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Abstract 
A remarkable interest around spatial navigation motivated research investigating under which 

circumstances spatial navigation is optimal, often in hazardous environments such as 

navigating a building on fire. The relationship between gender and spatial abilities and how 

spatial performance is affected by gender in spatial tasks has been extensively explored. 

Numerous studies have been carried out in Real and Virtual Environments (VE) investigating 

gender differences in a variety of navigational tasks. This thesis presents a 3D interactive 

experimental framework exploring gender differences in spatial navigation, memory 

performance and spatial awareness in a complex Immersive Virtual Environment (IVE). The 

immersive simulation implemented in this thesis consisted of a radiosity-rendered space 

divided in four zones including a kitchen area, a dining area, an office area and a lounge area. 

The experimental framework as well as the system logging user actions was implemented with 

the Unreal Development Kit. The space was populated with objects consistent as well as 

inconsistent with each zone’s context. The simulation was then displayed on a stereo head 

tracked Head Mounted Display with binocular eye tracking capabilities which also recorded 

eye gaze information. After being exposed to the VE, participants completed an object-based 

memory recognition task. Participants also reported one of two states of awareness following 

each recognition response which reflected either the recollection of contextual detail or 

informed guesses. A clear gender difference was found with female participants correctly 

identifying objects in their correct location more often than the male participants. 
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1 Chapter 1 – Introduction 
 

During the last decade, a remarkable interest around spatial navigation motivated 

research investigating under which circumstances spatial navigation is optimal, often in 

hazardous environments such as navigating a building on fire.  Furthermore, the relationship 

between gender and spatial abilities and how spatial performance is affected by gender in 

spatial tasks has been extensively explored. Numerous studies have been carried out in real 

and Virtual Environments (VE) investigating gender differences in a variety of navigational 

tasks such as wayfinding, navigation using digital or hand-held paper map, distance estimation, 

position recognition, object-location/route learning etc. As several studies showed that spatial 

performance in a Virtual Environment exploited “real life’s” abilities [Laria et al., Lovden et al., 

Moffat et al.], such research is attracting interest in the research world. 

 
 The term Virtual Environment (VE) is generally understood to mean an environment 

that is described in three dimensions be presented on a computer display. They are perhaps 

most commonly encountered in computer games, but are also found in research, simulation, 

training and design— particularly architectural design. The term Immersive Virtual 

Environment (IVE) in this thesis is referred to VEs that are displayed using equipment that 

produces an ego-centric view, allowing the view position and direction to be changed by 

moving the head and body in a natural way [Sutherland 1965]. Today, this may be achieved 

through the use of an at least three degrees-of-freedom spatial tracker and a stereoscopic 

head-mounted display (HMD). When using an IVE one can attain a sense that one is actually 

present within the virtual environment that is displayed, and ‘presence’ has in fact been 

identified as a key feature for their general use [Held and Durlach 1992], or even their defining 

factor in terms of the human experience [Steuer 1992].  

 

 Thus IVEs is now becoming an increasingly popular alternative approach for research 

exploration of gender differences in spatial navigation.  Robust gender differences in training 

effectiveness of VEs have been revealed in recent literature [Ross et al. 2006].  Males 

showcase performance superiority while conducting spatial tasks such as navigating in virtual 

mazes and way finding [Lovden et al. 2007] in a novel environment using different types of 

cues or maps. Such superiority is reduced or follows dissimilar patterns according to the task 

requirements.  Female participants responded faster in a 2D matrix navigation task than males 

when landmark instructions were provided; however, when the same participants participated 

in a recognition task, male participants recognized key elements involved in a previously 

viewed video of a real-world driving scene more accurately than female participants  [Kim et 

al. 2007].  Previous research has also revealed that there are no gender differences in the use 

of different spatial strategies based on either geometric or landmark information when 

navigating through virtual mazes such as water or radial arm mazes [Lauren et al. 2005].  In 

spite of the premise that men have more experience with video games than women, it seems 

that video game experience does not predict the success of spatial tasks [Chai et al. 2009]. On 

the other hand, interesting findings from earlier research [Desney et al. 2003] present specific 

benefits for females in spatial navigation with wider fields of view (FOV) of large displays. A 

recent study proposed a cognitive map model integrated by two parallel map components that 
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are constructed from two distinct classes of cues: directional cues and positional cues 

respectively [Jacobs et al. 2003].  In a target location experiment men were overall more 

accurate in estimating the target location. It was then concluded that gender differences 

influence navigation performance in humans [Chai et al. 2009].  In addition, similar research 

investigated the effect of directional cues such as sky and slant but also positional such as 

trees on a hidden target memory test with cue removal. Men and women performance was 

impaired when directional and positional cues were removed [Chai et al. 2009]. Those findings 

supported previous reports that gender differences in spatial memory arise from the 

dissociation between a preferential reliance on directional cues in males and on position cues 

in females [Noah et al. 1998, Mueller et al. 2008].  

 

 Spatial awareness and memory is crucial for human performance efficiency of any task 

that entails perception of space. Awareness states accompany the retrieval of spaces after 

exposure. Memory of spaces may also be influenced by the context of the environment. The 

main premise of this work is that memory performance, as explored in previous research, is an 

imperfect reflection of the cognitive activity underlying memory recognition and could be 

complemented by self-report of how memory recollections are induced rather than just what 

is remembered. 

 

 This thesis focuses upon exploring the effect of gender (male vs female) on object-

location recognition memory and its associated awareness states while immersed in a 

synthetic simulation of a complex scene displayed on a Head Mounted Display (HMD). 

Simultaneous eye-tracking during exposure to the VE offers additional information of attention 

and the eye’s gaze patterns. This information is at a high enough resolution to be useful in 

determining and log the different attentional patterns of participants. Those data could be 

correlated to memory performance and spatial awareness states data. 

  

 The system in this thesis can also be utilized for any spatial cognition experiment 

besides investigating gender effects after minor modifications. Therefore, it could be exploited 

as a generic platform for spatial cognition experiments employing eye tracking data while 

allowing users to navigate IVEs in real-time. The system includes not only the visual front-end 

visible to the user but also a database system to handle eye tracking and other user-related 

information. 

   

1.1 Contribution 
 As safety and cost issues in relation to training in real world task situations are 

becoming increasingly complex, simulators have proven to be the most successful arena for 

production of synthetic environments. Within simulators, such as flight simulators, flight crew 

can train to deal with emergency situations, gain familiarity with new aircraft types and learn 

airfield specific procedures. It is argued that training in a simulator with maximum fidelity 

would result in transfer equivalent to real-world training, since the two environments would 

be indistinguishable. However, there is always a trade-off between visual/interaction fidelity 

and computational complexity. The key in this trade-off is to maintain users’ suspension of 
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disbelief and spatial awareness in the VE, while keeping the rendering computation as simple 

as possible, so as to be performed by computers in real-time. 

 

 The contribution of this thesis is the innovative application designed to render an 

interactive IVE on a Head Mounted Display in combination with the Eye-tracking technology 

enabling the conduct of experiments examining gender differences in spatial navigation, 

memory performance and spatial awareness employing fundamental memory protocols 

derived from cognitive psychology. Gender differences were explored by responses to a 

questionnaire, as well as examining the eye’s gaze data during the navigation in the IVE.  The 

experimental study presented here investigates the effect of gender on both the accuracy and 

the phenomenological aspects of object memories acquired in an IVE. 

 

1.2 Thesis Outline 
         This thesis is divided into a number of chapters, which will be outlined below.  

        Chapter   2 – Background:  This chapter introduces a set of fundamental terms in 

computer graphics starting  with defining light and its properties, light energy,  photometry 

and radiometry. Subsequently, computer graphics illumination models are analyzed.  

Furthermore, this chapter illustrates the complex variety of tools and equipment required to 

create, view and interact with immersive VEs. It provides background information regarding     

the key technologies used in order to implement the experimental framework and 

experimental protocol put forward and an overview of the technologies necessary to display 

and interact with immersive VEs.  Moreover, in this chapter, previous research utilizing Eye-

tracking methods are analyzed including the one used in this research project.     

 

        Chapter 3 – Software Architecture and Development Framework: In this chapter, the 

technical requirements of the Eye-tracked stereoscopic 3D interactive system are introduced. 

The architecture of the application developed for the experiments is presented, along with the 

inherent architecture of the Unreal Development Kit (UDK) used to develop it. In addition, an 

overview of the Eye-tacked software and its capabilities is introduced. 

 

 Chapter 4 – User Interface Implementation:  In this chapter, the implementation of the 

User Interfaces (UI) as presented to the users wearing the HMD is described. The steps taken 

to create the 3D scene, the textures applied on each 3D object and the final adjustments as 

lighting, within UDK in order to make the whole scene photorealistic.  Moreover, the authoring 

of a Flash application as a main application menu in order to control the different stages of the 

experiment and embed it in the complete system is presented.  

 

         Chapter 5 – Implementation: Chapter 5 describes in detail the implementation of the 

Interactive computer graphics framework. The technical issues that occurred are explained, as  

well as the decisions taken to address them. More specifically, there are examples and source  

code samples demonstrated, in relation to how the application met the requirements which 

were requisite in order to conduct eye-tacking experiments. 
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         Chapter 6 – Experiments: This chapter is concerned with the experimental methods 

employed when the actual experiments were conducted with the Eye-tracking device. The 

experimental procedure is presented, as well as the results of the experiments.  

        Chapter 7 – Conclusions:  In the final chapter, the conclusions of this thesis are presented 

as well as hints about future work. 

 

 

2 Chapter 2 – Background 
 A Virtual Environment (VE) is a computer simulated scene which can be interactively 

manipulated by users. Typical scenes used in such environments generally comprise of 

geometric 3D models, shades, textures, images and lights which are converted into final 

images through the rendering process. The rendering process must be conducted in real time 

in order to provide scenes which are updated in a reacting to user interaction. An immersive 

virtual environment (IVE) perpetually surrounds the user within the VE. The first and second 

section of this chapter present a set of fundamental terms of computer graphics. The third 

section describes immersive, Virtual Reality systems along with stereo rendering and the 

devices used in such environments. The fourth section presents the most current methods 

used for Eye-Tracking. Finally, the fifth section provides all the background information needed 

regarding memory schemata and awareness states employed in this thesis. 

2.1 Computer Graphics Rendering 
 As described in Chapter 1 there is a great need for realistic rendering of computer 

graphical images in real time. The term ‘realistic’ is used broadly to refer to an image that 

captures and displays the effects of light interacting with physical objects occurring  in real 

environments looking perceptually plausible to the human eye, e.g. as a painting, a 

photograph or a computer generated image (Figure 1).  

 

Figure 1: The goal of realistic image synthesis: an example from photography. 

There are no previously agreed-upon standards for measuring the actual realism of 

computer-generated images. In many cases, physical accuracy may be used as the standard to 

be achieved. Perceptual criteria are significant rather than physics based simulations to the 
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point of undetermined ‘looks good’ evaluations. Ferwerda (2003) proposes three levels of 

realism requiring consideration when evaluating computer graphical images. These are 

physical realism, in which the synthetic scene is an accurate point-by-point representation of 

the spectral radiance values of the real scene; photorealism, in which the synthetic scene 

produces the same visual response as the real scene even if the physical energy depicted from 

the image is different compared to the real scene; and finally functional realism, in which the 

same information is transmitted in real and synthetic scenes while users perform visual tasks 

targeting transfer of training in the real world  [Ferwerda 2003]. Physical accuracy of light and 

geometry does not guarantee that the displayed images will seem real. The challenge is to 

devise real time rendering methods which will produce perceptually accurate synthetic scenes 

in real – time. This chapter describes how different rendering models produce their realistic 

graphical images. 

2.1.1 The Physical Behavior of the Light 

Light is one form of electromagnetic radiation, a mode of propagation of energy 

through space that includes radio waves, radiant heat, gamma rays and X-rays. One way in 

which the nature of electromagnetic radiation can be pictured is as a pattern of waves 

propagated through an imaginary medium. The term ‘visible light’ is used to describe the 

subset of the spectrum of electromagnetic energy to which the human eye is sensitive. This 

subset, usually referred to as the visual range or the visual band, consists of electromagnetic 

energy with wavelengths in the range of 380 to 780 nanometers, although the human eye has 

very low sensitivity to a wider range of wavelengths, including the infrared and ultraviolet 

ranges. The range of visible light is shown in Figure 2. As shown, the wavelength at which the 

human eye is most sensitive is 555 nm.  

In the field of computer graphics three types of light interaction are primarily 

considered: absorption, reflection and transmission. In the case of absorption, an incident 

photon is removed from the simulation with no further contribution to the illumination within 

the environment. Reflection considers incident light that is propagated from a surface back 

into the scene and transmission describes light that travels through the material upon which it 

is incident and can then return to the environment, often from another surface of the same 

physical object. Both reflection and transmission can be subdivided into three main types: 

Specular: When the incident light is propagated without scattering as if reflected from a mirror 

or transmitted through glass. 

Diffuse: When incident light is scattered in all directions. 

Glossy: This is a weighted combination of diffuse and specular. 
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Figure 2: The visible portion of the electromagnetic spectrum. 

 

Most materials do not fall exactly into one of the material categories described above but 

instead exhibit a combination of specular and diffuse characteristics. 

In order to create shaded images of three dimensional objects, we should analyze in detail 

how the light energy interacts with a surface. Such processes may include emission, 

transmission, absorption, refraction, interference and reflection of light [Palmer 1999]. 

 Emission is when light is emitted from an object or surface, for example the sun or 

man-made sources, such as candles or light bulbs. Emitted light is composed of 

photons generated by the matter emitting the light; it is therefore an intrinsic source 

of light.  

 

 Transmission describes a particular frequency of light that travels through a material 

returning into the environment unchanged as shown in Figure 3. As a result, the 

material will be transparent to that frequency of light. 

 

 

Figure 3: Light transmitted through a material. 

 Absorption describes light as it passes through matter resulting in a decrease in its 

intensity as shown in Figure 4, i.e. some of the light has been absorbed by the object. 

An incident photon can be completely removed from the simulation with no further 

contribution to the illumination within the environment if the absorption is great 

enough.  



Chapter 2 – Background 
 

 20 

 

Figure 4: Light absorbed by a material. 

 Refraction describes the bending of a light ray when it crosses the boundary between 

two different materials as shown in Figure 5. This change in direction is due to a 

change in speed. Light travels fastest in empty space and slows down upon entering 

matter. The refractive index of a substance is the ratio of the speed of light in space (or 

in air) to its speed in the substance. This ratio is always greater than one. 

 

Figure 5: Light refracted through a material. 

 Interference is an effect that occurs when two waves of equal frequency are 

superimposed. This often happens when light rays from a single source travel by 

different paths to the same point. If, at the point of meeting, the two waves are in 

phase (the crest of one coincides with the crest of the other), they will combine to 

form a new wave of the same frequency. However, the amplitude of this new wave is 

the sum of the amplitudes of the original waves. The process of forming this new wave 

is called constructive interference [NightLase 2004].  

 Reflection considers incident light that is propagated from a surface back into the 

scene. Reflection depends on the smoothness of the material’s surface relative to the 

wavelength of the radiation (ME 2004). A rough surface will affect both the relative 

direction and the phase coherency of the reflected wave. Thus, this characteristic 

determines both the amount of radiation that is reflected back to the first medium and 

the purity of the information that is preserved in the reflected wave. A reflected wave 

that maintains the geometrical organization of the incident radiation and produces a 

mirror image of the wave is called a specular reflection, as can be seen in Figure 6. 

 

Figure 6: Light reflected off a material in different ways. From left to right, specular, diffuse, mixed, retro-
reflection and finally gloss [Katedros 2004]. 

2.1.2 Computer Graphics Illumination Models 

An illumination model computes the color at a point in terms of light directly emitted 

by the light source(s). A local illumination model calculates the distribution of light that comes 

directly from the light source(s). A global illumination model additionally calculates reflected 

light from all the surfaces in a scene which could receive light indirectly via intereflections from 
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other surfaces. Global illumination models include, therefore, all the light interaction in a 

scene, allowing for soft shadows and color bleeding that contribute towards a more 

photorealistic image. The rendering equation expresses the light being transferred from one 

point to another (Kajiya 1986). Most illumination computations are approximate solutions of 

the rendering equation: 

I (x,y) = g(x,y) [ ε(x,y) +_ S p(x, y,z) I(y,z) dz ] 

where 

x,y,z are points in the environment, 

I(x,y) is related to the intensity passing from y to x, 

g(x,y) is a ‘geometry’ term that is 0 when x,y are occluded from each other and 1 otherwise, 

p(x,y,z) is related to the intensity of light reflected from z to x from the surface at y, the 

integral is over all points on all surfaces S. 

ε(x,y) is related to the intensity of light that is emitted from y to x. 

Thus, the rendering equation states that the light from y that reaches x consists of light 

emitted by y itself and light scattered by y to x from all other surfaces which themselves emit 

light and recursively scatter light from other surfaces. The distinction between view-dependent 

rendering algorithms and view-independent algorithms is a significant one. View-dependent 

algorithms discretise the view plane to determine points at which to evaluate the illumination 

equation, given the viewer’s direction, such as ray-tracing [Glassner 2000]. View-independent 

algorithms discretise the environment and process it in order to provide enough information 

to evaluate the illumination equation at any point and from any viewing direction, such as 

radiosity. 

A global illumination model adds to the local illumination model, the light that is 

reflected from other non-light surfaces to the current surface. A global illumination model is 

physically correct and produces realistic images resulting in effects such as color bleeding and 

soft shadows. When measured data is used for the geometry and surface properties of objects 

in a scene, the image produced should then be theoretically indistinguishable from reality. 

However, global illumination algorithms are also more computationally expensive. 

Global illumination algorithms produce solutions of the rendering equation proposed 

by Kajiya (1990): 

Lout = LE + __ LIn r cos() d_

where Lout is the radiance leaving a surface, LE is the radiance emitted by the surface, LIn is 

the radiance of an incoming light ray arriving at the surface from light sources and other 

surfaces, ¦r is the bi-directional reflection distribution function of the surface, q is the angle 

between the surface normal and the incoming light ray and d_q is the differential solid angle 

around the incoming light ray.  
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The rendering equation is graphically depicted in Figure 7. In this figure LIn is an 

example of a direct light source, such as the sun or a light bulb, L’In is an example of an indirect 

light source i.e. light that is being reflected off another surface, R, to surface S. The light seen 

by the eye, Lout, is simply the integral of the indirect and direct light sources modulated by the 

reflectance function of the surface over the hemisphere Ω. 

 

Figure 7: Graphical Depiction of the rendering equation (Yee 2000). 

The problem of global illumination can be seen when you have to solve the rendering 

equation for each and every point in the environment. In all but the simplest case, there is no 

closed form solution for such an equation so it must be solved using numerical techniques and 

therefore this implies that there can only be an approximation of the solution [Lischinski 

2004]. For this reason most global illumination computations are approximate solutions to the 

rendering equation.  

The two major types of graphics systems that use the global illumination model are 

radiosity and ray tracing. For the processes of this work, Lightmass was used, which is a global 

illumination algorithm that combines the radiosity and ray-tracing algorithm techniques and is 

developed and supported by the Unreal Development Kit (UDK). 

 

2.1.3 Ray Tracing 

Ray tracing is a significant global illumination algorithm which calculates specular 

reflections (view dependent) and results in a rendered image. Rays of light are traced from the 

eye through the centre of each pixel of the image plane into the scene, these are called 

primary rays. When each of these rays hits a surface it spawns two child rays, one for the 

reflected light and one for the refracted light. This process continues recursively for each child 

ray until no object is hit, or the recursion reaches some specified maximum depth. Rays are 

also traced to each light source from the point of intersection. These are called shadow rays 

and they account for direct illumination of the surface, as shown in Figure 8. If a shadow ray 

hits an object before intersecting with the light source(s), then the point under consideration is 

in shadow. Otherwise, there must be clear path from the point of intersection of the primary 

ray to the light source and thus a local illumination model can be applied to calculate the 

contribution of the light source(s) to that surface point. 
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The simple ray tracing method outlined above has several problems. Due to the 

recursion involved and the possibly large number of rays that may be cast, the procedure is 

inherently expensive. Diffuse interaction is not modeled, nor is specular interaction, other than 

that by perfect mirrors and filters. Surfaces receiving no direct illumination appear black. In 

order to overcome this, an indirect illumination term, referred to as ambient light, is 

accounted for by a constant ambient term, which is usually assigned an arbitrary value 

[Glassner 2000]. Shadows are hard-edged and the method is very prone to aliasing. The result 

of ray tracing is a single image rendered for a particular position of the viewing plane, resulting 

in a view –dependent technique.  

