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Abstract
In recent years microarray technologies have gained a lot of popularity for their ability to quickly

measure  the  expression  of  thousands  of  genes  and  provide  valuable  information  for  linking  complex
diseases such as cancer to their genetic underpinnings. Feature selection methods are used in order to
extract small and informative sets of genes that can maximize the performance of classification methods
used to map unknown samples into classes of interest, leading to new and efficient methods for prognosis of
several diseases, which are personalized to the genome of each specific patient. Moreover, the biological
interpretation of these sets of genes, often referred to as “genomic signatures”, can help biologists and
physicians better understand the biological processes related to complex diseases, such as cancer and may
potentially lead to the discovery of new methods of treatment.

Nevertheless, the large number of parameters to be estimated in relation to the small number of
available  samples  gives  rise  to  an  “ill  posed”  problem where  the  performance  assessment  of  feature
selection and classification methods is not stable under slight changes the dataset. In this thesis, a generic
evaluation framework named “Stable Bootstrap Validation” (SBV) is presented, that utilizes resampling of the
original dataset and an explicit criterion that determines the stability of the observed classification accuracy,
as well as the genomic signature. The proposed methodology works in an iterative manner and converges to
a  stable  solution  that  combines  good  accuracy  with  biologically  meaningful  feature  selection.  The
methodology is orthogonal to the specific feature selection and classification algorithms used. Moreover,
methodologies for assessing the statistical significance and consistency of the observed results are also
introduced. Some of the most widely used classifiers are compared, based on their average discrimination
power  and  the  size  of  the  derived  gene  signature.  According  to  our  proposed  model,  a  unified  ‘77
common-gene  signature’  was  selected,  which  is  closely  associated  with  several  aspects  of  breast
tumorigenesis and progression, as well as patient-specific molecular and clinical characteristics. 
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1 - Introduction

1.1 Introduction to Genomic Analysis

While the mapping of the human genome has has been a subject of study for decades, it was until
the more recent advent of DNA microarray technology that scientists have been given a valuable tool in
measuring the expression levels of different genes in a biological system. The genomic analysis using DNA
microarrays,  serves a dual  purpose.  First,  Scientists  can observe patterns in  the data  that  can lead to
different  expression  profiles  among  distinct  classes  of  interest.  In  that  manner,  the  need  arises  for
identification of sets of genes that strongly differentiate their expression levels among classes of interest.
These sets of genes are also called “genomic signatures”. Second, using these sets of genes along with the
patters that have been observed, scientists can design classification methodologies that assign class labels
to new unknown samples. For example, when sets of genes that differentiate their expression levels between
cancerous and non-cancerous tissue samples, they can be used to identify whether an unknown sample
belonging to a patient corresponds to cancerous tissue or not. Moreover, these specific genomic signatures
can be used to provide insight into biological processes, such as cancer and possibly lead to new methods of
treatment.

However,  the  analysis  of  genomic  datasets  is  prone  to  the  problem  known  as  “curse  of
dimensionality” since typically the number of available samples is considerably smaller than the number of
features (genes) used for classification. To be precise, the number of samples is usually in the order of a few
hundred in a best case scenario, while there are thousands of genes, approximately 20,000 in the human
genome. The effect of the “curse of dimensionality” implies significant decrease in classification performance,
instability of the derived signature, as well as difficulties in generalizing the results. The above problems call
for  methods that  perform dimensionality  reduction by eliminating “irrelevant”  sets of  features,  which are
called feature selection methods. There are several categorizations of feature selection methods e.g.: filter
methods,  following a univariate  approach that  examines one feature at  a time;  wrapper and embedded
methods,  which  are  multivariate  approaches  for  simultaneously  examining  different  sets  of  features.
Univariate methods select features that strongly differentiate their behaviour between classes of interest and
as such, they focus on features aimed at improving class separability. Multivariate methods, aim at selecting
a set of features that maximizes the performance of a classification method and aim at selecting sets of
features  that  improve  class  prediction  of  unknown  samples.  In  this  manner,  feature  selection  as  a
methodology is often intertwined with the classification process of new samples.

While  classification  methodologies  are  often  mixed  with  feature  selection  to  produce  sets  of
informative features, the problem of classification of new samples is also an important aspect of microarray
analysis by itself, since it can lead to new and efficient prognosis methodologies. Given that the effect of the
“curse of dimensionality” can been counterfeited by feature selection, with an informative and relatively small
set of features being extracted, classification methods are used in order to classify new data into known
classes of interest. Several different categories of classifiers have been used for this purpose. In this thesis,
the classification methods examined are based on regression processes, and include RLS classifiers, PLS
classifiers,  Support  Vector Machines (SVMs) and Nearest  Neighbor approaches.  A small  set  of  specific
features (genes) that achieves a high classification accuracy when used in conjunction with a classification
method, is called a “genomic signature”.

Another aspect of DNA microarray analysis is the stability of the observed results. Most evaluation
methods for determining the performance of feature selection as well as classification methodologies lead to
observations that vary considerably when small variations take place in training and testing data, as well as
algorithmic parameters. The need for stability of results has lead to the development of methodologies aimed
at extracting more stable, robust and generalizable performance estimates. These methodologies often rely
on random sampling or splitting of the original dataset multiple times in order to generate a large number of
training, as well as test sets, which are used to infer the performance estimates of a given feature selection
and classification scheme. In accordance to this goal,  Davis et al.  in [1] perform random splitting of the
original  dataset  a  large  number  of  times  in  order  to  extract  stable  feature  selection  and  classification
performance assessments over all datasets generated. Suzuki et al. in [3] generate multiple dataset using
random sampling with replacement and take into account the results of leave one out cross validation over
all  datasets  in  order  to  extract  performance  estimates.   Barrier  et  al.  in  [8]  utilize  Monte  Carlo  cross
validation,  splitting  the  dataset  a  large  number  of  times  in  training  and  test  sets  of  various  sizes.
Armañanzas et al.  [6]  propose bootstrap resampling as a means to extract  a stable bayesian model of
dependent genes. However, while these methodologies lead to stable results, they lack a formal definition of
stability, as well as an objective criterion that defines when a sufficient level of stability is reached for the
resulting genomic signature and the corresponding classification accuracy. The lack of such a criterion is
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bypassed using an arbitrary large number of bootstrap iterations in order to achieve stability, which range
from  400  to  thousands  in  the  studies  mentioned.  Considering  that  feature  selection  and  classification
methods  tend  to  be  computationally  intensive,  performing  such  a  large  number  of  iterations  can  be
impractical. Moreover, many of the studies mentioned utilize resampling methods to extract a stable genomic
signature but assess classification performance based on typical cross validation techniques [6], [7]. Even if
the genes in the signature are stable, the size of the signature itself (i.e. the number of selected genes) may
differ considerable during the iterations [6] [7] [8]. This thesis aims at introducing a framework that utilizes an
explicit  definition of  stability  and objective criterion for  determining when a sufficient  level  of  stability  is
achieved for the extracted genomic signature and  the classification accuracy, while performing a minimum
number of bootstrap iterations.

Another need associated with biological problems is to determine whether the results extracted from
feature selection  and classification,  even if  they  are  stable,  are  observed as  a  result  of  the underlying
biological  system or  are  merely  observed  by  chance.  In  this  direction,  statistical  tests  determining  the
randomness of results have been developed. Such tests often utilize permutation in order to measure the
statistical significance of the observed results and assess their reliability [2] [19]. Results that are stable and
reflect the biological model should also be consistent across different executions of the feature selection and
classification methodologies. This aspect is also addressed in our methodological framework, which consists
of several generic modules for specific tasks, as outlined in Figure 1.1.

Figure 1.1 Abstract block diagram of the different algorithm categories used in DNA microarray analysis. The
genomic dataset is first processed by a combination of feature subset selection and classification methods.
The performance estimates of feature selection and classification are extracted using an evaluation method,

resulting in a set of selected genes: the genomic signature and a classification accuracy. The significance
and consistency of the observed results are then assessed using appropriate methodologies.
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1.2 Related Work

The evaluation of stability and reliability of results concerning genomic analysis has been the focus
of several  studies in the field of  Bioinformatics.  Many studies focus on random sampling of the original
dataset in order to infer stable performance estimates. Bootstrap resampling, that is random sampling with
replacement, as a method to estimate the sampling distribution of a random variable based on the observed
data was first introduced by B. Efron in 1979 [9]. In the same study bootstrapping was compared to the
Jackknife and standard leave one out cross validation, outperforming both methods. Davis et al. in [1] study
the stability of genomic signatures and it's impact in the stability of classification accuracy. They also propose
a methodology that utilizing random splitting for determining efficient combinations of feature selection and
classification models depending on the stability of signatures as well as efficient classification performance.
Soek Ying Neo et al. in [2]  utilize Monte Carlo simulations in order to determine whether the clustering
performance is statistically significant or not. Maglietta et al. In [19]  rank each gene not only depending on
performance of a ridge regression classifier when only that specific gene is used as a feature, but also
examine  the  statistical  significance  of  that  gene's  observed  classification  accuracy.  Suzuki  et  al.  in  [3]
propose a model for the performance assessment of feature selection and classification methods, that takes
advantage of the low bias of leave one out cross validation, while it aims to counter it's large estimation
variance by utilizing bootstrap resampling.  Haury et  al.  In [4]  assess the influence in  terms of  stability,
performance and interpretability, of different feature selection methods when used in conjunction with a set of
classifiers.  They also compare the performance of  the genomic signatures to sets of randomly selected
genes, a notion introduced by Ein-Dor et al. in [5]. Armañanzas et al. in [6] propose bootstrap resampling
since it  leads to  reliability,  robustness and few false positives in  the observed results.  They propose a
scheme which utilizes bootstrap resampling in order to generate a large number of 1000 datasets and then
univariate feature selection method called “correlation feature selection” is performed on each dataset in
order to reduce the dimensionality. A k-Dependence Bayesian classifier is then trained using each bootstrap
dataset resulting in a directed acyclic graph where each arc represents statistical dependence between the
connected nodes (genes). To achieve stability of the model, only arcs whose appearance frequency over all
bootstrap datasets is over a fixed threshold, are included in the final model. To assess the classification
performance, 5 fold cross-validation is performed. The same approach is followed by García-Bilbao et al. in
[7] in order to construct a k-Dependence Bayesian classifier utilizing bootstrap resampling. However, instead
of 5 fold cross validation on the constructed model, a set of 10 features selected by the model is used in
conjunction with a set of different classification methods and their performance is evaluated using leave one
out cross validation. The concept of using bootstrap resampling for the estimation of confidence in selecting
a feature in a bayesian network was first introduced by Friedman et al. in [11] it was reported to lead to low
rate of false positive rate for selected features and also achieve reliable conclusions about the selected
features,  even if  the dataset  used was relatively  small.  Barrier  et  al.  in  [8]  propose Monte Carlo  cross
validation, which generates multiple random splits of the dataset using random sizes for the training and
tests sets. That is, for each of the 16 different values for training test size, 100 datasets are performed by
random splitting of the dataset leading into 1600 total datasets generated. Then, a filter feature selection
method and a diagonal linear discriminant analysis classifier is trained on the training set, while classification
performance is assessed using the corresponding test set. In that study it is also reported that many different
signatures lead to similar classification performance, a result  shared by [4] and [5][8].  Kerr et al.  in [10]
perform bootstrap resampling from the original dataset in order to assess the stability of cluster analysis
results. At the first level of bootstrapping, 10,000 bootstrap simulations are run in order to eliminate irrelevant
features using a filter feature selection method. Then, at the second level of bootstrapping 499 additional
datasets are generated from the filtered original dataset and each gene is clustered to one of 7 possible
temporal patterns of yeast sporulation. Finally, the gene clusterings considered stable are only those being
“95% stable” , that is they appear in at least 95% of the generated datasets, as well as in the clusters of the
original dataset.
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1.3 Thesis Outline and Innovation

The  necessary  theoretical  background  concerning  the  human  genome  and  methodologies
concerning the analysis of DNA microarray data in the field of bioinformatics is covered in chapter 2. That
includes  the  biological  concepts  regarding  DNA  microarrays,  feature  selection  and  feature  weighting
methodologies,  as  well  as  classifiers.  Different  evaluation  methods  are  also  presented,  followed  by  an
introduction to the statistics theorem known as the “law of large numbers”. The proposed methodology for
extraction of stable signatures and performance estimates, while assessing the statistical significance and
consistency of results is covered in chapter 3. The innovative concept involves utilizing bootstrap resampling
in order  to generate a large number of datasets for training and testing a pair  of  feature selection and
classification methods. Under the assumption that the observed classification accuracy and signature size
are  independent  identically  distributed  random variables,  according  to  the  Law  of  Large  Numbers  the
evaluation methodology is guaranteed to lead to stable assessment of both metrics, given that the number of
bootstrap  datasets  used  is  large  enough.  Moreover,  unlike  similar  methods the  proposed  methodology
employs an explicit criterion that determines when stability has been achieved for the mean classification
accuracy, as well as the genomic signature size. The results of the proposed methodology, including the
performance estimates of several feature selection and classification techniques are presented in chapter 4,
followed  by  consistency  assessment  of  the  accuracy  reached  by  the  proposed  genomic  signatures.
Moreover a comparison between the proposed evaluation technique and standard 10-Fold cross validation is
implemented. Finally, the biological interpretation of the extracted genomic signatures is presented.
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2 - Theoretical Background
In this chapter the necessary background concerning the human genome and the bioinformatics

aspects  of  DNA  microarray  analysis  are  covered.  The  human  genome  and  the  technology  of  DNA
microarrays is introduced in section 2.1, followed by an introduction to the scientific field of machine learning
and pattern recognition in section 2.2. Then, the subject of feature subset selection is examined in section
2.3  including  the  differences  of  filter,  wrapper  and  embedded  methods,  while  the  recursive  feature
elimination  algorithm is  introduced as  well.  Different  classification  methods are  covered  in  section  2.4.
including regularized least squares, partial least squares, support vector machines and nearest neighbor
classifiers. In section 2.5 different cases of evaluation methods are examined, such as holdout validation,
K-fold  cross  validation,  leave  one  out  cross  validation,  repeated  random  sub-sampling  validation  and
bootstrap resampling. Finally, a theorem of statistics called the “weak law of large numbers” is introduced in
section 2.6.

2.1 The Human Genome - DNA Microarrays

In this section the necessary background is covered concerning the structure of the human genome
as well as measuring expression values of different genes using the technology of DNA microarrays.

The Human Genome

The human genome refers to the complete set of human genetic information, the study, analysis and
mapping of which, has been the subject of the “Human Genome Project”[12]. The majority (~98%) of the
human genome located in genetic material in the nucleus of human cells (with the exception of red blood
cells), while the rest (~2%) is located in organelles called mitochondria which are responsible for converting
the energy from food into a form usable by human cells. The genome located in the nucleus is organized into
23 pairs of chromosomes. These 46 chromosomes consist of 44 autosomes and 2 sex chromosomes, XX or
XY for females and males respectively. Every chromosome has a constriction along it's length, called the
centromere that divides the chromosome into a long and a short “arm”. Each chromosome can be thought as
a  string  of  thousands  of  genes,  which  are  in  turn  made  of  DNA.  The  human  genome  is  made  of
approximately 20,000 genes, most of them located in the nucleus, while only 37 refer to mitochondrial genes.
Moreover, the genes located in the nucleus are not organized in chromosomes. The DNA that makes up the
genes is called “coding DNA”, while the DNA “string” between each gene is called “non-coding DNA”. Only a
fraction of  the  genome refers  to  coding  DNA,  which  is  transcribed into  RNA and then  transcribed into
proteins.  Most  of  the  genome  consists  of  non-coding  DNA that  is  associate  with  other  known,  or  yet
unknown, biological procedures.

DNA

As mentioned above, each gene is made of DNA [13]. Deoxyribonucleic acid (DNA) consists of two
long complementary strands of nucleotides that take the form of a double stranded helix. DNA consists of
four primary types of nucleotide molecules. Each nucleotide consists of a phosphate, a sugar (deoxyribose)
and one of four possible nitrogen bases, each represented by a letter: adenine (A), guanine (G), cytosine (C)
and Thymine (T). These distinct nitrogen bases are also used to distinguish the four types of nucleotides
from one another.  Each nucleotide of  a strand is connected by a hydrogen bond to it's  complementary
nucleotide in the opposing DNA strand in order for the helix to maintain it's structure independent of the
nucleotide sequence. These complementary nucleotide pairs are called the base pairs and correspond to
G-C and A-T.  The genetic  information of  each strand is  read in  the form of  non-overlapping triplets  of
nucleotides.  Given  that  there  are  4  nucleotides,  the  possible  number  of  different  triplets  is  equal  to

43
=64 combinations.
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Figure 2.1 The DNA double helix. The nucleotide base pairs of A-T and G-C are also shown.

DNA Microarrays – Gene Expression – DNA transcription

DNA Microarrays [13] [14] are tools that allow the measurement of the expression levels of different
genes. A gene is considered to be expressed if it's DNA has been transcribed to RNA and gene expression
refers to the level of transcription of the gene's DNA. During the process of transcription the DNA is used as
a template for the enzyme RNA polymerase II to construct pre-mRNA utilizing complementary base pairing.
However, since there is no Thymine in RNA, it is replaced by Uracile (U). Finally, the enzyme recognizes
signals in the DNA chain that lead to the termination of the transcription process and the pre-mRNA chain is
released into the nucleus where it is processed into mRNA. DNA microarrays measure the levels of mRNA.
DNA microarrays measure gene expression assessing the levels of mRNA present in the samples of interest
indirectly. The assessment is indirect since DNA microarrays in reality measure the levels of cDNA, which is
produced by mRNA using a process called Reverse Transcription (RT). The cDNA sequences used to bind
target  cDNA  sequences  of  interest  on  the  microarray  are  called  “probes”.  Probes  bind  target  cDNA
sequences by forming hydrogen bonds between complementary nucleotide base pairs, while multiple probes
may be used to measure the same gene in order to reduce the noise present in the signal. The sequences
bound by the probes are then detected using fluorescent dyes. If  the genes of interest are found to be
expressed, their expression levels are compared to those of known control samples in which the same genes
are not expressed. Different technologies of DNA microarrays have been introduced. The “spotted cDNA
microarray” developed at Stanford University utilizes robotic spotting of aliquots of purified cDNA clones,
while category of microarrays developed by Affymetrix, Inc. Utilizes photo-lithography for embedding cDNA
probes on silicon chips.

2.2 Machine Learning and Pattern Recognition

In machine learning [15], pattern recognition is the act of selecting an appropriate action based on
the patterns observed in raw data.

Supervised learning [15] aims to generate a function given a set of labeled samples. That function
can then be used to assign labels to new unknown data.  In regression,  the label  of  each sample,  is a
continuous variable, often called the response variable. In the case of classification, the label can only take
one among a set of discrete values.

Unsupervised learning [15] aims to find groups of data that share similar properties. It differentiates
from supervised  and  reinforcement  learning,  since  the  samples  are  unlabeled  and  there  is  no  explicit
feedback.
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Reinforcement learning [15] is usually employed by A.I. agents and aims to maximize a cumulative
reward function, given a set of variables determining the environment and the actions available at a given
time. Instead of labels, reinforcement learning utilizes a positive or negative reward signal sent to the agent
after an action is completed.

DNA microarray analysis  is  a case of  supervised learning.  The raw data consists of  a set  of  N
samples, each represented by a vector xi ∈RP  i=1, ...,N. Where P is the number of features/genes, also
called predictors. To each of the samples, a class label y is assigned. In the case of cancer/control binary

classification, y∈{-1,+1} . The data can also be expressed in array form as  X ∈RΝ , P
where each

row represents a sample containing the expression values of P genes, while the class labels of all samples

are expressed as a vector y ∈RN
.

2.3 Feature Subset Selection (FSS)

Feature subset selection [17] [18] is an important aspect of microarray analysis, since it  aims to
counter the “curse of  dimensionality” that  is  encountered in DNA microarray datasets.  That is,  classifier
performance is deteriorated when the number of features is larger than the number of available training
samples. The goal of FSS methods is to reduce the number of features by keeping only the most “important”
set, while discarding all others. The set of kept features is then used for classification. In DNA microarray
analysis, the set of kept features (genes) is usually referred to as “genomic signature”. There are three
different approaches to feature subset selection: filter, wrapper and embedded methods.

Figure 2.2 Demonstration of the curse of dimensionality on DNA microarray data, using a linear SVM
classifier. Classification performance deteriorates when the number of features is comparable to, or greater

than the number of available samples.

Filter Methods (Univariate)

Filter methods [17] [18] form univariate approaches, which act as a preprocessing step, independent
of the classifier used. They rank each feature independent of others, based on its ability to discriminate
between different classes of interest. They generally are simple to implement, computationally efficient and
provide insight into class differences. However, filter methods produce a feature set that is not tuned to the
performance of a specific classifier.
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Wrapper Methods (Multivariate)

Wrapper methods [17] [18] fall within a multivariate approach. They evaluate a feature subset based
on the prediction accuracy of  the classifier  when that  specific  subset  is  used.  In  that  manner,  given a
classifier, they aim to find the set of features which maximizes the prediction performance. The classifier is
perceived as a black box, independent of the feature selection method. Since they need to evaluate different
combinations of features, they can be computationally expensive. In that manner, greedy algorithms have
been proposed in order to reduce the computational complexity, such as forward selection and backward
elimination.

Embedded Methods (Multivariate)

Embedded [17] [18] methods also evaluate a feature subset based on the prediction accuracy of the
classifier.  They differentiate  from wrapper methods however,  since the search for  the feature subset  is
embedded in the training of the classifier, while in wrapper methods the feature selection step is independent
of  the  classifier  used.  Compared  to  wrapper  methods,  embedded  methods  are  more  computationally
efficient. However, due to the embedding of feature selection in the training process, they can prove to be
harder to implement.

