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ABSTRACT

In this thesis we introduce arteustve backtracking search algorithm andsifiarallelization, for solving

the OGRn problem: The search for (at least one member of) the set of Optimal Golomb rulers (OGRSs)
with n marks. Theproblem under discussion is a combinatorial optimization problemybel{although

not yet preen) to be NP-Hard andven the most efficient parallel algorithms (and their implementations)

of today require years of running time to selinstances wit > 24. Beside®xposing the already kmm
embarrassingly parallel nature of the O@Rroblem, our parallelization additionally alle for arbitrary
selection of the amount of work assigned to each computational node. An experivauatdion of the
practical value of our approach is performed on the maggarallel Nvidia CUIA platform, as well as

on the Grid system residing in the Technicalvérsity of Crete.
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CHAPTER 1

INTRODUCTION

In this thesis we introduce artaustve backtracking search [1][2] algorithm andsifiarallelization,
for solving the OGR4 problem: The search for (at least one member of) the set of Optimal Golomb rulers
(OGRs) withn marks. Theproblem under discussion is a combinatorial optimization problem yveelie
(although not yet pren) to be NP-Hard andven the most efficient parallel algorithms (and their imple-
mentations) of todayequire years of running time to selinstances whera > 24. Beside®xposing the
already known embarrassingly parallel nature of the @Gfteblem, our parallelization additionally
allows for arbitrary selection of the amount ofnk assigned to each computational node. ¥reemental
evduation of the practical value of our approach is performed on thevaggsarallel Nvidia CULA plat-
form, as well as on the Grid system residing in the Technicaketsity of Crete.

In mathematics, a Golomb ruler (named after Solomon Golomb) is a setgarsgtarting from zero
(Xp =0 <Xy < X3---<X,), selected such that all their crossfeténcesx; : i # j are distinct. In other
words, a Golomb ruler can be defined as a set of marks along an imaginarymahertvo pairs of marks
are the same distance apart. Golomb rulex® lggactical applications in scientific fields such as Radio
Astronomy Information Theory and VLSIA Golomb ruler is said to be Optimal when it has been formed
so thatx,, (the rulers length) is as small as possible.

Both exact and approximation algorithms [3][4][5][1]Meateen designed for the OGRproblem.
That is, algorithms that yield Golomb rulers with the shortest possible length and algorithms that yield
Golomb rulers with a length close to the shortest possible, resecthpproximate methods satisfy our
needs for the practical use of Golomb rulers, ag the produce short enough Golomb rulers fogdar
values within a small amount of time. On the other hamdcemethods mostly satisfy our curiosity and
the need to wercome barriers, such as theeawhelming complexity of disa@ring the shortest possible
Golomb ruler that can be formed with only aw s 25 or 30 rarks. Themethod presented in this thesis is
of course a (parallel) exact solution to the OGRroblem.

In Chapter 2soLomMB RULERS, we introduce and provide anveaview of Golomb rulers and their
properties.

Chapter 3RELATED WORK, provides a brief description of well known algorithms for solving the
OGR~ problem as well as a brief description ofotwesearch projects which are closely related to our
work: The Golomb Engine (GEproject of the Technical Uweérsity of Crete led by professor Apostolos
Dollas (aiming at solving the OGRproblem on FPGA deces using a parallel version of the Shift algo-

rithm) and theDGRproject of the distribted.net organization which is responsible for the disexy of all
OGRs starting with 20 marks, up to 26 marks so far (by orchestrating asenadanteerbased distribted
computation effort, utilizing their highly efficieRLEGE algorithm).

In Chapter 48BACKTRACKING SEARCH we cver the design of our sequential OGRalgorithm in a
sequence of step&Ve gart with the bruteforce search, which is the mostenailution algorithm. We pro-
ceed with contrasting it and replacing it with backtracking seanghhen introduce further optimizations
to backtracking search, such as the midpoint preclusion search space reduction technique and with repre-
senting the current state of the search process using a pairextdyiss Ineach following step, we pvale
an experimental confirmation of induced performance benefits, based on our own C language implementa-
tion of the algorithm that each step describes.

! hitp://distributed.net/ogr



In Chapter 5SEARCH SRCE PARTITIONING, We qver the most important aspect of our work, the-par
allelization of our backtracking search algorithiive gart by closely imestigating the search space of our
algorithm. W then proceed on geloping an algorithm, that alles us to partition the search space of an
instance of the OGR-problem, into an arbitrary number of pieces, each of arbitrary size. Most-impor
tantly, the benefit of our parallelization methogepalready existing methods (such as the one used by dis-
tributed.net or the GE project), is that each produced piece can be arbitrggly Tdratis, each piece can
correspond to an arbitrarily large amount of work.

Following, Chapter G*ARALLEL AND DISTRIBUTED COMPUTING, introduces the practices of parallel
computing and distributed computing. An effort is made to provide a brgefiew of each, explain what
is the difference between them, and describe which types of problems each is more suitiivialligrwe
introduce the concept of SpeedUp for measuring induced performance benefits of parallel antedistrib
computation platforms and explainviathe maximum anticipated SpeedUp is bound fronvalzocording
to Amdahls law.

Chapter 7NVIDIA CUDA, introduces the masay parallel NVIDIA CUDA computation platforrf
which is currently the most pralent solution for utilizing the Graphics Processing Unit (GPU) as a highly
parallel co-processor to the CPUh this chapterwe gve an overview of the NVIDIA CUDA architecture,
describe it5 programming model, and explain best practices fmiding common bottlenecks in perfor
mance.

In Chapter 8PARALLEL SEARCH WITH CUDA, we cve our utilization of the NVIDIA CUDA plat-
form, for evaluating our parallelized OGR-algorithm, in terms of gained SpeedUp with respect to running
it's quencial version on a single CPU covee cescribe har we chose to implement concepts introduced
in chapters 4 and 5 on the NVIDIA CWDplatform in accordance with the best practices described in
chapter 6 and present resulting running times for solving various instances of the @GHem.

In Chapter 9PARALLEL SEARCH WITH THE T.U.C. GRID we ver our utilization of the Grid computa-

tion system residing in the Technical Uersity of Creté, for evaluating our parallelized OGR-algorithm

on a distributed computation platform, again with respecttnegl SpeedUp with respect to running it’
sequencial version on a single CPU covée gart with briefly introducing the concept of Grid systems.
We then describe the design and implementation of the algoritequted by each node on the Grid for
orchestrating the parallel solution of the O@Rfoblem using our algorithm and present resulting running
times for solving various instances of the O@Rroblem.

In Chapter 10FUTURE WORK, we lriefly describe a set of ideas which can possibly help in further
enhancing our work described heM/e describe har the value of the lowest possible length of an OGR
with n marks (defined ak(n) in Chapter 4) can be substantially increased (and thus be brought closer to
the actual length), by use of the Linear Programming [6] formulation described in [7] Additiomally
introduce our own Dynamic Programming [1] O®@Rsolution algorithm.We dscuss possible disadn-
tages of such an approach and we furthessitigate hev our parallelization of the search space (described
in Chapter 4) can be used in conjuction with this algorithm and what are the expected performance benefits
of this scenario.

2 hitp:/iwww.nividia.com/cuda
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CHAPTER 2

GOLOMB RULERS

In mathematics, a Golomb Ruler [5][8] withmarks (hamed after Solomon Golomb), can be defined
as a set of integer values, chosen so that all resulting cross differences (e.qg., differences between each pair
of values) are distinct. As illustrated in Figure 2.1,dahosen values, there are

g
20

resulting cross differences between thefhe number of marks of a Golomb Ruler defing dtder. The
aforementioned definition of a Golomb Rulposes no restriction as to whether the chosen values should
be positre a negdive. Howeve, as we will be seeing wer the following sections, Golomb Rulers of a-cer
tain form; the canonical form, find actual uses in various scientific fieldsccording to this form, a
Golomb Ruler corresponds to a desk ruler used for measuring distamdtisg the smallest of the set of
integer \alues be equal to zero, then all other (pegith — 1 values correspond to marks on a desk ruler
The largest of thosa -1 values (e.g., the last mark on the desk ruler) defines thesridgrgth. The
resulting desk ruler would thenveathe property that between each pair of marks, some af(the 1)/2
distinct cross differences can be measured as a dist&iocéhe remaining of this document, we will be
assuming to work with Golomb Rulers in the canonical form.

n-1
0+1+2+3+---+n-1=3% i=n(n-1)2=
i=0

A Golomb Rulers of a certain ordés said to be optimal, if there exists no other ruler of that same
order with a smaller lengthThat is, the last mark on the ruler (e.g., the n-th mark) is as small as possible.
For the remaining of this document we will be refering to Optimal Golomb Rulers using theiatbnre
OGRs. Anexample OGR of order 5 can be seen in Figure 2.2 A table with all OGRwedisd®o far can
be seen in dble2.1. Furthermore, when all resultingn(n—1)/2 distances a@ the set
{1,2,...n(n-1)/2}, the ruler is said to b@erfect. In ather words, a perfect ruler can be used to measure
all the distinct distances up tosittength. ltis trivial to see that a perfect ruler of a certain ordenvisyal

X1 X2 X3 X4 Xn
X2 — X100 X3 — X0 X4 — X3 [(Xn — Xp-10
X3 — X0 X4 — X2 [(Xn — Xp—20
Xs — X100 [Xn = Xn-3J
Xn — X100

Figure21. Visual representation of a setrointeger \aluesx,, X,, . ., X,, and the resulting(n — 1)/2 cross
differences.
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Figure22. An Optimal Golomb Ruler (OGR) of order 5 insittorresponding desk ruler representation
(with a length of 11).




n Optimal Golomb Ruler
1 0
2 01
3 013
4 0146
5 01491
6 0141012%
7 0141018233
8 01491522323
9 015122527 35414
10 016102326344153H
11 0141328334754647®7
12 02624294043556875 768
13 025253743597085 8998994
14 0462035525977 788689922127
15 042030575962 7600 111 123 136 144 145 151
16 0141126325668 7616 117 134 150 163 168 177
17 05717525667 80810D 122 138 159 165 168 191 199
18 0210225356 828389980 148 153 167 188 192 205 216
19 01625327200 108 120 130 153 169 187 190 204 231 233 242 246
20 0181168779416 121 156 158 179 194 208 212 228 240 253 259 283
21 022456 7782839520 144 179 186 195 255 265 285 293 296 310 329 333
22 01914437006 122 124 128 159 179 204 223 253 263 270 291 330 341 353 356
23 037176166919914 159 171 199 200 226 235 246 277 316 329 348 350 366 372
24 093337389722 129 140 142 152 191 205 208 252 278 286 326 332 353 368 384 403 425
25 0122939729146 157 160 161 166 191 207 214 258 290 316 354 372 394 396 431 459 467 480
26 013383 D4 110124 163 185 200 203 249 251 258 314 318 343 356 386 430 440 456 464 475 487 492

Table 2.1. All known OGRs as of December 201Bor n = 23 all OGRs hee keen discuered by the mas-
sively distributed computation effort orchestrated by the distribute@@dRproject.

optimal. Thesearch for an optimal ruler of a certain degree would then beaEmiito finding a perfect
ruler of that same dgee. Havever, it has been pren[9] there can be no perfect ruler with more than 5
marks. Thusperfection for a Golomb Ruler of worder n, is a sufficient condition for optimalitybut not
necessary.

2.1. Trivial Construction of a Golomb Ruler

Constructing ay (not necessarily optimal) Golomb Ruler withmarks is a trivial task. Consider the
following procedure for doing so, where deciding for théug of one mark at a time we can malre
there are no produced conflicting (e.g., equal) differences:

We <t the first mark to zeroFor each net i-th mark we set, we introdué¢enew differences. The
smallest of those mdy introduced differences, is the one betweenittle and thei — 1-th mark, (e.g.,
X;i — X;—1). If for every mark x;, we nake are this difference is bigger than the previously introduced
biggest difference (e.gx;_1 — X1 = X;—1), the resulting ruler will be a Golomb RuleA recursve formula
for deciding the values of marlks of a Golomb Ruler produced in this trivial manrem be expressed as:



Do i=1
T Xatxatl=2xg+l i>1

This formula havever, besides contributing to our insight relatito the problem of constructing a Golomb
Ruler, it does not guarantee optimality.

2.2. TheFunction G(n)

The functionG(n) denotes the length of wroptimal Golomb Ruler witm marks (e.g., of ordenm).
Fact is, we do not kne much about this function and the onlawto determine it value for a certaim, is
to actually find an of the optimal Golomb Rulers with marks. Accordingo the list of OGRs found so
far (mostly attributed to the work of distributed.net), we can see a p&{r9f up ton = 26 in Figure 2.3.

As observed in [10] by Dimitromanolaki§(n) seems to be bounded afsoly n?. At the same
time, we can she thatG(n) is dso bounded from beloby n(n - 1)/2:

Lemma2.1. G(n) = n(n—1)/2

Proof. Between the marks of a Golomb Ruler withmarks, there arexactly n(n —1)/2 distinct positie
integer diferences. Thebiggest of those differences equa&dn) = %, — X, If we assume
G(n) < n(n-1)/2, then according to the pigeonhole principle[11], sonferdiices hee © gopear
more than once. This, in turn, contradicts with our initial assumption that faliettites are dis-
tinct. O

2.3. TheScientific American Algorithm

The first of the algorithms for constructing Optimal Golomb rulers was presented in a Scientific
American article in December 1985[8Besides the number of marks this algorithm is also gen &s
input an upper bound to the rukeiength. Thissecond input parameter is supposed to express thesaller’
belief that the Optimal Golomb ruler to be found will certainly not be longer than that.

This algorithm consists of a procedure called "exhaust” which methodically generates candidate
rulers and of a second procedure called "cbeckhich checks if anof those rulers are GolomiWhen-
evea a Golomb ruler is found, it gets output and the search goes on in hope that another shorter ruler will be

G(n)

123456 7 8 91011121314151617181920212223242526

n

Figure 23. Plot of the functiorG(n) = x, — x; according to the list of OGRs found as of 2010. Not& ho
G(n) appears to be bounded from abdy n? and bounded from beloby n(n - 1)/2.



formed. Thais, on inputn andK, the exhaust procedurateusts the search space of all rulers defined by
n marks and a length of at mdst

The scientific american algorithm essentially performs a backtracking searchllanembers of
said search space. It tries to construct a Golomb ruler by placing edcmami to the shortest possible
distance from i8 previous adjacent mark, so that no conflicting cross differences are introduced by this
new mark.

2.4. TheToken Passing Algorithm

This algorithm [12] vas designed by professor Apostolos Dollas at theeiniversity. As with the
Scientific American algorithm, this algorithm also consists of a procedure for generating candidate rulers
and of a procedure for checking ifyarandidate is a Golomb ruler.

In contrast to the Scientific American algorithmniager, this algorithm does not try to construct a
Golomb ruler incrementally by appending one mark at a time at a suitable poRitithrer it tries all pos-
sible configurations of alh marks in a brute-force manneaintil one configuration is found that forms a
Golomb ruler The advantage of this algorithm is that it does not require an upper balusdfer the
length. Themethodical way of searching through configurations guarantees that the first Golomb ruler to
be formed will be also be Optimal.

2.5. TheShift Algorithm

This algorithm has been designed by professor Apostolos Dolas and his students aétbirizzuk
sity. In essence, this algorithm is an enhanced version of the Scientific American algorithm with respect to
the "checker" procedure. One enhancement is the fact that wherxthiethemark is appended, only the
new cross differences it introducesvgab be decled against all preexisting cross differences, instead of
recomputing and checking afll —1)/2 cross dierences. Asecond enhancement is the fact that the cur
rently constructed genent of the ruler is represented by means of a pair of bit vectors which allows for
checking if a candidate ruler is Golomb in a very efficient way.



