TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERING

DIPLOMA DISSERTATION

‘COVER SONG’
IDENTIFICATION

by

XIROUCHAKIS NIKOLAOS

COMMITTEE:
POTAMIANOS ALEXANDROS, Associate Professor (Supervisor)
DIGALAKIS VASSILIS, Professor

PETRAKIS EURIPIDES, Professor

CHANIA

OCTOBER 2011

11

11

Acknowledgments

I would like to show my gratitude to my supervisor who guided me towards a very

interesting topic.

I would like to thank my parents for their continuous support.

Finally, I would like to thank all those who made their work and research freely

available on the internet.

v

Abstract

With the vast increase in size of music databases, automatic content-based search
methods are required for facilitating fast retrieval of music or information about
music. Such search methods may be based on an audio-query tactic making the
extraction and comparison of musical features and thus the analysis of musical
similarity an interesting field of research. In this context, the present work focuses on
describing a system which tries to identify cover versions of a query-song. Such songs
are usually different in many musical attributes but can still be defined as 'similar'.
Hence, investigating such a system may provide an analysis of which features are
considered relevant for music similarity. To this end song representations need to be
invariant to instrumentation and tempo. This is achieved by making use of 12-
dimensional chroma features which are then averaged by the song's beat times.
Comparison of songs is then carried out by cross-correlating the above representations
taking into account all possible key transpositions as well as two possible global
tempi. By testing this system on a music collection consisting of 80 songs with 2
versions of each,querying each one of them resulted in a 52.5% accuracy, whilst for a
collection containing 15 pairs of song's a correct cover was found 10 times out of all
cases. Such work does not only contribute in searching retrieving and organizing
music collections but may also influence commercial copyright management of music
licenses. While the present work mainly focuses on the task of automatic cover song
identification it also makes a preliminary analysis of automatic beat tracking,

automatic fingerprint matching as well as automatic chorus detection systems.

vi

IHepiinyn

Me v paydaio adEnon tov pey€Boug v HovoIKOV PAcEDV 0E0UEVOV OTOITOVVTOL
avtopotes péBodot avalntmong PacIGHEVEG GTO TEPLEYOUEVO TOV LOVGIKAOV CNUATOV
Y. TV YPNYOPN OVAKTNOY| LOVCIK®OV KOUUOTIOV 1| TANPOPOpL®dV Yia avtd. Tétoleg
péBodot avalnmong umopel va givarl Baciopéveg e po TOKTIKY 6ov 1 €16000¢ 6TO
ocvonua va givor éva mymtikd onuo, pe amotédecuo M e&aymyn kol 1 cLYKPLoN
LOVGIK®OV YOPOUKTNPIOTIKMOY KOl YEVIKOTEPA 1 OVOAVCT| TG LOVGIKNG OUOIOTNTOS VOl
elvar éva evdlopépov gpeuvnTikd Bépo. 1o mhaiclo avtd, M TOpPovoH Epyacio
EMKEVIPMVETOL OTNV TEPLYPAPT] €VOC GLOTHHATOG oL Tpoomadel va avoyvmpicet
O10loKEVEG €VOG TPayoudoy mov £xel 000el ¢ €icodoc. TEToleg d106KEVEG dLaPEPOLY
0€ TOALG LLOVGIKA YOPUKTNPIOTIKG, OP®OS doTnpovV o optopévn ‘opotdtnra’. ‘Etot
pe N Otepedvnomn €vOg TETOOV GLGTHUOTOS TOPEYETAL Lol OVAAVLOY] Yoo TO TOL0
YOPOAKTNPIOTIKO TOV HOLGIKOD ONUATOG OE@POVVTOL GNUOVTIKE Yio, TNV UETPNON TNG
HOLGIKNG opowdtnTas. ' To oKomd avtd o1 avamapUcTAGELS TV TPayovdldv Oa
TpENEL VoL lvar AUETAPANTES GTNV EVOPYAVMGN Kol 6T puOud. AVTo gmTvyYdveToL L
m ypnon 12-01dotatewv yopokmpiotikdv chroma twv omoiwv otn cvvéyewn
VTOAOYILETON O HEGOG OPOG LE TN XPNON TOV YPOVIKAOV GTIYU®V KAOe maApov (beat)
péca ©TO KOUMATL XVYKPION TPOyoudldV YIVETOL HE TNV ETEPOCLOYETNON
(crosscorrelation) TV TOPATAVEO OVOTOPACTACEDV AdUPAvovTog vToyn OAES TIS
mBovég petabéoetg kAW Omwg kot 000 pLOUDY, TOAVOG Le SOPOPETIKO LETPLIKO
eminedo. H dokiun avtod T0v GLGTHUOTOG GE K LOVGIKT) GLAAOYN Tov TTEPIEEL 80
OLOLPOPETIKA TPAYOVdLN €K TV OTOI®MV TO Kabéva £xel 000 OOPOPETIKES EKOOGELS KO
Kkévovtag avalnmon yw OAe TG TEPIMTAOGCELS glye ®¢ amotédeopa 52.5% emrvyia.
o povown cvAloyr 15 Cevydv tpayovdidv, 10 cvotnuo ERPLoKE TN GMOOTH
owokevn oe 10 and Tig 15 mepumtooelg kotd péso 6po. Mo térola €pevva degv
GUVEICQPEPEL UOVO 0TV avalnNTnon, OVAKINGN KOl OPYAvVMOT] HOVGIKOV GLAAOYDV,
aALG pmopel Kot v EMNPEACEL TNV EUTOPIKT SLOXEIPION TVELUATIKOV SIKOUMUATMV
ot povoikny. Evd n moapovoa epyacio eotidlel kuplwg 610 €pyo NG OLTOHOTNG
avayVOPIoNG HOLCIKAOV OOCKELMV, OVOADEL KOl CLOTAHOTO OTTMG: XPOVIKOG
EVIOTIOUOG TOAUGMV-beat Héca GTO HOLGIKO GYU0, CLTOWUATY HOVGIKN TAOTION HE

ypnon audiofingerprint Kot QLTOLATY EVPECT| PEPPOLV.

vil

Contents
ACKNOWIEAZMENTSeeiiiiiiiie et ettt e ete e e e aee e sree e enbeeennneeens 1ii
ADSTIACE ...ttt b ettt ettt st v
LYo 10 11V PO vi
COMERIES ...ttt ettt et b et eb e bt et e at et et e e bt e bt et e sbeenbeeaees vii
LSt OF FIUIES ..ottt ettt et st ettt e et e et e e bt e s naeenbeesabeenseenneas X
List Of @abDIeVIatioNSccueiiiriiiiiiiiiieieet et xii
LSt OF tADIES ... Xiv
CHAPTER 1.ttt ettt sttt 1
INEEOAUCTION ...ttt ettt et e e e 1
L1 IMIOTIVATION 1.ttt et et ettt st e e st e e e 1
1.2. Defining a system's SPECTIICILY ..ccvvieeiuieeriieeriieerieeeieeeireeeireesieeesreeeereeeeereeens 3
L.3. Related WOTK.....coouiiiiiii e 5
R @ 10} 1517 5 A ST SSTRRRPR 7
1.5. ThesiS OULINE ...cccueiiiiiiiiiiieieeee ettt et 8
CHAPTER 2.ttt sttt ettt sttt 9
Background Informationc.coceeoiiiiiniiniiiiiiceeee e 9
2.1, S1ZNAL PrOCESSINE....eevieutiriiiiieiieitent ettt ettt ettt ettt sbe b eaeesaeeee e 9
2.1.1. Analog to digital CONVEISIONcccueruiiiiiriiiieieniieieeieeeeeet e 10
2.1.2. The frequency dOmMaINcceevuieriieiiienieeiee e 11
2.1.3. Windowing and the time-frequency domain..........c..cceeceerieeiienieenieennenne 14

2L FIIEETS et e e e e e e e e e e e e e e e e e e e reaaeaaeas 17

viii

2.1.5. CrosS-COTTEIAtIONeeiiiiiieiie ettt 20
2.1.6. Self-sImMilarity MaTIXc.eeeecuieeriieeiieeeriee et ree et eesveeeeeaeeeeneas 21

2.2. Dynamic PrOZramMIMINGcccveeerveeerureersureessureessseeessseeessseeessseeesseessssesssssessnnns 23
2.3. Music feature eXtraCtion........cc.eeeueereeriieiienie ettt ettt 24
2.3.1. Pitch and musical NOES...........eeiueiriiiiieiieeieee e 25
2.3.2. Pitch class — Chroma...........cooiiiiiiiiiiiiicee e 26
2.3.3. Tempo and DAtc.eeeeviieiiieeiie et e e 29
CHAPTER 3.ttt sttt sttt et e e s sbeene s 31
QUETY-BY-EXaMPIE ...cceviiiiiiiiiiiee e 31
3.1. Audio fINGETPIINEING.....c..eeiiiieiieriieetieeie ettt ettt e ee e e seeeeseeennes 32
3.2. Frame-based analysiscccecieriieiiienieeiieie ettt 33
3.3. Landmark-based analysiscccceevuieriiiiiiiniieiienie et 35
CHAPTER 4.ttt sttt ettt s be e 37
Automatic Cover Song (ACS) Identification Method...........cccceeverieniiiiniininncnnene. 37
4.1. Extraction of chroma-vectors and chromagram............ccccccevvvievcieencieenieeenne, 38
4.2. Tempo estimation and beat trackingcccecvveeviieeriiieeiiiecieece e 44
4.2.1. Extraction of the onset-strength signalccccceviieeriiieniieeniieeee e, 45
4.2.2. Estimating the global tempoccccevriiiiiiiiiiiieeeeeee e, 47
4.2.3. Temporal beat-location retrieval...........ccceevviieriiieniieeiieecee e, 51

4.3. Beat-synchronous chromagrame............ccceeeuieeriiieeriieeniee e 53
4.4, MAtCRING....cveiiieiiiieeie ettt ettt st 55
CHAPTER 5.ttt ettt ettt sttt e s be et e s saeseenaassaenseas 57
Automatic Chorus Detection Methodcoocoiiiiiiiiiiiiiice e 57
5.1. Obtaining the SSMccuiiiiiiiiiiiiiee et 59
5.2. Enhancing the similarity MatriXccccoeveeriiiiiienieeieeie e 60

5.3. Detecting rePetitioNcc.eeeueieiiieriiietieeiie ettt ettt ettt e s eae e 62

1X

5.4. Selecting the desired repetition — ChOTUS.........coeeveeeeiieeiieeceece e, 67
5.4.1. Scoring the position of the repetition in the SSM..........cccevviiriiciieniennne. 68
5.4.2. Scoring the position of the repetition in relation to other repetitions.......... 69
5.4.3. Scoring the average energy of the line segmentcccceevevveercieeennennnne. 71
5.4.4. Scoring the average similarity of the line segment...........c..ccccvveeiieeninnnns 71
5.4.5. Scoring the number of times the repetition 0CCUTSccceeevevieercreeerneenne. 72
5.4.6. ChOTUS SEIECTIONciiuiiiiiiiiiieiie ettt 72

CHAPTER 6.ttt sttt 73
IMPIEMENTALION. ..ottt ettt ettt e bt e s nbe e b e enseenee 73

6.1. Experimental SEtUPccccuiiiiiiiiiiieie e 73
6.1.1. AFP MAatChING ..c..eeiiiiiiiieii et e 73
6.1.2. ACS 1dentifiCationcoceevueriiniiiieiieieeieet et 77
0.1.3. ACD .ttt 78

6.2. Evaluation RESUILS.........cociiiiiiiiiiiiiiiiieeeceee e 79
6.2.1. AFP MatChingoooouiieeiiieeiieeee ettt 79
6.2.2. ACS 1dentifiCationccceeeiiiiiiiiiiiiieiee e 83
0.2.3. ACD ettt et ae s 84

CHAPTER 7.ttt sttt sttt et s aeebe e esneenneas 90
Conclusion and Future Workcooooiiiiiiiiiiiiieeeeeee e 90

RETEIEIICES ..ot e e e e e e e e e et aaeeeeeeeeeaeaaaaeeeeeeeraans 93

List of figures

1. 1: Examples of MIR Tasks and their 'specificities’cccceevvierciieniiieniieeciee e, 4
1. 2: Overview of an ACS identification SYStem...........cceevuieriiiriieniieniienieeie e 5
2. 1: Effect Of @liaSingccveeriiiiiieiieeie ettt ettt et e 11
2. 2: The relationship between Mel and Hertz scalecccceeeeiieviiieiciecnieeeieee, 13
2. 3: Example of WINAOWING PIOCESSeeeivviieiiieeiieeeieeenieeesieeeieeeereeeveeesneeeseneeeene 14
2. 4: Magnitude spectrum W (w) of rectangular windowcccceeevverieniienieennnnne. 15
2. 5: Differences between rectangular and Hamming window in time and frequency 16
2. 6: Example of the use of overlapping windows. In the above figure the information
of the signal (B) is not included (B)......ccceooiiiiiiniieiieieeeeeeeee e 17
2. 7: Impulse response sequence 0f @ SYSTEMcc.eeeeuieeriieeriieeiee e eeiee e 18
2. 8: The impulse response of a FIR (left) and an IIR (right) filter..........c..cccvveennennns 18
2. 9: Ideal lowpass, highpass, bandpass and bandstop filters..........cccceevereeneriienennens 19
2. 10: The time-time SSM (left) and the time-lag SSM (right) of an example song....22
2. 11: Shepard’s pitch heliX.....cveeiiiiiiiiieiieceeeeeeeee e 26
3. 1: Overview of @ QBE SYSteM......cccuviiiiiiiiiieeiieceeeeeeee e 33
3. 2: Overview of the fingerprint extraction scheme...........cccccecueveeviiriineeienienennene 34
3. 3: Spectrogram example (left) and its constellation map (right)..........ccceereennennen. 36
4. 1: General block diagram of the cover song identification system.............ccceeu.e... 37
4. 2: Frequency spectrum of an example signal...........ccceevvveeviiieiiieeniieenie e 38
4. 3: Peak picking of the example frequency spectrum............cecevvveveriienieneeniennene. 39
4. 4: Placing of Hann-windows in the logarithmic power spectrum............ccccccueeueeee. 40
4. 5: Band-pass filter for the pitch-class A..........ccccoevieiiiieniieiieeecieeee e 40
4. 6: Scaling function centered at 400 Hz and base width of 1 octave......................... 41
4. 7: Result of the application of the scaling function to the BPF of pitch class A......41
4. 8: Visualization of @ Chroma-vectorccccuiiiiiiiiiiiiiiece e 42
4. 9: Chromagram of an audio signal which follows the note sequence of an octave .42
4. 10: Chromagram of an eXample SONEcccvveriiiieriiieeiiie et evee e 43

xi

4. 11: Ideal sound wave signal and its four constituted parts...........ccccceeererveercreeennennns 44
4. 12: Onset-strength signal from a part 0f @ SONZccveeeviieiiiiiiiiieeieeee e 47
4. 13: Autocorrelation function of an example onset-strength signal 48
4. 14: Peak picking applied to the autocorrelation function..........ceceeceevverieneeniennenne. 49
4. 15: ‘Human preference window’ biased around 120 BPM (left) and 240 BPM
a4 11 PP 50
4. 16: Scaled local maxima of the autocorrelation favoring peaks around 120 BPM..50
4. 17: Finding the best predecessor beat for a given time £..........cceceeveeveerieneeniennenne. 52
4. 18: Beat-synchronous chromagram of the example chromagram in Fig.4.9 54
4. 19: Part of a chromagram of an example SONG............ccovveeerieeeiieeeiieeeiieeeiee e 54
4. 20: Beat-synchronous chromagram of the above exampleccccceeerienirniennenne. 55
5. 1: SSM of a particular song (Madonna: ‘Like a virgin’)........ccoceeverveneenenienennne 60
5. 2: SSM division into 9 parts. Gray parts are omitted for the enhancement process 61
5. 3: Enhanced SSM of the eXample SONG.........ccovvieeriieeiiieeieeeieeciee e 62
5. 4: Overview of selecting diagonals for further processingccoceeeevverienennene 64
5. 5: Binarized SSM of the example SONG.........cccceeviiiiiiiiiieiiee e 65
5. 6: Enhanced binarized SSM of the example SONg..........ccecveeveieeriieeriieerie e 66
5. 7: Ideal case of the position of three line segments, corresponding to three
repetitions OF the ChOTUSoouiiiiiiiec e 70
6. 1: Example of the AFP matching system's outputccceecveerienieenieniecieeeee 74
6. 2: Recording a new audio recording using the GUI.............cccccveiviiiiniiiinciiiiee, 75
6. 3: Opening an existing audio recording using the GUI..............cccccoevviiiinciiinnnnne. 76
6. 4: Matching a clip using the GUI ...t 76

6. 5: Recognition rate for segments of 5,10 and 15 seconds with additive babble-noise

Xil

List of abbreviations

In order of appearance in the text:

ACS
MIR
QBE
QBH
PCP
MIREX
DTW
DSP
DTFT
IDTFT
DFT
FFT
STFT
FIR
IR
SSM

DP

Automatic Cover Song

Music Information Retrieval

Query By Example

Query By Humming

Pitch Class Profile

Music Information Retrieval Evaluation eXchange
Dynamic Time Warp

Digital Signal Processing

Discrete - Time Fourier Transform

Inverse Discrete — Time Fourier Transform
Discrete Fourier Transform

Fast Fourier Transform

Short — Time Fourier Transform (or Short — Term Fourier Transform)
Finite Impulse Response

Infinite Impulse Response

Self — Similarity Matrix

Dynamic programming

xiil

ASA American Standard Association

MFCC Mel Frequency Cepstral Coefficients
BPM Beas Per Minute

AFP Audio Fingerprint

BPF Band-pass filter

ACF Autocorrelation Function

ACD Automatic Chorus Detection

GUI Graphical User Interface

SNR Signal-to-Noise Ratio

MRR Mean Reciprocal Rank

Xiv

List of tables

Table 2. 1 Notes’ frequencies over nine 0ctaves N HZcccveeeeveeecveeeineeencneeeneeeennes 28
Table 2. 2: Notes’ distances in cents in relation to AQ over nine octaves.................... 28
Table 6. 1: AFP matching evaluation resultscccocveeiiienieiiiiiniiiiieieceeee e 81
Table 6. 2: Results of ACS identification SYStemccceeevvieerieeriieeeiieeniieeneee e 83
Table 6. 3: rough evaluation reSultScceeviieeiiieeciieeee e 84
Table 6. 4: Example songs tested for the ACD system..........ccoecueeviiiiienieniieniieeene 85
Table 6. 5: Song parts of “Abracadabra” by Steve Miller Band..............c.cccoceviiniennen. 85
Table 6. 6: Song parts of “I don’t want to miss a thing” by Aerosmith....................... 86
Table 6. 7: Song parts of “It’s tricky” by Run D.M.C.ccciiiiiiiiiiieeee 87
Table 6. 8: Song parts of “Let it be” by The Beatlesc.cccccevvveviininiicniininiineens 88
Table 6. 9: Song parts of “Little Wings” by The COITs.....c..ccccerveriineriienienenieneenens 88
Table 6. 10: Table 6. 11: Song parts of “Never let me down again” by Depeche Mode

XV

To my friends and loved ones...

Xvi

CHAPTER 1

Introduction

The present study examines the issue of automatic cover song (ACS) identification, a
prominent subject of research in recent years. The term cover song implies any new
rendition of a previously recorded song, including alternate versions, performances,
recordings or other. Cover songs may vary in many attributes but usually are ‘similar’
to their originals keeping the essence of the same melody and/or harmony. The task is
to identify cover songs within a musical database on the basis of similar musical
features. This chapter provides motivation as to why, within the context of music
information retrieval (MIR), ACS identification is a noteworthy study, to be followed
by an overview of music similarity and the definition of a system's specificity. The
chapter concludes with the study's objectives and a thesis outline presenting each

chapter’s content and purpose.