 

Figure 8: Ray-tracing. 

 

2.1.4 Radiosity 

Radiosity calculates diffuse reflections in a scene and results in a finally divided 

geometrical mesh and it is the main photorealistic rendering method utilized in the immersive 

environment of this thesis. The scenes produced in this work have been rendered using 

radiosity calculations. The radiosity method of computer image generation has its basis in the 

field of thermal heat transfer [Goral et al. 1984]. The heat transfer theory describes radiation 

as the transfer of energy from a surface when that surface has been thermally excited. This 

encompasses both surfaces that are basic emitters of energy, as with light sources and 

surfaces that receive energy from other surfaces and thus have energy to transfer. The thermal 

radiation theory can be used to describe the transfer of many kinds of energy between 

surfaces, including light energy.  

As in thermal heat transfer, the basic radiosity method for computer image generation 

makes the assumption that surfaces are diffuse emitters and reflectors of energy, emitting and 

reflecting energy uniformly over their entire area. Thus, the radiosity of a surface is the rate at 

which energy leaves that surface (energy per unit time per unit area). This includes the energy 

emitted by the surface as well as the energy reflected from other surfaces in the scene. Light 

sources in the scene are treated as objects that have self emittance. 
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Figure 9: Radiosity (McNamara 2000). 

The environment is divided into surface patches, Figure 9, each with a specified 

reflectivity and between each pair of patches there is a form factor that represents the 

proportion of light leaving one patch (patch i) that will arrive at the other (patch j) [Siegel and 

Howell 1992]. 

Thus the radiosity equation is: 

Bi = Ei + r i S Bj Fij 

Where:  

Bi = Radiosity of patch I 

Ei = Emissivity of patch i 

ri= Reflectivity of patch i 

Bj = Radiosity of patch j 

Fij = Form factor of patch j relative to patch i 

Where the form factor, Fij, is the fraction of energy transferred from patch i to patch j and the 

reciprocity relationship [Siegel and Howell 1992] states:  

Aj Fji = Ai Fij 

Where Aj and Ai are the areas of patch j and i respectively, as shown in Figure 10. 
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Figure 10: Relationship between two patches [Katedros 2004]. 

As the environment is closed, the emittance functions, reflectivity values and form 

factors form a system of simultaneous equations that can be solved to find the radiosity of 

each patch. The radiosity is then interpolated across each of the patches and finally the image 

can then be rendered. 

 

Figure 11: The hemicube (Langbein 2004). 

Radiosity assumes that an equilibrium solution can be reached; that all of the energy in 

an environment is accounted for, through absorption and reflection. It should be noted that 

because of the assumption of only perfectly diffuse surfaces, the basic radiosity method is 

viewpoint independent, i.e. the solution will be the same regardless of the viewpoint of the 

image. The diffuse transfer of light energy between surfaces is unaffected by the position of 

the camera. This means that as long as the relative position of all objects and light sources 

remains unchanged, the radiosity values need not be recomputed for each frame. This has 

made the radiosity method particularly popular in architectural simulation, targeting high-

quality walkthroughs of static environments. Figure 12 demonstrates the difference in image 

quality that can be achieved with radiosity compared to ray tracing.  
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Figure 12: The difference in image quality between ray tracing (middle) and radiosity (right hand image). 

Progressive refinement radiosity [Cohen et al. 1988] works by not attempting to solve 

the entire system simultaneously. Instead, the method proceeds in a number of passes and the 

result converges towards the correct solution. At each pass, the patch with the greatest unshot 

radiosity is selected and this energy is propagated to all other patches in the environment. This 

is repeated until the total unshot radiosity falls below some threshold. Progressive refinement 

radiosity generally yields a good approximation to the full solution in far less time and with 

lesser storage requirements, as the form factors do not all need to be stored throughout. 

Many other extensions to radiosity have been developed and a very comprehensive 

bibliography of these techniques can be found in [Ashdown 2004]. 

 

2.1.5 Texturing – Importance of texture maps 

 Texture mapping is a method for adding detail, surface texture (a bitmap or raster 

image), or color to a computer-generated graphic or 3D model. Texture mapping is used for 

creating 3d objects for objects, avatars, rooms for virtual worlds such as IMVU (Instant 

Messaging Virtual Universe) which is an online social entertainment website and Secondlife PC 

game. For example in IMVU a mesh is produced by a developer and if it is left as 'derivable' 

then other creators can apply their own textures to that object. This leads to different texture 

maps of the same mesh being produced. The textures can be as simple or complex as the 

developer wishes. The size of texture map is dependent on the developer but is recommended 

to be having pixel width/height of a combination from 32, 64, 128, 256 and 512.  

 

 

Figure 13: 1) 3D model without textures, 2) 3D model with textures. 
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 A texture map is applied (mapped) to the surface of a shape or polygon [Jon Radoff 

2008]. This process is akin to applying patterned paper to a plain white box. Every vertex in a 

polygon is assigned a texture coordinate (which in the 2d case is also known as a UV 

coordinate) either via explicit assignment or by procedural definition. Image sampling locations 

are then interpolated across the face of a polygon to produce a visual result that seems to 

havemore richness than could otherwise be achieved with a limited number of 

polygons. Multitexturing is the use of more than one texture at a time on a polygon. For 

instance, a light map texture may be used to light a surface as an alternative to recalculating 

that lighting every time the surface is rendered. Another multitexture technique is bump 

mapping, which allows a texture to directly control the facing direction of a surface for the 

purposes of its lighting calculations; it can give a very good appearance of a complex surface, 

such as tree bark or rough concrete that takes on lighting detail in addition to the usual 

detailed coloring. Bump mapping has become popular in recent video games as graphics 

hardware has become powerful enough to accommodate it in real-time. 

 The way the resulting pixels on the screen are calculated from the texels (texture 

pixels) is governed by texture filtering. The fastest method is to use the nearest-neighbour 

interpolation, but bilinear interpolation or trilinear interpolations between mipmaps are two 

commonly used alternatives which reduce aliasing or jaggies. In the event of a texture 

coordinate being outside the texture, it is either clamped or wrapped. 

 

 

Figure 14: Examples of multitexturing.  
1) Untextured sphere, 2) Texture and bump maps, 3) Texture map only, 4) Opacity and texture maps. 

The essential map types are described below:  

Color (or Diffuse) Maps: As the name would imply, the first and most obvious use for a texture 

map is to add color or texture to the surface of a model. This could be as simple as applying a 

wood grain texture to a table surface, or as complex as a color map for an entire game 

character (including armor and accessories). However, the term texture map, as it's often used 

is a bit of a misnomer—surface maps play a huge role in computer graphics beyond just color 

and texture. In a production setting, a character or environment's color map is usually just one 

of three maps that will be used for almost every single 3D model. 
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Specular Map: (Also known as a gloss map). A specular map tells the software which parts of a 

model should be shiny or glossy, and also the magnitude of the glossiness. Specular maps are 

named for the fact that shiny surfaces, like metals, ceramics, and some plastics show a strong 

specular highlight (a direct reflection from a strong light source). Specular highlights are the 

white reflection on the rim of a coffee mug. Another common example of specular reflection is 

the tiny white glimmer in someone's eye, just above the pupil.  

 

A specular map is typically a grayscale image, and is absolutely essential for surfaces that 

aren't uniformly glossy. An armored vehicle, for example, requires a specular map in order for 

scratches, dents, and imperfections in the armor to come across convincingly. Similarly, a 

game character made of multiple materials would need a specular map to convey the different 

levels of glossiness between the character's skin, metal belt buckle, and clothing material. 

Bump, Displacement, or Normal Map: A bit more complex than either of the two previous 

examples, bump maps are a form of texture map that can help give a more realistic indication 

of bumps or depressions on the surface of a model.  

 

To increase the impression of realism, a bump or normal map would be added to more 

accurately recreate the coarse, grainy surface of, for instance, a brick, and heighten the illusion 

that the cracks between bricks are actually receding in space. Of course, it would be possible 

to achieve the same effect by modeling each and every brick by hand, but a normal mapped 

plane is much more computationally efficient. Normal mapping is a significant process 

incorporated in the development of modern computer games.   

 

Bump, displacement, and normal maps are a discussion in their own right, and are absolutely 

essential for achieving photo-realism in a render.  

 

Figure 15: Taurus pt 92 textured 3d model. Rendered in marmoset engine(real time game engine). 
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Figure 16: Diffuse, normal and specular map of the above 3d model.  

Aside from these three map types, there are one or two others you'll see relatively often: 

Reflection Map: It the software which portions of the 3D model should be reflective. If a 

model's entire surface is reflective or if the level of reflectivity is uniform a reflection map is 

usually omitted. Reflection maps are grayscale images, with black indicating 0% reflectivity and 

pure white indicating a 100% reflective surface. 

 

 

Figure 17: Mesh without any texture (left image). Reflection image projected onto the object (right image). 

Transparency (or Opacity) Map: Exactly like a reflection map, except it tells the software 

which portions of the model should be transparent. A common use for a transparency map 

would be a surface that would otherwise be very difficult, or too computationally expensive to 

duplicate, like a chain link fence. Using a transparency, instead of modeling the links 

individually can be quite convincing as long as the model doesn't feature too close to the 

foreground, and uses far fewer polygons. 
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Figure 18: Mesh with diffuse map only (left image). Opacity texture applied on the mesh (right image). 

 Texture maps are crucial for the design of the virtual scene. They facilitate the 

reduction of the polygonal complexity of the 3d models used, which in any other way would 

hinder rendering performance. In particular, the normal maps of some low polygon count 

models used in our scene were acquired from their high polygon versions to keep all the fine 

details of the models, thus maintaining an acceptable lighting quality with low computational 

cost. An example of this method can be seen on the following picture. Another use of texture 

maps, are opacity maps which allow for the otherwise opaque window in our scene to become 

transparent. 

 
Figure 19: Normal mapping used to re-detail simplified meshes. 

 

2.2 Virtual Reality Technology and Game Engines 
 There are several game engines offering a wide range of tools to create interactive 

photorealistic environments, to be used for the creation of a computer game. For the 

processes of this work, although the final result would not be a computer game, since it would 

not be recreational, a game engine could offer the required tools to create an interactive 

photorealistic environment. 

 A game engine provides the framework and the Application User Interface (API) for the 

developer to use and communicate with the hardware. It consists of separate autonomous 

system, each handling a specific process, e.g. graphics system, sound system, physics system, 

etc. Figure 20 shows the common architecture of game engines. 
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Figure 20: Architecture of a game engine. 

 For this work, a game engine was decided to be used in order to create interactive 

realistic virtual scenes. In this chapter, the game engines that were considered to be used will 

be presented, as well as UDK, which is the game engine that was preferred. 

2.2.1 Unity 3D 

 Unity 3D is a fully featured application suite, providing tools to create 3D games or 

other applications, e.g.  architectural visualization. It provides support for editing object 

geometry, surfaces, lights and sounds. It uses the Ageia physics engine, provided by nVidia. A 

light mapping system, called Beast, is included. 

 In terms of programming, Unity 3D supports 3 programming languages: JavaScript, C# 

and Boo, which is a python variation. All 3 languages are fast and can be interconnected. The 

game’s logic runs in the open-source platform “Mono”, offering speed and flexibility. For the 

development process, a debugger is also included, allowing pausing the game at any time and 

resuming it step-by-step. 

 Unity 3D is widely used, with a large community offering help. It is free for non-

commercial use and is targeted to all platforms, such as PC, MAC, Android, iOS and web. 

2.2.2 Torque 3D 

 Torque 3D is a game engine with a lot of features for creating networking games. It 

includes advanced rendering technology, a Graphical User Interface (GUI) building tool and a 

World Editor, providing an entire suit of WYSIWYG (What-You-See-Is-What-You-Get) tools to 

create the game or simulation application. 

 The main disadvantage of Torque 3D is that it is not free, but it needs to be licensed 

for $100. The programming language used is “TorqueScript”, which resembles C/C++. It is 

targeted for both Windows and MacOS platforms, as well as the web. 
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2.2.3 Unreal Engine 3 – Unreal Development Kit (UDK) 

 Unreal Development Kit (UDK) is one of the leading game engines currently. It became 

free on November 2009 for non-commercial use and is used from the world’s largest 

development studios. The UDK community includes thousands of people from around the 

world, providing help and advice. 

 UDK’s core is written in C++, making it very fast. It offers the ability to use both 

“UnrealScript”, UDK’s object-oriented scripting language, and C/C++ programming languages. 

It provides many different tools for the creation and the rendering of a virtual scene. 

2.2.4 Unreal Engine 3 – Overview 

 

The main elements of Unreal Engine 3 which were central to the development of the 

experimental framework presented in this project report are the following: 

 The Unreal Lightmass component of UDK which is a global illumination solver. Provides 

high-quality static lighting with next-generation effects, such as soft shadows with 

accurate penumbrae, diffuse, specular inter-reflection and color bleeding; 

 The ability to add fracture effects to static meshes to simulate destructible 
environments; 

 

 Soft body dynamics (physics); 
 

 Large crowd simulation; 
 

 Free license for non-commercial use. 
 

 The selection of Unreal game engine 3 was based on the above specifications and the 

sophistication of lighting simulation of the Unreal Lightmass feature. The next chapter is 

describing the characteristics of Unreal Lightmass in detail.  

2.3 Immersive, Virtual Reality Systems 
Immersive systems are high tech, three dimension display systems that allow users to 

be "immersed" into a displayed image.  In an immersive environment, images are often 

displayed in stereoscopic 3D.  Tracking systems can also be utilized, enabling a user to move all 

around these 3D images and even interact with them.  The result is an experience that very 

much looks and feels like it is "real." 

Staffan Björk and Jussi Holopainen, in Patterns in Game Design 2004, divide immersion 

into four categories: sensory-motoric immersion, cognitive immersion, emotional immersion 

and spatial immersion. The last one tends to be the most suitable for the purposes of this 

project. Spatial immersion occurs when a player feels the simulated world is perceptually 

convincing. The player feels that he or she is really "there" and that a simulated world looks 

and feels "real". 
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Figure 21: Classic Virtual reality HMD. 

2.3.1 Stereoscopy 

Stereoscopy (also called stereoscopics or 3D imaging) is a technique for creating or 

enhancing the illusion of depth in an image by means of stereopsis for binocular vision. Most 

stereoscopic methods present two offset images separately to the left and right eye of the 

viewer. These two-dimensional images are then combined in the brain to give the perception 

of 3D depth.  

There are two categories of 3D viewer technology, active and passive. Some of the 

most well known stereoscopic vision methods are shown below. 

Active Shutter Systems: A Shutter system works by openly presenting the image intended for 

the left eye while blocking the right eye's view, then presenting the right-eye image while 

blocking the left eye, and repeating this so rapidly that the interruptions do not interfere with 

the perceived fusion of the two images into a single 3D image. It generally uses liquid crystal 

shutter glasses. Each eye's glass contains a liquid crystal layer which has the property of 

becoming dark when voltage is applied, being otherwise transparent. The glasses are 

controlled by a timing signal that allows the glasses to alternately darken over one eye, and 

then the other, in synchronization with the refresh rate of the screen. 

 

Figure 22: To view the stereoscopic image on the left a pair of shutter glasses as    
showed on the second image is needed.  

Passive Polarization Systems: To present stereoscopic pictures, two images are projected 

superimposed onto the same screen through polarizing filters or presented on a display with 

polarized filters. For projection, a silver screen is used so that polarization is preserved. The 

viewer wears low-cost eyeglasses which also contain a pair of opposite polarizing filters. As 

http://en.wikipedia.org/wiki/Depth_perception
http://en.wikipedia.org/wiki/Stereopsis
http://en.wikipedia.org/wiki/Binocular_vision


Chapter 2 – Background 
 

 34 

each filter only passes light which is similarly polarized and blocks the opposite polarized light, 

each eye only sees one of the images, and the effect is achieved. 

 

Figure 23: Polarized 3D image (on the left). Polarized 3D Glasses (on the right). 

Color Anaglyph Systems: Anaglyph 3D is the name given to the stereoscopic 3D effect 

achieved by means of encoding each eye's image using filters of different (usually 

chromatically opposite) colors, typically red and cyan. Anaglyph 3D images contain two 

differently filtered colored images, one for each eye. When viewed through the "color coded" 

"anaglyph glasses", each of the two images reaches one eye, revealing an integrated 

stereoscopic image. The visual cortex of the brain fuses this into perception of a three 

dimensional scene or composition. 

 

Figure 24: Anaglyph 3D photograph (on the left).  Anaglyph red/cyan 3D Glasses (on the right). 

Full or Partial Overlap Systems: Traditional stereoscopic photography consists of creating a 3D 

illusion starting from a pair of 2D images, a stereogram. These systems to enhance depth 

perception in the brain are providing to  the eyes of the viewer with two different images, 

representing two perspectives of the same object, with a minor deviation exactly equal to the 

perspectives that both eyes naturally receive in binocular vision. The viewer for such systems is 

commonly a HMD thus this technology is mostly used for research purposes.  

 In full overlap each eye is viewing exactly the same identical image. Therefore in 

partial overlap systems each eye is viewing a percentage of the image in common and the 

other is unique for both eyes. In addition the angle of screen that each eye is viewing is rotated 

horizontal by some degrees. This technique achieves to enlarge the field of view of the user.  

http://en.wikipedia.org/wiki/Stereogram
http://en.wikipedia.org/wiki/Depth_perception
http://en.wikipedia.org/wiki/Depth_perception
http://en.wikipedia.org/wiki/Perspective_(visual)
http://en.wikipedia.org/wiki/Binocular_vision
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Figure 25: To the left Binocular Image with Full Overlap, to the right Binocular Image with Partial Overlap. 

 

 

Figure 26: To the left Full Overlap view, to the right Partial Overlap view. 

 

2.3.2 Head Mounted Displays Device 

A head-mounted display (HMD), is a display device, worn on the head or as part of a 

helmet, that has a small display optic in front of one (monocular HMD) or each eye (binocular 

HMD). A typical HMD has either one or two small displays with lenses and semi-transparent 

mirrors embedded in a helmet, eye-glasses (also known as data glasses) or visor. The display 

units are miniaturized and may include CRT, LCDs, Liquid crystal on silicon (LCos), or OLED. 
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Some vendors employ multiple micro-displays to increase total resolution and field of view. 

  

Figure 27:  nVisor SX111 Head Mounted Display (on the left), head-tacker InertiaCube3 (on the right). 

The Head Mounted Display (HMD) used in these experiments is the NVIS SX111 (Figure 

28). One of its significant characteristics is the wide field-of-view of a total 1020 for both eyes. 

A 3-degrees of freedom (rotational) head-tacker was attached to this HMD acquiring the user’s 

head rotational direction (Figure 28). The HMD makes use of partial overlap stereoscopic 

method in order to produce stereoscopic vision. This method will be discussed in the 

Implementation - Chapter 5 .   

 

Figure 28: A participant wearing the head mounted display model nVisor SX111 during the experiment. 

2.4 Eye-tracking 
Eye tracking is the process of measuring either the point of gaze ("where we are 

looking") or the motion of an eye relative to the head. An eye tracker is a device for measuring 

eye positions and eye movement. The HMD employed in this research included embedded 

binocular eye tracking by Arrington Research. Eye trackers are also used in visual system 

research, in psychology, in cognitive linguistics and in product design. There are a number of 
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methods for measuring eye movement. The most popular variant uses video images from 

which the eye position is extracted. Other methods use search coils or are based on 

the electrooculogram. 

2.4.1 Eye-tacking methods 

 Eye trackers measure rotations of the eye in one of several ways, but principally they 

fall into three categories: One type uses an attachment to the eye, such as a special contact 

lens with an embedded mirror or magnetic field sensor, and the movement of the attachment 

is measured with the assumption that it does not slip significantly as the eye rotates. 