CHAPTER 3

RELATED WORK

Our work is directly related to other scientific efforts aimed in cautirig to the efficient construc-
tion of Optimal Golomb rulersMost notable parallel methods for solving O@Rnclude the work of W
Ranking in [12] , the Golomb Engine (GE) project of the Technicaliddsity of Crete [13] and most
importantly the OGR project of the distributed.nejapization.

The purpose of Rankiswork was to design, implement and experimentalgiuate a parallel algo-
rithm for finding Optimal Golomb rulers. In particul&e initially performed an experimentalauation of
the Token Passing algorithm and the Shift Algorithm. Based on his comparison of tleedgdvithms, he
then goes on to design a parallel, fault-tollerant and restartable version of the Shift algbrithlty, he
then proceeds into implementing his parallel algorithm using the Mesaag@d Interface (MPI)[14] pro-
tocol. Finally he tien runs his implementation on a cluster até@®ukiversity and manages to pioneer the
discovery of a 19 marks Optimal Golomb ruler.

Research on constructing Optimal Golomb rulers in parallel has also been conducted under the con-

text of the Golomb Engine (GE) project of the MHL laboratory e€fnical Unversity of Creté. The GE
project focuses on designing and implementing a parallel algorithm for ©@RField-Programmable
Gate Array (FPGA)[15] machines. The latestadepment in that direction is the GE3 project, conducted

by Malakonakis under the context of his undergraduate thesis [15]. In his work, Malakonakis first intro-
duces a hardware (destined for an FPGA) architecture that implements the well-&hidt algorithm for
solving OGRn. He then enhances this architecture by introducing the ability to perform multiple shift
operations (see our description of the Shift algorithm) in parallel, in essence, introducing an FPGA design
of a parallel version of the Shift algorithririnally, he mncludes with measuring dedred performance of

his approach on certain FPGA models, for solving QGRith up ton = 15 marks. In particularunning

his parallel ersion of the Shift algorithm on a Spartan XC3S1000, Malakonakis was abledd&R+14

and OGR-15 in about 7 and 36 minutes respayti

The most fruitful effort rgarding discoery of Optimal Golomb rulers saf, comes from the OGR
project of distriluted.net. Thedistributed.net aganization is interne$ first general purpose distuted

computing project, founded in 1997, with the following mission stateément

"Three independent goals:wopment, deployment & adeagy to be prsued in the adincement of dis-
tributed computing."

The OGR subproject of thisganizatin is a massely distributed computing project, which is based on the
contritution of computational nodes by volunteers for solving the next biggest ©@&BRance. On
February 24 - 2009, distributed.net announced the wisc@f an Optimal Golomb ruler with 26 marks.
Volunteers around the world are able to download a program from gaeizations website. Thispro-
gram contacts specific distributed.net servers located all around the worldvamdadts the next "stub"
(essentially a search space piece of the current @@Rtance to be sobd). Upondownloading a stub,
this program then processes it with the very efficient Ferel .l @ARSP Engine (FLEDGE) search algo-
rithm, developed by researchers of distiied.net. Aftemprocessing a stub, this program answers back to
some server whether a Golomb ruler has been possible to form oAsaif February 2008, the task

! http://www.mbhl.tuc.gr
2 http://distributed.net



currently undertadn by project OGR is the disgay of a Golomb ruler with 27 marks and is expected to
last for about 7 years in total.



CHAPTER 4

BACKTRACKING SEARCH

Our main purpose in this thesis is to softvre OGRn problem with a parallel algorithm. This chap-
ter covers the design of our sequencial algorithm for OGRvhich we will subsequently go on to paral-
lelize in the following chapter.

In section 1 we formally state the OGRaroblem and introduce the GRRK subproblem and pro-
ceed to sho how lving OGR is essentially accomplished by solving multiple instances oGR-
That is, the core of this chapter is about solving then(IR-subproblem efficiently.

In sections 2 and 3 we design an efficient backtracking search algorithm for solvingkGRA/e
start by describing a brute force search algorithm, for betfgaiaing the logic behind solving GR-K.
We then introduce a backtracking search algorithm with lower codtylthan brute force and displayst’
superiority in performance throughperimental measurementsinally, we further enhance this back-
tracking search algorithm with a search space reduction technique called midpoint preclusion and with a
technique where search state is represented by means of a paiecfobstvas is the case with the Shift
algorithm explained in chapter ZAgain we present gnperformance enhancements througpeximental
measurements.

4.1. TheOGR-nand GR-n, K problems
Problem 4.1(OGR-n) Given positive integem, find and return an Optimal Golomb ruler withmarks.

Algorithm 4.1 (General OGR- algorithm)
Given positive integern:
1 CalculateL(n), some lower bound for the length of a Golomb ruler witharks
2 For each integeK = L(n):
3  Solve problem instance GR; K. If a Golomb ruler has been found :
4 return found rulerquit search
Problem 4.2 (GR-n, K) Given positive integersn, K, find and return a Golomb ruler with marks and
lengthK, or failure if that is not possible.
Algorithm 4.2 (General GR-, K algorithm)
Given positive integeran, K:
1 Letthe first mark fixed at distance zero
2 Let then-th mark fixed at distandé
3 For each possible configuration of marks between the first anuthenark:
4  If a Golomb ruler has been formed:
5 return ruley quit search
6 return failure
In Algorithm 4.1 we try a range of increasing candidate value&foj (an Optimal Golomb rules’
length) starting fronl(n). L(n) could be ay value that is preen to be a dbwer bound for the length of a

Golomb ruler withn marks. Thus] (n) defines the starting point of the search process and is chosen so
that the Golomb ruler to berentually found is guaranteed to be Optimal.

Note that Algorithm 4.1 will abays return a rulerOn the other hand, if a Golomb ruler withmarks
and lengthK does not exist, then Algorithm 4.2 will return failure.



In Algorithm 4.1, for as long al& remains too small, calls to Algorithdn2 will return filure. When
K gets large enough, we will & the first successful formation of a Golomb ruler by Algorithm4& W
will then knawv that G(n) equals the currerK value, as the first Golomb ruler to be formed is also guaran-
teed to hae the smallest length possible (i.e. be Optimal).

4.1.1. TheFunction L(n)

One way to encode a ruler is with a vector of integers x[1]rp ¥p such an encoding, the distance
where the-th mark is put is equal toi}[ Sincethe first mark is abays used as the start of the rubgd]
is fixed equal to zeroActually, L(n) is a lower bound for xfi], the distance where the ruletast mark is
put.

With the requirement that the ruler encoded by x[] is Golomb, we can calculate such a lower bound
for each mark x| based on the following observatiorveey subsection of a Golomb ruler is also a Golomb
ruler. That is, if x[1---n] forms a Golomb rulgrsubsections x[1--2], x[1---3], and so on, up to
X[1---n—1] must also be Golomb ruler8ut then, x[2], x[3], up to xj — 1] correspond to each ruler’
length respectely. Remember that the functid®(n) defines the optimal (shortest) length for a Golomb
ruler with n marks. V¢ can thus say that if we are looking for @ctor x[1- - - n] which forms a Golomb
ruler, we ae essentially looking for a vector wheré]x{= G(i) for 1<i < n—1 (assuming we hee knowl-
edge ofG(1) up toG(n - 1)).

One out of may possible ways to calculate(n) (a lower bound forx[n)), is by using the aforemen-
tioned lower bounds for x[1] up torxf 1], and a couple of other observations, all summarized bellow:

(1) Sinceeach mark is placed further from the\poeis one, we knwe that x[i + 1] >= x[i]+1. Asa
result, xp] >= G(n—-1) + 1.

(2) Accordingto the work of dimitromanolakis concerning the relation between Golomb rulers and
Sidon sets [10], another valid lower bound for the length gfGamlomb ruler withn marks gves
x[n] = n? - 2nyn+vn - 2.

(3) Inaddition to those last wvlower bounds, a third valid lower bound resulting from what we ha
shaved in chapter 2 is: ®] = G(n) = n(n—1)/2. Taking into account that there can be no perfect
Golomb ruler withn=5 (e.g. n(n—1)/2 cross differences cannotvepo the set of intgers
1,---,n(n-1)/2), we can increment this lower bound by one, for rulers with at least 5 marks:

On(n—-1)
2oty
_Dn(nz‘l)+1 n=5
0

Note that none of those lower bounds is necessarily the highesa result (for rulers with at least 5
marks), dexie tat the levest possible length, or in other words, the lowest distance the last mark can be set
at, resutls by taking into account the combination of the three aforementioned lower bounds:

O

x[n] = L(n) = maxSS(n -1)+1,n(n-1)/2+1,n>-2nyn+vyn- 25

(Eq. 4.1)

Summarizing, for alh marks of a Golomb ruler (where= 5), we can bound the distance each can
be set at from belw according to the following expression:

WG 1<isn-1
X[']ZEL(n) i=n
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4.2. BruteForce Sarch for GR-n, K

Now that we hae showed hav to calculate the minimumalues for the distance each mark can be set
to, let us proceed with the description of an inefficient, brute force search algorithm fgiKGR-

Consider the Program4.1 implementation of Algorithm 4.2, which searches for a Golomb ruler by
systematically visiting each member of the set-ofiark rulers with a gien length K.

On the left we can see the imperativasion while on the right we can see the resersigsion.
The imperatie veasion is of no practical value since the number of loops is hardcoded in accordance to
parameten. Howevae, it's purpose is to clarify what the recursivasion (depicted on the right) actually
does.

To sarch for a Golomb ruler in the setrefnark rulers with a certain lengt, we just hae  call
the recursie pogram with argumentsn(K). It will then perform a search procedure emglgnt to the
imperative dgorithm.

In Figure4.1 we can see a tree layout of the regrsills performed when calling
BRUTEFORCHED, 11). That is, when searching for a Golomb ruler between rulers with 5 marks and with a
length of 11. The hvest possible distances marks 2,3 and 4 can be set B(2ye 1,G(3) =4 and
G(4) =7 respectiely. In particular we @n see an animation [16] of th&eeution in rows of frames,
depicting snapshots of the recursion tree whemee check if [Xy, - - -, X,] is a Golomb ruler Each frame
depicts tvo dternative views of the same situation. The upperwidepicts at which node in the recursion
tree we are at the moment. The lowemvidepicts which ruler we are checking at this point, to see if it is
Golomb, with theRULERrow showing where the marks of the rulerveakeen put and th®IFFS row
showing, beneath each marksitistances to the marks thateaeen set before it.

4.3. BacktrackingSearch for GR, K

Enhancing the simple bruteforce algorithm, a more efficient approaatd e to perform a back-
tracking searchThat is, try to construct a member ruler of this space by placing one mark at a timg, ha

program BRUTEFORCEyperaTivE (K) program BRUTEFORCEM, K)
1 -- First and last marks a&rfixed. 1 -- Setm-+th mark at distance K
2 x[1]:=0 2 xm:=K
3 x[n]:=K
3 -- If manayed to st first mark.
4 -- Try all possible configurations for 4 ifm=1
5 --remaining n- 2 marks. 5 if x[1,---,n] is Golomb
6 for x[n—1]from G[n-1]toK -1 6 -- All marks placed successfully.
7 for x[n-2] from G[n-2]to x[n-1]-1 7 -- Output found Golomb ruler
8  for x[n—3]from G[n-3]to x[n—-2]-1
9 8 -- Try possible positions for next mark.
10 9 for K' from G[m - 1] to x[m]-1
11 for x[2] from GJ[2] to x[3]-1 10 BRUTEFORCEM-1,K")
12 if X[1,---,n]is Golomb
13 -- All marks placed successfully.
14 -- Output found Golomb ruler

Program 4.1. Brute force search implementation of Algoritdr2. Imperatie veasion on the left, recur
sive an the right.

11



11 11 11 11
6 6 6 6
3 3 3 4 3 4
1 12 121 1212
RULER: RULER: RULER! RULER:
1 3 6 11 2 3 6 11 1 4 6 11 2 4 6 11
DIFFS: DIFFS: DIFFS: DIFFS:
2 3 5 1 3 5 3 2 5 2 2 5
5 8 4 8 5 7 4 7
10 9 10 9
leaf: 1 leaf: 2 leaf: 3 leaf: 4
11 11 11 11
6 6 6 6
3 4 34 5 34 5 34 5
12123 121231 1212312 12123123
RULER: RULER: RULER: RULER:
3 4 6 11 1 5 6 11 2 5 6 11 3 5 6 11
DIFFS: DIFFS: DIFFS: DIFFS:
2 5 4 1 5 3 1 5 2 1 5
37 5 6 4 6 3 6
8 10 9 8
leaf: 5 leaf: 6 leaf: 7 leaf: 8
11 11 11 11
6 6 7 6 7 6 7
3 4 5 34 5 3 34 5 3 34 5 3 4
121231234 1212312341 12123123412 121231234121
RULER: RULER! RULER: RULER:
4 5 6 11 1 3 7 11 2 3 7 11 1 4 7 11
DIFFS: DIFFS: DIFFS: DIFFS:
1 5 2 4 1 4 4 3 3 4
2 6 6 8 5 8 6 7
7 10 9 10
leaf: 9 leaf: 10 leaf: 11 leaf: 12

Figure 4.1. Step-wise animation of the firstWesteps ofBRUTEFORCEWheren = 5.

in mind we vant it to be a Golomb rulerConsider the backtracking search program depicted on

Program 4.2for finding a Golomb ruler in the space of n-mark rulers withvendength K.

Looking at the imperate program, it might appear that we wacheck whether some ruler is
Golomb, mawg times more.In reality though, this check is actually performed yntimes less, because

some trees in the search space get prunned and their branafvegehehecked Figure 4.2.

For example, at the third frame of the animation depicted in Figure 4.2, we can see that as soon as the
second mark is put at distance 3, it introducssaitiss diference of 3 to the third mark which is put at dis-

tance 6. This cross dirence equals the value of the second marks, which is the samesnatbsi$' difer-

ence to the first mark which represents the start of the réikea esult, there is no meaning in using con-

figuration [3,6, 11]furthermore. Subtre€, 3)gets prunned and after backtracking wevena to subtree
(2, 4)at the next frame, and so on.
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program BACKTRACKmperaTIVE (K) program BACKTRACK(M, K)
1 -- Set first and last mark. 1 -- Setm-+h mark at distanc&.
2 x[1]:=0 2 xim:=K
3 x[n]:=K
3 if xfm,m+1,---,n]is Golomb
4 -- Try all possible configurations for remaining 4 if m=2
5 -- n—2marks, backtracking when necessary. 5 -- All marks placed successfully.
6 for x[n—1]from G[n-1]JtoK -1 6 -- Output found Golomb ruler.
7 if x[n-1,n] is Golomb 7 else
8  for x[n—2] from G[n-2]to x[n—1]-1 8 -- Backtrak to previous mark.
9 if Xxin—-2,n-1,n] is Golomb 9 return
10
11 10 -- Setting them-th mark atK is good.
12 for x[2] from G[2] to x[3]-1 11 -- Move on to the next mark.
13 if X[1,---,n] is Golomb 12 for K' from G[m-1]to x[m]-1
14 -- All marks placed successfully. 13 BACKTRACK(M-1,K")
15 -- Output found Golomb ruler.

Program 4.2. Backtracking search implementation of Algorithm 4.2, Impeeatiesion on the left, recur
sive an the right.
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11 11 11 11
6 6 6
3 3 4
RULER: RULER: RULER: RULER:
11 6 11 3 6 11 4 6 11
DIFFS: DIFFS: DIFFS: DIFFS:
5 3 5 2 5
8 7
node: 1 node: 2 node: 3 node: 4
11 11 11 11
6 6 6 6
3 4 3 4 3 4 3 4 5
1 12 123 123
RULER: RULER: RULER: RULER:
1 4 6 11 2 4 6 11 3 4 6 11 5 6 11
DIFFS: DIFFS: DIFFS: DIFFS:
3 2 5 2 2 5 1 2 5 1 5
5 7 4 7 37 6
10 9 8
node: 5 node: 6 node: 7 node: 8
11 11 11 11
6 7 6 7 6 7 6 7
3 4 5 34 5 3 34 5 3 4 34 5 34 5
123 123 123 123
RULER: RULER: RULER: RULER:
7 11 3 7 11 4 7 11 5 7 11
DIFFS: DIFFS: DIFFS: DIFFS:
4 4 4 3 4 2 4
8 7 6
node: 9 node: 10 node: 11 node: 12

Figure 4.2. Step-wise animation of the firstWesteps ofBACKTRACKING whenn =5 (see also Figure 4.1).

