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Abstract 

As traffic from video services is expected to be a substantial portion of the 

traffic carried by emerging wired and wireless networks, statistical source models are 

needed for Variable Bit Rate (VBR) coded video in order to design networks which 

are able to guarantee the strict Quality of Service (QoS) requirements of the video 

traffic. Video packet delay requirements are strict, because delays are annoying to a 

viewer; when the delay experienced by a video packet exceeds the corresponding 

maximum delay, the packet is dropped and the video packet dropping requirements 

are equally strict. Hence, the problem of modeling video traffic becomes especially 

significant. 

H.264 is the latest video coding standard of the ITU-T Video Coding Experts 

Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). It has 

recently become the most widely accepted video coding standard since the 

deployment of MPEG2 at the dawn of digital television. It covers all common video 

applications ranging from mobile services and videoconferencing to IPTV, HDTV, 

and HD video storage. 

Previous work on modeling video traffic (mainly videoconference) coded with 

past encoding standards found that the marginal distributions for all the sequences 

could be described by a gamma or Pearson V distribution and used this result to build 

a Discrete Autoregressive (DAR) model of order one, which works well when several 

sources are multiplexed. Our study focuses on the problem of modeling video (i.e., 

not videoconference) traffic from H.264 encoders, which is a relatively new and yet 

open issue in the relevant literature. Our results reveal significant differences with the 

results of the past relevant literature, but still show that the DAR(1) model can 

provide a reliable modeling approach for more than half of the cases studied. 
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1. INTRODUCTION 

As traffic from video services is expected to be a substantial portion of the 

traffic carried by emerging wired and wireless networks [1][2], statistical source 

models are needed for Variable Bit Rate (VBR) coded video in order to design 

networks which are able to guarantee the strict Quality of Service (QoS) requirements 

of the video traffic. Video packet delay requirements are strict, because delays are 

annoying to a viewer; when the delay experienced by a video packet exceeds the 

corresponding maximum delay, the packet is dropped and the video packet dropping 

requirements are equally strict. 

Hence, the problem of modeling video traffic has been extensively studied in 

the literature. VBR video models which have been proposed in the literature include 

first-order autoregressive (AR) models [4], discrete AR (DAR) models [3][5], Markov 

renewal processes (MPR) [6], MPR transform-expand-sample (TES) [7], finite state 

Markov chain [8], Gamma-beta-auto-regression (GBAR) models [9][10], discrete-

time Semi-Markov Processes (SMP) [11], wavelets [12] multifractal and fractal 

methods [13]. 

H.264 is the latest video coding standard of the ITU-T Video Coding Experts 

Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). It has 

recently become the most widely accepted video coding standard since the 

deployment of MPEG2 at the dawn of digital television, and it may soon overtake 

MPEG2 in common use [16]. It covers all common video applications ranging from 

mobile services and videoconferecing to IPTV, HDTV, and HD video storage. 

Standard H.264 encoders generate three types of video frames: I (intra-coded), P 

(predictive) and B (bidirectionally predictive); i.e., while I frames are intra-coded, the 
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generation of P and B frames involves, in addition to intra-coding, the use of motion 

prediction and interpolation techniques. I frames are, on average, the largest in size, 

followed by P and then by B frames. 

The video coding layer of H.264/AVC (Advanced Video Codec) is similar to 

that of other video coding standards such as MPEG2 Video. In fact, it uses a fairly 

traditional approach consisting of a hybrid of block-based temporal and spatial 

prediction in conjunction with block-based transform coding [16]. In 2007, the 

Scalable Video Coding (SVC) extension has been added to the H.264/AVC standard. 

The SVC extension provides temporal scalability, Coarse Grain Scalability (CGS), 

Medium Grain Scalability (MGS), and SNR scalability in general, spatial scalability, 

and combined spatiotemporal-SNR scalability [17]. The study of H.264/SVC is out of 

the scope of this thesis. In the rest of the thesis, we use the term “H.264” to refer to 

the H.264/AVC video standard 

Similarly to the work in [18][24] on modeling videoconference traffic, our work 

focuses on the accurate fitting of the marginal (stationary) distribution of video frame 

sizes of single H.264 video traces. More specifically, our work follows the steps of 

the work presented in [5], where Heyman et al. analyzed three videoconference 

sequences coded with a modified version of the H.261 video coding standard and two 

other coding schemes, similar to the H.261. The authors in [5] found that the marginal 

distributions for all the sequences could be described by a gamma (or equivalently, 

negative binomial) distribution and used this result to build a Discrete Autoregressive 

(DAR) model of order one, which works well when several sources are multiplexed. 

In [18], the authors found that the marginal distributions for all H.263 

videoconference sequences could be described by a Pearson V distribution. The same 
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result was the product of the study in [24] which focused on H.264 videoconference 

traffic. 

An important feature of common H.264 encoders is the manner in which frame 

types are generated. Typical encoders use a fixed Group-Of-Pictures (GOP) pattern 

when compressing a video sequence; the GOP pattern specifies the number and 

temporal order of P and B frames between two successive I frames. A GOP pattern is 

defined by the distance N between I frames and the distance M between P frames. 

In this work, we focus on the problem of modeling video (i.e., not 

videoconference) traffic from H.264 encoders, which is a relatively new and yet open 

issue in the relevant literature. 
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2. SINGLE-SOURCE H.264 TRAFFIC MODELING 

The first step in our modeling approach is to analyze the statistical behavior of 

single-source H.264 video traces. We perform a statistical testing analysis by using 

three well-known statistical tests, which will be presented later in Section 2.         

In our work, we have studied 9 different long sequences of H.264 VBR encoded 

videos in 196 formats, from the publicity available Video Trace Library of [19], in 

order to derive a statistical model which fits well the real data.  

The traces used are in Common Intermediate Format (CIF)(i.e. 352x288 pixels) 

and in High Definition (HD) 720 and 1080 format (i.e. 1280x720p and 1920x1080i, 

respectively). We have used, from [19], all the different Quantization Parameters (QP) 

for each of the traces under study. The 9 traces are: Tokyo Olympics, Silence of the 

Lambs, Star Wars IV, Sony Demo, NBC News, Terminator 2, KAET’s From Mars to 

China,  KAET’s Horizon (Jan.6, 2006) and Sony Demo. The length of the videos is 

74, 30 and 10 minutes, as shown in Table 1. Appendix A includes the data on the 

mean, peak and standard deviation of each trace under study. 

TABLE 1. TRACE FORMAT AND VIDEO LENGTH 

  Trace Format Video’s 

length 

1 Tokyo Olympics CIF 74 min 

2 Silence of the Lambs CIF 30 min 

3 Star Wars IV CIF 30 min 

4 Sony Demo CIF 10 min 

5 NBC News CIF 30 min 

6 Terminator 2 HD 10 min 

7 KAET’s From Mars to China HD 30 min 

8 KAET’s Horizon (Jan.6, 2006) HD 30 min 

9 Sony Demo HD 10 min 

      

The data for each trace consists of a sequence of the number of cells per video 

frame and the type of video frame, i.e. I, P or B. Without loss of generality, we use 
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48-byte packets throughout this work, but our modeling approach can be used equally 

well with packets of other sizes.  

We have investigated the possibility of modeling the 196 traces with quite a few 

well-known distributions (exponential, gamma, lognormal, weibull, pearson V, 

geometric and negative binomial) [20]. Since almost all (with the exception of the 

exponential) of the above-mentioned distributions have been often used for video 

traffic modeling in the literature, they have been included in this work as fitting 

candidates, in order to compare their results in the case of H.264 video modeling. 

 

2.1. Distributions  

In this section we present the Probability Density Function (PDF), the mean and 

the variance of the distributions that we used in our study.  

 The PDF of an exponential distribution with parameter b>0 is   for 

all x≥0 and zero otherwise. The mean and variance are given by the following 

equations: , . 

