiers, one for spectral features and two for prosodic features, and fuse their decision. The decision fusion is
based on knowledge from our previous experiments. Finally we compare the results between individual
classifiers and fusion system to show an improvement in classification accuracy n the order ∼7%.

6.1. INTRODUCTION

Cepstral features, like MFCC, Log Frequency Power Cepstral coefficients (LFPC) [25], and TEMFCC
belong to a category of features called short-term features. The process of extracting short-term features
involves the partition of speech signal in frames. Features obtained on portions of speech equal to one
frame are called short-term features. Features obtained on portions of speech longer than one frame are
called long-term features. Prosodic features and their statistics capture variations in intonation, timing, and
loudness that are specific to the speaker.[43].

The speech emotion recognition system described in CHAPTER 3 was based solely on short-term
features (MFCC, TEMFCC, T-MFCC) and random forest, which described in CHAPTER 6, on long-term
features. In this experiment we try to combine the aforementioned systems in order to improve classifica-
tion rate. This is done by fusing their decisions about a speech sample s(n) in a way that is described in the
following section.

6.2. FEATURES AND CLASSIFIERS

We combine decisions taken by three classifiers, denoted as e 1, e 2 and e 3 respectively, based on different
feature vectors. e 1 is based on TEMFCC and follows a frame based classification approach (refer to Sec-
tion 4.6.2 for details). Every frame is represented by a feature vector x�i containing TEMFCC plus their
first and second order differences, known also as dynamic spectral features. e 1 is trained using x�i and out-
puts a decision for a speech utterance u j by taking a simple majority vote of the labels of its frames.

e 2 and e 3 are based on statistics of several prosodic contours, like mean values of pitch contour,
mean values of rising slopes of first formant etc, and follow an utterance based classification approach.
The set of prosodic features extracted is the set of features described in Section 4.1 augmented with four
statistics based on zero-crossing rate:

[96-99] mean, median, min and max of zero-crossings.

We number them starting from 96 because we assume that they are continuation of the feature list presented
in Section 4.1

6.3. CLASSIFICATION SYSTEM OVERVIEW

Every classifier ek is given as input an utterance u j and outputs a decision ek (u j )= c, where c = 1, . . . , C is
one of the C available class labels and k = 1,2,3 the classifiers. e 1 is a GMM based classifier trained with
TEMFCC features. e 2 and e 3 are a naive Bayes and a random-forest classifier respectively, trained with
statistics extracted from the prosodic contours of u j . Figure 6.1 is a graphical representation of the combi-
nation system.

The final decision c of combination system, is based on ek (u j ), k = 1,2,3 and is taken by the algo-
rithm shown in Figure 6.2. According to this algorithm, if e 1, e 2, and e 3 disagree on their decision about
the label of u j , then the final decision c is taken to be that of e 1. In all other cases, the final decision is a
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Figure 6.1: Graphical representation of combination system. The input given to classifiers is an utterance
u j . The final decision c is taken by a fusion logic based on the decisions made by individual classifiers.

ALGORITHM: Final decision of combination system

IN: u j , speech utterance

ek (u j ) , k = {1,2,3}, decisions of 3 individual classifiers, where e 1 is based on TEMFCC and e 2, e 3

on statistics of long-term features

OUT: final decision c for speech utterance u j

� if ek (u j ) �e l (u j ) for every k� l , k ,l∈{1,2,3} then

� c�e 1 (u j )

� else

� c� simple majority vote of ek (u j ), k = {1,2,3}

Figure 6.2: The final decision for u j is equal to the decision of e 1 (u j ) when all classifiers ‘‘disagree’’. In
all other cases is equal to a simple majority vote taken over ek (u j ), k = 1,2,3.

simple majority vote of ek (u j )’s. One may wonder: ‘‘Why choose e 1’s decision when all they disagree,
instead of choosing at random?’’. The answer depends on the performance of e 1. In CHAPTER 3, the
performance of e 1 with TEMFCC features was found to be ∼0.76 at noise-free samples (refer to Table 3.1).
In CHAPTER 4, we tested five feature selection algorithms in order to select 15 out of 95 prosodic features
and 3 classifiers (among them was naive Bayes) and found that with these features sets naive Bayes achieve
a maximum classification rate of ∼0.6 (Table 4.2). In CHAPTER 5, the performance of random forest was
found ∼0.66 (Figure 5.10). Considering the results mentioned above, we assumed that e 1 is most likely to
make the right choice when all classifiers disagree.