This very prunning of the search space is what makes backtracking rficienethan bruteforce
search. Moreger, we no bnger check complete n-mark rulers for being Golomhen we artie & a
node in the search tree, we lanthat up to this point, the marks thatvhaeen set form a Golomb ruler
Thus, each time we only need to check if the mark we just set upon arriving at this node, introduces dis-
tances which alreadyist. A mark introduce®(n) new dstances, and each time there @&@?) aready
existing distances. The compigy of comparing the distances introduced by a mark we just set, to the dis-
tances that already existed, is tf@@?®). Onthe other hand, in bruteforce search, upovirzaformed a
complete ruler (along a tree branch), we perform this check for each orerefitrks, thus with a com-
plexity of O(n*). Thatis, the compleity of performing this check upon arriving at each node of a branch,
is the same with performing anevall check upon having formed a complete branch.

In Figure 4.3 and dble 4.1we can see an experimental confirmation, of the anticipated superiority in
performance, of backtrackingye bruteforce searching. Measurements are based on our own C implemen-
tation of the two searching methods, for solving OGRnstances @er a range of increasing values.
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Figure 43. Execution times of brute forceewsus backtracking for finding a Golomb ruleemincreasing
n values.

n
7 8 9 D
BRUTEFORCE 0.008 0.373 13.992 604.000
BACKTRACK 0.002 0.023 0.208 1.780

Table 4.1. Values of graph on Figure 4.3.

4.3.1. Seach Space Reduction

One basic property of Golomb rulers, is that each Golomb ruler has a corresponding mirror image.
For constructing the mirror image of some Golomb rudappose we place a mirror at the first mark on the
left end. The projection of the ruler on the mirror corresponds to thesruteror image which is a
Golomb ruler too, since &'marks measure the same set of croseminces. IrFigure 4.4we can see an
example of hav to construct the mirror image of avgh Golomb ruler where we use one of the Optimal
Golomb rulers found in the last search example with5 marks. Itcan be preen, that except for the case
of the [0,1] Golomb rulerthe mirror image is alays a different ruler than the originaBince each
Golomb ruler has one mirror image, for aegi number of marks, there is avays an &en number of
Optimal Golomb rulers that can be constructed.

01 4 9 11
[
place mirror

0 2 7 10 11
\ \ \ I

Figure4.4. Each Golomb ruler has a mirror imag&chematic representation of the Golomb ruler
[0,1,4,9, 11nd the construction of &'mirror image [02, 7, 10, 11].Both rulers measure the same set of
cross differences.
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However, Snce given a Golomb ruler the construction of the mirror image is a trivial task, we might
as well skip searching for the mirror imagd=dlowing, we present ta/ techniques for skipping mirror
images in our search, thus reducing the search space.

First Mark Preclusion
According to the mirror images we described earifem Golomb ruler starts with [Q,- -], that is,
the second mark measures distance one from fierieg, then its mirror image cannot he it's
second mark at that same position. If in our search wer gensider rulers which ka their second
mark set to one, we are guaranteed to skip either the original or the mirror image of Golomb rulers
which indeed hae (in their original or mirror image) their second mark at position one.

Midpoint Preclusion
This technique is also based on the concept of mirror images and/evechally used it to reduce
the search space of our own algorithm. It is based on the concept of the ‘geometric center’ and the
‘middle mark’ of a ruler The geometric center of a ruler with a certain lengthr K is at distance
K/2 and the middle mark of a ruler withmarks is marki/2.

Now consider a ruler with a certain lendthand it's mrror image. If the middle mark of the original
ruler is placed after &' gecometric centerthen it must be before the geometric center for the mirror
image and viceersa. W can thus limit in our search, the middle mark to be either before or after
the geometric centeiThis essentially cuts the search space in half.

However, when the desired number of mankss even, the middle mark might as well be exactly at the
geometric centeifor both the original and the mirror image of Golomb rulers in the search dpaitet
case, both the original and the mirror image of a Golomb ruler might be fAAma result, midpoint
preclusion is not anticipated to be afeefive a ®arch space reduction measureffa@ven, as it is forn
odd.

Furthermore, note that midpoint preclusion cannot be used in conjuction with first mark preclusion.
Each method is guaranteed to exclude from the search either the mirror or the original image of certain
Golomb rulers in the search spadéowever, when used in conjuction, it might be the case the the mirror
image is excluded by one of the methods, while at the same time the original inregedscas well, by
the other method.

Enhancing Program 4.2 so that it applies the Midpoint Preclusion reduction technique, we will call it
BACKTRACKINGMP and in Figure 4.5 we can see the performance incre@seACKTRACKING.

4.3.2. BitVector Representation

So far we hee been using intger vectors to represent the current state of the backtracking search,
e.g. the constructed segment of the candidate Golomb ruler and the set of resultingferesself W
will now consider an alternat, more efficient representation, utilizing bit vectors instead of integer v
tors.

The concept of a bit vector essentially maps to the concept of compuittens of arbitrary length,
that is, of an arbitrary number of bitsVith the exception of FPGAs where we can build (and perform bit-
wise operations on) an actuagister of arbitrary length, in computer architectures where the word size is
constant (e.g. 32 bits for IA32), a bitator can be implemented as an array ofds. Thats, in a system
programming language such as C, a bitter data type with the ability to represé&hbits, can be repre-
sented as an array = K/32 of intgers. All bitwise operations such #&ND,OR,XORhat can be per
formed between gisters, can also be performed, pair-wise, across the integer elements which comprise the
bit vector The state of the search process at each point in time is defineédabyector which holds the
golomb ruler sgment constructed so far and Bywhich holds the set of cross differences between the
marks of that golomb ruler segment.

As an alternatie © vectorX, we @n use a bitectorlist to maintain the golomb ruler segment con-
structed so far in the search. we start with all bitsinturned of. wheneer we st the next mark to a
distancex;, we turn bit numbelx; of list on.
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BACKTRACK () VS. BACKTRACKMP (x)
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Figure 45. Applying Midpoint Preclusion roughly halves the search space (and correspondingly the re-
quired eecution time).

As an alternatie o D, we @n use a bitectordist to maintain the set of cross distances between the
marks of the golomb ruler segment constructed so far in the se&geln, for each elemert; of D, we
turn thed;-th bit of dist on. Notethat having set the last mark to some distaR¢cboth thelist and dist
vectors will need to be exactly bits long.

In each step of the backtracking search algorithm, we check if we can set some nexainuhsk
tancex; without introducing conflicting cross distances to the marks thet #i@eady been set. In particu-
lar, we mmpare then—i cross diferences it introduces, to the cross differences that exist between the
marks that hee dready been set. This enhancedrsion of our backtracking program isvai in
Program 4.3.

In Figure4.6 we can see an animation of this procedure, this time representing the marks we ha
already set and their cross differences, usindishanddist vectors correspondinglyUpon setting mark
at distancex;, shifting left thelist bit vector byx;, we reveal it's aoss diferences to the marks before if.
the result of arAND operation between the shiftést and the currendlist is not zero, we hee introduced
cross distances that already existedist, thus we hae o backtrack.

In Figure4.7 and dble 4.2we can see ho performance of the backtracking search increases when
utilizing the bit vector representatiorDver the following sections, the term backtracking search will be
refering to the grsion of backtracking search which utilizes the midpoint preclusion technique as well as
the bit vector representation.
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program BACKTRACKyp gv(mM, K)
1 -- Setm-+h mark at distanc& (set K-th bit).

2 xm:=K
3 list[K]:=1
4 -- Che cross distances of m-th mark to rest of marks against dist[]
5 if (listfK +1,--] ndist[] != 0) or (distK] !=0)
6 -- mbits set in list[] form a Golomb ruler so far.
7 ifm=2
8 -- All marks placed successfully.
9 -- Output found Golomb ruler.
10 else
11 -- Backtradk to previous mark (unsei-th bit).
12 listK]:=0
13 return

14 -- Setting them-th mark atK is good.

15 -- Recod aoss distances of m-th mark in dist[]
16 dist[]:=dist[] Vlist{K +1,- -]

17 -- Move on to the next mark.

18 for K' from G[m - 1] to x[m]-1

19 BACKTRACKypav(Mm—1, K')

Program 4.3. Enhanced and final version of our backtracking search implementation AlgdrZhm
BACKTRACKyp gy. Search state at each instant is encoded using the pair afdharslist anddist, so hat
checking if the currently formed ruler segment is Golomb onlggak bitwise and\) operation between
list[] anddist[].
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Figure 4.6. Step-wise animation of the backtrack searchiffer5), using theLIST andDIST bit vectors.
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BACKTRACKMP (00) vs. BACKTRACKY (X)
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Figure 4.7. Utilizing the bit \ector representation for performing the backtracking search, induces a con-
siderable increase in performance.

n
8 9 10 1 12
BACKTRACKMP 0.007 0.142 0.694 36.800 246.815
BACKTRACKM? 0.004 0.021 0.141 3.560 15.130

Table 4.2. Values of graph on Figure 4.7.

20



CHAPTER 5

SEARCH SPACE PARTITIONING

This chapter ceers the core aspect of our worlar@tioning the search space of each GR- prob-
lem instance into an arbitrary number of pieces, that in turn contain an arbitrary number of candidate
Golomb rulers. This allows for the parallel solution of @R« (Problem 4.2and by net-effect, of OGR-
(Problem 4.1)pn an arbitrary numbe? of computational nodes.

We gart with describing our search space partitioning method implemented by algbtakeriece
in sections 1 and 2We mntinue with describing a paralleéssion of Algorithm 4.1 and Algorithm 4.2 in
section 3, accomplishing our main goal in this thesis which is to design a parallel algorithm for thre OGR-
problem. Theemaining chapters of this thesisventhe experimentalvaluation of the parallel algorithm
developed in this chapter.

5.1. PRartitioning the GR-n, K Search Space

As we hae dready seen, the search space of arGR-problem instance can be represented as a
tree (Figuret.1). Eachbranch corresponds to a ryleandidate for being GolombAlternatively, we can
view the search space as the sequence of (candidate) rulers resulting from a Depth-First-Seraadtofra
the tree (Figur.1). Rartitioning the search space into pieces is\aigiit to partitioning this sequence of
rulers into pieces.

Consider we h&e a &t of computational nodes and we feed them with search space pieces, so that
the search is being performed in parall&@hose nodes might not be able to record shapshots of their
progresseery once in a while (e.g., CUBthreads).

The process of finding an Optimal Golomb ruler wheag bigger than say 22, cauea take years to
complete. Thigneans thatvery once in a while we should be saving snapshots of the search prdgress.
case of failure, we wuld then be able to resume the search from the last snapsidhis reason, the
pieces being fed to the nodes should be small enough, so that progress can be remgrtiet e node

11

-
ﬂ\ /N %\ %\
AN A A AN A AN AN A AN

121231234121231234123451212312341234512345¢612123123414

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
6 6 6 6 6 6 6 667 77 7777777777788 38288888888238828888888999999999
33444555533 44455556¢6¢6¢6¢6334445505%5¢66¢6¢6867777773344455%5¢5
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leaf: 52

Figure51. Representation of (a portion of) the search space of instance BRx$ a tree (upper) and as a
sequence of rulers (lower).
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finishes. Thesize of the pieces should be controllable, so that we coutaastimate of hav much time
is required for each node to finish.

That is, haing P computational nodes, we should not feed them the whole search sgatarge
pieces. Theearch space should be distributed in yraarts withP small pieces each.

Another reason whwe should not partition the whole search spacéitarge pieces, is that if the
number of gailable computational node® , increased, we would not be able to feed the medes. V&
should for example, feed each node that finishes before the others, witlpi@ees insteading of leing it
idle (e.g., GRID nodes).

Let us nev focus our attention back on partitioning the search space, e.g., the sequence of candidate
(for being Golomb) rulers, with marks and someggn length K.

Consider an algorithnMakePiecéstart, size: N" - N" , that takes as argument some rulgart
and an intger size. It returns the rulerend whichis size positions afterstart, in the sequence of rulers
we defined before.

We know that the sequence ofn-mark rulers with length K starts with ruler
[0,G(1),G(2),---,G(n-1),K] and thus we can start the partitioning from this ruM¥e produce consecu-
tive peces of equal size (as seen on Figure 5.2), where the start of the next piece is right after the end of the
previous piece. Each piece we produce, we can for example append it to the part of pieces we are preparing
for the computational nodes, or feed it to some node that just finished processing some oth@fep@ne.
detect if the search space cannot provideraore pieces, by checking if the end of the last piece (e.g., the
last end rulerpquals the last ruler of the sequence, which iK[6(n-1),K - (n-2),---,K - 1,K].

When the search space gets exhausted, we can for example go on to the next search-spade of
rulers with lengthK +1 .

5.2. TheMakePiecéstart, size Algorithm

As we hae en sodir, we @n use this algorithm to create consemufieces of the search space, of
an arbitrary size.

Recapitulating, we sathat the search space of candidate Golomb rulersnamtiarks and lengtk,
is defined by a pair of values,(K). We saw that this space can be represented as a tree where each branch
forms a candidate Golomb ruler dternatvely, as a squence of candidate Golomb rulers, as a result of a
Depth First Search tvarsal of the tree (Figuke1). For partitioning it into pieces, it is ceenient to viev
the search space as a sequence of candidate Golomb rulers (Figure 5.1).

The algorithm MakePiecéstart, size , takes as argument a rulestart andan int@er size and
returns the ruler that is locatesize positiondater in the search spac&his way, we @an define a piece of
the search space that starts at ridtart , ends at the returned ruler (sand), and containssize consecu-
tive wlers in between.

Let us nav obsene the progression of the rulers from the lefvénds the right (e.g., teards the end
of the search space), in the example in Fi§ute We can say that each ruler is a number of a numbering
system where the \ger marks are the least significant digits and the upper marks are the most significant
digits. Thatis, between tw rulers, starting from the uppemnterds the lower marks, the one that has the
first bigger mark, is definitely furtherw@rds the end of the search space.

Consider the functiorTreeSizém, v)* which returns the size (e.g., number of branches), of a subtree
(m, v) of the search space.

Subtree i, v) starts with ruler (e.g., i§ leftmost branch is) [@(2),---,G(m-1),v] and it ends at
(e.g., its rightmost branch is) ruler [@,-(m-1),v-(m-2),---,v-1,v]. Essentially the function

This functions implementation is not gén here. Animplementation of this function is based on the theory behind the back-
tracking search algorithmWworst case complexity asvgn in Appendix A.
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start — {0,G(1),---,G(n-1),K}

!

end — MakePiecéstart, size

!

Use piecegtart, end)

Search space
exhausted

NO

IncreaseK

start — MakePiecéend, 1)

Figure52. The partitioning of the search space in pieces of equal size, usingldkePiecéstart, size
algorithm.

TreeSizém, v) evaluates the nested summation of Eq.12.1.

Starting from some ruler start[1,-, n], we want to see loto transform it into a ruler end[1; -, n],
that is locatedsize positions later in the search space.

We dart of changing the lower marks and wotbwards upper marks, keeping track of the distance
coverered so far as we me towads the end of the search spa&elov we will see hav the algorithm
MakePiecéstart, size works, following one by one the steps of atmmple based on the search space
depicted in Figure 5.1.

The first mark albays equals zero and it ve changes. Assumewe begin with ruler
start = [0, 2, 4, 7, 11]and want to ceer a dstance ofsize= 27.

