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Abstract

In this work we explain and analyze a method, known as channel polarization, to construct
block codes that achieve the symmetric capacity of any binary-input discrete memoryless chan-
nel (B-DMC). The symmetric capacity is the highest rate achievable subject to uniformity in
input’s distribution. By channel polarization, it is possible to synthesize, out of N independent
copies of a given B-DMC W , a second set of N binary-input channels {W (i)

N : 1 ≤ i ≤ N}. The

codes generated that way are called Polar Codes because of the tendency of channels W
(i)
N ∀i to

have polarized symmetric capacities, i.e. their symmetric capacities are either 1 (ideal channel)
or 0 (useless channel). The proof of their capacity achieving property is also given. Finally,
polar codes are compared with a family of codes that are very closely related; the Reed-Muller
codes.
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PerÐlhyh

Sto parìn keÐmeno exhgeÐtai kai analÔetai mÐa mèjodoc, gnwst  me to ìnoma pìlwsh kana-
lioÔ (channel polarization), gia na kataskeu  kwdÐkwn block pou epitugq�noun th summetrik 
qwrhtikìthta opoioud pote diakritoÔ kanalioÔ qwrÐc mn mh me duadik  eÐsodo (B-DMC). H
summetrik  qwrhtikìthta eÐnai o mègistoc dunatìc rujmìc an jèsoume omoiìmorfh katanom 
eisìdou. Efarmìzontac th mèjodo pìlwshc kanalioÔ, mporoÔme na sunjèsoume, me th qr sh
N anex�rthtwn antigr�fwn enìc B-DMC W , èna deÔtero sÔnolo apì N kan�lia me duadik 

eÐsodo {W (i)
N : 1 ≤ i ≤ N}. Oi k¸dikec pou par�gontai ètsi kaloÔntai PolikoÐ K¸dikec lìgw

thc t�shc twn kanali¸n W
(i)
N ∀i na èqoun polwmènh summetrik  qwrhtikìthta, dhlad , oi

summetrikèc qwrhtikìthtec touc eÐnai eÐte 1 (ideatì kan�li)   0 (�qrhsto kan�li). EpÐshc,
dÐnetai h apìdeixh ìti h qwrhtikìthta epitugq�netai. Tèloc, oi polikoÐ k¸dikec sugkrÐnontai
me mÐa �llh oikogèneia kwdÐkwn polÔ sten� sundedemènh, touc k¸dikec Reed-Muller.
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1 Introduction

This thesis presents Arikan’s polar codes published in 2007 [1] based on an idea that in essence
offers to the community a way to build capacity achieving codes with relatively low cost.

To take the issue from the beginning, Claude Shannon introduced the concept of channel coding
in 1948 through a breaking paper of the time [6]. In this context, he defined new quantities like
mutual information and channel capacity which constitute the tools for proving his theorems. One
of them is the following: “If the correction channel has a capacity equal to C it is possible to
so encode the correction data as to send it over this channel and correct all but an arbitrarily
small fraction ε of the errors. This is not possible if the channel capacity is less than C.” [6,
Theorem 10]. Relying on this theorem, communication scientists have ever since been trying to
actually code the data with such rate. LDPC [7] and Turbo [8] codes are the best codes that are
close in achieving this goal; however they lack a mathematical proof of their properties (with the
exception of LDPC when transmitting over a binary erasure channel (BEC)). Polar codes are the
first provably capacity-achieving codes for any channel of the class of binary discrete memoryless
channels (B-DMC’s) with tractable complexity.

Of course, there exist Shannon’s nonlinear and Elias’ linear random block codes that, in the
mean, achieve channel capacity. Unfortunately, the complexity of encoding and decoding opera-
tions is too high since they do not follow a certain pattern. More specifically, Shannon’s codes
consist of codewords with coefficients randomly selected. The distribution of the coefficients is
uniform and each one is selected independently. As it is obvious, the complexity is exponential
with respect to codeword length N . Elias proposed a method for constructing linear codes by
building the generator matrix randomly. Accordingly, he chooses the coefficients of the matrix in-
dependently and from the uniform distribution. Again the complexity of the decoder and encoder
is exponential and quadratic, respectively.