6.4. EXPERIMENTAL RESULTS

We compared the performances of individual classifiers ek , k = 1,2,3 to their combinations e 1 and e 2.
Classifiers e 1 and e 2 follow the fixed combining rules r 1 and r 2 respectively. The first rule, r 1, is
described in Figure 6.2. In the second rule, r 2, instead of selecting e 1 (u j ) decision when all classifiers dis-
agree, we chose one of three decisions at random.

We used 5-fold cross validation to estimate the classification rates. Table 6.1 shows the results of
cross-validation tests and Figure 6.1 is a graphical representation of Table 6.1. Naive Bayes and random
forests classifiers achieve a recognition rate 62% and 66% respectively, using 15 out of 99 prosodic fea-
tures with CMIM algorithm. Table 6.2 shows the indices of these features. GMM classifier achieves a cor-
rect rate of 70% using only spectral features. e 1 scores a recognition rate of 74.5%, while e 2 scores
73.5%. The improvement we get with rule r 1 is  ∼6% while with r 2 is  ∼4.5%.

We get more insight into the performance of of classifiers by looking their confusion matrices. Each
element a[i , j], in a confusion matrix, represents the count of instances whose known group labels are
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TABLE 6.2
Selected features by CMIM algorithm

_______________________________________________________________________________________
45 17 99 78 85 79 51 43 31 90 93 77 98 89 20_______________________________________________________________________________________               

Indices in table are references to features presented in Section 4.1

TABLE 6.1

Cross validation results of experiments. There is a significant improvement in classification accuracy from
the combination of classifiers.
_______________________________________________________________________________________

TEMFCC
GMM

prosodic
Naive Bayes

prosodic
Random Forest

prosodic +TEMFCC
combiner 1

prosodic +TEMFCC
combiner 2Cross-

validation iter-
ation_______________________________________________________________________________________

1 0.73 0.65 0.65 0.76 0.75_______________________________________________________________________________________
2 0.70 0.55 0.68 0.75 0.73_______________________________________________________________________________________
3 0.80 0.61 0.66 0.80 0.75_______________________________________________________________________________________
4 0.60 0.60 0.57 0.64 0.66_______________________________________________________________________________________
5 0.68 0.70 0.75 0.80 0.80_______________________________________________________________________________________

0.70 0.62 0.66 0.75 0.74Correct classi-
fication rate_______________________________________________________________________________________
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Figure 6.3: Graphical representation of Table 6.1.

TABLE 6.3
Confusion matrix for naive Bayes

______________________________________________________________________
Anger Happiness Neutral Sadness Disgust____________________________________________________________________________________

Anger 0.68 0.03 0 0.26 0.11____________________________________________________________________________________
Happiness 0.1 0.5 0.19 0 0.18____________________________________________________________________________________

Neutral 0 0.4 0.74 0.03 0.07____________________________________________________________________________________
Sadness 0.08 0 0 0.54 0____________________________________________________________________________________
Disgust 0.15 0.07 0.08 0.17 0.64____________________________________________________________________________________
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group j and whose predicted group labels are group i. Table 6.3 is the confusion matrix for the case of the
naive bayes classifier. Naive Bayes has 74% recognition rate for neutral speech, and 50% for happiness.
Many samples from neutral are misclassified as happiness, but not as many as happiness that are misclassi-
fied as neutral. This is common for all classifiers, and denotes a difficulty to distinguish these two emo-
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TABLE 6.4
Confusion matrix for random forests

______________________________________________________________________
Anger Happiness Neutral Sadness Disgust____________________________________________________________________________________

Anger 0.90 0.03 0.04 0.34 0.28____________________________________________________________________________________
Happiness 0.01 0.57 0.12 0 0.25____________________________________________________________________________________

Neutral 0.02 0.35 0.81 0.03 0.18____________________________________________________________________________________
Sadness 0.05 0.02 0.02 0.63 0.21____________________________________________________________________________________
Disgust 0.03 0.01 0.01 0 0.07____________________________________________________________________________________
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TABLE 6.5
Confusion matrix for GMM

______________________________________________________________________
Anger Happiness Neutral Sadness Disgust____________________________________________________________________________________

Anger 0.69 0.06 0.019 0.09 0.25____________________________________________________________________________________
Happiness 0 0.48 0.12 0 0.04____________________________________________________________________________________

Neutral 0.02 0.39 0.85 0 0.11____________________________________________________________________________________
Sadness 0.08 0 0 0.91 0____________________________________________________________________________________
Disgust 0.21 0.07 0.02 0 0.61____________________________________________________________________________________
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TABLE 6.6
Confusion matrix for combiner 1