We gart with increasing the second mark:

11 [11]
7 [7]
4 [4]
2 ->13]
0 [0 ]
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So far we hee overed a total distance dfreeSiz€, 3)=1.

Next, we cannot increase the second markreore. W\ havereached ruler [(B, 4] which is the end
of subtree (34). Thus,we more m to increasing the third mark from 4 to 5 and enter subtree (3, 5), that
extends from [01, 5]to [0,4, 5]:

11 [11] [11 11]

7 [71] [7 71
4 [4] ->[5 5]
2 -> [3] [1 4]
0 [01] [0 0]

We havecovered a distance OfreeSiz€2, 3)+ TreeSiz€3,5)=1+4 =5.
Then, we increase the third mark from 5 to 6 and enter subtree (3, 6):
11 [11] [11 11] [11 11]

7 [7] [7 71 [7 71
4 [4] ->[5 5] ->[6 6]
2 -> [3] [1 4] [1 5]
0 [0] [0 0] [0 0]

We havecovered a distance dfreeSiz€2, 3)+ TreeSiz€3, 5)+ TreeSiz€3,6)=1+4+5=10.

Next, we cannot increase the third marlymore. W\ havereached ruler [(, 6, 7]Jwhich is the end
of subtree (47). Thuswe moe m to increasing the dourth mark from 7 to 8, and enter subtree (4, 8), that
extends from [01, 3, 8]to [0,6, 7, 8]:

11 [ 11] [11 11] [11 11] [11 11]
7 [7 ] [7 7] [7 71 ->[8 8]
4 [4] ->[5 5] ->[6 6] [3 7]
2 -> [3] [1 4] [1 5] [1 6]
0 [0] [0 0] [0 0] [0 0]
We have covered a distance of

TreeSiz€, 3)+ TreeSiz€3, 5)+ TreeSiz€3, 6)+ TreeSizé4, 8)= 1+4+5+20=30. Thisis more than the
distance we wanted towd, size=27. Thatis, ruler [0,6, 7, 8, 11]is 30—27 =3 positions later than the
ruler we are looking forNow that we hae surpassed the distance we wanted teecove can go one step
back where we had eered a total distance of 10, and restart the whole process v@byraiming to cover
the distance 27 10= 17, starting from right after where we reached.

At the previous step, we had reached ruleb[@, 7]that is the end of subtree @, We gdart right
after that, at the start of subtree (4, 8), estart = [0, 1, 3, 8],with increasing the second mark:

11 [11]
8 [8]
3 [31]
1->1[2]
0 [0]

We havecovered distancdreeSiz€, 2)= 1.

Next, we cannot increase the second mark anymore, asweedsched ruler [®, 3] which is the
end of subtree (3). Thus,we moe m to increasing the third mark from 3 to 4 and enter subtre®,(3,
that extends from [Q,, 4]to [0,3, 4]:

11 [ 11] [11 11]
8 [8] [8 8]
3 [3] ->[4 4]
1->[2] [1 3]
0 [0] [0 0]

We have covered distanceTreeSiz€2, 2)+ TreeSiz€3,4)=1+3 =4. Next, we increase the third mark
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from 4 to 5 and enter subtree (3, 5):

11 [11] [11 11] [11 11]
8 [8] [8 8] [8 8]
3 [3] ->[4 4] ->[5 5]
1->[2] [1 3] [1 4]
0 [0] [0 0] [0 0]

We havecovered distanc@reeSiz€, 2)+ TreeSiz€3, 4)+ TreeSiz€3,5)=1+ 3 +4 = 8. At this point, we
repeat that our tget is to ceer distance size=17. Theremaining steps will not be described in detalil,
however they will be reported below:

We enter subtree (3, 6):

11 [11] [11 11] [11 11] [11 11]
8 [8] [8 8] [8 8] [8 8]
3 [3]->[4 4] ->[5 5] ->[6 6]
1->[2] [1 3] [1 4] [1 5]
0 [0] [0 0] [0 0] [0 0]

We havecovered a total distance of
TreeSiz€, 2)+ TreeSiz€3, 4)+ TreeSiz€3, 5)+ TreeSiz€3,6)=1+3+4+5=13
We enter subtree (3, 7):

11 [11] [11 11] [11 11] [11 11] [11 11]
8 [8] [8 8] [8 8] [8 8] [8 8]
3 [3]->[4 4] ->[5 5] ->[6 6] ->[7 7]
1->[2] [1 3] [1 4] [1 5] [1 6]
0 [0] [0 0] [0 0] [0 0] [0 0]

We havecovered a total distance of
TreeSiz€2, 2)+ TreeSiz€3, 4)+ TreeSiz€3, 5)+ TreeSiz€3, 6)+ TreeSiz€3, 7)
=1+3+4+5+6=19
Again, we hae surpassed byl9-17=2 theadistance we wanted towa. Thus, we go back to the pieus
step again, starting right after ruler §06, 8, 11]that is the end of subtree &, We restart recursely
from the start of subtree (3,7), e.gtart =0, 1, 7, 8, 11] wanting to coer a dstance of19-17=2. We
increase the second mark:

11 [11]
8 [8]
7 [7]
1->[2]
0 [0 ]

We havecovered a distance dfreeSiz€2, 2)= 1. We increase the second mark again:

11 [11] [11]

8 [8]1 [8]

7 (71 [7]

1->[21]1->1[3]

0 [0] [0]
We havecovered a total distance dfreeSiz€, 2)+ TreeSiz€, 3)= 1+ 1 =2, which equals the distance
we wanted to oeer.

Finaly, we find out that forstart = [0, 2, 4, 7, 11] after size= 27 places, there is ruldf, 3, 7, 8, 11],

as can be confirmed by visual inspection of Figure 5.1.

The MakePiecealgorithm is actually fairly simple and is depicted in Algorithm 5.1.
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algorithm MakePiecéstart[1, ... , n]size
1 end[l,:---,n]:=start[l,---,n]

2 forifrom2ton-1

3 -- For increasing values of markenter subtree (i, end[i]).
4  for endj] from endj]+1 to endj + 1]-1

5 prev:= cur

6 cur :=cur + TreeSizé, end[i])

7 -- Have we surpassed the desired distance?

8

9

if cur > size
dart[1,---,n]:=[0, G[1], ... , G[ - 1], end]], startf + 1], ... ,startf]]
10 return MakePiecéstart[1, - -, n], size— prev)

11 If cur =size
12 return end[1, --,n]

13 -- Size exceeds the end of the skapace return the ending ruler.
14 return [0, endp]-(n-1), endp]-(n - 2), ..., end{)]

Algorithm 5.1. This algorithm takes as input some ruler start[1,n] and a scalasizeand returns the
ruler end[1; - -, n] which issizepositions later in the search space.

5.3. AParallel OGR-n Algorithm

We havein so far described an algorithMakePiecdor creating the next piece of the search space of
ary GR-n,K instance. Théoundaries of each piece are defined by a tuple of rulers (start[d],
end[1, --,n]).

Assuming we hae P computational nodesvalable, consider the following parallel version of
Algorithm 4.1for OGR~:

Algorithm 5.2 (Parallel OGR-n algorithm)

Given positive integern:

1 CalculateL(n), some lower bounfibr the length of a Golomb ruler withmarks.
2 Select search space piece sz

3 For each integeK = L(n):

4  While GR-n, K search space has more pieces:

5 Create nexP pieces of sizeizeusing MakePiece

6 For all created pieces, do in parallel:

7 Solve problem instance PIECE-GR-K on some computational node.

8 If at least one ruler has been found,

9 return ary found ruley quit search.

Problem 5.1 (PIECE-GR-n, K) Given positive integersn, K, and piece boundaries defined by pair of

rulers start[1;- -, n], end[1, - -, n], find and return a Golomb ruler withmarks and lengtiK within piece
boundaries, or failure if that is not possible.

Algorithm 5.3 (PIECE-GR-n, K algorithm)
Given positive integersn, K and rulers start[1, -, n], end[1, - -, n]:
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1 Letthe first mark fixed at distance zero

2 Let then-th mark fixed at distand¢

3 For each possible configuration of marks between the first anatthenark, within piece boundaries:
4  If a Golomb ruler has been formed:

5 return ruler, quit search

6 return failure

In Algorithm 5.2, we consume each GRK instance in multiple rounds &f pieces each. All cre-
ated pieces ha the same size, although this is not necessarily what has to be done in generdl|asthe
Piecealgorithm allows for calibrating each piesaze according to circumstances.

In Algorithm 5.3, we doxactly what we did in Algorithm 4.2, except the search is confined between
the given piece boundariesThis algorithm can be implemented by the prograwergin Program 4.3,
slightly modified so that the list[1; -, K] vector is kept between thevgh piece boundaries.
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CHAPTER 6

PARALLEL AND DISTRIBUTED COMPUTING

The common characteristic between parallel and distributed computing is thatathdoth be
defined as a form of computing where multiple calculations are carried out simultanékhislyorm of
computing results from the principle that big problems, can oftenviidediinto smaller ones, which can
then be solved in parallel across multiple computational nofles.computational nodes can range from a
single device with multiple processing cores to a network of independent computers.

Even though there are maamilarities between the goal of parallel and distributed computing there
are also subtle differences between théthese tw different terms are often — incorrectly — used syn-
onymously.

The term parallel computing typically refers to the existence of multiple computational nodes within
one machine, with all nodes being dedicated to tleeatl system collectiely at each time. The term dis-
tributed computing refers to a group of separate machines, each one contributing computational cycles to
the overall system, ger a retwork, over time.

The following quote provides a clear distrinction between parallel and distributed computing:

““Parallel computing splits an application up into tasks that)aeuted at the same time, whereas distrib
ed computing splits an application up into tasks that eeeuéed at diferent locations, using different re-
sources.[17]

6.1. Problems for Parallel and Distributed Computing

Paallel and distributed comptuing cannot be used to speed up the solution of all kinds of computa-
tional problems.Furthermore, problems that are indeed suitable for parallel and distributed computing ben-
efit in varying degrees depending on their type.

Understanding the nature of data dependencies of a problem is fundamental for solving it in parallel.
There are problems that consist of a long chain of dependent calculationsvehai ba performed in a
certain orderfor example, the problem of calculating the fibbonacci sequeihbe. solution of such
"purely sequencial" problems, whenyrappear cannot benefit from parallel and distributed computing.

Most problems consist of serial segments and from segments that can be partitioned into subproblems
that can be solved in arder and then get combined to form a single final result.

However, it is usually necessary that computational nodes cooperate by communicating in order to
solve the overall problem correctly Depending on the nature of the problem, it might be necessary that we
have frequent communication between the nodes (fine grained parallelism), on the other hand, required
communication might be reladly infrequent (coarse grained parallelism).

Note that for the case of distuted computing, communication between computational nodes is
much more gpensve tan for the case of parallel computing, in terms a¥ hauch it slows down werall
computation. Irdistributed computing, communication is performed through w stedium such as a net-
work, while in parallel computing, communication is usually performed through a high speesirte by
definition, computational nodes reside within the same device.

For this very reason, problems that demand fine grained parallelism are suitable for parallel comput-
ing, while problems that demand coarse grained parallelism can benefit from both parallel andedistrib
computing.
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However, another way of distinguishing between types of problems, is between problems that admit a
data parallel solution and problems that admit a task parallel soliRroblems that admit data parallelism
are tose where some processing is appliesl @ wide range of datums. The processing of each single
datum is done on some corresponding computational node. Problems that admit task parallelism are those
where the logical procedure is what actually gets partitioned between computational nodes and there is no
required distribution of datums across nodes.

Note that a data parallel problem does not necessarily require communication between computational
nodes. Br example, consider we just want to apply a xor operation between the pixels of a pair of huge
images. Thishowever, does not render the problem suitable for distributed computing, because it is
required to transmit a lot of data to the nodes acrossvensalium.

On the other hand, a problem that does not require such audistribf data and also no communi-
cation between the nodes, while suitable for digted computing, is usually not suitable for parallel com-
puting. Usuallyhighly data parallel problems require the application of some simple, lightweight process-
ing over a wide range of datumsData parallel problems on the other hand, do not requyreiatribution
of data to computational nodes, but as a tradeoff, require the application of axcamdpleeay (in terms
of computational resources anxkeution path variation) process, across computational nodes.capa-
bility of a computational node for the case of parallel computing, is limited in comparison to the sophisti-
cated architecture of a modern procesdarus, computational nodes in parallel computingakes cannot
handle such he&g procedures as well as a distributed computing nodes can. This observation, as we will
see in the process, is highly relatio this very thesis.

No interprocess communication problems can be broken further down mtnltvcategories: para-
metric and data parallel problemA.parametric problem is an embarrassingly parallel problem that needs
to be calculated multiple times with fdifent parametersi-or example a physical simulation may require
the same calculations applied to the same data with different starting parameters as a probliten get.
multiple calculations ha accurred, post processing may be required in order to chose the best fitting result
or produce an agggetion of results. A data parallel problem is one where the data aealg divided
between processing nodes before the same algorithm is appheddifference to plain embarrassingly
parallel is that the computation amount mayydepending on which data are allocated. After computa-
tion has finished post processing is usually required to combine the result set.

According to what we hee cefined so dr, the way we parallelize the problem of constructing OGRs
by partitioning the search space, wats it to a pure embarassingly parallel probleBommunication
between processing nodes is not required and other than the start and the end of each piece, there is no need
to feed the computational nodes witty anbstantial amount of data. The processing of each search space
piece can be performed in isolation on each ndtigthermore, it is of the parametric type, since all nodes
execute the same algorithm, each with different parameters, e.g., each on a different search space piece.

6.2. Types of Parallel and Distributed Computing

Flynn’'s taxonomy [18] is a classification of computer architectures that is also regularly used to clas-
sify algorithms as well Figure 6.1.

Single Instruction, Single Data refers to a architecture that consists of a single processing unit operat-
ing on a single stream of data withougarallelism whatsogr. This is analogous to an early personal
computer or a classic Von Neumann architecture.

Single Instruction, Multiple Data is an architecture where a single stream of instructions are applied
to multiple streams of data simultaneouglyamples would include a processor optimised for array based
operations or a graphical processdhe data parallelism model fits SIMD architectures well.

Figure6.1. Flynn's taxonomy of computer architectures.

29



Multiple Instruction, Single Data is an architecture where multiple streams of instructions are applied
to a single stream of data. Of the taxonpthis is the rarest seen applied, as only the most fault tolerant
designs require separatelyd®ped systems operating to provide a consensus result. Examples are found
in aerospace applications such as flight control systems.

Multiple Instruction, Multiple Data is an architecture of multiple operating processmisng on
multiple streams of data. Multi threaded programming is often MIMD and distributed systems, where asyn-
chronous operations by multiple processors on separate data, are aahaplee Thetask parallelism
model fits MIMD capable systems well, such as computing clusters.

6.3. MeasuringPerformance Gain

In parallel and distributed computing there ar® #ementary measures called speedup afid ef
cieng that allav the practitioner to compare Wwathe system is arking against theoretical ideal3.he
measures of speedup anficééncy can quickly allev us to determine the scalability of the system omwho
well it will continue to perform as more nodes and tasks are added.

Speedup is the ration of theapall time needed to sadvthe problem serially (on one nodeyepthe
time needed to sadvit in parallel, onP nodes, after having partitioned it.

serial ecution time

Speedup parallel eecution time
Efficiency= SpeTedup

In an ideal case, after having partitioned and distributed the problem &msputational nodes, we
would anticipate to hae a peedup ofP and an diciency of 1. Howeva, for various reasons, most of the
time this is not the case.