We begin with some necessary definitions and preliminaries. What is a code? Consider a
countable alphabet X . All the words that can be produced by k symbols in this alphabet are |X |k.
Any of these k-tuples could be matched with another tuple of n ≥ k symbols of the same alphabet.
The very set of the n-tuples is a code. Our study specializes of the binary alphabet (X =̇{0, 1}).

If the code is well designed, then the initial information is protected in terms of symbol (bit)
error probability between the transmitter (Tx) and the receiver (Rx). The ratio k/n is called the
rate of the code. The larger the rate is the faster Tx and Rx can communicate. The maximum
achievable rate subject to arbitrarily low bit detection error probability is called Shannon Capacity.
A typical example of a code that does not achieve the capacity is the repetition code. Suppose we
want to sent a BPAM symbol (±A) over an AWGN(σ). The probability that the optimal receiver

doesn’t decides the bit correctly is Q
(√

A2

W0σ2

)
, where W0 is the used bandwidth. We can “code”

this bit with the repetition code by repeating it N times. This will reduce the probability of error

to Q
(√

NA2

W0σ2

)R=1/N︷︸︸︷
= Q

(√
A2

RW0σ2

)
. This type of coding is equivalent to multiplying the symbol

period with N or using N times less bandwidth. The trade off between bandwidth and bit error
probability is unprofitable. In order to make no mistakes (Prob{bit error}=0 ) we push the rate
(R) to zero!

An important property of channel coding is that as N gets bigger the size of the code grows
exponentially. Such a fact may make a simple mapping impossible for large values of N in terms
of memory efficiency.

2 Polarization

2.1 Symmetric Capacity

We consider a discrete memoryless channel with input alphabet X = {0, 1} and output alphabet Y.
Then, channel polarization is a strategy to achieve the symmetric capacity of the channel, defined
as

I(W )=̇
∑
y∈Y

∑
x∈X

W (y|x) log2

W (y|x)
1
2W (y|0) + 1

2W (y|1)
(1)
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where W denotes a B-DMC. The symmetric capacity of the channel is equal to the Shannon
capacity if we enforce the input distribution to be uniform (P (X = 0) = P (X = 1) = 1

2 where X
is the random variable modeling channel input). Therefore, if the channel is symmetric (for which
we know that the optimal input distribution is the uniform), then polar codes achieve Shannon
capacity.

2.2 Bhattacharyya Parameter

In addition to symmetric capacity which is a measure of the maximum possible reliable transmission
rate through channel with uniform input, we also introduce the Bhattacharyya parameter of a B-
DMC W which is defined as

Z(W )=̇
∑
y∈Y

√
W (y|0)W (y|1), (2)

measures the reliability of the channel, equals the sum over all output combinations of those geomet-
ric means, and constitutes an upper bound on the error probability of an uncoded bit transmission.
It will also prove to be useful in deriving an upper bound of the block error probability.

Symmetric capacity and Bhattacharyya parameter are related by the formulas

I(W ) ≥ log2

2
1 + Z(W )

, (3)

I(W ) ≤
√

1− Z(W )2. (4)

The proof that the above formulas hold true is omitted.
Proposition 1: The first corollary that can be driven by (3) and (4) is that for any W with I(W ) = 1
or 0 we have that Z(W ) = 0 or 1, respectively, and vice versa.

In order to see how Bhattacharyya parameter can pose an upper bound to bit error probability
under maximum-likelihood (ML) detection, we define the error event

E .=
{

(x, yN1 ) ∈ X × YN : W (yN1 |x⊕ 1) ≥W (yN1 |x)
}

=
{

(x, yN1 ) ∈ X × YN :
W (yN1 |x⊕ 1)
W (yN1 |x)

≥ 1
}

for transitions over a discrete channel W with a single input and multiple outputs. The probability
of event E is

P (E) .=
∑

yN
1 ∈YN

∑
x∈X

PX,Y N
1

(x, yN1 )1E(x, yN1 )

=
∑

yN
1 ∈YN

∑
x∈X

PX(x)PY N
1 |X=x(yN1 )1E(x, yN1 )

=
∑

yN
1 ∈YN

∑
x∈X

1
2
W (yN1 |x)1E(x, yN1 )

≤
∑

yN
1 ∈YN

∑
x∈X

1
2
W (yN1 |x)