Measurements with tight fitting contact lenses have provided extremely sensitive recordings 

of eye movement, and magnetic search coils are the method of choice for researchers studying 

the dynamics and underlying physiology of eye movement. 

 

Figure 29:  A subject wearing a scleral search coil in conventional manner (A), the wire exiting directly (white 
arrow). When wearing a bandage lens on top of the coil, the wire is applied to the sclera and exits the eye near 
the medial canthus (B, gray arrow). The bandage lens (C, centre) is 5 mm larger in diameter than a scleral search 

coil (C, right). 

 The second broad category uses some non-contact, optical method for measuring eye 

motion. Light, typically infrared, is reflected from the eye and sensed by a video camera or 

some other specially designed optical sensor. The information is then analyzed to extract eye 

rotation from changes in reflections. Video based eye trackers typically use the corneal 

reflection (the first Purkinje image) and the center of the pupil as features to track over time. A 

more sensitive type of eye tracker, the dual-Purkinje eye tracker, uses reflections from the 

front of the cornea (first Purkinje image) and the back of the lens (fourth Purkinje image) as 

features to track. A still more sensitive method of tracking is to image features from inside the 

eye, such as the retinal blood vessels, and follow these features as the eye rotates. Optical 

methods, particularly those based on video recording, are widely used for gaze tracking and 

are favored for being non-invasive and inexpensive. 
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Figure 30:  A subject wearing a headset attached by two optical sensors, those within the red circles above.  

 The third category uses electric potentials measured with electrodes placed around 

the eyes. The eyes are the origin of a steady electric potential field, which can also be detected 

in total darkness and if the eyes are closed. It can be modelled to be generated by a dipole 

with its positive pole at the cornea and its negative pole at the retina. The electric signal that 

can be derived using two pairs of contact electrodes placed on the skin around one eye is 

called Electrooculogram (EOG). If the eyes move from the centre position towards the 

periphery, the retina approaches one electrode while the cornea approaches the opposing 

one. This change in the orientation of the dipole and consequently the electric potential field 

results in a change in the measured EOG signal. Inversely, by analyzing these changes in eye 

movement can be tracked. Due to the discretisation given by the common electrode setup two 

separate movement components – a horizontal and a vertical – can be identified. A third EOG 

component is the radial EOG channel, which is the average of the EOG channels referenced to 

some posterior scalp electrode. This radial EOG channel is sensitive to the saccadic spike 

potentials stemming from the extra-ocular muscles at the onset of saccades, and allows 

reliable detection of even miniature saccades. 

 
Figure 31:  A woman wearing EOG goggles. 

 The Eye-tracker from Arrington Research, Inc. that was used in the experiments of this 

thesis is based on an optical method and relies on two infrared video cameras for the 

estimation of eye motion and position.  
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2.4.2 Vision types 

 There are two kinds of vision in almost all species in the planet, e.g. Binocular and 

Monocular vision. 

 Binocular vision is vision in which both eyes are used together. Having two eyes confer 

has at least four advantages over having one. First, it gives a creature a spare eye in case one is 

damaged. Second, it gives a wider field of view. For example, humans have a maximum 

horizontal field of view of approximately 200 degrees with two eyes, approximately 120 

degrees of which makes up the binocular field of view (seen by both eyes) flanked by two 

uniocular fields (seen by only one eye) of approximately 40 degrees. Third, it gives binocular 

summation in which the ability to detect faint objects is enhanced. Fourth, it can 

give stereopsis in which parallax provided by the two eyes' different positions on the head give 

precise depth perception. Such binocular vision is usually accompanied by singleness of vision 

or binocular fusion, in which a single image is seen despite each eye having its own image of 

any object.  Stereopsis is the impression of depth that is perceived when a scene is viewed 

with both eyes by someone with normal binocular vision. Binocular viewing of a scene creates 

two slightly different images of the scene in the two eyes due to the eyes' different positions 

on the head. These differences, referred to as binocular disparity, provide information that the 

brain can use to calculate depth in the visual scene, providing a major means of depth 

perception. The term stereopsis is often used as short hand for 'binocular vision', 'binocular 

depth perception' or 'stereoscopic depth perception', though strictly speaking, the impression 

of depth associated with stereopsis can also be obtained under other conditions, such as when 

an observer views a scene with only one eye while moving. Observer motion creates 

differences in the single retinal image over time similar to binocular disparity; this is referred 

to as motion parallax. Importantly, stereopsis is not usually present when viewing a scene with 

one eye, when viewing a picture of a scene with either eyes, or when someone with abnormal 

binocular vision (strabismus) views a scene with both eyes. This is despite the fact that in all 

these three cases humans can still perceive depth relations. 

 Monocular vision is vision in which each eye is used separately. By using the eyes in 

this way, as opposed by binocular vision, the field of view is increased, while depth 

perception is limited. The eyes are usually positioned on opposite sides of the animal's head 

giving it the ability to see two objects at once. Monocular vision implies that only one eye is 

receiving optical information, the other one is closed. 

2.4.3 Eye dominance 

 Eye dominance or eyedness, is the tendency to prefer visual input from one eye to the 

other. It is somewhat analogous to the laterality of right or left handedness; however, the side 

of the dominant eye and the dominant hand do not always match. This is because both 

hemispheres control both eyes, but each one takes charge of a different half of the field of 

view, and therefore a different half of both retinas. Therefore there is no direct analogy 

between "handedness" and "eyedness" as lateral phenomena. 

 There exist some very simple tests to determine which eye is dominant such as the 

Miles, Porta, Ring and others. The Miles test was used to determine participant’s eye 

dominance in this thesis experiments. For this test each participant extends both arms in front 
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of his body and places the hands together so as to make a small triangle between his thumbs 

and forefingers. With both of his eyes open, the participant looks through the triangle and 

focus on a specific small object. He then moves his hands slowly to his face, trying to keep sight 

of the object through the opening; the opening will naturally lay over his dominant eye.  

 

 

Figure 32:  Eye dominance test sketch. 

 

2.5 Memory Schemata and Awareness States  
 While previous background knowledge in this chapter introduces the basic principles 

of computer graphics and provides technical information relating to the complexities of IVE 

generation, this section provides background information regarding the memory schema and 

awareness states theory employed in this project. The effect of gender on spatial abilities and 

spatial performance inspired numerous studies carried out in real and Virtual Environments 

(VE).  VEs are now becoming an increasingly popular alternative approach for research 

exploration of gender differences in spatial navigation. Moreover, simulation fidelity is based 

on simulation of spatial awareness as in the real world. This project presents a 3D interactive 

experimental framework exploring the effect of gender differences in spatial navigation, 

memory performance and spatial awareness in a complex Immersive Virtual Environment 

(IVE). 

 

2.5.1  Memory and Perception 

 Human Memory is a system for storing and retrieving information acquired through 

our senses [Baddeley 1997, Riesberg 1997]. The briefest memory store lasts for only a fraction 

of a second. Such sensory memories are perhaps best considered as an integral part of the 

process of perceiving. Both vision and hearing, for instance, appear to have a temporary 

storage stage, which could be termed short-term auditory or visual memory and that could last 

for a few seconds. In addition to these, though, humans clearly retain long-term memory for 

sights and sounds. Similar systems exist in the case of other senses such as smell, taste and 

touch. In this section, the memory awareness methodology and memory schema theories 

employed in this project are analyzed. 
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2.5.2 The Remember/Know Paradigm 

 

 In this section, the main methodology employed in this thesis is going to be analyzed. 

This methodology forms the core of the experimental design presented in Chapter 4. 

  

 In the process of acquiring a new knowledge domain, visual or non-visual, information 

retained is open to a number of different states. Accurate recognition memory can be 

supported by: a specific recollection of a mental image or prior experience (remembering); 

reliance on a general sense of knowing with little or no recollection of the source of this sense 

(knowing); strong familiarity rather than a un-informed guess (familiar); and guesses. 

‘Remembering’ has been further defined as ‘personal experiences of the past’ that are 

recreated mentally [Gardiner and Richardson-Klavehn 1997]. Meanwhile ‘knowing’ refers to 

‘other experiences of the past but without the sense of reliving it mentally’. Tulving [Tul92] 

provided the first demonstration that these responses can be made in a memory test, item by 

item out of a set of memory recall questions, to report awareness states as well. He reported 

illustrative experiments in which participants were instructed to report their states of 

awareness at the time they recalled or recognized words they had previously encountered in a 

study list. If they remembered what they experienced at the time they encountered the word, 

they made a ‘remember’ response. If they were aware they had encountered the word in the 

study list but did not remember anything they experienced at that time, they expressed a 

‘know’ response. The results indicated that participants could quite easily distinguish between 

experiences of remembering and knowing. These distinctions provide researchers a unique 

window into the different subjective experiences an individual has of their memories 

 Measures of the accuracy of memory can therefore be enhanced by self-report of 

states of awareness such as ‘remember’, ‘know’, ‘familiar’ and ‘guess’ during recognition 

[Conway et al. 1997; Brandt et al. 2006]. Object recognition studies in VE simulations have 

demonstrated that low interaction fidelity interfaces, such as the use of a mouse compared to 

head tracking, as well as low visual fidelity, such as flat-shaded rendering compared to 

radiosity rendering, resulted in a higher proportion of correct memories that are associated 

with those vivid visual experiences of a ‘remember’ awareness state [Mania et al. 2003; 2006; 

2010]. As a result of these studies, a tentative claim was made that those immersive 

environments that are distinctive because of their variation from ‘real’ representing low 

interaction or visual fidelity recruit more attentional resources. This additional attentional 

processing may bring about a change in participants’ subjective experiences of ‘remembering’ 

when they later recall the environment, leading to more vivid mental experiences. The present 

research builds upon this pattern of results and its possible explanations. 

 Whilst researchers may be interested in measuring differences between the memorial 

experiences of remembering and knowing, there is recent evidence to suggest that how this is 

implemented in a practical sense can influence the accuracy of our measures of these. 

Specifically, the instructions and terminology influence the accuracy of participants’ 

remember-know judgments (McCabe & Geraci, 2009). In the past, there have been concerns 

raised about the use of the terms ‘remember’ and ‘know’ because the meaning that 

participants attach to these terms may be slightly different to those intended by the 

researchers. In clinical populations this has been a particular concern, and several researchers 
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have replaced the terms ‘remember’ and ‘know’ with those of ‘type a’ and ‘type b’ (e.g. Levine 

et al., 1998; Wheeler & Stuss, 2003). Recent evidence has suggested that these changes are 

also beneficial when measuring ‘remember’ and ‘know’ judgments in non-clinical populations 

(McCabe & Geraci, 2009). Participants are generally more accurate, in that there are less false-

alarms, when ‘remember’ and ‘know’ are replaced with the terms ‘type a’ and ‘type b’ in any 

instructions given. This procedure was therefore followed here. 

 

2.5.3 Memory Schemata 

 This thesis uses an approach based on classic findings from memory research, in which 

schemata are used to explain memory processes. Schemata are knowledge structures of 

cognitive frameworks based on past experience which facilitate the interpretation of events 

and influence memory retrieval [Minsky 1975, Brewer and Treyens 1981]. 

 

 It has been shown that memory performance is frequently influenced by context-

based expectations (or ‘schemas’) which aid retrieval of information in a memory task [Minsky 

1975]. A schema can be defined as a model of the world based on past experience which can 

be used as a basis of remembering events and provides a framework for retrieving specific 

facts. In terms of real world scenes, schemas represent the general context of a scene such as 

‘office’, ‘theatre’ etc. and facilitates memory for the objects in a given context according to 

their general association with that schema in place. Previously formed schemas may determine 

in a new, but similar environment, which objects are looked at and encoded into memory (e.g., 

fixation time). They also guide the retrieval process and determine what information is to be 

communicated at output [Brewer and Treyens 1981].  

 Schema research has generally shown that memory performance is frequently 

influenced by schema-based expectations and that an activated schema can aid retrieval of 

information in a memory task [Minsky 1975]. Brewer and Treyens (1981) proposed five 

different ways in which schemata might influence memory performance: 

 By determining which objects are looked at and encoded into memory (e.g. fixation 

time). 

 By providing a framework for new information. 

 By providing information which may be integrated with new episodic information. 

 By aiding the retrieval process. 

 By determining which information is to be communicated during recall. 

 

[Pichet’s & Anderson’s 1966] schema model predicts better memory performance for schema 

consistent items, e.g. items that are likely to be found in a given environment, claiming that 

inconsistent items are mostly ignored. Contrarily, the dynamic memory model [Holingworth & 

Henderson 1998] suggests that schema-inconsistent information for a recently-encountered 

episodic event will be easily accessible and, therefore, leads to better memory performance. 

Previous VE experiments revealed that schema consistent elements of VE scenes were more 
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likely to be recognized than inconsistent information [Mania et al. 2005], supporting the broad 

theoretical position of [Pichet & Anderson 1966]. Such information has led to the development 

of a novel selective rendering algorithm [Zotos et al. 2010]. In this experimental framework, 

scene elements which are expected to be found in a VE scene may be rendered in lower 

quality, in terms of polygon count thereby reducing computational complexity without 

affecting object memory [Zotos et al. 2009]. 

2.5.4 Goal 

 The utility of certain VEs for training such as flight simulators is predicated upon the 

accuracy of the spatial representation formed in the VE. Spatial memory tasks, therefore, are 

often incorporated in benchmarking processes when assessing the fidelity of a VE simulation. 

Spatial awareness is significant for human performance efficiency of such tasks as they require 

spatial knowledge of an environment. A central research issue therefore for real-time VE 

applications for training is how participants mentally represent an interactive computer 

graphics world and how their recognition and memory of such worlds correspond to real world 

conditions. 

 

 The experimental methodology presented focuses upon exploring the effect of gender 

(male vs female) on object-location recognition memory and its associated awareness states 

while immersed in a radiosity-rendered synthetic simulation of a complex scene. The space 

was populated by objects consistent as well as inconsistent with each zone’s context, displayed 

on a head-tracked, stereo-capable HMD. The main premise of this work is that memory 

performance is an imperfect reflection of the cognitive activity that underlies performance on 

memory tasks. A secondary goal was to investigate the effect of varied scene context on object 

recognition tasks post-VE exposure in relation to eye tracking data. 

 The technical implementation of this project was based on the development of an 3D 

interactive experimental platform to be displayed on a stereo-capable high-end HMD with eye 

tracking capabilities. Technical details as well as experiment data are presented in the 

following chapters. 
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3 Chapter 3 – Software Architecture and 

Development Framework 
 In this chapter, the software architecture and the framework used in the development 

process will be described in detail. The various tools used to build several parts of this project’s 

application, such as the Flash authoring environment and the database system used will also 

be analyzed. 

3.1 Game Engine – Unreal Development Kit (UDK) 
 For the purposes of this project, the power of building and extending upon a 

framework was preferred to building from scratch. As already discussed, UDK is a powerful 

framework used mostly in creating computer games and visualization. Its built-in lighting 

system was a requisite feature, which addressed the needs for realistic lighting effects of this 

project. 

UDK consists of different parts, making it act both like a game engine and a 3D 

authoring environment. It provides the necessary tools to import 3D objects, create and assign 

materials on objects that affect the lighting distribution, precompute lighting effects and 

import and use sounds and sound effects. It, also, allows the designed application to seemingly 

attach to Flash User Interfaces (UI). UDK can also be used to render the created virtual 

environments, as well as create and respond to events while navigating the virtual scenes. 

3.1.1 Unreal Editor 

 The Unreal Editor is the tool inside UDK used to create and edit virtual environments. 

From within Unreal Editor, 3d objects, sounds, videos, textures and images can be imported to 

the Content Browser library and inserted in the virtual environment. Also, the Unreal Editor 

can create and assign materials to 3d objects, as well as alter lighting and rendering 

configurations.  

 

Figure 33: The Unreal Editor with a virtual scene loaded. 
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Actors, Lights and properties 
 Everything inside the virtual scene created in the Unreal Editor is considered from UDK 

to be an “Actor”, from 3d objects to lights. This is in accordance with Unreal Script (see below), 

which is an Object-Oriented Programming language and every object is assigned to a class that 

extends from Actor. So, 3d objects are assigned to StaticMeshActor class, lights can be variedly 

assigned to PointLight, PointLightToggleable, DominantDirectionalLight classes according to 

their function, sounds are assigned to Sound class, while all these classes extend from the 

Actor class. 

 The 3D objects imported into Unreal Editor can be assigned to Static Mesh, used for 

static objects, or Skeletal Mesh, used for character bodies. All the 3d objects in this project 

were Static Meshes, as there weren’t any characters used. After an object is imported through 

the Content Browser, we can change its main attributes, like the collision box, materials, light 

map UVs and polygon count with the Static Mesh Editor. These changes will affect all the 

instances of this object that will be inserted in the virtual scene, unless they are overridden. 

 

Figure 34: Static Mesh Editor for an imported object. 

 Once an object is inserted in the editor from the Content Browser library, an instance 

of its predefined Actor class is created and the editor offers the option to change the 

configuration of the specific instance, without affecting the other instances. This is true for all 

kinds of actors loaded in a scene, either being a light or any other possible Actor. The options 

that can be changed include the object’s position, draw scale, properties for the lighting 

system, materials, collision, components, etc. 
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Figure 35: Properties of a Static Mesh Actor instance. 

Light Actors 

 Lights are also considered to be Actors in the Unreal Editor. The type of Actor each 

light belongs to is different according to the light’s function. In this project, only one light 

source was used, the Dominant Directional Light in order to simulate the sun. Every light 

actor’s properties can be changed as well, like a Static Mesh actor’s. 

 

Figure 36: Light Actor properties. 

 There are many other actor classes that simulate the functions of a variety of other 

objects, like triggers, sounds, dynamic meshes that move or rotate, etc. All of these can be 

inserted and manipulated through the Unreal Editor. 

Kismet 
 The Unreal Kismet is a tool inside Unreal Editor and can be described as a graphical 

system that connects specific events to specific actions. It is node-based and properties of 

different nodes can be connected with arrows. There are some predefined events and actions, 

but more can be created through Unreal Script, as described further below. 
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Figure 37: Unreal Kismet set up for testing the experiment scene. 

 An example can be seen in Figure 37, which depicts an event node which is triggered 

when a scene is loaded triggering an action event which calls two unreal script functions: 

setTestMode true” and StartExperiment.  As the setTestMode true function is called the 

variable TestMode changes its value to True in order to display a head up display (HUD )for 

testing the scene when the experiment starts. Subsequently, the StartExperiment function 

triggers the appropriate actions needed and the experiment is initialized. The box on the right 

in Figure 37 contains four subsequences representing the four zones of the house and each 

one is triggered when the user’s visual field is in the bounds of each one. Technical details are 

included in Chapter 5. 

 The relevant sequence of events and actions applies only to the currently loaded scene 

and not to other scenes. Unreal Kismet is not efficient in creating general rules that apply to a 

complete game or application, in which case Unreal Script is recommended. Unreal Kismet is 

useful in connecting scene-specific events and actions. 

Material Editor 
 A tool included in the Unreal Editor needed in order to create realistic environments, is 

the Material Editor. This tool handles the creation and editing of different materials that can 

be assigned to objects inside the scenes. Materials affect the objects they are assigned to in a 

variety of ways, mainly in terms of their texture and their interaction with the light. 

 The Material Editor is node-based, much like the Unreal Kismet, but the nodes here do 

not represent events or actions, but textures, colors and several processing filters, such as 

addition of two different textures. The Material Editor provides the main node, which has all 

the supported properties of the material, such as the diffuse, emissive and specular properties 

and each property can receive the output from a node or from a sequence of nodes. 
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Figure 38: The Material Editor with a sample material. 

3.1.2 Sound engine 

 The Unreal Editor supports its own sound engine and a Sound Editor provides the 

necessary tools to create various different sound effects. It supports immersive 3D location-

based sounds and gives complete control over pitch, levels, looping, filtering, modulation and 

randomization. 

 Similar to the rest of the Unreal Editor’s tools, the Sound Editor provides a node-based 

User Interface to import and use several sound cues, change their properties, mix them 

together and channel the resulting output to as a new sound effect. 