This ideal measure is kmm as linear speedup and is often included on speedup graphs as a baseline
for which the actual speedup measurements per number of processing elements is cowipared.
speedup is on the y axis and and number of processors on the x axis, linear speedup avitraight line
at 45 degrees between theesxFigure 6.2: Hoever, for several reasons, most of the time, parallelization

Linear Speedup

300

200

Speedup

100

0 100 200 300

Number of Computing Nodes
Figure62. Graph presenting the ideal case where #iaayl speedup increases linearly with the number
of utilized computational nodes.
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does not yield an ideal, linear speedup. Some of those reasons that limit the actual speedup, we ha
described abee, such as for example, communication between computational nodes througtv a slo
medium, incapability of computational nodes in parallelicks to perform a complicated taskiaéntly,

etc. Besideshese issues, the most important cause of actual speedup limitation is that only a certain por
tion of a prograns total time is spent at the part we paralleliZéhus, the serial program part that is left,
depending on what portion of the total time is spent at it, limits the maximunvakispeedup value.

Amdahl's Law can be used to predict the maximum possible speedupvaoleievhen a problem is
parallelized using in comparison to using only a single serial proceaamr that the problem size remains
the same when parallelized. It states that i§ the proportion of a program that can be made parallel, then
the serial portion can be defined as-@). If we then define the total time for the serial computation as 1
for ary time unit, we can compute the speedup wdétg the old computation time with thewmeomputa-
tion time that consists of the serial portion plus the parallel portion divided by the number of parallel com-
putational nodes, denoted Rs This gives us he following equation:

serial &ecution time < 1

Speed <
P L parallel ecution time  (1-F) +F/P

Then we can see that as the number of processors tends to infinity the maximum speedup tends to (1/1-F)
and the serial portion becomes dominant. In Figure 6.3 we can sehdonaximum anticipated speedup
is limited in comparison to the ideal, according to amddanu

Amdahl’s Law
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g 16
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2 :
0

0 20 40 60 80 100 120 140 160 180 200

Number of Computing Node3

Figure 6.3. According to Amdahk law, the anticipated speedup of some parallelization of a program, is
bounded from abe acording to the percentage of the time spenkecing the serial portion of the pro-
gram (1- F).
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CHAPTER 7

NVIDIA CUDA

Over the last f& years, there is a trend in using GPWides for solving difficult problems that
admit solutions with high parallelismi’he NVIDIA CUDA platform [19] [20] is, sodr, the most predent
approach of this kind.

The idea of using computer graphics haadwfor general-purpose computation (GPGPU) has been
around nw for over two decades. Haever, GPGPU did not really takdf until ATI and NVIDIA intro-
duced programmable shading in their commodity GPUs in 200%& enabled programmers to write short
programs that werexecuted for each ertex and pixel that passed through the rendering pipeline.
Researchers were quick to realize that thas wot only useful for graphics programming but that this could
also be used for general purpose calculations. The processieg pbthe GPU has been increasing at a
much faster pace than of the CPU. This caused a swift increase in research that utilized GPGPU computa-
tion. Graphicgprocessing can be parallelized as eamtter or pixel can most often be processed indepen-
dently of other vertees or pixels in each step of the graphics pipeline.

As GPU deelopment has mainly been den by computer games and the quest for better astef
graphics it has caused the GPU to become specialized for ugdnghly parallel SIMD computation and
is therefore designed such that more transistors atedeto data processing rather than data caching and
flow control unlike the CPU. Today GPUs hee multiple cores drien by a igh memory bandwidth, &dr
massve processing resources, and are especially well-suited to address problems that can be expressed as
data-parallel computations.

The utilization of the processing power of the GPUyé@r, did not come for free. It required
researchers to pose their problems as graphics rendering tasks and go through the graphics API, which is
very restrictve when it comes to programming. The APIs where used in such a way that textures were used
for input and output and fragment shaders (program stubs which run for each pixel projected to the screen)
were used for processing.

This meant a high learning ceryor programmers not alreadgrhiliar with the graphics APIs, and
the environment was very limiting when it came towglng. Thisalso greatly narrowed the range of
potential problems that could be sedvby using the GPU. GPU manufacturersyéer, noticed these
efforts and hae row introduced both software and hardware to greatly simplify the use of GPUs for gen-
eral purpose computation.

In late 2007 NVIDIA introduced the Compute Unifiedvix® Architecture (CUDA), a parallel-pro-
gramming model and software environment designed to enabdoplers to @ercome the challenge of
developing applicatiorsoftware that scales transparentigrqparallel devices of different capabilities.

The CULDA parallel programming model is independent of ibtential (software and hardne)
implementations. Aentral concept to this model, is the Parallel Thread Execution (PTX) Instruction Set
Architecture, which defines a virtual parallel processing machine.

With CUDA, NVIDIA also introduced a meline of graphics processing units that implemented this
parallel programming model and with its application thesgcde were no longer standard GPU+ b
became masgily parallel stream processors which weravrmogrammable with (a slightly augmented
version) of standard C. One or more installed CUDA-enabled Devices, are intended to be used in conjuc-
tion with the CPU, as coprocessors. The idea is that the CPUicisrgfin solving serial problems while
the GPU is efficient in solving parallel problem&he CUDA platform, provides the ability to @elop
applications that can choose to run their serial parts on the CPU and their parallel parts on th@&sBU.
applications are written in the CWUDC language, essentially &nsion of standard C, slightly augmented
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with functionality relatve o using the GPU as a coprocessor device.

7.1. Architecture

Nvidia's implementation of the CU® parallel computation model, consists of software and hard-
ware componentsHardware components are CUDA-enabled GPUs, starting from the G80 series and end-
ing at the (scientific computation) specialized Tesla series.

The software components are the GUBriver API, the CUIA runtime API and the CUB Soft-
ware Development Kit. The CUB driver API is implemented as a udevel library and it allows for v
level control of installed CUB devices. ThisAPI is not normally used,xeept for special occassions.
What is normally used for the (intended) usage of installed &&iabled GPUs as multicore co-proces-
sors to the CPU, is the ClWDruntime API, which allows for starting parallel tasks and transfering data to
and from the CUB device.

The CUDA SDK provides the necessary tools for thedi@oment of CUIA applications, such as a
specialized compiletinker and assemblea gecialized debuggger and a specialized profiler.

Besides the usage of the runtime API, a @Udpplication must be written in the specialized pro-
gramming language CUDC. This language is nothing more than a slightly augmented version of stan-
dard C, with functionality relate © accessing and using installed CUDA-enabled Devices.

The CUDA C compiler (rvcc), produces assembly code for the PTX instruction set. Then, the
CUDA assembler (ptxas) coarts this intermediate assembly code into a “cubin’ specialized object format,
which after getting linkd to the necessary installed cuda libraries, isated to an gecutable, natie
the operating system.

7.2. Programming Model

According to the cuda parallel programming model, @eldper spots some portion of a program
which admits a high el of parallelism and chooses to run it on an installed BdBvice.

This portion of the program gets implemented agjalae C function with some special characteris-
tics, that according to CUBterminology is called a "kernel".

This kernel function getsxecuted by each thread that gets created on the/Cdévice, but with dif-
ferent arguments for each threatictually, the arguments are the same across all threads and refer to data
that hae teen stored in device memoridoweve, as we will see in detail laterthe CUDA C language
defines some special variables whicheha dfferent value for each thread, such that each thread can calcu-
late it's tnique numberical id. Each thread can useutique numerical id in order to choose which of the
data in device memory it is going to us@nly a certain kernel function can be run by the threads of a
CUDA device at a time.

The most abstract and simplified way towie CUDA device, is as a set of multiprocessors thateha
access to a large device memamch containing a certain number of processing cokbgtiprocessors
cannot communicate with eachothehile processing cores within each multiprocessor can communicate
with eachotherthrough a small but fast shared memory that each multiprocessagsdo its processing
cores. Furthermorgrocessing cores within each multiprocessor can be synchronized by concurrent pro-
gramming primitves such as atomic operations and barriers.

In those terms, CUR provides the capability to delop parallel programs in twlevds of paral-
lelism. Atthe first level, between independend multiprocessors, we ltaarse grained parallelism, where
there is no communication between them. At the secael] lretween processing cores within each multi-
processqrwe havefine grained parallelism with cooperation and sharing of data.

According to CUIA terminology this model of parallel computation is called STMD (Singéeskr
Multiple Data). It is similar to SIMD, ot does not require all the code to fallthe same xecution path;
instead it enables programmers to write code which specifiezdtigtion and branching behavior of a sin-
gle thread. If, during»@cution some of the threads which are beirgcated in parallel dierge, the hard-
ware automatically serializes the branch amécates each branch path independenilyis hardvare
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architecture enables programmers to write threed-{garallel code for independent threads, as well as
data-parallel code for coordinated threads.

A CUDA program is comprised of CPU code which allocates memory on the GPU, transfers neces-
sary data for the CUBthreads (from host to device memory) and then launchesnzlk Theallocation
and transfer of data on the GPU is performed through functions defined by the runtime API (cudaMalloc,
cudaMemcp). Thekernel launch is performed asynchronousiith the use of a special CUDC state-
ment. Aslong as the kernel is beingeeuted on the GPU yvery runtime API function which operates on
the GPU will block vaiting. Afterthe kernel gecution finishes on the GPU, results are transferedirfag
with cudaMemcpy) from device to host memory Figure 7.1

CPU CUDA GPU

allocate
device memory - ’ | ‘ ’ ‘

1)

transfer data

to device memaory - - -

@)

start kernel o
-

cuda cuda cuda cuda
threadthreadthread thread

y

write results

=)

cuda cuda cuda cuda
threadthreadthread thread

transfer results

to host memory = - -

(4)

Figure 7.1. Workflow of a typical interaction between the host CPU and an installedACD®.ice, acting
as a multicore co-processor.
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7.2.1. Allocatingand Transfering Data

Device memory allocation can be performed withrious functions defined by the runtime API.
However, the simplest and most straightforwardynis to use the cudaMalloc function, and is sufficient for
most circumstances. The prototype of the cudaMalloc() function can be seen below:

cudaError _t cudaMal |l oc (void ** devPtr, size_t si ze)

The first argument is the address of a pojntdiich gets "filled" with a memory address in thevide

address space, and points to the allocated space. The first argument is the number of bytes we want to be
allocated. Aswith every runtime API function, the returnedlue either equals cudaSuccess or cudagrror
according to whether the call has been completed successfully or unsuccessfullyweispecti

The transfer of data to and from device memizr@so performed with arious functions defined by
the runtime API. The simplest and most straightimdvway is through cudaMemgpwhich is also s
cient for most usage scenaria. The prototype of cudaMgmchown below:

cudaError _t cudaMenctpy(voi d* dst, const void *src, size t count,
enum cudaMentpyKi nd ki nd)

The first argument is thealue of a pointer that has been "filled" by an allocation call as describee abo
The second argument is thalwe of a pointer that points to the data in host memory we want to be trans-
fered to device memoryThe third argument is the size of the data to be transfered, in number of bytes.
The fourth agument can either equal cudaMeryidpstToDeice or cudaMemgDeviceToHost and
defines whether data is being transfered from device to host memory oerdear@speately. In the first

case, the semantics of the firsotarguments are as described ahowhile in the second case, the first
argument corresponds to host memory and the second to device memory.

The transfer of data from and to the device is being performed through the high speed (BCI-X b
However, it can be a possible bottleneck in performance, especially in cases whereevteehtaansfer of a
lot of data and/or the need for repsttiransfer of data between repefitikernel calls.

Assuming the \ailable CUDA device supports it, we can use "pinned" host memory instead, which
becomes common between the host and the device (by excluding it from being paged), and thus we no

longer need to transfer back and forffor more information please refer to the official documentation

7.2.2. Startinga Kernel

CUDA organizes the threads thakeeute a lernel function in a two-dimensional grid of blocks,
where each block is a three-dimensional cube of threBis. means that the unique (numerical) id of each
thread is, in essence, éndimensional. Asve said before, each thread camehnowledge of its multidi-
mensional id, by taking thealue of some speciabviables. Thealue of those special variables isfdient
in each thread context, i.e., each thread sees a different value.

As we said, blocks are arranged on a two-dimensional ghds, the id of each thread block isotw
dimensional and the special variable that contains the block id to which some thread belongs, is blockldx,
which contains the fields blockldx.x and blockldx.y.

Each block defines a three-dimensional thread space andribble that contains the three-dimen-
sional id of each thread within the block it belongs to, is threadldx which contains the fields threadldx.x,
threadldx.y and threadldx.z.

Each thread usesstmultidimensional id in order to select the data that correspond to it. That is,
data transfered on dee memoryif need be, can be viewed by the threads as a five-dimensional array (of
some data type).

The specialized statement for starting a kernel function on the device, takes as arguments the size of
the two grid dimensions, the size of the three block dimensions and the call of the kernel function:

! http://www.nvidia.com/cuda

35



function_nanme <<<gridsize, blocksize>>> (argl, arg2, ... , argn)

Arguments gridsize and blocksize are of the data type dim3, aaribale a of this type contains fields a.x,
a.y and a.zArguments argl up to@m correspond to the common arguments that the kernel function will
take across all threads thakecute it, corresponding to either ponters on data in thizelenemoryor to
scalar values, as inansual C function.

Since the krnel call is performed asynchronoydlyere is no returnalue. Asa result, after each
thread has finished st’calculation, it returns i results by copying them onwee memoryfrom which
they can be later copied back to host memory as we demonstratesl abo

7.2.3. Kernel Functions

Functions that are meant to beeguted from cuda threads as kernel functions should be declared the
following way:

__global __ void function_name(argl, arg2, ... , argn)

{
}

Beyond returning wid and preceding their declaration with thei special directi global__, these func-
tions cannot recunsgily call themseles. Thg can, havever call other functions which are declared with
the special direote _ device_ and returnaltues lile any regqular C function. Of course, those functions
cannot recursily call themselves either.

7.3. Warps and Divergence

As we said before, each multiprocessor is assigned a certain set of thread Atamigsmoment in
time, some of it assigned thread blocks is &€l , meaning that the threads it contains are bekegged
on the multiprocessorEven though each block defines a three dimensional space of threads, the enumera-
tion of threads can be viewed as one-dimensional:

int plane = (threadldx.z*(blockD m x*bl ockDimy));
int row = (threadl dx. y*bl ockDi m x) ;

int col = t hr eadl dx. x;

int id = plane + row + col;

Imagine the three dimensional structure of a thread block as a rubrik Thée, threadldx.z identifies the
plane (with dimensions blockDimx blockDim.y), across the z-axis, on which the thread residégn,
within that plane, threadldx.y identifies thewrdqof length blockDim.x) on which the thread resides.
Finally, threadldx.x identifies the exact spot where the thread resides omthe ro

Each multiprocesspas of bday (independently of compute capability), contains eight computational
cores (e.g., ALUs). There is only one instruction fetch unit per multiprocessor and each fetched instruction
gets repeated four times, each time with different operafkat is, each fetched instruction getsaited
4 x 8 = 32 tmes, each with different operands.

As long as a certain block is a&im a multiprocessarwe havetime-sharing between groups of 32
consecutie (@ccording to the serial enumeration we demonstrated) thréadgoup of 32 consecwte
threads that is beingkecuted at apinstant on a multiprocessas called a varp. Whenran instruction gets
fetched, the 32 different operands that are needed doeffayed gecution, correspond to theanp that is
being eecuted at the timeHowever, it is not guaranteed that all threads of arp/will be eecuting the
same instruction at gninstant. Br example, we might ka a dvergence of gecution paths between
threads, as a result of an if condition.

In case different threads follodifferent execution paths, each subset of threads iragovthat follav
the same xecution path getsxecuted one after anothelfhat is, in case there are x such subsets within a
warp, the aecution time of this warp will be x times &r Actually, each time a subset of threads gets
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executed, their common instruction gets indegecated 32 times, Ut memory writting is disabled for pro-
cessing cores that correspond to threads which dont belong in this séfisetall execution paths hae
been &ecuted, all threads cwarge back to a commonxecution path.