1.1. Motivation

Even nowadays, digital music collections are typically browsed by combinations of
textual metadata, such as the song's title, composer or performer. However, the larger
the musical collection in a database the more complex it is to navigate it easily, and
therefore the less efficient the above approach becomes. With the drastic evolution in
technology people are faced with larger music collections every day. Let us take for
example a common iPod which can carry up to 20.000 songs, or a storage device
which can carry up to 250.000 songs, or even an online music store which has

millions of songs available to their customers. Such large music databases raise new

interesting computational problems which need solving, such as direct access in such
large collections and thus the need of algorithms for automatic search methodsand
automatic music similarity estimations. These methods and estimations are based on
musical features such as melody, harmony, rhythm and instrumentation, which
describe the audio at a new level and help respond to requests such as: what is the
name of the song that goes like <whistle the melody> (query by example); could you
raise the volume of a particular instrument recording? (source separation); skip to the
next chorus while listening to a music piece (musical structure identification); what
instrument is this, or what is the name of this artist? (instrument/singer identification);
and find recordings to a specified genre (genre classification) [1]. These methods
could be used in a number of applications such as: automatic playlist generators;
organization and visualization of large music collections; systems for
recommendation of unknown pieces and/or artists to one’s preferences; or even a
system which helps out a DJ in choosing his next song so that the current and the next

have similar rhythm and/or melody.

Another practical use of music similarity is the Query-By-Example (OBE) system,
whereby the user has the possibility to search a music collection using audio as an
input query, and not text. This can be very handy. Consider the case of a user who is
browsing a large music collection for a particular song but is unable to remember
neither the song’s title nor the artist’s name to use as textual metadata. But what if he
does remember the melody or possesses a recorded part of that song? We may use
music similarity in such a way that the user can load, sing, whistle or hum (in this case
Query-By-Humming or QBH) the melody to the system and obtain a list of closest

matches ranked by their similarity measure.

Identifying two different versions of a song requires consideration in variations of
several musical dimensions. The main attributes that may vary between two cover
songs are: its timbre, representing difference in instrumentation and production
techniques; noise, presented e.g. during audience manifestations; key, when a song is
transposed to a different key to adapt the pitch range to a particular singer; language
of lyrics, when a song is translated; timing, depending on the performer's feeling;
harmonization, which is common in an introduction or a bridge part in a song; and
also tempo, structure, duration, or even genre. The feature which is robust enough to

endure several of the above mentioned changes and will be used throughout this work

is the chroma or chromagram, otherwise known as Pitch Class Profile (PCP) of the

signal, which will described in more detail in the present study.

Identifying a cover given its original as a query, or finding the original given a cover
using only musical features, is quite a challenge which is researched by a community
named Music Information Retrieval Evaluation eXchange (or MIREX). MIREX is a
community-based endeavor to scientifically evaluate music information retrieval
(MIR) algorithms and techniques [2] [3]. Such algorithms describe tasks which range
from low-level, like audio onset detection, to higher-level ones, like audio music
similarity. Some of these tasks are: audio classification tasks (i.e. audio artist
identification), audio beat tracking, audio tempo estimation, audio key detection,
audio music similarity and retrieval and among others, our task, audio cover song
identification. The MIREX community put its interest into the ACS identification
task, in order to distinct the sense of ‘music similarity’ (melody) with the sense of
‘timbral similarity’ (instrumentation). Measuring and using the degree of music
similarity is what we are trying to achieve, making it an important musical feature and
a worthwhile study. Suffice it to say that ACS identification systems have a direct
implication to musical rights' management and licenses. In addition, MIR-systems
have the ability to manage extremely large digital music databases in an efficient and
reliable manner paving the way for future music-related industry developments. ACS

identification systems may contribute to this cause.

1.2. Defining a system's specificity

Stemming from the above motivation, each and every MIR system should be specified
with the kind of information it should retrieve. Content-based music retrieval is thus
structured in a way whereby a system firstly defines a type of query, secondly what is
to be considered a match, and finally the form of its output. The 'sense of match' is the
characteristic which makes a system unique in searching for information of a certain
degree of specificity [4] [5]. The specificity degree could either be exact or
approximate depending on whether the music retrieval is performed with specific

content or in a broader sense of music similarity respectively. Clearly a system which

finds an exact duplicate of an audio snippet and a system which retrieves all songs
belonging to a particular genre class do not have the same specificity degree. An
audio fingerprinting-based system (Section 3.1) is an example of a high-match (exact)
specificity, whereas a genre-classification one [6] is an example of a low-match
(approximate) specificity. A cover song identification system has an intermediate
specificity degree since it is less exacting than audio-fingerprint duplicating,but is
more specific than an genre-classification system. Such a system tries to approximate
duplicate detection whilst allowing many musical facets to change and incorporates
the important idea that cover songs retain their identity notwithstanding variations in
several musical dimensions. This is what makes the creation of automatic cover song
identification systems a complex task. The scale of specificity together with an

enumeration of some MIR tasks is displayed in Fig. 1.1 [5].

high O s g
music identification

rights management, plagiarism detection
multiple version handling

" | melody extraction and retrieval

specificity

performer or composer identification
recommender systems
style, mood, genre detection

music-speech segmentation

low

Figure 1.1: Examples of MIR Tasks and their 'specificities'

An overview of an ACS identification system can be 'broken' into five functional
blocks as seen in Fig. 1.2 below. These blocks correspond to: a feature extraction
block ensuring invariance of instrumentation and noise; a key invariance block which
ensures invariance to transposition; a tempo invariance block; a structure invariance
block and a similarity measure block which measures the final similarity between two
songs. Tempo, key and structure changes are usually not handled by the features
extracted from the signals and since these are common changes between cover songs

they need to be processed individually.

. Feature Tempo Key
Audio Data —»; > >
Extraction | Invariance | Invariance —|
L HHuchEe y| Similarity |y gimilarity Measure
Invariance Computation

Figure 1.2: Overview of an ACS identification system

1.3. Related Work

Several approaches have been developed to attend to the cover song identification
task. The different approaches of existing literature are referenced on the basis of the
division displayed in Fig. 1.2 above, referring to each block separately [4]. Regarding
the feature extraction block it should be pointed out that almost every ACS
identification system makes use of fonal sequence representation (section 2.3), which
either estimate the main melody or the chord or harmonic progression of raw audio
signals. Examples of systems which make use of melody representations as main
descriptors are [7] [8] [9] [10] and [11]. Such systems are usually based on a pitch
tracking technique which tries to obtain the main melody of a song. Pitch tracking is a
complex task if we are working with real-world polyphonic signals, since these
present multiple pitches at each time point. Having an incorrect selection of the
correct pitch to correspond to the main melody could result to an unreliable
representation. Example systems which use harmonic representations with so called
pitch class profiles (PCP), or else named as chromafeatures are [12] [13] [14] [15]
[16] [17] [18][19] [20] [21] [22] [23] [24] [25] and [26]. This representation is able to
represent both monophonic and polyphonic signals and maintains an invariant stance
in respect to several music characteristics. Hence the present study focuses on systems

using the latter representation, namely those that use chroma-representations.

Four different methods stand out as being most effective for overcoming variability in
tempo. First, finding the beats temporal locations in order to use them as an averaging
factor for the descriptor information [14] [24]; second, applying temporal
compression and expansion to the signal's representation [23] [24]; third, making use
of the 2D power spectrum or the 2D autocorrelation function [8] [17] [18]; and last,
by making use of dynamic programming aligning algorithms such as the dynamic time
warp (DTW) and edit distance variants [10] [26] [25] [7] [16] [15] [12][27] [28]. In
the present work we make use of the first method in order to examine Ellis' method of

beat tracking [29].

Key invariance is handled is several ways: either by accounting all possible key
transpositions in the final similarity measure; or by computing the most probable
relative transpositions and accounting only them; or by estimating the mainkey and
apply transposition accordingly; or by making use of 2D power spectrum or 2D
autocorrelation function, an approach that achieves both invariance in tempo and key.
For the purposes of this work we make use of the first method which consists of
accounting all possible transpositions, on the grounds that it guarantees the best

results at the cost of being slower.

Serra et al. [26] demonstrated the importance of structure invariance. A method used
to accommodate this factor is summarizing a song through its most repeated or
representative parts [7] [16]. Other methods consist of so-called local alignment
algorithms [12] [25] [26] and sequence windowing [24] [23] [8] [22]. In this work it
was found useful to include a presentation of the first method which considers finding
the most repeated part of a song to be an attractive task in various applications, such
as for music pre-listening stations whereby someone can automatically jump to the
most representative part of a particular song. Therefore for the purposes of the present
study research on musical structure detection limits to [30][31][32][33], which follow
by and large the same method in order to extract an audio thumbnail (usually the
chorus) of a song using stripe detection within a self similarity matrix (Section 2.3.2).
Other methods try to segment a given song into its constituent parts, e.g. intro, verse,
chorus, bridge and outro [34] [35]. A more thorough overview of the work done in the

automatic music structure field is presented in [36].

Finally in each ACS identification system a similarity measure computation is
required. The DTW algorithm used for tempo invariance already provides a similarity
measure between two songs which is used by some systems as the conclusive
similarity indicator [10] [11] [15] [16] and [28]. Alternative methods consist of using
more conventional approaches such as the cross-correlation function [7] [13] [14], the
Frobenius norm [17], the Euclidean distance [8] [18] or the dot product [19] [20] [22]
[23]. In the present work we choose to use the method of cross-correlation, following

Ellis' method [13] [14].

1.4. Objectives

The main objective of the present study is to investigate the existence of an automatic
cover song identification system. For this purpose a chromagram-based approach has
been followed. Background information on signal processing, some computational
algorithms as well as on several musical attributes are also provided in order to
introduce to the reader the basic concepts which are necessary for the understanding
of the rest of the work. Consequently, four different MIR task systems are presented.
The first two are automatic fingerprint (AFP) matching and ACS identification, which
are both forms of QBE systems, each with a different degree of specificity. The other
two systems are beat-tracking and automatic chorus detection (ACD), where each
system is both an end in itself and a means to improve the performance of other
systems such as the ACS identification one. Finally experimentation is performed to
evaluate the systems' performance described throughout the present work, followed
by a concluding discussion referring to topics such as appliance of music similarity
systems in real-world and industry related applications as well as potential future

work on the subject of the ACS identification task.

1.5. Thesis Outline

Chapter 2: Background information.This chapter introduces the main concepts
which are necessary for understanding the work presented in the following sections.
The information gathered and presented is based on the works of [37] [38] [39] [40]
[43][46] [47] [48] [49] and [50].

Chapter 3: Query-By-Example.This chapter describes the basic framework of
query-by-example systems and analyzes more in detail systems using audio
fingerprinting-based approaches. Consequently,two systems for audio matching are

analyzed: one using a frame-based analysis and one using a landmark-based one.

Chapter 4:Automatic Cover Song (ACS) Identification Method.Here we present
the core of this thesis, namely an automatic cover song identification system using a
beat-synchronous chroma-based approach. The method used in this approach is
divided into four processing steps: feature extraction, beat-times extraction, averaging
of chroma and beat-times and matching. These steps are described and explained

separately.

Chapter 5:Automatic Chorus Detection Method.In this chapter an automatic
chorus detection method is described. We examine how repetitive parts within a song
may be extracted using a self similarity matrix followed by a means to select the

repetitive part which most likely corresponds to the chorus.

Chapter 6: Implementation.This chapter provides the experimentation made on
automatic fingerprint matching, automatic cover song identification and automatic
chorus detection systems. It presents the experimental datasets used for each system

and makes an evaluation of the results.

Chapter 7: Conclusion and Future Work.Here, we discuss some conclusive
remarks on this study, present possible applications in real-world situations and

suggest some topics which could be thesubjects of future research.

CHAPTER 2

Background Information

2.1. Signal processing

In electrical engineering, signal processing is defined as the analysis, or handling of,
signals, where signals are representations of time-varying or spatial-varying physical
quantities. A signal can be used to carry a codified message and thus signals are used
for storing, manipulating and transmitting information. Such information can be
voice, music, images, video or other. In mathematical terms, we define a signal as the
sequence of values of a quantity y, which changes according to a value of a quantity x.
If x and y are defined on a continuous set of times, then the function y(x) is defined as
a continuous-time or analog signal. If x is defined only on a discrete set of times (n),
but y is defined on a continuous set of times, then the sequence y/n/ is defined as a
discrete-time signal. If xand y are both defined only on a discrete set of times, then the
sequence y/n], is defined as a digital signal. Digital signal processing (or DSP) and
analog signal processing are subfields of signal processing. The aim of DSP, which
includes audio signal processing as a subfield, is to use continuous real-world analog

signals in a digitalized manner. To do so, an analog to digital conversion is necessary.

10

2.1.1. Analog to digital conversion

An analog signal can always be converted into a digital one so that it can be stored or
processed by a digital computer. This is achieved by converting a continuous-time
signal into a discrete-time one. This process is known as sampling and is realized by
measuring the values of the continuous-time signal at discrete times, denoted as
samples. Those times are periodically spaced every T seconds, and are given by the
equation below, where T is the sampling interval and f; is the sampling frequency, or

sampling rate:

x(n) =x,(nT)n=10,1,2, ... (2.1)

oh
Il
SR

(2.2)

According to the Nyquist-Shannon sampling theorem, in order to be able to perfectly
reconstruct the original signal x(z) from its samples x(n7), two conditions must be
met: on the one hand the signal must be bandlimited, meaning that the maximum
value of the signal’s frequency spectrum, f,,, has a real value and is not infinite; and
on the other that the sampling rate must be chosen to be at least twice that maximum

frequency [37].

fs 2 2% fnax (2.3)

T <L

 2fmax

(2.4)

The minimum sampling rate given by the equation (2.3) above is called Nyquist rate

and is equal to f; = 2f4,. The value % is called Nyquist frequency or folding

frequency and defines the endpoints of the Nyquist interval = [—% ,%] This

theorem is useful because it provides a numerical value for the maximum frequency
of a signal, in the present case a music song, given its sampling rate. If, however, the
sampling frequency is selected to be smaller than 2fmax, then there are not sufficient
samples to capture all the variations within the signal, with the result that the

representation of the samples is indistinguishable. The consequence is that without

11

previous knowledge of the original signal we could end up reconstructing a
completely different signal than what would have been expected by using those

samples. This effect is known as aliasing. An example is given in Fig. 2.1:

amplitude

time
Figure 2.1: Effect of aliasing

Sometimes we have a discrete-time signal, but we require a version of that signal with
fewer samples. The process of reducing the sampling rate of the signal is called
downsampling or subsampling and can be achieved by keeping only every n™ sample,

if we are downsampling by a factor of ».

2.1.2. The frequency domain

Frequency domain 1s a term used to describe the analysis’ domain of signals with
respect to frequency, rather than to time. The frequency domain’s representation of a
(time-domain’s) signal is called frequency spectrum and carries information such as
the amplitude and phase of the signal’s frequency. A perfect reconstruction of the
original signal is possible if the spectrum analyzed preserves both the amplitude and
phase of each frequency component. In addition, a common technique in signal
processing is to consider the squared amplitude (or power) of the frequency spectrum
resulting in a power spectrum. It is also observable how much of the signal lies within
each frequency band over a range of frequencies, which is an important observation
for the purposes of the present study. Frequency units used in DSP are Hertz

(cycles/sec), cycles/sample, radians/sample and radians/sec. We can obtain the

12

signal’s numerical computation of its frequency spectrum by applying the Fourier
Transform to the original signal. Since our work is using discrete-time signals, the

Discrete-Time Fourier Transform, or DTFT of a discrete-time signal x/n/, is given by:
X(f) = Lr—wx[n]e /20 (2.5)

whereX(f) is computable only from the knowledge of the sample values x/n/. It is also
a periodic function of £, with period f=f;, X(f+fs)=X(f), meaning that we get replicas
of the spectrum with center each f=nf(wheren=1,2,...) frequencies. We can restrict

-

our spectrum to only one period, from [5

]. We can recover the original signal

x/n] from X(f) by using the Inverse Discrete-Time Fourier Transform (IDTFT):

fs
x[n] = = [%, X(f) e/ Tmdf (2.6)

If x/n] is a sampled version of a continuous-time signal x(?), then X(f) is an
approximation of the frequency spectrum of the continuous-time signal x(?). This is
why the DTFT is often used to compute the frequency spectra of analog signals.
Though we have the means to compute a frequency spectrum with a computer, it is
still not possible, since X(f) requires infinite calculations resulting from an infinite
number of samples, —o0o < n < oo. To make it computable two other, practical
approximations are made to X(f). Firstly, only a finite set of samples are kept and
computed, say 0 <n <L —1, known as time-windowing and, secondly, X(f) is
evaluated only on a finite set of frequencies. A DTFT of a length-L signal evaluated at
N equally spaced frequencies between 0 and f; is called aN-point Discrete Fourier
Transform or DFT. A faster implementation for the N-point DFT of a signal is the
Fast Fourier Transform (FFT). The FFT of a signal has the exact output as its DFT,
but its algorithm is based on a divide-and-conquer approach which saves a lot of
computational time. Maximum efficiency of the FFT computation is gained when its
number of points is selected to be any positive integer number of two, e.g. 1024,
2048, 4096. In addition, the first half of the frequency range (from O to the Nyquist
frequency f,/2) is sufficient to identify the component frequencies in the data, since

the second half is a reflection of the first half.

13

Since we are dealing with music signals, we should point out a particular scale of

frequency bands, called the mel-scale. The name ‘mel’ is derived from the word

melody indicating that the scale is based on pitch comparisons. The mel-scale maps

each Hertz-frequency to a mel-frequency, expressing what a human’s ear perceives to

be an equal pitch interval. The relationship between frequency in Hertz and frequency

in mel is given by the equationsbelow, as shown in Fig. 2.2:

kelz scale

3200
3000
2800
2600
2400
2200
2000
1200
1600
L1400
L200
Uiy

a0

00

0

m |

fner = 2595 logyo (1 +2£2)

fmel
fuz = 700(103505 — 1)

2.7)

(2.8)

0 oo 2000 3000 4nna 5000 G000 7o
Hesrtz siale

anon 9000 10000

Figure 2.2: The relationship between Mel and Hertz scale

An examination of the relationship between Hertz-frequency and mel-frequency

reveals that it approximates linearity below 1 KHz and exhibits a logarithmic spacing

beyond that threshold, which reflects the logarithmic nature of sound as it is perceived

by human ear.

14

2.1.3. Windowing and the time-frequency domain

It is often useful to have a representation of the signal’s frequency (or energy) over
time. This is derived by computing the Short-Term Fourier Transform (or STFT) of
the signal. The process by which a STFT of a signal is computed is through ‘cutting’
(splitting) the sampled signal into time segments (frames), then calculating each
segment’s frequency spectrum by using either the DFT or FFT and, finally, appending
the resulting spectra to build the signal’s frequency over time representation. If, then,
we square the magnitude of the STFT we obtain the spectrogram function, a common
time-varying spectral representation. Such representations are often useful for signals
whose characteristics change quickly over time, as i.e. music signals, and are to be

displayed or processed in both time and frequency.