 

3.1.3 DLL Files 

 UDK provides the option for an UnrealScript class to bind to an external DLL file, by 

declaring it in the class definition. For example, the following line declares that ExampleClass 

binds to the ExampleDLL: 

Figure 39: UDK's Sound Editor and a sound imported into a scene. 
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class ExampleClass extends GameInfo DLLBind(ExampleDLL); 

 By binding to a DLL file, an UnrealScript class can call the declared in that DLL file 

methods or functions, which are written in C/C++. This proves to be an easy and efficient way 

to implement functions that either UDK does not support at all, like I/O operations, or it would 

slow down the application, due to the fact that UnrealScript is slow. 

 A function residing inside the DLL must be declared in the UnrealScript class file and 

then it can be called exactly like it would be if it was an original UnrealScript function. 

Following the previous example and assuming that the ExampleDLL contained a function called 

ExampleDLLFunction, the code inside the UnrealScript class would be: 

dllimport final function ExampleDLLFunction(); //function declaration 

… 

ExampleDLLFunction(); //function call 

3.1.4 Input Manager 

 The input manager is responsible to handle the communication between the input 

hardware, such as keyboard, mouse, joystick or button boxes and the application. The input 

manager examines a configuration file based on DefaultInput.ini and according to it binds each 

input action, such as joystick/mouse movement or key press to a specific method designated 

to perform the selected action. The Unreal Editor comes with a default configuration file with 

some predefined bindings between buttons and methods, but this file can be altered to match 

the needs. 

 In order to create a new binding between a button press and the performed action, or 

to change an already defined binding, this change must be reflected in the configuration file. 

Also, the method defined in the configuration file must exist in the UnrealScript code of the 

new application being developed. 

For the purposes of the experiment the default input settings in the configuration file 

DefaultInput.ini didn’t need any variations. 

3.1.5 Lighting and Rendering Engine 

 The Unreal Development Kit comes along with Gemini, a flexible and highly optimized 

multi-threaded rendering system, which creates a lush visual reality and provides the power 

necessary for photorealistic simulations. UDK features a 64-bit color HDR rendering pipeline. 

The gamma-corrected, linear color space renderer provides for immaculate color precision 

while supporting a wide range of post-processing effects such as motion blur, depth of field, 

bloom, ambient occlusion and user-defined materials. 

 UDK supports all modern per-pixel lighting and rendering techniques, including normal 

mapped, parameterized Phong lighting, custom user-controlled per material lighting models 

including anisotropic effects, virtual displacement mapping, light attenuation functions, pre-

computed shadow masks and directional light maps. UDK provides volumetric environmental 

effects that integrate seamlessly into any environment. Camera, volume and opaque object 

interactions are all handled per-pixel. Worlds created with UDK can easily feature multi-

layered, global fog height and fog volumes of multiple densities. 
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It also supports a high-performance texture streaming system. Additionally, UDK’s 

scalability settings ensure that the application will run on a wide range of PC configurations, 

supporting both Direct3D 9 and Direct3D 11. 

The Unreal Development Kit includes the Unreal Lightmass, which is an advanced 

global illumination solver, built to take full advantage of the rendered. Unreal Lightmass 

supports the illumination with a single sun, giving off soft shadows and automatically 

computing the diffuse interreflection (color bleeding). It also offers a variety of options to 

optimize the illumination solution. It can provide detailed shadows by using directional light 

mapping with static shadowing and diffuse normal-mapped lighting. An unlimited number of 

lights can be pre-computed and stored in a single set of texture maps. 

3.1.6 Unreal Lightmass 

Unreal Lightmass is an advanced global illumination solver. It uses a refined version of 

the radiosity algorithm, storing the information in each illuminated 3D object’s light map, 

while providing ray-tracing capabilities by supporting Billboard reflections, which allows 

complex reflections even with static and dynamic shadows with minimal CPU overhead. 

Unreal Lightmass is provided as part of the Unreal Development Kit (UDK) and it can 

only work on scenes created through it. Its performance is dependent on the scenes created 

and the types of light emitting sources that exist in the scene. It is optimized to increase the 

renderer’s performance. 

Its main features include: 

Area lights and shadows: With Lightmass, all lights are area lights by default. The shape used 

by Point and Spot light sources is a sphere, whose radius is set by LightSourceRadius under 

LightmassSettings. Directional light sources use a disk, positioned at the edge of the scene. 

Light source size is one of the two factors controlling shadow softness, as larger light sources 

will create softer shadows. The other factor is distance from the receiving location to the 

shadow caster. Area shadows get softer as this distance increases, just like in real life. 

Diffuse interreflection: Diffuse Interreflection is by far the most visually important global 

illumination lighting effect. Light bounces by default with Lightmass, and the Diffuse term of 

each material controls how much light (and what color) bounces in all directions. This effect is 

sometimes called color bleeding. It's important to remember that diffuse interreflection is 

incoming light reflecting equally in all directions, which means that it is not affected by the 

viewing direction or position. 

Mesh Area Lights from Emissive: The emissive input of any material applied to a static object 

can be used to create mesh area lights. Mesh area lights are similar to point lights, but they 

can have arbitrary shape and intensity across the surface of the light. Each positive emissive 

texel emits light in the hemisphere around the texel's normal based on the intensity of that 

texel. Each neighboring group of emissive texels will be treated as one mesh area light that 

emits one color. 

Translucent shadows: Light passing through a translucent material that is applied to a static 

shadow casting mesh will lose some energy, resulting in a translucent shadow. 
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3.1.7 UnrealScript 

 UnrealScript was designed to provide the developers with a powerful, built-in 

programming language that maps the needs of game programming. The major design goals of 

UnrealScript are: 

Enabling time, state and network programming, which traditional programming 

languages do not address but are needed in game programming. C/C++ deals with AI 

and game logic programming with events which are dependent on aspects of the 

object's state. This results in long-length code that is hard to maintain and debug. 

UnrealScript includes native support for time state and network programming which 

not only simplifies game programming, but also results in low execution time, due to 

the native code written in C/C++; 

Programming simplicity, object-orientation and compile-time error checking, helpful 

attributes met in Java are also met in UnrealScript. More specifically, deriving from 

Java UnrealScript offers: 

 A pointerless environment with automatic garbage collection;  

 A simple single-inheritance class graph; 

 Strong compile-time type checking; 

 A safe client-side execution "sandbox"; 

 The familiar look and feel of C/C++/Java code. 

Often design trade-offs had to be made, choosing between execution speed and 

development simplicity. Execution speed was then sacrificed, since all the native code in 

UnrealScript is written in C/C++ where performance outweighs the added complexity. 

UnrealScript has very slow execution speed compared to C, but since a large portion of the 

engine's native code is in C, only the 10%-20% of code in UnrealScript that is executed when 

called, has low performance. 

The Unreal Virtual Machine 
The Unreal Virtual Machine consists of several components: The server, the client, the 

rendering engine, and the engine's support code.  

The Unreal server controls all the gameplay and interaction between players and 

actors (placeable entities). A listen server is able to host both a game and a client on the same 

computer, whereas the dedicated server allows a host to run on the computer with no client. 

All players connect to this machine and are considered clients.  

The gameplay takes place inside a level, containing geometry actors and players. Many 

levels can be running simultaneously, each being independent and shielded from the other. 

This helps in cases where pre-rendered levels need to be fast-loaded one after another. Every 

actor on a map can be either player-controlled or script-controlled. The script controls the 

actor's movement, behavior and interaction with other actors. Actor's control can change in 

game from player to script and vice versa. 

Time management is done by dividing each time second of gameplay into Ticks. Each 

tick is only limited by CPU power, and typically lasts 1/100th of a second. Functions that 
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manage time are really helpful for gameplay design. Latent functions like Sleep, MoveTo and 

more cannot be called from within a function, but only within a state. 

When latent functions are executing in an actor, the actor's state execution does not 

continue until the latent functions is completed. However, other actors may call functions 

from the actor that handles the latent function. The result is that all functions can be called, 

even with latent functions pending.  

In UnrealScript, every actor is as if executed on its own thread. Windows threads are 

not efficient in handling thousands at once, so UnrealScript simulates threads instead. This 

means that 100 spawned actors will be executed independently of each other each Tick. 

Object Hierarchy 
UnrealScript is purely object-oriented and comprises of a well-defined object model 

with support for high level object-oriented concepts such as serialization and polymorphism. 

This design differs from the monolithical one that classic games adopted having their major 

functionality hardcoded and being non-expandable at the object level. Before working with 

UnrealScript, understanding the object's hierarchy within Unreal is crucial in relation to the 

programming part. 

The main gain from this design type is that object types can be added to Unreal at 

runtime. This form of extensibility is extremely powerful, as it encourages the Unreal 

community to create Unreal enhancements that all interoperate. The five main classes one 

should start with are Object, Actor, Pawn, Controller and Info. 

Object is the parent class of all objects in Unreal. All of the functions in the Object class 

are accessible everywhere, because everything derives from Object. Object is an abstract base 

class, in that it doesn't do anything useful. All functionality is provided by subclasses, such as 

Texture (a texture map), TextBuffer (a chunk of text), and Class (which describes the class of 

other objects). 

Actor (extends Object) is the parent class of all standalone game objects in Unreal. The 

Actor class contains all of the functionality needed for an actor to be placed inside a scene, 

move around, interact with other actors, affect the environment, and complete other useful 

game-related actions. 

Pawn (extends Actor) is the parent class of all creatures and players in Unreal which 

are capable of high-level AI and player controls. 

Controller (extends Actor) is the class that defines the logic of the pawn. If pawn 

resembles the body, Player is the brain commanding the body. Timers and executable 

functions can be called from this type of class. 

Info (extends Actor) is the class that sets the rules of gameplay. Players joining will be 

handled in this class, which decides which Pawn will be created for the player in the scene and 

which controller will handle the behavior of the pawn. 
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Figure 40: Class Hierarchy Diagram for 3 user-created classes: VEGame , VEPawn and VEPlayerController. 

In the example shown above, in Figure 40, the class hierarchy for the three most 

important classes that control the application flow is depicted. As already described, the 

VEGame class decides how new players entering the scene are treated. The VEPawn class 

describes the properties and the behavior of a Pawn entering a scene that is handled by 

VEGame. Finally, the VEPlayerController class handles the VEPawn in the scene, according to 

user input. 

Timers 
Timers are a mechanism used for scheduling an event to occur. Time management is 

important both for gameplay issues and for programming tricks. All Actors can have more than 

one timers implemented as an array of structs. The native code involving timers is written in 

C++, so using many timers per tick is safe, unless hundreds expire simultaneously causing the 

execution UnrealScript code.  

The following function starts a timer counting the time that the participant has 

available to navigate the scene and then database is closed properly and returns backs to main 

menu. 

SetTimer (StageDuration,false,'EndExperiment'); 

This line of code defines that after StageDuration – a constant value –seconds, the 

function “'EndExperiment'” should be called. The false value passed as an argument means 

that this timer should not repeat the counting, it will only work once. 

 
States 

States are known from Hardware engineering, where it is common to see finite state 

machines managing the behaviour of a complex object. The same management is needed in 

game programming, allowing each actor to behave differently, according to its state. The usual 

case to implement states in C/C++ is to include many switch cases based on the object's state. 

This method, however, is not efficient, since most applications require many states, resulting 

to difficulties in developing and maintaining the application.  

UnrealScript supports states at the language level. Each actor can include many 

different states, and only one can be active. The state the actor is in reflects the actions it 
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wants to perform. Attacking, Wandering, Dying are some states the pawns have. Each state 

can have several functions, which can be the same as another state's functions. However, only 

the functions in the active state can be called. For example, if an application dictates that an 

action should only be performed in a specific stage, then this stage could be encapsulated in a 

different state that implements the function corresponding to that action differently than 

other states. 

States provide a simple way to write state-specific functions, so that the same function can 

be handled in different ways, depending on which state the actor is in when the function is 

called. Within a state, one can write special "state code", using the regular UnrealScript 

commands plus several special functions known as "latent functions". A latent function is a 

function that executes slowly (i.e. non-blocking), and may return after a certain amount of 

"game time" has passed. Time-based programming is enabled which is a major benefit that 

neither C/C++, nor Java offer. Namely, code can be written in the same way it is 

conceptualized. For example, a script can support the action of "turn the TV on; show video for 

2 seconds; turn the TV off". This can be done with simple, linear code, and the Unreal engine 

takes care of the details of managing the time-based execution of the code. 

 

Interfaces 
UnrealEngine3 UnrealScript has support for interface classes that resembles much of 

the Java implementation. As with other programming languages, interfaces can only contain 

function declarations and no function bodies. The implementation for these declared methods 

must be done in the class that actually implements the interface. All function types are allowed 

and also events. Even delegates can be defined in interfaces.  

An interface can only contain declarations which do not affect the memory layout of 

the class: enums, structs and constants can be declared, but not variables. 

Delegates 
Delegates are a reference to a function within an instance. Delegates are a 

combination of two programming concepts, e.g. functions and variables. In a way, delegates 

are like variables in that they hold a value and can be changed during runtime. In the case of 

delegates, though, that value is another function declared within a class. Delegates also 

behave like functions in that they can be executed. It is this combination of variables and 

functions that makes delegates such a powerful tool under the right circumstances.  

UnrealScript Compiler 
The UnrealScript compiler is three-pass. Unlike C++, UnrealScript is compiled in three 

distinct passes. In the first pass, variable, struct, enum, const, state and function declarations 

are parsed and remembered, e.g. the skeleton of each class is built. In the second pass, the 

script code is compiled to byte codes. This enables complex script hierarchies with circular 

dependencies to be completely compiled and linked in two passes, without a separate link 

phase. The third phase parses and imports default properties for the class using the values 

specified in the default properties block in the .uc file. 

UnrealScript Programming Strategy 
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UnrealScript is a slow programming language when compared to C/C++. A program in 

UnrealScript runs about 20x slower than C. However, script programs written are executed 

only 5-10% of the time with the rest of the 95% being handled in the native code written in 

C/C++. This means that only the 'interesting' events will be handled in UnrealScript. For 

example, when writing a projectile script, you typically write a HitWall, Bounce, and Touch 

function describing what to do when key events happen. Thus, 95% of the time, your projectile 

script isn't executing any code, and is just waiting for the physics code to notify it of an event. 

This is inherently very efficient. 

The Unreal log may provide useful information while testing scripts. The UnrealScript 

runtime often generates warnings in the log that notify the programmer of non-fatal problems 

that may have occurred. 

UnrealScript's object-oriented capabilities should be exploited as much as possible. 

Creating new functionality by overriding existing functions and states leads to clean code that 

is easy to modify and easy to integrate with other peoples' work. Traditional C techniques 

should be avoided, like writing a switch statement based on the class of an actor or the state 

because code like this tends to clutter as new classes and states are added or modified. 

 

3.2 Flash Applications as User Interfaces (UI) 
 The Unreal Development Kit supports Heads-Up Displays (HUD) that can be 

constructed in UnrealScript, but in order to create a Graphical User Interface that must be 

displayed on top of the regular viewport, such as a game which requires user response to it, 

this is inefficient. For this reason, UDK provides support to integrate a Flash application inside 

a scene and project it on top of the surface of a 3D object in the scene, or in the center of the 

screen. 

 A Flash application can be ideally used as a User Interface in UDK, because it 

incorporates the ability to display animated graphics, text or buttons on the screen on top of 

the scene being rendered. It can also receive user input and provide feedback according to it. 

 A Flash application consists of many frames, placed in the main timeline. The flow of 

the frames being displayed can be changed through ActionScript - Flash’s scripting language, 

thus allowing to control which frame will be displayed next and when that will happen. Each 

frame can have its own set of graphics, texts, movie clips and buttons and a script controlling 

the behavior of the frame’s components. 
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Figure 41: Flash Authoring environment with a Flash User Interface loaded. 

3.2.1 Authoring environment for interactive content 

 In order to create a Flash application, a Flash authoring environment is necessary. 

There are many different Flash authoring environments available, but the most powerful is 

Adobe Flash Professional CS5.5. Although it is not free, a 30-day trial version is available for 

download. 

 A freshly created Flash application is equiped with an empty stage and an empty 

timeline. Objects like movie clips, graphics, buttons, text, sounds or other Flash components 

can be inserted into the application’s library, or directly into the scene in the currently selected 

frame. Various different frames can be created with different components inserted into each 

frame and the control of the application can be handled through ActionScript. 

 When the Flash application is fully developed and working, the authoring environment 

can compile the assets and the ActionScript comprising the application into an executable file 

in SWF format. Such files can be directly executed by a Flash player and also this is the format 

that UDK supports. 

 

3.2.2 ActionScript 2.0 

 Although Flash Professional provides the tools to create applications running in all 

versions of ActionScript (up to 3.0) and of Flash Player (up to 10.3), UDK currently only 

supports the integration of Flash applications with ActionScript 2.0 (AS2) and Flash Player 8. 
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 ActionScript is a scripting programming language and it is a dialect of ECMAScript, 

meaning it has a superset of the syntax and semantics of the more widely known JavaScript. It 

is suited to the development of Flash applications.  

The language itself is open-source in that its specification is offered free of charge and 

both an open source compiler and open source virtual machine are available. It is often 

possible to save time by scripting something rather than animating it, which usually also 

enables a higher level of flexibility when editing. 

ActionScript 2.0 primitive data types 
 The primitive data types supported by ActionScript 2.0 are: 

 String: A list of characters such as "Hello World" 

 Number: Any Numeric value 

 Boolean: A simple binary storage that can only be "true" or "false". 

 Object: Object is the data type all complex data types inherit from. It allows for 

the grouping of methods, functions, parameters, and other objects. 

ActionScript 2.0 complex data types 
There are additional "complex" data types. These are more processor and memory 

intensive and consist of many "simple" data types. For AS2, some of these data types are: 

 MovieClip - An ActionScript creation that allows easy usage of visible objects. 

 TextField - A simple dynamic or input text field. Inherits the MovieClip type. 

 Button - A simple button with 4 frames (states): Up, Over, Down and Hit. 

Inherits the MovieClip type. 

 Date - Allows access to information about a specific point in time. 

 Array - Allows linear storage of data. 

 XML - An XML object 

 XMLNode - An XML node 

 LoadVars - A Load Variables object allows for the storing and send of HTTP 

POST and HTTP GET variables 

 Sound 

 NetStream 

 NetConnection 

 MovieClipLoader 

 EventListener 

3.2.3 Connection of the User Interface (UI) with the application 

 The integration of a Flash application inside a scene in UDK requires that it should first 

be compiled into an SWF file and imported inside the UDK asset library. Afterwards, either 

UnrealScript or Unreal Kismet can initiate the Flash application, interact with it, hide it or 

instruct it to stop playing.  

While a Flash application is playing inside a scene, UnrealScript can initiate a call of an 

ActionScript function and vice versa. This feature allows full interaction between the Flash 

interface and the application. Consequently, it is easy and efficient to create an application 



Chapter 3 – Software Architecture and Development Framework 
 

 58 

that initiates a Flash interface whenever it is required and then receive the user’s response and 

order it to stop playing. 

 

Figure 42: Initiation of a Flash User Interface Application through Unreal Kismet. 

 An example can be seen in Figure 42, which shows the action “Open GFx Movie” firing 

up when it receives the “Level loaded” event. This action performs the required operations to 

start the Flash Movie that is inserted as an argument in its properties. It can also be set 

whether this movie can capture user input, as well as where to project this movie, either in the 

screen or on an Actor’s surface. 

 Also, Unreal Kismet provides the action “Close GFx Movie”, which handles the 

termination of the selected Flash application. 

 

3.3 SQL database system as data storage 
 A database is an organized collection of data, today typically in digital form. The data 

are typically organized to model relevant aspects of reality (for example, the availability of 

rooms in hotels), in a way that supports processes requiring this information (for example, 

finding a hotel with vacancies). 

 The need of using a database system arose when data from eye’s gaze acquired by 

experimental participants would need processing after the experiment was completed. 