√
W (yN1 |x⊕ 1)
W (yN1 |x)

=
∑

yN
1 ∈YN

∑
x∈X

1
2

√
W (yN1 |x)W (yN1 |x⊕ 1)

=
∑

yN
1 ∈YN

1
2

√
W (yN1 |0)W (yN1 |1) +

1
2

√
W (yN1 |1)W (yN1 |0)

=
∑

yN
1 ∈YN

√
W (yN1 |0)W (yN1 |1)

= Z(W ).
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Apparently, this is a result that applies to SISO (single-input single-output) channels as well.
We will show how we can use Bhattacharyya parameter to set an upper bound on block error
probability later on.

As an example, we consider the BEC (see Fig. 1). Once a bit is transmitted, the receiver
will obtain either the bit correctly or a symbol that does not contain any information. The BEC
does not introduce incorrect information. The mutual information between input and output is
expressed as I(W ) = 1− ε. This is a convenient form and linear to the channel’s only parameter.

The Bhattacharyya parameter of a BEC(ε) turns out to be even simpler:

Z(W ) =
∑
y∈Y

√
W (y|0)W (y|1)

=
√
W (0|0)W (0|1) +

√
W (?|0)W (?|1) +

√
W (1|0)W (1|1)

=
√

(1− ε)× 0 +
√
εε+

√
0× (1− ε)

= ε.

2.3 The Polarization Step

Given N independent copies of one B-DMC W , the idea behind channel polarization is to synthesize
a new set of B-DMC’s {W (i)

N : 1 ≤ i ≤ N} where some of them have absolute reliability.
From the implementation’s point of view the channel polarization process consists of many

levels. The root of this multilevel recursive operation is realized by the following simple scheme.
We set x1 (the bit transmitted through the top copy of W ) to be a function of both u1 and u2

(sum mod-2 a.k.a. XOR) while x2 equals u2. By combining a pair of copies of W , we construct a
new composite channel denoted as W2 with two bits as input and two bits as output, as shown in
Fig. 2.

At the random ith level of polarization we combine two channels WN
2

, as it is illustrated by Fig.
3. For an array of inputs {ui}Ni=1 we obtain a new one

(
{vi}Ni=1

)
by replacing the odd indexed u’s

11
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with the XOR of consecutive pairs. That is, the odd indexed v2i−1 will be equal to ui ⊕ ui+1 for
each i = 1, . . . , N2 . The rest u’s (that are even indexed) are passed to the reverse shuffle operator
as they are. Reverse shuffling distincts the odd and even indexed elements and passes them to
separate channels WN

2
; one channel for the odd indexed u’s (top) and one for the even indexed u’s

(bottom).
Regarding the reverse shuffle, it is interesting to note that grouping the odd and the even

indexed inputs is a permutation that can be further comprehended as re-ordering the tuple of bits
that is associated with each input. This tuple is the binary expression of i − 1. For instance,
the first input (v1) is associated with the all-zero tuple of length n = log2N , that is v1 → v00...0.
Accordingly, the last input is associated with the all-one tuple, that is vN → v11...1. In general,
vb1b2...bn

← vi where i = 1+
∑n
j=1 bj2

n−j . Hence, reverse shuffle changes the order of this bit string
as follows: vb1b2...bn

= ub2b3...bnb1 . In other words, RN cyclically right-shifts by one the bit-indeces
of the elements of a left operand uN1 .

The essential transformation after log2(N) levels is linear. By this, we mean that before trans-
mitting the information word uN1 we first apply a linear transformation by multiplying it (from the
right) with a matrix denoted as GN . Each entry of the resulting codeword xN1 = uN1 GN is then
transmitted independently though each copy of W .

As we can see, transmitting a word uN1 through the composite channel WN is equivalent to
transmitting xN1 through N independent copies of channel W . An analysis via linear algebra results
in GN = BNF

⊗n where BN is a permutation matrix and

F =
[

1 0
1 1

]
.

12
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The permutation matrix BN inverts the bits of the tuple that each input is associated with.
Specifically, if pN1 = qN1 BN , then pb1b2...bn

= qbnbn−1...b1 where n = log2N .