The process of cutting the sampled signal into segments of, say, L samples, is known
as windowing and is achieved by multiplying our sampled signal with a series of

shifted windows. The simplest window is a rectangular window and is defined as:

1, if0<n<L-1
0, otherwise

M&n)={
When the window is multiplied to the sampled signal it becomes:

x,(n) = x(Mw(n) = {xo(n)’ 4 Szfevthife_ 1

An example of which is presented in Fig. 2.3 below:

A wWin win
) length-L e 1-“--} ---------------
‘ rectangular
e x(n) window _ x(n)
M 111
T > 7 * o 00>
012 - LI f 012 - LI '
le— L samples —| le— L samples —
le— (L-DT sec —»| le— LT sec —

Figure 2.3: Example of windowing process

15

Two major effects occur with the use of time-windowing when considering the
frequency domain. Firstly, the frequency resolution is reduced as a direct consequence
of the “uncertainty principle” and, secondly, spurious high-frequency components are
produced into the spectrum, a phenomenon known as ‘frequency leakage’.
Concerning the first and in the context of signal processing, the uncertainty principle
indicates that a function cannot be both time-limited and band-limited. Alternatively
stated, one cannot achieve high temporal resolution and frequency resolution at the
same time because the window size has a direct impact on both. A wide window
achieves high frequency resolution at the cost of temporal resolution, while a narrow
window has the opposite trade-off effect. Hence, the reduction in frequency resolution

is a consequence of the change of the signal’s duration, since after windowing the
minimum resolvable frequency difference becomes Af = % as the new signal

duration is T;, = LT. Concerning the second effect, the spurious high-frequency
components are produced as a consequence of the sharp ends of the signal caused by
the (rectangular) window. The presence of these components becomes clear by
examining the magnitude spectrum of w(n), |W(w)|,as shown in Fig. 2.4 below.The

figure shows the existence of several smaller side-lobes in addition to the main-lobe.

b W)
L R
mainlobe [}
i |'II I':
] relative
: : Aw, [R-13 dB = sidelobe
sidelobes causing L - love
il .. i | . evel
frequency leakage [| '.
| \\ I|I II
| \\ \ |II I' y
L] 1 /’_\1' .'I ||'| .f_\\
W 2 / \\/{ I'I.III l'.'n'll \ f \ i 2 .
— -2 0 2x 4 - W w
L L L

Figure 2.4: Magnitude spectrum |W (w)| of rectangular window

The main-lobe width determines the achievable frequency resolution. The side-lobes
are an undesirable artifact of the windowing process referred to above as frequency
leakage. They are to be suppressed as much as possible, as they can be confused with
main-lobes of weaker sinusoids. To avoid such phenomena we can use other non-

rectangular windows, such as the Hamming window, which is defined as:

16

L-1
0, elsewhere

w(n) = (2.9)

{0.54 — 0.46 cos (22), foro<n<L-1
As we can see in Fig. 2.5, the use of a hamming window suppresses the side-lobes by
cutting off to zero less sharply than the rectangular one. The trade-off is that the main
lobe becomes wider and shorter, reducing the frequency resolution capability. In the
present work we are using a hann-window, otherwise known as raised cosine window,

which is quite similar to the Hamming-window and is given by the equation below:

0.5 1—coszﬂ , or0<n<L-1
wn) = L-1 (2.10)
0 , elsewhere

An additionalaspect to consider when windowing is that if we append windows one
after the other there is a risk that some of the signal’s information could be excluded.
This occurs in cases where the signal’s information appears when a window 1is
decaying.This can be seen in Fig. 2.6. To overcome this issue, instead of appending
the windows we shift them in a way that they overlap with each other so that no

information is omitted.

A [Wo)
A rectangular [,
win) rectangular Hamming a
/ window / window
¥ Hamming

; ~—

! Am,, 7 : T]

- 4 \r R=40 dB
U.USTf/TT + S Ny
012 L-1 T HAr o 4n

Am
L L

— (1)
n

Figure 2.5: Differences between rectangular and Hamming window in time and frequency

17

Y S A | ——
i /A\ TN TN
. WMMWWWWWMWWMMWMW
T —
< o< <
S

Figure 2.6: Example of the use of overlapping windows. In the above figure the information of the signal (B) is not
included (B,)

2.1.4. Filters

The process of removing a signal’s unwanted components is known as filtering.
Usually this means the removal of certain frequencies and the non-removal of others,
with a view to suppressing interfering signals or reducing background noise. Digital
filters can be classified into FIR-filters and //R-filters based on their impulse response.
An impulse response sequence /(n) (Fig. 2.7), is defined as the response of a system
to a unit impulse d(n), where the latter is defined as the discrete-time analog of the
Dirac delta functiond(t) and is defined as:

§(n) = {(1) ;}C Zz 8 @.11)

18

|
o(r) 8(n) 4 T— h(n)
i) T
J_.,, — | H [—= TT"# -
0

0 impulse in impulse response

Figure 2.7: Impulse response sequence of a system

Consequently, if the impulse response is finite meaning that it extends only over a
finite time interval, say 0 < n < M, and it is equal to zero beyond that, then it is the
case of a finite impulse response, or FIR-filter. Alternatively, the impulse response is

infinite in duration and it is the case of an infinite impulse response, or IIR filter (Fig.

2.8).
TT FIR h(n) TT _._]IR h(n)
?_#.—n—-—l-—n TT.T%’-—+'+FH
2. 012---

J

Figure 2.8: The impulse response of a FIR (left) and an IIR (right) filter

For the purposes of the present work only FIR-filters will be used. For a discrete-time
FIR-filter the I/O equation is obtained as a weighted sum of the present input sample

x(n) and the past M samples:

y(n) = Xm=o h(m)x(n — m) (2.12)

where x(n) is the input signal, y(n) is the output signal, 4; are the filter coefficients
(otherwise known as filter taps or filter weights) and M is the order of the filter having
M+1 terms on the right-hand side. For example, a 3" order FIR-filter is described by
its four filter coefficients h = [hy, hq, h,, h3] and is equal to:

y(n) = hox(n) + hyx(n — 1) + hyx(n — 2) + hyx(n — 3)

19

Digital filters are further divided into several categories, some of which are described

and displayed below (Fig.2.9):

e Low-pass filters: where low frequencies are passed and high frequencies are
suppressed

e High-pass filters: where low frequencies are cut-off and high frequencies are
passed

e Band-pass filters: where only a specified range of frequencies is passed and
the rest is cut off

e Band-stop filters: where only frequencies in a specified range are cut-off and

the rest is passed.

lowpass D(w) highpass D(w)
1 ; 1

a ®
-1 -, 0 o no -1 -0, 0 T
bandpass D{w) bandstop 1} Dlw)

1 ;

a | ®

- -, -, [®, @, T -T -y, -, [O, @, €T

Figure 2.9: Ideal lowpass, highpass, bandpass and bandstop filters

20

2.1.5. Cross-correlation

Cross-correlation 1s a method used to measure similarity between two signals. One
signal is shifted in time and is then multiplied by the other signal resulting in a
function which displays similarity over lag. Cross-correlation is often used when a
short signal is to be found within a longer one. The values of the cross-correlation at
the lags at which the shorter signal has a good alignment with the longer one will
result into high peaks which denote good correlation between the two signals at this
particular lag. The output values for each lag are normalized to range from -1 to 1, so
that the closer the cross-correlation is to 1, the more similarity there is between the

two signals.

The cross-correlation between two discrete-time signals x(n) and y(n) is a sequence

Ry,(I) and is given by:

Ry = X x(m)y(n — 1) [=0+1+2,.. (2.13)

It is noted that the nature of cross-correlation is similar to the one of convolution.
Whereas convolution involves reversing a signal, then shifting it and multiplying by

another signal, correlation only involves shifting it and multiplying (no reversing).

A special case of cross-correlation is auto-correlation whereby a signal is cross-
correlated with itself. Obviously the autocorrelation of a signal will have a maximum
peak at the lag equal to zero. A periodic signal will have maxima in its autocorrelation
at lags which correspond to the period of the signal. Autocorrelation is often used to
find repeated patterns within a signal. The auto-correlation of a discrete signal x(n) is

given by [38]:

Ro(D) =Y _x(m)x(n—1) [l=0+1,+2,.. (2.14)

21

2.1.6. Self-similarity matrix

The self-similarity matrix (SSM) is the opposite concept to the distance matrix. For
the purposes of the present work the distance is set to be the Euclidian distance. The
similarity matrix of a length N signal is a symmetric N * N matrix, containing
elements which display the similarity of the points in the signal to each other, taken
pair wise. The greater the similarity between two points in the signal, the greater the
numerical value of the point in the similarity matrix corresponding to that particular
pair. There are five characteristics which describe a similarity matrix M. 1) M must
have the same number of rows and columns, 2) all elements in M must be real, non-
negative numbers, 3) all elements in M must have values between 0 and 1, 4) all
elements that are located on the main diagonal must all have the value 1, and 5) each
element located at the point (7,/) must have the same value with the element found at
the point (j,i). If any of these characteristics is not met, then it is not the case of a
SSM. The fact that the SSM is symmetric implies that all information is calculated
twice, once for each side of the diagonal. For practical reasons, implementations of
the SSM usually calculate only one side of the diagonal resulting in a triangular

matrix.

The similarity matrix described above has both axes representing absolute time. A
different visualization of the similarity matrix arises when one of the axes is changed
to correspond to a time-lag rather than time itself. Thus one of the axes’ indexing is
relative to the other. The resulting matrix is a time-lag similarity matrix L(l,t) and is

derived from the time-time similarity matrix S(t;, t,) using the equation below:

L(Lt) = S(vs, veey) (2.15)

22

The time-time SSM and the time-lag SSM are presented in figure 2.10.

Timeh (Seconds)

Time (Seconds)

Lag (Seconds)

Figure 2.10: The time-time SSM (left) and the time-lag SSM (right) of an example song

23

2.2. Dynamic programming

The term “programming” does not refer to writing code for computer programs, but
rather it relates to the word “planning” and to the description of a set of rules which
anyone can follow in order to solve a problem. In mathematics and computer science
dynamic programming is a method for solving problems much like the divide-and-
conquer method. These types of methods break down the problem into smaller,
simpler sub-problems, solve the latter and combine the solutions of the sub-problems
to reach an overall solution to the initial problem. In cases where sub-problems
overlap, a divide-and-conquer algorithm would solve every sub-problem regardless if
they are the same, whereas a dynamic programming algorithm would solve each sub-
problem only once, and then store its solution for future use. This results in a
significant computation number reduction, especially if the number of repeating sub-
problems is exponentially large. Dynamic programming is usually used to solve a
broad range of search and optimization problems which exhibit the characteristics of
overlapping sub-problems and optimal sub-structure. Such an optimal sub-structure
means that an optimal solution of a problem can be derived from the optimal solutions
of its sub-problems. Top-down dynamic programming means storing the results of
certain calculations which are later used again since the completed calculation is a
sub-problem of a larger calculation. Botfom-up dynamic programming involves
formulating a complex calculation as a recursive series of simpler calculations [39]

[40].
A dynamic programming algorithm can be analyzed into four steps:

1. Characterize structure of an optimal solution
Define value of optimal solution recursively

Compute optimal solution values either fop-down or bottom-up

> » b

Construct an optimal solution from computed values.

24

2.3. Music feature extraction

A feature is a characteristic part of something. It is a way to describe the nature and
properties of a subject making it possible to decide if two subjects are similar or not,
and/or to assemble subjects with similar attributes into particular groups. When
dealing with music, measurable content-based features that describe the audio signal
are known as acoustic features. Many acoustic features have been used in different
music information retrieval systems with the aim of measuring the similarity between
two songs. Acoustical features could be classified in 3 categories: rhythmic content
features, timbral textural features and pitch content features. Rhythmic content
features describe the speed of the music signal in time. They try to catch the rhythm of
a song, as a human would try to catch it by tapping with his hand or foot. If we think
about it, the rhythm is also a good feature to describe the mood of a song, since for a
low speed we have a relaxing song, and for a faster speed we have a more uplifting
song. The tempo and the beat of a signal which are features of this category are
described in section 2.3.3. Timbral textural features are used to distinct similar
sounds. Timbre, or ‘tone color’, is what makes a sound unique. As quoted by [41],
page 49, the American Standards Association (ASA) defines timbre as “that attribute
of sensation in terms of which a listener can judge that two sounds having the same
loudness and pitch are dissimilar [42].” For example, if two different instruments play
the same note we can still understand which sound came from which instrument. The
disadvantage of timbral features is that they do not include the melody and harmony
of the signal in their representations. Known timbral features are the spectral centroid,
the spectral rolloff, the spectral flux, the zero-crossings, the low-energy and the
widely used mel-frequency cepstral coefficient or else known as MFCC [43]. MFCCs
are short-term spectral-based features commonly used for state-of-the-art speech
recognition systems. Since the present work will not get more into detail regarding
this particular musical feature, more information can be found in [44] [45]. Finally,
the pitch content features are a means to keep track of the melody and/or harmony of
a musical signal. These features capture sound as a pitch regardless of where it came

from, making them as a result unsuitable for timbral analysis.Such pitch content

25

features are, for example, tonal sequence representations which can be understood, in
a broad sense, as a sequentially-played series of different note combinations. These
notes can be either unique for each time slot, representing the main melody of a song,
or they can be played jointly with others, expressing in this way the chord or the

harmonic progressions.

2.3.1. Pitch and musical notes

Musical sound signals can be characterized by their pitch. The pitch perceived by a
listener is his ear’s response to the sound’s frequency. Thus pitch is directly
dependant on the sound’s frequency, though it is not to be confused with the scientific
term of frequency itself. Pitch is measured in Hertz(Hz) and defines how high or low a

musical tone is.

In music, only a selected number of pitches are ever played and thus notations for
these particular pitches and their duration are represented by notes. The range of
pitches is divided into octaves, in a way so that if a note’s frequency value is double
to another note’s frequency, then these two notes are separated by one octave. This is
valid for any ratio of power of two between their frequencies. For example, if three
notes, say NI, N2 and N3, are equal to N1 = x, N2 = 2x, N3 = 4x, then N/ and N2
are separated by one octave and N/ and N3 by two. An octave is further divided into
twelve semitones which correspond to the different notes (pitch values). Thus a
semitone (or half-step interval) can be defined as the distance between each
5(1/12)

successive white and black piano key, and its frequency difference is equal to

times the initial frequency.

The twelve distinct notes in an octave are generally depicted by the following
symbols: C, C#, D, D#, E, F, F#, G, G#, A, A# and B. The result is a set of 12
pitches, named individually, which repeat themselves for each upper or lower octave.
In table 2.1 in page 28we can see the first nine octaves (starting from A=27.5 Hz)

with their 12 distinct notes and their frequency values.

26

2.3.2. Pitch class — chroma

On the basis of the above information it is possible, given an octave number and a
note’s name (i.e. the note A in the 4™ octave, or simpler, A4), to ‘play’ the desired
pitch (440Hz). The fact that the note’s names repeat for each octave helps us create a
new term called the pitch class, or else named chroma. The pitch class (chroma) of a
note’s name is simply a set of all pitches corresponding to this note’s name,
independent of its octave. For example the pitch class of A corresponds to all the
pitches of A0, Al, A2 etc. From this observation derives the Shepard’s pitch helix
[46] which is a model that maps all the pitches based on the following two criteria:
firstly the chroma, which indicates the cyclical position of the desired pitch on the
model (helix); and secondly the height, indicating the vertical height in the model

(helix), which is measured in octaves. Fig. 2.11 shows the above mentioned model.

Figure 2.11: Shepard’s pitch helix

27

Shepard gave birth to a logarithmic unit of measure for music intervals, called cents.
He divided the interval between two semitones in 100 cents, and the interval between
two octaves in 1200 cents respectively. The distance n, in cents, between a notea and

a note b given in Hertz is provided by the following equation:

b
Fopns = 1200 log, (E) (2.16)

And given a note a and the cents of the interval between a and b, then b is provided

by:

Fecent

b = a * 21200 (2.17)

Thus, if we center our helix so that its first note is a=A0=27.5 Hz, then we are able to
measure each note’s distance from the first note (A0O) in cents. The equations (2.16)

and (2.17) thus become:

Fcent(FHz) = 1200 10g2

Frz
27.5

(2.18)

and

F

Fyy, = 27.5 % 21200 (2.19)

Shepard’s equation (2.20) below is able to map any note’s distance (in cents) from the
initial note by using variables ¢ and /4, where ¢ stands for the 12 distinct pitch classes
and takes values from 1 to 12, and Acorresponds to the height and takes positive

integer values starting from 0.

Fspepara(c,h) = 1200h + 100(c — 1) (2.20)

28

The tables below indicate in Hertz and in cents the 12 notes for the nine first octaves.

c\h 0 1 2 3 4 5 6 7 8
A 27.5 55 110 220 440 880 1760 3520 7040
A# 29.1 583 116.5 223.1 466.16 932.33 1864.66 3729.31 7458.6
30.9 61.7 123.5 246+.9 493.88 987.77 1975.53 3951.07 7902.1
C 32.7 65.4 130.8 261.6 523.25 1046.5 2093 4186.01 8372
C# 34.6 69.3 138.6 277.2 554.37 1108.73 2217.46 4434.92 8869.8
D 36.7 73.4 146.8 293.66 587.33 1174.66 2349.32 4698.64 9397.3
D# 38.9 77.8 155.6 311.13 622.25 124451 2489.02 4978.03 9956.1
E 41.2 82.4 164.8 329.63 659.26 1318.51 2637.02 5274 10548.1
43.7 87.3 174.6 349.23 698.46 1396.91 2793.83 5587.6 11175.3
F# 46.2 92.5 185 369.99 739.99 1479.98 2959.96 5919.9 11839.8
G 49 98 196 392 783.99 1567.98 3135.96 6271.9 12543.8
G# 51.9 103.8 207.7 4153 830.61 1661.22 3322.44 6644.9 13289.7
Table 2.1 Notes’ frequencies over nine octaves in Hz
c\h 0 1 2 3 4 5 6 7 8
1(A) 0 1200 2400 3600 4800 6000 7200 8400 9600
2(A#) 100 1300 2500 3700 4900 6100 7300 8500 9700
3(B) 200 1400 2600 3800 5000 6200 7400 8600 9800
4(C) 300 1500 2700 3900 5100 6300 7500 8700 9900
S5(C#) 400 1600 2800 4000 5200 6400 7600 8800 10000
6(D) 500 1700 2900 4100 5300 6500 7700 8900 10100
7(D#) 600 1800 3000 4200 5400 6600 7800 9000 10200
8(E) 700 1900 3100 4300 5500 6700 7900 9100 10300
9(F) 800 2000 3200 4400 5600 6800 8000 9200 10400
10(F#) 900 2100 3300 4500 5700 6900 8100 9300 10500
11(G) 1000 2200 3400 4600 5800 7000 8200 9400 10600
12(G#) 1100 2300 3500 4700 5900 7100 8300 9500 10700

Table 2.2: Notes’ distances in cents in relation to A0 over nine octaves

29

2.3.3. Tempo and beat

Tempo and beats are two important attributes of an audio signal which determine the
rhythmic content of a music piece, and is thus a relevant task to create techniques
such as tempo estimation and beat tracking systems in order to be able to measure and
use those features. A number of applications are based on these features such as video
editing, audio editing, stage lightning control and many others.A beat is an event
occurrence or a wave pulse driven usually by instruments which operate in lower
frequencies (drums, base) and is considered to be a base time unit for songs. A
metronome is a tool that keeps track of this time units and by listening to it we
perceive regular ticks, where each tick corresponds to a beat. Humans perceive beats
as binary regular pulses determining the rhythm of a song. By calculating the number
of beats at a given time interval we are able to determine its fempo, or in other words
the global speed of playing a piece of music. Tempo is typically measured in beats
per minute, or BPM. When describing musical tempo for an audio signal, it is
important to differentiate between two different meanings of tempo, notated’ tempo
and ‘perceptual’tempo [47] [48]. Notated tempo is the tempo derived from the
music’s notation in the music score, and it is a mark on the top of the general music
staff which has a single value over the whole song; perceptual tempo is the tempo
which is perceived by a listener unfamiliar with the notated tempo and may exist at
different metrical levels during the song.It is of interest to create a representation of
the perceptual tempo rather than the notated tempo, especially in cases where the
latter is unknown (as is in our case). This is because for many applications perceived
tempo is considered to be a more relevant feature than the notated tempo, since it
captures the ‘feel” of the music.The perceptual tempo is sometimes equal to the
notated tempo, but not always, since a musical piece may ‘feel’ faster or slower than
its notated tempo. This happens if the perceived tempo is a metrical level higher or

lower than the notated tempo.