 The PDF of a gamma distribution with parameters (a, b) , a>0 and b>0, is 

  for all x≥0 and zero otherwise. The mean and variance are 

given by the following equations:  , . 

 The PDF of a lognormal distribution with parameters (μ, σ
2
), μ>0 and σ>0,  is 

  , for all x≥0 and zero otherwise. The mean 

and variance are given by the following equations: , 

. 
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 The PDF of a weibull distribution with parameters (a, b) , a>0 and b>0,  is 

  , for all x≥0 and zero otherwise. The mean and variance 

are given by the following equations: , 

. 

 The PDF of a pearson V distribution with parameters (a, b), a>0 and b>0, is 

 , for all x≥0 and zero otherwise. The mean and variance are 

given by the following equations: for a>1,  

 for a>2. 

 The PDF of a geometric distribution with parameter p in (0, 1) is  

 , for all x in {0,1, . . .} and zero otherwise. The mean and 

variance are given by the following equations: , . 

 The PDF of a negative binomial distribution with parameters (s, p), s is a positive 

integer and p is in (0, 1), is   , for all x in {0, 1} and 

zero otherwise. The mean and variance are given by the following equations: 

, . 

 

2.2. Statistical Tests  

In this section we report the statistical tests used in our study. They include 

qualitative tests like Q-Q plots [5][20], and quantitative tests like Kolmogorov-

Smirnov tests [20] and Kullback-Leiber divergence tests [21]. 
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2.2.1. Q-Q plots test 

The Q-Q plot is a powerful goodness-of-fit test, which graphically compares 

two data sets in order to determine whether the data sets come from populations with 

a common distribution (if they do, the points of the plot should fall approximately 

along a 45-degree reference line). More specifically, a Q-Q plot is a plot of the 

quantiles of the real data versus the quantiles of the fitted distribution (statistic data). 

A z-quantile of X is any value x such that:   

 

2.2.2. Kolmogorov-Smornov test  

The Kolmogorov-Smornov test (KS-test) tries to determine if two datasets differ 

significantly. The KS-test has the advantage of making no assumption about the 

distribution of data, i.e. it is non-parametric and distribution free. The KS-test uses the 

maximum vertical deviation between the two curves as its statistic D which is defined 

as follows:  where F(x) and G(x) are the empirical 

distribution function of the original data and the cumulative distribution function of 

the model, respectively. 

2.2.3. The Kullback-Leiber divergence test  

The Kullback-Leibler divergence test (KL-test) is a measure of the difference 

between two probability distributions f and g and is defined as follows:  

 
1

, log
k

i
i

i i

p
I f g p



 
  

 
   

where log denotes the natural logarithm. Here, there are k possible outcomes of the 

underlying random variable; the true probability of the i
th

 outcome is given by pi, 

while the π1,..., πk constitute the approximating probability distribution (i.e., the 
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approximating model). In this case, we have 0 < pi < 1, 0 < πi < 1, and 1i ip    . 

Hence, here f and g correspond to the pi and πi, respectively. The notation I(f, g) 

denotes the information lost when g is used to approximate f or the distance from g to 

f. If the quantity 0log0 appears in the formula, it is interpreted as zero.  

 

2.3. Statistical Tests’ Results 

In this section we report our Q-Q plot tests’ results when trying to find the best 

fit for all video frame sizes (i.e., we study the video trace as a whole, without 

discriminating between different video frames types). Our results are presented in 

Table 2. 

 

TABLE 2. Q-Q PLOTS’ RESULTS FOR BEST DISTRIBUTION FIT  

(TRACE AS A WHOLE)  

distribution results per distribution 

exponential 0% 

gamma 51% 

lognormal 10% 

weibull 36% 

pearsonV 2% 

geometric 1% 

negative binomial 0% 

 

Although these distributions were shown to be the better fit in comparison to the 

others, the fit was not perfectly accurate in none of the cases studied. This was 

expected, as the gross differences in the number of bits required to represent I, P and 

B frames impose a degree of periodicity on H.264-encoded streams, based on the 

cyclic GoP formats.  

Hence, we proceeded to study the frame size distribution for each of the three 

different video frame types (I, P, B), in the same way we studied the frame size 

distribution for the whole trace. This approach was also used in [10][23]. 
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The mean, peak and variance of the video frame sizes for each video frame type 

(I, P and B) of each movie were taken again from [19] and the distributions 

parameters calculated based on the formulae for the mean and variance presented in 

Section 2.1.  

A few of our Q-Q plot tests’ results are presented indicatively in Figures 1-8, 

where we present 2 examples of the results of Q-Q plots, KS and K-L statistical tests’ 

results for the whole trace and for each type of frame separately. The fitting results 

when modeling each video frame type separately are clearly better than the results 

produced when modeling the trace as a whole. Our Q-Q plot tests’ results, when 

studying I, P and B frames separately, are summarized in Tables 3 and 4. Table 3 

presents the cumulative results per distribution, while Table 4 presents the fitting 

results for each type of video frame. Our respective results with the use of the KS test 

are summarized in Tables 5-6, and with the use of the K-L test are summarized in 

Tables 7-8. 

 

 

Example 1: “KAET’s From Mars to China G12B2 
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Figure 1.a. Q-Q plots for the whole KAET’s From Mars to China trace. The best fit is provided 

by the gamma distribution. 
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Figure 1.b. KS and KL tests’ results for the whole KAET’s From Mars to China. The best fit is 

provided by the gamma distribution. 
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Figure 2.a. Q-Q plots for the I frames of KAET’s From Mars to China trace. The best fit is 

provided by the gamma distribution. 
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Figure 2.b. KS and KL tests’ results for the I frames of  KAET’s From Mars to China trace. The 

best fit is provided by the gamma distribution. 
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Figure 3.a. Q-Q plots for the P frames of  KAET’s From Mars to China trace. The best fit is 

provided by the weibull distribution. 
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Figure 3.b. KS and KL tests’ results for the P frames of  KAET’s From Mars to China trace. The 

best fit is provided by the weibull distribution. 

 

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7

x 10
4

X Quantiles

Y
 Q

u
a
n
ti
le

s

 

 

reference

exponential

gamma

lognormal

weibull

pearsonV

geometric

negBinomial

 

Figure 4.a. Q-Q plots for the B frames of  KAET’s From Mars to China trace. The best fit is 

provided by the gamma distribution. 
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Figure 4.b. KS and KL tests’ results for the B frames of  KAET’s From Mars to China trace. 

The best fit is provided by the gamma distribution. 

 

 

Example 2: NBC News G16B1 QP38 
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Figure 5.a. Q-Q plots for the whole NBC News(G16B1 QP38) trace. The best fit is provided by 

the gamma distribution. 
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Figure 5.b. KS and KL tests’ results for the whole NBC News(G16B1 QP38) trace. The best fit 

is provided by the gamma distribution. 
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Figure 6.a. Q-Q plots for the I frames of NBC News(G16B1 QP38) trace. The best fit is 

provided by the pearson V distribution. 
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Figure 6.b KL and KS tests’ results for the I frames of NBC News(G16B1 QP38) trace. The best 

fit is provided by the pearson V distribution. 
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Figure 7.a. Q-Q plots for the P frames of NBC News(G16B1 QP38) trace. The best fit is 

provided by the gamma distribution. 
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Figure 7.b. KL and KS tests’ results for the P frames of NBC News(G16B1 QP38) race. The 

best fit is provided by the gamma distribution. 
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Figure 8. Q-Q plots for the B frames of NBC News(G16B1 QP38) trace. The best fit is provided 

by the lognormal distribution. 
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Figure 8.b. KL and KS tests’ results for the B frames of NBC News(G16B1 QP38) trace. The 

best fit is provided by the lognormal distribution. 