2.4 Effective Channel

Further deep, we can study the transformation and correspond each information bit to its effective
channel. Along these lines, we define W (i)

N with input ui and outputs yN1 and ui−1
1 . Its transition

probabilities are given by

W
(i)
N (yN1 , u

i−1
1 |ui) =̇Prob{yn1 , ui−1

1 |ui}

=
Prob{yN1 , ui1}
Prob{ui}

=
∑
uN

i+1

Prob{yN1 , uN1 }
Prob{ui}

=
∑
uN

i+1

Prob{yN1 |uN1 }Prob{uN1 }
Prob{ui}

=
∑
uN

i+1

Prob{yN1 |uN1 }2−N

2−1

=
∑
uN

i+1

Prob{yN1 |uN1 }
2N−1

=
∑
uN

i+1

1
2N−1

WN (yN1 |uN1 )

where WN is the composite channel for the entire information word.
Now that the channel W (i)

N is formally defined we can prove how Bhattacharyya parameter can
help us derive an upper bound to the block error probability. The proof in Subsection 2.2 concerns
channels with single input and multiple output which applies to {W (i)

N }Ni=1 as well. If we define
Ei as the event that the ith bit is detected incorrectly, then automatically we are driven to the
inequality

P (Ei) ≤ Z(W (i)
N ).

We emphasize that Ei is independent of Ej for any j < i, because we assume the existence of a
“genie” which provides us with the true values of previous information bits.

We define the block error event as

E .=
{

(uN1 , y
N
1 ) ∈ XN × YN : ÛN1 6= uN1

}
.

We notice that E =
N⋃
i=1

Ei which implies the inequality (union bound)

P (E) ≤
N∑
i=1

Z
(
W

(i)
N

)
.

13



The channel polarization is a capacity preserving operation. Mathematically this is expressed
as
∑N
i=1 I(W (i)

N ) = NI(W ). The above statement is true if the capacity is preserved after the basic
polarization step; namely, I(W (1)

2 ) + I(W (2)
2 ) = 2I(W ). This is easily proven as shown below.

I(W (1)
2 ) = I(U2;Y1, Y2) (5)

I(W (2)
2 ) = I(U1, U2;Y1, Y2)

= I(U2;Y1, Y2|U1) + I(U2;U1)
= I(U2;Y1, Y2|U1)

(6)

X1 & X2 (symbols sent) are independent (7)
I(X1;X2) = H(X1)−H(X1|X2)

= H(U1 ⊕ U2)−H(U1 ⊕ U2|U2)
= H(U1 ⊕ U2)−H(U1)
= 1− 1
= 0


(5)+(6)=⇒

I(W (1)
2 ) + I(W (2)

2 ) = I(U1;Y1, Y2) + I(U2;Y1, Y2|U1)
= I(U1, U2;Y1, Y2)
= I(X1, X2;Y1;Y2)
= I(X1;Y1, Y2) + I(X2;Y1, Y2) due to (7)
= I(X1;Y1) + I(X2;Y2)
= I(W ) + I(W )
= 2I(W ) �

Of course, channel polarization affects Bhattacharyya parameter.
Proposition 2: It can be proven that

Z(W (2)
2 ) = Z(W )2

Z(W (1)
2 ) ≤ 2Z(W )− Z(W )2

}
⇒ Z(W (1)

2 ) + Z(W (2)
2 ) ≤ 2Z(W ). �

The above inequality implies that
∑N
i=1 Z(W (i)

N ) ≤ NZ(W ) and guarantees that by polarizing the
channel the reliability will not decay.

At this point it is interesting to show how the Bhattacharyya parameters of all the {W (i)
N }Ni=1

channels evolve if W is a BEC and its erasure probability ε changes. As we see in Fig. 6,
Z(W (i)

32 ) = 0 for every i if ε = 0 and Z(W (i)
32 ) = 1 for every i if ε = 1. By looking at the curves

that take place between those extreme cases, it becomes obvious that only a few of these curves
cross and only once or twice. For N larger than 32 there are more curves that cross but still the
fraction of them remains very small.

In the case that W is a binary symmetric channel (BSC), the Bhattacharyya parameter is
maximized if the crossover probability is one half (which is the case where the BSC has zero
capacity). A channel is explicitly better than the others if its Z(W (i)

N ) decays faster as the crossover
probability moves away from 1/2 (see Fig. 7).