2.3.1 Recursive Feature Elimination (RFE)

Recursive Feature Elimination [16] is a popular embedded feature selection method that aims at
preserving  the  minimal  set  of  features  maximizing  the  classification  accuracy  of  a  given  classification
method.  RFE  proceeds  iteratively,  eliminating  a  fixed  number  of  least  significant  features  during  each
iteration  and  then  reassessing  the  classification  performance.  The  elimination  procedure  stops  when  a
predetermined small number of features are left.  Then, the set of features across all iterations maximizing
the classification accuracy is chosen as the optimal feature set, tuned for the specific classifier used. In order
for the least significant feature to be determined, a feature weighting scheme is required. Such a weighting
scheme can be the weight given to each feature by a linear classifier or by non-linear feature weighting
methods such as RELIEF.

2.3.2 Feature Weighting Methods and I-RELIEF

As mentioned above, the weighting of features is a prerequisite for the implementation of a recursive
feature elimination scheme. That is, feature weights are necessary in order to determine the least significant
set of features during each iteration of RFE. In this study, two categories of feature weighting methods are
examined: linear and non-linear feature weighting algorithms.

Linear Feature Weighting Methods – Linear Classifiers

The  most  common  method  to  assign  weights  to  features  are  linear  classifiers,  including  RLS
methods like RR and the LASSO, PLS methods like PLS-VIP and PLS-BETA and linear SVM. All  these
classifiers are presented in detail in section 2.4. The common characteristic of these methods is that they
assign a label  ŷ to an unknown sample  x̂ based on the formula  ŷ= f ( x̂⋅w) ,while the weight
vector w is inferred during the training process of the classifier.
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Non-Linear Feature Weighting Methods

Non-linear feature weighting methods assign weights to features according to a non-linear criterion.
In this study, the original RELIEF algorithm, as well as I-RELIEF are examined. Both are used in conjunction
with the K-NN classifier which is introduced in section 2.4. They rank features according to their ability to
discriminate the neighboring samples of different classes.

RELIEF

RELIEF [26]  is  a  feature  weighting  algorithm that  practically  is  an  online  solution  to  a  convex
optimization problem that maximizes a margin based objective function, which is defined by a 1-Nearest
Neighbor  classifier.  Unlike  methods such  as  Support  Vector  Machines  that  assign  feature  weights  and
perform classification of samples, RELIEF by itself is a methodology dedicated to feature weighting and does
not provide a means to classify samples. In this manner, RELIEF is used in conjunction with a Nearest
Neighbor  classification  method.  RELIEF  tends  to  perform  better  than  filter  methods  since  it  utilizes  a
non-linear classifier and is faster than wrapper methods because it is expressed in closed form as a solution
to an optimization problem, so only minimal computations are required. In the case of binary classification

and a given dataset , RELIEF ranks features D={( xn , yn) : x n∈ RP yn∈{−1,+1 }} , n=1,... , N  based
on their  ability to discriminate the classes of neighboring samples.  Let NH(xn)  be the “Nearest Hit”,  the
nearest sample to xn belonging to the same class and NM(xn) the “Nearest Miss”, the nearest sample to xn

belonging  to  the  different  class.  The  margin  for  xn  can  be  described  as
ρn=d ( xn−NM ( xn))−d (x n−NH ( xn)) ,  where  d (⋅) a  distance  function  defined  as

d (x )=∑
p=1

P

∣x p∣ . In that case ρn>0 only if the sample has been correctly classified. The idea is to use

feature weights in order to scale each feature so that the average margin in the weighted feature space is
maximized:

maximize in w

∑
n=1

N

(∑
p=1

P

w p∣x n
( p )−NM ( p ) ( xn)∣−∑

p=1

P

w p∣xn
( p )−NH ( p ) ( xn)∣)

subject to ∣∣w∣∣2
2
=1,w≥0

Where ∣∣w∣∣2
2
=1 is used so that the maximization does not increase without bound and w≥0 ensures

that the weight vector w is a distance metric. In order to simplify the above optimization problem we define

the vector z as ∑
n=1

N

∣xn−NM ( x n )∣−∣xn−NH ( x n )∣ the above problem can be rewritten as

maximize in w

wT
⋅z

subject to ∣∣w∣∣2
2
=1,w≥0

By utilizing the Lagrangian technique and the  Karush-Kuhn-Tucker condition, the solution is expressed in

closed form as w=
(z )+

∣∣z∣∣
+ , where (zi)

+
=max( zi ,0) . In case the Euclidean distance is used instead of

the above distance metric, the resulting algorithm is called Simba [28]. After feature weighting has taken
place, feature subset selection can be performed based on the absolute value of the weight of each sample.

I-RELIEF

I-RELIEF [27] is a feature weighting scheme that aims to improve on the drawbacks of the original
RELIEF algorithm. The first drawback of RELIEF is that it makes the implicit assumption that the nearest
neighbors of a sample in the original feature space are the same in the weighted feature space, which is
generally not the case. The second drawback of RELIEF is it's sensitivity to outliers. I-RELIEF follows the
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principle of the EM algorithm and threats the nearest neighbor as well as the identity (outlier or not) of a
sample as hidden variables and iteratively estimates them until convergence is achieved. Given the dataset

D={( xn , yn) : x n∈ RP yn∈{−1,+1 }} , n=1,... , N , two sets are determined for each sample x n :

M n={ i :1≤i≤N , y i≠ yn } the  set  of  all  samples  with  a  label  different  than  x n and

H n={ i :1≤i≤N , y i= y n , i≠n} the  set  of  all  samples  sharing  the  same  label  as x n .  Let

S n={ sn1 , sn2} where  sn1∈ M n the  nearest  miss  of x n and sn2∈H n the  nearest  hit  of x n .

Moreover,  the  vector  of  binary  parameters  o=[o1,... ,oN ]
T

such  as  on=0 if x n is  an  outlier,

otherwise  on=1 .  The  objective  function  that  needs  to  be  optimized  is

C (w)= ∑
{n=1, on=1}

N

∣∣xn−xs1∣∣⋅w−∣∣xn−xs2∣∣⋅w . However, the set S={ S n} N
n=1

and the outlier vector

o are still unknown at this point. Under the assumption that the elements of both S={ S n} N
n=1

and  o

are  random variables,  the  method  proceeds to  iteratively  derive  their  probability  distributions.  First,  the

weight vector w is set to an initial value that does not violate the constraints ∣∣w∣∣2
2
=1,w≥0 . Given that all

pairwise distances among training samples have already been computed when searching for nearest hits
and  misses,  the  probability  of  the  i-th  sample  being  the  nearest  miss  of x n is  defined  as

Pm(i | x n ,w )=
f (∣∣xn−x i∣∣⋅w)

∑
j∈ M n

f (∣∣xn−x i∣∣⋅w)
and the probability of the i-th sample being the nearest hit of x n

is defined as Ph(i | x n ,w)=
f (∣∣xn−x i∣∣⋅w)

∑
j∈H n

f (∣∣x n−x i∣∣⋅w)
. Where  f (⋅) a kernel function, with a commonly

used example being  f ( d )=e−d /σ
,  the kernel width σ being a user defined parameter.  In a similar

manner,  the  probability  of x n being  an  outlier  can  be  defined  as

Po(on=0 | D ,w)=

∑
i∈ M n

f (∣∣xn−x i∣∣⋅w)

∑
xi∈D−x n

f (∣∣x n−x i∣∣⋅w)
.  In  order  to  estimate  these  probabilities  an  iterative

algorithm similar to EM will be implemented. However it needs to be noted that it is not an EM algorithm
since the objective function is not a likelihood. For brevity of notation, the following formulas are defined:

αi ,n=Pm(i | xn ,w( t)
) , β i , n=Ph(i | xn ,w(t )

) , γn=1−Po(on=0| D ,w(t )
) , where t refers to the t-th

iteration  of  the  algorithm.  W ={w :∣∣w∣∣2
2
=1,w≥0} , mn , i=∣x n−x i∣if i∈M n and

hn ,i=∣xn−x i∣if i∈ H n . The following iterative algorithm of I-RELIEF consists of the following two steps:

step 1: After the t-th iteration, calculate the Q function as:

Q(w |w(t ))=E{ S ,o }[C (w)]=∑
n=1

N

γ n( ∑
i∈ M n

αi , n∣∣x n−x i∣∣⋅w−∑
i∈H n

β i , n∣∣xn−x i∣∣⋅w )

=∑
n=1

N

γn (∑
j

w j ∑
i∈M n

αi ,n mn ,i
j
−∑

j

w j ∑
i∈H n

β i , n hn ,i
j )=∑

n=1

N

γn(∑
j

w j m̄n
j
−∑

j

w j h̄n
j )

= wT ∑
n=1

N

γ n( m̄n−h̄n )=wT⋅v

step 2: re-estimate w in the (t+1) iteration using the formula:

w( t+1)
=arg max

w∈W
Q(w |w(t )

)=(v )
+
/∣∣(v )∣∣

The above two steps iterate alternatively until convergence is achieved, that is until ∣∣w(t )
−w( t+1)∣∣<θ .

It can be proved that I-RELIEF always converges, provided that the kernel width σ is large enough [27].
Moreover, since the initial version of relief is a batch algorithm for binary classification of samples, extensions
that cover online learning and multiclass classification are introduced [27].
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2.4 Classification Methods

2.4.1 Regularized Least Squares (RLS) Classifiers

Linear Regression

Regression [19]  [20] is a statistical model for estimating the relationship among the observed and
response variables of a system. The regression model is linear, when the response variable is modeled as a
linear  combination  of  the  observed  variables.  The  above  problem  is  expressed  in  matrix  form  as

y=X⋅w  +ε In DNA microarray analysis the response variable  y ∈RN
is the vector of class labels

(cancer/control) while the observed variables are the gene expression measurements per sample expressed

as X ∈RΝ , P
in matrix form. Finally, the weight vector w ∈RP

is the vector of regression coefficients
that need to be estimated and ε is the error term that corresponds to random noise.

Figure 2.3 Linear regression example, of one independent variable on the x-axis. 

Ordinary Least Squares (OLS) [20]

Given a set of N samples  x n∈ RP
 n=1, ...,N of P features expressed as in matrix form as  X

∈RΝ , P
and a response variable  y∈{-1,+1}  for each sample, the ordinary least squares method

aims to infer a function that estimates the labels ŷ of a new set of test samples  X̂ .  The function
suggested by the OLS model is the linear approach ŷ= X̂⋅w . In order to solve the OLS problem, the
weight vector  w needs to be estimated. Following the OLS approach, the optimal vector w is the one that
minimizes the function:

w=argmin f (w) , f (w)=∑
n=1

N

yn− y ' n=∑
n=1

N

( yn−xn⋅w)2

Regularized Least Squares (RLS)

While standard OLS approach provides a solution to the classification of new samples, it achieves
low classification accuracy and generally does not provide insight into the importance of different features. In
that  manner, RLS methods intent to improve the performance of the standard OLS approach by further
restraining the weight vector w. The importance of each feature for OLS and RLS methods is related to the
ability of correctly predicting the response variable, when given a set of input samples.
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2.4.1.1 Ridge Regression (RR)

The RR approach [19] [20] replaces f(w) of OLS with

f (w)=∑
n=1

N

( yn−x n⋅w)
2 , subject to∑

p=1

P

w p
2
<t , t can be estimated using cross-validation.

The added constraint aims at preserving the most important features. By limiting the total sum of squared
weights, the most important features are more likely to attract larger weight values while the less significant
features will  be given values close to 0. As such, the most important features in RR will  have a greater
impact at the classification process, compared to the case of OLS.

2.4.1.2 Least Absolute Shrinkage and Selection Operator (LASSO)

While RR shrinks a lot of features, it does not implement variable selection since it does not set any
of them to exactly 0. That leads to a model which is not easily interpretable. In that manner, LASSO [21]
aims to further shrink the available features while setting a considerable amount of them at exactly 0. The
LASSO approach replaces f(w) with

f (w)=∑
n=1

N

( yn−x n⋅w)2 , subject to∑
p=1

P

∣w p∣<t , t can be estimated using cross-validation.

The  LASSO constraint  is  more  limiting  than  the  case  of  RR.  Since  feature  weights  are  typically  small
numbers, smaller than 1. When the weight values are squared they lead to even smaller values and the RR
constraint for the sum of squared weights is achieved, while the distinct weight of each feature is generally
small but larger than 0. However, the LASSO constraint limits the absolute value of the sum of weights. As
such, minimizing the distinct  weight  of  each feature is  more important  in  achieving the limitation of  the
constraint,  compared to the case of  RR. That leads to a large number of less important features being
assigned weights that are exactly 0, leading to an embedded process of feature selection in the LASSO
classification method.

Estimating the parameter t

Both RR and LASSO require the estimation of t beforehand. Given w0 the estimates of the simple

OLS model, then t can be expressed as t=α⋅∑
p=1

P

w0i

2 , α∈[0,1] . In that manner, α needs to be estimated

instead of t. Cross validation for the estimation of α is easier since it only takes values between 0 and 1.

2.4.2 Partial Least Squares (PLS) Classifiers

Partial Least Squares Regression

PLS regression [22] [23] [24] aims to counter the effects of multicollinearity as well as the fact that
the number of features is larger than the number of available samples, since both of these factors lead to
poor performance of standard regression models. Instead of adopting a feature selection approach like the
LASSO, the PLS approach simultaneously decomposes the input data matrix  X as well as the response
variable vector y utilizing a set of latent variables that aim to explain the covariance structure between X and
y. PLS decomposition is focused on extracting latent variables that model the observations X and can also
adequately predict the response variable y. The model is expressed as follows:

X=T PT
+E

y=T b+ f
Where X ∈RΝ , P

is the input data matrix, y ∈RN
 the vector of response variables.

T (Scores)  ∈RΝ , h
 is the structural part of PLS that implies how the different rows of  X (observations)

relate to each other.  The k-th column of  T includes the scores for the k-th latent  variable.  The method
assumes that the scores T are good predictors of y [23]. In this manner, T is used to model X and predict y
as well.

P (Loadings)  ∈RP ,h
 is  also  a  structural  part  of  PLS.  The  loadings  show the  influence  of  different

observations of X on the scores of T.

E (Residuals) is the error that is not predicted by the T PT
part of the model. In that manner, E should not

be large since it would lead to poor performance of the model.
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b ∈Rh
, the k-th element of b explains the relation between the response variable vector y and and the

k-th column vector of the scores T.

f ∈RN
refers to random errors in the representation of y that is not predicted by the model.

Finally, h is the number of latent variables. The value of h is selected beforehand and is theoretically bound
by  1≤h≤min{ N , P } .  However,  in practice only the first  few components are utilized otherwise a
considerable amount of noise is embedded in the structural part of PLS.

Figure 2.4 PLS decomposition of the input data matrix X.

Figure 2.5 PLS decomposition of the response variable vector y.

Non-Linear Iterative Partial Least Squares (NIPALS) Algorithm

Given X,  y and a fixed number of h latent variables, the NIPALS algorithm [25] is used in order to
calculate T, P, W and b. NIPALS is an iterative approach that calculates a single latent variable during each
iteration, but leads to the same results as methods that examine the covariance of X and y [24]. Since the
number of latent variables used in genomic datasets is typically small, NIPALS tends to be a computationally
efficient  approach.  However,  the  version  of  NIPALS implemented  in  this  thesis  and  introduced  in  [22]
assumes that the model parameters are adequately estimated in one iteration, in order to further reduce the
computational load. As such, the PLS model is constructed using the NIPALS estimations of the model

parameters. W ∈RP ,h
is a weight matrix obtained in order to minimize the Euclidean norm of f in order to

derive a useful relation between X and y. The NIPALS algorithm consists of the following steps, for k=1, …,
h:

step 1:
y

(k )
⇐ y

( k−1 )
−bk− 1t k− 1; y

(1)⇐ y

X
( k)⇐ X

(k−1)−t k−1 pk− 1
T ; X

(1)⇐ X

step 2: wk
T
= y(k )

T X (k )/ y(k )

T y (k )

step 3: wk⇐wk /∣∣wk∣∣
step 4: t k=X (k )wk /wk

T wk

step 5: pk
T
= t k

T X (k ) / t k
T t k

step 6: t k⇐ t k⋅∣∣pk∣∣
step 7: wk⇐wk⋅∣∣pk∣∣
step 8: pk⇐ pk /∣∣pk∣∣
step 9: b( k )= y( k)

T t k / t k
T t k
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2.4.2.1 PLS-VIP Method

The PLS-VIP method [25] performs feature selection based on the Variable Importance in Projection
(VIP) score of each feature. The VIP score implies each feature's significance in finding the h latent variables
during the decomposition of the input data matrix. Since the average VIP score equals to 1, usually a 'greater
than one' rule is used during VIP based feature selection.

Given that T, P, W and b have been calculated using NIPALS. The VIP score for the j-th feature is calculated
using the following formula:

VIP j=√ p∑
k=1

h

SS (bk t k ) ( w jk /∣∣wk∣∣)2

∑
k =1

h

SS ( bk t k )

, where SS (bk t k )=bk
2 t k

T t k

After  the  feature  selection  procedure has  been completed,  new samples  X̂ are  classified using  the

formula  ŷ= X̂ b pls ,  where b pls=W ( PTW )−1 (TTT )−1TT y , y the  known  class  labels  of  the
training set.

2.4.2.2 PLS-BETA Method

PLS-BETA [25] is almost identical to PLS-VIP. They both utilize NIPALS in order to calculate T, P, W
and b. Their difference lies in the criterion for feature selection. While PLS-VIP performs feature selection
using the VIP score, PLS-BETA selects features based on the magnitude of  their  respective regression
coefficients in  b pls .  Since variables are selected according to the “beta”  vector  b pls of  regression
coefficients, the method is called PLS-BETA.
Similar  to  PLS-VIP,  new  samples  are  classified  using  the  ŷ= X̂ b pls formula,  where

b pls=W ( P TW )−1( T TT )−1T T y .

2.4.3 Support Vector Machine (SVM) Classifier

Support Vector Machines [25] are a machine learning algorithm than can be used for regression, and
by extent for classification purposes. In the case of two-way classification, the SVM computes the hyperplane
separating the classes of interest with the maximum margin across the closest samples of the two classes.
The aim of the utilization of the maximum margin hyperplane is to minimize the generalization error of the
classifier. The original SVM algorithm assumes that the data are linearly separable. If that is not the case,
using a kernel function the data are mapped to a higher dimension space in which they are found to be
linearly separable. Moreover, the SVM algorithm has been extended to what is called the “soft margin” SVM
[25], that makes no assumption about the linear separability of the classes. Instead it normally functions as a
typical SVM but in case the data are not linearly separable, it  computes the hyperplane resulting in the
lowest mis-classification rate, while it ensures the maximum margin between the closest correctly classified
samples of the two classes. In order to understand the notion of the support vectors, the case of the simple
SVM given linearly separable data is further explained.
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Figure 2.6 The black hyperplane separates the two classes, resulting in the maximum margin between their
closest samples, and thus is selected as the SMV separating hyperplane.

Linear SVM

Given a dataset D={( x i , y i) : x i∈ RP yi ∈{−1,+1 }}, i=1,... , N where x i  the samples and

y i  the  class  labels,  the  goal  of  the  SVM is  to  compute  the  hyperplane  of  dimension R(P−1) that
separates all  samples belonging to the class y=1 from those of y=-1, such as the margin of the closest

samples  of  the  two  classes  is  maximized.  If  x ∈RP
then  any  hyperplane  can  be  expressed  as

w⋅x−b=0 , where w the normal vector to the hyperplane and b a real constant. Then the parameter
b

∥w∥
expresses the offset of the hyperplane from the origin, along the normal vector  w. Given that the

data are linearly separable, there exist two hyperplanes Η 1: w⋅x−b=1 , Η 2: w⋅x−b=−1 that fully
separate  the  two  classes  without  any  samples  being  misclassified.  The  region  bounded  by  these  two

hyperplanes is called the “margin” between the two classes,  which is equal  to  
2

∥w∥
.  So in order  to

maximize the margin, ∥w∥ needs to be minimized. While ∥w∥ is minimized, samples of either class
may appear inside the margin, for that to be avoided, further constraints need to be implemented:
w⋅x i−b≥1 for samples of class y i=1 and w⋅x i−b≤−1 for samples of class y i=−1 .

Both constraints can be expressed in one equation as y i⋅(w⋅x i−b)≥1 for i=1, ..., N. The above can be
expressed as an optimization problem:
Minimize in w,b
∥w∥

subject to y i⋅(w⋅x i−b)≥1 , for i=1,...,N
or to avoid calculating the square root:
Minimize in w,b

1
2
∥w∥

2

subject to y i⋅(w⋅x i−b)≥1 , for i=1,...,N
By introducing the Lagrange multipliers  α ,  the above can be expressed as a  problem of  quadratic
programming:
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min
w , b

max
α≥0

{
1
2
∥w∥2−∑

i=1

N

αi [ y i⋅(w⋅x i−b)−1]} and then according to the stationary Karush-Kuhn-Tucker

condition,  the  solution  can  be  expressed  as  a  linear  combination  of  the  training  input  vectors x i :

w=∑
i=1

N

α i yi x i .

Only a few of  the Lagrange multipliers  α i are greater then zero. These multipliers correspond to the
closest  samples  of  the  two  classes,  the  support  vectors,  that  lie  on  the  margin  and  satisfy

y i⋅(w⋅x i−b)=1 . Solving the previous equation for b we obtain  b=w⋅x i− y i for a given support
vector. In that manner, a more stable estimation of b is the mean value over all support vectors, given by the

formula b̂=
1

N sv
∑
i=1

N sv

(w⋅x i− y i) .

Using the equations ∥w∥=w⋅w and w=∑
i=1

N

α i yi x i the optimization problem can be expressed in it's

dual form as:
Maximize in αi

L(α)=∑
i=1

N

α i−
1
2
∑
i , j

αi α j y i y j x i
T x j=∑

i=1

N

αi−
1
2
∑
i , j

α i α j y i y j K ( x i , x j)

subject to αi≥0 , ∑
i=1

N

α i⋅y i=0

where K (x i , x j)=x i⋅x j a kernel function.

After the Lagrange multipliers αi have been computed, w can be determined using w=∑
i=1

N

α i yi x i .

The problem expressed in  dual  form is  computationally  efficient,  since the classification task takes into
consideration only the support vectors, which generally are a small subset of the original  set of training
samples.