 

 

TABLE 3. Q-Q PLOTS’ CUMULATIVE RESULTS FOR BEST DISTRIBUTION  

FIT (Ι, P, B FRAMES SEPARATELY) 

distribution results per distribution 

exponential 1.5% 

gamma 25% 

lognormal 25.5% 

weibull 36% 

pearsonV 10% 

geometric 0% 

negative binomial 2% 
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TABLE 4. Q-Q PLOTS’ RESULTS FOR BEST DISTRIBUTION 

 FIT  FOR EACH VIDEO FRAME TYPE 

distribution results per 

distribution 

I frames 

results per 

distribution 

P frames 

results per 

distribution 

B frames 

exponential 0% 1% 2% 

gamma 20.5% 37% 20% 

lognormal 28% 20% 27% 

weibull 28% 38% 42% 

pearsonV 20.5% 3% 7% 

geometric 0% 0.5% 1% 

negative 

binomial 

3% 0.5% 1% 

 

 

TABLE 5. KS TESTS’ RESULTS CUMULATIVE RESULTS FOR BEST 

DISTRIBUTION FIT (Ι, P, B FRAMES SEPARATELY) 

distribution results per distribution 

exponential 3.5% 

gamma 25.5% 

lognormal 24% 

weibull 28% 

pearsonV 13% 

geometric 4% 

negative binomial 2% 

 

 

 

 

TABLE 6. KS TEST’S RESULTS FOR BEST DISTRIBUTION FIT  

FOR EACH VIDEO FRAME TYPE 

distribution results per 

distribution 

I frames 

results per 

distribution 

P frames 

results per 

distribution 

B frames 

exponential 0% 2% 8% 

gamma 25% 37% 16% 

lognormal 17% 25% 30% 

weibull 31% 29% 23% 

pearsonV 23% 3.5% 12% 

geometric 0% 2% 10% 

negative 

binomial 

3.5% 1.5% 1% 
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TABLE 7. KL TESTS’ RESULTS CUMULATIVE RESULTS FOR BEST 

DISTRIBUTION FIT (Ι, P, B FRAMES SEPARATELY) 

distribution results per distribution 

exponential 0% 

gamma 0% 

lognormal 2% 

weibull 0% 

pearsonV 98% 

geometric 0% 

negative binomial 0% 

 

 

TABLE 8. KL TESTS’ RESULTS FOR BEST DISTRIBUTION FIT 

FOR EACH VIDEO FRAME TYPE 

distribution results per 

distribution 

I frames 

results per 

distribution 

P frames 

results per 

distribution 

B frames 

exponential 0% 0% 0% 

gamma 0.5% 0% 0% 

lognormal 1% 2% 2% 

weibull 0% 0% 0% 

pearsonV 98% 98% 98% 

geometric 0% 0% 0% 

negative 

binomial 

0.5% 0% 0% 

 

 

 

2.4. Finding the best fits 

Although the fitting results when modeling each video frame type separately were 

clearly better than the results produced by modeling the whole sequence uniformly, 

the autocorrelation among video frames can never be perfectly “captured” by a 

distribution generating frame sizes independently, according to a declared mean and 

standard deviation, and therefore none of the fitting attempts (including the Pearson 

V), as good as they might be, can achieve perfect accuracy. However, these results 
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lead us to extend our work in order to build a DAR model, which inherently uses the 

autocorrelation coefficient of lag-1 in its estimation. The model will be shown to be 

able to often capture quite accurately the behavior of multiplexed H.264 

videoconference movies, by generating frame sizes independently for I, P and B 

frames. 

Still, for the DAR(1) model to work, the best distribution fit needs to be found. 

The most important conclusion that is derived from this first part of our work is that, 

contrary to the results in [18, 24], which focused on modeling videoconference traffic, 

the three statistical tests (Q-Q plot, KS test, KL test) used in our study do not agree, 

in many cases, on which distribution provides the best fit (in [18, 24] in almost all the 

cases examined, the three tests provided identical results). The reason is the much 

lower autocorrelation of the H.264 video traces, compared with the high 

autocorrelation of H.263 and H.264 videoconference traffic. This lower 

autocorrelation (respective results will be presented in Section 3) makes the 

differences in frame sizes between successive frames larger, and hence makes the 

behavior of the trace more unpredictable. This fact, combined with the very different 

nature of the three statistical tests used in our study is responsible for their different 

“verdicts”. More specifically, the Q-Q plot is of a qualitative nature and is based on 

observation; therefore, in the case when different distributions provide similar fitting 

results, the Q-Q plot can not provide a definite conclusion on which distribution is the 

best fit. On the other hand, the KS test does provide a quantitative result, but this 

concerns the maximum vertical deviation between two curves; therefore, it is clear 

which distribution has the minimum maximum distance from the “trace curve” but 

this is not conclusive in terms of whether this distribution also presents the closest fit. 
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For the above reasons, it could be argued that the KL test provides the most accurate 

information on the goodness-of-fit of a distribution, among the three tests. 

In our work, in order to derive the best distribution fit for each case, we have 

used the following procedure:  in the cases where all three statistical tests or two out 

of the three tests denoted the same distribution as the best fit, we have considered that 

distribution as the most suitable for use in our DAR model. In the cases where the 

three tests denoted different distributions as the best fit, we compared the results of 

the KL test with the results of the Q-Q plot test. If the distribution that was the best fit 

according to the KL test was a close second best according to the Q-Q plot test, then 

we used that distribution as the best fit. This was a case which we encountered in 

many of the traces under study. If this wasn’t the case (i.e., all tests offered different 

results and the best KL fit was not shown to be a good fit by the Q-Q plot test), then 

the specific trace was not included in our DAR(1) modeling study which will be 

presented in Section 3. 24% of the traces were not included in our DAR(1) study 

because of this reason.  

Table 9 presents the best fit results for all traces, based on the above-described 

methodology. 

 

 

TABLE 9. BEST FIT FINAL RESULTS 

distribution results per distribution 

exponential 0% 

gamma 17% 

lognormal 13% 

weibull 23% 

pearsonV 22% 

geometric 0% 

negative binomial 11% 

all tests offered  

different results 

24% 
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3. MODELING MULTIPLEXED H.264 VIDEO TRAFFIC 

In this section we build a Discrete Autoregressive (DAR(1)) model with the 

purpose of “capturing” the behavior of multiplexed H.264 video traffic. 

3.1. The DAR(1) Model 

A Discrete Autoregressive model of order p, denoted as DAR(p), generates a 

stationary sequence of discrete random variables with an arbitrary probability 

distribution and with an autocorrelation structure similar to that of an Autoregressive 

model [14]. DAR(1) is a special case of a DAR(p) process and it is defined as 

follows: let {Vn} and {Yn} be two sequences of independent random variables. The 

random variable Vn can take two values, 0 and 1, with probabilities 1-ρ and ρ, 

respectively. The random variable Yn has a discrete state S and P{Yn=i}=π(i). The 

sequence of random variables {Xn} which is formed according to the linear model:  

                              Xn=VnXn-1+(1-Vn)Yn                                                         (1)  

is a DAR(1) process. 

A DAR(1) process is a Markov chain with discrete state space S and transition 

matrix: 

                                  P=ρΙ+(1-ρ)Q                                                                     (2) 

where ρ is the autocorrelation coefficient, I is the identity matrix and Q is a matrix 

with Qij=π(j) for i,j in S.  

Autocorrelations are usually plotted for a range W of lags. The autocorrelation 

can be calculate by the formula: 

                                                                   (3) 

where μ is the mean and σ
2 

 the variance of the frame size for a specific video trace. 
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As in [5], where a DAR(1) model with negative binomial distribution (i.e., the 

best distribution fit) was used to model the number of cells per frame of VBR 

teleconferencing video, we want to build a model based only on parameters which are 

either known at call set-up time or can be measured without introducing much 

complexity in the network. DAR(1) provides an easy and practical method to compute 

the transition matrix and gives us a model based only on four physically meaningful 

parameters, i.e., the mean, peak, variance and the lag-1 autocorrelation coefficient ρ 

of the offered traffic. The DAR(1) model can be used with any marginal distribution 

[22]. 