3 Capacity Achievability

The theorem on which the whole study is based is the following: For any B-DMC W, the channels
{W (i)

N } polarize in the sense that, for any fixed δ ∈ (0,1), as N goes to infinity through powers
of two, the fraction of indeces i ∈ {1, ..., N} for which I(W (i)

N ) ∈ (1 − δ, 1] goes to I(W ) and the
fraction for which I(W (i)

N ) ∈ [0, δ) goes to 1− I(W ).
The problem that we face as code designers is to determine N (the block length), A (the set

of the indeces to the good channels), K (the number of the good channels), and uAc (the value of
the frozen bits - Ac is the compliment of A over {1, ..., N}). Regarding to what values frozen bits
take, the resulting codeword will be a coset of uAGN (A): xN1 = uAGN (A) ⊕ uAcGN (Ac) - where

14
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32 )∀i and for any BEC with erasure probability ε ∈ [0, 1]
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(i)
N ) ∀i and for BSC with crossover probability in [0, 1]

by GN (A) and GN (Ac) we denote the matrices consisting only of the rows of GN with index in
the set A or Ac, respectively, e.g. by GN ({4, 6, 7, 8}) we refer to the fourth, sixth, seventh, and
eighth rows of GN .

The answers to the previous questions (N?, A?, K?, uAc?) are: the larger N is the better in
terms of convergence. This is based on the fact that the fraction of channels that have not yet
polarize is vanishing as N grows to infinity. Hence, it is more likely that we choose channels with
symmetric information infinitely close to one. K is a function of N and the rate that we choose
to transmit, namely K = bRNc. The information set A is chosen as the K-element subset of
{1, ..., N} such that Z(W (i)

N ) ≤ Z(W (j)
N ) for all i ∈ A, j ∈ Ac (this metric will prove to be capacity

achieving). Finally, uAc can be chosen arbitrarily. We have this degree of freedom due to the fact
that all the distances are preserved for any coset code. That makes those coset codes equivalent

15



Figure 8: The tree process for the recursive channel construction.

to the original (uAc = 0N−K). Notice that the receiver must have knowledge of uAc in order to
decode appropriately.

The proof of the theorem which claims capacity achievement is outlined with the help of the
random sequences In and Zn. Before we define them, we discuss bit indexing of the channels.
Fig. 8 depicts how a string of bits b1b2 . . . bn can be associated with a single channel in the
process of polarization. The length of the string indicates the depth and the bits themselves
index (naturally) the channel. Now, let us define a walk-through into this tree as a random
tree process {Kn}. The root of the tree, or the value K0, is the deterministic initial channel W
which is indexed with the null string. Given that Kn is a certain channel Wb1b2...bn then Kn+1

is either Wb1b2...bn0 or Wb1b2...bn1 with probability 1
2 each. Now we are ready to define In as the

symmetric capacity of the channels Kn: In = I(Kn) = I(Wb1b2...bn) = I

(
W

(1+Pn
i=1 bi2

n−i)
2n

)
. In

correspondence with the previous steps, Zn is defined as the Bhattacharyya parameter of channels

Kn: Zn = Z(Kn) = Z(Wb1b2...bn
) = Z

(
W

(1+Pn
i=1 bi2

n−i)
2n

)
. The next step is to study the

stochastic convergence of these sequences. According to Theorem 9.4.6 in [2], In converges a.e. to
a random variable I∞ such that E{I∞} = I(K0) = I(W ). The only thing that remains is to prove
that I∞ is binary, i.e. I∞ ∈ {0, 1}. This will be proven by showing that Z∞ ∈ {0, 1} which is
equivalent because of Proposition 1. Theorem 9.4.5 in [2] shows that since Zn is super-martingale1

it converges a.e. to Z∞ such that E{|Zn − Z∞|} → 0. By the Cauchy criterion for random series,
it follows that E{|Zn+1 − Zn|} → 0. But by Proposition 2, Zn+1 = Z2

n with probability 1
2 , hence,

E{|Zn+1 − Zn|} ≥ 1
2E{|Z

2
n − Zn|} = 1

2E{|Zn(Zn − 1)|} = 1
2E{Zn(1 − Zn)} → 0, which implies

E{Z∞(1− Z∞)} = 0. This, in turn, means that Z∞ equals 0 or 1 a.e.. �

We have proven that the Bhattacharyya parameters of the channels W (i)
N polarize a.e. and only