Figure 2.7 The separating hyperplane of a linear SVM.
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2.4.4 K Nearest Neighbor (K-NN) Classifier

Nearest  Neighbor  methods such  as  K-NN [27]  utilize  a  non-linear  approach that  classifies new
samples depending on a set of samples closest to them, which are called their “nearest neighbors”. Given a
set  of  known training samples,  K-NN classifies a new test  sample depending on the class label  of  the
majority of K samples nearest to it, according to a distance metric. Supposing that in the case of binary

classification  the  dataset  is  D={( xn , yn) : x n∈ RP yn∈{−1,+1 }} , n=1,... , N ,  then  a  new  sample

x̂  is given a class label ŷ  according to the formula ŷ=sign (∑
i=1

K

ỹ i ) . Where ỹ i the class label

corresponding to the i-th nearest neighbor of x̂ .  In the case  Euclidean distance is used, the nearest
neighbor of x̂ is expressed as x̃=argmin∣∣x̂−x i∣∣, i=1,... , N−1 .

Figure 2.8 The test sample (purple X) will be classified in the first class of green circles in the case of K=3.
However, in the case of K=5 it will be classified in the second class of red rectangles.

Figure 2.9 The class borders of an 1-NN classifier In the case of 3-way classification.
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2.5 Evaluation Methods

Evaluation methods are used to  estimate the ability  of  the model  to  generalize,  that  is  to  yield
comparable results in unknown data as well  data used during training. If  all  available data are used for
training, there is no assessment of the FSS & classification performance on new data and as such, the
generalization ability of the model remains unknown. In that manner, evaluation methods leave out a set of
samples that  are only used in order to assess the performance of the model on new data. That set of
samples is called the test set, while the set of samples used while training the model is called the training
set.

2.5.1 Holdout Validation

Holdout validation is probably the simplest validation method. It splits the available samples into two
groups. The training set consists of the majority of available samples and is used for training the model while
the test set corresponds to a smaller percentage of the available samples and is used in order to evaluate
the model's  generalization  ability.  However,  excluding  a  portion of  the dataset  can  be costly  when the
available samples are few. Moreover, the results obtained greatly depend on the random splitting of the
dataset into training and test sets and the observed results can be misleading if both splits are do not reflect
the structure of  the original  dataset.  To  counter  these  drawbacks of  the  simple  holdout  method  at  the
expense of computational load, other validation techniques have been proposed.

Figure 2.10 Holdout validation method.

2.5.2 K-Fold Cross Validation (K-Fold CV)

K-Fold Cross Validation splits the dataset into K different subsets of approximately the same size,
called  folds.  It  then  proceeds to  iteratively  use  k-1  folds  for  training  and 1 fold  for  testing  the  FSS &
Classification model, using a different fold for testing during each iteration. At the end of the procedure, k
different test statistics have been observed. The average statistics over all folds are then calculated. If for
example the only test statistic examined is the classification accuracy, it is calculated using the following

formula: ā=
1
K
∑
k=1

K

ak . Typical values used for k are K=3, 5 or 10. As the number of folds increases, the

bias of the estimate decreases, so the estimation of performance is representative of the actual performance
of the method. However, the variance of the estimation as well as the computational cost increase due to the
large number of iterations. If the cross-validation method is “stratified”, then the class ratio is the same for all
folds.
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Figure 2.11 5-Fold Cross Validation.

2.5.3 Leave One Out Cross Validation (LOOCV)

Leave one out cross validation is a case of K-Fold CV where the number of folds K is equal to the
number of samples in the dataset N. Since the number of samples is larger than the typical values of k used
during simple K-Fold CV, LOOCV displays the characteristics of K-Fold CV when large K is utilized: small
bias of the estimations accompanied by large variance of the test statistics as well as high computational
cost.

Figure 2.12 Leave One Out Cross Validation.
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2.5.4 Repeated Random Sub-Sampling Validation

Repeated random sub-sampling validation is run for a fixed number of K iterations. During each
iteration it utilized random sampling without replacement, in order to select a fixed number of S samples that
make up the test set and are excluded from the training process of the model. The observed test statistics
are then averaged over all iterations.

Figure 2.13 Repeated Random Sub-Sampling Validation.

2.5.5 Bootstrap Resampling Validation

Given an original dataset, bootstrap resampling, also called bootstrapping, utilizes random sampling
with replacement in order to construct a number of B bootstrap datasets of fixed size, usually the same
number of N samples as the original dataset. The class ratio in each dataset can either be random, or
determined beforehand. Each bootstrap dataset can then be separated into training and test sets using the
simple holdout method. The test statistics are then calculated for each bootstrap dataset and are averaged
over all bootstrap datasets in order to get a stable estimation.

Figure 2.14 Bootstrap Resampling Validation.

28



2.6 Weak Law of Large Numbers

The weak law of large numbers (LLN) [29] [30] is a theorem of probability theory which states that
given that a random experiment is executed a sufficiently “large” number of times, the mean value of the
observed results will be close to the expected value, and will continue to converge as more experiments are
performed. Stated formally, the theorem suggests that given a set of independent identically distributed (i.i.d)

random variables X 1, ... , X n , each having a mean X̄ i=μ  and variance var ( X i)=σ2
.

Α new random variable X can be defined, such as X ≡
X 1+ ...+ X n

n
. 

Then, as the number of trials n→∞ : X̄ =
X 1+ ...+ X n

n
=

X̄ 1+...+ X̄ n

n
=

n⋅μ
n

=μ .

Moreover var ( X )=var (
X 1+...+ X n

n
)=var (

X 1

n
)+...+var (

X n

n
)=

σ 2

n2 +...+
σ2

n2 =n⋅(
σ2

n2 )=
σ 2

n
and by the Chebyshev inequality, for all ε>0:

P (∣X −μ∣≥ε)=var
( X )

ε2 =
σ 2

n⋅ε 2
and for n→∞ : lim

n→∞

P(∣X −μ∣≥ε )=0

For example, let  X 1, ... , X n be the results of rolling a 6-sided die. Then each roll  produces a result
between that is one of the numbers 1, 2, 3, 4, 5 or 6 with equal probability. Then the expected value of the

die roll is 
1+2+3+4+5+6

6
=3.5 . So, according to the weak law of large numbers, given a large enough

number of repetitions, the average value of die rolls should converge towards 3.5. The results of such an
experiment are shown in figures 2.6a and 2.6b.

Figure 2.15 Instantaneous values of the 300 rolls of a 6-sided die.
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Figure 2.16 Demonstration of the law of large numbers: the mean value over all rolls converges towards 3.5,
the expected value of the experiment, as more repetitions of the experiment take place.

The law of  large numbers can be utilized in  order  to  assess the  stability  of  results  in  genomic
datasets. First, bootstrap resampling can be used to generate a large number of datasets to be used for the
evaluation of feature selection and classification methods. Then, under the assumption that the observed
results are independent identically distributed random variables, the law of large numbers can guarantee the
stability of the average estimates given that the sample size is sufficiently large. Thus, the average estimates
can be used as a measure of stability. In order to determine when the sample size is large enough and no
more bootstrap datasets are required, an explicit criterion determining the stability of results can be used.
The use of  bootstrap resampling,  in  conjunction  with  the law of  large  numbers  and a  stability  criterion
constitute the concept behind the stable evaluation methodology proposed in this thesis.
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3 - Methodology

3.1 Methodology Overview

This section is aimed at proposing a methodology for performing stable and robust feature selection
and  classification,  while  evaluating  the  statistical  significance  and  consistency  of  the  observed  results.
Stability of performance assessments is an important aspect of microarray analysis, since slight variations in
the training or testing data can lead to significant variations in the set of features selected, as well as the
observed classification accuracy.  Due to to that sensitivity to the training and test data variations, known and
widely used methods such as K-Fold CV result in performance assessments of FSS & classification methods
that vary between different executions of the evaluation method. To address that issue, methodologies that
utilize repeated resampling or splitting of the original dataset have been proposed, in order to extract stable
performance estimates. Davis et al. in [1] notice that after a sufficiently large number of datasets have been
generated by random splitting of the original dataset and are used to extract performance estimates, the
average value of the classification accuracy tends to stabilize. However, “sufficiently large” is a subjective
term that can vary between different FSS & classification methods. One approach, as adopted in StabPerf [1]
is to run the bootstrap validation scheme for a fixed large number of repetitions, for example 400, plot the
observed results and manually assess their stability for each test. Likewise, the performance assessment
model proposed by Suzuki et al.  in [3] performs LOOCV on an arbitrary large number of 100 bootstrap
datasets in order to get a reliable LOOCV accuracy estimates. The framework introduced by Armañanzas et
al. [6] requires and arbitrary number of 1000 bootstrap iterations followed by univariate filtering and training a
k Dependence Bayesian classifier, in order to result in a stable set of genes selected in the model. In a
similar manner, the Monte Carlo CV methodology of Barrier et al. [8] results in 1600 datasets produced by
splitting the original dataset into training and test set of various sizes and are used for univariate filtering and
training  a  diagonal  linear  discriminant  analysis  classifier.  However,  FSS  &  classification  methods  are
generally computationally intensive, so running an unnecessarily large number of evaluation iterations, just to
be sure that statistics will be stable, can prove to be impractical.

Moreover, while the methodology of Armañanzas et al. [6] results in a stable set of genes included in
the model, the accuracy estimate is extracted by standard cross validation techniques that do not guarantee
the stability of the observed classification accuracy: 5-fold CV in [6], or LOOCV in [7]. Another issue is that
while many methods select reliable genes in the genomic signature, the size of the signature itself is not a
stable quantity, but depends on the number of genes that surpass and arbitrary threshold [6] [7] [8].

To address the above issues, in section 3.2 a methodology called “Stable Bootstrap Validation” is
proposed, that utilizes a formal criterion for stability that determines when a sufficient level of stability is
reached for the resulting genomic signature as well as the observed classification accuracy and no further
iterations  are  required.  The  stable  estimates  can  be  reproduced  resulting  in  minimal  variations  during
independent  executions  of  the  evaluation  method.  Thus,  stable  estimates  lead  to  a  greater  degree  of
generalization of results.

Meanwhile, section 3.3 introduces a methodology for assessing the statistical  significance of the
observed results. It is used to determine whether the results are observed merely by chance or reflect the
underlying  biological  model.  The  statistical  significance  of  the  classification  accuracy  is  assessed  by
calculating it's corresponding p-value using permutation tests. If the observed accuracy is significant and it is
observed due to the correlation between the gene expression levels and the class of the sample, then the
corresponding p-value should be lower than the 0.05 threshold. As for the genomic signature, it's relevance
to the biological model is assessed by comparing it's performance to signatures of the same size, whose
genes have been selected at random. If the genomic signature reflects the biological model, then it should
considerably outperform random signatures.

Section  3.4  introduces a methodology  concerning  the  assessment  of  consistency  regarding  the
observed classification performance of a genomic signature. If  a classification method is consistent,  it  is
should lead to considerable repeatability of results. That is, it should yield similar results on the same test set
across  different  iterations.  To  assess  the  consistency  of  a  classifier,  a  single  bootstrap  test  dataset  is
generated, while a number of different bootstrap datasets are used in order to train the classifier. 

The overview of the proposed framework is presented as a block diagram in figure 3.1. This forms an
iterative approach, but it is preceded by a filter methodology as the preprocessing step applied to the dataset
in order to eliminate the less descriptive features. In this form, our framework forms a two-step selection
approach, exploiting the benefits of both univariate and multivariate techniques.
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Preprocessing of the Dataset: Two-step FSS

The dataset provided for this study has been preprocessed. That is, it has undergone feature subset
selection using a filter (univariate) method. The filter method used during the preprocessing of the dataset is
called “Significance Analysis of Microarrays” (SAM) [31] and employs a modified t-statistic and repeated
permutations of the data to determine if the expression of genes is strongly related to the response. On the
other hand, during stable bootstrap validation the multivariate feature subset selection method of recursive
feature elimination is implemented. By utilizing both univariate and multivariate methods in what can be
called a “2-step FSS” the resulting signatures are expected to harness the advantages of both schemes.
That is,  genomic signatures extracted should be small  in  size and provide insight into class differences
(univariate FSS) while also be tuned to optimize the classification performance of the specific classifier used
(multivariate FSS).

Figure 3.1 Overview of the proposed methodology. The dataset, preprocessed using univariate FSS is used
as an input to stable bootstrap validation for the extraction of stable FSS and classification performance

estimates. The significance evaluation of the results of stable bootstrap validation is then assessed.

3.2 Stable Bootstrap Validation (SBV)

Given a pair of FSS and classification methods, SBV aims at using a large number of datasets
generated from bootstrap resampling of  the original  dataset,  in order to extract  stable estimates for the
classification accuracy, as well as the size of the genomic signature. If the FSS and classification methods
are evaluated on a large enough number of bootstrap datasets, then according to LLN the average estimates
for the classification accuracy and the size of the genomic signature will be stable. To ensure that no more
bootstrap datasets than necessary are generated,  SBV utilizes an explicit  dual criterion that  determines
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whether stability has been reached for the average classification accuracy, as well as the signature size. The
criterion assesses the stability of results over consecutive batches of bootstrap datasets and determines
whether a desired level of stability has been reached, or generating another batch of datasets is required.
Unlike similar methodologies which lack a stability criterion and are executed for an arbitrary number of
iterations, SBV is only executed until the necessary level of stability is reached. As such, SBV is a more
computationally efficient methodology. Moreover, similar methods tend to extract stable estimates only for
the  classification  accuracy  while  selecting  an  arbitrary  number  of  genes  or  only  a  number  of  genes
surpassing  a  selection  frequency  threshold.  On  the  other  hand,  SBV  also  leads  to  a  stable  estimate
concerning the number of genes in the signature, also called the genomic signature size and then proceeds
to select the genes with the highest selection frequency over all iterations of the method.

The SBV procedure proceeds as follows. First, the batch datasets called the “bootstrap window” B is
defined as a fixed number of bootstrap datasets. Then, a number of 3B bootstrap datasets are generated
from the  original  dataset  by  random sampling  with  replacement.  The  size  of  the  bootstrap  datasets  is
arbitrary, however in most cases it is selected to be the same as the size of the original dataset. The class
ratio is also arbitrary and typical values include the same class ratio as in the original dataset, or equal class
ratio  for  all  classes.  The  FSS  &  classification  method  is  then  executed  3B  times,  resulting  in  values

A1, ... , A3B for  the classification accuracy and G1, ... ,G 3B for  the number of  features selected,  also

called  the  genomic  signature  size.  Assuming  that  Ai and  Gi are  sets  of  independent  identically
distributed (i.i.d) random variables, then according to the weak law of large numbers the average values over
all samples Ā and Ḡ should converge towards the expected value of the classification accuracy and
the genomic signature size, respectively. Next, the stability of the observed results is assessed in batches of
subsequent B trials. Let Awi , i=1, 2, 3  be the mean accuracies at the end of the fist, second and third
bootstrap window, respectively. Then, the maximum difference of mean accuracy between windows 1, 2 and
1, 3 is defined as ΔΑ=max (∣Αw1−Aw2∣,∣Αw1−Aw3∣) . The method uses three windows instead of two, in
order to overcome the risk of local stability. Given that the mean accuracy differences between the three last
windows  have  been  calculated,  stabilization  is  assessed.  The  classification  accuracy  estimate Ā is
considered  stable  if ΔΑ<acc thresh ,  where  acc thresh a  fixed  threshold.  In  a  similar  manner,  let

Gwi ,i=1, 2, 3 be the genomic signature sizes at the end of the fist, second and third bootstrap window,

while ΔG=max(∣Gw1−Gw2∣,∣Gw1−Gw3∣) the  maximum  difference  of  mean  signature  size  between
windows 1, 2 and 1, 3. However, there is a significant difference when assessing the stability of signature
size. While classification accuracy of all methods varies in [0,1], different FSS methods can lead to genomic
signatures whose size differs in orders of magnitude. For this reason the corresponding threshold for the

signature size is normalized by the largest signature size and is defined as genthresh=
∣Gwi−Gwj∣

max(Gwi ,Gwj)
,

where i, j the windows being compared.
If both Ā and Ḡ are found to be stable, the SBV procedure ends. Otherwise, another set of B

datasets is generated and the stability assessment is performed again for the 3 windows, which now extend
to cover the additional datasets. The above steps are repeated until stability for the classification accuracy as
well  as the signature size is reached. During each iteration,  the following formula applies for the mean
accuracy of a given window:

A(n)
w j

=
1

(n+ j−1) B
∑
b=1

(n+ j−1)

accb

While the same formula applies for the mean signature size:

G(n)
w j

=
1

(n+ j−1)B
∑
b=1

(n+ j−1)

genb

Where n is the iteration number, j is the window being checked (1, 2 or 3), b runs all the bootstrap datasets,
acc is the accuracy achieved by the classification method in each dataset and gen the number of genes
selected (signature size).

After the SBV procedure has been completed, Ā is considered to be the stable assessment of
classification performance, while Ḡ is the stable assessment of the genomic signature extracted by the
FSS method. Finally, the Ḡ genes with the highest selection frequency across all bootstrap datasets are
selected as the genomic signature of the specific combination of FSS & classification methods. A flowchart of
SBV if shown in figure 3.2a, while an instantiation of the bootstrap process is illustrated in figure 3.2b.
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Figure 3.2 Flowchart of the SBV method.

Figure 3.3 Graphical representation of the SBV bootstrap windows and stabilization of mean accuracy as
well as mean signature size values. The left horizontal axis refers to the classification accuracy, while the

right horizontal axis refers to genomic signature size. The bootstrap window size B has been set to 50.
Performance assessment was stabilized within the first 3B datasets, so no additional extensions were

required.
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3.3 Statistical Significance Evaluation

After  the  completion  of  SBV  the  stable  values  that  have  been  extracted  are  the  classification
accuracy Ā and signature size Ḡ . Another aspect of microarray analysis is the statistical significance
of the observed results, which include the classification accuracy, as well as the genomic signature. In other
words, it is necessary to determine whether the performance assessment reflects the underlying biological
model, or it is observed by chance due to random noise. In that manner, permutation tests are performed to
determine the statistical significance of the classification accuracy. On the other hand, the significance of the
observed genomic signature is determined by comparing it's performance to that of random signatures of the
same size.

First statistical significance of the observed classification accuracy Ā needs to be assessed. The
aim is to infer to what extent the classification accuracy is achieved due to the correlation between the gene
expression levels of the samples and the class labels. In that manner, a classical method of hypothesis
testing is performed. Let the null hypothesis H 0 be that the random variables x n  (samples) and yn

(class labels) are independent. To evaluate the p-value corresponding to Ā the probability density function
of  the  classification  accuracy  is  required.  Since  it  is  unknown,  non  parametric  permutation  tests  are
performed in order to estimate the empirical probability density function and calculate  the corresponding
p-value [32]. More specifically, a fixed number of 1000 bootstrap datasets are generated and the labels of
the  two  classes  are  permuted.  Then,  the  FSS &  Classification  method  is  performed  on  the  permuted
datasets.  Given  and  observed  classification  accuracy Ā it's  corresponding  p-value  is  defined  as  the
number of times that accuracy “greater or equal to” Ā was observed when a permuted dataset was used
for training the model, divided by the number of permuted bootstrap datasets. If the p-value calculated is less
than 0.05, then the observed Ā is considered to be statistically significant.

In order to test the significance of the extracted genomic signature, a bootstrap resampling approach
is followed as well. However, unlike the case of classification accuracy, permutation tests are not performed.
Instead, the performance of the extracted signature is compared to that of random signatures of the same
size. The significance testing proceeds as follows. A fixed number of 1000 bootstrap datasets are generated.
For each dataset, the FSS method is omitted and the classifier is trained on a bootstrap dataset given a
random signature of size Ḡ . That is, only Ḡ random genes remain in the dataset, while all others have
been eliminated. Testing the classifier results into two performance metrics. First, the mean accuracy across
all random gene datasets. Second, Prs: the percentage of times that equal or greater accuracy than Ā
was  observed  when  the  model  was  trained  using  a  random signature.  Prs  is  not  a  p-value  since  no
permutations of labels were performed.

Figure 3.4 Flowchart of the significance evaluation methodology
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3.4 Consistency Evaluation of Signature Classification Accuracy

The consistency of a classification method is the ability to yield similar performance when applied on
the same test set multiple times, while using different training sets [59]. The consistency of a classification
method can either be assessed given a fixed set of selected features, or the FSS method can be executed
during each iteration to extract a feature set. In this thesis, the fixed signature scenario was implemented. To
assess the consistency of  the classification accuracy of  the extracted signature,  a bootstrap resampling
scheme was implemented in order to create a large number of datasets for training a classifier, while only a
single bootstrap dataset is used for testing. If the method is consistent, then there should be small standard
deviation  of  the  classification  accuracy  achieved  on  the  test  set,  using  all  different  bootstrap  training
datasets. A fixed number of 30 bootstrap training datasets were generated while only one bootstrap test
dataset  was generated  for  each  signature.  As  such,  each  classifier  produced 30  different  classification
accuracies on the same test set, depending on the training set used. The average observed accuracy as well
as the corresponding variance and standard deviation are then extracted. The above procedure is repeated
a total of 100 iterations and the results are averaged to produce a more stable estimation of the consistency
of observed accuracy.