Keeping the records in a single text file involved two issues. The first one was the abstract 

format of records making the process of data very difficult and time consuming. The second 

one was the large numbers of records per participant which made it too difficult for data 

analysis because each participant’s records had to be extracted separately. 
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3.3.1 SQLite Database Engine 

 SQLite is a software library that implements a self-contained, serverless, zero-

configuration, transactional SQL database engine. The SQLite database engine is free for use 

for any purpose, commercial or private.  

 SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite 

does not have a separate server process. SQLite reads and writes directly to ordinary disk files. 

A complete SQL database with multiple tables, indices, triggers, and views, is contained in a 

single disk file. 

 

Figure 43: Using SQLite shell to make a database. 

 SQLite is fast, stand-alone, license free and easy setup-configure. In addition, it comes 

with a standalone command-line interface (CLI) client that can be used to administer SQLite 

databases. Because of the above technical characteristics, SQLite is the perfect choice for use 

in this project.  

3.3.2 SQL Database Schema  

 A database schema of a database system is its structure described in a formal 

language supported by the database management system (DBMS) and refers to the 

organization of data to create a blueprint of how a database will be constructed. A database 

schema is a way to logically group objects such as tables, views, stored procedures etc., e.g. a 

container of objects. Schemas can be created and altered in a database, and users can be 

granted access to a schema. A schema can be owned by any user, and schema ownership is 

transferable. 
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Figure 44: Exploring the database schema “VREXPERIMENT_FINAL”, using the SQLite Administrator tool. 

3.3.3 Connection of the Database Engine with the application 

In order for Unreal Game Engine to access the database file, the appropriate Driver 

should be in place. At run time, the game engine dynamically links with the SQLite driver and 

using the library functions the database is loaded making it accessible within the unreal script 

code. 

The following code creates a new instance of the SQLite Database class which will be 

the interface to the SQLiteDB_Driver.dll. After the instance is created the function 

SQLiteDB_Init() is called. 

//Create an instance of the SQLite Database class 

 SQLiteDB =  new class 'SQLProject_DLLAPI'; 

 

//Load SQLite Database File 

 SQLiteDB_Init(); 

 

The call of the following function initializes the SQLiteDriver. After successful 

initialization of the function, SQL_loadDatabase () is called given the path of the database file 

to be loaded. If everything was successful, there is access to the database and the appropriate 

error message is printed on the screen. 

function SQLiteDB_Init(){ 
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… 

   //Load Sqlite driver 

   SQLiteDB.SQL_initSQLDriver (SQLDrv_SQLite); 

 

     //Load SQLite Database File ("VRExperiment.s3db"); 

 if(SQLiteDB.SQL_loadDatabase("SQLite3_Databases\\VRExperiment.s3db")){ 

… 

} else 

  `log ("Cannot load database:  VRExperiment.s3db");  

} 

 

 

 The following figure depicts the connection between the Unreal game engine and the 

SQLite database file through the use of a driver. 

 

 
Figure 45: Game engine using a dynamic link library in order to access the database file.  

 

 

3.4 Eye-tracking device’s software 
 The software used in relation to the eye-tracking device embedded on the HMD is the 

ViewPoint EyeTracker® of Arrington Research Company which provides a complete eye 

movement evaluation environment including integrated stimulus presentation, simultaneous 

eye movement and pupil diameter monitoring, and a Software Developer’s Kit (SDK) for 

communicating with other applications. It incorporates several methods from which the user 

can select to optimize the system for a particular application. It provides several methods of 

mapping position signals extracted from the segmented video image in EyeSpace™ coordinates 

to the participant’s point of regard in GazeSpace™ coordinates.  

3.4.1 Overview of the software 

An overview of the basic features of the Eye-tracking software will be described. For 

full documentation please refer on the user manual of the Viewpoint application found on 

Bibliography-References Chapter. 
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Figure 46: Start-up arrangement of the user windows. 

EyeCamera Window 
 The EyeCamera window tool bar provides easy controls to make the eye tracking 

results more reliable and to extend the range of traceable subjects. It is very easy to limit the 

areas within which the software searches for the pupil and corneal reflection to exclude 

extraneous reflections and dark shadows.  

 

 

Figure 47: EyeCamera window. 

EyeSpace Window 
 The calibration procedure is easy, flexible and intuitive. The number of calibration 

points to use could be set, their color, and how fast to present them to the subject or the 

defaults set within ViewPoint could be kept. The EyeSpace window provides a visualization of 

the calibration mapping so that it is evident, quickly and easily, whether the calibration was 

successful. Outliers can be repeated individually if necessary to avoid recalibration. Individual 

points are easily represented and correction can be performed at any point. Each individual 

subject's calibration settings can be saved and reloaded for use in subsequent trials. 
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   Figure 48: EyeSpace window on the left before calibration.   
 EyeSpace window to the right after calibration of a participant’s eye. 

Real-Time Feedback 
 The PenPlot window provides real-time eye position, velocity, torsion and pupil size 
measurement feedback. The GazeSpace window provides real-time gaze position and fixation 
information. User defined regions of interests make the analysis task easy. 
 

 

Figure 49: PenPlot and GazeSpace windows on the left and right images respectively. 

 

Controls Window 
 The controls window provides many features. The most important are:  Recording 

scene and screen movies; locating the pupil and glint methods; feature criteria and regions of 

interests. The most intricate option to decide on was choosing the most appropriate method 

for the pupil and glint. A good choice on this option leads to reliable data acquisition from the 

eyes with minimum adjustments. It’s worth mentioning that out of all feature methods "Pupil 

Location" was chosen as it reliably produced the most accurate and stable results with 

minimum tuning. The “Pupil Location” method simply identifies the pupil of the eye as the 

darkest area in the grayscale image received from the infrared cameras. “Pupil Location“ 
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tolerates well in-and-out (closer or farther from the camera, z-axis) movement of the head but 

is more sensitive to translation of the head in a horizontal (sideways, x-axis) or vertical 

(up/down, y-axis) direction. 

 

 

Figure 50: Control Window in tab of the EyeA (right eye) where can be adjusted various parameters for the “Pupil 
Location” method. 

 

3.4.2 Binocular vs. Monocular Method 

   The Eye-tracker used in this experiment supports both binocular and monocular eye 

tracking, i.e. using either both cameras or a single one. Binocular eye tracking has the added 

advantage that by using both eyes' point gaze data it can calculate the z-axis coordinates 

correlated to the participant's point-of-view within the virtual scene. In other words, by 

exploiting binocular parallax the depth of a gaze point can be estimated, thus discriminating 

between collinear objects that project on the same 2-dimensional coordinates on the retina. 

On the other hand, calibrating two cameras is time consuming and makes participants feel 

dizzy and uncomfortable. Additionally, the EyeSpace coordinate system acquired after 

calibration is harder to manipulate, requiring complex calculations to get mapped to our eye 

tracking data acquisition infrastructure. On the other hand, the monocular method lacks the 

depth discrimination of gaze points that was mentioned above, but is easier to utilize and 

needs less time to calibrate its EyeSpace coordinate system. For this reason we opted for 

monocular tracking of eye gaze.  

 

 

 



Chapter 4 – UI Implementation 
 

 65 

4 Chapter 4 – UI Implementation 
 In this chapter, the implementation of the User Interface will be described, e.g., the 

way in which the 3D Virtual Scenes were designed and the applications which were used for 

the needs of the experiment. In addition, the lighting effects simulating the sun and the Flash 

UI which included the main menu in order to control all stages and the procedure of the 

experiment will be described.  

4.1 Creating the 3D Virtual Scenes 
 In order to create the 3D Virtual Scenes that the application would render, several 

steps were required, from creating the actual 3D objects placed in the scenes to importing 

them inside UDK and placing them to a virtual scene, as well as creating and assigning the 

materials to these objects. These steps will be further explained below. 

 

4.1.1 Creating the Visual Content 

A six by six meters virtual house was chosen as the rendered displayed environment, 

divided in four zones according to the experiment’s specifications. The four zones designed 

was the lounge, office, kitchen and dining area. Scattered around each zone, six 3D objects as 

shown in Table 1 were placed in random order.  

3D models were created or downloaded from 3D models’ repositories and were placed 

in a scene with the help of an industry-standard 3D modeling software (Autodesk 3ds Max 

Design 2012). The final result can be seen in Figure 54, which depicts the scene in lit mode 

(after calculating the lighting space of the scene). 

Before the 3D objects could be exported, two UV channels had to be set for each one 

of them. The first channel was designed to reflect the way a texture wraps up the 3D model 

and the second channel laid down the surfaces of the object for the computation of the 

lighting effects on the object later in UDK.  

Lounge Office Kitchen Dining 

Coats hanger Sword Basketball Candlestick 

Television Tennis racquet Pen Clothe hanger 

Coffee mug Pan Toothbrush American football 

Coffeepot Office basket Teapot Screwdriver 

Cowboy hat Book Wine Flower vase 

Hammer Lighter Plate Tablecloth 

Table 1: Objects existing in each zone of the house. 

Figure 51 shows the 3D representation of a lounge table object, from different 

viewpoints in 3ds Max. The object has only a basic gray material applied on it, since these were 

assigned at a later stage in UDK, because UDK does not support the import of materials 

created in 3ds Max. These materials were applied on the object in order for UDK to find out 

the different material slots that exist for that object. The geometry of the object will be 

exported to the UDK and can then be used as an actor. 
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Figure 51: A 3D object representation of a lounge table. The 3d object was created in 3ds Max and its geometry 
will be exported to UDK. 

In order to create and assign a material to an object with correctly assigned textures, 

as well as realistically illuminate the object imported in UDK, there must be two UV channels 

defined for each 3D object in 3ds Max. The first UV channel will be used to apply and align a 

material onto the object and can be created by applying a UVW map modifier to the editable 

mesh representing the object, as seen in Figure 52. 

 

Figure 52: The UVW mapping of an object in 3ds Max. This UV channel is used by UDK in order to apply a material 
correctly onto the object. 
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 The second UV channel is needed by UDK in order to correctly apply illumination and 

shading effects on the object, giving more detail on the bigger polygons of the channel. This 

channel can be created in 3ds Max by applying a UVW unwrap modifier on the editable mesh 

that will be exported and then, in the respective editor, select to automatically flatten the 

UVW mapping. An example of this can be seen in Figure 53. 

 

Figure 53: The UVW unwrapping of an object in 3ds Max. This UV channel is used by UDK in order to realistically 
illuminate an object, giving more shading detail in the bigger polygons of the object in the channel. 

 

Figure 54: The final scene with all the 3D objects created in 3ds Max. The final scene does not include items that 
were placed in each zone because their choice was made much later. 



Chapter 4 – UI Implementation 
 

 68 

4.1.2 Creating texture maps 

 When the geometry of the scene was completed, textures were applied to elements of 

the scene and objects.  

 In order to create the textures maps of the models, Shader Map Pro was used. 

Although it is not free, it can be used without license limited to using only the command line 

interface (CLI). 

 An example of creating a texture map for a 3D carpet model is presented (Figure 55).In 

order to give realistic detail to the 3D carpet model a normal map is applied. The normal map 

creates the visual appearance of uneven surface, therefore, it adds realism to the object.  

 

Figure 55: The image represents the normal map applied on the cylinder model as showing in the figure below 
(second image). 

 

Figure 56: First picture shows the original diffuse map (image), second one is after applying a normal map on it. 

 Another example of creating a texture map is the need for surfaces that reflect the 

light. The following figure depicts the specular map of a wooden surface. Applying the specular 

map makes the surface of the 3D object reflect any sort of light.  
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Figure 57: The image represents the normal map applied on the cylinder model as showing in the figure below 
(second image). 

 

Figure 58: First picture shows the original diffuse map (image), second one is after applying a specular map on it. 

 

 It must be noted that certain objects do not require any other maps except a diffuse 

map such as, for example, a 3D book model which is placed under shadow. 

4.1.3 Setting up the virtual scene in UDK 

 Inside UDK, the created 3D objects were imported, by selecting the import option in 

the asset library of the Unreal Editor. UDK reads the file containing the exported 3D objects 

and recreates the geometry of the objects. It also creates the different material slots for each 

part of the 3d object and initializes the UV channels of the object. 

Although the collision shape of a 3D object can be automatically performed by UDK 

using the collision detection system, the experiments required a different solution instead of 

the automatic collision one. Blocking volumes were created for each 3D object, according to its 
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geometry. The advantage of this choice was that it provided the capability to manually change 

the dimension of blocking volumes which was not possible to do with a collision shape. For the 

purposes of the experiments, the collision detection mechanism had to be precise and 

accurate. Blocking volumes were applied only on the twenty-four 3D objects scattered around 

the scene. The technical details and justification in relation to employing blocking volumes will 

be described in the next chapters. 

An example of the creation of a blocking volume is presented in the following figure, 

which shows a rose box and inside a wine bottle 3D model imported in UDK. The rose box 

surrounding the geometry of the 3D object is the blocking volume that was created for that 

object.  

 

Figure 59: A manually blocking volume was created and applied on the wine bottle 3D model.  One thing to pay 
attention is that in the properties of the blocking volume is the option in the red rectangular. Collision type is set 

to “COLLIDE_BlockAll” which means that nothing can go through that volume. 

The imported models were placed inside a new virtual scene. Then the texture images 

for each object were imported and materials were created and assigned to the objects in the 

scene, respecting the textures and the properties of the material for each object. As already 

mentioned, UDK’s Material Editor offers the ability to not only set a diffuse texture or 

expression for a material, but also alter its properties, such as setting the specular color and 

power of the material, or defining a normal map, which can realistically differentiate the 

lighting of a rough (not smooth) surface. 
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For example, Figure 60 shows two materials in the Material Editor, applied on a 

sample sphere object. The first material on the left is a matte grey one, with no specular 

properties and consequently does not produce any lighting effects on the object’s surface. The 

material on the right has a white color connected to its specular property, with high specular 

power (20.0), so it produces a specular effect due to the light that the object receives.  

 

Figure 60: On the left is a grey matte material, with no specular color. On the right is the same grey material with 
white specular color. 

 The Setting up a normal map for a material helps Lightmass calculate the light that 

bounces on the object with that material applied and scatter it according to the supplied 

normal map. This is very helpful in order to create the illusion of rough or relief surfaces on 

objects with smooth geometry, such as the wooden surface of a table, or a carpet. 

 For example, in order to create a wool carpet, the geometry of the carpet should be 

extremely complex, so as to describe the wool surface. The other option is to create a normal 

map for the carpet material, defining that although the geometry’s surface is smooth, the light 

should scatter as though bouncing on a wool surface, as can be seen in Figure 61.  

 

Figure 61: A material for the surface of a carpet with a normal map defined. As can be seen from the sample 
sphere with the material applied on it, the surface of the carpet is relief.  

 

This is a very efficient way of creating the illusion of rough or relief surfaces, with 

realistic lighting effects, while keeping the triangle count of the 3D objects at low levels. This is 

demonstrated in Figure 62, where the normal-mapped wool material was applied on a simple 

box object, with only 43 triangles, representing the surface of a carpet. As can be seen, the 

lighting effects seem very realistic, just as a very complex – in terms of triangle count – 

geometry would produce. 
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Figure 62: A carpet surface object with the normal mapped material applied on it. Although the carpet’s 
geometry is simple, with only 43 triangles, the lighting effects give the illusion of a wool (and complex) surface. 

 

For the experiments, it was required that the lighting effects of the sun light could be 

visible from the indoors room through a door with glass windows. This means that the 

materials for these windows should be transparent, representing a glass material. Also, they 

should allow the light to come through and illuminate the room. UDK supports translucent 

materials, by offering the option to set a material as such, thus, allowing the light to pass 

through it. 

The diffuse and emissive properties of the translucent material affect the color of the 

light that passes through the material. There are different levels of translucency supported, 

defined by the opacity property of the material, so that the higher the opacity value of a 

material, the less light it allows to pass through. There is an example displayed in Figure 63, 

showing the glass material used on the glass window 3D objects in the scene. 

 

Figure 63: A translucent material representing the glass in a window. 
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As explained above, creating the materials for the 3D objects and inserting them into 

the required virtual scene gave the impression of them appearing as real-world objects. The 

resulting scene including the 3d objects placed inside is shown in Figure 64. It must be noted 

that this virtual scene is still far from being considered as realistic, since there are no lighting 

effects present. For this reason, the lighting of the scene must be configured and Lightmass 

should be allowed to execute and handle the lighting computation. 

 

Figure 64: An unlit scene with the modeled 3D objects in UDK. The created materials are applied to the respective 
objects. 

 Lighting effects provide a huge difference in how realistic a virtual scene is perceived 

to be and UDK’s Lightmass will be used to precompute these lighting effects. 

 For the experiment to go through, it was required to compute the lighting effects 

simulating the sunlight, since it was the only one light source. In order to achieve that a 

dominant directional light was used, representing the sun. The sunlight was rendered 

according to the default midday lighting settings provided by UDK. The default lightning 

configuration settings can be viewed in Figure 65. 
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Figure 65: Default Midday lighting configuration. 

 During the rendering process Lightmass was instructed to simulate three bounces of 

indirect lighting between all geometry of the virtual scene and the final results can be seen in 

the following figure.  The resulting scenes of the Lightmass algorithm computation are shown 

in the following figure. 

Figure 66: Screenshot of final scene after the light computation using unreal light mass. 
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4.2 Application menu as Flash UIs 
 Although UDK has preliminary support for User Interfaces (UI), the ability to embed 

Flash User Interfaces was preferred for the requirements of the experiments. The Flash 

applications that were used as User Interfaces included the need for main menu. 

 The application used in the experiments included only a main menu in order to control 

all the stages of the experiment including the testing phase. The menu screen that appeared 

when the experiment started is depicted on the following figure.  

 

 

Figure 67: The start Flash menu that was displayed when the experiment application was started. 

 

In order for UDK to embed a Flash application as a user interface and display it, it is 

required to import the .SWF file of the Flash UI. Then, the user interface can be loaded and 

displayed  in an empty scene, by connecting the “Open GFx Movie” action to the “Level Loaded 

and Visible” event, which is automatically generated and activated by UDK when the virtual 

scene becomes visible. The “Open GFx Movie” action is provided by UDK and it accepts an 

imported Flash UI as an argument, which it loads and displays on the screen or on the specified 

surface, if one has been specified. For the specific needs of the menu screens in the 

experiments, the Flash menus should be displayed at the center of the screen. 
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Figure 68: The start menu Flash UI is loaded and displayed immediately after the virtual scene becomes visible. 

 

 The experiment consisted of two phases. During phase one each participant navigates 

a training scene in order to get familiar with the Immersive Virtual Environment (IVE) and the 

equipment. The second phase is the main experiment, when each participant navigates the 

house scene. For debugging purposes, an additional testing stage was included in order to 

identify any possible errors during the main experiment such as eye tracking validation testing.  

 To start each stage the “Start” or “Training” button was pressed by the researchers. 

Pressing the “Start” or “Training” button in the Flash UI results in the execution of a call to a 

respective method in the controller class to start the preferred stage. In particular pressing the 

“Start” or “Training” button results in the following code to be executed: 

ExternalInterface.call("startExperiment");     //Start the main experiment and load the house scene 

 

ExternalInterface.call("startTraining");          //Load the training scene 

  

 The Flash player of the UDK then searches for the StartExperiment or StartTraining 

methods in the controller class and executes them, which initiates the respective stage of the 

experiment. The controller then calls the appropriate method, initializes and loads the proper 

scene. Each stage had to be initiated by the researchers so as to avoid accidental choices by 

the subjects. 
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5 Chapter 5 – Implementation 
 In this chapter, the implementation and development of the application used in the 

virtual experiments will be described. More specifically, the way in which the 3D Virtual Scene 

was configured, in order to the make the virtual environment stereoscopic and work according 

to the head mounted display’s specifications. In addition, the participants’ actions logging 

system will be described in detail. Experimental design issues, which were requisite in order to 

conduct eye-tacking experiments and be able to examine and analyze the gaze data, will also 

be presented. 

5.1 UnrealScript Classes 
 In order to develop the application required for the experiments, several classes had 

to be created in UnrealScript, which would handle the aspects of the application’s rendering, 

navigation and interaction with the Virtual Scenes. The most important classes that were 

created will be presented here. 