But how do we capture the perceived tempo? Having listeners, including expert
musicians, tap along to music excerpts is a good way to annotate the perceived tempo,

but there are some drawbacks. Not all people tap exactly the same way, because

30

different people might have different interpretations for what they are ‘feeling’ to be
the perceptual tempo and therefore are tapping at different metrical levels. For some
excerpts, the perceptual tempo is less ambiguous and listeners tap at the same metrical
level, whilst for other excerpts the tempo can be quite ambiguous and listeners tap at
different metrical levels resulting in a complete split across the listener’s tapping.
Thus an explicit answer cannot be obtained, though previous studies have shown that

listeners tend to tap at tempi near a ‘resonance’ of around 120 BPM [49] [50].

For an audio signal’s beat analysis we first estimate the tempo and then we try to
determine the temporal position of each individual beat. Such information may be
useful as melody and chord changes of a music piece tend to coincide with the beat

times.The exact method used in this work is described in section 4.2.

31

CHAPTER 3

Query-By-Example

In this chapter a basic Query-By-Example (OBE) system is described. As already
mentioned in the introductory chapter, a QBE system provides the means to a user to
navigate a large music database by using audio inputs as queries. It is understandable
how such a system may be useful to a large number of applications. A typical scenario
of such a system’s use in an application would be a user who wishes to retrieve
information on a piece of music that is playing at that time by recording a portion of
that music with his cell phone and querying a database with the recorded data in order
to obtain information concerning that particular song. It is noted that this recording
could be very noisy, proportional to the noisy environment it was recorded from and
could be encoded in a very poor form (lossy cellular phone encoding as GSM 6.10
compression). Theoretically, a query in a QBE system could be either a recording of a
cover-version of a song, or a user-sung melody, or a possibly degraded portion of the
desired recording itself. The present chapter considers the latter case whereby we
would like to find an exact instance of the given query inside a database, reflecting the
example of the application mentioned above. A naive approach would be to store the
whole query and compare it with each entry in the database on a sample-by-sample
basis. Obviously this is not an effective method, since it would be very expensive to
search and even more expensive to keep as the database would be very large,
considering music pieces with an average duration time of 4 minutes each and a
sampling rate of 44.1KHz. Instead, an audio-fingerprinting approach is used for this

purpose and the above expensive drawbacks cease to exist.

32

3.1.Audio fingerprinting

An audio fingerprint (AFP) is a compact set of features derived from the signal that
uniquely identifies the signal [1]. This representation uses a much smaller amount of
data and can therefore be used and stored instead of the whole signal. The prime aim
of multimedia fingerprinting is to develop an efficient mechanism for establishing the
perceptual equality of two multimedia objects by comparing the associated
fingerprints (small by design), rather than by comparing the (typically large) objects
themselves [51]. This is a reminder of the hash function known in cryptography,
whereby a usually large object is mapped to a smaller object using a hash function.
The larger object can then be retrieved by searching the smaller one. This similarity in
the systems is the reason why audio fingerprinting is also referred to as robust or
perceptual hashing. One could ask why we are not using hash functions for audio
fingerprinting. It must be pointed out that we are not interested in mathematical
equality of two pieces of songs but rather to their perceptual similarity. For example,
an original CD quality of a particular song and its MP3 version may sound the same

(perceptual similarity) but mathematically they are quite different.

Our system is therefore transformed into a system where each audio file in the
database is represented by its AFP, forming a fingerprint database. By querying an
unknown audio sample in the system we may subsequently compute its AFP in the
same way. The fingerprint from the unknown audio sample is then matched against
the fingerprints found in the fingerprint database. Thus, a fingerprint-based system
consists of two methods: first, of a fingerprint extraction one and, second, a method
that efficiently searches for matches of a fingerprint in a fingerprint database. This
system presents the following advantages: less memory needed for storing the
database as the fingerprints are relatively small; more efficient searching since the
dataset to be searched is also much smaller; and more efficient comparison between
fingerprints as the fingerprints have been stripped down of perceptual irrelevancies.
Such a system is depicted in Fig. 3.1 below. An AFP should be robust to noise and
distortion. This means that the fingerprint extracted from an original ‘clean’ track

should be the same with the fingerprint extracted from a degraded copy of the same

33

track. This is achieved by using perceptual features which are invariant to signal
degradation. Robustness is measured using the false negative rate, which corresponds
to the case when two fingerprints of the same audio segment are too different to lead
to a positive match. Furthermore, an AFP should be reliable, meaning that we do not
wish incorrect matches. Reliability is measured using the false positive rate, which

measures the rate at which songs are incorrectly identified.

- Fin it extraction B 5 Z
Song clip ——»|"""9°P o .Fmgﬂrp};?;ce:b"acban <:| Song

Database

h 4
Fingerprint « |Similarity
Repraesentation Ranker

h 4

Ranked list
of matches

Figure 3.1: Overview of a QBE system

In what follows two approaches describing the method of extracting an AFP are
presented. The first corresponds to a frame-based approach used inMusiwave
developed by J. Haitsma and A. Kalker [51] and the second, more recent, corresponds
to a landmark-based approachdeveloped by A. Wang and used by Shazam [52]. In

the present work we experiment with the latter case.

3.2.Frame-based analysis

The natural approach in calculating a feature representation of a music signal would
be a standard frame-based analysis in which we divide the signal into short-time
frames, calculate a feature vector for each of those frames, and obtain a sequence of
feature vectors which represent the signal. Subsequently we would try to match our

music piece on this basis. The method presented in [51] does exactly that.

34

The audio signal is first segmented into overlapping frames with a length of 0.37
seconds and an overlapping factor of 31/32, resulting in a feature vector every 11.6
milliseconds. The feature vector extracted from each frame is denoted as a sub-
fingerprint. A single sub-fingerprint does not contain enough data to permit
identification of an audio clip. The unit that allows such identification consists of 256
subsequent sub-fingerprints andis denoted as a fingerprint-block. As the most
important perceptual audio features lie within the frequency domain, the Fourier
Transform is applied to every frame. The range of frequencies taken into
consideration is from 300 Hz to 2000 Hz. This range is further split into 33 non-
overlapping and logarithmically spaced frequency bands. It was experimentally
verified by the authors that the sign of energy differences along the time and the
frequency axes simultaneously is a property that is very robust to many kinds of
processing. This can be expressed by the equation below where E(n,m) denotes the
energy of band m of frame n and F(n,m) denotes the m-th bit of the sub-fingerprint of

frame n:

1 ifEmm)—Emm+1)—(Em—1m)—E(n—1m+1))>0
0 ifEmm)—Emm+1)—(Em—1m)—E(n—1m+1))<0

(3.1)

F(n,m) ={

This results in a 32-bit sub-fingerprint which contains the sign of the energy
difference between adjacent bands and windows. The overview of the fingerprint

extraction scheme is presented in Fig. 3.2.

Band Energy
Division Computation Bit Derivation

o PR o
T2 z+ F(n,1)

Fourier
Framing Trapsform

— A\ F [+ABS

"

Y

» F(n 31)

v
[
NN

ol
=l

5
¥]

L—IL

Figure 3.2: Overview of the fingerprint extraction scheme

35

A signal is then represented by a train of sub-fingerprints. Next, to measure the
similarity between two recordings, we calculate the bit difference between the
fingerprint of the query recording and the fingerprint of the reference song. The track
which holds a fingerprint-block with the least bit differences is considered as the
target recording. To avoid a brute force of comparison of an immense number of sub-

fingerprints, [51] presents an efficient and very fast search algorithm for his system.

3.3.Landmark-based analysis

The idea behind the landmark-based approach developed by Shazam (A. Wang) [52]
is to use the signal itself in trying to find some unique structure within it which can be
used as a fingerprint, rather than creating a representation based on each frame of the
signal. This analysis is based on the observation that prominent onsets within a
signal’s time-frequency representation are to be sustained under GSM encoding and
the addition of noise. Spectrogram peaks are used as a feature in this method. These
peaks correspond to points in the time-frequency representation with energy higher
than all neighboring points in a region centered around that particular point [52][53].
Candidate points are then selected based on a density criterion and an amplitude
criterion. These points are found for the entire signal, reducing its representation to a
sparse set of peak-coordinates which 1is denoted as constellation-map.The
constellation map of a spectrogram example can be seen in Fig. 3.3.Next,
landmarkhashes are formed from the constellation map by forming the peaks into
pairs and parameterize them by their frequencies and their time difference. In more
detail, we choose an anchor point within the constellation and sequentially pair it with
other points within a certain target zone associated to that anchor point. The
information stored for each pair of peaks is the start-frequency, the end-frequency,
and the time difference between them. These values tend to remain constant between
the original and the distorted query signal and are thus the values to be used to

represent the signal’s identity. The values are quantized in order to give a relatively

26

large number of distinct landmark hashes. Each song in the database and the sample

query song are

36

subjected to the same fingerprint analysis. The landmark hashes are subsequently held
in an inverted index which lists the songs of the database in which they occur, and
when they occur in the songs. The fingerprint of the query is then compared to the
fingerprint for each database element by counting the number of matching anchor

point pairs (landmarks).

A match can be declared once a sufficient number of landmarks have been identified.
Since exact matches are very unlikely to take place, a small number of matches (e.g.
5) are sufficient to declare a match. Even in the presence of spurious time-frequency
peaks injected due to noise, or when some peaks are missing, or even when the query
example is strongly filtered, a sufficient number of hashed landmarks are to be

sustained in order to correctly identify a match.

2000 = -
anchor point* o=
X \

X X

BT

e =
o e et S g =T SR
4 p—ﬁ\i‘.:. EAJ kg 3= bt

G 0 0 W2

E 3
Time Time

Figure 3.3: Spectrogram example (left) and its constellation map (right)

Even though a fingerprint-based system is very efficient in identifying a recording
from a database, it is also very ‘fragile’ in as far as it is not able to identify alternate
versions of a song (cover songs). In such cases fingerprints will differ significantly.
Querying with one version will not return the other version, since they will not both
have similar fingerprints because they will not have peaks at the same positions. Even
if a human ear would mistake a song for another because of their similarity, an audio
fingerprinting system would be able to tell them apart. For the case of cover song
identification, features other than audio fingerprints should be used for matching.

Such a system is described in the following chapter.

37

CHAPTER 4

Automatic Cover Song (ACS) Identification Method

This chapter describes the methodology of the cover song identification task. For each
system it is essential to find the feature that maximizes the description of the desired
attribute. Since our work is focused on cover-song detection we are neither interested
whether the song is played with a particular instrument, nor if it is sung by a male or a
female voice, nor if the song has a fast thythm or not. Quite the contrary, we seek a
feature which is robust in the above characteristics, reflecting changes in tempo,
instrumentation and transposition. Moreover this feature should be able to track the
music signal’s melody which, by and large, remains the same in different renditions of
the same song. In other words we are not interested in using timbral features, since
these features are to differ the most. Instead, for the purposes of our research use is
made of rhythmic and pitch content features for building a signal representation which
satisfies our needs. First, a time-by-chroma representation of the signal is computed
which is then averaged by the beat temporal locations derived from a beat-tracking
module. Next the similarity between two songs is measured by cross-correlating these

representations in respect to lag and transposition (key shifts) (Fig. 4.1).

TEST SONG 2+ CHROMAGRAM EXTRACTION \L

BEAT-SYNCRONOUS FEATURE
CALCULATION

A

BEAT TIMES EXTRACTION

W

o SIMILARITY SCORE

REFERENCE SOMNG 2 CHROMAGRAM EXTRACTION \l/
BEAT-SYNCRONOUS FEATURE
CALCULATION
2 BEAT TIMES EXTRACTION 1\

Figure 4.1: General block diagram of the cover song identification system

38

4.1. Extraction of chroma-vectors and chromagram

In section 2.3.2.we introduced the concept of chroma. As demonstrated by [54] it is
useful to construct a signal’s representation of chroma over time, known as
chromagram. With its use we are able to track an audio signal’s pitch, and thus
melody (dominant note) and harmony over time, since both refer to a combination of
pitches, either sequential or simultaneous respectively [55][32] [56]. An audio
signal’s chroma-vector is a representation of the spectral magnitude’s distribution on
the 12 different pitch-classes. To extract a music signal’s chroma-vectors, which in
their turn form the chromagram, one has to first look at a signal’s frequency domain.
Thus, we first split our music signal into time segments (frames) by multiplying our
signal with a shifted hann-window of length N=2048 and a hop-size of 1024 samples;
we then compute theFFT for each resulting frame using 4096 FFT-bins. As a result
we obtain the frequency spectrum as shown in Fig. 4.2.

FFT
50 :

35 B
30 B

25y B
20 -
15] B

1 I 1 1
[0} 1000 2000 3000 4000 5000 6000 7000 8000
Frequency

Megritude

Figure 4.2: Frequency spectrum of an example signal

As proposed by many authors e.g. [14] [56], and as it turns out to result in better

performance, only local maxima of the frequency spectrum are used for further

39

processing. These local maxima are found when a point has a higher value than both

its preceding and its following points (Fig. 4.3).

local peaks of the FFT - (PPM)
50 ‘ ' !

45 | .

40 H -

35 H B

30 H -

25| .

NMegritude

20 H B

15 H -

10 | .

5 il —

ol “H “ ‘ I ‘Hﬂ il MU” il L 0 l AT T e
0} 1000 2000 3000 4000 5000 6000 7000 8000
Frequency

Figure 4.3: Peak picking of the example frequency spectrum

Given the local maxima of the frequency spectrum, the next stage is to map each
frequency bin (fft-bin) to one of the 12 corresponding chroma-bins. The basic idea is
to coil the magnitude spectrum around the pitch helix model (Fig. 2.11) and squash it
flat to project the frequency axis to the chroma[30]. This is achieved by designing
twelve different band-pass filters (BPF), one for each pitch class, that collect the
frequencies corresponding to the correct chroma. Those BPFs are constructed by
placing hann-windows centered on every pitch of the desired pitch-class. For
example, the band-pass filter for the pitch-class C would have hann-windows centered
at C0,C1,C2...etc, as shown in Fig. 4.4. The equation representing one ‘lobe’ created

of a hann-window centered at frequency Fjepara glven in cents, is provided by:

4.1)

200

2re(F (F)~(Fshepara(c,h)—100
BPFC,h(f) = (0.5 % (1 — cos T[(cent(f (Shepard(C)))

wheref is the frequency in Hertz converted into cents according to equation (2.16).

Thus, the final equation for the BPF of a pitch-class c is:

BPF.(f) = Zh=o BPFcn(f) (4.2)

40

\ | |Og power-spectrum
| h !l i I r i1 f:
Ilﬁfﬁlb “:: JL :: | * 11 E |

\ v il '?'v"'}"’mmjl W' “WMMI'_'-""'{"IIF'H"HI WI' Hbapf L#H'Mf' I whyae!

LT T T

kit

Figure 4.4: Placing of Hann-windows in the logarithmic power spectrum
An example of the band-pass filter corresponding to the pitch class A is presented in
the figure below:

BPF for pitch class A

0.9 i

0.7 i _

0.4 —

0.3

0.1 i _

0 I Il Il Il Il Il Il I
o 500 1000 1500 2000 2500 3000 3500 4000 4500

FFT bins

Figure 4.5: Band-pass filter for the pitch-class A
The BPFs so obtained are then zero-padded for FFT-bins greater than 2048 and a
scaling process is applied to the bins in order to favor lower frequencies. The scaling

process is achieved by multiplying each BPF with a Gaussian function defined as:

2
1(Fcent—Fcentctr)

P(Fcent) =e 2 1200

41

whereFeone ., =4635 cents corresponding to Fy.ctr=400 Hz (Fig. 4.6), and a width of

one octave corresponding to 1200 cents. The scaling function and the result of its

application to the initial filter are shown in Fig. 4.6 and Fig. 4.7 below:

scaling function
T T

0.8 - —

0.7 - —

0.6 H |

0.5 |

0.4 E

0.3 n _

O.1 .

o 500 1000 1500 2000 2500 3000 3500 4000 4500
FFT bins

Figure 4.6: Scaling function centered at 400 Hz and base width of 1 octave

scaled BPF filter for pitch class A

0.9 |
0.8 —
0.7 |
0.6 —
0.5 |

0.4 —
0.2 _

0.1 —
O J\\

Il Il Il
500 1000 1500 2000 2500

Ok

Figure 4.7: Result of the application of the scaling function to the BPF of pitch class A

By multiplying the scaled BPFs with the function corresponding to the local maxima
of the frequency spectrum we obtain the values which need to be summed together in
order to measure the magnitude distribution on each chroma-bin. This results in a
12x1 chroma vector which represents the spectral magnitude’s distribution on the 12
different pitch-classes for the particular frame. This vector is subsequently stored. A

representation of a chroma-vector is displayed in Fig 4.8. By repeating this process for

42

each frame of the song and by appending the resulting chroma-vectors one after the
other we produce a 12xN (where N=number of frames) matrix, the chromagram. In
Fig. 4.9 and Fig. 4.10 we may observe the resulting chromagram representations of
two different audio signals, one of which follows the note sequence of an octave and
the other is an example song (Madonna - Like a virgin).

Intensity in each pitch class
25 T T T T T

sum of magnitudes in each pitch class

1 2 3 4 5 6 7 8 9 10 11 12
pitch classes

Figure 4.8: Visualization of a chroma-vector

Chromagram

20 40 60 80 100 120 1 40 160 180

Figure 4.9: Chromagram of an audio signal which follows the note sequence of an octave

43

Chromagram

12

mm("ll | Illl‘ll |I||| I II‘III | ||||.I WII'II

f | ik jm (W‘ ”
bl el e "h\" i

500 1000 1500 2000 2500 3000
frames

fif
I||”||| ||I|I/|I ||I 1‘) VII ‘I |||‘

Figure 4.10: Chromagram of an example song

An interesting aspect in the use of chroma representations is that key transpositions
are simply circular shifts of the rows of the chroma. Since cover versions are
commonly transposed in respect to the main key, achieving key transposition
invariance is usually reached by examining each and every possible key transposition

of the feature. This method will be further examined in section 4.4.

It is worth noting that in the work performed by Ellis and Poliner [14], instead of
using a coarse mapping of FFT bins to one of the 12 chroma classes, they use the
phase derivative (instantaneous frequency)[57] [58] within each FFT bin to identify
strong tonal components in the spectrum as well as to get a higher-resolution estimate
of the underlying frequency. For the purposes of the present work,however,

instantaneous frequency was not taken into consideration.