______________________________________________________________________
Anger Happiness Neutral Sadness Disgust____________________________________________________________________________________

Anger 0.90 0.02 0.02 0.23 0.29____________________________________________________________________________________
Happiness 0 0.54 0.08 0 0.10____________________________________________________________________________________

Neutral 0 0.39 0.88 0.02 0.07____________________________________________________________________________________
Sadness 0.04 0 0 0.75 0____________________________________________________________________________________
Disgust 0.06 0.05 0.02 0 0.54____________________________________________________________________________________
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tions. Table 6.4 is the confusion matrix for the random-forests classifier. Random forests have an out-
standing recognition accuracy for anger equal to 90%. Also they have 81% recognition accuracy for neu-
tral, 57% for happiness, 63% for sadness, and 7% for disgust. Their performance on detecting disgust is by
far the worst among all classifiers. GMM have accuracy on recognizing neutral speech 81% and sadness
91%, the greatest among individual classifiers; classification rate for happiness and disgust is 48% and
61% respectively.

Table 6.6 is the confusion matrix for classifiers e 1. Diagonal elements of this table, represent the
recognition rate for each emotion and are approximate equal to the mean of the diagonal elements of indi-
vidual classifiers. Element [5,5] is the recognition rate for disgust. The reason we don’t get any improve-
ment for disgust is the low recognition accuracy of random forests for this emotion. Similar performance to
e 1 has e 2 whose confusion matrix is Table 6.7.

TABLE 6.7
Confusion matrix for combiner 2

______________________________________________________________________
Anger Happiness Neutral Sadness Disgust_____________________________________________________________________________________

Anger 0.92 0.04 0.02 0.26 0.21_____________________________________________________________________________________
Happiness 0 0.52 0.08 0 0.11_____________________________________________________________________________________

Neutral 0 0.39 0.87 0.03 0.07_____________________________________________________________________________________
Sadness 0.03 0.02 0 0.71 0.07_____________________________________________________________________________________
Disgust 0.05 0.04 0.04 0 0.54_____________________________________________________________________________________
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6.5. CONCLUSIONS

In this Chapter we built a speech emotion recognition system capable of using prosodic, spectral and energy
features. This system, is a combination of classifiers designed in Chapters 3, 4, and 5. In detail, the combi-
nation was done by fusing the decision of different classifiers trained on different feature vectors. Three
classifiers were examined; GMM trained with spectral features, naive Bayes and random forests trained
with prosodic, energy and formants statistics features. The combination of their decisions achieve a signifi-
cant classification error reduction of order ∼7%. If the requirement of ‘‘disagreement independence’’
among individual classifiers holds, i.e., apply different classification principles for each individual classi-
fier, then using different representations (feature sets) leads to a reduction in the correlation between the
outputs of individual classifiers, since there is almost always less correlation between different input vec-
tors.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1. CONCLUSIONS

The research in this thesis aimed at applying state of the art techniques in emotion recognition from speech
signals, examine them with a critical eye, and try to keep the best aspects and combine them in a proper
way. Searching for a proper way, several experiments have been designed, each aiming to address one or
more questions. Below we draw some conclusions learned during the progress of this thesis.

7.1.1. Models of Emotion

The initial step was choosing a model of emotion. The chosen model is based on the idea that emotions are
regarded in a discrete way. From the practical perspective the model is appropriate for using machine
learning techniques, and results of several tests show that it is a successful choice.

7.1.2. Feature Representation of Speech Signals

The features extracted from speech signals, are key parameters for the design of a speech emotion recogni-
tion system. They influence not only the performance of the system but also its overall structure. Cepstral
features have been used extensively in the literature, as well as prosodic features, but their combinations
should be further examined. Finding the most suitable set of features, that will yield the best performance
and will include no redundancies, is still very challenging. The obtained sets of features in the literature are
database-dependent, and high differences are observed between acted and natural speech datasets. Finding
a set of features that is optimal and data-independent is still an unsolved problem. In our study, we found
out that using different types of features, different classifiers and in the end fusing everything in an optimal
manner can lead to strong improvements of the results.

7.1.3. Future Work

Even though it is something that researchers said many times before, we need to mention one more time
that there is a strong need for new databases and of course especially databases of real emotional speech. It
is obvious that all the research in this area is depending on the databases, and databases of real speech bring
new challenges that need to be overcome. This way the research will get closer to the real-life application
purpose. Besides this, we felt the need of standards in labelling of emotional states. We believe that there
is a strong opportunity to build more robust and portable systems by using extended corpora.
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