VEGame: This was the class of the application that defined the main properties, such 

as the Pawn that would be used in the application and the Controller that would handle the 

pawn. This class extended the GameInfo class, as can be seen in its declaration: 

class VEGame extends GameInfo; 

 This class was only needed to define the default head up display (HUD), pawn and 

controller for the pawn that would be used in the experiments, when the virtual scene was 

loaded. It defines the game being played: the game rules, scoring, what actors are allowed to 

exist in this game type, and who may enter the game. While this class is the public interface, 

much of its functionality is delegated to several classes to allow easy modification of specific 

game components. A VEGame actor is instantiated when the level is initialized for gameplay (in 

C++ UGameEngine::LoadMap() ). The class of this actor is determined by the DefaultGame 

entry in the game's .ini file (in the Engine.Engine section), which was set to be VEGame. The 

GameType used can be overridden in the class’s script event SetGameType(), called on the 

game class picked by the above process. 

 The experiment flow was controlled from the controller of the pawn, so the only code 

needed in this class was simply to define these two classes – the default pawn and the default 

controller of the pawn – in the default properties block of the class. In addition, after the 

virtual scene was finish a custom HUD class for testing purposes was set as default in order to 

override the standard one. Follows the code for setting as defaults the three classes: 

DefaultProperties 

{ 

    //Start game immediately 

    bDelayedStart=false; 

     

 //Pawn class 

 DefaultPawnClass=class'VirtualExperiment.VEPawn';  

 //Player Controller class 
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 PlayerControllerClass=class'VirtualExperiment.VEPlayerController';  

 //My custom head up display 

 HUDType=class'VirtualExperiment.VEHud';  

} 

 

VEPawn: This class defined the Pawn that would be used in the application. When a 

scene was started, a new VEPawn was instantiated, as instructed from the VEGame class. It 

extended from the GamePawn class and defined the main properties of the used Pawn, such 

as the height, the speed and the collision radius of the Pawn. The class declaration was the 

following: 

class VEPawn extends GamePawn; 

 The only pawn used in the experiments was that belonging to the participant and it 

was assumed to be a simple camera rotating inside the virtual scene. Also, UDK supports the 

ability for pawns to jump, swim, fly, climb ladders, etc. This was not wanted for the 

experiments, so these abilities were disabled in the default properties of the pawn class. One 

more important thing that was configured through the pawn class is the EyeHeight of the 

pawn which was calculated based on the proportions of the house inside the virtual scene. 

The settings used for the pawn in its default properties block can be seen below: 

DefaultProperties 

{ 

 // These variables force palyer to remain in a  

 // static position inside the house sence 

 bCanBeDamaged=false   

 bCanCrouch=false 

 bCanFly=false 

 bCanJump=false 

 bCanSwim=false 

 bCanTeleport=false 

 bCanWalk=false 

 bJumpCapable=false 

 bCanCrouch=false; 

 bProjTarget=true 

 bSimulateGravity=true 

 bShouldBaseAtStartup=true 

     

 

 // Locomotion 

 WalkingPhysics=PHYS_Walking 

 AccelRate=+0.0 

 DesiredSpeed=+0.0 

 MaxDesiredSpeed=+0.0 

 AirSpeed=+0.0 

 GroundSpeed=+0.0 

 JumpZ=+0.0 

 AirControl=+0.0 
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 // Physics 

 AvgPhysicsTime=+00000.100000 

 bPushesRigidBodies=false 

 RBPushRadius=10.0 

 RBPushStrength=50.0 

 

 // FOV / Sight 

 ViewPitchMin=-3500 //Limiting the Pitch axis 

 ViewPitchMax=6000 //Limiting the Pitch axis 

 RotationRate=(Pitch=20000,Yaw=20000,Roll=20000) 

 MaxPitchLimit=3072 

 SightRadius=+05000.000000 

 

 MaxStepHeight=0 

 MaxJumpHeight=0 

 WalkableFloorZ=0.0     // 0.7 ~= 45 degree angle for floor 

 LedgeCheckThreshold=4.0f 

 

 

 //Eye Height 

 BaseEyeHeight=+160 

 EyeHeight=+160 

 

} 

 

VEPlayerController: This class was used as the Controller of the VEPawn and took 

control of the created Pawn when a scene was started, as instructed by VEGame. It was the 

class that handled all aspects of the application and in which all computations were taking 

place, such as navigation, interactions, or loading the scene in either normal or test mode.  It 

extended from GamePlayerController and the declaration of the class was the following: 

class VEPlayerController extends GamePlayerController  ; 

 Unlike the previous classes, the VEPlayerController class did not consist only of the 

default properties block, since it was responsible for the flow of the experiments. It contained 

all the functions and code necessary to control the state of the experiment and the events that 

should occur at specific time points. All of these will be described in different parts in the 

following subsections. In the default properties block of this class, are all the default variables 

which are responsible on how the experiment will be executed. For example, if the variable 

TestMode is set True the experiment will be started in test mode and a custom HUD will be 

showed up in the scene. Follows the default properties of the VEPlayerController class: 

DefaultProperties 

{     

  participantID =-1;  

  ActiveEye =RightEye; //By default active eye is consider the right eye  

  ClonePlayer = none; //ClonePlayer controller when in stereoscopic vision 

  Stereoscopy =false; //Variable becomes true when stereoscopic view is setup 
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  StageDuration = 120; //Experiment Duration (time in sec) 

  TestMode = false; // (if TestMode = true then scene is loaded within test mode) 

     FirstController= false;  

} 

 

5.2 Handling User Input 
The navigation of the scene by the participants was limited according to the 

specifications of the experiment. Thus, participants could only rotate around the scene from a 

static position in the center of the house, sitting on a swivel chair. The rotation in the 

horizontal (yaw) axis was 3600 and for the vertical (pitch) axis was bounded into -200  

downwards   and +330 upwards from eye’s height of the pawn.  The reason for that is to 

constrain the participants from looking at the floor or the ceiling. The user input was captured 

though the head-tracking device InertiaCube3 provided by the manufacture company 

InterSense while each participant looked around the scene. The software of the device 

supports the ability of the head-tracker to act as a computer mouse. Overriding the mouse 

signals with those of the head-tracker, each participant’s input was taking place in the virtual 

scene. That’s was a perfect solution because a mouse device has the same axis as those 

participants needed in the virtual scene.   

5.3 Logging of events and participants’ actions mechanism 
 

The application was recording every event that was happening, as well as every action 

of the participant in the database system, in order to be able to understand and analyze the 

data gathered from each experiment. The communication between UDK  and  the database 

system was described in Chapter 3. An event can be defined as the record that was generated 

every 0,05 second during  the experiment in the virtual scene. An action can be defined as the 

participant’s activity at the specific event. For example, a participant’s action could be the 

viewing of an object observed or the region in the house observed at a specific time. Every 

generated event has a specific number of attributes in the Logging table as following: 

participantID:   The identification number of each participant. 

event:                The zone in the house where an event has occurred. 

time:                  The current time in experiment  

hitObject:         The object that a user was looking at. 

hitLocation:     The location of the hitObject in the virtual scene. 

HT_Location:   The Head tracker device data (2-axis yaw, pitch).   

ET_Location:   Eye tracking device data (coordinates x,y in the right/left screen depended on 

the active eye of participant). 
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Figure 69: Logging table showing sample participant’s records from the database file. 

 

 The data contained in the red rectangle in Figure 69 are meaningless for the statistical 

analysis. However, it can be used to reproduce the participants’ movements and their exact 

Field of View (what they were looking at each moment) within the virtual scene. In essence, 

we could regenerate the navigation patterns for each participant during exposure time for 

analysis, demo or fun purposes. 

Except the Logging table which automatically records participants’ actions another 

table existed in the database file. The ParticipantInfo table stores information about each 

participant and its records were manually inserted before each experiment started. The 

ParticipantInfo table also has a specific number of attributes following: 

ID:             Unique identification number for each participant. 

Gender:          Gender of each participant. 

Age:                 Age for each participant. 

ActiveEye:     The dominant eye of each participant either left or right. 
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Department:  The Department of the university for each participant. 

Timestamp:    Current date of participation in experiment.  

 

 

 Figure 70: ParticipantInfo table showing sample participant’s records from the database file. 

 

 Each log entry reported the specific event that occurred, along with the exact time it 

happened. The time was measured in seconds after the start of the main experiment which 

was assumed to be time point 0. When the main stage of the experiment started and the 

controller entered the respective state, the function SQLiteDB_Init() is triggered. This function 

also explained in Chapter 3 is responsible for initializing the driver and connecting to the 

database file system. Furthermore, it is responsible to read the participant’s Active Eye value 

from the ParticipantInfo table and store it in variable within Unreal engine. The respective 

code is listed here: 
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exec function StartExperiment(){ 

… 

  //Load SQLite Database File 

   SQLiteDB_Init(); 

… 

  //Start recording participant actions  

   startRecordAction(); 

…   

} 

 

function SQLiteDB_Init(){ 

… 

       //Read participant current DominantEye 

     if(SQLiteDB.SQL_queryDatabase("select  ActiveEye from ParticipantInfo where ID= "$participantID$ 

";")){ 

AEye= class'SQLProject_Defines'.static.initString(1); 

 

 if (SQLiteDB.SQL_nextResult())       

 SQLiteDB.SQL_getStringVal("ActiveEye",AEye); 

 //The default ActiveEye is Right 

  if (AEye == "L") 

   ActiveEye = LeftEye; 

  } 

  else 

ClientMessage("Cannot read  ActiveEye field from database..."); 

… 

 }   

} 

 

After that, the function startRecordAction() which is responsible for determining which 

controller’s data to record is called. This function  sets the loop function 

recordParticipantAction() which is called every 0,05 seconds which is the record rate of the 

data as was defined in the  RecordRate variable. 

function startRecordAction(){ 

  

 if ((FirstController) && (ActiveEye == LeftEye)){ 

 SetTimer (RecordRate,true,'recordParticipantAction'); 

 return; 

  } 

 

 if ((FirstController) && (ActiveEye == RightEye)){ 

 CloneController.startRecordAction(); 

  } 

  if (!(FirstController) && ( ActiveEye == RightEye)){ 

 SetTimer (RecordRate, true,'recordParticipantAction'); 

    

   }     

} 
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 Finally after the function recordParticipantAction() is initialized for the first time, it is 

called sequentially every 0,05 seconds which is the record rate of the events, until the end of 

the experiment. This function is responsible  for generating every event and store it in the 

Database file system. The respective code is listed here: 

function recordParticipantAction() 

{ 

… 

 //Check if participant is not looking an object or looks at the wall 

 if ((traceHit == none) || ( tracehit.Name == 'StaticMeshActor_3')) 

  traceHit = none; 

 //If experiment started in TestMode print additional information on screen 

 if (TestMode) {  … } 

 … 

 //Insert the data of the event in the database 

 SQLiteDB.SQL_queryDatabase("INSERT INTO Logging (participantID , event, time, hitObject, 

hitLocation, HT_Location, ET_Location) VALUES 

("$participantID$",'"$Zones[0]$Zones[1]$Zones[2]$Zones[3]$"',"$WorldInfo.TimeSeconds$",'"$traceHit

$"','"$loc$"','"$Rotation* UnrRotToDeg$"','"$MousePosition3D$"')"); 

} 

 

The tracking of the participant’s movement inside the virtual scene is challenging. As 

the participant’s movement was strictly defined to only to rotate from a specific spot it was 

impossible to define which region of the house participants were looking at.  This issue was 

addressed by dividing the house into 4 equal-sized numbered cylinder zones and assigning an 

LOS Trigger actor in the center of each zone, as can be seen in following figure. The Line-Of-

Sight Trigger generates an event when a pawn’s line of sight interacts with the trigger’s region 

bounds.             

 

Figure 71: The four LOS Triggers positioning in the center of each zone. 
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 Each one of these Actors was invisible to the participant navigating the virtual scene, 

but they automatically generated a LOS event whenever the participant’s pawn interacted 

with a  respective bound zone. All of the LOS events were captured in Kismet and an action to 

record the event in the database file was performed. For example, the figure below depicts the 

“LOS” event node of such a trigger and its connection to the Zone Action action. 

 

Figure 72: The trigger's "LOS" generated event evokes the Activated method in the Zones_Sequence class. 

The Zones_Sequence class’s Activated method was evoked from the generated event and it 

requested that the event was passed in the Controller class in order to be recorded in the next 

insertion to the database file. The respective code is listed here: 

class Zones_Sequence  extends SequenceAction ; 

… 

 

event Activated() 

{ 

…      

  //Identify which LOS Trigger was activated    

 if (Active == 1) { 

 if (znumber ==0) 

  text = "lounge"; 

 if (znumber ==1) 

  text = "office"; 

 if (znumber ==2) 

  text = "kitchen"; 

 if (znumber ==3) 

  text = "dinning"; 

 } 

 else { 

  text =""; 

 } 

 //Pass the event’s data to the controllers’ classes     

VEPlayerController(GetWorldInfo().GetALocalPlayerController()).Zones[znumber] = text; 

VEPlayerController(GetWorldInfo().GetALocalPlayerController()).CloneController.Zones[znumber] = text; 

} 
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It must be noted that it is possible that two LOS triggers can be active at the same time due to 

the fact that the participant’s Field-of View may be between two regions of the house.   

 

Figure 73: Simultaneous activation of two LOS Triggers. 

5.4 Stereoscopic view setup 
The HMD device that was used in these experiments uses the partial overlap method 

to achieve stereoscopic effect. However, the device does not automatically adjust the input 

image signal to match the partial overlap requirements. Thus, the output image signal from the 

PC has to be in the correct format as described below, to match the HMD requirements.  In 

order to  develop  this inside UDK several actions had to be taken. The picture below depicts 

the final view that had to implemented inside UDK in order to meet the partial overlap 

requirements of the HMD.  

 

Figure 74: The partial overlap view in the HMD. 
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First of all, two input video signals were needed for the device to work with each eye 

receiving its own video. The ideal solution was to output two video signals from UDK with the 

proper adjustments for each screen of the HMD. Unfortunately, the Unreal engine, at least in 

relation to its free edition, is currently supporting only one viewport. The alternative solution 

adopted was to initially split the viewport of UDK in two identical views. The problem from 

splitting up the viewport was that the resolution was decreased and the HMD required SXGA 

resolution to work. As SXGA is the resolution of 1024 x 1280 pixels which means that for both 

screens of the HMD, this amounts to a total of 1024 x 2560 pixels, the resulted resolution of 

1024x640 pixels for each separated view was not adequate. In order to fix that, the viewport 

of the Unreal engine was expanded using the graphics card’s option to select two displays with 

a total resolution of 1024 x 1280 pixels each. Thus, the output signals from the graphics card 

matched the requirements of the input signal of HMD. In order to achieve the split screen a 

second controller had to be created and added to the game world space of the Unreal engine 

as shown in the following code: 

exec function Stereoscopic() 
{   
 local int ControllerId; 
   local string Error; 
     ControllerId =1; 
 CreatePlayer(ControllerId, Error, TRUE); //Create a new controller 
 SetSplit(2); //Split screen vertical 
} 

 

The Second step was to make the second controller act exactly as the first; in short this 

controller had to be a clone of the first one. As the first controller was handled by the user 

input the second controller had to react exactly as the first one. To make this happen, the 

position coordinates of the clone controller was equaled with the first controller. In order to 

avoid any possible delay on the user’s view the change of position coordinates of clone player 

were taking place before the render of each frame. The respective code is shown here: 

//Function which is called by the game engine before each frame is rendered 

function DrawHUD( HUD H ) 

{ 

… 

parallaxView(); //Make changes before rendering  
super.DrawHUD(H); //Render the scene 

… 

} 

 

function  parallaxView(){ 
…  
  //If stereoscopic view is activated start Camera Cloning… 
  if ( (ClonePlayer!=none) && (Stereoscopy == True) && (self.FirstController)){ 
 
   newRot=Rotation; 
   newRot.Yaw = self.Rotation.Yaw + 26 *DegToUnrRot; //Coordinates plus offset 
   ClonePlayer.Actor.SetRotation(newRot); 
  } 
} 
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So far what was achieved was to output two identical video signals, while each user 

input was handled by the first controller and passed to the second one. However, a full overlap 

stereoscopic effect was not achieved with both eyes viewing the exact video signal.  The final 

adjustments had to be done according to the partial overlap requirements as shown on the 

previous figure. Initially the camera of each controller was rotated by 13 degrees left and right 

respectively. After that, a distance between the positions of each controller’s camera was set 

as the role of the Interpupillary distance (IPD). Finally the filed-of-view for each controller’s 

camera was configured and then activated the stereoscopic view.  All steps taken as showing 

the following code: 

exec function partialOverlap(){ 
… 
  //Set initial Rotation difference for each player (controller) 
  newRot=Rotation; 
  newRot.Yaw = self.Rotation.Yaw - 13 *DegToUnrRot; 
  self.SetRotation(newRot); 
  newRot.Yaw = self.Rotation.Yaw + 26 *DegToUnrRot; 
  ClonePlayer.Actor.SetRotation(newRot); 
 
//Set a digital fixed Interpupillary Distance 
  IPD.X = self.Location .X + 15; 
  ClonePlayer.Actor.SetLocation(IPD); 
   
  // Set field of view for each camera to match specifications of HMD 
  ClonePlayer.Actor.FOV(76); 
  self.FOV(76); 
 
  //Final step activate CameraClone 
  Stereoscopy =true;  
 … 
} 

 

Figure 75: The two output images displayed each on left and right screen respectively in the HMD. 
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Figure 76: The final scene that user views within the HMD. 

5.5 Deprojection of eye’s gaze data  
 Projection refers to the transformation between world coordinates and screen 

coordinates. This is a very useful concept in certain situations. It can be used to draw elements 

on the HUD that appear to be located at specific locations in the world, such as floating above 

a player, or it can be used to determine what objects in the world the player is aiming at or the 

mouse cursor is over. A real time strategy (RTS) game would make heavy use of these concepts 

in order to select units in the world. The ability to display pertinent information about an item 

in the world can be useful in just about any type of game. 

 Projection refers to the transformation of a 3D world-space vector into 2D screen 

coordinates and Deprojection refers to the transformation of a 2D screen coordinates into a 

3D world-space origin and direction. The receiving data from the Viewpoint application is the 

gaze space of the eye of each participant representing 2D screen coordinates. This data is not 

useful in 2D as it cannot be used to determine which object/actor in the 3D world space a 

participant is looking at. The DeProject() function of the Unreal game engine takes a set of 

screen coordinates in the form of a Vector2D and transforms those into origin and direction 

Vectors, which are the components of a ray as showed in the following figure.    

    

 

Figure 77: Transformation of the user’s viewpoint from a 2D vector into 3D world-space origin and direction. 
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The eye’s gaze data from the Viewpoint application are normalized between values zero and 

one.  Thus, this data has to be converted in 2D screen coordinates. In order to do this, every 

value that is received in the application is multiplied by the total resolution of the screen which 

is 1024 x 2560 pixels.  The respective code is the following: 

function DrawHUD( HUD H ) 

{ 

… 

//Left screen controller and Left eye   

if ((FirstController == true) && (ActiveEye == LeftEye) &&   (EyeTrack.EyetrackerData.gazePoint.x<=0.5)){ 

 

   MousePosition.X = EyeTrack.EyetrackerData.gazePoint.x*1280*2; 

   MousePosition.Y = EyeTrack.EyetrackerData.gazePoint.y*1024; 

 hud.Canvas.DeProject(MousePosition, MouseWorldOrigin, MouseWorldDirection); 

    … 

} 

 

//Right screen controller and Right eye  

 if ((FirstController == false) &&(ActiveEye == RightEye) && (EyeTrack.EyetrackerData.gazePoint.x > 0.5) 

){    

  MousePosition.X = (EyeTrack.EyetrackerData.gazePoint.x-0.5)*1280*2; 

  MousePosition.Y = EyeTrack.EyetrackerData.gazePoint.y*1024; 

  hud.Canvas.DeProject(MousePosition, MouseWorldOrigin, MouseWorldDirection);     

     …            

        } 

               

} 

 

 Afterwards, the call of the Deprojection()  function with the correct 2D screen 

coordinates returns the MouseWorldOrigin and the MouseWorldDirection vectors. In order to 

determine what each participant is looking in the 3D game world the function Trace() is called. 