44

4.2. Tempo estimation and beat tracking

As mentioned in chapter 2.3.3. tempo estimation and beat tracking systems describe
the temporal structure of a music signal, and thus are fundamental processes in
automatic music processing. For the task of tracking a music signal’s tempo and beat
locations we use Ellis’s method of beat-tracking with dynamic programming [29]. A
more thorough survey on different approaches used for beat tracking can be found in
[59].The method used in this work consists of three stages (Fig. 4.11). First, we
extract from the signal an omset-strength signal which is a representation of the
succession of discrete acoustic events such as beats, or note changes in the music
signal. This onset-strength signal is further processed in order to derive an estimation
of the global tempo of the musical piece which is based on periodicity estimation
algorithms. Finally, by using dynamic programming we find the temporal locations of
each beat, so that it is placed on a moment which has high onset-strength and agrees

with the spacing of the global tempo simultaneously.

periodicity | beat-location : beat temporal
estimation retrieval locations

h 4

Audio Signal ———»| Onset Detection

Figure 4.11: Overview of the beat tracking algorithm

attack

transient

-

Figure 4.12: Ideal sound wave signal and its four constituted parts

45

4.2.1. Extraction of the onset-strength signal

An ideal sound wave signal and its four constituted parts (onset, attack, transient and
decay) as presented by [60], is displayed in Fig. 4.12 above. Audio is often considered
to be a succession of discrete acoustic events (such as beats, pitch changes etc.) and an
onset detection process is a way to determine the temporal position at which those
events begin. In a real polyphonic music signal where different sound objects occur
simultaneously, it is highly unlikely to get an ideal audio wave and thus onset
positions found by different algorithms might not be exactly the same. The desired
system should take an audio signal as an input and extract a detection function which
will indicate the location of the most salient features, such as note changes, harmonic
changes or percussive events, since beats tend to occur at these time instants. The fact
that note onsets or percussion hits are easily masked in the overall energy of the time-
domain signal by continuous tones of higher frequency (such as bass notes)
encourages frequency-domain processing [61], where such events are detected even if
they are of much lower energy than other continuous signals in the audio. This leads
to a system that tries to locate areas in time and frequency where there is a sudden
energy increase. This can be achieved by building a function which represents the
energy of a sound at a particular time, or in other words this function is a result of

summing energy across frequency.

In order to construct the onset-strength signal, the analyzed music input signal is first
downsampled to 8 KHz and then divided into frames of length N=57/2 and an
overlapping factor of N/8. Each frame is then multiplied by a hann-window of the
same length and is then processed by a FFT-function resulting in the frame’s
frequency spectrum.The fact that these onsets are clearly audible by a human’s ear
leads to the use of an auditory model using a mel-scaled frequency representation of
the signal’s frequency, in which the relationship between Hertz-frequency and mel-
frequency are given by the equations (2.7) and (2.8) referred to above in section 2.1.2.
This is done with a view to better approximating the beats from a human’s auditory

system perspective. A driving function could be derived at that point from the

46

resulting representation by summing the magnitudes across frequency, resulting to a

plot which represents the running energy of the audio signal in respect to time.

Another aspect that must be considered, though, when summing energy across
frequency is where energy shifts in frequency, as for example when an instrument (i.e.
saxophone) plays a note and then plays another note continuously. The total energy in
that case might not change that much, though a human’s ear still hears that as an
onset. To overcome this particular case of energy shift, we divide the frequency range
into multiple bands and calculate an onset function within each band individually.Just
like the mapping of FFT-bins into chroma-bins in the previous section, we map the
FFT-bins into 40 different mel-bands by multiplying the frequency representation
with a suitable BPF expressing each separate band resulting in a 40xNmel-
spectrogram (where N=number of frames of the analyzed sampled signal). Next, we
convert the magnitude into decibels and look only at the top 80 dB of the

representation.

Then a first-order difference from frame to frame is calculated for each separate band
and the result is half-wave rectified. This is done in order to keep only positive values
and leave only onset information resulting in a driving function for each band. These
driving functions exhibit sharp maxima (peaks) at the desired temporal locations
(onset times).Next, by summing the differences, or by taking the vertical mean of the
differences for each frame across bands (frequency), we obtain a function which
exhibits large values at onset times and corresponds to the final onset-strength
signal.We finally filter this driving function with a high pass filter corresponding to
global gain variations in the original signal. The resulting driving function can be

depicted in Fig. 4.13 below.

47

Onset Strength Signal (Part)
12 T T T T

10 - -

o hulu b " ul

| | | | | | | | |
(0] 200 400 600 800 1000 1200 1400 1600 1800
frames

Figure 4.13: Onset-strength signal from a part of a song

4.2.2. Estimating the global tempo

The onset-strength signal derived from the previous stage is then passed to a
periodicity estimation block in order to try and find a sequence of onsets in the signal
which are on a regular pattern. Given that the onset function can be seen as a quasi-
periodic and noisy pulse-train that has large peaks at note attacks, a natural approach
to compute the tempo would be to compute a beat histogram by taking the difference
in time between each successive pair of onsets and build a histogram of those
differences. In this case, if there is a value in the histogram which indicates that pairs
are closely spaced around a specific value, then the tempo can be derived from that
information. Other methods in calculating the periodicity from the onset locations are
the spectral product and the autocorrelation function (ACF), which is a classical
method in periodicity estimation. Results calculated using the autocorrelation function
are usually better than those stemming from the spectral product (and the histogram)
and therefore we choose to use autocorrelation for this purpose as well. The
autocorrelation function is a special case of the cross-correlation described in chapter
(2.1.5), and can be regarded as a cross-correlation of a signal with itself. In other
words it is a signal that is multiplied by itself while it is being shifted in time. The

signal that we are going to correlate with itself is the output of the onset detection

48

block and since it can be regarded as a kind of periodic pulse train, we expect to see
peaks in the autocorrelation spectrum at the times where the shifted signal aligns well
with its original. To give an example, if the onset function has sharp periodic pulses,
or pulses which form repeated patterns, its autocorrelation will exhibit peaks at times
which correspond to one period or any integer number of periods of those events (or
pattern of events), since for any number of periods the original and the shifted version
of the onset function will line-up well. Consequently, to estimate the driving
function’s periodicity and hence the audio’s global tempo, we auto-correlate the
onset-strength signal with itself out to a maximum lag of 4 sec. It can be pointed out
that it is not necessary to auto-correlate the entire signal and that only a portion of it,
which retains the basic information, can be used instead. A peak picking process is
then applied to the autocorrelation in order to find local maxima within the function.
An autocorrelation example and its result after finding its local maxima are depicted

below in Fig. 4.14 and Fig. 4.15:

Autocorrelation
1 T T T

0.8 i

0.7r i

0.6 -

0.5F -

0.3 i

0.2

0.1

1 | L 1 1 l
300 400 500 600 700 800 900 1000

lag

1
0 100 200

Figure 4.14: Autocorrelation function of an example onset-strength signal

49

local peaks of autocorrelation
1 T T T T T

0.9+ -

0.7 - i
0.6+ i
0.5r -

0.4r -

0.2+ i

0 A A 1 | A |
L L

0 100 200 300 400 500 600 700 800 900 1000
lag

0.1h ‘

Figure 4.15: Peak picking applied to the autocorrelation function

By considering the human tapping experiment [49] [50] and the fact that humans tend
to tap toward a particular range of tempi, we scale the resulting autocorrelation signal
which has typically multiple peaks in order to enhance periodicities preferred by
listeners and extract one dominant peak, which also indicates the most likely tempo.
To this effect a ‘human preference’ weighting window is created. This window is a
Gaussian on a log-time axis and is characterized by its center (the BPM at which it is
largest) and its half-width (the sigma of the Gaussian, in units of octaves on the BPM
scale, since the axis is in fact logarithmic) [29].In other words, we use the weighting
window to adjust the autocorrelation peak’s heights so that these favor the peaks that
are located around the right tempo. The best center of the window was found to be at
120 BPM, agreeing with the results of the human tapping experiment, and the width
was set to be 1.4 octaves. Two weighting windows centered at 120 and 240 BPM

respectively are shown in Fig. 4.16.

Finally, the lag in the scaled autocorrelation (Fig. 4.17) which has the maximum

value is chosen to correspond to the main tempo. Taking into account that humans

50

might tend to tap in different metrical levels and that those levels are usually
separated by a ratio of 2 or 3, a secondary tempo is computed in addition to the main
tempo, which is chosen to be the largest value of the peaks closest to 0.33, 0.5, 2 and

3 times the main tempo, respectively.

human preference window (biased around 120 BPM) human preference window (biased around 240 BPM)

0.9t 09t

081 081
0.7r 0.71
0.6 061
051 0.5-
0.4r 0.4r
031 0.3
021 0.2

0.1r 0.1y

. . . I . N , .
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
lag lag

Figure 4.16: ‘Human preference window’ biased around 120 BPM (left) and 240 BPM (right)

scaled local peaks of autocorrelation
1 T T T T T

0.9 i

0.8 -

0.6 - i

0.5r i

0.2 -

0.1r i

‘ M AA L b, .

0 Hw Il ‘WV T

1 1 1 l
0 100 200 300 400 500 600 700 800 900 1000
lag

Figure 4.17: Scaled local maxima of the autocorrelation favoring peaks around 120 BPM

51

4.2.3. Temporal beat-location retrieval

In order to obtain the beats position in time we use a beat tracking module that will try
to detect and mark all the beats temporal locations using the information obtained
from the previous stages (onset-strength signal extraction stage and global tempo
estimation stage). The idea is to create an algorithm which will decide for any given
time ¢, if there is a beat or not and find a sequence of those beat times {¢}that all
correspond to large values in the onset function and their spacing agrees to the
estimated global tempo. Meaning, we want the sum of the onset function at those
times to be as high as possible and that the differences between successive beat times
to be consistent. These conditions can be expressed with the equationsbelow, where
O(t) is the onset-strength signal, F(4tt) is the tempo consistency score and a is a
balance function whichdefines how rigidly we stick to the tempo 7, and how well we

hit the high score times on the onset function:
CAED =X 0(t) + aZil, F(ti — tin7p) (43)
2
F(At,t) = exp {—%(tightness *log %) } 4.4

The tempo consistency function Fis just a way to compute if the spacing between two
beat times agrees (or not) with a given ideal spacing (z,), in our case the global tempo.
If Atand rare equal, then the ratio within the log will be equal to 1 and hence the log
will be equal to zero, making this the best case of F' being one.If, on the other hand, 4¢
and 7 are different, then the log of their ratio will have any value other than zero and
by taking the negative value of its square the final value of F' will be a real number

between 0 and 1.

So in theory, if we could calculate the above cost function for every possible beat
sequences, which is an exponential set, and find the sequence that has the maximum
score, then that set of beat times would be the most probable beat sequence. This is
not feasible, however, since coming up with all possible time sequences is an
exponential problem and is not solvable for a large amount of data. Dan Ellis [29]

formulated the above problem intoa dynamic programming one, in a way that onset

52

times correspond to local information subject to a long-term constraint reflecting that
we want to form a regularly spaced set of events. In dynamic programming we are
trying to find an optimal combination of a local cost function and a transition function
of a path cost within a space. Hence by decomposing the problem as mentioned above
and by using dynamic programming we are able to solve it in linear time. In our case,
since any sequence of beat times corresponds to a different path in space, by taking a
particular time-point we observe that several sequences lead up to that point, but there
is only one that is optimal. This optimal sequence is found by calculating each
sequence’s score and by keeping the one that has the maximum score. Given that the
cost function’s structure is using only past information in time, any path that leads to a
particular point ends its influence to the total cost at that point and thus anything that
happens after that time is not affecting the score. So basically we calculate the score
for every possible ¢, even though the majority of the times will not correspond to beat
times.We do so by adding the local cost score (onset function), by searching over
some preceding window the best score up to that time and by multiplying some
transition cost which shows how well we can move from the preceding point to the
new one (tempo consistency cost). The preceding window covers a range of 2 to 0.5
beat periods into the past. This can be expressed by the equation below, where C*(t)
corresponds to the best score up to time #, O(?) is the onset signal, F(4t,7) is the tempo
consistency cost function and a is the balance function that scales the best score at the

preceding beat in order to keep balance between past scores and local match:

C't)=0-a)o(t) + maxr{aF(t -1, rp) * C*(1)} 4.5)

This process can be depicted in the figure below:

C*(1)

O(#)

Figure 4.18: Finding the best predecessor beat for a given time ¢

53

The largest scaled value by the transition weight corresponds to the best predecessor
beat of the current time ¢ and is then added to the onset value of # which makes the
best cumulative score C(z), which is stored along with the best predecessor beat.
Doing so for all the times, and finding the most probable last beat time, we can trace
back through the stored beat times and acquire the entire final beat sequence. The

back-trace function can be defined as:
P(t) = argmax,{aF(t — 1, Tp) * C*(1)} (4.6)

The fact that the algorithm uses back-trace makes the above beat-tracking system
intrinsically non-real-time. In addition it relies only on a single global tempo making
it unable to track large (>10%) tempo drifts. As our work is mainly focused on
popular music corresponding to music genres with a more or less invariant

straightforward rhythm, the current beat-tracker indicates high performance.

4.3. Beat-synchronous chromagram

As it turns out tempo, and therefore beat times, are a useful time-normalization metric
and thus through averaging our chromagram (the output of our chromagram extraction
stage) according to the beat times (the output of the beat tracker) in order to have one
chroma-vector per beat, we may overcome the variability in time (time-shifts, tempo)
between two songs. This is achieved by implementing a function which takes the
chromagram and the beat times as an input and by creating an 12xB (where B are the
number of beats) matrix representation which consists of Bchroma-vectors whose
values are derived by averaging the originalchromagram in time intervals defined by
the beat times.As a result we obtain a feature representation of the song which is
invariant to instrumentation due to the use of 12-dimensional chroma vectors which
collect spectral energy supporting each semitone of the octave, and invariant to tempo
changes, as a result of the use of beat-synchronous features. The case of variation in

transposition (key shift) will be examined during the matching module.

54

chroma

chroma

Chromagram averaged by beat times

frames

Figure 4.19: Beat-synchronous chromagram of the example chromagram in Fig.4.9

.fi“

Chromagram (part)

L

| 11|
200 250 300 350 400
frames

Figure 4.20: Part of a chromagram of an example song

55

Chromagram averaged by beat times (part)

12

10

chroma

10 20 30 40 50 60 70 80 90 100
frames

Figure 4.21: Beat-synchronous chromagram of the above example

4.4. Matching

To compare two music pieces we follow the method of cross-correlating their entire
beat-by-chroma matrix representations. This correlation will exhibit sharp peaks
expressing good local alignment of the two pieces at a precise lag. In other words, if
there is a subsequence of chroma-vectors in the reference song which is similar to a
subsequence of the test song, this will result in a local peak in the cross-correlation at
the appropriate lag. The length of the matching subsequence and the degree of their
similarity are directly related to the size of the peak in the cross-correlation, meaning
that the bigger the length of the subsequence or the bigger the degree of similarity, the
higher the height of the peak. The disadvantage of this method is that it is not possible

to reward the case where multiple parts align at different relative positions. On the

56

other hand, a small fragment of the total track which has high similarity will still

contribute in a peak high enough to correctly point out a match between two tracks.

Before proceeding to cross-correlating the representations a normalization step is
involved. This normalization consists of square-root compressing the amplitude of the
representations followed by scaling each chroma-vector of the beat-synchronous
chromagrams to have unit norm. Consequently, to overcome variability in key
transposition the cross-correlation is performed between all twelve possible semitone
transpositions (circular rotations in respect to the pitch axis) of the chromagram and
the rotation for which we have the highest score is selected. Through experimentation
it was found that many tracks appear to have false large correlations due to sustained
sequences of a single chroma-bin with a large value. If we think about it, if we cross-
correlate in relation to time and key transpositions, sustained blocks of a single
chroma value (any chroma) in both pieces will result in a correlation peak, without
witnessing any ‘true’ similarity. To overcome this case of false similarity, we de-
emphasize prolonged chroma values and instead are focusing on the changes of the
representation which is more informative. This is done by high-pass-filtering the beat-
by-chroma representations for each song. Last but not least, it was observed that
representations which are averaged based on beats with different metrical levels,
having for example twice as many beats per song phrase as its other version,
prevented a correct match. In order to accommodate this case, we created two
representations of each song. The first representation averages the chroma-vectors
using beats derived from the beat tracker which makes use of a 120 BPM biased
window, whereas the second representation is using a 240 BPM biased one. Cross-
correlation is then performed between the two representations of the query song and
the two representations of the reference song and the single largest value of the four

cross-correlations is taken to be the final similarity score.

57

CHAPTER 3

Automatic Chorus Detection Method

In the work presented by Serra et al. [15][26] it has been demonstrated that song
structure is a key factor to consider for cover song similarity measurement. To this
endwe opted to present an approach which consists in extracting a music summary of
a given song representing its most representative or repeated parts [29][49]. Bartsch
and Wakenfield [32] argue that, in the context of popular music, extracting a music
summary amounts to picking up the chorus, which is likely to be recognized or
remembered by a listener. Such a summary representation is thought to provide the
main characteristics of a title in a more compact form allowing for instance a faster
music similarity search amongst a set of music pieces. Therefore, a hypothesis can be
made that by making use of such summary information one could increase a cover
song identification system's performance [15]. Moreover, a system which identifies
repeated parts within a song has interesting applications in other systems, as for
example in an enhanced music player where the sense of an 'intelligent fast-forward'
mode is introduced. For instance, a user may move automatically to the next chorus of
the song or move to the next occurrence of what is currently being played. Given the
above attractions and the fact that a structure analysis system can be developed by
using the features already described in the present work, it was considered useful to
make also reference to automatic chorus detection (ACD) systems. Having said this,
it should also be pointed out that trying to achieve structure invariance in a cover song
identification system by using a song summarization approach may be error-prone.
This is because it cannot be ascertained that the most representative part of a song is
included in the extracted music summary i.e. the chorus, as this may be located in
another part of the song, for example the introduction, the bridge, or other. Also it is

acknowledged that music structure systems are in need of further refinement [4][34].

58

In what follows a method which automatically detects a chorus for a given song with
no prior information on acoustic features unique to choruses is presented. The basic
idea of this method is to find sections in a song that repeat themselves and output the
one that is most likely to correspond to the chorus. To identify the repetitions in a
song we make use of its beat-synchronous chromagram representation examined in

the previous Chapter (section 4.3) and a self-similarity matrix (SSM).

The SSM calculates the similarity between each pair of frames so that repeated
sections are shown as diagonal lines with high similarity. These diagonal lines, which
correspond to precise music segments, are then listed and only one line segment is
selected as the chorus, utilizing a novel heuristic scoring scheme presented by [31]. It
is important to mention that a frame segmentation of the given song is necessary. We
follow the method used in [31] and [32] by making use of dynamic beat-synchronous
frame segmentation, having one feature vector per beat and thus measuring time in
beat units. This is a crucial process which lessens greatly the computational load of
the system. The use of chroma vectors to represent the song is proposed by many
authors [30] [31] [32] [33], since its ability to encode harmonic relationships is critical

for this task.

AntiiEronen [31] used a combination of two SSM, one corresponding to beat-
synchronous chroma-vectors and the other corresponding to beat-synchronous
MFCC-vectors. However, for the purposes of the present work we limit our analysis
to the use of only one SSM derived from the beat-synchronous chroma feature on the
grounds that the information retrieved is sufficient. Nevertheless extending the model
to include information derived from MFCC features could enhance its overall

performance.

59

5.1. Obtaining the SSM

As we are working with chroma-vectors, two audio frames with similar harmonic
content will have “similar” feature vectors. We define the similarity between two

chroma vectors v(i) and v(j) as:

” EO N \0) H
maxcvc(d) maxcvc(DIl,

s(i,j)=1- = (5.1)

wherel < i,j < N and N is the total number of beats in the song.