7.4. Shaed Memory and Register File

Each multiprocessor pvies access to a small (16KB currently) and fast mentotthe threads of
it's assigned blocks. In particulahe 16 kilobytes of a multiprocessoehared memoryare divided genly
among its bocks. Thethreads of each block can either use it as a means for communication, or as a
scratchpad for computations, since theice memory we hae keen refering to saaf, dso named global
memory in cuda terms, is a lot slower.

To use shared memory in our program, we pass a third argument to the specialized statement for
starting a kernel, that definesvhmary bytes of shared memory need to be allocated per multiprocessor:

function_nane <<<gridsize, blocksize, snensize>>> (argl, ... , argn)

The number of shared memory bytes needed per multiprocessor equals the number of shared memory bytes
used in the kernel function times the number of threads per multiprocessor (blocks per multiprocessor times
threads per block).

Now, within the lernel function, using the speciayvord _ shared__, we can declare variables that
reside in shared memory and are common among the threads of a block, as for example:

__Shared__ int smemarrayl[128];
__shared__ char smem array?[ 256];

Additionally, each multiprocessor contains a register file memaity a certain number of 32bitge
isters that varies depending on the compute capability of theedeAswith shared memoryegster file
space iseenly shared among the blocks of a multiprocessor.

7.5. Grid size, Block size and Occupancy

The total number of threads taeeute a kernel on a CUbdevice, is a function of the grid size
(number of blocks) and the block size (number of threads per block).

Different ratios between thosedwparameters can yield the same total number of threads, but for
each occasion, depending on device capabilities andetivelkfunctions characteristics, there is a golden
ratio that gves the best possible performance.

For optimal performance we need as mahreads as possiblén particualr since the scheduling of
threads is performed in terms o&mps, we need as mawarps as possible per multiprocessdhe reason
for this is that each time someuwp initiates a request for accessing the global mertr@yshared memory
or even the register file, there is a certain latgtime for the completion of this request. Until this request
is completed, another warp, assuming there is ga&hle in the currently acte Hock, can be scheduled
on the multiprocessor instead ofvew it idle. This practice is analogous to pipelining. The next warp to
be scheduled on the multiprocessuust not hae any data dependendencies with those waiting, thus it is
desired to hee & mary warps aailable as possible at wiime in each block.

There is a restriction on the maximum numbr of warps that can be assigned on a multiprécessor
of today this upper bound is 24 warps (or 768 threads) per multiproceSBernumber of warps we man-
aged to assignver the maximum number of avps that can be assigned on a multiprocesis@ines ha
well we hide latengand in CUDA terms is named GPU occupancy:

# warps per MP_ #threads per blod82
24 - 24

Note havever that there is another hardware imposed restriction, which is a maximum of 512 threads per
block. Thismeans that it wuld not be ossible to ackie 100%occupang by using only one block per
multiprocessqreven if we could indeed fit 512 threads per block.

occupancy=
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Depending on the number of blocks wevdnan ©rresponding amount of register file and shared
memory spacevailable per block. The maximum number of threads in a block is restricted by the require-
ments of the kernel function, either in number of registers, or in amount of shared memory.

Thus, we must choose the values of the block size and the grid sizeainthat maximuzes occu-
pang, given the restrictions imposed by the requirements of the kernel function in resources. If the
requirements of the kernel function areievhelming, it is not possible to achiehgh enough occupawgc
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CHAPTER 8

PARALLEL SEARCH WITH CUDA

This section describes Wwowe uilized the Nvidia CUIA technology for performing a parallel n-
marks OGR search, according to the partitioning of the search spaceereeim@nstrated.

Nvidia CUDA is the most prealent among technologies allowing the usage of multicore GPUs for
solving highly data parallel problems, withouvhey to use the (problem irrelant) graphics API.For not
cluttering this section by describingwd\vidia CUDA works, when necessamye refer to relgant sec-
tions provided at the appendix.

For solving the problem of finding an OGR in parallel with CAChaving P cuda threadsaiable,
we create the first P pieces of the search space, distribute them to the cuda threads and kmtkthem w
While waiting for the results, we create the next batch of P pieces and so on. Note that because all pieces
cover the same number of search space branches (&g aisal sizes), we anticipate that all threads will
finish their search at about the same tiris process is depicted as a flowchart in Figure8.1 and as an
algorithm in Algorithm 8.1.

As explaied, our partitioning of the search space yieldsrabaassingly Rrallel problem, meaning
that each thread works in isolation and does not requirecammunication with the rest. Thesknel
executed by each thread is the C implementation of the final form of the search algorithm Al§aithm
The data that need to be transfered to the global memory of the device, agutherds of the search
algorithm for each thread. Thus, we transfer the initialization valee®rG and the start and ending ruler
for each piece, as depicted in Figure 8.2.

In order to achiee high occupang (SEE) we must maximize the number of threads per multiproces-
sor. This number is limited either from the number afisters, or the amount of shared memory that a
multiprocessor can provide tostthreads, gien how mary regsters and/or he much shared memory is
required for theeecution of the kernel function per thread.

The CUDA device we are going to use is the Nvidia GeForce 8800 GTX asdrntitations on
resources are depicted on the following table:

Nvidia GeForce 8800 GTX

Compute Capability 1.0
Global Memory 804585472 Bytes (767 MBytes)
Shared Memory per Multiprocessor 16384 Bytes (16 KBytes)
32 bit Registers per Multiprocessor 8192
Maximum Warps per Multiprocessor 24 (768 Threads)
Maximum Threads per Block 512
Multiprocessors 16
Clock Rate 1.35GHz

Table 8.1. Resource limitations of a GeForce 8800 GTX, which we will be using for experimentation.

As reported by the compileeach thread requires 20 registers feegaiting our lernel. Dueto the
restricted number ofvailable registers (ignoring géster allocation granularity), no more than 8192/20 =
409 threads can reside on each multiprocesstaking sure this number is a multiple oamp size (32),
this means we cannotVenore than 384 threads per multiproces3bith a maximum of 768 threads per
multiprocessqrthe maximum occupagave can achige is exactly 384/768 = 50%.
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Initialize last mark

CreateP pieces

Launch CUA kernel

Search spac
exhausted

Increase last mark

CreateP pieces

Wait for CUDA kernel

Output found OGR

Figure81. Flowchart description of howe uilize CUDA for performing the OGR search in parallel.
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algorithm CUDA-OGR-SEARCHN, G[])

1 Initialize K accordingo Eq. 4.1.

2 do

3 CreateP pieces

4 Launch CUIA kernel; each thread runs Algorithm 5.3 os filece
5 if search space of rulers with lendthexhausted

6 IncreaseK

7 while Golomb ruler of lengthK not found

8 -- Found Golomb ruler is guaranteed to be optimal.

9 Output found OGR

Algorithm 8.1. Algorithm to be &ecuted on the CPU, for using the GPU as a coprosessor to find an OGR
with n marks, utilizing Algorithm5.3.

CPU

Global Memory
start[] vectors end[] vectors G[] vector

n n n n n n n n n

vy v

Y
Threads { (
.“ -

-

- —

Figure 82. Transfer of search space pieces from host to device memory.

We will first present the performance results of theveapproach, where all variables needed by the
algorithm reside in global memonryOur first attempt does not require the use of amount of shared
memory thus the values of the block and grid size are only decided by restrictiongerddatégsters.

Next, we will apply best practices such as utilization of shared memory and elimination of bank conflicts,
in order to obsew any performance enhancementsythieduce.

We @an achige this maximum number of threads per multiprocesstirer with mary small blocks
(larger grid size, smaller block size), or withwvier larger blocks (smaller grid size, larger block siz&hat
would be more efficient depends on therrels dharacteristics. Iffor example, _ syncthreads is used a
lot, in which case the threads of a block wait until memory write requests complete, then it would-be desir
able to hae mary alternatve Hocks that could get scheduled irsiace. Inthe general case Wever, itis
important that blocks contain mawarps, so that latencies (in accessing global memdoayed memory or
even regsters), gets hidden efficiently (SEE).

In our case, the treads within a block do noteh® get synchronized, so can just define one big
block per multiprocessor (grid size = 16), with 384 threads each (block size = 384) and yield an gccupanc
of 50%. The resulting performance of our first yepiapproach in implementing thecktracg,- algorithm
on CUDA, labeledspy, can be seen inable 8.2and in Figure 8.3.
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Figure 83. Performance results of tr@Pu approach, where all the algorithsnariables reside in global
memory.

n

10 11 12 13
Configuration @ridsizex blocksiz¢ 32x192 32x192 32x 192 32x 192
Occupang 50% 50% 50% 50%
GPUtime (sec) 0.011 2.07 6.45 321.22
cputime (sec) 0.141 3.560 15.130 444.722
Speedup (vscPU) 12.81x 1.71x 2.34x% 1.38x
Piece Size (per thread) 555e3 555e5 145e7 2178e8

Table 8.2. Performance results of tleeu approach (graph on Figure 8.3).

Vectorsstart andend are only used for initializing actorsl i st anddi st. These ectors,
together with theG vector, are used continuously during the algoritisng&ecution. Inour first, nave
approach, these vectors reside within thevstff-chip global memory of the CUbdevice.

Attempting to increase performance, in our seccond approach, each thread will maictaiaGy
i st anddi st , within the portion of shared memory that belongs to it. All that needs to be done, is to
include the amount of shared memory needed by each thread block tdiioa configuration, and for
the first thread of each block, to goihhe G vector from global to shared memory upon starting. Thasis,
will only exist once within the search memory portion of each block, and will be used by all the threads of
the block Figure 8.4.

Now, the eecution of the krnel by each thread, also has requirements in shared meittasy
means that the maximum number of threads per multiprocessor might be further limited. This, in turn,
moderates our expectations for increase in performance.

The amount of shared memory required by each thread is a function of n, the number ofimarks.
particular as n increases, the lengtk (of candidate Golomb rulers we try) is set within ranges gfelar
vaues. Butthe sizes of i st anddi st equalskK/32 and is thus indirectly dependentmnAlso, the size
of the \ectorGis directly dependent om, but it is not important because it only resides in shared memory
once for each block.

Even though for each the requirements in shared memory fectorsl i st anddi st increases as
K increases, for defining the grid and block sizes, we will asstiiseconstant, equal to the largest value it
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Multiprocessor 0

Block O

| 41 | list[], dist[] | list[], dist[] [ [list[], dist[] | .. |
Block 1

| g1 | list[l, dist[] | list[], dist[] [ list[], dist[] | .. |
Block 2

| g1 | list[], dist[] | list[], dist[] [ list[], dist[] | .. |
Block B

| 41 | list[], dist[] | list[], dist[] [ [list[], dist[] | .. |

Multiprocessor 1

Block O

| g1 | list[], dist[] | list[], dist[] [ list[], dist[] | .. |
Block 1

| 41 | list[], dist[] | list[], dist[] [ [list[], dist[] | .. |
Block 2

| g1 | list[], dist[] | list[], dist[] [ list[], dist[] | .. |
Block B

| g1 | list[], dist[] | list[], dist[] [ list[], dist[] | .. |

Multiprocessor M

Block O

| g1 | list[l, dist[] | list[], dist[] [ list[], dist[] | .. |
Block 1

| g1 | list[], dist[] | list[], dist[] [ Tist[], dist[] | .. |
Block 2

| 41 | list[], dist[] | list[], dist[] [ [list[], dist[] | .. |
Block B

| g1 | list[l, dist[] | list[], dist[] [ Tist[], dist[] | .. |

Figure 84. Layout of algorithrs variables in shared memory for our second approach.
is going to be set to, which is the actual length of the OGR to be fdnrigble 8.3we can see the require-

ment in shared memory per threadhdacreases, and the limitation it imposes on the maximum number of
threads per multiprocessor.
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n max K list[], dist[] length required shared memory max threads
=G(n) =K/32 per thread per multiprocessor
10 55 2 8 1024
11 72 3 12 682
12 85 3 12 682
13 106 4 16 512
14 127 4 16 512
15 151 5 20 409
16 177 6 24 A1
17 199 7 28 292
18 216 7 28 292
19 246 8 32 256
20 283 9 36 27
21 333 11 44 186
22 356 12 48 170
23 372 12 48 170
24 425 14 56 146
25 480 15 60 136
26 492 16 64 128

Table 8.3. How increasing also increases shared memory requirements per thread, which in turn decreas-
es the maximum number of threads per multiprocessor.

As can be seen, up to= 15 the limitation imposed due to register requirements, at 409 threads per
multiprocessqrdominates the limitation imposed due to shared memory requiremdaotgever for lamger
n values, the limitation imposed due to shared memory requirements dominates. In pamgular
increases\er 15, we anticipate that as occupghawers, performance will degrade accordingly.

Performance results for our second approach are depicteable 8l4and Figure3.5. We doserve
that performance has increased in comparison to our first apprbl@gfever, we can see that unlé our
first approach, we mohavewarp serializations as a result of tteef that we utilize shared memory without
taking into consideration bank conflicts (SEE). In our first approach, we did veotahg varp serializa-
tions since we did not utilize shared memory and thus did wetdray lank conflicts.

In our third approach, we will further enhance performancevbidimg bank conflicts. Each multi-
processos hared memory is structured in 16 banks. In each group of 16 consetudiads, we must
male are that all shared memory accesses of each thread are confined witliémemtdghared memory
bank from the rest Figure 8.6.

Upon starting up, each thread defines which bank correspondd-tw éxample, assuming thatvi-
ablesmcorresponds to the shared memory of a block and that each threadtivéebank as an array of
integers:

int *bank = &snjthreadl dx.x % 16]

The elements of this bank can bevéraed verticallyby defining a stride factor of 16:
#define STRIDE(i) (i)*16
bank[ STRI DE( 0) ]

bank[ STRI DE( 1) ]
bank[ STRI DE( 2) ]
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cpPU(0) vs.GPUM (x)
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Figure 85. Execution time versus for our second approactpu™™.

n
10 11 12 13 14
Configuration ¢ridsizex blocksizg 32x192 32x 192 32x 192 32x 192 32x 192
Occupang 50% 50% 50% 50% 50%
cpUM time (sec) 0.005 1.007 3.95 139 2018
cpUtime (sec) 0.141 3.560 15.130 445 6107
Speedup (VssPU) 28.2x 3.53x 3.83x 3.20x 3.02x
Piece Size 555e3 555e5 145e7 2178e8 191199e8

Table 8.4. Performance results of our second approach, where all the algsritmiables reside in shared
memory.
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Bank ( Bank 1 Bank 16

ThreagJdreagxie+1 Threagxiet1s

Figure 86. In order to &oid shared memory bank conflicts, for each conseewgtoup of 16 threads, each
thread accesses a different bank.

So far, it is clear that each bank is shared by a subset of the threads within a block. Congitteatribese
threads share their bank with each one occupying merge Thestart of the m integers portion that corre-
sponds to each thread can be defined the following way:

int *mne = &bank[ (threadl dx.x/16) * nj

since the members of each next group of 16 threads will gaber own m integers portion within each
bank.

Thus, each thread can finaly accessnt'integers within i bank with a stride of 16 elements:
m ne[ STRI DE( 0) ]
m ne[ STRI DE( 1) ]
m ne[ STRI DE( n) ]

In our case, each threaddortion within it's bank, is where it keepsegtorsl i st anddi st, m=K/32
integers each:

int *m ne = &bank[ STRI DE((t hreadl dx. x/16) * (2 * m)]
int *list = &m ne[ 0]
int *dist = &mne[nj

Hereaftey we mly have © make aure that accesses teators list and dist use a stride factor of 16, that is,
replace eachi st[i] statement withi st [ STRI DE(i)].