Trace is one of the most useful functions in UnrealScript. It casts a ray into the world and 

returns what it collides with first. Trace takes into account both this actor's collision 

properties and the collision properties of the objects Trace may hit. If  Trace() does not hit 

anything it returns NONE; if Trace() hits level geometry (BSP) it returns the current LevelInfo; 

otherwise Trace returns a reference to the Actor it hit. Trace function takes as input TraceEnd   

which is the end of the line we want to trace and TraceStart is the beginning. Thus, in our case, 

TraceEnd is the MouseWorldDirection vector multiply by the value 65536 in order to expand 

this ray to infinite and TraceStart is the MouseWorldOrigin vector. If Trace hits something, 

HitLocation, HitNormal, and Material will be filled in with the location of the hit, the normal of 

the surface Trace hit, and the material Trace hit. Note that HitLocation is not exactly the 

location of trace hit, it is bounced back along the direction of trace a very small amount. This is 

the reason why we used blocking volumes as described in Chapter 3 instead of a collision 

mechanism. The use of blocking volumes gives the advantage to add an offset for each object 

collide area. The respective code is the following: 

 

http://udn.epicgames.com/Two/ActorVariables.html#Collision
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function recordParticipantAction() 

{ 

… 

 local vector loc, norm, end; 

 local TraceHitInfo hitInfo; 

 local Actor traceHit; 

 

 //Expand “TraceEnd” to infinite to ensure that it collide with all the 3D world-space 

 end =MouseWorldDirection* 65536.f; 

 //Call the trace function 

 traceHit = trace(loc, norm, end, MouseWorldOrigin, false,, hitInfo); 

     //Bypass StaticMeshActor_3 which is the wall 

 if ((traceHit == none) || ( tracehit.Name == 'StaticMeshActor_3')) 

 { 

 // ClientMessage("Nothing found, try again."); 

  traceHit = none; 

 } 

…  

} 

 
 
 
The following figure represents an example of use the function Trace() in combination with 
function Deprojection().  
 
 

 

Figure 78: In the image above the green plane represents the world, the red frustum represents the world view 
frustum, the blue spot represents the 2D mouse position and the blue line represents the trace. The flat top of 

the frustum represents the screen (in this case, viewing the world over the top). The canvas deprojection function 
converts a 2D position into the world. 
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5.6 Communication with the Eye-tracking Device 
 One of the most important issues of the implementation was to find out a way to pass 

the data from the infrared camera of the Eye-tracking device within the application used for 

the experiments. Fortunately, the software ViewPoint EyeTracker® of the Arrington Research 

Company provides an SDK (software development kit) for third party applications. More 

specific SDK comes with a dynamic link library named VPX_InterApp.DLL which allows any third 

part application to interact with the Eye-tracking Device. 

 

  That was very convenient, however, there was an issue that had to be solved. The 

ViewPoint EyeTracker® allowed any third part application to interact with the Eye-tracking 

Device and needed a registration through the dynamic link library. After the registration, the 

application obtains a unique message identifier used by ViewPoint for inter-process 

communication.  The problem arises is that as the name of Unreal script -the programming 

language for unreal game engine- discloses, it is a scripting language, meaning that the source 

code is already precompiled. As the source code is already precompiled it was impossible to 

write our code in order to register with the ViewPoint application. It was possible to use the 

functions of the VPX_InterApp.DLL by binding the library with the Unreal application as we did 

with the SQL_Driver library mentioned on Chapter 3. However, even if this was done without 

the registration required by the Viewpoint application, which couldn’t be achieved through the 

Unreal application, this did not solve the problem. Eventually the solution was to write our 

dynamic link library named MiddleBox.dll which was registering with the ViewPoint application 

and bind our library with the Unreal engine instead of the VPX_InterApp.DLL. The whole 

communication including software and hardware level with the Eye-tracking device can be 

seen in the following figure. 

 

 

79: Communication of Unreal Game Engine with the Eye-tracking Device. 

 As for the purposes of this thesis only the Software Level will be described in detail. As 

for the hardware level, the infrared camera was constantly capturing eye movement and a 

frame grabber converted this analog signal to a digital signal. The input signal is sampled at a 

specific rate and then the Eye-tracking software received each frame of the sampling. In spite 

of the hardware level, the software level is more complicated. It was required that a library 

was coded in order to register with the Viewpoint application.  The role of the library 

MiddleBox.dll was to actually act as messenger between the Unreal game engine and the 

Viewpoint application.  Thus, this library has functions that are called from inside the Unreal 

application and functions that are called from VPX_InterApp.DLL after the registration with the 

application.  Below are the functions in the library that are called inside the Unreal application: 

//Launch the Eye-tracking application 
_declspec(dllexport) int LaunchApp(char* filename, char* arguments){  
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  return VPX_LaunchApp(filename, arguments);  //Return a status code 
} 
 
//Register with the Viewpoint application 
_declspec(dllexport) int InsertMessageRequest(){ 
   //RegisterWithDllToReceiveMessages 
    return VPX_InsertCallback( theCallbackFunction2 ); 
} 
 
//Terminate Eye-tracking software 
_declspec(dllexport) void CloseApp(){  
  VPX_RemoveCallback(theCallbackFunction2 ); //Remove window 
  VPX_SendCommandString("QuitViewPoint");   //Close program  
} 
 
//Receive data from Infrared Camera 
_declspec(dllexport) eyetrackerStruct* getEyeData() { 
   return &EyeTracker ; 
} 
 

 Below is the respectively Unreal script code of the class EyeTracker.uc which binds 

with the library MiddleBox.dll and calls the functions. 

 The unreal script code to bind with the library MiddleBox.dll 

/*Class  to read the input from eye tracker device using dynamic link library*/ 

class EyeTracker extends Actor notplaceable DLLBind(MiddleBox);  

 
 Declaration of the functions of the library MiddleBox.dll. 

 
dllimport final function int LaunchApp(string fame,string args); //Function to launch the application 
dllimport final function int InsertMessageRequest(); //RegisterWithDllToReceiveMessages 
dllimport final function  CloseApp();//Remove notification window and close eyetracker program 
dllimport final function  eyetrackerStruct getEyeData(); //Get new data from eye(s) depends on 
monocular/binocular method 

 
 The function StartEyeTracker()  is responsible for calling the appropriate functions to 
launch the Viewpoint application and then register with it.  
 
function StartEyeTracker(){ 
 
  //Launch eyetracker program "location of the application","arguments" 
   errorcode1 = LaunchApp(filename,arguments); 
  //Atempt to  Register with Dll to ReceiveMessages 
  errorcode2 = InsertMessageRequest();  
 
  //Checks if everything is done correctly!  
  if ((errorcode1 ==-1) && (errorcode2 !=0) ) 
 EyeTracker_State =1; 
  else{ 
         WorldInfo.Game.Broadcast(self,"Command LaunchApp return code :"$errorcode1); 
         WorldInfo.Game.Broadcast(self,"Command InsertMessageRequest return code :"$errorcode2); 
    } 
} 
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Figure 80: The status windows of Viewpoint application. In the red rectangular is the total number of 
registrations from third party applications.  

 Eventually after the successful registration with the Eye-tracking software, the library 

MiddleBox.dll defines a callback function which is managed by the library VPX_InterApp.DLL. 

Every new “fresh” data arrives in the Viewpoint application from the frame grabber and the 

application sends it to all the other programs are registered. Then the library 

VPX_InterApp.DLL calls every function that was defined as callback for each application, 

passing the “fresh” data. The “fresh” data is actually a message which can inform the 

library/application that new data is available about a change on eye’s gaze or on infrared 

camera or other useful data. The message which is meaningful and called by the Unreal 

application is the one which contains information about a change on the eye’s gaze. Every time 

a message identified that new data are available, two functions acquiring this data are called 

within  library MiddleBox.dll. The first function named VPX_GetGazePoint2()  is responsible to 

get the new eye’s gaze point data for the current active eye.  The second function named 

VPX_GetDataQuality2()  is responsible to get a “quality code”  in order to validate the new 

data, as showed in the below table. 

Quality Code Information 

5 Pupil scan threshold failed. 

4 Pupil could not be fit with an ellipse. 

3 Pupil was bad because it exceeded criteria limits. 

2 Wanted glint, but it was bad, using the good pupil. 

1 Wanted only the pupil and got a good one. 

0 Glint and pupil are good. 
 

Table 2: Quality code and the respectively information about the new data received. 

 Every time “fresh” data was received in the Unreal application and the quality code 

was five, four or three the data was discarded. Possible reasons for these errors are either a 

participant blinked his eye or an impropriate eye movement or the infrared camera was 

instantly shaken due to a sharp spin of the HMD. Females appeared to produce more errors 

than males. The main reason for this was the cosmetic eye products that females were 

wearing during the experiment. Thus the calibration was not successful or was too difficult for 

the Viewpoint application to identify and lock the pupil of the participant. Error codes two and 

one are not given for the “Pupil Location” method. 
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 The code of the callback function is shown here: 

int theCallbackFunction2( int msg, int subMsg, int param1, int param2 ) 
{ 
 switch (msg) 
 { 
  case VPX_DAT_FRESH :  //New eye’s gaze point data 
  { 
              //Right eye by default 
       if ( ( subMsg == EYE_A  ) || (subMsg == EYE_B)) { 
   // Eye to get data 
   VPX_GetDataQuality2( subMsg, &EyeTracker.qualityCode ); 
    //Retrieves the quality code for the eye data   
   VPX_GetGazePoint2(subMsg,&EyeTracker.gazePoint);  
   EyeTracker.Eye = subMsg; 
         } 
         else 
   … 
  } 
  //Other messages 
  … 
 } 
 … 
} 

 
 Finally, after this data has been received, a function is called by the Unreal application 

in order to get this data and handle it, as shown on the following Unreal script code. 

//Function which is called by the engine whenever time passes, more specific this function is executed 

on very frame when the game updates 

event Tick(float DeltaTime){ 

 … 
  //Eyetracker is runing normaly 
  if (EyeTracker_State == 1){ 
     //Call the proper function from the library “MiddleBox.dll” 
     to receive Eye-tracking device’s data  
    EyetrackerData = getEyeData(); 
      … 
  } 
 … 
} 
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6 Chapter 6 – Experiments 

6.1 Materials and Methods 
 This experiment was designed to explore gender differences in spatial navigation and 

spatial knowledge through a complex virtual environment. We aim to explore the effect of 

gender differences on object recognition performance after exposure to an immersive VE, in 

terms of both scene context and associated awareness states. In addition, investigations of 

possible correlations between memory recognition performance and eye gaze information will 

be conducted. The experimental methodology and procedure will be described in detail in the 

following sections. 

  

6.1.1 Participants and Apparatus 

 Participants of the experiment were recruited from the postgraduate population of the 

Technical University of Crete. Participants were separated into two groups based on their 

gender. Groups were age-balanced and participants in all conditions were naive as to the 

purpose of the experiment. In total, fourty participants were male and twenty-nine 

participants were female. All participants had normal or corrected to normal vision and no 

reported neuromotor or stereovision impairment. The test VE was set up in a dedicated 

experimental space on campus, which was darkened to remove any periphery disturbance 

during the exposure.  

 The VEs were presented in stereo at SXGA resolution on a NVIS nVisor SX111 Head 

Mounted Display with a Field-of-View comprising 102 degrees horizontal and 64 degrees 

vertical. An InterSense InertiaCube3, three degrees of freedom tracker was utilized for 

rotation.  The viewpoint was set in the middle of the virtual room and navigation was 

restricted to 360 degrees circle around that viewpoint (yaw), vertically (pitch) into -20 degrees 

downwards   and +33 degrees upwards from the eye’s height of the pawn. Participants sat on a 

swivel chair during exposure.  

6.1.2 Visual Content 

 For the proposed experiment, we have developed a complete system based on the 

Unreal Development Kit which renders photorealistic illumination of high-quality synthetic 

scenes including full textures and materials over the 3d objects. The VE represented a square 

six by six meters room as shown in Figure 71. The radiosity-rendered space was divided in four 

zones including a dining area, a kitchen, an office area and a lounge area located on northeast, 

northwest, southwest and southeast side of the house, respectively. The space was populated 

by objects consistent as well as inconsistent with each zone’s context. Three consistent objects 

and three inconsistent objects populated each zone resulting in twenty-four objects located in 

the scene overall, six in each zone. The VE is lit by only one light being a dominant directional 

light representing the sun. The sunlight was rendered to simulate midday lighting in terms of 

brightness and colour.  

 The between-subjects factor was ‘Male’ vs ‘Female’. The within-subjects factor was 

‘object type’ comprised of two levels: ‘consistent’ and ‘inconsistent’. According to the training 
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group that they were assigned to, participants completed a memory recognition task including 

self-report of spatial awareness states and confidence rating for each recognition after 

exposure to the VE.  

 The scene consisted of basic modules such as walls, floors, ceilings, doors, etc (frame 

objects). According to Brewer & Treyens, 1981, “the room frame contains the information 

about rooms that one can be nearly certain about before encountering a particular room”.  As 

mentioned, the scene was populated by three consistent objects as well as three inconsistent 

objects for each zone. The list of objects was assembled based on an initial pilot study which 

explored which objects were expected to be found in each area and which were not [Zotos et 

al. 2009]. According to this study, twenty-five participants ranked the objects on the list. The 

consistency of each item was rated on a scale from one to six according to whether each 

object was expected to be found in each area or not, with six being the most expected, and 

one being the least. Based on these ratings, consistent objects were selected from the high 

end of the scale, and the inconsistent ones from the low end. The objects were distributed 

over locations and participants were required to select from a recognition list provided which 

object was present in each location. All twenty-four objects positioned in the house scene as 

follow: 

 

 

Table 3: Consistent objects existing in each zone of the house. 

 

 

Table 4: Inconsistent objects existing in each zone of the house. 
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Figure 81: The experimental scene (side-view). 

 Adding to previous research utilizing similar methodologies, in this project a system to 

track and record eye movement was utilized. The system also recorded each participant’s head 

movement, which was monitored through software as exposure time may affect memory 

encoding. This information is at a high enough resolution to be useful in determining the time 

spent looking at each object, the amount and location of participants’ idle time and other 

valuable data.  Idle time is defined as the time during which participants’ viewpoint or view 

direction doesn't change. Such measurements were significant in order to meaningfully 

compare memory recognition scores and confidence ratings across conditions as participants 

might not have distributed exposure time evenly while observing the experimental scene. 

Participants who, for instance, spent one hundred and twenty seconds of exposure time 

observing just one wall of the room were excluded from the statistical analysis. Therefore, the 

goal of monitoring idle time was to ensure that idle time of participants across conditions as 

well as idle time for each participant observing sections of the room would be similar. The 

measurement rate was 20Hz, providing twenty measurements every second across all 

conditions. 

6.1.3 Experimental Procedure 

 The experiment was set to be completed in three stages by each participant. Initially, a 

preliminary training phase took place requiring participants to wear the HMD device. During 

this stage, all appropriate adjustments were conducted accordingly for each individual.   After 

participants familiarized themselves with the device and the stereoscopic VE then the second 

stage  of the experiment was initiated which was the main phase of the experiment. The third 

stage took effect when participants finished the main experiment, requiring them to complete 

an online memory recognition questionnaire. 

First stage – Training 
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 During the first stage, appropriate adjustments were conducted accordingly for each 

individual. Initially, personal information individual to each participant were inserted to the 

database file. Secondly, participants were instructed to follow the Eye Dominance test in order 

to determine which one of their eyes was the dominant one. Thirdly, participants wore the 

HMD and a sample stereoscopic picture was displayed on the HMD as shown in the following 

figure. 

 

Figure 82: The sample image projected on the HMD. 

  Based on that scene participants adjusted accordingly the HMD to feel more 

comfortable and find the best position for the stereoscopic view. In some cases, the Inter 

Pupilary Distance (IPD) which was preset in a standard position, had to be changed in order to 

match the participant’s individual IPD. Adjustments to the IPD were conducted in order to 

avoid participants from viewing dissimilar imagery through their two eyes. After participants 

felt comfortable with the HMD and having a good sense of the stereoscopic view without any 

side-effects, the infrared camera for the dominant eye was fixed in a static position in order to 

start the calibration of the eye’s gaze as shown in the following figure. Participants were 

instructed how to conduct the calibration process which was described in Chapter 3.  In most 

cases, more than one calibration was need to achieve the desirable results.  

 

Figure 83: Calibration for eye-gaze on left dominant eye (left picture) and right dominant eye (right picture). 
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 After all the adjustments, the application for the experiment was setup and a training 

VE was loaded on the HMD. Participants were instructed to freely navigate and look around 

the synthetic scene using the head-tracker, as much time as they wanted, in order to get 

familiar with the VE and the HMD. The participants viewed a virtual room, comprising of walls, 

floor, but without a ceiling, so the sky was visible. Inside the room, there were primitive 

objects such as box, sphere, cylinder etc. (Figure 84). 

 

 

Figure 84: The training Virtual Environment. 

Second stage – Main Experiment  

 When the participants felt comfortable viewing with the settings of the test scene, the 

next stage of the experiment was loaded on the HMD. Prior to that, participants were told that 

they didn’t have to complete a specific task in the VE. They were instructed to just look around 

and explore all the zones of the house as they wished. Furthermore, participants were told 

that the purpose of the main experiment was to test the new technology devices that our lab 

had recently acquired. The scenario for the main experiment was attentively chosen in order 

to prevent participants suspect that after the end of the main experiment they have to 

complete a memory task. 

 Participants were exposed to an interactive simulation of a synthetic scene. The 

exposure time was one hundred and twenty seconds in each condition. The exposure time was 

defined after a series of pilot studies which aimed to identify the exposure time while ensuring 

that no floor or ceiling effects were observed, e.g. the task being too easy or too difficult. The 

final pilot studies aimed to finalize the experimental design and provide preliminary insight. 
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Third stage -  Memory Recognition Task 

 After the end of the experiment, each participant was informed that they were about 

to complete a memory task by completing an on-line questionnaire. The participant was led in 

a quiet place without distractions and was given a four pages leaflet; each page containing one 

of the four zones of the house respectively. In the pictures of the leaflet the six objects of each 

zone were replaced by a red numbered mark as shown in Figures 85, 86, 87 and 88 

respectively.  

 The on-line questionnaire comprised of four pages, each one representing the lounge, 

office, kitchen and dining zone respectively, as shown in the Appendix C. Participants were 

required to select which object they considered they saw during their  previous exposure to 

the scene in each marked position, selecting objects from an on screen object recognition list 

as well as one out of five levels of confidence: No confidence, Low confidence, Moderate 

confidence, Confident, Certain, and two choices of awareness states: Remember and Know 

(Type A and Type B respectively). A recognition list was devised including a list of objects per 

scene zone. Each zone included in random order the six present objects as well as six absent 

objects (three inconsistent and three consistent) in each zone. The four lists include a total of 

48 objects. The four pages of the leaflet are shown in Figures 85, 86, 87, and 88 in the next 

four pages respectively. 

 Prior to the memory recognition task, awareness states were explained to the 

participants in the following terms: 

- TYPE A means that you can recall specific details. For example, you can visualize clearly the 

object in the room in your head, in that particular location. You virtually ‘see’ again elements 

of the room in your mind, or you recollect other specific information about when you saw it. 

- TYPE B means that you just ‘know’ the correct answer and the alternative you have selected 

just ‘stood out’ from the choices available. In this case you can’t visualize the specific image or 

information in your mind.  
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 The first page of the leaflet contains the lounge area with the red marks numbered 

from one to six as shown in Figure 85. 

 

Figure 85: First page of the leaflet containing the Lounge Area. 

 



Chapter 6 – Experiments 
 

 103 

 The second page of the leaflet contains the office area with the red marks numbered 

from seven to twelve as shown in Figure 86. 

 

Figure 86: Second page of the leaflet containing the Office Area. 
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 The third page of the leaflet contains the kitchen area with the red marks numbered 

from thirteen to eighteen as shown in Figure 87.    

 

Figure 87: Third page of the leaflet containing the Kitchen Area. 
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 The fourth page of the leaflet contains the dining area with the red marks numbered 

from nineteen to twenty-four as shown in Figure 88. 