We proceeded to build a DAR(1) model for each one of the traces under study. 

More specifically, in our model the rows of the Q matrix consist of the “best” 

distribution probabilities (f0, f1,…, fk, fK), where FK=Σk>Kfk, and K is the peak rate. 

Each k, for k<K, corresponds to possible source rates less than the peak rate of K. 

From the transition matrix in (2) it is evident that if the current frame has, for 

example, i cells, then the next frame will have i cells with probability ρ+(1-ρ)fi, and 

will have k cells, k≠i, with probability (1-ρ)fk. Therefore the number of cells per video 

frame stays constant from one (I, P or B) video frame to the next (I, P or B) video 

frame, respectively, in our model with a probability slightly larger than ρ. 

The Markov chain generated by the DAR(1) model is presented in Figure 9. The 

number of a state is essentially the number of video packets per frame. Each packet 

contains 48 bytes. Thus, the maximum number of packets that can be generated from 

the model results by dividing the largest video frame size of the actual trace under 

study with the number 48.  

The autocorrelation coefficient of lag-1 is calculated for all types of video 

frames of the movies, using the formula (3) with w=1, as it shows the degree of 
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correlation between successive frames of the same type. We also calculated the 

autocorrelation coefficient with lag-2 and with lag equal to the size of the GoP (lag-12 

or lag-16), for each type of video frame as well as for the whole trace, for all traces 

under study. When studying the whole trace, the autocorrelation coefficient was found 

to be low for lag-1 and lag-2 and very high for lag equal to the size of GOP, showing 

the strong periodicity in video frame sizes between consecutive GOPs. When we 

studied each type of frame separately, the autocorrelation coefficient was often very 

high for lag-1, slightly lower for lag-2 and even lower (but still non-negligible) for lag 

equal to the size of GOP. Some indicative results are presented in appendix B. The 

autocorrelation for the whole NBC News (G16B7 QP28) trace and the I, P, B frames 

of the trace separately is shown in Figures 10a, 10b, 10c and 10d.                                                                                                              

 

Figure 9. Markov chain generated from the DAR(1) model. 
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Figure  10a.  Autocorrelation Coefficients for the whole NBC News  trace ([ G16, B7, QP28]). 
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Figure  10b.  Autocorrelation for the I frames of the NBC News trace ([ G16, B7, QP28]). 
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Figure 10c.  Autocorrelation for the P frames of the NBC News trace ([ G16, B7, QP28]). 
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Figure  10d.  Autocorrelation for the B frames of the  NBC News trace ([G16, B7, QP28]). 

  

  



 
 

31 
 

3.2. Modeling results and discussion based on Q-Q plots 

We proceeded with testing our model statistically in order to study whether it 

produces a good fit for the I, P, B frames for the trace superposition. For this reason 

we have used again Q-Q plots and we present indicatively some of these results in 

appendix Β. 

Our results have shown that the points of the Q-Q plots fall, in many but not all 

the cases under study, along the 45-degree reference line, with the exception of the 

last quantiles (right-hand tail). The very good fit in these cases (which correspond to 

72% of the total traces used in our DAR(1) modeling study) shows that the 

superposition of the actual traces can be modeled very well by a respective 

superposition of data produced by the DAR(1) model. In the cases where the DAR(1) 

model does not provide satisfactory results, this was caused by the lack of an accurate 

distribution fit, as explained in the first part of our work.  

From the results presented in Appendix B, it is clear that in most cases, as the 

number of sources increases, the modeling results are better (the authors in [5, 18, 24] 

have reached similar conclusions for their own DAR(1) models and they present 

results for a  superposition of 5-20 traces).  

In the cases, however, where the initial distribution fit is not accurate, it can 

happen that the DAR(1) model for a superposition of 5 traces is better than the 

respective model for a superposition of 15 traces; the reason is that the poor initial 

modeling results lead to greater differences between the model and the actual data as 

the number of sources increases. Such an example is shown in Figure AB33, in 

Appendix B. 
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4. CONCLUSIONS 

Models of video traffic are very important, as networks need to handle video 

traffic competently (i.e. to guarantee its strict QoS requirements despite its 

burstiness). Hence in this work we have investigated the subject of modeling H.264 

video traffic. 

We have investigated the possibility of modeling a large number (close to 200) 

single H.264 video traces with well-known distributions. The results showed that 

there is not one distribution that is most suitable for all traces, but rather that the best 

distribution fit depends on the trace. 

Our approach was to model separately the I, P and B frames of each trace, in 

order to achieve better modeling accuracy. Our results have shown that this is a 

clearly better choice than modeling the whole trace; however, the behavior of video 

traffic can never be perfectly “captured” by a distribution generating independently 

frame sizes according to a declared mean and standard deviation, due to the 

autocorrelation of video traffic. Hence, none of the fitting attempts can achieve high 

accuracy. 

We used the fitting results in order to build a simple DAR(1) model (separately 

for I, P and B frames) to capture the behavior of multiplexed H.264 video sources. 

The DAR(1) model was shown to provide various degrees of modeling accuracy, but 

in many cases succeeded in providing a highly accurate model for multiplexed H.264 

videos. The simplicity of the model makes it a good candidate for modeling video 

traffic for networking purposes, as it demands low implementation complexity in 

comparison to wavelet approaches such as [12] which can offer higher accuracy at the 

cost of significantly higher complexity. 
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The results of this work have been used in [25, 26], in the study of the FPRRA 

framework for video traffic transmission over GEO satellites. 
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APPENDIX A 

 In this appendix we present the date for the peak, mean and standard deviation 

of the traces which were used in our study. 

 

 trace   Peak 

(Bytes) 

 Mean 

(Bytes) 

Standard deviation 

          (Bytes) 

1 Tokyo Olympics 

 G16B1 QP10 
95219 15259 10934 

2 Tokyo Olympics 

 G16B1 QP16 
62269 7004 6595 

3 Tokyo Olympics 

 G16B1 QP22 
40151 2897 3661 

4 Tokyo Olympics 

 G16B1 QP24 
35451 2192 2975 

5 Tokyo Olympics 

 G16B1 QP28 
27652 1326 2005 

6 Tokyo Olympics 

 G16B1 QP34 
17313 635 1059 

7 Tokyo Olympics 

 G16B1 QP38 
11140 388 654 

8 Tokyo Olympics 

 G16B1 QP42 
6629 239 397 

9 Tokyo Olympics 

 G16B1 QP48 
2017 112 175 

10 Tokyo Olympics 

 G16B3 QP10 
95566 15472 9757 

11 Tokyo Olympics 

 G16B3 QP16 
62469 6773 6272 

12 Tokyo Olympics 

 G16B3 QP22 
40362 2803 3586 

13 Tokyo Olympics 

 G16B3 QP24 
35695 2121 2932 

14 Tokyo Olympics 

 G16B3 QP28 
27850 1274 1989 

15 Tokyo Olympics 

 G16B3 QP34 
17429 601 1062 

16 Tokyo Olympics 

 G16B3 QP38 
11292 365 660 

17 Tokyo Olympics 

 G16B3 QP42 
6752 221 402 

18 Tokyo Olympics 

 G16B3 QP48 
2034 101 178 

19 Tokyo Olympics 

 G16B7 QP10 
96634 16254 9010 
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20 Tokyo Olympics 