Figure 3.5 Flowchart corresponding to one iteration of the consistency evaluation methodology. The process
is repeated 100 times and the results over all iterations are averaged.
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4 - Results
The performance metrics of different FSS & classification methods extracted by SBV are presented

and compared in section 4.1. Results are stabilized and the plots of observed stability prove that the original
assumption that the classification accuracy as the signature size are i.i.d random variables. The embedded
FSS method is RFE while the methods used for classification are the RLS classifiers RR and LASSO, the
PLS Classifiers PLS-BETA and PLS-VIP, a linear SVM, I-RELIEF feature weighting in conjunction with the
K-NN classifier, as well as PLS feature weighting in conjunction with the K-NN classifier. To be precise, while
I-RELIEF was proved to be too computationally expensive for the high dimensionality dataset used, the
K-NN classifier performed well. That lead to the idea of using the K-NN classifier but adopting a different
feature  weighting  scheme which  proved  to  be  fast  and  efficient:  PLS feature  weighting.  The  statistical
significance of the above SBV results is then assessed in section 4.2. The performance assessment of SBV
are compared to those extracted using 10-Fold CV in section 4.3. Finally, the biological evaluation of the
signatures extracted using SBV is included in section 4.4

Original Dataset 

As mentioned in section 3, the dataset provided for this study has been preprocessed by a univariate
FSS method called “Significance Analysis of Microarrays” (SAM) [31]. The implementation of both univariate
(as preprocessing)  and multivariate (during SBV) FSS aims at  harnessing the advantages of  both  FSS
methodologies, resulting in small sets of features that discriminate between classes of interest and lead to
good classification performance. The original dataset consists of 529 samples related to breast cancer, 104
of which correspond to non-cancerous control and 425 to cancer samples and is produced by the integration
of  5 publicly  available  datasets (GEO access numbers:  22820, 19783, 31364, 9574, 18672).  For  each
sample, there are measurements of all remaining 4174 genes after the first step of univariate FSS using the
SAM algorithm.

4.1 SBV Results

The SBV methodology  proceeds to  evaluate  the  classification  accuracy  and  genomic  signature
extracted from a pair of FSS and classification methods, on batches of bootstrap datasets. Each batch of
bootstrap  datasets  has  the  same size,  called  the “bootstrap  window”  B.  After  the  method  is  run  for  a
sufficient  number  of  bootstrap  windows  and  stability  has  been  reached  according  to  the  criterion  for
classification accuracy and signature size, the SBV procedure terminates and returns the stable performance
estimates.

SBV Parameters - Bootstrap Dataset Structure

The bootstrap window B of SBV was set to 50 bootstrap datasets, the accuracy threshold accthresh

was set to 0.01 and the signature size threshold genthresh was set to 0.05. Each bootstrap dataset has the
same size as the original dataset and is split into a training (90%) and a test set (10%). Moreover, each of
the training and test sets has the same cancer/control ratio as the original dataset (4 to 1). The SBV method
was set to stop if no convergence had taken place at 1000 bootstrap datasets, a scenario that never took
place as all methods converged at most 200 bootstrap datasets, half of what was required in StabPerf [1].
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Figure 4.1 Structure of the bootstrap datasets used.

4.1.1 RLS Classifiers

Estimation of the t threshold

As  mentioned  in  the  theoretical  background,  the  regularization  threshold  t  was  expressed  as

t=α⋅∑
p=1

P

w0i

2 , α ∈[0,1] and estimated using 3 different executions 10-Fold CV on the original dataset.

The value of α=0.3 proved to be best for classification performance of both the RR and LASSO methods.

RFE & Ridge Regression

Ridge Regression achieves good classification accuracy,  however it  tends to keep a very large
number of features, resulting in a genomic signature of large size, which is difficult to assess biologically.
It requires a moderate, yet reasonable,  amount of running time.

Classification Accuracy Genomic Signature Size Time per bootstrap dataset (seconds)

88% 1372 142.95

Table 4.1 SBV results of RR

Figure 4.2 Left: Stabilization of RR mean accuracy over all bootstrap datasets
Right: Stabilization of RR mean signature size over all bootstrap datasets
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RFE & LASSO

LASSO regression achieves similar classification accuracy as well as running time to RR, while the
resulting genomic signature is considerably (an order of magnitude) smaller in size, leading to a more easily
interpretable  model.  RFE  was  implemented  in  conjunction  with  the  embedded  feature  selection  of  the
LASSO.

Classification Accuracy Genomic Signature Size Time per bootstrap dataset (seconds)

86.4% 136 118.52

Table 4.2 SBV results of LASSO

Figure 4.3 Left: Stabilization of LASSO mean accuracy over all bootstrap datasets
Right: Stabilization of LASSO mean signature size  over all bootstrap datasets

4.1.2 PLS Classifiers

Estimation of the number of latent variables h

The number of latent variables, also called principal components, was estimated using 10-fold CV on
the original dataset. The value h=2 proved to maximize the classification of both PLS-VIP and PLS-BETA
methods. This is to be expected, since a small number of principal components are used in practice during
PCA, otherwise a considerable amount of noise is embedded in the structural part of PCA, the matrices of
scores T and loadings P. 

Tuning the VIP score

The performance of the PLS-VIP method is strongly correlated to the choice of the cut-off value for
the VIP score used for the selecting variables. The cut-off value used commonly in literature is the average
VIP>1. However, in this study is observed that increasing the cut-off value results in considerably smaller
sizes of genomic signatures, while the loss of classification accuracy is relatively small. The VIP score was
also used in PLS-BETA to determine the  initial  number of features kept.  That is, the number of selected
features was selected according to the count of features surpassing a VIP threshold. However, the specific
features  were selected according to their corresponding value of b pls  , as determined by PLS-BETA.

RFE & PLS-VIP

The PLS-VIP classification method is very fast, requiring up to just 7 seconds in the worst case
scenario  of  VIP>1.  The  classification  accuracy  is  good,  and  slightly  decreases  as  the  VIP  threshold
increases.  However,  increasing  the  VIP  threshold  results  in  signatures  that  are  smaller  in  orders  of

39



magnitude. While, the signature selected for VIP>1 is large, the signatures corresponding to the VIP>1.5 or
VIP>2 criteria are considerably smaller. The noticeable change in signature size is reflected by the selection
frequency of genes, which is shown in figure 4.1.2a.

VIP score Classification Accuracy Genomic Signature Size Time per bootstrap dataset 
(seconds)

> 1 87.6% 825 6.9

> 1.5 83.6% 88 1.4

> 2 82.2% 18 0.87

Table 4.3 SBV results of PLS-VIP

Figure 4.4 PLS-VIP gene selection frequency histograms, in the case of VIP>1, VIP>1.5 and VIP>2,
respectively. Only the most significant genes are frequently selected as the VIP cut-off value increases.
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Figure 4.5 Left: Stabilization of PLS-VIP mean accuracy over all bootstrap datasets, when VIP>1.
Right: Stabilization of PLS-VIP mean signature size over all bootstrap datasets, when VIP>1.

Figure 4.6 Left: Stabilization of PLS-VIP mean accuracy over all bootstrap datasets, when VIP>1.5.
Right: Stabilization of PLS-VIP mean signature size over all bootstrap datasets, when VIP>1.5.

Figure 4.7 Left: Stabilization of PLS-VIP mean accuracy over all bootstrap datasets, when VIP>2.
Right: Stabilization of PLS-VIP mean signature size over all bootstrap datasets, when VIP>2.
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RFE & PLS-BETA

The  PLS-BETA  classification  method  performs  similarly  to  PLS-VIP.  In  that  manner,  it  is  very
computationally efficient, has good classification accuracy and tends to select small sets of features when
the VIP threshold is set to 1.5 or more. Like the case of PLS-VIP change in signature size is reflected by the
selection frequency of genes, which is shown in figure 4.1.2h.

VIP score Classification Accuracy Genomic Signature Size Time per bootstrap dataset 
(seconds)

> 1 88.8% 1159 7.04

> 1.5 82.1% 92 1.76

> 2 81.2% 16 1.2

Table 4.4 SBV results of PLS-BETA

Figure 4.8 PLS-BETA gene selection frequency histograms, in the case of VIP>1, VIP>1.5 and VIP>2,
respectively. Only the most significant genes are frequently selected as the VIP cut-off value increases.
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Figure 4.9 Left: Stabilization of PLS-BETA mean accuracy over all bootstrap datasets, when VIP>1.
Right: Stabilization of PLS-BETA mean signature size over all bootstrap datasets, when VIP>1.

Figure 4.10 Left: Stabilization of PLS-BETA mean accuracy over all bootstrap datasets, when VIP>1.5.
Right: Stabilization of PLS-BETA mean signature size over all bootstrap datasets, when VIP>1.5.

Figure 4.11 Left: Stabilization of PLS-BETA mean accuracy over all bootstrap datasets, when VIP>2.
Right: Stabilization of PLS-BETA mean signature size over all bootstrap datasets, when VIP>2.
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4.1.3 SVM Classifier

RFE & SVM

The classification accuracy of the SVM method comparable to that of RR and PLS methods in the
VIP>1 case while it leads to a genomic signature of smaller size. However, the genomic signature of the
SVM method can still be considered large, while the LASSO and PLS methods for VIP>1.5 or more, sacrifice
a small amount of classification accuracy, while resulting in considerably smaller signatures. Finally, the
runtime of SVM is moderate, comparable to that of the RLS methods RR and LASSO.

Classification Accuracy Genomic Signature Size Time per bootstrap dataset (seconds)

89.9% 640 106.72

Table 4.5 SBV results of SVM

Figure 4.12 Left: Stabilization of SVM mean accuracy over all bootstrap datasets.
Right: Stabilization of SVM mean signature size over all bootstrap datasets.

4.1.4 K-NN Classifier

4.1.4.1 K-NN with I-RELIEF Feature Weighting

Reduction of the training set size – Setting the method-specific parameters

The feature weighting scheme of I-RELIEF proved to computationally expensive in a manner that
made it practically impossible to run on an average personal computer for a dataset of the same size as

other methods. The computational complexity of I-RELIEF is O(N2
⋅P) , where N the number of samples

and P the number of features. While the computational complexity itself does not seem to be that extreme in
theory, the running times in practice proved than a reduced training set was necessary. In that manner, the
training as well as the test set size was set to 20 samples and the class ratio was the same as the original
dataset (4 cancer to 1 control). Moreover, the bootstrap window B of SBV was set to 10 datasets, in order to
lead to faster convergence of results. The kernel width σ of I-RELIEF was set to σ=20 in order to achieve fast
convergence of the weights. Finally, two cases for the number of nearest neighbors of K-NN are tested (K=3,
K=5).

RFE & K-NN with I-RELIEF Feature Weighting (Non-Linear)

K-NN with I-RELEF feature weighting leads to acceptable classification accuracy, despite using only
a very small set of training samples, while it leads to extremely compact genomic signatures, which are in
turn easily interpretable. However, even for a reduced training set of 20 samples, I-RELIEF leads to training
time that is 20 times larger than RLS or SVM methods, while it is over 1000 times slower than the VIP>1.5
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case of PLS methods.

K Classification Accuracy Genomic Signature Size Time per reduced 
bootstrap dataset (seconds)

3 79.1% 9 2185.94

5 79.6% 15 2168.87

Table 4.6 SBV results of I-RELIEF K-NN

Figure 4.13 Left: Stabilization of I-RELIEF-KNN mean accuracy over all bootstrap datasets.
Right: Stabilization of I-RELIEF-KNN mean signature size over all bootstrap datasets.

4.1.4.1 K-NN with PLS Feature Weighting

The  good  classification  performance  of  the  K-NN  classifier  and  the  small  signatures  and  fast
execution time of PLS methods lead to the idea of integrating both methodologies. The outcome of that
integration is feature weighting for RFE using PLS methods, and classification using the K-NN classifier. The
resulting methods are PLS-VIP K-NN and PLS-BETA K-NN. Different cases of the VIP score threshold are
tested (VIP>1, VIP>1.5, VIP> 2), as well as different cases of nearest neighbors (K=3, K=5).

RFE & PLS-VIP K-NN

PLS-VIP  K-NN  lead  to  the  best  observed  classification  performance,  while  keeping  the  small
genomic signatures associated with PLS methods in the cases where VIP>1.5 or 2. Running time was the
same as that of PLS methods, ranging from one second to less than 11 seconds, depending on the VIP
score. The execution time for the K=5 case is slightly larger, as is to be expected since more comparisons
are undertaken in order to select the 2 extra nearest neighbors, compared to the case of K=3.

K=3 Nearest Neighbors

VIP score Classification Accuracy Genomic Signature Size Time per bootstrap dataset 
(seconds)

>1 94.7% 793 7.33

>1.5 91.7% 86 1.5

>2 90.5% 19 0.95

Table 4.7 SBV results of PLS-VIP K-NN for K=3
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K=5 Nearest Neighbors

VIP score Classification Accuracy Genomic Signature Size Time per bootstrap dataset 
(seconds)

>1 94.3% 776 10.56

>1.5 92.3% 94 2.07

>2 90.4% 18 1.31

Table 4.8 SBV results of PLS-VIP K-NN for K=5

Figure 4.14 Left: Stabilization of PLS-VIP-KNN mean accuracy over all bootstrap datasets, for K=3, VIP>2.
Right: Stabilization of PLS-VIP-KNN mean signature size over all bootstrap datasets, for K=3, VIP>2.

RFE & PLS-BETA K-NN

The results of  PLS-BETA K-NN where identical  to those of  PLS-VIP K-NN. That is,  exceptional
classification performance, small genomic signatures for VIP>1.5 or 2 and very fast execution time of 1 up to
approximately 11 seconds. Once again, the execution time of the K=5 case was slightly larger compared to
that of K=3.

K=3 Nearest Neighbors

VIP score Classification Accuracy Genomic Signature Size Time per bootstrap dataset 
(seconds)

>1 94.3% 1194 7.95

>1.5 91.8% 88 1.83

>2 90.7% 15 1.24

Table 4.9 SBV results of PLS-BETA K-NN for K=3

K=5 Nearest Neighbors

VIP score Classification Accuracy Genomic Signature Size Time per bootstrap dataset 
(seconds)

>1 94.3% 1142 11.41

>1.5 91.6% 85 2.52

>2 89.7% 16 1.94

Table 4.10 SBV results of PLS-BETA K-NN for K=5
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Figure 4.15 Left: Stabilization of PLS-BETA-KNN mean accuracy over all bootstrap datasets, for K=3,
VIP>2. Right:Stabilization of PLS-BETA-KNN mean signature size over all bootstrap datasets, for K=3,

VIP>2.

4.1.5 Synopsis of SBV Results

In the case of  classification accuracy,  the PLS K-NN methods outperformed all  other classifiers,
reaching accuracies of 90%, while extracting the smallest genomic signatures for VIP>1.5 or more. The SVM
classifier was second in terms of classification accuracy but it kept a relatively large number of features. In
the case of RLS classifiers, RR achieved higher classification accuracy than LASSO, however it lead to an
approximately ten times larger genomic signature. LASSO lead to the second smallest signature of 136
genes, larger only than those extracted by PLS methods for VIP>1.5 or more. PLS methods lead to similar
classification accuracy to RLS classifiers for VIP=1 but the extracted signature was too large. When the VIP
criterion  became more  strict  in  the cases  of  VIP>1.5 and  VIP>2 the resulting  signatures  are orders  of
magnitude smaller, but a small loss of classification accuracy is observed, as well. Finally, I-RELIEF K-NN
leads to the smallest genomic signatures among all methods and has good generalization ability when it
comes to the classification of unknown samples. However, the execution time of I-RELIEF, which even for a
reduced dataset is 1000 times larger than that of PLS methods (VIP>1.5 or VIP>2) and 20 times larger than
that of LASSO, makes the I-RELIEF K-NN method practically unusable.

FSS & Classification Method Classification 
Accuracy

Genomic Signature
Size

Time per bootstrap 
dataset (seconds)

RFE & LASSO 86.4% 136 118.52

RFE & Ridge Regression 88% 1372 142.95

RFE & PLS VIP (VIP>2) 82.2% 18 0.87

RFE & PLS VIP (VIP>1.5) 83.6% 88 1.4

RFE & PLS VIP (VIP>1) 87.6% 825 6.9

RFE & PLS BETA (VIP>2) 81.2% 16 1.2

RFE & PLS BETA (VIP>1.5) 82.1% 92 1.76

RFE & PLS BETA (VIP>1) 88.8% 1159 7.04

RFE & SVM 89.9% 640 106.72

RFE & I-RELIEF (K=3) 79.1% 9 2185.94

RFE & I-RELIEF (K=5) 79.6% 15 2168.87

RFE & PLS-BETA K-NN (VIP>1, K=3) 94.3% 1194 7.95

RFE & PLS-BETA K-NN (VIP>1.5, K=3) 91.8% 88 1.83

47



RFE & PLS-BETA K-NN (VIP>2, K=3) 90.7% 15 1.24

RFE & PLS-BETA K-NN (VIP>1, K=5) 94.3% 1142 11.41

RFE & PLS-BETA K-NN (VIP>1.5, K=5) 91.6% 85 2.52

RFE & PLS-BETA K-NN (VIP>2, K=5) 89.7% 16 1.94

RFE & PLS-VIP K-NN (VIP>1, K=3) 94.7% 793 7.33

RFE & PLS-VIP K-NN (VIP>1.5, K=3) 91.7% 86 1.5

RFE & PLS-VIP K-NN (VIP>2, K=3) 90.5% 19 0.95

RFE & PLS-VIP K-NN (VIP>1, K=5) 94.3% 776 10.56

RFE & PLS-VIP K-NN (VIP>1.5, K=5) 92.3% 94 2.07

RFE & PLS-VIP K-NN (VIP>2, K=5) 90.4% 18 1.31

Table 4.11 Synopsis of SBV results.

4.2 Significance Evaluation Results

4.2.1 Classification Accuracy Significance

The p-value of each observed classification accuracy is estimated utilizing permutation tests which
are  introduced  in  section  3.3.  According  the  the  estimated  p-values,  the  observed  accuracies  of  all
classification methods,  according to SBV, are statistically significant and reflect  the underlying biological
system.  The  usual  threshold  declaring  when  an  observation  is  statistically  significant  is  to  have  a
corresponding p-value < 0.5. The maximum p-value observed across all classification methods was 0.007,
one order of magnitude smaller than the typical threshold. Another observation is that increasing the VIP
score threshold for PLS methods, slightly increases the corresponding p-value but the statistical significance
of the results is not hindered. That is, randomness in the results is slightly increased but they still strongly
reflect the underlying biological model.

FSS & Classification Method Classification Accuracy p-value

RFE & Ridge Regression 88% <0.001

RFE & LASSO 86.4% 0.001

RFE & PLS VIP (VIP>2) 82.2% 0.005 

RFE & PLS VIP (VIP>1.5) 83.6% 0.002

RFE & PLS VIP (VIP>1) 87.6% <0.001

RFE & PLS BETA (VIP>2) 81.2% 0.007

RFE & PLS BETA (VIP>1.5) 82.1% 0.011

RFE & PLS BETA (VIP>1) 88.8% <0.001

RFE & SVM 89.9% <0.001

RFE & PLS-BETA K-NN (VIP>1, K=3) 94.3% <0.001

RFE & PLS-BETA K-NN (VIP>1.5, K=3) 91.8% <0.001

RFE & PLS-BETA K-NN (VIP>2, K=3) 90.7% <0.001

RFE & PLS-BETA K-NN (VIP>1, K=5) 94.3% <0.001

RFE & PLS-BETA K-NN (VIP>1.5, K=5) 91.6% <0.001

RFE & PLS-BETA K-NN (VIP>2, K=5) 89.7% <0.001

RFE & PLS-VIP K-NN (VIP>1, K=3) 94.7% <0.001

RFE & PLS-VIP K-NN (VIP>1.5, K=3) 91.7% <0.001

RFE & PLS-VIP K-NN (VIP>2, K=3) 90.5% <0.001
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RFE & PLS-VIP K-NN (VIP>1, K=5) 94.3% <0.001

RFE & PLS-VIP K-NN (VIP>1.5, K=5) 92.3% <0.001

RFE & PLS-VIP K-NN (VIP>2, K=5) 90.4% <0.001

Table 4.12 Classification accuracy statistical significance results

4.2.2 Genomic Signature Significance

Unifying The Genomic Signatures: The Common Gene Signature

Instead of assessing the genomic signature of each method separately, a unifying approach was
implemented. That is, the common genes existing in the signatures of all methods were selected as the
unified common gene signature. Since there are 3 difference cases used for the VIP score threshold of
PLS-methods, 3 different unified signatures were extracted, the 77 gene, 16 gene and 5 gene signatures
when VIP>1, VIP>1.5 and VIP>2 was used for PLS methods, respectively.

The performance of these signatures was compared to that of random signatures of the same size
using a fixed number of 1000 bootstrap datasets, as noted in section 3.3. The classification accuracy on test
data was extracted by using these signatures in conjunction with a K-NN classifier for K=3 (noted as 3-NN)
and an  SVM.  The  common gene signatures  reached up  to  95% classification  accuracy  with  the  3-NN
classifier and up to 83% with the SVM. The 77 gene signature maximizes the performance of 3-NN, while the
16  gene  signature  maximizes  the  performance  of  the  SVM.  Finally,  as  reported  in  [4]  and  [5],  the
performance of random signatures was comparable to that of the genomic signatures extracted by SBV and
performed better with a probability Prs that  even reached 25%. However,  assessing the same test in a
different perspective, reveals the signatures produced by SBV still perform better at least 75% of the time.

Signature G:
Signature Size

Classification
Accuracy

p-value Mean classification accuracy of
G random genes

Probability Prs

VIP>1 77 95.2% <0.001 92.7% 25.5%

VIP>1.5 16 92.8% <0.001 88.2% 11.4%

VIP>2 5 88% <0.001 84.2% 23.6%

Table 4.13 “Common gene” signature statistical significance results using a 3-NN classifier.

Signature G:
Signature Size

Classification
Accuracy

p-value Mean classification accuracy of
G random genes

Probability Prs

VIP>1 77 81.1% <0.013 67.5% 23.4%

VIP>1.5 16 83.3% <0.004 73.6% 6.6%

VIP>2 5 80.8% <0.043 68% 9.4%

Table 4.14 “Common gene” signature statistical significance results using a SVM classifier.

4.3 Consistency Evaluation of Signature Classification Accuracy

As mentioned in section 3.4 the consistency of a classification method refers to the the ability to yield
similar performance when applied on the same test set multiple times, while using different sets are used for
training. Similarly to section 4.2.2, the “common gene” signature of all methods was used in order to evaluate
the consistency of the corresponding classification accuracy. As presented in 3.4, the proposed methodology
generates 30 bootstrap training datasets and only one bootstrap test set. The mean value, variance and
standard deviation of the observed accuracy are then extracted. The process is repeated 100 times and the
overall results are averaged.
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Signature G:
Signature 
Size

Average Classification 
Accuracy

Variance Standard 
Deviation

VIP>1 77 95% 0.000659 0.025112

VIP>1.5 16 93% 0.000875 0.029008

VIP>2 5 89% 0.001177 0.033744

Table 4.15 Classification accuracy consistency of “Common gene” signature, using a 3-NN Classifier. 