Each vector is normalized by dividing it with its maximum element. Then the
normalized vectors are subtracted from each other and the Euclidean norm is
calculated taking the squared root of the sum of the squared elements of the vector,

resulting to the Euclidean distance of the two vectors. Next, we divide the Euclidean

distance with v12 which is the diagonal line of a 12-dimensional hypercube with
edge length equal to 1, guaranteeing that the condition 0 < s(i,j) < 1 is satisfied.

Finally, the result is subtracted from 1 in order to obtain the similarity measure.

Doing so for all i,j€ {1, N} results in a N * N SSM (where N is the number of chroma
vectors) which represents the similarities of each set of points taken pair-wise. This
can be observed in Fig. 5.1. For example s(i,j) is an element in the similarity matrix
that represents the similarity between the i™ and the j"chroma-vector of the song’s
representation. The higher the similarity between those two frames the darker the
point in the visualization of the SSM. Hence, extended regions of high similarity such
as choruses or other repeated sections, result in extended areas of high similarity in
the SSM and are pointed out by darker diagonal line segments. Our objective is to
detect and list all those line segments in the SSM and examine which one is most
suitable for the system’s output. It is important to point out that the Euclidean distance
is symmetric and thus the similarity matrix is symmetric as well. Therefore, all the
following operations take into account only the lower triangular part of the SSM,
resulting in a significant computational time reduction. In order to process the

similarity matrix it is strongly advised by [30][31] to enhance the similarity matrix.

60

Self-Similarity Matrix
800
700 B
600
500

400

No. of chroma vectors

300

200

100

100 200 300 400 500 600 700 800
No. of chroma vectors

Figure 5.1: SSM of a particular song (Madonna: ‘Like a virgin’)

5.2. Enhancing the similarity matrix

Due to variations in the performance within a song at different times, such as
articulation, improvisations, changing instrumentation or even key modulation,
diagonal stripes in the SSM corresponding to repeated sections are not always clearly
visible. On the contrary, the SSM is often very noisy and contains irrelevant line
segments that do not correspond to repetitions. Therefore the enhancement of the
SSM is a vital process. The aim of this enhancement process is to suppress the
unwanted line segments and emphasize the desired ones to the extent possible. This is
done by examining each point in the similarity matrix to see if it is a part of a desired

line segment or not. A 5x5 kernel is used for this purpose. When the kernel is centered

61

at a point, say (i,j), six directional local mean values are calculated along the right,
left, upper, lower, upper-right and lower-left dimensions of the kernel and the
maximum and minimum values are obtained. Since we are working with the lower
part of a time-time similarity matrix, the desired line segments are parallel to the main
diagonal. Thus, if the maximum of the local mean values happens to be either the
upper-right or lower-left mean, then the point (i,j) is considered to be part of a desired
line segment and must be emphasized. Otherwise, it is considered noise which tends
to form lines along the left, right, upper and lower directions and must be suppressed.
The process of suppressing a point is done by subtracting the maximum of the mean
values from the point (ij) and the process of emphasizing a point is done by
subtracting the minimum of the mean values from the point (7,j). In addition, noise
flooring is performed by setting the value of (i,j) equal to zero if its new value doesn’t
exceed a given threshold (in our case threshold=0.6). To avoid over-indexing, the
SSM is divided into nine different parts, six if we consider only the lower triangular
part of the SSM, which are defined as A, B, C, D, H and J (the rest are omitted). As
shown in Fig. 5.2 below the enhancement process is carefully calculated for each

section.The resulting enhanced SSM is displayed belowin Fig. 5.3.

F E B’
B
N-FiltLen
A'
G
C
A
FiltLen
Jf
D
3 H
’ FiltLen N-FiltLen

Figure 5.2: SSM division into 9 parts. Gray parts are omitted for the enhancement process

62

SSM line emphasized with noise flooring
1 T T T

800 -

700 -

500 -

400 -

No. of chroma vectors

300

100 -

e

: \. L g L \ : o
400 500 60 700
No. of chroma vectors

20 300

800

Figure 5.3: Enhanced SSM of the example song

5.3. Detecting repetition

The enhanced SSM is then further processed in order to examine whether a diagonal
line in the matrix is likely to contain a line segment or not. To do so, an average in
magnitude is calculated along each diagonal corresponding to the possibility of a
diagonal containing one or more line segments [30][31]. Diagonals which contain line
segments will have a higher possibility than the ones which do not. This possibility for

a diagonal containing a line segment is defined as follows:
P(k) = —¥Nfs(c+kc) ,wherek=1,..,N—1 (5.2)

whereN is the number of beats in the song.

63

Thus P(1) corresponds to the first diagonal below the main, P(2) corresponds to the
second diagonal below the main diagonal, and so on. The resulting function P(k)
contains higher peaks at the diagonals £ below the main, where the possibility of
finding line segments is high. The only disadvantage of this equation is that there is a
possibility that some high-similarity values along a diagonal are masked by lower-
similarity values at the same diagonal.However this possibility is relatively small and

the system performs well as it is.

The method subsequently selects a certain number of diagonals for further processing
which correspond to maxima in P(k). The selection of those diagonals is done as
follows. First, cumulative noise is removed from the function P(k). This is done by
calculating a lowpass-filtered version of P(k), say Pj,(k), which is then subtracted
from P(k). Next the smoothed differential of P(k) is calculated. This is provided by the

equation:

sd(k) = YKsize WRau (61 +w) ,where K;,, = 2 points (5.3)

w==Kgiz

The points where the smoothed differential changes sign from positive to negative
correspond to the positions of the peaks in P(k). These peaks are then examined and
only peaks higher than a threshold are selected. This threshold is automatically set for
each song and is based on a discriminant criterion [62].This criterion is based on the

number of peaks above and below the threshold and is given by the equation below:

O-lg = wiwy(uy — .Uz)z (5.4)

wherew;and w, represent the number of peaks in each class divided by the total
number of peaks and pqand p,correspond to the means of the peak heights in each
class. The threshold is selected to be the one maximizing the discriminant criterion.

The sequence contained in Fig. 5.4 below provides an overview of the process by
which we select the diagonals to be used for further processing, where P(k) stands for

the function which contains the possibility of a diagonal containing a line segment.

64

zero-crossings of
Calculation of smoothed

smoothed differential £ differential from

positive to negative

subtrad lowpass

P(k) ———— ¥ filtered version of P(k)

from Pk}

v

Selecting peaks of P(k}

4

b

Selecting peaks —————» Selected dfag‘anafs

over athreshold

b 4

A

Threshold selection
method (Otsu)

Figure 5.4:0Overview of selecting diagonals for further processing

The diagonals of the SSM which are selected for further processing are then smoothed
using a low pass filter to ‘repair’ small imperfections in the diagonals. A new
threshold is then calculated in order to detect line segments from the diagonals. All
the points contained by the selected diagonals are compared to this threshold. Points
which exceed the threshold are set to one; otherwise they are set to zero. The result of
this process is a binarized matrix where the value one indicates that a particular point
is a part of a line segment (repeated section) and zero indicates that it is not. Goto[30]
performed another threshold selection based on the Otsu method [62], though in the
present work we follow the method used in [31]. We select a threshold so that 20% of
all the processed values are considered parts of a repetitive segment. This is done by
concatenating the points of all the processed diagonals in a large array which is then
sorted in a descending order. We then simply adjust our threshold so that 20% of the
array’s values are greater than the threshold. The binarized SSM of the example song

is displayed in Fig. 5.5.

65

Binarized SSM
]]

800}]
700}]
600 | .
500 .- T
400 : i
300| - o]]
200 ’ L - 7

100 o L. T

700 800

100 200 300 400 500 600

Figure 5.5:Binarized SSM of the example song

The binarized matrix is then processed by an enhancement method presented in [31]
which tries to remove gaps of a small number of beats. In other words, for a line
segment which is long enough and where most of its values are ones, enhancing this
line segment would lead to all the points within the line segment having the value one.
This enhancement process is performed only when certain conditions are met. Hence,
each point in the binarized SSM, B(ij), is examined to establish whether an
enhancement step is approved. The conditions are: first, at least 65% of the values
between B(i,j) and B(i+FiltLen , j+FiltLen) are ones; second, that B(i,j)=1; and third,
that either of B(i+FiltLen-2 , j+FiltLen-2)=1 or B(i+FiltLen-1 ,j+FiltLen-1)=1 must
be true. FiltLenis a parameter of the system and is chosen to be 25 points of length.
Although [30] did not mention the need for such a process, [31] found it vital to
include an enhancement process to the binarized matrix. The resulting enhanced

binarized SSM is presented in Fig. 5.6 below:

66

Enhanced Binarized SSM

800 |-]
700]
600 |- | B
5001 .' SR
400 |- _ i
300/ o S o
2001 . " ’ . : o R l .- B

| I 2 | | | L .
700 800

100 200 300 400 500 600

Figure 5.6: Enhanced binarized SSM of the example song

The resulting enhanced binarized matrix is then processed point by point in order to
extract and list all the line segments contained in the matrix. We are interested in line
segments which have a possibility of corresponding to the chorus section of the song,
hence line segments indicating too short repetitions (i.e. shorter than 6.4 seconds) are
omitted. Thus, the enhanced binarized SSM is searched for line segments longer than
6.4 seconds, and each line segment found is stored as x = [i,j,i’,j'], where (i)
denotes the diagonal segment’s start point and (i ’,j) denotes the segment’s end point.
The length of the segment’s duration is given by:

Ax)=j'—j+1 (5.4)
In case where no segments longer than 6.4 seconds are found the time threshold is
decreased until a segment is detected. Finally, the line segments which have been

identified throughout the above process are passed for further processing.

67

At this point it is noted that by using the matrix' symmetric characteristics we may
change the matrix as shown below, without changing its content. The following

equations and calculations take into account the right form of the similarity matrix.

100 0

/ AN
4 NN

0 100
0 100 0 100

5.4. Selecting the desired repetition — chorus

For cases whereby too many line segments are detected, a line removal process is
performed to remove lines which are considered to be too close to each other. This is
achieved by using a combination of conditions defined by [31], which examine
whether two line segments, x; and x; are consideredto be too close to each other or

not. These conditions are:
(1) = (1) -5) and %(3) < (x:(3) +20) and
|%2(2) = 2:(2)[£ 20 and x,(4) < (x:(4) +5) (5.5)

All the different pairs of line segments are then searched one by one examining
whether the above conditions are satisfied, and all the close segments for each
segment are listed. Next, if a line segment happens to have more than three close
segments, then these extra segments are to be removed. The only case where an extra
segment is not removed is if that particular segment has also more than three close

segments by itself.

68

The remaining line segments are considered the chorus candidates and are
subsequently examined with a view to selecting only one line segment to output as the
most probable chorus section. This is done by utilizing the novel heuristic scoring
scheme used by [31], with the difference that we are working with similarities and not
distances. Aspects considered in the final score of each line segment are the
following: position of the repetition in the SSM; position of the repetition in relation
to other repetitions; average energy and the average similarity in the SSM during the
repetition; and the number of times the repetition occurs in the musical piece. In what
follows these aspects are considered separately. The line segment with the maximum

score is then output as the most likely chorus section.

5.4.1. Scoring the position of the repetition in the SSM

This score examines whether a specified line segment x is found to be close to an
expected chorus position. In pop music, the chorus is usually located at approximately
one quarter, or three quarters, of the song’s length. Consequently, we measure the
difference between the middle column of the segment and the column corresponding
to one quarter of the song’s length (Eq. 5.6). In addition we calculate the difference
between the middle row of the line segment and the location corresponding to three
quarters of the song’s length (Eq. 5.7). In so doingwe favor line segments that are
found in the lower-left hand corner of the SSM which corresponds to the first
occurrence of the chorus which matches to the chorus located at three quarters of the

song’s length.

|(j+%£))—round (%)|

round (%)

si(x)=1- (5.6)

|(i+@)—round(3M)|

4

sp(x) =1- (5.7)

round (%)

whereA(g) corresponds to the line segment’s length given by (4.4), and M

corresponds to the number of beats within the song.

69

5.4.2. Scoring the position of the repetition in relation to other repetitions

For this score we examine the position of a repetition in relation to other repetitions
by searching for possible groups of three line segments (friads) within the SSM,
which may correspond to three repetitions of the chorus. An ideal case of the three
segments described is presented in Fig. 5.7. This search is done for each candidate
line segment (x,,). First, the search method examines whether a line segment is found
below x,,, by searching for a line segment x;, which satisfies the condition given by
xp (1) > x,,(3). This condition denotes that there should be no overlap between the
rows of x;, and xj;, and that there must be some overlap between the columns of x,,
and x;, (we used an overlap greater than 25%). If such a segment is found, the method
then searches a line segment X, located on the right hand side of the below segment

and whose rows are overlapping with the rows of the segment x;, (by at least 25%).

All the groups of three segments found are listed as a triad, say m, = [u, b, r], and are
then scored based on how close to the ideal case each group is. This is done by
computing the average value of four different partial scores which are presented

below:

1. The first partial score o;examines the end columns of the upper (x,4)) and
below segments (x;(4)) and gives a high score when those columns are found

to be close to each other. The score g;1s given by:

% |£u (4)-xp (4)|

01(z) = 1 = 2+ G

(5.8)

2. The second partial score orconsiders the vertical alignment of x,and x,
whereby if the start column of the below segment is under the upper segment
then the score gets a value of 1. Otherwise, if the below segment starts before
the upper segment, it will get penalized and obtain a score smaller than 1. This

scoring is handled by the equationbelow:

xu(2)—xp(2) .
O'Z(Z) — {1 - W lf Eb(z) < Eu(z) (5.9)

1 otherwise

70

3. The third partial score o3 examines the length of the below segment x;, and the
right segment x,- and awards a higher score if x;, and x, are both of equal

length. This can be implemented as follows:
_ 1 — A -aG)|
o3(z) =1 en (5.10)

4. Finally, the fourth partial score o, depends on the difference in the position of

the below and right segments and is given by:

2+min(|xp (1) —2x,(1)],|25 (3)—2-(3)) (5.11)

0,(z)=1- A(xp)+A(xy)

The final score to be awarded to each group of three segments found is then calculated
by taking the average value of the four partial scores described above and given to the
below segment x;,. The score is given to the below segment, as this segment’s length
1s often closer to the exact length of the chorus. Since x;, may be a below segment for
many groups of threes, the maximum value is retained and stored as its value. If no

groups of three are found, then s3 (gb) =0.

—
Column index
(1), x,(2)) (beats)

(2(3), x4(4))
A(xy)

(x5(1), x5(2)) (xA(1), x(2))

\

Row index
(beats)

(x5(3), x5(4)) (1,(3), x,(4))
A(xs) Aw)

Figure 5.7: Ideal case of the position of three line segments, corresponding to three repetitions of the chorus

71

5.4.3. Scoringthe average energy of the line segment

For this score, [31] measured the average logarithmic energy with the use of the
zerothcepstral coefficient over the segment. Since in this work we are not using
MFCC features, we approximated it by computing the vertical sum of each frame
from the beat-synchronous representation of the song across frequency and then
calculated the mean of that resulting function, and denoted the mean value as
E,.Next, we repeat the process but only for the frames defined by the line segment’s
columns and denoted it as E. The ratio Ey, / E,, is taken to be the score (Eq. 5.12).
The score thus obtained favors segments which have high energy, often a

characteristic of chorus sections.

si(x) = ‘Zg (5.12)

5.4.4. Scoring the average similarity of the line segment

This score takes into consideration the average similarity in the SSM and the average
similarity in the line segment. The greater the similarity during the line segment, the
higher the chance that it corresponds to a chorus section. Consequently, if SSM,,, is
the average similarity of the SSM and LSciian 1s the median similarity value of the

line segment, then the score is taken to be:

_ _ 1-LSmedian
ss(x) =1 FRT— (5.13)

72

5.4.5. Scoring the number of times the repetition occurs

This score looks for line segments located above or below the examined line segment.
If a line segment (x,) is found to be on top of, or below, the examined segment (x,) it
is considered an indication that this repetition is repeated more than once. The
condition which examines whether two line segments (x;and x,) are on top of, or

below, each other is given by:
|21 (2) = %,(2)| £ 0.2 % A(x,) and |x,(4) —x,(4)| <02 xA(x,) (5.14)

Hence, a count is performed for each segment to establish how many segments are
above or below it, and this count is denoted as N,.,. The maximum count obtained for
all segments is denoted as Nyeg mar. The score 1s then taken to be:

se(x) = _Mseg (5.15)

Nseg_max

5.4.6. Chorus selection

The above partial scores are then combined in order to obtain a final score S which
will describe the likelihood of a line segment being the chorus. A. Eronen[31]

combined the scores as follows:
S(g) =0.5% sl(g) + 0.5 * sz(g) + sg(g) + 0.5 * 54(5) + 55(5) + 0.5 * s¢(x)
(5.16)

In the case where no groups of threes where found, which means that for each
segment S3 (g) = 0 is true, the segment which has the maximum value S is chosen to
be the chorus segment. Otherwise, the selection is performed among the line segments
that have s3(x) # 0.At this point a search for the exact pin point temporal location of
the chorus might be implemented. Such a search method could be achieved by making
use of image processing techniques such as 2D kernel filters as presented in [31].

However this processing step is omitted to avoid further complication.

73

CHAPTER 6

Implementation

The present chapter describes the experimental part of this work in which the systems
of AFP matching, ACS identification and ACD are implemented, reflecting the
models described in Chapters 3, 4 and 5. Implementation is performed mainly using
the MATLAB programming language with the intension of examining the systems'

performance and accuracy. To do so, each system is handled and examined separately.

6.1. Experimental Setup

6.1.1. AFP matching

With a view to examining an audio-fingerprinting based music matching system we
make use of the MATLAB code provided by D. Ellis in [53]. This implementation is a
close approximation to the landmark-based approach used by Shazam [52] presented
in section 3.3. A music collection is formed selecting random pieces of our own music
collection. A total of 1062 songs were selected representing a wide range of musical
genres. As our implementation does not handle .mp3 formats, each and every song
was converted into a .wav format using the lame decoder [63], which is an open
source tool. To avoid converting each song individually an executable (.exe) file
named convertmp3stowavs was created using MATLAB's compiler, which carries out

the conversion for all files automatically. Another executable file was created in the

74

same way in order to overcome an 'incorrect chunk size information' issue while
reading the data, and was denoted as fixWavs. These songs are then placed at the

system's root directory.

Landmark pairs are formed in a 4-tuples basis corresponding to start-time, start-
frequency, end-frequency and time-difference using the function find landmarks.
These landmarks are then quantized using the function landmark2hash, and the
inverse action is performed using hash2landmark. Songs are integrated into the
system's music database by using the function add tracks, whereby each song (found
in the root directory) is converted into landmarks, which in turn are converted into
hashes and are stored within an 'inverted index' hashtable representing the music
database. Next, given an audio query, a search for a possible match is done throughout
the music database using the function match _query. A successive match is depicted in
Fig. 6.1 below, where the green connected dots are referring to matching landmark
pairs in the two audio recordings. This particular example demonstrates a match of an
audio snippet which is found to be an excerpt of the song 'Slogans' by Bob Marley at
precise 59.904 sec within the song.