 G16B7 QP16 
63389 7145 6049 

21 Tokyo Olympics 

 G16B7 QP22 
40814 3024 3571 

22 Tokyo Olympics 

 G16B7 QP24 
36154 2297 2937 

23 Tokyo Olympics 

 G16B7 QP28 
28338 1375 1993 

24 Tokyo Olympics 

 G16B7 QP34 
17953 639 1066 

25 Tokyo Olympics 

 G16B7 QP38 
11752 384 668 

26 Tokyo Olympics 

 G16B7 QP42 
7122 227 4082 

27 Tokyo Olympics 

 G16B7 QP48 
2248 98 179 

28 Tokyo Olympics 

 G16B15 QP10 
97496 17242 8669 

29 Tokyo Olympics 

 G16B15 QP16 
64336 7758 5989 

30 Tokyo Olympics 

 G16B15 QP22 
41313 3413 3637 

31 Tokyo Olympics 

 G16B15 QP24 
36664 2617 3010 

32 Tokyo Olympics 

 G16B15 QP28 
28816 1583 2038 

33 Tokyo Olympics 

 G16B15 QP34 
18410 732 1079 

34 Tokyo Olympics 

 G16B15 QP38 
12244 435 673 

35 Tokyo Olympics 

 G16B15 QP42 
7539 248 407 

36 Tokyo Olympics 

 G16B15 QP48 
2738 99 117 

37 Silence of the Lambs 

 G16B1 QP10 
81734 7885 8683 

38 Silence of the Lambs 

 G16B1 QP16 
51655 3097 4804 

39 Silence of the Lambs 

 G16B1 QP22 
35533 1361 2631 

40 Silence of the Lambs 

 G16B1 QP24 
30838 1041 2130 

41 Silence of the Lambs 

 G16B1 QP28 
23015 633 1414 

42 Silence of the Lambs 

 G16B1 QP34 
13046 306 723 

43 Silence of the Lambs 

 G16B1 QP38 
8143 190 438 
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44 Silence of the Lambs 

 G16B1 QP42 
4746 121 262 

45 Silence of the Lambs 

 G16B1 QP48 
1821 64 117 

46 Silence of the Lambs 

 G16B3 QP10 
82228 7430 8416 

47 Silence of the Lambs 

 G16B3 QP16 
51991 2947 4733 

48 Silence of the Lambs 

 G16B3 QP22 
35814 1296 2613 

49 Silence of the Lambs 

 G16B3 QP24 
31061 991 2122 

50 Silence of the Lambs 

 G16B3 QP28 
23198 601 1410 

51 Silence of the Lambs 

 G16B3 QP34 
13203 287 722 

52 Silence of the Lambs 

 G16B3 QP38 
8291 177 439 

53 Silence of the Lambs 

 G16B3 QP42 
4857 112 263 

54 Silence of the Lambs 

 G16B3 QP48 
1870 59 118 

55 Silence of the Lambs 

 G16B7 QP10 
83620 7707 8246 

56 Silence of the Lambs 

 G16B7 QP16 
53002 3102 4738 

57 Silence of the Lambs 

 G16B7 QP22 
36404 1377 2653 

58 Silence of the Lambs 

 G16B7 QP24 
31696 1051 2162 

59 Silence of the Lambs 

 G16B7 QP28 
23775 634 1440 

60 Silence of the Lambs 

 G16B7 QP34 
13688 297 737 

61 Silence of the Lambs 

 G16B7 QP38 
8662 182 449 

62 Silence of the Lambs 

 G16B7 QP42 
5130 112 268 

63 Silence of the Lambs 

 G16B7 QP48 
1974 57 119 

64 Silence of the Lambs 

 G16B15 QP10 
85012 8390 8173 

65 Silence of the Lambs 

 G16B15 QP16 
54191 3442 4773 

66 Silence of the Lambs 

 G16B15 QP22 
37080 1554 2707 

67 Silence of the Lambs 

 G16B15 QP24 
32396 1189 2214 
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68 Silence of the Lambs 

 G16B15 QP28 
24440 713 1475 

69 Silence of the Lambs 

 G16B15 QP34 
14204 327 755 

70 Silence of the Lambs 

 G16B15 QP38 
9169 197 459 

71 Silence of the Lambs 

 G16B15 QP42 
5533 118 272 

72 Silence of the Lambs 

 G16B15 QP48 
2148 55 117 

73 Star Wars IV 

 G16B1 QP10 
52381 7292 7253 

74 Star Wars IV 

 G16B1 QP16 
31463 3103 4075 

75 Star Wars IV 

 G16B1 QP22 
18919 1433 2222 

76 Star Wars IV 

 G16B1 QP24 
15356 1105 1794 

77 Star Wars IV 

 G16B1 QP28 
10452 678 1183 

78 Star Wars IV 

 G16B1 QP34 
6403 329 616 

79 Star Wars IV 

 G16B1 QP38 
4290 204 385 

80 Star Wars IV 

 G16B1 QP42 
2951 131 244 

81 Star Wars IV 

 G16B1 QP48 
1729 71 122 

82 Star Wars IV 

 G16B3 QP10 
52977 6783 7152 

83 Star Wars IV 

 G16B3 QP16 
32681 2976 4062 

84 Star Wars IV 

 G16B3 QP22 
19106 1382 2225 

85 Star Wars IV 

 G16B3 QP24 
15596 1063 1800 

86 Star Wars IV 

 G16B3 QP28 
10500 648 1189 

87 Star Wars IV 

 G16B1 QP34 
6474 311 620 

88 Star Wars IV 

 G16B3 QP38 
4339 194 388 

89 Star Wars IV 

 G16B3 QP42 
2957 124 246 

90 Star Wars IV 

 G16B3 QP48 
1730 67 122 

91 Star Wars IV 

 G16B7 QP10 
50652 6939 6882 
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92 Star Wars IV 

 G16B7 QP16 
32157 3105 4003 

93 Star Wars IV 

 G16B7 QP22 
19584 1460 2230 

94 Star Wars IV 

 G16B7 QP24 
16011 1123 1808 

95 Star Wars IV 

 G16B7 QP28 
10674 681 1200 

96 Star Wars IV 

 G16B7 QP34 
6599 323 628 

97 Star Wars IV 

 G16B7 QP38 
4437 201 394 

98 Star Wars IV 

 G16B7 QP42 
3066 128 248 

99 Star Wars IV 

 G16B7 QP48 
1823 67 122 

100 Star Wars IV 

 G16B15 QP10 
47856 7618 6589 

101 Star Wars IV 

 G16B15 QP16 
32767 3460 3870 

102 Star Wars IV 

 G16B15 QP22 
20075 1656 2213 

103 Star Wars IV 

 G16B15 QP24 
16437 1279 1808 

104 Star Wars IV 

 G16B15 QP28 
10877 769 1210 

105 Star Wars IV 

 G16B15 QP34 
6805 359 636 

106 Star Wars IV 

 G16B15 QP38 
4603 221 400 

107 Star Wars IV 

 G16B15 QP42 
3144 138 250 

108 Star Wars IV 

 G16B15 QP48 
1632 69 119 

109 Sony Demo 

 G16B1 QP10 
104148 16635 14420 

110 Sony Demo 

 G16B1 QP16 
65552 8259 9446 

111 Sony Demo 

 G16B1 QP22 
43608 3890 5931 

112 Sony Demo 

 G16B1 QP24 
37670 2959 4946 

113 Sony Demo 

 G16B1 QP28 
27708 1758 3429 

114 Sony Demo 

 G16B1 QP34 
16086 786 1824 

115 Sony Demo 

 G16B1 QP38 
10492 449 1107 
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116 Sony Demo 