Performance results of our third and final approach are depicted in Figure 8.@d@8.5. where
we can see that without bank conflicts, we no longee bay varp serializations eitheNote that the prac-
tice of avoiding bank conflicts diminshes warp serializationsyéer it also introduces dra calculations
dute to the utilization of the stride factor.
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cPU (D) vs.GPUSY (x)
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Figure 87. Execution time versus for our third, final approactkgPusy.

n

10 11 12 13 14
Configuration ¢ridsizex blocksiz¢g 32x192 32x 192 32x 192 32x 192 32x 192
Occupang 50% 50% 50% 50% 50%
GPUSY time (sec) 0.0047 1.001 3.033 107 1558
cpUtime (sec) 0.141 3.560 15.130 444,722 6107
Speedup (vssPu™™) 30. 00x 3.53x 4.98x 4.15x 3.92x
Piece Size 555e3 555e5 145e7 2178e8 191199e8

Table 8.5. Performance results of our third approach, where all the algosittariables reside in shared
memory and bank conflicts Vebeen eliminated.
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CHAPTER 9

PARALLEL SEARCH WITH THE T.U.C. GRID

A Grid computing emironment is comprised of heterogenous and distributed computational nodes
such as desktop computers or dedicateceseand appears at the end user as a single, powerfull computa-
tional node. The term Grid was first introduced in the mid nineties asdefering to a proposed distrib
tion of computational resources for engineers and scientists. In essence, a Grid is gati@ygfegeo-
graphically dispersed heterogenous computational resources that composes and offers access to a unified
and powerful virtual computer.

A Grid environment is usually formed by the collaboration between administdatinains of difer-
ent institutions (such as for examplevansities) each one corresponding to a "Virtuag@ization" (MO).
The structure of a Grid environment can begiin terms of the following tiers:

Applications & Users
Applications that require and can benefit from the distributed resources of the Grid, and their users.

Middleware
Software that allows applications to utilize distribd resources within the Grid by presenting them
as a virtual powerful computeoffering functionality such as submission, monitoring and manage-
ment of jobs or authentication and authorization of users.

Resources
Distributed computational and storage resources to be used by applications through theareiddle

Network
Interconnection medium between distiiéd resources, either locally within an administeati
domain or across administnagi domains.

In this section we will use thed.C. Grid computer for solving our problem, e.g. the search for an OGR
with n marks, in parallel, according to the partitoning of the search spacevevedsaribed. Th&.U.C.

Grid is comprised of 44 similar HP Proliant BL465c sgrislade computers with the following computa-
tional power characteristics:

¢ Two AMD Opteron processors, Model 2218(2.6GHz, 2MB, 95W)
* 4GB RAM, extendible up to 32GB interconnected via Gigabit ethernet.

Only 41 of those processors are dedicated computational nodes, since 4 of them support the operation
of the Grid. This homogeneous system of computational nodes comprises a Grid cluster with the purpose
of eventually integrating with the international Grid computing environment HellasGrid-EuroGrid.

For executing distributed applications, a user must fi@ngaccess to the user interface host of the
Grid. Thishost has installed and configured necessary migddéesoftware that permits the submition and
management of tasks on the computational nodfaesous kinds of middieare software is installed in the
user interface node of the T.U.C. Grid, including Torque, OpenMP and Maui.

In our case, all we va © do is $art as may processes as there are computational nodes, which for
the most part do not need to communicate. All proces®esite the same program.

One vay this can be done is by using the Torque Resource Marfagesxecuting the same process
acrossP computational nodes, we append wipeb in the jobs queue, using theub command:

gqsub -q tuc -1 nodes=P ogr-search. pbs

Argument-q tuc defines the name of the jobs queue which is “tuc’ in our cAsgument - |
nodes=P defines the number of computational nodes that we need to allocate for our enquedée job
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progamogr - sear ch- P. pbs is a shell script that contains the commands that will utilize the allocated
computational nodes. In our case there is only one such command included in the script:

pbsdsh /storage/tucl ocal / knount aki s/ ogr - search

The programpbsdsh, spavns a process forxecuting ogr - sear ch on each allocated computational
node, which is our actual C implementation of Algorithm 5.3.

Note that since each HP Proliant host has 2 processors with 2 processing cores each, thaeniddle
uses it as a source of 4 processing no@ssentiallywith 41 HP Proliant hosts, weV@41x4 = 164 sail-
able computational nodes.

The purpose of the program that each procgesuges is to repeatedly create and searshaitn
piece of the search spade. order for each process to kmavhich piece it should create next, it essentially
needs to kne what is the "fringe" of the search. That is, which is the ending ruler of the "farthest” (from
the start of the search space) piece that has been created andéakgraqrocess.

The most covenient way to achiee the desired instrumentation of the processes, is to use the com-
mon network filesystemvailable between the nodes of the T.U.C. Grid. The common point of reference
between all processes will be a "status file" which at each instant contains the following information:

(1) If an OGR has been found and which one it is.
(2) Thestarting and ending ruler of the last piece takesn by a pocess.

Upon starting up, each process locks this file by use of the flock() system call and openscitifaree

usage. lthen reads the current fringe (the ending ruler) and after creating the next coaggecsi (of a

certain size), it sets the fringe to the ending ruler of the piece it just created, unlocks and closes the status
file. Whena process finds an OGR of a certain length, it records it in the statusifilenlly if another pro-

cess has not already recorded that it has found an OGR with a smaller length, or if an OGR wg&th a lar
length has been recordeth each case, if the status file contains a recorded OGR, each process stops the
search instead of creating the next piece and contindirftpwchart describing the operation of each pro-

cess is depicted in Figure 9.1.

Beyond conducting the parallel search, the status file helps us measure the duration of the search.
The duration of the search can be defined as the timeahtetween starting it and the last modification
time of the status file, after all processegehfinished.

In case the search has to stop for some reason, asvereeipdained, because the whole process
might even last for years, it would be desirable to be able to restart it, roughly from the point where it
stopped. Ateach instance, the set of starting rulers of the P pieces being processedhyrakesses,
define the checkpoint of the search progress.

Let us assume that each process, upon starting up, opens and locksefatugsive use, some file
namedcheckpoi nt - i, wherei is an intger from 1 up to the number of proces3ashich will be difer-
ent for each procesgach process tries file names frafmeckpoi nt - 1 up © checkpoi nt - P and the
first filename for which there is no already created file, defines the name integer i it is goingDaruse.
it's goeration, each process maintains withia dtheckpoi nt - i file the starting ruler of the last piece it
took over.

In case of restart, each process tries filenames in the sequence describedimantieto open and
lock the first unlockd checkpoi nt - i file. Then,instead of the fringe recorded in the status file, it uses
the starting ruler recorded insttheckpoi nt - i file and the piece size used during the previous (inter
rupted) search process, in order to define the first piece it wellol@k After finishing with this first piece
- reminiscent of the pwéous search operation, processes start using the statuhan#poi nt -i files
regularly as described first.

In a distrituted computing system such as the T.U.C. Grid, we expect to gain a linear speedup of the
parallel OGR searchFor the problem of finding an OGR with n=13 marks, for an increasing number of
computational nodes, we can see that apeetations get confirmed, according to the results of Fiydre
and T&ble 9.1. Finally, in (Figure 9.3)and (Table 9.2) we can see theverall needed xecution time for
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‘ Read status ‘

YES ) NO
ecorded O

recorded:= true ‘ ‘Create piece & Update frinpe

‘ Search piece ‘

ound OG

NO

found:= true ‘

‘ Read status

NO

YES
‘oundandrecorded

NO

K := Found OGR length
Ks := Recorded OGR length

Record found OGR YES NO
in status

‘ Done ‘

Figure91. Flowchart description of hd each computational Grid node operates during the parallel
search.
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OGR-13 Running time
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Figure 92. Execution time and actual versus linear speedup as the number of Grid nodes increases, for
finding an OGR witim = 13 marks, using thBACKTRACKp gy algorithm.

P Execution Time (sec) Speedup Eiciency
actual linear
1 445 1 1 1
4 113 3.93 4 0.98
32 17 26.18 32 0.81
64 9 49.40 64 0.77
80 7 63.57 80 0.79
160 3 148.33 160 0.92

Table 9.1. Values of graph on Figure 9.2.

finding an OGR wer increasingn values.
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OGR1 on the T.U.C. Grid
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Figure 93. Execution time for finding an OGR with increasingalues, utilizing all 40< 4 = 160 process-
ing cores of the T.U.C. Grid (seafile 9.2).

n Execution Time in seconds
13 3
14 39
15 675
16 12600

Table 9.2. Execution time for finding an OGR with increasingalues, utilizing all 40x 4 = 160 process-
ing cores of the T.U.C. Grid (see Figure 9.3).
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CHAPTER 10

FUTURE WORK

In this chapter we will gie a lief overview of some methods that auld potentially enhance our
work in searching for Optimal Golomb rulers.

10.1. Improving the CUDA I mplementation

An alternatve QUDA implementation could possibly yield a larger speedup with respect to the
implementation of our parallelixation on the CPU.

We reed an implementation of our search algorithm witheferequirements in number ofgisters
per thread. Our current implementation requires 20 registers per thBead. GTX 8800 Nvidia CUR
device, this limits occuparncto at nost 50%, which might possibly not be enough to hide the hateinc
memory and register file accesses (for details, refer to chapter 7).

It seems possible that such a "lightweight" GUinplementation could be ddoped based on the
imperative vasion of our backtracking search algorithmyegiin chapter 4.

For each OGRn instance (for each ddrentn) this imperatie vasion of the algorithm consists of
nested for loops. Thus, for each different instance of the problem,owlkel \wave © produce the corre-
sponding C source code. But this would be trivial to accomplish by usingdorpte a UNIX shell or an
awk script.

What makes the imperaé vasion suitable for the case, issiimple structure, which allows us to
implement the algorithm with only using aM&ariables. Subsequentlye siggest to imestigate the pos-
sibility for implementing the imperag vesion of backtracking search, where gimple structure requires
the use of feer variables, which in turn translates to fewer registers, allowing to maximize ocguganc
the CUDA device.

10.2. IncreasingL(n) with Linear Programming

The functionL(n), which we defined in chapter 4, returns the smallest candidate Golomb ruler length
that makes sense to try in our search process. Thus, the (o3és to the actual length of the Optimal
Golomb ruler to bewventually found, the faster the search process will finish.

The way that we currently calculat€n) is based on certain obsations rgarding the properties of
the Golomb ruler to beventually found. Alternatively, for calculatingL(n), we can use theavk of Meyer
et. al in [7]. Their method for calculatingn) is based on a technique for solving maximization/minimiza-
tion problems, calletlinear Piogrammingd6]. In particular Meyer et. al describe Roto express the prob-
lem of minimizing the length of a Golomb ruler withmarks, using &rious Linear Program formulations.
Solving those Linear Programs with a method suc8iagplexor Interior Point only takes a fe& seconds.
With their method, the resulting value fiogn) is dways impressiely close to the actual Optimal Golomb
ruler(s) length witm marks.

We tus suggest that replacing our method for calculdtifmj with an implementation of the Linear
Programming method of Meyer et. al, will yield an equally impvesscrease in the time required to
solve any OGR-n instance with our method.

10.3. ADynamic Programming Algorithm for GR-n, K

A side-efect of our research in ddoping the backtracking search algorithm for finding Optimal
Golomb rulers, is the design of a dynamic programming [1] algorithm for solving the, ERroblem.
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The advantage of dynamic programmingprobacktracking search, is that we store the result of searching
for Golomb rulers within a subtreen(K) of the search space and recall that result when we neeairit ag
instead of searching within this subtree again.

Searching for Golomb rulers within a subtreg K) is the basic building block of the GR-K prob-
lem. Taking a closer look along a certaindem of the search space tree (Figure 5.1), we find out that each
subtree in, K) appears multiple timesThis means that we only need to store the result of processing
(m, K) the first time and recall the stored informatioerg other time we meett, K).

More information rgarding this approach, including experimental measurements of a memoization
implementation, is soon to be presented in a separate paper by yours trully.
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CHAPTER 11

CONCLUSION

11.1. Owerview of Our Work

Over the course of this thesis wevhasiccessfully managed to \#op and ®aluate a method for
solving OGRn by utilizing multiple computational nodes in parallél.omputational nodes can beyan
kind of processing cores, such as CPU cores distribwdiaet of hosts, or GPU cores residing within an
Nvidia CUDA device.

Our parallelization method consists of a pair of algorithms thatvdto solving OGRn for ary n
value, by utilizing multiple computational nodes in parallbi. chapter 5, we deloped an algorithm for
creating a (search space) piece of arbitrary size (AlgoBthjn Inchapters 4 and 5, wewioped an algo-
rithm for searching for a Golomb ruler within the boundaries of sommengsearch space piece
(Algorithm 5.3). Combining these tavdgorithms allows for solving OGR-in parallel by assigning search
space pieces to computational nodes, in a prosiaresumer way (Algorithr.2). Creatingpieces is
meant to be performed on the CPU by a producer process. Consuming pieces is meant to be performed by
each individual computational nodblote that it is perfectly possible that the producer process utilizes an
number of diferent types of computational nodes at the same time, such as for example CPU cores and
GPU cores.

Other related projects such as project OGR of digtihnet and project GE of the Technical véni
sity of Crete also depjotheir own methods of OGR-parallelization. Theiparallelization methods e
eva, produces pieces of unpredictable size. The advantage of ourrQ@aRxlelization methodwer other
currently deployed methods, is that it allows for arbitrarily choosing the amourtdrkfassigned on each
computational node, as the size of each piece (and thus the corresponding amouktefuired) can be
arbitrarily chosen.

Furthermore, wewaluated our work experimentaly on platforms that represeatettremes of the
parallel and distributed computation practi¢e.particular we evaluated our work on a GTX 8000 Nvidia
CUDA device which is intended for magsly parallel computations and on the Grid distributed computa-
tion system hosted by the Technical insity of Crete, using our implementation of both the search space
partitioning and the search space piece searching algorithm in the C programming laRgeaged run-
ning times for solving various instances of OBRn both these platforms are summarized abpld11.1.

In this table we juxtapose running times (in seconds), for sequentially solving thex@féBlem on
a dngle CPU core, &rsus solving it in parallel on the Grid system and the GTX 8800/Cd#dice. The
cpPu column shows running times across various Q@GiRstances, with only one instance of the search
algorithm running on one CPU core, processing one piece at a TineGPUSY column shows running
times across various OGRinstances, with 384 CUDthreads (each assigned a search space piece) run-
ning our search algorithm on 128 GPU coregaaired in 16 streaming multiprocessoihe Grid column
shavs running times across various O@Rastances, with 160 CPU threads (each assigned a search space
piece) running our search algorithm on 160 CPU cores.

Our algorithm for finding Golomb rulers within the boundaries ofvargsearch space piece is sim-
ple and easy to understand (AlgoritBr8). dueto it's Smplicity, this algorithm can be easily implemented
for a variety of platforms. Furthermore, our analysis af Wtbrst case compkity (Appendix A) can be
used to declop accurate methods for estimating the running time required te aghOGR-n instance.
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n CPU GPL@E" cPUx 160 (Grid) GPU SpeedUp Grid SpeedUp
10 0.141 0.0047 - 30 x -

11 3.560 1.007 - 3.53 % -

12 15.130 3.033 - 4.98x -

13 445.000 107.000 3.000 415x 148x

14 6107.000 1558.000 39.000 391x 156

15 - - 675.000 - -

16 - - 12600.000 - -

Table 11.1. Overview of resulting running times (in seconds) for solving the O®GRhkere 10< n < 16 on
a GI'X 8800 Nvidia CUIA device (128 GPU cores at 1.35GHz) as described in chapter 7 and on the
T.U.C. Grid system (160 CPU cores at 2.6GHz) as described in chapter 9.

11.2. Grid and CUDA results

Based on the characteristics of our parallelization method and based on certain assumptions about the
capabilities of the CUR device, it is possible to estimate a theoretical maximupeeted dfciency for
each. Orary parallel/distriuted computation platform, our parallelization method requires no communi-
cation among computational nodeBhus, with (at least one) instance of our search algorithm running on
each computational node, we can expect a maximum speedup (with respect to only utilizing one node of the
same type) equal to the number of nodes, or in other words we can expect a maximunyedfidiedisb.