Query audio

4000
3000
2000 |

1000 |

4000

3000

2000

1000 £

Figure 6.1: Example of the AFP matching system's output

75

To make this program more interactive a graphical user interface(GUI) was
developed using the ECLIPSE software development environment. The GUI allows a
user to either record a new audio recording with the use of a microphone pressing the
'‘Capture sound from mic...- and 'Stop recording...-buttons (Fig. 6.2), or to load an
already existing audio recording into the system using the 'Open a File...-button (Fig.
6.3). As soon as an audio recording is loaded or captured it is played back to the user.
The user can then either select or record a new audio recording, or proceed in finding
a match for his previous recording. This is done by clicking on the '"Match your clip.'-

button.

| £| FileChooserDemo = 5l

l -Qp_g.nafillg__.'_._; H Capture sound fram mic....... H Stop fecording H Match your elip ‘

|2 FileChooserDemo [ESRIER 5
| Open aFlle H Capture sound from-mic.,, H Stop recarding....... H Mateh your glip |

Started recarding...

|ﬁ| FileChooserDemo E@Iﬂ
OpenakFile... | ‘ Capture sound from mic.... ‘ | Stop racording:. ‘ | Match your clip. ‘

Started recording..
Stopped recording.

Figure 6.2: Recording a new audio recording using the GUI

76

r@] Open ﬁ
Laokln: rm sech "‘ E

D 06 - Todd Terry All Stars Feat Kenny Dope, Dj Sneak, Terry Hunter & Tara McDonald
D 08-"Yves Larock - Rise Up (Harry 'Choo Choo' Romero Remix).wav

[y 21 - Delerium Feat. Sarah Mclachian - Silence 2004 wav

[} 41 - 19 Slagans wav

D alpha blondy - jah houphoustway

D Ier-'il

D berny benassi- illusion.wav

o] [»

File Mame: [41-13 Slogans.wav | I

Files of Type: |AII Files |v|

Iﬁ FileChooserDemo = | =

EEJ_;_iena-lz'i-Ie._.E || Capture sound from mic...... || Stop recording:. || Mateh yourclip. |

Opening: 41 - 19 Slogans wav.

Figure 6.3: Opening an existing audio recording using the GUI

Clicking on the 'Match your clip."-button is equivalent to running the MATLAB script
described earlier. To link the ECLIPSE and MATLAB environments we make use of
an open source tool called JAMAL (JAvaMAtlab Linking). This tool is based on a
client-server approach which makes it possible to call MATLAB functions from Java
programs without reading and writing to a temporary file [64]. In doing so, the results

of the MATLAB function are presented in the GUI's text box, as seen in Fig. 6.4.

s r
| & FileChooserDemo =L ﬁ

| OpenaFile... || Capture sound from mic.... || Stop recording o H Mateh your clip. |

Qpening: 41 - 19 Slogans.way.
Match: 41 - 19 Slogans at 59,504 sec

Figure 6.4: Matching a clip using the GUI

77

6.1.2. ACS identification

The ACS identification system was implemented following the steps described in
Chapter 4. A chromagram extraction function, as well as a beat-location extraction, an
averaging function of these two and a similarity measure function were created using
MATLAB. These functions where denoted as chromagramExtr, beatLocationEXxtr,
beatSynchChromReprand search4CSinDB respectively. The similarity function has
the ability to handle three different approaches, namely the one described by Ellis in
[14], its upgrade in [13] and a combination of the latter case usingmultiple tempi.
Hence, the function is given a parameter which dictates which approach will be

followed.

It should be pointed out here that currently there exists no standard music collection
available which is used for evaluation purposes. A close approximation to an 'all-
modulation-including' dataset would be the one used during the MIREX contest [2].
This data evaluation set, however, is being kept secret in order to prevent over-tuning
of approaches. Consequently as an evaluation dataset we use the so-called 'covers80'
cover song dataset [65] which is a musical collection consisting of 80 different cover-
sets, each having two different renditions of each song. This gives a total of 160 music

tracks covering a wide range of different modulation in several musical features.

Next, two experiments are carried out. The first creates two lists of 15 songs. The first
list includes the first version of 15 different songs, whilst the second contains their
alternate versions. A search is performed for each song in the first list searching for its
cover version in the second. This results in a total of 15 queries. A correct match of
the system is defined as the case whereby the song that is outputted as the one having
the highest similarity happens also to be the cover version of the particular query.
The number of correct matches amongst the 15 queries is then stored. This experiment
is conducted 250 times and the mean of correct matches is outputted as an evaluation
measure. The second experiment takes into account all 160 songs which are also
divided into two lists of 80 songs, each containing one version of each pair of songs.
Next, for each song in the first list a search is performed within the second to find its

cover. The system's rank defines the tolerance of what is considered to be a

78

correct match. If rank=N, then if for a query the correct cover is found to be amongst
the first NV results, it is considered to be a successful match. In addition the system's
mean reciprocal rank (MRR) is calculated. MRR is simply the average of the ranks

corresponding to the correct match. This measure can be given by the equation below:

MRR = %z‘? : (7.1)

=1 rank;

6.1.3. ACD

With a view to analyzing the song's structure an automatic audio summary
(thumbnail) extraction system has been implemented, following the steps described in
Chapter 5. Since for popular music this usually corresponds in identifying the chorus
of a song, the system is denoted as anautomatic chorus detection system respectively.
For some songs, though, it is not possible to find the chorus, as a song might not have
one, or might have one which is not clearly standing out to be identified. In addition a
chorus might not be anaccurate representation for the song as it might be too short or
not clearly audible. In such cases, the verse or even the basic short music theme often
identified in an intro can be more informative than the chorus. For the above reasons
this system is thought of providing the most representative part of the song as a person
would pick it out, trying to put more weight on selecting the chorus part if such one

exists.

For the implementation of the system described above, three basic functions were
created: createSSM, enhanceSSM, and lineSelection. Function createSSMgenerates
the self-similarity matrix of the song, where function enhanceSSMenhances it and lists
all the line segments found. The line segments are then passed to
function/ineSelection where they are examined in order to select the segment

corresponding to the chorus.

Further tuning was performed to the system in order to retrieve not one, but two
possible chorus candidates. The second chorus candidate was chosen to correspond to
the line segment with the next maximum score value which also has no temporal

overlap with the first line segment. If such a condition was not met for any of the line

79

segments, then it was omitted and the segments with the second largest value was
selected. We believe that this condition improved the system's performance, since if
the correct part was not selected in the first part, usually it was selected in the
second.Moreover, when selecting the two chorus candidates we increased the
segments duration by 2 seconds by moving the end-point of the segment. This was
performed following the observation that the chorus' section identified cut off
approximately 2 seconds from the end. This effect could have been caused by

smoothing functions used in the algorithm.

It was observed that by using the ACD system described in this study in order to find
the most representative part within a song resulted to acceptable results.For songs
with a straight-forward music structure, such as clearly distinguishable intro, verse,
chorus, bridge and outro sections, the system could trace the chorus section in most of
the cases. If no chorus was present in the song, then usually the verse or the basic tune
of the song is returned as the most representative part.Only on very few occasionsdid
the system select a poor part of the song as being most representative. In the case
where a chorus was present in the song but the system outputted another part of being
more representative, we observed that the system's choice is considered reasonable, as
in many of those cases the catchiest part of the song is the verse or the melody in the

intro or bridge,rather than the chorus itself.

Due to all the above considerations and the fact that the investigation of a music
structure analysis system is of a preliminary nature, no exhaustive evaluation of the
described system was performed, however some examples and comments are

presented in section 6.2.3.

6.2. Evaluation Results

6.2.1. AFP matching

In order to evaluate the AFP matching system's performance we randomly chose 50

music pieces out of the music collection. For each piece three segments of different

80

duration were extracted. The segments duration were 5, 10 and 15 seconds
respectively. Each of these segments where used as queries in the AFP matching
system in order to retrieve their origin music piece. Without the addition of any noise,
even for the 5 seconds segments we achieve a 100% accuracy of music matching.
Next, several types of noises were added to the segments in order to evaluate the
system's robustness to noise. The noise types where selected from a noise database
called NOISEX [66]. The noise types that were used are: speech babble, destroyer
engine room noise, factory floor noise 1, car interior noise (Volvo), white noise, pink
noise, F-16 cockpit noise and leopard (tank) noise. These noises were added to each
and every music segment achieving a signal-to-noise ratio (SNR) equal to -15 dB, -12
dB, -9dB, -6 dB, -3 dB, 0dB, 3 dB, 6 dB, 9 dB, 12 dB and 15 dB respectively. This
process is implemented in the function denoted as addNoise. It is understood that in
order to add noise of a specific SNR amount to a signal we scale the signal

appropriately. The equation providing the SNR value is given below:

2
O.;
SNR = 10log,o(5%) (6.1)
ONoise
whereaszl-g corresponds to the variance of the initial signal and ¢7,;, to the variance

of the noise signal. Rearranging the above equation results in:

SNR

Gszig = O_I\zloise107 (6-2)

Consequently, our scaled signal is given by:

oise X102 i (t) (6.3)

. g i
scalsig(t) = N‘”S;
sig

Finally the output signal with the required amount of SNR is given by:

noisesig(t) = scalsig(t) + Noise(t) (6.4)

The possibility of correct recognition rate of the pre-described evaluation are shown

in table 6.1 below.

81

SNR level (dB)

-15% -12 -9 -6 -3 1] 3 il 9 12 15
NOISE
Type Segment's duration
5 sec 0 0,04 0,12 0,24 0,38 0,5 0,66 0,82 0,94 1 1
Babble 10 sec 0,02 0,08 0,12 0,22 0,48 0,74 0,86 1 1 1 1
15 sec 0,02 0,14 0,18 0,42 0,72 0,9 0,96 0,98 1 1 1
Ssec 0 0,02 0,08 0,18 0,36 0,44 0,54 0,68 0,7 0,34 0,94
Destroyerengine 10 sec O 0,08 0,12 0,32 0,66 0,76 0.9 0,54 1 1 1
15 5ec 0,04 0,1 0,22 0,52 0,7 0,86 0,93 0,95 1 1 1
5 sec 0 0 0,06 0,04 0,18 0,38 0,56 0,66 0,76 0,84 0,88
Factory1 10 sec 0 o 0,04 0,14 0,28 0,56 0,76 0,9 0,98 1 1
15 sec 0 1] 0,06 0,18 0,42 0,68 0,92 0,94 1 1 1
5sec 0,94 0,98 0,98 0,98 0,98 0,98 0,98 0,98 1 1 1
Volvo 10 sec 1 i 1 1 i 1 1 1 1 1 1
15 sec 1 ¥ 1 1 ¥ 1 1 1 1 1 1
5sec 0 0 0,02 0,06 0,16 0,32 0,46 0,62 0,68 0,78 0,82
White 10 sec o 1] 0,06 0,14 0,3 0.5 0,64 0,82 0,94 1 1
15 sec 0 0,02 0,1 0,22 0,4 0,6 0,82 0,96 0,96 1 1
hsec 0 0,02 0,04 0,08 0,24 0.4 0,62 0,76 0,78 0.8 0,54
Pink 10 sec 0,02 0,04 0,06 0,18 0,46 0,6 0,84 0,92 0,94 1 1
15 sec 0,02 0,04 0,12 0.3 0,54 0,76 0.9 0,96 0,96 1 1
5 sec 0 0,02 0,1 0,12 0,26 0,34 0,64 0,7 0,88 0,92 0,94
F16 10 sec 0 0,06 0,14 0,24 0,48 0,60 0,84 0,92 1 1 1
15 sec 0,02 0,08 0,2 0,44 0,62 0,82 0,96 1 1 1 1
Lsec 0,66 0,78 0,84 0,94 0,98 0,98 1 1 1 1 1
leopard 10 sec 0.9 0,96 0,56 0,98 I 1 1 1 1 1 1
15 sec 0,96 0,98 1 1 ¥ 1 1 1 1 1 1

Table 6.1: AFP matching evaluation results

82

As can be observed from the experimental results we may conclude that the system
performs satisfactorily, even in the presence of noise. In particular, in cases where
either no noise or noise with an amount of SNR equal to 12 or 15 dB is added in
segments of 10 seconds or longer, the accuracy approximates 100%. In general it may
be argued that the higher the degree of noise, the lower the system's accuracy in
finding the correct origin song, with the exceptions of car interior (Volvo) and leopard
(tank) noises which have no effect on accuracy results. Also, as expected, longer-time
segments help counterbalance the impact of noise in respect to accuracy. This can be
seen in the graph below, indicating how longer-time segments improve performance
in accuracy by using the example of babble noise which is closer to 'real-life'

situations.

Recognition rate for segments with added noise
1 ‘ T ‘ dded noi |

L — -
0.9 V

/ |

0.7} i

Recognition rate

0.4+ / 5 sec segments | -
/ 10 sec segments
0.3 / 15 sec segments |

0.2 / i

0.1+ 8

SNR (dB)

Figure 6.5: Recognition rate for segments of 5, 10 and 15 seconds with additive babble-noise

83

6.2.2. ACS identification

In section 6.1.2 we described two experiments performed in order to evaluate the ACS
identification system's performance. The results of those experiments are shown in

table 6.2 below.

1 TEMPO 2TEMPO
120 BPM |240 BPM
15 cover sets |rank=1 8,32/15|7,88/15 9,936/ 15
rank=1 40/ 80 35/80 42 /80
80 rank=3 43 /80 39/80 51/80
covers ets rank=5 44 /80 | 45/ 80 55/ 80
rank=10 48 / 80 48 / 80 59 /80

Table 6.2: Results of ACS identification system

Examining the evaluation results we draw the conclusion that the system described
throughout this work, while not perfect, has an acceptable performance. This in turn
implies that the use of beat-synchronous chroma features is a correct method of
approaching the implementation of an ACS identification system. Moreover,
weobserve that better results are obtained when using chroma features averaged by
beat times extracted from a beat-tracker biased around 120 BPM than from one biased
around 240 BPM. Using the information of both tempi, though, results in a slight

improvement of the system's performance.

For the first experiment, where cover songs are searched within a music collection of
15 tracks, an average of 9.9 correct matches is achieved. This number of correct
matches greatlyexceeds the case of random matching, since guessing the right cover
song would give an average of only 1 correct match. This verifies the above

implication.

84

For the second experimentthe system resulted in a 52.5% accuracy considering only
the first rank. We also examined the accuracy for different ranks. We observe that by
considering more ranks as correct results we get a higher performance. As music
similarity is difficult to measure in some examples of cover songs due to their radical
modifications, the correct cover may not be selected as the most similar song
(rank=1).Considering more ranks as correct results may result to higher accuracy. The
mean reciprocal rank of the system tested on the music collection of 80 cover sets is
equal to: MRR=0.6070, which indicates the rank of the correct match based on the

ordered returns of similarity.

However, sometimes cover versions are simply too different to be considered similar
based on the features described in this work. As the cover80 dataset covers a wide
range of modulations between cover versions, sometimes to a radical degree, we
believe that the results provided by the system tested on this dataset may be

considered as satisfactory.

6.2.3. ACD

In this section a rough evaluation of the ACD system is given based on a subset of the
covers80 music dataset (125 out of 180 songs), containing the music tracks which
were considered as easy to comment. Extracted chorus parts were divided into 3
categories: a good match, a medium match and a low match (Table 6.3).

Consequently 6 query-examples are given into the system and its outputis presented.

Good match (£5 sec) (in Medium match (e.g. half- Low match (e.g. very short
case of no chorus in song, the chorus found / or verse snippet that doesn’t make
verse = good match) identified instead of chorus) | sense,basic tune or solo part)
85 cases 28 cases 12 cases

Table 6. 3: rough evaluation results

85

The example query-songs presented in this section are listed in Table 6.3.

Mame aof artist Song'stitle Genre Duration
Steve Miller Band |&bracadabra popular music 3:42
Aerosmith | don't want to miss athing|slow rock music 457
Fun dmc It's tricky hip hop music 3:03
Beatles Let it be pop/roch music 3:50
The Carrs Little Wings celtik/pop/falk 5:05
Depeche Mode Meverlet me down again |popular music 448

Table 6.4: Example songs tested for the ACD system

Each and every song of the above table-list was given to our ACD system as input and

2 segments were selected as the most probable chorus representations. Consequently

we compare the times outputted by the system with the chorus start and end times

extracted by manually segmenting each song.

Abracadabra by Steve Miller Band:

This particular song belongs to the popular dance
music genre. It has a straight-forward structure with
notable chorus sections repeating several times. The
verses are also considered similar to each other,
making the selection of the chorus more
complicated. The song’s structure is displayed in

Table 6.4.

The song is then represented by a 12x475 beat-
synchronous chromagram which has one single
chroma-vector for each beat of the song. The two
outputted chorus start and end times extracted for the

given song by our ACD systems are:

Abracadabra times {(mm:ss)
Intro 00:00 - 0014
wearse 1 00:15 - 00:23
werse 2 00:259 - 00:43
Chorus1 00:43 - 00,57
warse 3 00:38 - 01011
Chorus 2 01:12 - 01:26
Warse 4 01:27-01:41
warse 5 01:42 - 01:56
Chorus 3 01:56 - 02:10
Werse b 02:11-02:29
Bridge 02:30 - 0300
Charus/Outra 03:01-0%:42

Table 6. 5: Song parts of “Abracadabra”
by Steve Miller Band

86

Chorus 1: 43.2 sec—62.4sec Chorus 2: 17.4 sec — 36 sec

It is observed that the first chorus start and end times extracted by the system includes
the complete first chorus of the song. The exact start and end times extracted from the
system differ from the manually selected chorus times by only a few seconds. The
second chorus part, as it is selected to not overlap with the first chorus-times
represents a part of the song which is found between verse 1 and verse 2, a part which
also repeats in the song.Having correctly identified a chorus section with the first

extracted possible chorus-part times is considered a satisfactory result.

I don’t want to miss a thing by Aerosmith:

This song is found under the genre slow rock or blues rock music. It has a well-
defined chorus which repeats three times throughout the song. The song is then
represented by a 12x596 beat-synchronous chromagram. The manual segmentation of

the song is depicted in Table 6.5.

| don't want to miss a thing [times {mm:ss)
Intro Q0:00 - 00:30
The two outputted chorus parts are: y— 003l 0L 1L
‘ Chorus1 0112 -01:41
Chorus 1: 73.4 sec — 100.1 sec E— L4207 15
Chorus 2 02:15-02:39
Chorus 2: 131.9 sec — 157.2 sec Bridge 02.40-03.14
Chorus 3 03:15-03:54
Cutro 0355 - 0457

Table 6. 6: Song parts of “I don’t want to miss a thing” by
Aerosmith

For this example song, both extracted possible chorus parts correspond to two chorus
repetitions within the song (‘Chorus 1’ and ‘Chorus 2’). The start and end times
extracted differ only for a couple of seconds. Having identified not one, but two

choruses within the song is considered as a highly satisfactory result.

87

1t’s tricky by Run-D.M.C.:

This song belongs to the category of hip-hop/rap |It's tricky times {mm:ss)
music. It has many repetitions including |!trO 00:00 - 06:03
)) Chorus 1 00:10 - 00:24
choruses, verses as well as short-time melodic or [, .27 0075 - 00: 59
rhythmic patterns. The song has four repetitions |Chorus2 00:40 - 00:34
. .. . Werse 2 00:35-01:09

of the chorus which are distinguishable through

Chorus 3 01:09-01:24
the fact that these parts are more “energetic”. ||nterlude 01:75 - 01: 38
The musical form of the song is depicted in |¥&rse3 01:33 - 02:09
Table 6.6. Th . 4 b Chorus 4 02:10-02:24
able 6.6. e song is represente Y 2 [oorea 07:24 - 02:39
12x391beat-synchronous chromagram. Qutro 02:40 - 03:03

Table 6. 7: Song parts of “It’s tricky” by Run
D.M.C.

The outputted chorus parts from our ACD system are:
Chorus 1: 68.5 sec — 84 sec
Chorus 2: 18.7 sec — 30.9 sec

It is observed that the first chorus part corresponds to the ‘Chorus 3’ part of the song
whereas the second outputted chorus corresponds to a segment between the first
chorus and the first verse. Having correctly identified a chorus section with the first

extracted possible chorus start and end times is considered a satisfactory result.