1Zn is a super-martingale because the condition Zn ≥ E{Zn+1} holds true:

2Z(Wb1b2...bn ) ≥ Z(Wb1b2...bn0) + Z(Wb1b2...bn1)⇒
Z(Wb1b2...bn ) ≥ 1

2
Z(Wb1b2...bn0) + 1

2
Z(Wb1b2...bn1)

= 1
2
Z(Kn+1|bn+1 = 0) + 1

2
Z(Kn+1|bn+1 = 1)

= Prob{bn+1 = 0}Z(Kn+1|bn+1 = 0) + Prob{bn+1 = 1}Z(Kn+1|bn+1 = 1)
= E{Z(Kn+1)}
= E{Zn+1} ⇒

Zn ≥ E{Zn+1}
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as N goes to infinity. Let us see how close theory is to reality. In Fig. 9, we plot the distribution
of Z(W (i)

N ) assuming that W is the BEC with erasure probability 0.4 and N = 2n where n = 15
and 24.

As we can see, N needs to be very large if we expect the mass to gather near 0 and 1. Even
215 is not enough.

4 Information Set Selection

4.1 Reed-Muller Codes

There is another family of codes that have much in common with polar codes. This family is
called Reed-Muller (RM) codes and have the same structure. An explicit algebraic description can
illustrate better their difference. Suppose that we want to construct the RM and polar codes with
block length eight, for given rate and a given channel W , by determining their generator matrices.

Before that, let us recall RM codes and their properties. A RM code can be defined by a pair
of integer parameters (m, r). The block length is 2m and r is related to the rate which equals∑r

i=0

(
m
i

)
2m

. The generator matrix rows is a subset of the row of the Kronecker power
[

1 0
1 1

]⊗m
.

These rows have Hamming weight greater or equal to 2m−r. For block length eight, m equals three.

[
1 0
1 1

]⊗3

=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


=⇒

GRM (1, 3) =


1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 .
4.2 Polar Codes

As for the polar codes, we construct the code by choosing the rows that correspond to the channels
{W (i)

8 : 1 ≤ i ≤ 8} with the lower Bhattacharyya parameter. Another difference is that the rows
of the Kronecker power are permuted. This is due to the reverse shuffle of the encoder scheme.

G8 = B8

[
1 0
1 1

]⊗3

=



1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1


.

We cannot decide which rows the generator matrix will consist of, because we need the description
of the channel W to calculate the Bhattacharyya parameters of channels {W (i)

N }. Once we have
the parameters at hand, we choose the rows of the above matrix that correspond to the channels
with the lowest ones.

Two results that are derived from this are the following.

1. RM and polar codes share a common universal pair of encoder and decoder.
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2. The polar codes and channel specific designs, for different transition probabilities of W , result
in different transition probabilities of W (i)

N . Thus, we are driven to different values of Z(W (i)
N )

that give us different generator matrices.

An example follows that shows that RM and polar codes could be equivalent. Let us study the
case of transmissions the take place over a BEC with erasure probability 0.3. The rate is chosen
to be 0.5 and the codeword length is 8. Under these conditions the values Z(W (i)

N ), for i ∈ 1, ..., 8,
are 

0.9424
0.5774
0.4525
0.0677
0.3143
0.0295
0.0161
0.0001


.

If we drop rows 1, 2, 3, and 5 of GN , we end up with the generator matrix

G8(A) =


1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1

 .
Apparently, this generator matrix contains the same set of rows with the generator matrix of the
RM code. For a relatively low block length the two codes are equivalent. The difference will start
to appear for larger codes with block length 32 or 64.

5 Tx and Rx

5.1 Encoder-Decoder

Let’s now talk about something more practical. The encoder is implemented as shown in Fig. 3.
The complexity is derived with the help of Master Theorem

T (N) =
N

2
+ Θ(N) + 2T

(
N

2

)
⇒

T (N) = Θ(N log(N)).

The decoder proposed in [1] is called successive cancellation (SC) decoder and its role is to decide
with the rule of closest neighbor on ith bit (1 ≤ i ≤ N) that transmitted over W (i)

N . However ML
detection on the channel W (i)

N practically is impossible because the outputs are N + i− 1 bits and,
hence, the complexity with the straightforward way is O(2N2i).