Signature G:
Signature 
Size

Average Classification 
Accuracy

Variance Standard 
Deviation

VIP>1 77 81% 0.010651 0.099798

VIP>1.5 16 83% 0.000586 0.023157

VIP>2 5 81% 0.000105 0.008960

Table 4.16 Classification accuracy consistency of “Common gene” signature, using a SVM Classifier. 

According to the above observations, when using a 3-NN classifier all signatures lead to consistent
results when applied multiple times on the same test set. Moreover, the 77 gene signature maximizes the
classification performance of the 3-NN method, as well as the consistency of the observed accuracy, leading
to a minimized variance of the observed classification accuracy on the same test set when several instances
of the classifier are trained using different training sets. In the case of the SVM, the 16 gene signature
maximizes  classification  performance  while  the  5  gene  signature  maximizes  consistency,  however  the
consistency observed is similar to that of the 16 gene signature. Both classification methods lead to the
observation that the signature maximizing classification performance tends to maximize the consistency of
the classification accuracy observed.

4.4 SBV Results Compared to 10-Fold CV

While the results of both methods are comparable, SBV leads to smaller genomic signatures, when
compared to 10-Fold CV. Smaller signatures are preferred, since they are easier to interpret in a biological
manner. Moreover, the results across different executions of SBV are very similar, while those of 10-Fold CV
tend  to  vary  more.  Concerning  the  assessment  of  classification  accuracy,  PLS  methods  due  to  their
exceptional stability, lead to almost identical performance estimates between the two evaluation methods.
On the contrary, 10-Fold CV underestimates the accuracy of the SVM by approximately 14%. Finally 10-Fold
CV completely fails to assess the performance of the RLS methods RR and LASSO, resulting in values that
are off by 60%. That deviation of performance assessment, especially in the case of RLS methods could be
a result of bad class ratio and might be improved if a different CV scheme is implemented, such as stratified
CV.

Another  important  observation is  that  while  10-Fold  CV leads to  larger  signatures,  the common
genes of these signatures are fewer than the common genes of SBV. That is probably the effect of larger
amounts random noise being included in the signatures extracted by 10-Fold CV than those extracted by
SBV. The likely reason behind the reduced stability of 10-Fold CV is the small number of iterations. That is,
after only 10 iterations it is unlikely that estimates will have converged, according to the weak law of large
numbers. On the contrary, SBV utilizes a criterion that guarantees the stability of performance estimates,
which results in a considerably larger number of iterations.

50



FSS & Classification Method SBV:
Classification 
Accuracy

10fold-CV:
Classification 
Accuracy

SBV:
Genomic Signature 
Size

10fold-CV:
Genomic Signature 
Size

RFE & Ridge Regression 88% 26.9% 1372 2044

RFE & LASSO 86.4% 27.8% 136 301

RFE & PLS VIP (VIP>2.5) 78.4% 80.0% 3 3

RFE & PLS VIP (VIP>2) 82.2% 82.6% 18 20

RFE & PLS VIP (VIP>1.5) 83.6% 83.2% 88 101

RFE & PLS VIP (VIP>1) 87.6% 87.5% 825 754

RFE & PLS BETA (VIP>2.5) 79.5% 80.3% 4 3

RFE & PLS BETA (VIP>2) 81.2% 81.1% 16 15

RFE & PLS BETA (VIP>1.5) 82.1% 81.5% 92 124

RFE & PLS BETA (VIP>1) 88.8% 87.3% 1159 1083

RFE & SVM 89.9% 75.2% 640 930

Table 4.17 Comparison between classification accuracy and genomic signature size of SBV and 10-Fold CV

Stable Bootstrap 
Validation

10fold Cross 
Validation

Overlap

Common genes of all methods
(VIP>1 for PLS methods)

77 59 35%
(27 of 77)

Common genes of all methods
(VIP>1.5 for PLS methods)

16 17 47%
(8 of 17)

Common genes of all methods
(VIP>2 for PLS methods)

5 3 60%
(3 of 5)

Table 4.18 Comparison of size between SBV and 10-Fold CV common gene signatures

4.5 Biological Evaluation

4.5.1 Gene Signatures 

Diseases such as breast  cancer are  highly  complex and characterized by a number of  genetic
aberrations.  Patients  associated  with  similar  clinical  and  pathological  features  may  have  very  different
disease  profiles  at  the  molecular  level  and  may  respond  differently  to  treatment.  Toward  this  direction
genome-wide expression profiling of  pathological  samples (e.g.  tissue) has become an important  tool  to
identify  gene  sets  and  gene  signatures  that  can  be  used  to  predict  disease  development  and  clinical
endpoints, such as survival and therapy response [48] [50].

4.5.1.1 Convergence of Gene Signatures in Biological Pathways
 

Using the Integrated Pathway Analysis  Database for  Systematic  Enrichment  Analysis
[IPAD] [35], we perform enrichment analysis from genes of all three common gene signatures and from ‘19
gene signature’  from PLS-VIP-3NN* method. IPAD is a comprehensive database covering about 22,498
genes,  25,469  proteins,  1956  pathways,  6704  diseases,  5615  drugs,  and  52  organs  integrated  from
databases including the BioCarta,  KEGG, NCI-Nature curated,  Reactome,  CTD,  PharmGKB, DrugBank,
PharmGKB, and HOMER. The results are illustrated in the following table.
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CONVERGENCE of GENE SIGNATURES

Pathways ‘77 common 

gene signature’

‘16 common 

gene signature’

‘5 common 

gene signature’

’19 gene signature’

ECM-receptor 
interaction 
[hsa04512]

3 genes
(COL11A1;

FN1; COMP)

3 genes
(COL11A1; COMP;

FN1)

2 genes 
(COMP; FN1)

3 genes
(COL11A1; COMP;

FN1)

Focal adhesion 
[hsa04510]

4 genes
(COMP; EGF; COL11A1; FN1)

3 genes 
(COL11A1; COMP;

FN1)

2 genes 
(COMP; FN1)

3 genes
(COL11A1; COMP;

FN1)

Signal transduction
[162582]

11 genes
(PENK; NR4A1; EDN2; EDN3;
CCL19; FGF18; FN1; FGFR3;

EGF; ATP6V0A4; NRG1)

3 genes
(EDN2; CCL19; FN1)

2 genes 
(FN1; CCL19)

4 genes 
(CXCL9; OXTR;

FN1; CCL19)

Table 4.19 Convergence of gene signatures in key pathways for tumor growth, progression and metastasis.
Genes known to be associated with cancer according to G2SBC are underlined. 

As shown in Table 4.19, focusing on pathways implied by a minimum of two genes in each signature,
we found that all three common gene signatures, as well as the  ‘19 gene signature’ from PLS-VIP-3NN*
method, converge to the following three key pathways:

 Signal transduction   
Signal  transduction  refers  to  communication  processes  used  by  regulatory  molecules  to  mediate  the
essential cell processes of growth, differentiation, and survival. Signal transduction elements interact through
complex biochemically related networks. Aberrations in signal transduction elements can lead to increased
proliferative potential, sustained angiogenesis, tissue invasion and metastasis, and apoptosis inhibition. We
know that  most  human neoplasms,  including breast  cancer have aberrant  signal transduction elements.
Several compounds that target aberrant signal transduction elements are in development and others are
commercially available (e.g. trastuzumab for the treatment of metastatic breast cancer overexpressing the
ErbB-2 receptor) [36].

 The extracellular matrix (ECM)  
The  extracellular  matrix  (ECM)  is  a  complex  network  of  macromolecules  with  distinctive  physical,
biochemical, and biomechanical properties. The ECM is a major component of the local microenvironment,
or niche, of a cancer cell that plays important roles in cancer development. Although tightly controlled during
embryonic  development  and  organ  homeostasis,  the  ECM  is  commonly  deregulated  and  becomes
disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting
cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of
stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a
tumorigenic microenvironment [37].

 Focal adhesion  
Focal adhesions lie at  the convergence of integrin adhesion, signaling and the actin cytoskeleton. Cells
modify  focal  adhesions in  response to changes in  the molecular  composition,  two-dimensional  (2D)  vs.
three-dimensional (3D) structure, and physical forces present in their extracellular matrix environment. The
components of focal adhesions are diverse and include scaffolding molecules, GTPases, and enzymes such
as, lipases, proteases, phosphatases, and kinases. One of the critical tyrosine kinases that are linked to the
processes of tumor invasion and survival is the Focal adhesion kinase (FAK). This protein plays a critical role
in intracellular  processes of  cell  adhesion,  motility,  survival,  and cell  cycle  progression.  Cancer is often
characterized by defects of these processes [51].

Overall, we show that the aforementioned crucial pathways - signal transduction, focal adhesion,
ECM-receptor interaction - constitute important components of all three common gene signatures, as well as
of the  ‘19 gene signature’ from PLS-VIP-3NN* method. Their deregulations have a great impact in tumor
development,  progression  and  metastasis.  These  findings  enhance  the  robustness  of  the  proposed
methodology.
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4.5.2 Biological Features of Gene Signatures

4.5.2.1 Enrichment Analysis of Molecular Pathways - Biological Processes - Disease

When gene sets of interest share genes, the examination of how they overlap can highlight common
processes,  pathways,  and underlying biological  themes.  Hanahan and Weinberg in two elegant reviews
(2000 and 2011) communicate specific biological capabilities, which include sustaining proliferative signaling,
evading growth suppressors, resisting cell  death,  enabling replicative immortality,  inducing angiogenesis,
activating invasion and metastasis, reprogramming of energy metabolism and evading immune destruction.
These  biological  entities  constitute  the  hallmarks  of  cancer  and  are  acquired  during  multistage  tumor
development in humans. They form a structured principle to rationalize the complex nature of neoplastic
diseases [52]  [53],  which  may be  initially  explored  through observation  of  a  set  of  perturbed  genes in
microarray experiments, but must be further confirmed in association to such mechanisms and functionality
of oncogenesis. Indeed, several studies suggest that although different molecular signatures may not be
composed of the same genes, they are mostly targeting the same number of pathways and processes that
show high correlation with risk categories [54] [55]. Toward this direction, many studies attempt to identify a
common list of genes in primary tumor tissues from breast cancer patients and subsequently by applying
gene-set enrichment analysis to detect key pathways and biological processes that are well known to be
implicated in breast cancer [58]; they are biologically meaningful concerning the pathological mechanisms of
tumor development, progression, invasion and metastasis. The exploration of common biological processes
and pathways in our derived signatures is treated in the next subsections.

The unified ‘77 common-gene signature’ and the ‘19 gene signature’ from PLS-VIP-3NN* method

Following our proposed framework of Stable Bootstrap Validation (SBV), a unified ‘77 common-gene
signature’  was  selected,  which  is  closely associated  with  several  aspects  of  breast  tumorigenesis  and
progression, as well as patient-specific molecular and clinical characteristics. A ‘19 gene signature’ obtained
from PLS-VIP-3NN* method bears similar properties with the unified ‘77 common-gene signature’. For the
biological interpretation of the selected unified ‘77 common-gene signature’ and of the ‘19 gene signature’
from PLS-VIP-3NN* method, the Genes-to-Systems Breast Cancer (G2SBC) Database [33] and WebGestalt
(WEB-based GEne SeT AnaLysis Toolkit) [34] are used. 

G2SBC provides literature based evidences that 51.95% of genes of the unified ‘77 common-gene
signature’ and 36.84% of genes of the ‘19 gene signature’ are altered in breast cancer cells (Appendices A,
B,  Supplemental  Table  I). Thus,  the  ‘19  gene  signature’,  which  includes  only  six  genes  from  ‘77
common-gene signature’, shares many similar attributes with the unified ‘77 common-gene signature’. 

The WebGestalt functional analysis in terms of gene ontology (GO) biological processes and KEGG
pathways  reveals  significant  (p<0.05)  enriched  processes  in  both  signatures  (i.e.  cell  proliferation,  cell
development,  growth,  cell  differentiation,  cell  migration,  extracellular  matrix  organization)  and  KEGG
pathways (Pathways in cancer, ECM-receptor interaction, MAPK signaling pathway, ErbB signaling pathway,
Cytokine-cytokine  receptor  interaction),  which  are  implicated  in  breast  tumorigenesis,  progression  and
metastasis (Appendix A, Supplemental Tables I-IV). 

Furthermore,  the  disease  association  analysis  verified  the  significant  (p<0.05)  relation  of  both
signatures to breast cancer disease (referred as breast diseases, breast neoplasms)  but also creates gene
subsets of the signatures that are directly related to breast cancer (involved in neoplastic process, carcinoma
in  situ,  disease  progression,  recurrence,  neoplasm  invasiveness,  neoplasm  metastasis,  disease
susceptibility,  genetic  predisposition  to  disease,  chromosome  aberrations  and  hypersensitivity).  Other
subsets  are  related  to  a  variety  of  diseases  appearing  as  breast  cancer  comorbidities  (hypertension,
diabetes mellitus, osteoarthritis, depression, etc.) or treatment side effects (e.g. musculoskeletal diseases)
(Appendix B, Supplemental Tables I-IV). Thus, both signatures provide insights to breast carcinogenesis, as
well  as patients'  clinical  and molecular profiles according to the original  studies (GEO access numbers:
GSE22820, GSE19783, GSE31364). Gene sets of both signatures that are not yet associated with breast
cancer but participate in various significant (p<0.05) biological processes, pathways and a broad spectrum of
diseases (248 diseases for the ‘77 common-gene signature’ and 103 for the ‘19 gene signature’), should be
further explored in order to decode their implications in breast carcinogenesis and clinical outcome of breast
cancer. According to this analysis, both signatures appear to be potential useful as clinical signatures.

In addition,  G2SBC provides that 50% of genes of the ‘16 common-gene  signature’ and 40% of
genes of the ‘5 common-gene signature’ are associated with breast cancer (Appendices C, D, Supplemental
Table  I).  The  WebGestalt  functional  analysis  reveals  significant  (p<0.05)  enriched  KEGG  pathways
(ECM-receptor interaction,  Focal adhesion) in both signatures, and discloses significant (p<0.05) enriched
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GO processes such as cellular component movement, locomotion, cell motility, and cell migration in the ‘16
common-gene  signature’,  while  it  fails  to  recover the same processes as  statistical  significant in  the  ‘5
common-gene  signature’.  These  biological  processes  and  pathways  are  linked  to  tumor  invasion,
progression  and  metastasis  (Appendices  C,  D,  Supplemental  Tables  II  and  III).  Also,  according  to  the
disease association analysis the ‘16 common-gene signature’ is significantly (p<0.05) associated to breast
cancer such as the aforementioned signatures, while the ‘5 common-gene signature’ is significantly (p<0.05)
related only to a narrow spectrum of breast cancer (e.g. carcinoma, papillary and neoplastic processes)
(Appendices C, D, Supplemental Table IV).

Summarizing, we can infer that the unified ‘77 common-gene signature’ and the ‘19 gene signature’
are more significant than the rest, i.e. the ‘16 common-gene signature’ and the ‘5 common-gene signature’,
because they enclose a wider range of processes, pathways and disease features that  concurrently cover a
broader range of the multistep process of human breast carcinogenesis. According to this analysis, both
signatures appear to be potential useful as clinical signatures.

4.5.2.2 Gene Families
Gene Set Enrichment Analysis (GSEA) was also performed by using the “Gene Families” tool of

Molecular Signatures Database (MSigDB), in order to gain further insight into the biology behind a gene
signature. Moreover, this tool is used to retrieve a functional overview of the selected gene signatures by
categorizing their genes into a small number (eight) of carefully chosen “gene families”, as illustrated in Table
4.20.   

GENE SIGNATURES

GENE FAMILIES ‘77 common gene
signature’

‘16 common
gene signature’

‘5 common
gene signature’

’19 gene
signature’

Tumor Suppressors CDKN2A

Oncogenes FGFR3; NTRK3

Translocated Cancer Genes FGFR3; NTRK3

Protein Kinases FGFR3; NTRK3

Cell Differentiation Markers
FGFR3; CD19

LAMP3

CEACAM6

Homeodomain Proteins HOXB13; SIX1

Transcription Factors

HOXB13;SIX1;ASCL2;FOXJ1;
NR4A1;PPARGC1A;SOX11; 
TFCP2L1;VGLL1;ZNF334; 
CITED1

ELF5

Cytokines and Growth Factors

CCL19;CCL18;EDN2;EDN3;

EGF;FGF18;GREM1;NRG1;

OGN;PENK

CCL19; EDN2 CCL19 CCL19;
CXCL9

Table 4.20 “Gene Families” for all three common gene signatures and the 19 gene signature. 

A gene family describes any collection of proteins that share a common feature such as homology or
biochemical  activity.  “Gene Families”  are very important  for understanding the complex nature of  breast
cancer, as well as for its clinical evaluation and therapy. They are briefly described as follows:

 Oncogenes: (a single mutated allele is sufficient to contribute to oncogenesis)

Oncogenes consist one group of genes implicated in the development of cancer is damaged genes. 
Oncogenes are related to normal genes called proto-oncogenes that encode components of the cell's normal
growth-control pathway; they arise from the mutation of proto-oncogenes. Oncogenes are genes whose 
presence in certain forms and/or overactivity can stimulate the development of cancer. When oncogenes 
arise in normal cells, they can contribute to the development of cancer by instructing cells to make proteins 
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that stimulate excessive cell growth and division 
[http://www.cancer.gov/cancertopics/understandingcancer/cancer/]. 

 Tumor suppressors: (both alleles of these genes need to be mutated for oncogenesis) 

Tumor suppressor genes are normal genes whose absence can lead to cancer. In other words, if a pair of
tumor suppressor genes are either lost from a cell or inactivated by mutation, their functional absence might
allow cancer to develop [http://www.cancer.gov/cancertopics/understandingcancer/cancer/].

It is known that breast cancer progression involves multiple genetic events, which can activate dominant
acting  oncogenes and  disrupt  the  function  of  specific  tumor  suppressor  genes.  Several  karyotypic  and
epidemiological analyses of mammary tumors at various stages suggest that breast carcinomas become
increasingly  aggressive  through the stepwise  accumulation  of  genetic  changes.  The majority  of  genetic
changes  found  in  human  breast  cancer  fall  into  two  categories:  gain-of-function  mutations  in
proto-oncogenes, which stimulate cell growth, division, and survival; and loss-of-function mutations in tumor
suppressor genes that normally help prevent unrestrained cellular growth and promote DNA repair and cell
cycle checkpoint activation [39].

 Translocated cancer genes: (genes mutated by translocation)

The  most  common  class  of  somatic  mutation  that  is  registered  in  the  cancer-gene  census  involves
chromosomal translocations that result in a chimeric transcript or apposition of one gene to the regulatory
regions of another gene — usually immunoglobulin or T-cell-receptor genes. This mutation type is common
in leukaemias, lymphomas and mesenchymal tumours. However, several examples have now been reported
among epithelial neoplasms, including breast secretory carcinomas (ETV6 and NTR3). Because two genes
are structurally rearranged in each chromosomal translocation, the number of  translocated cancer genes,
compared with other types of mutated cancer gene, is exaggerated in the census [44].

 Cell differentiation markers  : (Human leukocyte and stromal cell molecules: the CD markers)

The leukocyte  surface  molecules  (CD molecules),  include  a selection  of  cell  surface  glycoproteins  and
glycolipids which are expressed by leukocytes (cells of the immune system) and mediate their interaction
with antigen, with other components of the immune system, and with other tissues. CD molecules have
provided targets for diagnosis and therapy. Notice that leukocytes are centrally involved in defense against
infection,  in  autoimmune  disease,  allergy,  inflammation,  and  in  organ  graft  rejection.  Lymphomas  and
leukemias are malignancies of leukocytes, and the immune system is almost certainly involved in most other
cancers, including breast cancer [41] [42].

 Protein kinases  : The protein kinase complement of the human genome

Protein kinases form a vast family of enzymes, encoded by more than 500 genes in human cells 2002); in
comparison, human cells possess far fewer phosphatase genes, indicating that protein kinases have higher
substrate  specificity.  Moreover,  protein  kinases  transfer  a  phosphate,  generally  from  ATP  (adenosine
triphosphate) to protein substrates; but protein phosphorylation is a reversible reaction, phosphatases being
the counterpart enzymes to protein kinases. While not all cellular proteins are phosphoproteins, more than
90% are  phosphorylated  at  some point  in  their  existence,  and  the  phosphorylation  status  of  a  protein
depends on the balance between protein  kinase and phosphatase activities.  Perturbation of  this  fragile
equilibrium  can  often  lead  to  defects  in  key  cellular  mechanisms  such  as  signal  transduction,  cell
differentiation, cell proliferation and cell cycle progression. Members of the protein kinase family are amongst
the most commonly mutated genes in human cancer, and several pathways are frequently deregulated in
breast cancer as a consequence of mutations in these genes. Given this vital role in normal cell function and
disease, protein kinases form the second most important group of proteins considered as priority targets by
pharmaceutical companies for the development of new anticancer therapies [45] [46].

 Homeodomain proteins  : (Human homeodomain proteins)

Homeobox genes comprise a large and essential family of developmental regulators that are vital for all
aspects  of  growth  and  differentiation.  Homeobox  genes belong  to  the  principal  examples  in  which  the
anomalous  expression  of  genes  that  regulate  growth  and  development  have  been  implicated  in
carcinogenesis.  These genes encode transcriptional  regulatory  proteins (homeoproteins)  that  are  widely
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used during development and are often aberrantly expressed in cancer.  Homeodomain-containing proteins
are  transcription  factors  that  play  a  critical  role  in  various  cellular  processes,  including  body  plan
specification, pattern formation and cell fate determination [40] [43].