 G16B1 QP42 
6638 262 653 

117 Sony Demo 

 G16B1 QP48 
2887 119 270 

118 Sony Demo 

 G16B3 QP10 
104112 16273 14113 

119 Sony Demo 

 G16B3 QP16 
66242 7926 9257 

120 Sony Demo 

 G16B3 QP22 
43808 3580 5909 

121 Sony Demo 

 G16B3 QP24 
37882 2702 4961 

122 Sony Demo 

 G16B3 QP28 
27861 1600 3469 

123 Sony Demo 

 G16B3 QP34 
16233 728 1855 

124 Sony Demo 

 G16B3 QP38 
10579 422 1128 

125 Sony Demo 

 G16B3 QP42 
6734 248 666 

126 Sony Demo 

 G16B3 QP48 
2904 110 257 

127 Sony Demo 

 G16B7 QP10 
101206 17039 13990 

128 Sony Demo 

 G16B7 QP16 
65289 8353 176 

129 Sony Demo 

 G16B7 QP22 
44458 3773 5883 

130 Sony Demo 

 G16B7 QP24 
38480 2831 4964 

131 Sony Demo 

 G16B7 QP28 
28460 1641 3506 

132 Sony Demo 

G16B7 QP34 
16725 742 1907 

133 Sony Demo 

 G16B7 QP38 
10947 436 1171 

134 Sony Demo 

 G16B7 QP42 
7108 255 697 

135 Sony Demo 

 G16B7 QP48 
3185 112 286 

136 Sony Demo 

 G16B15 QP10 
102765 18618 14023 

137 Sony Demo 

 G16B15 QP16 
66670 9296 84194096 

138 Sony Demo 

 G16B15 QP22 
45228 4296 5926 

139 Sony Demo 

 G16B15 QP24 
39202 3245 5013 
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140 Sony Demo 

 G16B15 QP28 
29162 1857 3542 

141 Sony Demo 

 G16B15 QP34 
17190 806 1950 

142 Sony Demo 

 G16B15 QP38 
11376 470 1215 

143 Sony Demo 

 G16B15 QP42 
7471 274 731 

144 Sony Demo 

 G16B15 QP48 
3528 116 301 

145 NBC News 

 G16B1 QP10 
88254 29108 9808 

146 NBC News 

 G16B1 QP16 
56417 13367 7788 

147 NBC News 

 G16B1 QP22 
36027 4949 4840 

148 NBC News 

 G16B1 QP24 
30995 3535 3970 

149 NBC News 

 G16B1 QP28 
22637 1976 2713 

150 NBC News 

 G16B1 QP34 
13948 889 1472 

151 NBC News 

 G16B1 QP38 
9756 528 934 

152 NBC News 

 G16B1 QP42 
6703 321 586 

153 NBC News 

 G16B1 QP48 
3504 149 277 

154 NBC News 

 G16B3 QP10 
90775 27584 9508 

155 NBC News 

 G16B3 QP16 
59352 12351 7453 

156 NBC News 

 G16B3 QP22 
36217 4530 4787 

157 NBC News 

 G16B3 QP24 
31148 3270 3941 

158 NBC News 

 G16B3 QP28 
22815 1828 2703 

159 NBC News 

 G16B3 QP34 
14141 822 1478 

160 NBC News 

 G16B3 QP38 
9853 493 941 

161 NBC News 

 G16B3 QP42 
6756 298 591 

162 NBC News 

 G16B3 QP48 
3527 135 279 

163 NBC News 

 G16B7 QP10 
93192 27439 9053 
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164 NBC News 

 G16B7 QP16 
60723 12397 7200 

165 NBC News 

 G16B7 QP22 
36839 4629 4715 

166 NBC News 

 G16B7 QP24 
31796 3366 3913 

167 NBC News 

 G16B7 QP28 
23359 1885 2701 

168 NBC News 

 G16B7 QP34 
14434 839 1493 

169 NBC News 

 G16B7 QP38 
10121 505 961 

170 NBC News 

 G16B7 QP42 
6988 303 604 

171 NBC News 

 G16B7 QP48 
3721 131 284 

172 NBC News 

 G16B15 QP10 
87785 27866 8555 

173 NBC News 

 G16B15 QP16 
55876 12862 6801 

174 NBC News 

 G16B15 QP22 
37657 4981 4600 

175 NBC News 

 G16B15 QP24 
32475 3665 3850 

176 NBC News 

 G16B15 QP28 
24034 2078 2670 

177 NBC News 

 G16B15 QP34 
14882 919 1486 

178 NBC News 

 G16B15 QP38 
10517 546 965 

179 NBC News 

 G16B15 QP42 
7280 318 611 

180 NBC News 

 G16B15 QP48 
3980 132 286 

181 Terminator 

 G12B2 QP10 
405006 119212 52562 

182 Terminator 

 G12B2 QP22 
159536 21189 17997 

183 Terminator 

 G12B2 QP28 
90512 9227 9398 

184 Terminator 

 G12B2 QP34 
49518 4538 5290 

185 Terminator 

 G12B2 QP38 
30503 2922 3548 

186 Terminator 

 G12B2 QP42 
21262 1955 2525 

187 Terminator 

 G12B2 QP48 
14095 1052 1551 
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188 KAET’s from Mars to 

Mars to China 

G12B2 QP28 

326905 20207 30167 

189 KAET’s Horizon 

G12B2 QP28 
100061 6394 11786 

190 Sony Demo 

 G12B2 QP10 
499921 94961 78196 

191 Sony Demo 

 G12B2 QP22 
211013 24181 31077 

192 Sony Demo 

 G12B2 QP28 
132717 10231 18051 

193 Sony Demo 

 G12B2 QP34 
77287 4629 9945 

194 Sony Demo 

 G12B2 QP38 
49818 2814 6476 

195 Sony Demo 

 G12B2 QP42 
31854 1820 4237 

196 Sony Demo 

 G12B2 QP48 
17926 952 2262 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

46 
 

APPENDIX B 

In this appendix we present indicatively some of our results, based on Q-Q 

plots, of the DAR(1) model accuracy. We present 24 very accurate fitting results, 6 

relatively accurate fitting results and 3 results with low accuracy.   

Very accurate fitting results: 
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Figure AB1: Q-Q plot of the DAR(1) model versus the actual trace for the I                                                             

frames of Terminator(G12B2 QP10), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB1a: autocorrelation coefficient for the I frames of Terminator(G12B2 QP10). 

 

ACC1  0.27956 

ACC2  0.27379 

ACC12 0.92055 

 

Table AB1b: autocorrelation coefficient for the whole Terminator trace(G12B2 QP10). 

ACC1  0.86043 

ACC2  0.76011 

ACC16  0.257 
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Figure AB2: Q-Q plot of the DAR(1) model versus the actual trace for the P                                                             

frames of Sony Demo(G12B2 QP38), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB2a: autocorrelation coefficient for the P frames of Sony Demo(G12B2 QP38). 

 

ACC1  -0.12831 

ACC2  -0.1279 

ACC12 0.97528 

 

Table AB2b: autocorrelation coefficient for the whole Sony Demo trace(G12B2 QP38). 

 

ACC1  0.65385 

ACC2  0.74246 

ACC16  0.66744 
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Figure AB3: Q-Q plot of the DAR(1) model versus the actual trace for the B                                                             

frames of KAET’s from Mars to China(G12B2 QP28), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB3a: autocorrelation coefficient for the B frames of KAET’s from Mars to China 

(G12B2 QP28). 

 

ACC1  -0.090679 

ACC2  -0.09152 

ACC12 0.95908 

 

Table AB3b: autocorrelation coefficient for the whole KAET’s from Mars to China 

trace(G12B2 QP28). 

 

ACC1  0.94331 

ACC2  0.91272 

ACC16  0.74735 
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Figure AB4: Q-Q plot of the DAR(1) model versus the actual trace for the B                                                             

frames of KAET’s Horizon(G12B2 QP28), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB4a: autocorrelation coefficient for the B frames of KAET’s Horizon(G12B2 QP28). 

 

ACC1  -0.16073 

ACC2  -0.16018 

ACC12 0.98053 

 

Table AB4b: autocorrelation coefficient for the whole KAET’s Horizon trace(G12B2 QP28). 

ACC1 0.93287 

ACC2 0.86279 

ACC16 0.37954 
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Figure AB5: Q-Q plot of the DAR(1) model versus the actual trace for the I                                                             

frames of Star Wars IV(G16B1 QP10), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB5a: autocorrelation coefficient for the I frames of Star Wars IV(G16B1 QP10). 