Fortunately, we can calculate the likelihood ratios L(i)
N (yN1 , u

i−1
1 )=̇

W
(i)
N (yN1 , u

i−1
1 |0)

W
(i)
N (yN1 , u

i−1
1 |1)

by an effi-

cient recursive formula with time and space complexity O(N2) and O(N), respectively. However,
an efficient implementation reduces more the asymptotic complexity to O(N log(N)) for both time
and space.

L
(2i−1)
N (yN1 , û

2i−2
1 ) =

L
(i)
N
2

(y
N
2

1 , û2i−2
1,o ⊕ û

2i−2
1,e )L(i)

N
2

(yNN
2 +1

, û2i−2
1,e ) + 1

L
(i)
N
2

(y
N
2

1 , û2i−2
1,o ⊕ û

2i−2
1,e ) + L

(i)
N
2

(yNN
2 +1

, û2i−2
1,e )

(8)

L
(2i)
N (yN1 , û

2i−1
1 ) =

[
L

(i)
N
2

(y
N
2

1 , û2i−2
1,o ⊕ û

2i−2
1,e )

]1−2û2i−1

L
(i)
N
2

(yNN
2 +1

, û2i−2
1,e ) (9)

O(N log(N)) space is required to store the LR’s that can be reused (in fact, every LR’s will be
reused). To see where the computational saving will come from, we inspect (8) and (9) and note
that each LR value in the pair(

L
(2i−1)
N (yN1 , û

2i−2
1 ), L(2i)

N (yN1 , û
2i−1
1 )

)
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is assembled from the same pair of LRs(
L

(i)
N
2

(y
N
2

1 , û2i−2
1,o ⊕ û

2i−2
1,e ), L(i)

N
2

(yNN
2 +1

, û2i−2
1,e )

)
.

The size of the matrix in which the LR’s will be stored is N × (log2(N) + 1). The number of
the elements are exactly as many as the distinct LR’s that will be eventually calculated. Each
cell is filled after Θ(1) calculations which implies that the complexity to decode each word is
O(N log(N)).

5.2 Code Construction

Besides encoding and decoding, it is interesting to examine how to construct the code. Even though
we have an efficient algorithm to calculate the Bhattacharyya parameters for the special case of
BEC, no such algorithm exists for the general B-DMC. So, we present an approximate method
that was proposed in [1]. It is easy to grasp the main idea by noticing that the Bhattacharyya
parameter of a channel is the mean value of the square root of the likelihood ratios

Z(W (i)
N ) = E


√√√√W

(i)
N (Y N1 , U i−1

1 |Ui ⊕ 1)

W
(i)
N (Y N1 , U i−1

1 |Ui)

 . (10)

Thus, by sampling as many samples (UN1 , Y
N
1 ) as we can out of the the joint pmf PY N

1 ,UN
1

(yN1 , u
N
1 ) =

2−NWN (yN1 |uN1 ) and applying an algorithm to calculate the square roots of LR’s, we can get a
good approximation of the Z(W (i)

N ) parameters. This algorithm may be a SC decoder since the
statistics of its decision elements are exactly the likelihood ratios.

The proof of (10) is as follows.
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Z(W (i)
N ) = E


√√√√W

(i)
N (Y N1 , U i−1

1 |Ui ⊕ 1)

W
(i)
N (Y N1 , U i−1

1 |Ui)


=
∑
uN

1 ,y
N
1

1
2N

WN (yN1 |uN1 )

√√√√W
(i)
N (yN1 , u

i−1
1 |ui ⊕ 1)

W
(i)
N (yN1 , u

i−1
1 |ui)

=
∑
ui

1,y
N
1

1
2

√√√√W
(i)
N (yN1 , u

i−1
1 |ui ⊕ 1)

W
(i)
N (yN1 , u

i−1
1 |ui)

∑
uN

i+1,y
N
1

[
1

2N−1
WN (yN1 |uN1 )

]
=

1
2

∑
ui

1,y
N
1

√√√√W
(i)
N (yN1 , u

i−1
1 |ui ⊕ 1)