 Transcription factors  : A compilation of human transcription factors

Transcription factors are gene regulatory proteins endowed with sequence-specific DNA recognition and the
ability to positively or negatively influence the rate and efficiency of transcript initiation at a gene containing
the factor’s cognate recognition sequence, or DNA response element. Since transcription factors lie at the
heart  of  almost every fundamental  developmental  and homeostatic  organismal  process -  including DNA
replication and repair,  cell  growth and division, control  of apoptosis and cellular differentiation -  it  is not
surprising that inherited or acquired defects in transcription factor structure and function contribute to human
carcinogenesis [47].

 Cytokines and growth factors: (Human cytokine and growth factor genes)

Cytokines are glycoproteins of low molecular weight, which are rapidly synthesized and usually secreted by
different healthy and diseased cells (mainly mononuclear phagocytes and activated T lymphocytes) mainly
after  stimulation.  In  multicellular  organisms,  cytokines  are  intercellular  mediators  that  regulate  survival,
growth,  differentiation,  and  the  effector  functions  of  cells.  Therefore,  it  is  not  surprising  that  cytokines
significantly affect the growth of tumours in vivo. On the other hand, they are also produced by cancer cells
and represent a network with a large variety of molecularly and functionally different members that may act
as tumour growth-promoting or inhibiting factors. As they affect the growth and function of immunocompetent
cells,  they can activate or modulate specific  or non-specific  antitumor responses.  Furthermore,  because
cytokines are mediators of  the effector response from innate and acquired cellular  immunities,  they are
probably involved in the mechanism from tumour cell evasion of the immunosurveillance system [56]

Growth  factors,  encoded by  growth  factor  genes,  bind  to  receptors  on  the  cell  surface,  which  activate
signaling enzymes inside the cell that, in turn, activate special proteins called transcription factors inside the
cell's  nucleus.  The  activated  transcription  factors  "turn  on"  the  genes  required  for  cell  growth  and
proliferation.

Based on the gene family composition illustrated in Table 4.20,  we observe that  the unified ‘77
common-gene  signature  induces  many  more  significant  gene  families  than  any  other  gene  signature.
Importantly, the chemokine CCL19 is the only common gene across all gene signatures and is assessed as
potential biomarker of metastatic dissemination in primary breast cancer [57].

In summary, Figure 4.16 provides the association of the individual gene signatures with diseases,
biological processes, pathways and gene families, which have particular importance in a wide spectrum of
the multistep process of breast carcinogenesis. We notice that all signatures capture key issues, but the first
signature (‘77 common-gene signature’)  embodies a wealth of information that  is gradually  lost  in other
common signatures, as well as in the individual signature of 19 genes. Considering all the above aspects,
the biological evaluation correlates very well with the methodological outcomes of this study. Key biological
processes  and  pathways  that  are  implicated  in  breast  cancer,  as  well  as  the  wide  variety  of  disease
associations and functional gene families derived, synthesize a robust ‘77 common-gene signature’.
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Figure 4.16 Comparison of gene signatures in relation with breast cancer features, GO biological

processes, KEGG pathways and gene families.
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Conclusion
This  thesis  aimed  at  introducing a  framework  for  selection  of  stable  genomic  signatures  that

maximize classifier performance. By performing multivariate feature subset selection (FSS) an a dataset
preprocessed by univariate FSS a two-step feature selection scheme  was achieved, aiming to utilize the
advantages of both univariate and multivariate FSS methods, leading to small genomic signatures while
being computationally efficient.

Furthermore,  an evaluation method called Stable  Bootstrap Validation (SBV)  was proposed that
employs bootstrap resampling of the original dataset and an explicit stability assessment criterion in order to
extract stable estimates of the classification accuracy as well as the genomic signature size; the number of
genes selected in the signature. Under the assumption that the mean classification accuracy and the mean
signature size extracted from each bootstrap dataset are independent identically distributed (i.i.d.) random
variables, SBV is guaranteed to lead to stable estimates according to the Law of Large Numbers (LLN).
Experimental  results  confirm  that  SBV always  achieves  stability  of  results  after  a  sufficient  number  of
bootstrap  datasets  have  been  evaluated.  The  results  also  confirm  that  estimates  for  the  classification
accuracy and genomic signature are very similar for independent executions of SBV.  Compared to similar
evaluation methods that utilize resampling or random splitting of the original dataset, SBV requires fewer
bootstrap datasets to achieve stability, since it utilizes and explicit stability criterion. Thus, SBV is a more
computationally efficient approach. Moreover, while similar methods only extract a stable estimate for the
classification accuracy and select a number of genes based on their selection frequency, SBV extracts stable
estimates for the classification accuracy as well as the genomic signature size and then proceeds to select
the genes having the largest selection frequency.

The statistical significance of the observed classification accuracy and genomic signature was also
evaluated. The process of significance evaluation determines to what extent the observed results reflect
random noise, or the underlying biological model. To determine the statistical significance of the observed
classification  accuracy,  permutation  tests  are  performed  to  calculate  the  corresponding  p-value.  The
significance of the genomic signature is assessed by comparing it's performance to random signatures of the
same size.  The  final  step  of  the  proposed  methodology  is  assessing  the  consistency  of  the  observed
classification accuracy. The consistency of a classification method refers to the ability of yielding similar
classification results on the same test  set,  while  different  sets  of  samples are used for  training.  In that
manner, a fixed genomic signature is selected and a fixed test set is generated by bootstrap resampling.
Then, the classification method is trained on multiple bootstrap training sets and performance is assessed
using the same test set, leading to measurement of mean classification accuracy, variance and standard
deviation. The process is repeated multiple times and the results are averaged.

The above methodology is performed on a breast cancer dataset. Recursive Feature Elimination
(RFE)  is  the  multivariate  FSS  method  used,  while  several  categories  of  classification  methods  are
implemented:  Regularized Least  Squares (RLS) Classifiers,  Ridge Regression (RR) and Least  Absolute
Shrinkage  and  Selection  Operator  (LASSO).  Partial  Least  Squares  (PLS)  Classifiers  PLS-VIP  and
PLS-BETA.  Support  Vector  Machines  (SVMs)  and  K-Nearest  Neighbor  (K-NN)  classifiers  are  also
implemented. Since K-NN does not  provide feature weights that  are necessary for RFE, it  was used in
conjunction  with  I-RELIEF  feature  weighting.  The  high  computational  cost  of  I-RELIEF  and  the  good
classification accuracy of K-NN lead to pairing the K-NN classifier with the computationally efficient PLS
feature weighting, resulting in the PLS-VIP K-NN and PLS-BETA K-NN classification methods.

Experimental results proved that SBV reached stable results after a maximum of 200 iterations on a
worst  case  scenario,  which  is  half  what  the  number  of  iterations  required  by  the  similar  evaluation
methodology  of  Davis  et  al. [1].  Moreover,  observed  estimates  for  the  classification  accuracy  and  the
genomic signature  were  consistent across different  and independent  executions of  SBV. According to the
SBV results, PLS K-NN outperformed all other methods, reaching accuracy close to, or greater than 90%
while keeping as few as 16 genes. Even,  greater classification accuracy of 94% was achieved when the
methods were tuned to be less selective, resulting in larger signatures. Both PLS-VIP K-NN and PLS-BETA
K-NN yielded almost identical results, while the choice of K=3 or 5 neighbors proved to have no significant
effect  on  the  resulting  accuracy.  Due  to  PLS  being  used  for  feature  weighting,  they  were  the  most
computationally efficient methods along with PLS-VIP and PLS-BETA. The SVM classifier was second in
terms of classification accuracy, but lead to a large signature of 640 genes. RR achieved a considerable 88%
accuracy  but  resulted  in  the  largest  signature  of  all  methods,  1372  genes.  Compared  to  RR,  LASSO
sacrificed a small amount of accuracy reaching 86.4% but resulted in a small signature of 136 genes. PLS
reached accuracies of 82.2% for 18 genes, 83.6% for 88 genes and 87.6% for 825 genes selected in the
signature  in  the  case  of  PLS-VIP,  while  PLS  BETA  yielded  similar  results.  I-RELIEF  proved  to  be
computationally expensive and was evaluated using bootstrap datasets of smaller size. Even on the reduced
dataset, I-RELIEF was 1000 times slower than PLS methods. In the case of K=5 it reached 79.6% accuracy
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for only 15 genes, while results were similar for K=5. The low classification accuracy may be a result of the
smaller size of the training set. However, the very long execution time made the I-RELIEF method practically
unusable on a full size dataset.

The  statistical  significance  of  the  classification  accuracy  of  each  method  was  assessed  using
permutation tests to calculate the corresponding p-value. According to the results, the classification accuracy
observed was significant for all methods, leading to a p-values smaller than 0.05. The common genes of all
signatures were then extracted ,  resulting into three “common gene” signatures of 77,  16 and 5 genes,
according to different values being used for the VIP score threshold of the PLS methods. The accuracy of the
“common gene” signatures was evaluated using a 3-NN, as well as a SVM classifier. The 3-NN classifier
performed best, leading to 95.2%, 92.8% and 88% accuracy for the 77, 16 and 5 “common gene” signatures,
respectively.  All  observed accuracies were proved to  be statistically  significant,  using permutation tests.
Finally, the performance of the “common gene” signatures was better but comparable to that of random
signatures of the same size, a phenomenon also observed in [4] and [5].

Moreover, the consistency of the classification accuracy achieved by the “common gene” signature
was assessed by training a classifier on multiple bootstrap training sets while using the same bootstrap test
set  for  evaluation.  The  classification  methods  used  were  3-NN and  SVM,  while  both  methods  lead  to
consistent results. The “77 common gene” signature lead to the most consistent performance of the 3-NN
classifier, reaching 95% with 0.025 standard deviation. On the other hand, the SVM classifier reached the
most consistent 81% accuracy with 0.009 standard deviation, using the “5 common gene” signature.

Next, the performance of SBV was compared to that of standard 10-Fold Cross Validation (CV)
across a set of different types of FSS & classification methods: LASSO, RR, SVM, PLS K-NN on the same
breast cancer dataset. It is observed that even though the derived results are comparable, SBV generally
leads to smaller signatures that have more genes in common compared to those extracted by 10-Fold CV.
As such, the signatures extracted by SBV reflect the biological model to a greater extent and include less
random noise.

Finally,  according to the biological  evaluation the  unified “77 common-gene signature” that was
derived by our proposed model paying attention to statistical significance, stability and repeatability (using
SBV) is highly associated with breast cancer and its clinical features, suggesting that it could be potentially
viewed as promising clinical signature.
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Unified ‘77 Common-Gene Signature’ 

APPENDIX A. SUPPLEMENTARY TABLE I. GENE LIST - DESCRIPTION

gene id
gene

symbol description
1029 CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)

10331 B3GNT3 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 3
10381 TUBB3 tubulin, beta 3
1047 CLGN calmegin

10481 HOXB13 homeobox B13
10562 OLFM4 olfactomedin 4
10568 SLC34A2 solute carrier family 34 (sodium phosphate), member 2
10648 SCGB1D1 secretoglobin, family 1D, member 1

10891
PPARGC1
A peroxisome proliferator-activated receptor gamma, coactivator 1 alpha

11005 SPINK5 serine peptidase inhibitor, Kazal type 5
11012 KLK11 kallikrein-related peptidase 11
1118 CHIT1 chitinase 1 (chitotriosidase)

11197 WIF1 WNT inhibitory factor 1
1301 COL11A1 collagen, type XI, alpha 1
1308 COL17A1 collagen, type XVII, alpha 1
1311 COMP cartilage oligomeric matrix protein
1359 CPA3 carboxypeptidase A3 (mast cell)
1475 CSTA cystatin A (stefin A)
1811 SLC26A3 solute carrier family 26, member 3
1907 EDN2 endothelin 2
1908 EDN3 endothelin 3
1950 EGF epidermal growth factor (beta-urogastrone)
2173 FABP7 fatty acid binding protein 7, brain
2261 FGFR3 fibroblast growth factor receptor 3
2302 FOXJ1 forkhead box J1
2335 FN1 fibronectin 1

23532 PRAME preferentially expressed antigen in melanoma
26585 GREM1 gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis)
27074 LAMP3 lysosomal-associated membrane protein 3
2938 GSTA1 glutathione S-transferase alpha 1
2940 GSTA3 glutathione S-transferase alpha 3

29842 TFCP2L1 transcription factor CP2-like 1
3084 NRG1 neuregulin 1
3164 NR4A1 nuclear receptor subfamily 4, group A, member 1

APPENDIX A. SUPPLEMENTARY TABLE I. GENE LIST - DESCRIPTION
3294 HSD17B2 hydroxysteroid (17-beta) dehydrogenase 2

347902 AMIGO2 adhesion molecule with Ig-like domain 2
3500 IGHG1 immunoglobulin heavy constant gamma 1 (G1m marker)
3773 KCNJ16 potassium inwardly-rectifying channel, subfamily J, member 16
3851 KRT4 keratin 4
3868 KRT16 keratin 16
4069 LYZ lysozyme (renal amyloidosis)
430 ASCL2 achaete-scute complex homolog 2 (Drosophila)
4321 MMP12 matrix metallopeptidase 12 (macrophage elastase)

4435 CITED1
Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal

domain, 1
4477 MSMB microseminoprotein, beta-
4916 NTRK3 neurotrophic tyrosine kinase, receptor, type 3
4969 OGN osteoglycin

50617 ATP6V0A4 ATPase, H+ transporting, lysosomal V0 subunit a4
51442 VGLL1 vestigial like 1 (Drosophila)
5179 PENK proenkephalin
5304 PIP prolactin-induced protein

54829 ASPN asporin
55273 TMEM100 transmembrane protein 100
55713 ZNF334 zinc finger protein 334
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57348 TTYH1 tweety homolog 1 (Drosophila)
57586 SYT13 synaptotagmin XIII

58 ACTA1 actin, alpha 1, skeletal muscle
6278 S100A7 S100 calcium binding protein A7
6280 S100A9 S100 calcium binding protein A9
6286 S100P S100 calcium binding protein P
6362 CCL18 chemokine (C-C motif) ligand 18 (pulmonary and activation-regulated)
6363 CCL19 chemokine (C-C motif) ligand 19
6495 SIX1 SIX homeobox 1

6505 SLC1A1
solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter,

system Xag), member 1
6664 SOX11 SRY (sex determining region Y)-box 11
6898 TAT tyrosine aminotransferase
7031 TFF1 trefoil factor 1
7136 TNNI2 troponin I type 2 (skeletal, fast)

79785 RERGL RERG/RAS-like
7980 TFPI2 tissue factor pathway inhibitor 2

79919 C2orf54 chromosome 2 open reading frame 54
APPENDIX A. SUPPLEMENTARY TABLE I. GENE LIST - DESCRIPTION

8483 CILP cartilage intermediate layer protein, nucleotide pyrophosphohydrolase
8788 DLK1 delta-like 1 homolog (Drosophila)
8817 FGF18 fibroblast growth factor 18
9073 CLDN8 claudin 8
9185 REPS2 RALBP1 associated Eps domain containing 2
930 CD19 CD19 molecule

GENENAME: associated with breast cancer

GENENAME: not associated yet with breast cancer
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KEGG PATHWAYS
‘77 Common-Gene Signature’ (p≤0.05)

APPENDIX A. SUPPLEMENTARY TABLE II

KEGG Pathways P adjP Genes participated in KEGG Pathways
1.Protein digestion and absorption 1.41e-05 0.0004 COL11A1│ COL17A1│ CPA3│ SLC1A1
2.Bladder cancer 5.97e-05 0.0007 FGFR3│ CDKN2A│ EGF
3.Melanoma 0.0003 0.0019 CDKN2A│ FGF18│ EGF
4.Pathways in cancer 0.0003 0.0019 FGFR3│ FN1│ CDKN2A│ FGF18│ EGF
5.ECM-receptor interaction 0.0005 0.0021 COL11A1│ FN1│ COMP
6.Focal adhesion 0.0005 0.0021 COL11A1│ FN1│ COMP│ EGF
7.Regulation of actin cytoskeleton 0.0006 0.0021 FGFR3│ FN1│ FGF18│ EGF
8.MAPK signaling pathway 0.0014 0.0044 FGFR3│ NR4A1│ FGF18│ EGF
9.Phagosome 0.0026 0.0072 COMP│ TUBB3│ ATP6V0A4
10.Glutathione metabolism 0.0036 0.0090 GSTA3│ GSTA1
11.Non-small cell lung cancer 0.0042 0.0095 CDKN2A│ EGF
12.Pancreatic cancer 0.0070 0.0127 CDKN2A│ EGF
13.Glioma 0.0061 0.0127 CDKN2A│ EGF
14.Drug metabolism - cytochrome 
P450

0.0076 0.0127 GSTA3│ GSTA1

15.Metabolism of xenobiotics by 
cytochrome P450

0.0072 0.0127 GSTA3│ GSTA1

16.ErbB signaling pathway 0.0107 0.0167 NRG1│ EGF
17.Cytokine-cytokine receptor 
interaction

0.0120 0.0167 CCL19│ CCL18│ EGF

18.Gap junction 0.0114 0.0167 EGF│ TUBB3
19.Pancreatic secretion 0.0142 0.0187 SLC26A3│ CPA3
20.Amoebiasis 0.0155 0.0194 COL11A1│ FN1
21.Lysosome 0.0199 0.0237 LAMP3│ ATP6V0A4
22.Hepatitis C 0.0241 0.0274 CLDN8│ EGF
23.Chemokine signaling pathway 0.0451 0.0490 CCL19│ CCL18
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GENE ONTOLOGY ENRICHMENT ANALYSIS in terms of BIOLOGICAL
PROCESS

‘77 Common-Gene Signature’ (p≤0.05)

APPENDIX A. SUPPLEMENTARY TABLE III

Biological Process P adjP Genes participated in Biological Process

1.epithelial cell differentiation
4.72e-08 4.96e-05 TFCP2L1│ GREM1│ FGFR3│ S100A7│ CITED1│ SIX1│ FOXJ1│ 

KRT4│ NRG1│ HOXB13│ CSTA│ SPINK5

2.tissue development

5.02e-07 0.0002 MMP12│ TFCP2L1│ GREM1│ COL17A1│ EDN3│ KRT4│ 
COL11A1│ SPINK5│ CSTA│ KRT16│ FGFR3│ S100A7│ 
CITED1│ ASPN│ SIX1│ FOXJ1│ FGF18│ ACTA1│ NRG1│ 
HOXB13│ COMP│ SOX11│ CDKN2A

3.epithelium development
3.32e-07 0.0002 MMP12│ TFCP2L1│ GREM1│ FGFR3│ S100A7│ CITED1│ SIX1│

FOXJ1│ KRT4│ NRG1│ HOXB13│ CSTA│ SPINK5│ SOX11│ 
CDKN2A

4.cell proliferation

6.07e-06 0.0013 MMP12│ GREM1│ PRAME│ EDN3│ CCL19│ NR4A1│ KRT4│ 
EGF│ KRT16│ FABP7│ EDN2│ FGFR3│ CITED1│ SIX1│ 
FOXJ1│ FGF18│ OGN│ ASCL2│ NRG1│ SOX11│ CDKN2A│ 
LAMP3

5.regulation of cell proliferation
5.13e-06 0.0013 MMP12│ GREM1│ PRAME│ EDN3│ CCL19│ NR4A1│ KRT4│ 

EGF│ FABP7│ EDN2│ FGFR3│ SIX1│ FOXJ1│ FGF18│ OGN│ 
ASCL2│ NRG1│ SOX11│ CDKN2A

6.cell chemotaxis 8.39e-06 0.0015 GREM1│ EDN2│ S100A7│ EDN3│ CCL19│ S100A9│ NR4A1
7.regulation of leukocyte chemotaxis 1.15e-05 0.0017 GREM1│ EDN2│ S100A7│ EDN3│ CCL19
8.negative regulation of gliogenesis 1.80e-05 0.0021 FGFR3│ NTRK3│ SOX11│ ASCL2
9.negative regulation of developmental 
process

1.74e-05 0.0021 GREM1│ FGFR3│ PRAME│ CITED1│ SIX1│ ASPN│ FOXJ1│ 
ASCL2│ NTRK3│ SPINK5│ SOX11│ CDKN2A

10.circulatory system development
2.47e-05 0.0022 GREM1│ S100A7│ CITED1│ SIX1│ FN1│ FOXJ1│ NR4A1│ 

FGF18│ EGF│ NRG1│ HOXB13│ COL11A1│ SPINK5│ SOX11

11.cardiovascular system development
2.47e-05 0.0022 GREM1│ S100A7│ CITED1│ SIX1│ FN1│ FOXJ1│ NR4A1│ 

FGF18│ EGF│ NRG1│ HOXB13│ COL11A1│ SPINK5│ SOX11

12.positive regulation of cell proliferation
2.52e-05 0.0022 MMP12│ GREM1│ FGFR3│ EDN2│ PRAME│ SIX1│ EDN3│ 

CCL19│ NR4A1│ FGF18│ EGF│ NRG1│ SOX11
13.leukocyte chemotaxis 2.81e-05 0.0023 GREM1│ EDN2│ S100A7│ EDN3│ CCL19│ S100A9
14.skeletal system morphogenesis 3.59e-05 0.0025 GREM1│ FGFR3│ SIX1│ COL11A1│ COMP│ SOX11│ FGF18

15.leukocyte migration
3.86e-05 0.0025 GREM1│ EDN2│ S100A7│ FN1│ EDN3│ CCL19│ FOXJ1│ 

S100A9

16.anatomical structure formation 
involved in morphogenesis

3.36e-05 0.0025 GREM1│ FN1│ NR4A1│ EGF│ NTRK3│ COL11A1│ SPINK5│ 
FGFR3│ S100A7│ ASPN│ SIX1│ CITED1│ FOXJ1│ FGF18│ 
ACTA1│ NRG1│ HOXB13│ COMP│ SOX11│ CDKN2A│ TUBB3