On the Grid system, running one instance of our search algorithm on each of tivailb®eaCPU
cores, we can expect a maximum speedup value of 160, with respect to searching one piece at a time on a
single CPU core. That is, for the Grid system, we can expect a maximum efficiet®0/160= 100%.

The actual diciengy achieved on he Grid system almost reaches our maximwmpeetations. In
practice, solving the OGR-13 instance on the Grid system using all 160 CPU cores, happens roughly 156
times faster (@ble11.1)than solving it on a single CPU core, which translates to ficieety of
156/160= 97. 5% fairly close to the maximum expected value.

Note that we xecute the ract same C program on both the GPU and the CPU cores. IPACUD
applications that yield large speedup values, the implementation of the problem solution #isQi$D-
ally formulated in a dferent way than it is formulated on the CPU. The kernel program is usually written
in a way that matches the SIMD programming model of the £gtform, where fine-grained paral-
lelism takes place and CWDthreads work in close collaboratiohn our CUDA application havever,
where we simply spawn multiple instances of our Golomb ruler search algorithm on each GPU core (where
no communication takes place between GPU cores), we essentially treat each GPU core as an autonomous
processing core.

This way, comparing the time needed to sela @rtain OGRn instance on the CU®device and on
a sngle CPU core, essentially maps to a direct comparison between the capability of an individual GPU
core and an individual CPU core teeeute the C program that implements our search algorithm.

Let us nav assume that a GPU core caxeeute our C implementation of the search algorithm
times faster or slower than a CPU core. On the BUBvice, running multiple instances of our search
algorithm on each of the 12&ailable GPU cores, we can expect a maximum speedup valce b28,
again, with respect to searching one piece at a time on a single CPU core. Thus, for thel&idb, we
can &pect a maximum &€iengy of (c x 128)/128=c. In practice, solving some OGRinstances on the
CUDA device, utilizing 128 GPU cores, happens, aerage, 4.2 times faster gfble 11.1)than solving
them on a single CPU core, which translates to an efficieid 2/128= 3. 3%.

If each GPU core as equally capable to a CPU core with respect to running our algorithm, then with
128 utilized GPU cores we would expect speedup value of WRB respect to only utilizing a single CPU
core. Ourinterpretation of the actual speedup, is that each individual GPU core is 2288@.times
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slower than a CPU core irkecuting our implementation of the Golomb ruler search algorithm. In other
words, that each individual GPU core can only rea@d¥8of the performance of an individual CPU core
in executing our search algorithm.

In our effort to &plain why this might happen, we will begin by excluding the following set of possi-
ble explanations:

Global Memory Accesses
In our implementation of the search algorithm as a BW@rnel program, once we download the
necessary per thread data from theiakes dow, off-chip global memory into the fast, per multipro-
cessor shared memomye barely e/en use global memory againxeept if a solution to our problem
is found. In this case we only write one integer back to global menhemarticular for solving an
OGR~ instance, we only access a regiomahtegers in global memory in read-only texture more,

in which case (according to documentation) global memory accessess are being cached and it is thus

not considered probable that yheonstitute a performance bottleneck.

Bank Conflicts
As we hae described in chapter 7, all bank conflicts are indeed being esbbly careful strided
access to the algorithmlocal \ariables that reside in shared memofys a esult, it is not possible
that bank conflicts consitute a bottleneck in performance either.

Warp Divergence
Due to the dct that our implementation of the Golomb ruler search algorithm as A EiDel pro-

gram contains a multitude of cases where a branch might be taken (i.e. if statements and loops), it

would be possible that performance suffers due to wargrgdince. Havever, as reported by the

CUDA Visual Profilet only 3% of taken branches aresgigent within warps of 32 threadsBased
on this, we conclude that it is unlikely that warpedgjence constitutes a bottleneck in performance.

Even though we hee followed all best practices described in the original @Udcumentation, so that in
essence, GPU cores do not interfere with eachdtieme are still manpossible reasons wha GPU core
would be much slower than a CPU core xeaiting a certain program:

Program Size
Small programs can be handled with the sarfieiericy by ether a GPU or a CPU coréd=or a anall

program that compiles into a short sequence of multiply-add instructions, with no branches, there

really is no need for branch prediction and no need for data dependencies reslaien. pro-
grams havever, can be handled much more efficiently by a CPU core than by a GPU core and our
kernel program implementing our Golomb ruler search algorithm, is a large and gqugmeam.

For a large program which compiles into a long sequence of instructions, including loops, CPU-spe-

cific features for optimal Instruction-ke Parallelism (ILP) mak a eal difference in delered per
formance. Thenore sophisticated architecture of a CPU coreiges features that lack from a GPU
core such as deep pipelining, out-of-ordeecaition for resolving data dependencies and sophisti-

cated branch prediction. The CPU architecture has been maturing for decades so that large and com-

plex programs can bexecuted with maximum &tiengy. The architecture of each individual GPU

core on the other hand is very simple. Each GPU core is meant for performing simple operations that

contritute to the collectie dfort of all GPU cores residing within a Clllevice for the completion
of a task. Hundreds of GPU cores packed within a &ldBvice cost almost as much as a quad core
CPU.

Compiler Maturity
Nvidia’s nvcc compiler translates (CUBextended) C programs to PTX assembly programise
PTX architecture has not been around f@nenearly as maynyears as the x86 architecture.

http://www.nvidia.com/cuda
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Clock Speed
The clock rate of the CPU cores (2.6GHz) is almost double the clock speed of the GPU cores
(1.35GHz).

Low Occupancy
Kernel's lamge size and complexity results ineonvhelming requirements in shared memory and/or
registers per CUB thread, not enabling us to launch enough @Ubreads per MultiprocessoAs
shavn in chapter 7, we are only able to launch 384 out of a maximum of 768 threads per Multipro-
cessorwhich results in only 50% occupancAccording to documentation, maintaining high occu-
pang helps in hiding the lateycwhen accessing registers, shared memory and global metory
might be the fact that inefficient latgnlaiding induces a serious performance penalty.

In conclusion, our search algorithm cannot keceted as efficiently by each individual GPU core as it can
be executed by each indidual CPU core because our C program that implements our Golomb ruler search
algorithm is too large and complé be randled by a GPU core and because it requiveswelming re-

ister and shared memory resources per Elitfivead.
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APPENDIX A

BACKTRACKING SEARCH COMPLEXITY

This chapter ceers the deriation of the worst case complexity of the aforementioned backtracking
search algorithm gen in Chapter 4. We will be expressing worst case complexity in terms o e
number of needed recwsialls increases as a function mf The worst case complexity of creating one
branch of the search treeQ¢n) which is linear In the worst case scenario, each avahepossible branch
in the search tree would V&t be vsited by the backtracking algorithnkor this to happen, each and
eveay branch would hae 1o yield a golomb rulerbut every time the last mark to be put at the bottom (i.e.
X1) would introduce conflicting cross distancéds.that worst case scenario, the dominant contributieg f
tor to the algorithns overall compleity, would be hav the total number of branches that need to be
searched grows as a functionrof For this reason, we will be actually be expressiugall worst case
compl«ity in terms of hav the maximum number of branches that need to be searched grows as a function
of n.

As we hae dready seen, we try a range of increasing valuegfoup to tie point where a golomb
configuration for the remaining — 1 marks can be found, at which point the whole searching process
stops. Br each alueK that we setx, to, let us denote by [#{] the corresponding subtree of possible
configurations for the remaining— 1 marks.

The maximum value fox, is bounded from ab@, snce as we ha $iowved in the "Golomb Rulers"
chapterone can twialy construct a Golomb ruler for mm. Let T(n) denote the length of such avigly
constructed rulerwith n marks. Itthen follows thatx, < T(n). Furthermorejn chapter "Backtracking
Search" we hae $howed that the distances marks can be set to are bounded from aetlarding to the
following equations:

0
x->EG(i) i<sn-1
o g”r1ax§3(n—1)+1,n(n—1)/2+1,n2—2n?/n+?/n—2D i=n

0 O

In other words, in a arst case scenario, we will V& b search at most all search space subtrees
[IIG(N)], [(I[G(n) +1],- - -, [?][T (n)] until we find one that contains at least one branch which is a Golomb
Ruler We know which subtrees we lia © search in the worst case. If we could somelwalculate the

size (i.e. the number of branches) of each such subtreepuld aiso be able to calculate the maximum
needed number of recursion tree branches.

Let us nav focus our attention on search space subtrees. In each such subtrakielod glements
X1 and x,, are fixed to 0 and respectiely. The value of elements,, - - -, X, iS variable, but bounded
from abwe, dnce x, is kept constant. In  general, for each elemenit
X <X —1< X4 -2<---<X,—(n—1). For asubtree whene, = K, we havethat
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X]_:O
G(2)sx,<K-(n-2)
GB)<sx3<sK-(n-3)

G(K) < x3 < K - (n—-K)

G(n-1)<xp1<K-1
Xn, =K
Returning to the example wevsdast wheren = 5, for the first subtree [11][¢] (i.e. wherg, = 11),
the values of the remaining— 1 dements are bounded as
Xy =0
1<x,<8
3<x3<9
7<x,<10
Xs =11
In other words, assuming we perform a depth-first search parsing of the corresponding search space

subtree, the first branch to be produced would bg, [®,7, 11]Jand the last branch to be produced would be
[0, 8,9, 10, 11].

We row know that in a recursion subtree, the elementsestars (which correspond tosttranches),
are bounded from beloand from abwee.

In order to derie a nathematical expression for calculating the number of branches eéragb-
tree, it would help if we first considered the following trivial program for doing so:

program TreeSizeNaivgi)

1 oount:=0

2 x1]:=0

3 X[n]:=G[n]+i

4 foreachx[n—-1] from G[n-1]tox[n] -1
5 foreachx[n—-2] from G[n-2] to x[n] -2
6 foreachx[n-3]from G[n-3]to x[n] -3

7
8 foreachx[2] from G[2] to x[n] — (n—2)
9 count ;= count+l

10 return count

There will be as manbranches, as marimes the innermost statement will beeeuted. Buthow, it
is easy to map this number to a nested summatierhigfollowing:

Xn—1 Xp-1—1 Xnp—1 Xo—1

0
count= > > > -2 21 (Eg.12.1)
Xn-1=G(N—1) X,-2=G(N—-2) X,,-3=G(n—-3) X=G(1) x,=0

Returning to the example wevsgast wheren = 5, for the first subtree [11][¢] (i.&s = 11), it's total
number of branches can be calculated by the following nested summation:
10 X4~1%3-1 0

count= > > > > 1=104

X4=7 X3=3 X,=1 x;=0
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unfold this summation to an algebraipeession. eduating with nested loops (as shown ed)as
too slav and impractical. evduating the size of a search tree &y ko partitioning the search space. can be
used to express the worst case comiplen as a function oh. can be used to express performance in
number of (search tree) branches per secaim of each®(n) +i][¢] subtree divided by total wall clock
time needed.

use the concepts of discrete gras and discreteattorials. thefactorial of a discrete functior (k) is
denoted a8 f and can be defined as:
of(k) = f(k+1)- f(k) (Eqg. 12.2)

we will be utilizing the discreteattorial of the “k choose’ Idiscrete function, in terms d, which is
defined as:

ko_Ok O
00 0-10

the integral of a discrete functidr(k), reverses the effect of th& factorial operator and is defined as:

5Ck,1) =0

b-1
> 5f(k) = f(b)-f(a) (Eq.12.3)
k=a
the innermost sum of the nested summation can be written in termsGikihefunction as:
X3—1 X3—1
3 1 _ 3 D(ZD

%62  x=G@) 00
since it is a well known property @(k,|) thatC(k,0) = 1 for ary k. from the definition of the discrete
factorial operatop in Eqg. 12.2 we can also write this as:

e e [ DO
x26) 00 4 %5p OLO

since we knw that 5C(k, 1) = C(k, 0). from the definition of the discrete integral opera}orin Eq.12.3
we can finally re-write the nested summation as:

Xf 1= € DeO_ ¢ S Del_ OB
G2 xeoe 00 Gp 010 010 01 O

wrap our last result with the second to last summation in the nested summation of Eq. 12.% and get
Xl BD(alj_ ES(Z)DB: e T BR)O_ ! eO_BER)D € X0
we@ Ll U1 05 5@ M0 ee01 O S5eHl0 01 Ogige 00
applying the same principles as before, we can turn summations to the following algebraic expressions:

O 60t 0 Uouo 6RO GR)OVx0_ GE)0L

=0 O
w0 01 Oy Ge 00 20 02 05 01 Opm0 01 0f

now we can rearrange the position of the components of théqug expression, to separate the ones which
are functions ok, from the constant factors:

INote that sincelja(z)l:I

X4-1 @(Z)D_ EB(Z)DZXF:L
010

1_513(2)5 x-1  XaO
6@ 010 01 0

is a constanty_ x=6(3)* T 1 0&%=603) g
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O o Bu0_ B DG, Ure(2)0 6@)0_ r6(3)0H0x0
wB@wee 20 01 0Mm0 010010 02 05000

:D(4D_a D(4D+a X0
M0 ‘o “2000

where

_G@o | _ EES(Z)D [G(3)0_ @(@DB

a, = ,ap =
01 0O DDlDDlDDZDD
each nested summation of the form:
Xp—1 Xn-1—1 Xp-2—1 X-1 0
>1

Xn-1=G(n—1) Xp-,=G(n-2) X,-3=G(n-3) X,=G(1) x,=0

when unfolded from the innermostrards the outtermost summation as demonstratedealids antici-
pated to deelop into an algebraic expression of the form:

0 Xq D_a 0 Xq D_a O Xq IZI_a O Xq D____a XnO

h-20 "'th-30 *mh-40 °[h-50 "2 000
As we showed before, thiggresses the size (in number of branches) of a search treexylere been set
to a certain &lue. W\ can use this result to deei the worst case complexity searching through all branches
of one subtreex][*]:
00Xy O_  OXa O OXe O OX 0O D(nDDDODDXn 0o

Oomh-20 % th-30 2 th-40 ®mh-50""" 200" ° om- 200

As we showed before, in the worst case we woule lavisit each andery branch of all subtrees
[G(M][*], [G(Nn) + 1][*], - - -, [T(n)][*], where T (n) denotes the maximum possible length of an OGR with
marks (see Chapter 1).

Finally, we ae able to express theavall worst case complexity of searching each araiyebranch
of each subtree, as the following functiomof

Ore(no, B +10, 0 +100

O[H]T—Zl:l On-2 0O On-2 00O

To be ale to comert a nested summation of as in Eq.12.1, weeha be dle to calculate the cdef
cientsaq, - -, apo.

let us nev perform a step-wise westigation of the nested summation unfolding procedure we demon-
strated.

(1) westart of with an expression of the form:

Xo[
0o d

(2) weintergrate ger Zii;é(z) to get:

Xs0_ [(6(2)0 D30
010 01 00oO

(3) weintergrate ger Z’x‘;‘;é(s) to get:
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x0_ (60 a0 H6E@)0, 60 600
20 0O1 0010 DDZ 0 od1001 DDDOD
and so on.

At this point we are able to dee a m@ttern on ha the next expression is produced by integrating the cur
rent one. Each term of the form

a Xk
th O
X1 ~1

when integratedwer 3, _c ), expands to:
g P 0_ 6(KO
+10 ~ h+10
producing a term which is a function xf,; and a constant term.

Based on this observation we can derhe general rule displayed in Figure 12.1 for producing the
next expression by integrating the current one.

X1 —1
Current expression, being integrated ove}_
x=le(k)
UXe O —a Xk O —a Xk
[k - 20 ! k-30 2 ooO
[(Xk+1 L —g, Pk U L g, Bkl
k- 10 'k-20 201 O
,gHeto _,. 0eo o . 3008 XD
Ek 10 k- 20 “201 Og0o O

Figure 12.1. Schematic representation of a general rule for producing the next expressiongtatinge

the current onexer 3 5.
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