Let it be by The Beatles.:

This particular song belongs to the genre of popular rock music. It has three choruses
that stand out and one more chorus repeating at the end of the song followed by the
outro. Moreover it has three verses that are also similar with each other and a bridge
part which contains a solo. The times of each part are shown in the Table 6.7 below.

The song is then converted into a 12x534 beat-synchronous chromagram.

88

Let it be times {mm:ss)

[ntro o0:0o-00m1z2
The chorus parts extracted from our |wersel 00:13 - 00:37
ACD system are: Chorus 1 00:38 - 00:51

Werse 2 00:52 -01:17

Ch 2 01:18 -01:44
Chorus 1: 30.4 sec — 50.8 sec _Drus

Bridge [+=olo) 01:45-02:25

Chorus 3 02:26 - 02:40
Chorus 2: 14.2 sec — 26 sec

“Werse 3 0z:41 -03;08

Chaorus/outro 03:09 - 03:47

Table 6. 8:Song parts of “Let it be” by The Beatles

The first extracted chorus surrounds the ‘Chorus 1° part of the manual segmentation.
The reason for including 8 seconds from ‘Verse 1’ as well in the representation is due

to the similarity of the verses. We conclude that the system provided reasonable

results for the particular example.

Little Wings byTheCorrs:

This song belongs to the Celtic/pop/rock music. It is an example of a song which does

not contain a chorus part. Instead it [51e win a times (mm:ss)
has two different instrumental parts |intro 00:00 - 00:33
with two identical verses which repeat Werse 1 00:34 - 01:05
WEerse 2 01:06 - 01:38
themselves throughout the song. The [\;ctrumeantal 1 01:39 - 02:10
times of the different parts are [“ersel 0211 - 04:42
. werse 2 02:43 - 03115
presented in the Table 6.8. It was
Instrumental 2 03:16 - 03:49
considered a challenge whether the |instrumental 1 02:50 - 05:05

system would pick the instrumental

part as the most representative for the

song or if it would select the identical verses. The song is consequently represented by

Table 6. 9: Song parts of “Little Wings” by The Corrs

a 12x717 beat-synchronous chromagram matrix.

The outputted chorus parts from our ACD system given the particular song are:

Chorus 1: 102.2 sec — 129.2 sec

Chorus 2:77.1 sec — 88.7 sec

&9

Interestingly the first extracted chorus part corresponds to the instrumental part within
the song. This is considered as reasonable as for the particular song the instrumental

part would be characterized as the most representative one.

Never let me down again by Depeche Mode:

This song is considered to belong in the popular music genre. It is a song with a not
so straight-forward song structure as it has several interlude-parts with the same
melodic background as well as a whole new section in the end of the song which
consists of loud dynamics, and repeatable chanting (‘B section’), followed by the

outro. The complete song segmentation can be seen in Table 6.9. Next the song is

converted into a 12x1017 beat- [yeyerlet me down [times (mm:ss)

synchronous chromagram matrix. Intro no:00 - 00:31
Werse 1 00:32-01:04

The outputted chorus parts from our ACD |Interlude 01:05 - 01:17
. h ricular sone as input Chorus 1 01:18-01:35

system given the particu g p Interlude 01:36 - 01:44
are: Werse 2 01:45-02:21
Interlude 02:22 -02:29

Chorus 1:78.4 sec — 87.5 sec Chorus 2 02:30 - 03:06
Bridge 03:07-03:24

Chorus 2:87.6 sec — 96.9 sec B section/outro 03:25 - 04:48

Table 6.10: Table 6. 11: Song parts of “Never let me down
again” by Depeche Mode

For this example, we observe that both extracted chorus parts correspond to the first
repetition of the chorus within the song, where one represents the first half and the
other the second half. Although these results were not considered as optimal, it was
thought that the results were acceptable on the grounds that the summing of the two

parts result in the complete chorus.

90

CHAPTER 7

Conclusion and Future Work

The aim of the present study was to examine whether it is possible for a system to be
able to recognize cover versions of a given query-song by making use of
automatically extracted audio features. Such work might be of relevance on the
grounds that content-based search techniques are of particular interest for handling
large music databases as their main purpose is to make music or information about
music easier to find. Moreover, cover song identification may supply knowledge to
improve measurement and modeling of musical similarity which in turn may be used
for organizing large music collections. Managing musical rights and licenses can also
benefit by making use of such works since similar techniques could facilitate
identification of unauthorized moneymaking renditions of a particular song.
Extending the idea of cover song music similarity systems to the degree of a QBH-
ones which share by and large the same principles, whereby music similarity is
performed between reference songs within a database and a user's humming, might
have benefits from a user's point of view, as someone facing a large database
(YouTube, Amazon, Google) is given a choice to query this database using audio as
an input. Such queries would have a wide range of applications as for example in a
music pre-listening station found in a music store or in portable devices such as
smartphones, portable music players, or even in car music stereo devices.
Consequently, examining ACS identification is considered to be a good starting point
for music similarity research, providing an analysis of which features are considered

relevant for quantitative musical similaritymeasurement.

Since ACS identification systems follow a more general QBE framework, a basic
introduction to QBE systems was performed by presenting two AFP matching

methods, one of which was implemented and rapidly provided very satisfactory

91

results, even in the presence of noise. Real-world example applications of such
systems are Shazam and Musiwave. However, such systems are 'fragile' to musical
changes because they are based on an exact matching scheme and as a result they are

unable to identify altered versions of a song.

Cover songs are known to differ in several musical dimensions, as for example
instrumentation, tempo and key transposition. The only feature that is more or less
retained between two different versions of a particular song is melody and/or
harmony. Therefore to accommodate these characteristics use was made of beat-
synchronous chroma features. Chroma features were chosen in order to overcome
variability in instrumentation. Beat averaging of the chroma features by making use of
beats locations derived from the use of a beat tracker dealt with variability in tempo.
Matching was then performed by cross-correlating the entire representations by taking

into account all possible key transpositions.

The above approach has demonstrated that the use of beat-synchronous chroma
features contributes to the task of identifying cover versions. This conclusion derives
from the experimental results provided in the present work, whereby it is shown that
the use of beat-synchronous chroma features grants better results in identifying the
correct cover version than when songs are selected randomly within a database.
However, results are farfrom perfect due to the abstract nature of the similarity
defined for this task. Sometimes cover versions are simply too different to be
considered similar based on the above mentioned features. This in turn creates
demand for multi-level musical descriptors which take into account more information
about a song. One example of such an enhancement process could be the
consideration of the musical structure of a particular title within its representation, as

for example a summarization of its most representative parts.

To this end it was found useful to include a presentation of a music structure analysis
algorithm which identifies the most repeated part of a song, usually the chorus. For
songs which are well-structured, meaning that a clear intro, verse, chorus, bridge and
outro are identifiable, the system was quite accurate in identifying the song's chorus.
However, for other songs with a less straight-forward structure, which for instance
might not even have a chorus, the system's performance was not so precise. Having

said this it can be concluded that trying to achieve structure invariance by this means

92

is prone to errors for mainly two reasons: firstly because automatic structure analysis
systems are not totally accurate, and secondly because the part of a song which might
be the most representative and identifiable might not be included in the most repeated
part, but in another part of the song such as the intro, outro, solo or other. As a result
the link of these two systems was not further examined.It would, however, be useful if

this topic becomes a subject for further research.

Cover song identification is still an open research topic which needs improvement.
Future work might for example focus on examining the impact of additional musical
features, such as timbre features in the computation of musical similarity granting a
higher similarity measurement to a cover with the same timbre than to a cover with a
different timbre. However, such an addition of extra features might be misleading.
Another observation in current ACS identification systems is that in order to find a
potential cover version of a query song a comparison between each and every song's
representation in the music collection and the query's representation must be made.
This can amount to a large number of comparisons for a large music collection,
decreasing such a system's speed of interaction. Work could be focused on finding a
collection of musical motifs which would cover the range of a large music database
making these motifs suitable for indexing and therefore allowing for faster search
methods. Moreover, excluding karaoke versions future work may concern cover song
identification systems furthered by automatic lyrics extraction systems. Identified
lyrics might then serve to ease the process of indexing the songs within a database and
to speed up search methods. Translation of these lyrics may help finding translated
cover versions as well. In addition, for remixed or other cover versions which make
short quotations of other musical pieces, already existing algorithms may be altered in

order to cater for such cases.

Finally, it could be argued that what had begun as a technologically-based trend in the

musical sphere has now developed into a serious scientific endeavor.

93

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

B. Pardo (2006). Finding structure in audio for music information retrieval.
IEEFE Signal Processing Magazine vol. 23, no. 3, pp. 126-132.

J. S. Downie, M, Bay, A. F. Ehmann and M. C. Jones (2008). Audio cover
song identification MIREX 2006-2007 results and analyses. The International
Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL), pp.
468-473

MIREX homepage, available at:http://www.music-
ir.org/mirex/wiki/2011:Main_Page

J. Serra, E. Gomez, P. Herrera (2009). Audio cover song identification and
similarity. Background, approaches, evaluation and beyond. Spirngerat press.
M. Casey, R. C. Veltkamp, M. Goto, M. Leman, C. Rhodes and M.. Slaney
(2008). Content-based music information retrieval: current directions and
future challenges. Proceedings of the IEEE 96(4), 668-696.

A. Markaki (2008). Music genre classification using temporal and spectral
features. Diploma dissertation, Technical university of Crete.

M. Marolt (2006). A mid-level melody-based representation for calculating
audio similarity. Int. Symp. on Music Information Retrieval (SMIR), pp. 280-
285.

M. Marolt (2008). A mid-level representation for melody-based retrieval in
audio collections. IEEE Trans. on Multimedia 10(8), 1617-1625.

C. Sailer and K. Dressler (2006). Finding cover songs by melodic similarity.
MIREX extended abstract.

W. H. Tsai, H. M. Yu and H.M. Wang (2005). A query-by-example technique
for retrieving cover versions of popular songs with similar melodies. Int.
Symp. on Music Information Retrieval (ISMIR), pp. 183-190.

W. H. Tsai, H. M. Yu and H.M. Wang (2008). Using the similarity of main
melodies to identify cover versions of popular songs for music document

retrieval. Journal of Information Science and Engineering 24(6), 1669-1687.
A. Egorov and G. Linetsky (2008).Cover song identification with IF-FO pitch
class profiles. MIREX extended abstracts.

D. P. W. Ellis and C. Cotton (2007). The 2007 labrosa cover song detection
system. MIREX extended abstracts.

D. P. W. Ellis and G. Poliner (2007). Identifying ‘cover songs’ with

chromafeatures and dynamic programming beat tracking. In Proc. Int. Conf.

on Acoustics, Speech & Sig. Proc. I[CASSP-07, pages 1V-1429-1432, Hawai’i.

94

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

E. Gomez and P. Herrera (2006). The song remains the same: identifying
versions of the same song using tonal descriptors. Int. Symp. on Music
Information Retrieval (ISMIR), pp. 180-185.

E. Gomez, B. Ong and P. Herrera (2006). Automatic tonal analysis from music
summaries for version identification. Conv. of the Audio Engineering Society
(AES), paper no. 6902.

J. H. Jensen, M. G. Christensen, D.P.W. Ellis and S. H. Jensen (2008). A
tempo-insensitive distance measure for cover song identification based on
chroma features. /EEE Int. Conf. on Acoustics, Speech and Singal Processing
(ICASSP), pp. 2209-2212.

J. H. Jensen, M. G. Christensen and S. H. Jensen (2008). A chroma-based
tempo-insensitive distance measure for cover song identification using the 2D
autocorrelation. MIREX extended abstract.

S. Kim and S. Narayanan (2008). Dynamic chroma feature vectors with
applications to cover song identification./EEE Workshop on Multimedia
Signal Processing (MMSP), pp. 984-987.

S. Kim, E. Unal and S. Narayanan (2008). Fingerprint extraction for classical
music cover song identification. /EEE Int. Conf. on Multimedia and Expo
(ICME), pp. 1261-1264.

Y.E. Kim and D. Perelstein (2007). MIREX-2007: audio cover song detection
using chroma features and hidden markov model. MIREX extended abstract.

F. Kurth and M. Miiller (2008). Efficient index-based audio matching. /EEE
Trans. on Audio, Speech, and Language Processing 16(2), 382-395.

M. Miiller, F. Kurth and M. Clausen (2005). Audio matching via chroma-
based statistical features. Int. Symp. on Music Information Retrieval (ISMIR),
pp. 288-295.

H. Nagano, K. Kashino and H. Murase (2002). Fast music retrieval using
polyphonic binary feature vectors. /[EEE Int. Conf. on Multimedia and Expo
(ICME), vol. 1, pp. 101-104.

J. Serra, X. Serra and R. G. Andzejak (2009). Cross recurrence quantification
for cover song identification. New Journal of Physics 11, art. 093017.

J. Serra, E. Gomez, P. Herrera and X. Serra (2008). Chroma binary similarity
and local alignment applied to cover song identification. /EEE Trans. on
Audio, Speech, and Language Processing 16(6), 1138-1152.

J. P. Bello (2007). Audio-based cover song retrieval using approximate chord
sequences: testing shifts, gaps, swaps and beats. Int. Symp. on Music
Information Retrieval (ISMIR), pp. 239-244.

K. Lee (2006). Identifying cover songs from audio using harmonic
representation. MIREX extended abstract.

D. P. W. Ellis (2007). Beat tracking by dynamic programming. J. New Music

Research. Special Issue on Tempo and Beat Extraction.

95

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. Goto (2003). A chorus-section detecting method for musical audio signals.
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICCASP), pp V-437-440.

A. Eronen (2007). Chorus detection with combined use of mfcc and chroma
features and image processing filters. In Proc. Of the 10" Int. Conference on
Digital Audio Effects (DAFx-07), Bordeux, France.

M. A. Bartsch and G. H. Wakefield (2001). To catch a chorus: Using chroma-
based representations for audio thumbnailing. In Proc. IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, Mohonk, New
York.

M. A. Bartsch and G. H. Wakefield (2005). Audio thumbnailing of popular
music using chroma-based representations. /[EEE Transaction on multimedia,
vol.7, no. 1, pp.96-104.

B. S. Ong (2007). Structural analysis and segmentation of music signals. PhD
thesis, IniversitatPompeuFabra, Barcelona, Spain. Available at:
http://mtg.upf.edu/node/508

B. S. Ong, E. Gomez and S. Streich (2006). Automatic extraction of musical
structure using pitch class distribution features. In Proceedings of the
Workshop in Learning the Semantics of Audio Signals (LSAS), Athens,
Greece, pp. 53-65.

J. Paulus, M. Miiller and A. Klapuri (2010). Audio-based music structure
analysis. Proc. of the 1lth International Society for Music Information
Retrieval Conference (ISMIR), Utrecht, Netherlands, pp. 625-636.

S. J. Orfanidis (1996). Introduction to signal processing. Pearson Education
Inc., available at: http://www.ece.rutgers.edu/~orfanidi/intro2sp/orfanidis-

12sp.pdf
S. R. Taghizadeh (2000). Digital signal processing - part 3: Discrete-time

signals and systems case studies. School of communications technology and

mathematical sciences. Available at:
http://www.abiscus.com/resources/Signals/matlabsignal.pdf

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein (2001). Introduction to

Algorithms (2™ed.). MIT Press and McGraw-Hill, P.323.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani (2006). Algorithms.

McGraw-Hill, p.169, available at:

http://www.cs.berkeley.edu/~vazirani/algorithms.html

T. Jehan (2005). Creating music by listening. PhD thesis, MIT Media Lab,
Cambridge, MA.
A. S. Association (1960). American standard acoustical terminology.

Definition 12.9. timbre.
G. Tzanetakis (2002). Manipulation, analysis and retrieval systems for audio

signals. PhD thesis, Princeton University.

96

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

B. Logan (2000). Mel frequency cepstral coefficients for music modeling,
Proc. Int. Symp. on Music Information Retrieval (ISMIR).

L. R. Rabiner and B. H. Juang (1993). Fundamentals of speech recognition,
Prentice Hall, New Jersey.

R. Shepard (1964). Circularity in judgments of relative pitch. J. Acoust. Soc.
Am., 36, pp. 2346-2353.
M. Y. Kao, C. B. Yang and S. H. Shiau (2009). Tempo and beat tracking for

audio signals with music genre classification, Int. Journal of Intelligent
Information and Database Systems (IJIIDS), 3(3): 275-290

M. F. McKinney and D. Moelants (2004). Extraccting the perceptual tempo
from music, ISMIR, 5th International Conf. on Music Information Retrieval,
Barcelona, Spain

M. F. McKinney and D. Moelants (2004). Deviations from the resonance
theory of tempo induction. Conference on Interdisciplinary Musicology.
M. F. McKinney and D. Moelants (2004). Ambiguity in tempo perception:

What draws listeners to different metrical levels? Music Perception, vol. 24
no. 2 pp. 155-166.

J. Haitsma and A. Kalker (2002). A highly robust audio fingerprinting system,
in Proc. 3rd Int. Conf. Music Retrieval (ISMIR), Paris.

A. Wang (2003). An industrial strength audio search algorithm, in Proc. 4th
Int. Conf. Music Retrieval (ISMIR), Baltimore, MD.

D. Ellis (2009). Robust landmark-based audio fingerprinting, web resource,
available at: http://labrosa.ee.columbia.edu/matlab/fingerprint

G. H. Wakefield (1999). Mathematical representation of joint time-chroma
distributions. Int. Symp. on Opt. Sci., Eng., and Instr.,SPIE'99, Denver
Colorado.

T. Fujishima (1999). Realtime chord recognition of musical sound: A system
using common lisp music. In Proc. ICMC, pages 464-467, Beijing.

E. Gomez (2006). Tonal description of music audio signals. PhD thesis,
UniversitatPompeuFabra, Barcelona, Spain. Available at:
http://mtg.upf.edu/node/472

T. Abe and M. Honda (2006). Sinusoidal model based on instantaneous
frequency attractors. I[EEE Tr. Audio, Speech and Lang. Proc., 14(4): 1292-
1300.

F. J. Charpentier (1986). Pitch detection using the short-term phase spectrum.
In Proc. ICASSP-86, pages 113-116, Tokyo.

97

[59]

[60]

[61]
[62]

[63]
[64]

[65]

[66]

M. F. McKinney, D. Moelants, M. Davies and A. Klapuri (2007). Evaluation
of audio beat tracking and music tempo extraction algorithms. Journal of New
Music Research.

J. P. Bello, L. Daudet, S. Abadia, C. Duxbury, M. Davies and M. B. Sandler
(2005). A tutorial on onset detection in music signals, /EEE Transactions on
Speech and Audio Processing, Vol. 13, Nr. 5, pp.1035-1047

J. Laroche (2003). Efficient tempo and beat tracking in audio recordings. J.
Audio Eng. Soc., 51(4): p. 226-233.

N. Otsu (1979). A threshold selection method from gray-level histograms.
IEEFE Trans. Syst., ManmCybern, vol. SMC-9, no.1, pp. 62-66

The lame project. Download available at: http://lame.sourceforge.net/

M. Khadkevich (2010). JAMAL Manual, available at:
http://jamal.sourceforge.net/documentation.shtml .

D. P. W. Ellis (2007). The “covers80” cover song data set. Web resource,
available: http://labrosa.ee.columbia.edu/projects/coversongs/covers80/ .
NOISEX-92. Download available at:

http://spib.rice.edu/spib/select noise.html