17.single-multicellular organism 
process

4.52e-05 0.0028 TFCP2L1│ WIF1│ FN1│ EDN3│ CCL19│ CLGN│ EGF│ NTRK3│
COL11A1│ SPINK5│ CSTA│ SLC1A1│ SLC34A2│ KRT16│ 
FABP7│ FGFR3│ SIX1│ ASPN│ ATP6V0A4│ ASCL2│ S100A9│ 
COMP│ SOX11│ KCNJ16│ TUBB3│ DLK1│ GREM1│ TFPI2│ 
TNNI2│ COL17A1│ CPA3│ NR4A1│ HSD17B2│ PENK│ TFF1│ 
SLC26A3│ EDN2│ S100A7│ CITED1│ FOXJ1│ FGF18│ ACTA1│ 
NRG1│ HOXB13│ PPARGC1A│ CDKN2A

18.multicellular organismal process

5.33e-05 0.0031 TFCP2L1│ WIF1│ FN1│ EDN3│ CCL19│ CLGN│ EGF│ NTRK3│
COL11A1│ SPINK5│ CSTA│ SLC1A1│ SLC34A2│ KRT16│ 
FABP7│ FGFR3│ SIX1│ ASPN│ ATP6V0A4│ ASCL2│ S100A9│ 
COMP│ SOX11│ KCNJ16│ TUBB3│ DLK1│ GREM1│ TFPI2│ 
TNNI2│ COL17A1│ CPA3│ NR4A1│ HSD17B2│ PENK│ TFF1│ 
SLC26A3│ EDN2│ S100A7│ CITED1│ FOXJ1│ FGF18│ ACTA1│ 
NRG1│ HOXB13│ PPARGC1A│ CDKN2A

19.positive regulation of response to 
external stimulus

0.0001 0.0032 EDN2│ NTRK3│ S100A7│ EDN3│ CCL19│ S100A9

20.kidney morphogenesis 0.0001 0.0032 GREM1│ CITED1│ SIX1│ FOXJ1
APPENDIX A. SUPPLEMENTARY TABLE III
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21.positive regulation of leukocyte 
chemotaxis

0.0001 0.0032 EDN2│ S100A7│ EDN3│ CCL19

22.cellular component movement
8.41e-05 0.0032 MMP12│ GREM1│ TNNI2│ FN1│ EDN3│ CCL19│ NR4A1│ 

NTRK3│ EDN2│ SIX1│ S100A7│ FOXJ1│ ACTA1│ S100P│ 
NRG1│ S100A9│ TUBB3

23.blood vessel morphogenesis
6.90e-05 0.0032 GREM1│ S100A7│ CITED1│ SIX1│ FN1│ NR4A1│ FGF18│ 

EGF│ HOXB13│ SPINK5
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24.organ development

9.14e-05 0.0032 TFCP2L1│ GREM1│ COL17A1│ EDN3│ CCL19│ EGF│ NTRK3│ 
COL11A1│ SPINK5│ CSTA│ KRT16│ FABP7│ FGFR3│ EDN2│ 
S100A7│ CITED1│ SIX1│ ASPN│ FOXJ1│ FGF18│ ACTA1│ 
ASCL2│ NRG1│ HOXB13│ COMP│ SOX11│ CDKN2A

25.cell development
0.0001 0.0032 TFCP2L1│ GREM1│ FN1│ EDN3│ CCL19│ NTRK3│ COL11A1│ 

FGFR3│ SIX1│ CITED1│ FOXJ1│ ACTA1│ FGF18│ ASCL2│ 
NRG1│ HOXB13│ SOX11│ CDKN2A│ TUBB3

26.ossification
9.52e-05 0.0032 GREM1│ FGFR3│ CITED1│ ASPN│ COL11A1│ SOX11│ FGF18│

ATP6V0A4

27.cell migration
8.13e-05 0.0032 MMP12│ GREM1│ EDN2│ S100A7│ SIX1│ FN1│ EDN3│ 

CCL19│ FOXJ1│ NR4A1│ S100P│ NTRK3│ NRG1│ S100A9

28.neutrophil chemotaxis
0.0001 0.0032 EDN2│ EDN3│ CCL19│ S100A9

29.tissue morphogenesis
0.0001 0.0032 MMP12│ GREM1│ FGFR3│ CITED1│ SIX1│ FOXJ1│ NRG1│ 

HOXB13│ COL11A1│ SOX11

30.regulation of developmental process
8.37e-05 0.0032 GREM1│ PRAME│ WIF1│ FN1│ EDN3│ CCL19│ EGF│ NTRK3│

SPINK5│ FGFR3│ ASPN│ SIX1│ CITED1│ FOXJ1│ FGF18│ 
ASCL2│ NRG1│ SOX11│ CDKN2A

31.bone development
0.0001 0.0032 GREM1│ FGFR3│ COMP│ FGF18│ HSD17B2

32.epithelial cell development
6.21e-05 0.0032 TFCP2L1│ GREM1│ HOXB13│ CITED1│ FOXJ1

33.regulation of leukocyte migration
6.58e-05 0.0032 GREM1│ EDN2│ S100A7│ EDN3│ CCL19

34.cell differentiation

0.0002 0.0044 TFCP2L1│ GREM1│ PRAME│ WIF1│ FN1│ EDN3│ CCL19│ 
KRT4│ NTRK3│ COL11A1│ SPINK5│ CSTA│ FABP7│ FGFR3│ 
S100A7│ CITED1│ SIX1│ FOXJ1│ FGF18│ ACTA1│ ASCL2│ 
NRG1│ HOXB13│ PPARGC1A│ SOX11│ CDKN2A│ TUBB3

35.growth
0.0002 0.0044 TFCP2L1│ GREM1│ FGFR3│ PRAME│ SIX1│ ACTA1│ NTRK3│

NRG1│ HOXB13│ S100A9│ COMP│ SPINK5│ CDKN2A
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36.blood vessel development
0.0002 0.0044 GREM1│ S100A7│ CITED1│ SIX1│ FN1│ NR4A1│ FGF18│ 

EGF│ HOXB13│ SPINK5

37.regulation of chemotaxis
0.0002 0.0044 GREM1│ EDN2│ S100A7│ EDN3│ CCL19

38.negative regulation of leukocyte 
proliferation

0.0002 0.0044 GREM1│ FOXJ1│ SOX11│ CDKN2A

39.anatomical structure morphogenesis

0.0002 0.0044 MMP12│ TFCP2L1│ GREM1│ FN1│ NR4A1│ EGF│ NTRK3│ 
COL11A1│ SPINK5│ FGFR3│ S100A7│ CITED1│ ASPN│ SIX1│ 
FOXJ1│ FGF18│ ACTA1│ NRG1│ HOXB13│ COMP│ SOX11│ 
CDKN2A│ TUBB3

40.regulation of cell differentiation
0.0002 0.0044 GREM1│ FGFR3│ PRAME│ CITED1│ SIX1│ WIF1│ CCL19│ 

FOXJ1│ FGF18│ ASCL2│ NTRK3│ NRG1│ SPINK5│ SOX11│ 
CDKN2A
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APPENDIX A. SUPPLEMENTARY TABLE IV

DISEASE P adjP Genes involved in Disease
1.Neoplasms 1.01e-14 2.83e-12 PRAME│TFPI2│WIF1│EGF│HSD17B2│MSMB│KLK11│FABP

7│TFF1│FGFR3│OLFM4│S100A7│S100P│HOXB13│SOX11│C
DKN2A│TUBB3│GSTA1

2.Skin Diseases 5.63e-13 7.88e-11 TFF1│FABP7│FGFR3│S100A7│COL17A1│EGF│HSD17B2│NR
G1│HOXB13│SPINK5│CDKN2A│KRT16│PIP

3.cancer or viral infections 8.51e-13 7.94e-11 PRAME│TFPI2│WIF1│EGF│HSD17B2│MSMB│KLK11│FABP
7│TFF1│FGFR3│OLFM4│CITED1│S100A7│S100P│HOXB13│
CDKN2A│TUBB3

4.Skin and Connective Tissue Diseases 3.38e-12 2.37e-10 TFF1│FABP7│FGFR3│S100A7│COL17A1│HSD17B2│HOXB13
│SPINK5│S100A9│CCL18│CDKN2A│KRT16│PIP

5.Breast Neoplasms 7.86e-11 4.40e-09 TFF1│FABP7│S100A7│SIX1│EGF│HSD17B2│NRG1│HOXB13
│PIP│KLK11│GSTA1

6.Carcinoma 2.39e-09 1.12e-07 TFF1│FGFR3│TFPI2│S100A7│SIX1│WIF1│EGF│S100P│CDK
N2A│KLK11│TUBB3

7.Neoplastic Processes 3.44e-09 1.38e-07 FABP7│FGFR3│PRAME│TFPI2│SIX1│WIF1│FN1│EGF│S100
P│CDKN2A

8.Keratosis 4.85e-09 1.70e-07 TAT│FGFR3│SPINK5│CSTA│CDKN2A│KRT16
9.Urogenital Neoplasms 5.53e-09 1.72e-07 FGFR3│WIF1│REPS2│EGF│HSD17B2│HOXB13│CDKN2A│M

SMB│KLK11│TUBB3
10.Breast Diseases 1.37e-08 3.84e-07 TFF1│FABP7│S100A7│EGF│HSD17B2│NRG1│HOXB13│PIP│

GSTA1
11.Nevus 4.27e-08 9.58e-07 FABP7│FGFR3│CITED1│KRT4│CDKN2A
12.Urologic Neoplasms 4.45e-08 9.58e-07 FABP7│FGFR3│EDN2│CITED1│WIF1│CDKN2A│DLK1
13.Growth Disorders 4.13e-08 9.58e-07 FGFR3│NRG1│NTRK3│CILP│COMP│SLC1A1│EGF
14.Gastrointestinal Diseases 5.64e-08 1.13e-06 TFF1│SLC26A3│TFPI2│OLFM4│EDN3│EGF│S100A9│CDKN2

A│GSTA1
15.Brain Neoplasms 7.08e-08 1.32e-06 FABP7│NTRK3│SOX11│CDKN2A│EGF│DLK1│KLK11
16.Cartilage Diseases 8.04e-08 1.41e-06 FGFR3│CILP│ASPN│COL11A1│COMP
17. Skin Diseases, Genetic 8.91e-08 1.47e-06 FGFR3│COL17A1│HSD17B2│HOXB13│SPINK5│KRT16│CDK

N2A│GSTA1
18.Neuroectodermal Tumors 9.59e-08 1.49e-06 FABP7│PRAME│TFPI2│CITED1│EGF│NTRK3│CDKN2A│DL

K1
19.Disease Progression 1.45e-07 2.14e-06 TFF1│MMP12│FGFR3│PRAME│S100A7│CDKN2A│EGF
20.Genetic Predisposition to Disease 2.03e-07 2.84e-06 MMP12│ASPN│EGF│HSD17B2│NRG1│PPARGC1A│SPINK5│

SLC1A1│CDKN2A│MSMB│GSTA1
21.Skin Neoplasms 2.54e-07 3.39e-06 FABP7│FGFR3│S100A7│CDKN2A│EGF│KLK11
22.Recurrence 5.82e-07 7.41e-06 FABP7│FGFR3│PRAME│HOXB13│CDKN2A│MSMB
23.Central Nervous System Neoplasms 7.15e-07 8.39e-06 FABP7│NTRK3│SOX11│CDKN2A│EGF│DLK1
24.Colonic Diseases 7.19e-07 8.39e-06 SLC26A3│OLFM4│EDN3│S100A9│CDKN2A│GSTA1│ASCL2
25.Fibrosis 9.93e-07 1.11e-05 SLC26A3│GREM1│FN1│S100A9│COMP│CCL18
26.Neoplasm of unspecified nature of 
digestive system

1.36e-06 1.44e-05 TFF1│TFPI2│OLFM4│WIF1│EGF│S100P│CDKN2A│GSTA1

27.Nervous System Neoplasms 1.39e-06 1.44e-05 FABP7│NTRK3│SOX11│CDKN2A│EGF│DLK1
28.Epithelial cancers 1.64e-06 1.64e-05 TFF1│S100A7│SIX1│KRT4│CDKN2A│EGF│S100P
29.Musculoskeletal Diseases 1.80e-06 1.74e-05 FGFR3│TNNI2│CILP│ASPN│ACTA1│COL11A1│COMP│S100

A9
30.Glioma 2.03e-06 1.89e-05 FABP7│TFPI2│NTRK3│SOX11│CDKN2A│EGF
31.Disease Susceptibility 2.15e-06 1.94e-05 MMP12│ASPN│EGF│HSD17B2│NRG1│CHIT1│SLC1A1│MSM

B│CDKN2A│GSTA1
32.Intestinal Diseases 2.23e-06 1.95e-05 TFF1│SLC26A3│OLFM4│EDN3│S100A9│CDKN2A│GSTA1
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33.Gastrointestinal Neoplasms 3.48e-06 2.87e-05 TFF1│TFPI2│OLFM4│S100A9│CDKN2A│EGF│GSTA1
34.Lung Diseases 3.48e-06 2.87e-05 MMP12│CHIT1│SPINK5│CCL18│CDKN2A│SLC34A2│TUBB3
35.Lymphatic Diseases 4.10e-06 3.19e-05 PRAME│CHIT1│CCL19│CCL18│CD19│SOX11│CDKN2A
36.Adenocarcinoma 4.02e-06 3.19e-05 TFF1│FABP7│OLFM4│CDKN2A│EGF│TUBB3│S100P
37.Kidney Neoplasms 4.60e-06 3.48e-05 FABP7│EDN2│CITED1│SIX1│DLK1
38.Respiratory Tract Diseases 4.89e-06 3.49e-05 MMP12│CHIT1│SPINK5│CCL18│CDKN2A│SLC34A2│TUBB3
39.Papulosquamous dermatosis 4.77e-06 3.49e-05 S100A7│S100A9│CSTA│KRT16│LAMP3
40.Lymphoproliferative Disorders 4.98e-06 3.49e-05 FGFR3│PRAME│CCL19│CCL18│CD19│SOX11│CDKN2A
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41.Bone Diseases 5.35e-06 3.65e-05 GREM1│FGFR3│CILP│ASPN│COL11A1│COMP
42.Psoriasis 5.69e-06 3.79e-05 S100A7│S100A9│CSTA│KRT16│LAMP3
43.Polyps 6.22e-06 4.05e-05 TFF1│SLC26A3│S100A9│SPINK5
44.Sinusitis 6.61e-06 4.21e-05 S100A7│FOXJ1│S100A9│SPINK5
45.Head and Neck Neoplasms 7.84e-06 4.50e-05 S100A7│WIF1│FN1│KRT4│CDKN2A│EGF
46.Pathologic Processes 7.47e-06 4.50e-05 MMP12│FGFR3│ASPN│EGF│NRG1│SPINK5│MSMB│CDKN2

A
47.Colorectal Neoplasms 7.51e-06 4.50e-05 SLC26A3│TFPI2│OLFM4│CDKN2A│GSTA1│ASCL2
48.Osteoarthritis, Knee 7.87e-06 4.50e-05 CILP│ASPN│COL11A1│COMP
49.Prostatic Neoplasms 7.84e-06 4.50e-05 HOXB13│REPS2│MSMB│EGF│KLK11│HSD17B2
50.Intestinal Neoplasms 8.92e-06 5.00e-05 TFF1│SLC26A3│OLFM4│CDKN2A│GSTA1│ASCL2
51.Male Urogenital Diseases 1.11e-05 6.09e-05 GREM1│FGFR3│HOXB13│REPS2│MSMB│KLK11│ATP6V0A4
52.Pulmonary Fibrosis 1.21e-05 6.52e-05 MMP12│GREM1│S100A9│CCL18
53.Nevus, Pigmented 1.55e-05 8.04e-05 FGFR3│CITED1│CDKN2A
54.Halo nevus 1.55e-05 8.04e-05 FGFR3│CITED1│CDKN2A
55.Neoplasm Invasiveness 1.63e-05 8.30e-05 MMP12│FABP7│TFPI2│CDKN2A│EGF│S100P
56.Degeneration of lumbar intervertebral 
disc

1.74e-05 8.70e-05 CILP│ASPN│COL11A1

57.Congenital Abnormalities 1.99e-05 9.38e-05 FGFR3│TNNI2│COL17A1│SIX1│EDN3│COL11A1│SPINK5│K
RT16

58.Stomach Neoplasms 2.01e-05 9.38e-05 TFF1│OLFM4│NR4A1│CDKN2A│KLK11
59.Rhinitis 1.95e-05 9.38e-05 S100A7│CHIT1│FOXJ1│SPINK5
60.Bronchial Diseases 1.92e-05 9.38e-05 MMP12│CHIT1│CCL19│FOXJ1│SPINK5│CCL18
61.Hirschsprung Disease 2.37e-05 0.0001 NRG1│NTRK3│EDN3
62.Megacolon 2.87e-05 0.0001 NRG1│NTRK3│EDN3
63.Lumbar Disc Herniation 2.37e-05 0.0001 CILP│ASPN│COL11A1
64.Immune System Diseases 2.96e-05 0.0001 PRAME│COL17A1│CCL19│CD19│CHIT1│SPINK5│SOX11│C

CL18
65.Collagen Diseases 2.75e-05 0.0001 COL17A1│COL11A1│FN1│COMP
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66.Lymphoma, Low-Grade 4.73e-05 0.0002 PRAME│CCL19│CD19│SOX11│CDKN2A
67.Ovarian Diseases 4.15e-05 0.0002 CDKN2A│SLC34A2│TUBB3│KLK11│HSD17B2
68.Leukoplakia 3.74e-05 0.0002 S100A7│KRT4│CDKN2A
69.Nevi and Melanomas 3.88e-05 0.0002 FABP7│FGFR3│PRAME│CITED1│CDKN2A
70.Lymphoma, B-Cell 6.09e-05 0.0002 PRAME│CCL19│CD19│SOX11│CDKN2A
71.Sarcoidosis 0.0001 0.0003 CHIT1│S100A9│CCL18
72.Neoplasms, Squamous Cell 6.74e-05 0.0003 S100A7│WIF1│KRT4│CDKN2A│EGF
73.Inflammation 0.0001 0.0003 MMP12│EDN2│S100A7│CHIT1│S100A9│CCL18
74.Pancreatic Diseases 0.0001 0.0003 TFF1│TFPI2│CDKN2A│S100P
75.Esophageal Diseases 0.0001 0.0003 WIF1│KRT4│CDKN2A│EGF
76.Myosarcoma 0.0001 0.0003 TFF1│FGFR3│TNNI2│CDKN2A
77.Osteoarthritis 0.0001 0.0003 CILP│ASPN│COL11A1│COMP
78.Joint Diseases 0.0001 0.0003 TNNI2│CILP│ASPN│S100A9│COMP
79.Muscle Neoplasms 0.0001 0.0003 TFF1│FGFR3│TNNI2│CDKN2A
80.Nasal Polyps 0.0001 0.0003 S100A7│S100A9│SPINK5
81.Mouth Neoplasms 8.47e-05 0.0003 S100A7│WIF1│KRT4│CDKN2A
82.Adenocarcinoma, Mucinous 0.0001 0.0003 TFF1│CDKN2A│S100P
83.Ichthyosis Vulgaris 0.0001 0.0003 SPINK5│KRT16
84.Lung Diseases, Interstitial 0.0002 0.0006 CHIT1│S100A9│CCL18
85.Wilms Tumor 0.0002 0.0006 CITED1│SIX1│DLK1
86.Arthritis 0.0002 0.0006 CILP│ASPN│COL11A1│S100A9│COMP
87.Skeletal Dysplasia 0.0002 0.0006 FGFR3│COL11A1│COMP
88.Achondroplasia 0.0002 0.0006 FGFR3│COMP
89.Carcinoma, Transitional Cell 0.0002 0.0006 FGFR3│WIF1│CDKN2A
90.Connective Tissue Diseases 0.0002 0.0006 CILP│S100A9│COMP│CCL18│CD19
91.Adenoma 0.0002 0.0006 SLC26A3│WIF1│CDKN2A│DLK1
92.Fibrosarcoma 0.0003 0.0009 TFPI2│NTRK3│FN1
93.Carcinoma, Pancreatic Ductal 0.0003 0.0009 PENK│CDKN2A│S100P
94.Scleroderma, Systemic 0.0003 0.0009 COMP│CCL18│CD19
95.Esophageal Neoplasms 0.0003 0.0009 WIF1│KRT4│CDKN2A│EGF
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96.Eating Disorders 0.0003 0.0009 PENK│NTRK3│SLC1A1│DLK1
97.Musculoskeletal Abnormalities 0.0003 0.0009 FGFR3│TNNI2│COL11A1│COMP│FGF18
98.Neoplasm Metastasis 0.0003 0.0009 TFPI2│SIX1│WIF1│CDKN2A│S100P
99.Obsessive-Compulsive Disorder 0.0004 0.0011 PENK│NTRK3│SLC1A1
100.Epidermolysis Bullosa Simplex 0.0004 0.0011 COL17A1│KRT16
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101. Scoliosis 0.0004 0.0011 COMP│ACTA1│DLK1
102.Pancreatic Neoplasms 0.0004 0.0011 TFF1│TFPI2│CDKN2A│S100P
103.Burkitt Lymphoma 0.0004 0.0011 CCL19│CD19│SOX11
104.Epidermodysplasia Verruciformis 0.0005 0.0013 KRT4│KRT16
105.Precancerous Conditions 0.0005 0.0013 TFF1│S100A7│CDKN2A
106.Hearing Disorders 0.0006 0.0015 SIX1│COL11A1│OGN│ATP6V0A4
107.Neuroendocrine Tumors 0.0006 0.0015 PRAME│CITED1│CDKN2A│DLK1
108. Gaucher Disease 0.0006 0.0015 CHIT1│CCL18
109.Ovarian Neoplasms 0.0006 0.0015 CDKN2A│SLC34A2│TUBB3│KLK11
110.Condylomata Acuminata 0.0006 0.0015 S100A7│CDKN2A
111.Epstein-Barr Virus Infections 0.0007 0.0018 CCL19│CD19│CDKN2A
112.Osteochondrodysplasias 0.0008 0.0019 FGFR3│COL11A1│COMP
113. Carcinoma, Adenosquamous 0.0008 0.0019 OLFM4│CDKN2A
114.Ichthyosis, X-Linked 0.0008 0.0019 SPINK5│KRT16
115.Carcinoma, Papillary 0.0008 0.0019 FGFR3│FN1│S100P
116.Epidermolysis Bullosa 0.0008 0.0019 COL17A1│KRT16
117.Polyhydramnios 0.0008 0.0019 SLC26A3│FGFR3
118.Carcinoma, Squamous Cell 0.0009 0.0021 S100A7│WIF1│CDKN2A│EGF
119.Hypersensitivity 0.0009 0.0021 S100A7│CHIT1│SPINK5│CCL18
120.Melanoma 0.0010 0.0023 FABP7│PRAME│CITED1│CDKN2A