W
(i)
N (yN1 , u

i−1
1 |ui)

×W (i)
N (yN1 , u

i−1
1 |ui)

=
1
2

∑
ui

1,y
N
1

√
W

(i)
N (yN1 , u

i−1
1 |ui ⊕ 1)W (i)

N (yN1 , u
i−1
1 |ui)

=
1
2

∑
ui

1,y
N
1

√
W

(i)
N (yN1 , u

i−1
1 |1)W (i)

N (yN1 , u
i−1
1 |0)

+
1
2

∑
ui

1,y
N
1

√
W

(i)
N (yN1 , u

i−1
1 |0)W (i)

N (yN1 , u
i−1
1 |1)

=
∑

ui−1
1 ,yN

1

√
W

(i)
N (yN1 , u

i−1
1 |1)W (i)

N (yN1 , u
i−1
1 |0)

= Z(W (i)
N ).

Another method for constructing polar codes for any B-DMC was proposed in [3]. The goal
of this method is to minimize the probability of error between transmitter and receiver instead of
its upper bound. This is achievable by the usage of a modern tool known as density evolution.
Via density evolution we can derive the probability of bit error under the belief propagation (BP)
decoding. In this case, we can apply the BP decoder to the graphical representation of matrix GN
(example for N = 8, Fig. 11).

For BEC’s, SC decoding is only an instance of BP decoding because decoding the ith bit with
the SC decoder is equivalent to applying BP with the knowledge of the previous bits (U1, . . . , Ui−1).
Normally, a usual BP decoder has access also to the next frozen bits (the frozen bit belonging to
Ui+1, . . . , UN ) [4].

We conclude that is it possible to apply a BP decoder on the sub-graph that corresponds to the
ith bit instead of applying the SC decoder. This, in conjunction with the fact that the decoding
sub-graph is always a tree (see example in Fig. 12) allows us to use density evolution to extract
the probability of error in decoding each bit. On the basis of the availability of P (Ei)’s, one can
construct the polar code by choosing the information set A which minimizes∑

i∈A
P (Ei).
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Figure 12: The corresponding tanner tree graph for ith bit.

The only thing that remains is to derive those probabilities of error. Denote aW the log-
likelihood ratio of a channel W . Then P (Ei) = C(aiN ). Where:

C(a) .= lim
ε→+0

(∫ −ε
−∞

a(x)dx+
1
2

∫ +ε

−ε
a(x)dx

)
,

a2i
2N = aiN � aiN , a2i−1

2N = aiN � aiN , a1
1 = aW (11)

Where � and � denote the convolutions of LLR density functions, which are defined in [5], corre-
sponding to variable and check nodes respectively.

Now, (11) is so, due to the fact that, if we assume that the binary expansion of (i − 1) is
bn, . . . , b1, then the nodes at depth t of the tree tanner graph are check nodes and variable node
if bt = 0 and bt = 1, respectively (in counting the depth we omit nodes in the tree with degree
2, because messages of BP are passed through such nodes unprocessed). Note that the leaf nodes
carry the messages of the channel Yi ∀i.

The advantage of this method is its low complexity. If we consider the convolution of the
densities in the L as the G domain to be an operation of constant complexity and done with
infinitely precise calculations, then the total complexity of calculating all the densities is linear.

χ(N) = N + χ

(
N

2

)
= N +

N

2
+ · · ·+ 1 = O(N)

A Performance Results

The following three figures are selected as the most representative of the performance of polar
codes in comparison with regular LDPC (with progressive-edge-growth construction) and under
studied decoding algorithms (SC and BP). All of them contain results taken by simulations for
codes with half rate (rate = 1

2 ) on a BEC. Hence, the horizontal axis is marked with the erasure
probability of the BEC and the vertical axis is marked with the magnitude of the probability of
bit error between transmitter and receiver. The block length is 2n.

Fig. 13 shows the BER curves of polar codes under SC for a large variety of block lengths. In
Fig.14, we present the performance of polar codes under SC versus regular LDPC(3,6). Finally,
the performance of polar codes under BP on GN versus regular LDPC(3,6) is shown in Fig.15.
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Figure 13: Polar (SC), various block lengths.
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Figure 14: Polar (SC) vs LDPC.
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Figure 15: Polar (BP) vs LDPC.
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