 

Figure 88: Fourth page of the leaflet containing the Dining Area. 
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6.1.4 Simulator Sickness 

 Despite the fact that the NVIS nVisor SX111 Head Mounted Display used in the 

experiments is currently state-of-the-art in the market, there still exist certain minor 

weaknesses related to its use. In particular, simulator sickness which is a potential side effect 

of all HMDs in general, has been observed during the experiment presented here too. 

 Participants reported several symptoms related to simulator sickness such as fatigue, 

headache, dizziness, visual discomfort, and nausea. There also exist other indirect effects of 

VEs on the visual system such as eyestrain, changes in binocular vision and visual acuity, 

balance, nausea, and motion sickness. Participants experienced the aforementioned symptoms 

to varying degrees. Various articles exist in related literature focusing on possible causes of 

simulator sickness such as system latency [DiZio and Lackner 1997, Cobb et al. 1999], limited 

Field-of-View [DiZio and Lackner 1997], Image scale factor [Draper et al. 2001], etc. 

 Apart from the previous factors that provoke simulator sickness, other aspects of the 

HMD that contribute to participant discomfort exist. The HMD itself weighted 1.3 Kg making 

participants uncomfortable during the experiment. Additionally, as a result of improper 

adjustment of the Interpupillary Distance (IPD) participants perceive dissimilar imagery from 

their eyes.  Moreover, when immersed in artificial  environments for example by using HMDs 

and particularly in partial overlap systems  where the monocular  fields  of view are  narrower 

than  in  natural  viewing,  image borders  are  accompanied  by  a perceptual  phenomenon 

that  in virtual reality literature  has  come  to be  known  as  luning.  Luning  refers to a 

peculiarity appearing in visual perception in the monocular areas of partial  binocular  overlap  

displays characterized  by  a  subjective  darkening  of the  visual field. Nevertheless, the 

experiments reported here were conducted without any participant interrupting the 

procedure because of simulator sickness. 

 

6.2 Statistical Analysis 
 This section presents the basic statistical principles employed in order to analyze the 

acquired memory recognition self-report. 

6.2.1 Analysis of Variance 

 ANalysis Of VAriance: ANOVA procedures are powerful parametric methods for 

testing the significance of the differences between sample means where more than two 

conditions are used, or even when several independent variables are involved [Coolican 1999]. 

ANOVA is used to compare the variance between the two groups with the variability within 

each of the groups. This comparison is in the form of a ratio known as the F test. A high value 

for F indicates a strong effect, i.e. the variance between groups is higher than the variance 

within the groups. The strength of the effect is given by the p value. The p value represents the 

probability that there is no between groups variance. This is called the null hypothesis and is 

disproved if a value of p below 0.05 is returned. 
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6.3 Results and Discussion 
 

Memory recognition performance: 

 

 Memory recognition performance was measured by counting the number of correct 

positions of objects (out of a possible 24). Prior probabilities were obtained by calculating the 

proportions of correct answers falling in each of the two memory awareness categories for 

each participant.  

           Males (n=40)     Females  (n=29) 

 Consistent Inconsistent Consistent Inconsistent 

Total 
correct 
(out of 
24) 

5.15 (1.75) 7.10 (2.35) 6.97 (1.68) 8.41 (1.66) 

 

Table 5: Number of correct responses and standard deviations.  

 

Correct recognition scores of objects in each location were analyzed using a 2x2 mixed analysis 

of variance (ANOVA) with gender (male, female) entered as a between subjects variable and 

the context consistency of the objects (consistent, inconsistent) entered as a within subjects 

variable (Table 1). A large main effect of gender was identified (F(1,67)=16.65, p<0.001, partial 

eta-squared=0.20). Female participants correctly recognized more objects in their locations 

(Mean = 7.69) compared to the male participants (Mean = 6.13). A large main effect of context 

consistency was also identified (F(1,67)=40.77, p<0.001, partial eta-squared=0.38). More 

inconsistent objects were correctly recognized in their locations (Mean = 7.76) than consistent 

objects (Mean = 6.05). No interaction between gender and context consistency revealed 

(F(1,67)=0.89, p>.05). 

 

 Males (n=40) Females  (n=29) 

 Consistent Inconsistent Consistent Inconsistent 

Type A 
(remember) 

.25 (.11) .43 (.15) .23 (.11) .39 (.12) 

Type B 
(know) 

.17 (.13) .14 (.15) .22 (.10) .16 (.13) 

 

Table 6: Proportion of correct responses and standard deviations. 
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The proportion of correct responses (displayed in Table 2) was analyzed with separate 2x2 

mixed ANOVAs for each awareness state (Table 2). Gender (male, female) was entered as a 

between subjects variable, with the context consistency of the objects (consistent, 

inconsistent) entered as a within subjects variable. A minimum alpha level of .05 was used 

throughout the analyses. No reliable main effects of gender were found for either Memory A 

awareness states (F(1,67)=1.81, p>.05) or Memory B awareness states (F(1,67)=1.49, p>.05).  

Similarly, no interactions were found between gender and the context consistency of the 

objects for either Memory A awareness states (F(1,67)=0.22, p>.05) or Memory B awareness 

states (F(1,67)=0.52, p>.05). However, there was a large main effect of context consistency on 

Memory A awareness states (F(1,67)=66.30, p<.001, partial eta-squared = 0.50) and a small 

main effect of context consistency on Memory B awareness states (F(1,67)=4.81, p<.05, partial 

eta-squared = 0.067). When objects were correctly recognized in the correct location, a higher 

proportion of correct responses were reported as Memory A awareness state (remember) with 

inconsistent objects (Mean = .41) compared to consistent objects (Mean = .24). Conversely, 

participants reported a higher proportion of correct responses were reported as Memory B 

awareness states with consistent objects (Mean = .19) compared to inconsistent objects (Mean 

= .15). The analysis was repeated following the removal of 11 male participants tested, in order 

to create equal group sizes. The exact same pattern of results was found (N=29). 

 

           Males (n=40)     Females  (n=29) 

 Consistent Inconsistent Consistent Inconsistent 

Confidence 
(5-point 
scale) 

3.74 (0.75) 4.19 (0.59) 3.55 (0.66) 4.14 (0.58) 

   

Table 7: Mean confidence rating and standard deviation as a function of Gender (Males, Females) and context 
consistency (consistent, inconsistent).  

 

The average confidence ratings for objects correctly identified in the correct location were 

analyzed using a 2x2 mixed ANOVA. Gender (male, female) was entered as a between subjects 

variable, with the context consistency of the objects (consistent, inconsistent) entered as a 

within subjects variable. Means are displayed in table 2. No reliable main effect of gender was 

found (F(1,67)=0.82, p>.05), and there was no interaction between context consistency and 

gender (F(1,67)=0.54, p>.05).  However, there was a reliable main effect of context consistency 

(F(1,67)=32.12, p<.05, partial eta-squared = 0.32). On average, participants reported more 

confidence when correctly identifying objects that were inconsistent with the context (M = 

4.17, SD = 0.60) compared to participants reported their confidence when correctly identifying 

the context consistent objects (M = 3.65, SD = 0.72).  

 The analyses highlighted two important effects. The first was a clear influence of the 

context consistency of objects on the type of memorial experience that participants had. Vivid 

and contextually detailed memorial experiences were reported more often for objects that 
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were inconsistent with the context of the scene (e.g. a toothbrush in the kitchen area). 

Conversely less contextually detailed feelings of knowing were reported more often for objects 

that were consistent with the context of the scene (e.g. a book in the office area). This 

indicates that context consistency has an important influence on the memorial experiences of 

users in such environments. Secondly, there was a clear influence of gender on the number of 

objects correctly recognized in their correct location. Female participants outperformed male 

participants through correctly recognizing more of the objects in the correct locations. The 

gender of users is therefore an important consideration in terms of memory for objects and 

their locations within such environments.  

 

Eye-tracking Results: 

 Although the total number of participant’s was seventy, certain participant’s records 

were described as outliers and were not included in the analysis. More specifically eight 

participant’s records were removed from the dataset due to corrupted or invalid data. 

Additionally, six participant’s records were removed from the dataset in which zero fixations 

were made to either consistent or inconsistent objects. Fixation (visual) is the maintaining of 

the gaze in a constant direction. Fixation was considered the time greater than 100ms a 

participant looks at an object in the virtual scene. Kolmogorov-Smirnov tests indicated that the 

means were not normally distributed (p<.05). Although ANOVA assumes the data have a 

(normal) Gaussian distribution, for the purposes of these analyses it was assumed to be 

sufficiently robust to handle this lack of normality. To reflect this additional uncertainty a 

minimum alpha level of .01 was used throughout the analyses to judge a reliable difference, 

and to reduce the probability of a type I error. 

 

Males (n=33) Females  (n=23) 

Consistent Inconsistent Consistent Inconsistent 

27.00 (13.26) 10.15 (8.98) 24.00 (11.61) 12.74 (12.07) 

 

Table 8: Total Number of Fixations. 

 Table 8 shows the number of fixations on objects in each category. The total number 

of fixations, on objects within the scene, were analyzed using a 2x2 mixed ANOVA. Gender 

(male, female) was entered as a between subjects variable, with the context consistency of the 

objects (consistent, inconsistent) entered as a within subjects variable. Means are displayed in 

table 1. No reliable main effects of gender were found (F(1,54)=0.005, p>.01), and there was 

no interaction between context consistency and gender (F(1,54)=4.41, p>.01).  However, there 

was a reliable main effect of context consistency (F(1,54)=111.67, p<.0001, partial eta-squared 

= 0.67). On average, context consistent objects were fixated on more often (M = 25.76, SD = 

12.59) than context inconsistent objects (M = 11.21, SD = 10.34).   
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Males (n=33) Females  (n=23) 

Consistent Inconsistent Consistent Inconsistent 

9.88 (5.58) 3.12 (4.13) 7.92 (4.12) 3.33 (3.57) 
 

Table 9: Total Time Spent Fixating (seconds). 

 The total time spent fixating on objects was analyzed using a 2x2 mixed ANOVA. 

Gender (male, female) was entered as a between subjects variable, with the context 

consistency of the objects (consistent, inconsistent) entered as a within subjects variable. 

Means are displayed in table 2. No reliable main effects of gender were found (F(1,54)=0.684, 

p>.01), and there was no interaction between context consistency and gender (F(1,54)=3.16, 

p>.01).  However, there was a reliable main effect of context consistency (F(1,54)=85.93, 

p<.0001, partial eta-squared = 0.61). On average, context consistent objects were fixated on 

for longer overall (M = 9.08, SD = 5.09) than context inconsistent objects (M = 3.21, SD = 3.88).  

 

Males (n=33) Females  (n=23) 

Consistent Inconsistent Consistent Inconsistent 

2.96 (0.75) 4.22 (1.71) 3.13 (0.68) 4.41 (1.28) 

 

Table 10: Mean Time Spent Fixating (seconds). 

 

 The mean time spent fixating on each object in each category was analyzed using a 2x2 

mixed ANOVA. Gender (male, female) was entered as a between subjects variable, with the 

context consistency of the objects (consistent, inconsistent) entered as a within subjects 

variable. Means are displayed in table 3. No reliable main effects of gender were found 

(F(1,54)=0.620, p>.01), and there was no interaction between context consistency and gender 

(F(1,54)=0.003, p>.01).  However, there was a reliable main effect of context consistency 

(F(1,54)=28.63, p<.0001, partial eta-squared = 0.35). When fixated on, context inconsistent 

objects were fixated on for longer (M = 4.30, SD = 1.54) than context consistent objects (M = 

3.03, SD = 0.72).  

 In summary, context consistent objects were fixated on more often, and the total time 

spent fixating on these objects was greater. However, when fixated on, inconsistent objects 

were fixated for longer. The gender of the participants did not influence this effect. 
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7 Chapter 7 – Conclusions 
In this thesis, an interactive stereoscopic 3D application was developed and displayed 

on a HMD. The application was used to conduct an experiment examining gender differences 

in spatial navigation, memory performance and spatial awareness. In addition, the application 

was carefully designed and implemented in a way to be compatible with innovative Eye-

tracking technology and employ a more modern approach to such psychophysical 

experiments. Our intention was to correlate responses from classic post-exposure memory 

task questionnaires that participants completed after the experiment with the data collected 

from an Eye-tracker during their navigation in the IVE. Based on this analysis we aimed to 

determine how gender affects memory performance and find the factors that contribute to 

such an effect. 

 

From a technical point of view the actual setup of the experiment was a great 

challenge both because of the design requirements of the interactive 3D scene as well as the 

implementation of a formal experimental paradigm. The VE had to be of high fidelity, i.e. 

photorealistically rendered and interactive in order to communicate the spatial cues necessary 

to induce simulation of real-world spatial awareness. Another challenge was the use of state of 

the art Eye-tracking technology. As this technology was recently acquired and never before 

used in our University, technical expertise was inexistent. Few academic research groups have 

already successfully used it in an integrated set-up involving a HMD for conducting 

experiments and there is limited literature around its use. Therefore, there were several issues 

involving the HMD with embedded eye tracking that had to be resolved. 

 

The Unreal Development Kit was used to build the application as it provides the 

necessary tools and programming framework (Unreal Script) in order to create an interactively 

manipulated photorealistically-rendered synthetic scene, as well as the infrastructure to link 

the 3D application with the Eye-tracker. The design of the stereoscopic 3D framework was 

adapted to address the challenges arising from the strict experimental protocol, including the 

creation of the synthetic scene and the User Interface implemented as an Adobe Flash 

application which controlled the phases of the experiment. Beyond the implementation of the 

UI, the application had to comply with all the technical constraints introduced by the partial 

overlap method system employed by the HMD and match certain stereoscopic parameters 

such as resolution and Field Of View in order for the rendering to be displayed correctly. 

 

 The strict experimental protocol imposed time limits that the framework had to meet, 

by specifying timers in order to generate events and corresponding actions as well as 

simultaneously logging every action taking place in the VE in a database. This was done in 

order to be able to understand and analyze the data gathered later on. A dynamic library was 

written to manage the communication with the Eye-tracker i.e. act as a messenger between 

the Unreal application and the Eye-tracking software.  Finally the data from the online 

questionnaires that participants completed were acquired using an online web form created 

using Google services. 
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7.1 Main contributions 
 The effectiveness of VEs as training mediums has often been linked to successful 

spatial awareness which, in turn, induces the sense of presence reported by users of those VEs. 

Presence is defined as the subjective experience of being in one place or environment, even 

when one is physically situated in another. It is argued that VEs that generate a higher feeling 

of presence would result in transfer equivalent to real-world situations, which would be 

extremely useful for VEs such as training simulators. Immersive Virtual Environments provoke 

a higher feeling of presence as they allow users to have an experience that very much looks 

and feels "real."   

 

Spatial awareness is significant for human performance efficiency of training tasks as 

they require spatial knowledge of an environment. A central research issue therefore for real-

time VE applications for training is how participants mentally represent an interactive 

computer graphics world and how their recognition and memory of such worlds correspond to 

real world conditions. 

 

 The experimental methodology presented focuses upon exploring gender differences 

in object-location recognition memory and its associated awareness states while immersed in 

a radiosity-rendered synthetic simulation of a complex scene. Gender specific memory 

performance differences were studied from responses to a memory recognition task as well as 

from examining the eye’s gaze data during the navigation in the IVE.  This study allowed us to 

investigate the effect of gender on both the accuracy and the phenomenological aspects of 

object memories acquired in an IVE. 

 

 The results derived from the participants’ questionnaires responses during the 

experiment indicated that clear differences exist amongst genders. Specifically, females were 

found to be more accurate in identifying objects’ position in the house scene in comparison to 

males. It became evident that each gender had different memorial experience based on the 

context consistency of objects. Vivid and contextually detailed memorial experiences were 

reported more often for objects that were inconsistent with the context of the scene; on the 

other hand less contextually detailed feelings of knowing were reported more often for objects 

that were consistent with the context of the scene. This indicates –as mentioned above- that 

context consistency has an important effect on the memorial experiences of users in such 

environments.  

 

 Preliminary results derived from the data acquired from Eye-tracking showed that 

participants tend to look more often at context consistent objects rather than inconsistent 

objects. In addition, the total time spent fixating on these objects was greater. However, when 

fixated on, inconsistent objects were fixated for longer. Future work and more extensive 

analysis of the Eye-tracking data could identify potential gender differences of attentional 

patterns in relation to specific awareness states. 
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http://sbiwiki.cns.ki.se/mediawiki/images/Viewpoint_software_user_guide.pdf
http://sbiwiki.cns.ki.se/mediawiki/images/Viewpoint_software_user_guide.pdf
http://www.reallusion.com/iclone/Help/3DXchange4/STD/Types_of_maps.htm
http://www.reallusion.com/iclone/Help/3DXchange4/STD/Types_of_maps.htm
http://en.wikipedia.org/wiki/Texture_mapping
http://en.wikipedia.org/wiki/Immersion_(virtual_reality)
http://en.wikipedia.org/wiki/Eye_tracking
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First Pilot Study 

 

 

Section Α:  Consent form 

 

Project Title: Gender differences in spatial navigation and spatial knowledge through a 

complex virtual environment  

Please read the following: 

The research and experimental stage of this undergraduate work performed at the Technical 

University of Crete, Department of Electronic and Computer Engineering. You will be asked to 

fill out a questionnaire. 

Responsible of this experiment is the undergraduate student Chris Paraskevas, doctoral 

student Giorgos Koulieris and the Assistant Professor Katerina Mania. Expected to keep you 

busy up to 20 minutes. We will use your data anonymously with other participants. 

Remember that your participation is voluntary. You can choose not to participate in either or 

any of the individual stages of the questionnaire. 

Please circle your answers to the following questions:  

You understand the consent form? YES NO  

Give your data for further analysis in the present work? YES NO 

Confirmation that you are at least 18 years old? YES NO 

Confirm that never before had signs or symptoms related to the disease of 

epilepsy? 

YES NO 

 

Sign__________________          Date___________ 

Name  ___________________________________________ 
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Section Β: Personal information 

 

Please fill the following: 

 

Name:     

 _____________________________________________ 

 

Age group:  18-22   23-27   28-32   33-37  38-42 above 43 

 

 

 

Gender:     Male /Female  

 

 

Date and time:  _________________ __________________ 

 

 

 (If you currently 

 studying choose 

your educational rank):       Undergraduate  Postgraduate    Doctoral 

 

 

Current state: Student Researcher Academic  

                                         

 

                                      Other (report) _________ 

 

 



APPENDIX B 
 

 121 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX B 
 

 122 

Experiment's scenario 

 

Thank you for participating in the process of our experiments. The experiment consists of 3 

stages. Below are details for each stage separately. Having carefully read the details of each 

stage, you are ready to start. 

Briefly, the first step is to familiarize you with the equipment and with the three-dimensional 

graphics. The second stage is the main experiment. The last stage consists of a review section. 

Step 1. Familiarity with the equipment and three-dimensional graphics 

Are you ready to participate in the first stage. The aim is to familiarize yourself with the 

equipment (Head Mounted Display or HMD) and three-dimensional graphics. As long as you 

have to navigate in an open space. Use the equipment to turn your chair 360 degrees and look 

in all angles. Ask for free any questions or stop the process if you feel unwell. Once you feel 

comfortable with the equipment and navigate in three-dimensional space, ask the person 

responsible for the experiment to "load" the main stage of the experiment. 

Step 2. The main experiment. Browse a three-dimensional scene. 

The new scene describes a room with objects and dining area, kitchen, office and living room 

and are required to observe all places and objects of these sites. The time it will spend in each 

area of the home and what you look is yours concern. The aim of the experiment is to test the 

new technology laboratory equipment and to identify potential problems. 

Step 3. Review 

According to the experience gained from the last scene you saw (stage 2), answer in the review 

form below. You can have as much time you want to read the instructions and answer all the 

questions. 

 

Please do not talk with other participants about your impressions of the navigation or stage of 

review. However, you can ask those in charge of the experiment for any questions you have. 

 

This is the final stage. Thanks for your participation and we hope to enjoy the ride in the 

Virtual Reality!! 
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Online Questionnaires: Screenshots  
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Online Questionnaires: Screenshots  
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Online Questionnaires: Screenshots  

 