 

ACC1  -0.028273 

ACC2  -0.017128 

ACC16 0.94995 

 

Table AB5b: autocorrelation coefficient for the whole Star Wars IV trace(G16B1 QP10). 

 

ACC1 0.89746 

ACC2 0.80795 

ACC16 0.45366 
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Figure AB6: Q-Q plot of the DAR(1) model versus the actual tarce for the P                                                             

frames of Star Wars IV(G16B3 QP28), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB6a: autocorrelation coefficient for the P frames of Star Wars IV(G16B3 QP28). 

 

 

ACC1  0.0026571 

ACC2  0.042448 

ACC16 0.88115 

 

Table AB6b: autocorrelation coefficient for the whole Star Wars IV trace(G16B3 QP28). 

 

ACC1 0.63721 

ACC2  0.58443 

ACC16  0.31548 
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Figure AB7: Q-Q plot of the DAR(1) model versus the actual video for the B                                                             

frames of Star Wars IV(G16B7 QP16), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB7a: autocorrelation coefficient for the B frames of Star Wars IV(G16B7 QP16). 

 

ACC1  0.13855 

ACC2  0.2067 

ACC16 0.8765 

 

Table AB7b: autocorrelation coefficient for the whole Star Wars IV trace(G16B7 QP16). 

 

ACC1 0.92708 

ACC2  0.86487 

ACC16  0.67892 
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Figure AB8: Q-Q plot of the DAR(1) model versus the actual video for the P                                                             

frames of Star Wars IV(G16B15 QP24), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB8a: autocorrelation coefficient for the P frames of Star Wars IV(G16B15 QP24). 

 

 

ACC1  0.16519 

ACC2  0.20687 

ACC16 0.90635 

 

Table AB8b: autocorrelation coefficient for whole Star Wars IV trace(G16B15 QP24). 

 

ACC1 0.89052 

ACC2  0.79679 

ACC16  0.4323 
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Figure AB9: Q-Q plot of the DAR(1) model versus the actual video for the I                                                             

frames of NBC News(G16B1 QP28), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB9a: autocorrelation coefficient for the I frames of NBC News(G16B1 QP28). 

 

 

ACC1  -0.11606 

ACC2  0.4523 

ACC16 0.86503 

 

Table AB9b: autocorrelation coefficient for the whole NBC News trace(G16B1 QP28). 

 

ACC1 0.8799 

ACC2 0.79327 

ACC16 0.43741 
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Figure AB10: Q-Q plot of the DAR(1) model versus the actual video for the P                                                             

frames of NBC News(G16B3 QP38), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB10a: autocorrelation coefficient for the P frames of NBC News(G16B3 QP38). 

 

ACC1  -0.064047 

ACC2  -0.035215 

ACC16 0.89619 

 

 Table AB10b: autocorrelation coefficient for the whole NBC News trace(G16B3 QP38). 

ACC1 0.61761 

ACC2 0.48887 

ACC16 0.2637 
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Figure AB11: Q-Q plot of the DAR(1) model versus the actual video for the I                                                             

frames of NBC News(G16B7 QP38), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB11a: autocorrelation coefficient for the I frames of NBC News(G16B7 QP38). 

 

ACC1  -0.031407 

ACC2  0.0033238 

ACC16 0.91013 

 

Table AB11b: autocorrelation coefficient for the whole NBC News trace(G16B7 QP38). 

 

ACC1 0.87394 

ACC2 0.78444 

ACC16 0.39897 
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Figure AB12: Q-Q plot of the DAR(1) model versus the actual video for the I                                                             

frames of NBC News(G16B15 QP48), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB12a: autocorrelation coefficient for the I frames of NBC News(G16B15 QP48). 

 

ACC1  -0.028273 

ACC2  -0.017128 

ACC16 0.94995 

 

Table AB12b: autocorrelation coefficient for the whole NBC News trace(G16B15 QP48). 

 

ACC1 0.85556 

ACC2 0.75712 

ACC16 0.27305 
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Figure AB13: Q-Q plot of the DAR(1) model versus the actual video for the P                                                             

frames of Silence of the Lambs(G16B1 QP22), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB13a: autocorrelation coefficient for the P frames of Silence of the Lambs(G16B1 

QP22). 

 

ACC1  0.026505 

ACC2  0.5185 

ACC16 0.9197 

 

Table AB13b: autocorrelation coefficient for the whole Silence of the Lambs trace(G16B1 

QP22). 

 

ACC1 0.88665 

ACC2 0.8846 

ACC16 0.81179 
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Figure AB14: Q-Q plot of the DAR(1) model versus the actual video for the P                                                             

frames of Silence of the Lambs(G16B3 QP10), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB14a: autocorrelation coefficient for the P frames of Silence of the Lambs(G16B3 

QP10). 

 

ACC1  0.233 

ACC2  0.33685 

ACC16 0.87958 

  

Table AB14b: autocorrelation coefficient for the whole Silence of the Lambs tarce(G16B3 

QP10). 

 

ACC1 0.87806 

ACC2 0.86336 

ACC16  0.71347 
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Figure AB15: Q-Q plot of the DAR(1) model versus the actual video for the B                                                             

frames of Silence of the Lambs(G16B7 QP42), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB15a: autocorrelation coefficient for the B frames of Silence of the Lambs(G16B7 

QP42). 

 

ACC1  0.017339 

ACC2  0.04086 

ACC16 0.94991 

 

Table AB15b: autocorrelation coefficient for the whole of Silence of the Lambs trace(G16B7 

QP42). 

 

ACC1 0.91947 

ACC2 0.84087 

ACC16 0.73364 
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Figure AB16: Q-Q plot of the DAR(1) model versus the actual video for the B                                                             

frames of Silence of the Lambs(G16B15 QP42), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB16a: autocorrelation coefficient for the B frames of Silence of the Lambs(G16B15 

QP42). 

 

ACC1  0.063669 

ACC2  0.080241 

ACC16 0.95891 

 

Table AB16b: autocorrelation coefficient for the whole Silence of the Lambs trace(G16B15 

QP42). 

 

ACC1 0.95876 

ACC2 0.90918 

ACC16 0.82105 
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Figure AB17: Q-Q plot of the DAR(1) model versus the actual video for the P                                                             

frames of Tokyo Olympics(G16B1 QP10), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB17a: autocorrelation coefficient for the P frames of Tokyo Olympics(G16B1 QP10). 

 

ACC1  -0.24843 

ACC2  0.57364 

ACC16 0.78984 

 

Table AB17b: autocorrelation coefficient for the whole Tokyo Olympics trace(G16B1 QP10). 

 

ACC1 0.89614 

ACC2 0.8861 

ACC16 0.77485 



 
 

63 
 

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2
x 10

4

X Quantiles

Y
 Q

u
a
n
ti
le

s

5 users

0 1 2 3

x 10
4

0

1

2

3
x 10

4

X Quantiles

Y
 Q

u
a
n
ti
le

s

10 users

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5
x 10

4

X Quantiles

Y
 Q

u
a
n
ti
le

s

15 users

 

Figure AB18: Q-Q plot of the DAR(1) model versus the actual video for the I                                                             

frames of Tokyo Olympics(G16B3 QP22), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB18a: autocorrelation coefficient for the I frames of Tokyo Olympics(G16B3 QP22). 

 

ACC1  0.1547 

ACC2  0.2475 

ACC16 0.89235 

 

Table AB18b: autocorrelation coefficient for the whole Tokyo Olympics trace(G16B3 QP22). 

 

ACC1 0.94339 

ACC2 0.88967 

ACC16  0.48947 
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Figure AB19: Q-Q plot of the DAR(1) model versus the actual video for the P                                                             

frames of Tokyo Olympics(G16B7 QP24), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB19a: autocorrelation coefficient for the P frames of Tokyo Olympics(G16B7 QP24). 

 

ACC1  0.2481 

ACC2  0.34086 

ACC16 0.91509 

 

Table AB19b: autocorrelation coefficient for the whole Tokyo Olympics trace(G16B7 QP24). 

 

ACC1 0.85303 

ACC2 0.79307 

ACC16 0.43492 
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Figure AB20: Q-Q plot of the DAR(1) model versus the actual video for the B                                                             

frames of Tokyo Olympics(G16B15 QP48), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB20a: autocorrelation coefficient for the B frames of Tokyo Olympics(G16B15 QP48). 

 

ACC1  0.2481 

ACC2  0.34086 

ACC16 0.91509 

 

Table AB20b: autocorrelation coefficient for the whole Tokyo Olympics trace(G16B15 QP48). 

 

ACC1 0.95874 

ACC2 0.91187 

ACC16 0.76542 
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Figure AB21: Q-Q plot of the DAR(1) model versus the actual video for the P                                                            

frames of Sony Demo(G16B1 QP24), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB21a: autocorrelation coefficient for the P frames of Sony Demo(G16B1 QP24). 

 

ACC1  -0.20717 

ACC2  0.315 

ACC16 0.95689 

 

Table AB21b: autocorrelation coefficient for whole Sony Demo trace(G16B1 QP24). 

 

ACC1 0.77182 

ACC2 0.78788 

ACC16 0.70414 
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Figure AB22: Q-Q plot of the DAR(1) model versus the actual video for the P                                                            

frames of Sony Demo(G16B3 QP28), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB22a: autocorrelation coefficient for the P frames of Sony Demo(G16B3 QP28). 

 

ACC1  -0.092032 

ACC2  -0.071513 

ACC16 0.97232 

 

Table AB22b: autocorrelation coefficient for the whole Sony Demo trace(G16B3 QP28). 

 

ACC1 0.78621 

ACC2 0.78146 

ACC16 0.65475 
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Figure AB23: Q-Q plot of the DAR(1) model versus the actual video for the B                                                            

frames of Sony Demo(G16B7 QP48), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB23a: autocorrelation coefficient for the B frames of Sony Demo(G16B7 QP48). 

 

ACC1  -0.062573 

ACC2  -0.056392 

ACC16 0.98459 

 

Table AB23b: autocorrelation coefficient for the whole Sony Demo trace(G16B7 QP48). 

 

ACC1 0.91583 

ACC2 0.83746 

ACC16 0.66817 
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Figure AB24: Q-Q plot of the DAR(1) model versus the actual video for the I                                                            

frames of Sony Demo(G16B15 QP16), for 5, 10 and 15 superposed sources. 

 

 

 

Table 24a: autocorrelation coefficient for the I frames of Sony Demo(G16B15 QP16). 

 

ACC1  0.22029 

ACC2  0.28059 

ACC16 0.95749 

 

Table 24b: autocorrelation coefficient for the whole Sony Demo trace(G16B15 QP16). 

 

 

 

 

 

ACC1 0.97632 

ACC2 0.95395 

ACC16 0.65024 
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Relatively accurate fitting results: 
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Figure AB25: Q-Q plot of the DAR(1) model versus the actual video for the I                                                             

frames of Sony Demo(G16B3 QP10), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB25a: autocorrelation coefficient for the I frames of Sony Demo(G16B3 QP10). 

 

ACC1  0.16837 

ACC2  0.21711 

ACC16 0.947 

 

Table AB25b: autocorrelation coefficient for the whole Sony Demo trace(G16B3 QP10). 

 

ACC1  0.97892 

ACC2  0.95754 

ACC16  0.65037 
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Figure AB26: Q-Q plot of the DAR(1) model versus the actual video for the I                                                             

frames of Tokyo Olympics(G16B15 QP38), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB26a: autocorrelation coefficient for the I frames of Tokyo Olympics(G16B15 QP38). 

 

ACC1  0.12787 

ACC2  0.1673 

ACC16 0.94197 

 

Table AB26b: autocorrelation coefficient for the whole Tokyo Olympics trace(G16B15 QP38). 

 

 

ACC1  0.99656 

ACC2  0.99428 

ACC16 0.96204 
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Figure AB27: Q-Q plot of the DAR(1) model versus the actual video for the P                                                            

frames of Silence of the Lambs(G16B7 QP48), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB27a: autocorrelation coefficient for the P frames of Silence of the Lambs(G16B7 

QP48). 

 

ACC1  -0.026884 

ACC2  -0.016389 

ACC16 0.94433 

 

Table AB27b: autocorrelation coefficient for the whole Silence of the Lambs trace(G16B7 

QP48). 

 

ACC1 0.70795 

ACC2 0.64634 

ACC16 0.3304 
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Figure AB28: Q-Q plot of the DAR(1) model versus the actual video for the I                                                            

frames of NBC News(G16B7 QP24), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB28a: autocorrelation coefficient for the I frames of NBC News(G16B7 QP24). 

 

ACC1  0.1649 

ACC2  0.22272 

ACC16 0.88008 

 

Table AB28b: autocorrelation coefficient for the I frames of NBC News trace(G16B7 QP24). 

 

ACC1  0.87759 

ACC2  0.79032 

ACC16  0.43691 
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Figure AB29: Q-Q plot of the DAR(1) model versus the actual video for the B                                                            

frames of Star Wars IV(G16B3 QP16), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB29a: autocorrelation coefficient for the B frames of Star Wars IV(G16B3 QP16). 

 

ACC1  0.074395 

ACC2  0.12102 

ACC16 0.85647 

 

Table AB29b: autocorrelation coefficient for the whole Star Wars IV trace(G16B3 QP16). 

 

ACC1 0.86986 

ACC2  0.83652 

ACC16  0.64054 
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Figure AB30: Q-Q plot of the DAR(1) model versus the actual video for the B                                                            

frames of Terminator(G12B2 QP34), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB30a: autocorrelation coefficient for the B frames of Star Wars IV(G12B2 QP34). 

 

ACC1  -0.074752 

ACC2  -0.077353 

ACC12 0.9162 

 

Table AB30b: autocorrelation coefficient for the whole Star Wars IV(G12B2 QP34). 

 

 

 

 

 

ACC1  0.90881 

ACC2  0.8718 

ACC16  0.69609 
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Low accuracy results: 
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Figure AB31: Q-Q plot of the DAR(1) model versus the actual video for the B                                                             

frames of Tokyo Olympics(G16B7 QP22), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB31a: autocorrelation coefficient for the B frames of Tokyo Olympics(G16B7 QP22). 

 

ACC1  0.28656 

ACC2  0.38276 

ACC16 0.90958 

 

Table AB31b: autocorrelation coefficient for the whole Tokyo Olympics trace(G16B7 QP22). 

 

ACC1 0.059481 

ACC2 0.50587 

ACC16 0.021561 
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Figure AB32: Q-Q plot of the DAR(1) model versus the actual video for the B                                                             

frames of Sony Demo(G16B1 QP22), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB32a: autocorrelation coefficient for the B frames of Sony Demo(G16B1 QP22). 

 

ACC1  -0.21705 

ACC2  0.37441 

ACC16 0.95459 

 

Table AB32b: autocorrelation coefficient for the whole Sony Demo trace(G16B1 QP22). 

 

ACC1  0.81519 

ACC2  0.80366 

ACC16  0.69831 
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Figure AB33: Q-Q plot of the DAR(1) model versus the actual video for the P                                                             

frames of Star Wars IV(G16B3 QP42), for 5, 10 and 15 superposed sources. 

 

 

 

Table AB33a: autocorrelation coefficient for the P frames of Star Wars IV(G16B3 QP42). 

 

ACC1  -0.04409 

ACC2  -0.029892 

ACC16 0.8974 

 

Table AB33b: autocorrelation coefficient for the whole Star Wars IV trace(G16B3 QP42). 

 

 

 

ACC1 0.60092 

ACC2 0.54637 

ACC16 0.29512 