121.Syndrome 0.0011 0.0025 TAT│FGFR3│SIX1│COL11A1│EDN3│SPINK5

122.Robin sequence 0.0011 0.0025 COL11A1│KCNJ16
123.Adhesion 0.0011 0.0025 COL17A1│OLFM4│CCL19│S100A9│ACTA1
124.Retinal Dysplasia 0.0013 0.0029 COL11A1│SPINK5
125.Dermatitis 0.0013 0.0029 S100A7│SPINK5│CCL18
126.Carcinoma, Renal Cell 0.0014 0.0031 FABP7│FN1│CLDN8
127.Lymphoid leukemia NOS 0.0015 0.0033 PRAME│CCL18│CD19│CDKN2A
128.Asthma 0.0015 0.0033 MMP12│CHIT1│SPINK5│CCL18
129.Leukemia, Lymphoid 0.0015 0.0033 PRAME│CCL18│CD19│CDKN2A
130.Carcinoma in Situ 0.0016 0.0034 S100A7│SIX1│CDKN2A
131.Glioblastoma 0.0017 0.0036 FABP7│TFPI2│EGF
132. Multiple synostosis syndrome 0.0017 0.0036 GREM1│FGFR3
133.Tumor Virus Infections 0.0017 0.0036 CCL19│CD19│CDKN2A
134.Virus Diseases 0.0018 0.0038 CCL19│CD19│CDKN2A│ACTA1│TUBB3
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135.Bone Neoplasms 0.0019 0.0039 GREM1│WIF1│CDKN2A
136.Rheumatic Diseases 0.0020 0.0041 CILP│ASPN│S100A9│COMP
137.Precursor Cell Lymphoblastic 
Leukemia-Lymphoma

0.0020 0.0041 PRAME│CCL18│CDKN2A

138.Urinary Bladder Neoplasms 0.0020 0.0041 FGFR3│WIF1│CDKN2A
139.Cholangiocarcinoma 0.0021 0.0042 TFF1│TMEM100│S100P
140.Hearing Loss, Sensorineural 0.0021 0.0042 FGFR3│COL11A1│ATP6V0A4
141.Lung Neoplasms 0.0022 0.0044 MMP12│WIF1│CDKN2A│TUBB3
142.Chronic Disease 0.0023 0.0045 MMP12│PRAME│CHIT1│S100A9
143.Spinal Diseases 0.0023 0.0045 CILP│ASPN│COL11A1
144.Rupture 0.0024 0.0047 MMP12│FN1│LYZ
145.Bile Duct Neoplasms 0.0025 0.0048 TFF1│TMEM100│S100P
146.Pleural Diseases 0.0025 0.0048 WIF1│CDKN2A
147.Barrett Esophagus 0.0026 0.0049 TFF1│CDKN2A
148.Cervical Intraepithelial Neoplasia 0.0026 0.0049 SIX1│CDKN2A
149.Arthrogryposis 0.0026 0.0049 TNNI2│ACTA1
150.Anxiety Disorders 0.0027 0.0050 PENK│NTRK3│SLC1A1
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151.Cystadenocarcinoma, Serous 0.0030 0.0055 PRAME│CDKN2A
152.Preterm rupture of membranes 0.0030 0.0055 MMP12│FN1│LYZ
153.Arthritis, Reactive 0.0031 0.0056 S100A9│COMP
154.Calculi 0.0031 0.0056 TFF1│SLC34A2
155.Cystadenocarcinoma 0.0031 0.0056 PRAME│CDKN2A
156.Warts 0.0032 0.0057 KRT4│CDKN2A
157.Skin Abnormalities 0.0033 0.0058 COL17A1│SPINK5│KRT16
158.Lymphoma 0.0033 0.0058 PRAME│CD19│SOX11│CDKN2A
159.Abnormalities, Multiple 0.0033 0.0058 FGFR3│COL11A1│SPINK5│COMP
160.Chorioamnionitis 0.0034 0.0059 MMP12│FN1│LYZ
161.Leukemia, B-Cell 0.0034 0.0059 PRAME│CD19│SOX11
162.Bipolar Disorder 0.0034 0.0059 FABP7│NRG1│NTRK3│LAMP3
163.Metabolism, Inborn Errors 0.0035 0.0060 TAT│SLC26A3│CHIT1│ATP6V0A4
164.Osteoarthritis, Hip 0.0035 0.0060 ASPN│COMP
165.Mesothelioma 0.0036 0.0061 WIF1│CDKN2A
166.Alopecia 0.0041 0.0068 COL17A1│KRT16
167.Neoplasm, Residual 0.0041 0.0068 PRAME│CD19
168.Rhinitis, Allergic, Seasonal 0.0041 0.0068 S100A7│FOXJ1
APPENDIX A. SUPPLEMENTARY TABLE IV

DISEASE P adjP Genes involved in Disease
169.Hearing Loss, Bilateral 0.0046 0.0076 SIX1│ATP6V0A4
170.Infertility, Male 0.0047 0.0077 SLC26A3│CLGN│SOX11
171.Pheochromocytoma 0.0047 0.0077 PENK│DLK1
172.Metabolic Diseases 0.0048 0.0078 TAT│CHIT1│PPARGC1A│LYZ│ATP6V0A4
173.Adenocarcinoma, Papillary 0.0050 0.0081 TFPI2│S100P
174.Precursor T-Cell Lymphoblastic 
Leukemia-Lymphoma

0.0054 0.0086 PRAME│CDKN2A

175.Melanoma, Experimental 0.0054 0.0086 NRG1│CDKN2A
176.Ichthyosis 0.0054 0.0086 SPINK5│CSTA
177.Gastroenteritis 0.0056 0.0089 TFF1│SLC26A3│S100A9
178.Premature Birth 0.0057 0.0089 EDN2│FN1│CCL18
179.Immunologic Deficiency Syndromes 0.0057 0.0089 CCL19│CD19│ACTA1│TUBB3
180.Optic Nerve Diseases 0.0059 0.0092 SIX1│TUBB3
181.Arthritis, Juvenile Rheumatoid 0.0061 0.0094 S100A9│COMP
182.Carcinoma, Hepatocellular 0.0062 0.0095 WIF1│CDKN2A│DLK1
183.Infertility 0.0063 0.0096 SLC26A3│CLGN│HSD17B2
184.Obstetric Labor Complications 0.0066 0.0100 EDN2│FN1│LYZ
185.Prostatic Hyperplasia 0.0066 0.0100 MSMB│KLK11
186.Ear Diseases 0.0070 0.0105 SIX1│COL11A1│ATP6V0A4
187.Hernia 0.0070 0.0105 CILP│COL11A1
188.Arterial Occlusive Diseases 0.0072 0.0107 MMP12│CHIT1│NR4A1
189.Endocrine System Diseases 0.0074 0.0108 PPARGC1A│CDKN2A│SLC34A2│S100P
190.Endocrine disturbance NOS 0.0074 0.0108 PPARGC1A│CDKN2A│SLC34A2│S100P
191.Endocrine disorder NOS 0.0074 0.0108 PPARGC1A│CDKN2A│SLC34A2│S100P
192.Choriocarcinoma 0.0078 0.0114 TFPI2│ASCL2
193.Hypertension 0.0079 0.0115 EDN2│EDN3│PPARGC1A
194.Sensation Disorders 0.0083 0.0120 SIX1│COL11A1│ATP6V0A4
195.Dwarfism 0.0084 0.0121 FGFR3│COMP
196.Bronchitis 0.0089 0.0127 MMP12│CCL19│CCL18
197.Endometriosis 0.0095 0.0135 EGF│HSD17B2
198.Respiratory Tract Infections 0.0096 0.0136 CCL19│S100A9│CCL18
199.Hearing Loss, Conductive 0.0098 0.0137 SIX1│COL11A1
200.Common Cold 0.0098 0.0137 CCL19│S100A9│CCL18
201.Mood Disorders 0.0112 0.0156 NRG1│NTRK3│LAMP3
202.Burns 0.0114 0.0156 FGFR3│COMP
APPENDIX A. SUPPLEMENTARY TABLE IV

DISEASE P adjP Genes involved in Disease
203.Skin Manifestations 0.0114 0.0156 COL17A1│SPINK5
204.Renal Disease, Pediatric 0.0114 0.0156 CITED1│SIX1
205.Hyperplasia 0.0126 0.0172 TFF1│KLK11
206.Kidney Diseases 0.0131 0.0178 GREM1│OLFM4│ATP6V0A4
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207.Dermatitis, Atopic 0.0134 0.0181 SPINK5│CCL18
208.Carcinoma, Small Cell 0.0136 0.0183 WIF1│CDKN2A│TUBB3
209.Infection 0.0138 0.0185 CHIT1│CCL19│S100A9│CDKN2A
210.Vasculitis 0.0139 0.0185 MMP12│S100A9
211.Craniofacial Abnormalities 0.0147 0.0194 FGFR3│COL11A1│FGF18
212.Urologic Diseases 0.0146 0.0194 GREM1│FGFR3│ATP6V0A4
213.Asperger's disorder 0.0150 0.0197 NTRK3│HSD17B2
214.Pharyngeal Neoplasms 0.0155 0.0203 WIF1│CDKN2A
215.Thyroid Neoplasms 0.0158 0.0206 FN1│NR4A1
216.Oral Manifestations 0.0167 0.0215 COL17A1│KRT16
217.Carcinoma, Large Cell 0.0167 0.0215 CDKN2A│TUBB3
218.Mental Disorders 0.0185 0.0238 NRG1│PENK│NTRK3│SLC1A1
219.Uterine Cervical Neoplasms 0.0199 0.0254 SIX1│CDKN2A
220.Brain Death 0.0202 0.0257 NRG1│NTRK3
221.Glomerular disease 0.0218 0.0276 GREM1│FN1
222.Diabetes Mellitus 0.0224 0.0283 GREM1│PPARGC1A│CDKN2A
223.Cysts 0.0228 0.0286 KRT16│HSD17B2
224.Multiple Myeloma 0.0234 0.0292 FGFR3│PRAME
225.Disorder of uterus NOS 0.0244 0.0304 CDKN2A│EGF
226.Drug interaction with drug 0.0248 0.0306 FN1│ACTA1│EGF
227.Uterine Neoplasms 0.0248 0.0306 CDKN2A│EGF
228.Menopause, Premature 0.0254 0.0312 PENK│HSD17B2
229.Fatty Liver 0.0282 0.0345 FABP7│PPARGC1A
230.Chromosome Aberrations 0.0289 0.0352 FGFR3│CDKN2A│DLK1
231.Lentivirus Infections 0.0297 0.0360 CCL19│ACTA1│TUBB3
232.Sexually Transmitted Diseases 0.0301 0.0363 CCL19│ACTA1│TUBB3
233.Colitis 0.0308 0.0370 SLC26A3│S100A9
234.Retroviridae Infections 0.0312 0.0372 CCL19│ACTA1│TUBB3
235.HIV Infections 0.0312 0.0372 CCL19│ACTA1│TUBB3
236.Cystic Fibrosis 0.0315 0.0374 SLC26A3│S100A9
237.Peripheral neuroepithelioma 0.0349 0.0412 NTRK3│DLK1
APPENDIX A. SUPPLEMENTARY TABLE IV

DISEASE P adjP Genes involved in Disease
238.Leukemia, Lymphocytic, Chronic, 
B-Cell

0.0357 0.0420 PRAME│SOX11

239.Eye Abnormalities 0.0365 0.0428 COL11A1│OGN
240.Li-Fraumeni syndrome 0.0377 0.0438 FGFR3│CDKN2A
241.Colonic Neoplasms 0.0377 0.0438 SLC26A3│OLFM4
242.Muscle Weakness 0.0389 0.0450 TNNI2│ACTA1
243.Bacterial Infections 0.0393 0.0453 S100A7│CHIT1
244.Carcinoma, Non-Small-Cell Lung 0.0401 0.0460 CDKN2A│TUBB3
245.Oat cell carcinoma of lung 0.0417 0.0477 CDKN2A│TUBB3
246.Cleft Lip 0.0422 0.0478 COL11A1│FGF18
247.Translocation, Genetic 0.0421 0.0478 SLC26A3│FGFR3│ATP6V0A4
248.Depression 0.0430 0.0485 NRG1│NTRK3
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APPENDIX B. SUPPLEMENTARY TABLE I. GENE LIST - DESCRIPTION

gene id
gene

symbol description
1300 COL10A1 collagen, type X, alpha 1
6363 CCL19 chemokine (C-C motif) ligand 19
4320 MMP11 matrix metallopeptidase 11 (stromelysin 3)
6286 S100P S100 calcium binding protein P
1311 COMP cartilage oligomeric matrix protein
8483 CILP cartilage intermediate layer protein, nucleotide pyrophosphohydrolase
2001 ELF5 E74-like factor 5 (ets domain transcription factor)

4680 CEACAM6
carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific

cross reacting antigen)
5284 PIGR polymeric immunoglobulin receptor

9 NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase)
5021 OXTR oxytocin receptor
3866 KRT15 keratin 15
2335 FN1 fibronectin 1
4312 MMP1 matrix metallopeptidase 1 (interstitial collagenase)
362 AQP5 aquaporin 5
1301 COL11A1 collagen, type XI, alpha 1
4283 CXCL9 chemokine (C-X-C motif) ligand 9
2191 FAP fibroblast activation protein, alpha

11202 KLK8 kallikrein-related peptidase 8

GENENAME: associated with breast cancer

GENENAME: not associated yet with breast cancer
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APPENDIX B. SUPPLEMENTARY TABLE II

KEGG Pathway P adjP Genes participated in KEGG Pathway
1.ECM-receptor interaction 7.00e-06 4.20e-05 COL11A1; FN1; COMP
2.Focal adhesion 9.01e-05 0.0003 COL11A1; FN1; COMP
3.Amoebiasis 0.0010 0.0020 COL11A1; FN1
4.Chemokine signaling pathway 0.0031 0.0046 CXCL9; CCL19
5.Cytokine-cytokine receptor 
interaction

0.0060 0.0072 CXCL9; CCL19

6.Pathways in cancer 0.0089 0.0089 MMP1; FN1
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GENE ONTOLOGY ENRICHMENT ANALYSIS in terms of BIOLOGICAL
PROCESS

19 PLS-VIP-3NN Gene Signature (p≤0.05)

APPENDIX B. SUPPLEMENTARY TABLE III

Biological Process P adjP Genes participated in Biological Process
1.extracellular matrix organization 1.35e-07 1.57e-05 MMP1; FAP; COL11A1; MMP11; FN1; COL10A1
2.extracellular structure organization 1.38e-07 1.57e-05 MMP1; FAP; COL11A1; MMP11; FN1; COL10A1
3.extracellular matrix disassembly 1.18e-05 0.0009 MMP1; FAP; MMP11
4.collagen catabolic process 0.0003 0.0171 MMP1; MMP11
5.multicellular organismal catabolic 
process

0.0006 0.0228 MMP1; MMP11

6.regulation of body fluid levels 0.0006 0.0228 MMP1; FAP; AQP5; OXTR; FN1
7.multicellular organismal metabolic 
process

0.0038 0.0365 MMP1; MMP11

8.digestive system process 0.0020 0.0365 AQP5; OXTR
9.body fluid secretion 0.0036 0.0365 AQP5; OXTR
10.regulation of synapse organization 0.0014 0.0365 OXTR; KLK8
11.multicellular organismal development 0.0032 0.0365 KRT15; MMP11; KLK8; CCL19; FN1; ELF5; AQP5; 

COL11A1; OXTR; COMP; COL10A1
12.system development 0.0040 0.0365 KRT15; KLK8; CCL19; FN1; ELF5; AQP5; COL11A1; OXTR; 

COMP; COL10A1
13.response to wounding 0.0016 0.0365 CXCL9; MMP1; FAP; KLK8; CCL19; FN1
14.cell migration 0.0028 0.0365 MMP1; FAP; CCL19; FN1; S100P
15.single-organism process 0.0013 0.0365 CXCL9; KRT15; FAP; CILP; CEACAM6; MMP11; KLK8; 

CCL19; FN1; ELF5; MMP1; AQP5; OXTR; COL11A1; COMP; 
COL10A1

16.leukocyte migration 0.0033 0.0365 MMP1; CCL19; FN1
17.cell motility 0.0040 0.0365 MMP1; FAP; CCL19; FN1; S100P
18.locomotion 0.0028 0.0365 CXCL9; MMP1; FAP; CCL19; FN1; S100P
19.memory 0.0034 0.0365 OXTR; KLK8
20.single-multicellular organism 
process

0.0037 0.0365 KRT15; FAP; MMP11; KLK8; CCL19; FN1; ELF5; MMP1;
AQP5; OXTR; COL11A1; COMP; COL10A1

21.multicellular organismal process 0.0040 0.0365 KRT15; FAP; MMP11; KLK8; CCL19; FN1; ELF5; MMP1;
AQP5; OXTR; COL11A1; COMP; COL10A1

22.multicellular organismal 
macromolecule metabolic process

0.0028 0.0365 MMP1; MMP11

23.localization of cell 0.0040 0.0365 MMP1; FAP; CCL19; FN1; S100P
24.collagen metabolic process 0.0023 0.0365 MMP1; MMP11
25.regulation of synapse structure and 
activity

0.0018 0.0365 OXTR; KLK8

26.cellular component disassembly at 
cellular level

0.0050 0.0438 MMP1; FAP; MMP11

27.cellular component disassembly 0.0052 0.0439 MMP1; FAP; MMP11
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APPENDIX B. SUPPLEMENTARY TABLE IV

DISEASE P adjP Genes involved in Disease
1.Cartilage Diseases 5.03e-11 5.18e-09 MMP1│CILP│COL11A1│COMP│COL10A1
2.Fibrosis 1.39e-10 7.16e-09 CXCL9│MMP1│FAP│AQP5│FN1│COMP
3.Collagen Diseases 5.58e-10 1.92e-08 MMP1│COL11A1│FN1│COMP│COL10A1
4.Osteoarthritis 4.64e-09 1.19e-07 MMP1│CILP│COL11A1│COMP│COL10A1
5.Neoplastic Processes 1.76e-08 3.63e-07 MMP1│FAP│CEACAM6│MMP11│FN1│S100P
6.Osteoarthritis, Knee 2.42e-08 4.15e-07 MMP1│CILP│COL11A1│COMP
7.Obstetric Labor Complications 3.01e-08 4.43e-07 MMP1│OXTR│MMP11│FN1│NAT1
8.Carcinoma 7.25e-08 9.33e-07 MMP1│FAP│CEACAM6│MMP11│KLK8│S100P
9.Degeneration of lumbar 
intervertebral disc

2.36e-07 2.70e-06 CILP│COL11A1│COL10A1

10.Lumbar Disc Herniation 3.23e-07 2.77e-06 CILP│COL11A1│COL10A1
11.Dermatitis, Allergic Contact 3.23e-07 2.77e-06 CXCL9│CCL19│NAT1
12.Dermatitis, Contact 2.92e-07 2.77e-06 CXCL9│CCL19│NAT1
13.Adenocarcinoma 4.28e-07 3.39e-06 AQP5│CEACAM6│MMP11│NAT1│S100P
14.Preterm rupture of membranes 6.77e-07 4.98e-06 MMP1│OXTR│MMP11│FN1
15.Neoplasm of unspecified nature of
digestive system

1.18e-06 8.10e-06 FAP│CEACAM6│MMP11│NAT1│S100P

16.Neoplasms 1.29e-06 8.30e-06 MMP1│FAP│CEACAM6│MMP11│NAT1│S100P
17.Musculoskeletal Diseases 1.42e-06 8.60e-06 MMP1│CILP│COL11A1│COMP│COL10A1
18.Premature Birth 1.68e-06 9.61e-06 MMP1│OXTR│FN1│NAT1
19.Cancer or Viral infections 2.40e-06 1.30e-05 MMP1│FAP│CEACAM6│MMP11│NAT1│S100P
20.Skeletal Dysplasia 2.97e-06 1.53e-05 COL11A1│COMP│COL10A1
21.Bone Diseases 3.68e-06 1.80e-05 CILP│COL11A1│COMP│COL10A1
22.Colorectal Neoplasms 4.66e-06 2.18e-05 MMP1│CEACAM6│MMP11│NAT1
23.Neoplasm Invasiveness 7.98e-06 3.57e-05 MMP1│FAP│MMP11│S100P
24.Arthritis 8.41e-06 3.61e-05 MMP1│CILP│COL11A1│COMP
25.Epithelial cancers 1.00e-05 3.96e-05 FAP│CEACAM6│MMP11│S100P
26.Neoplasm Metastasis 9.93e-06 3.96e-05 MMP1│FAP│MMP11│S100P
27.Osteochondrodysplasias 1.18e-05 4.50e-05 COL11A1│COMP│COL10A1
28.Gastrointestinal Neoplasms 1.57e-05 5.78e-05 MMP1│CEACAM6│MMP11│NAT1
29.Oral submucosal fibrosis 1.67e-05 5.93e-05 MMP1│COMP
APPENDIX B. SUPPLEMENTARY TABLE IV

DISEASE P adjP Genes involved in Disease
30.Gastrointestinal Diseases 2.87e-05 9.54e-05 MMP1│CEACAM6│MMP11│NAT1
31.Sweat gland disorder NOS 2.80e-05 9.54e-05 KRT15│AQP5
32.Spinal Diseases 3.47e-05 0.0001 CILP│COL11A1│COL10A1
33.Rupture 3.69e-05 0.0001 MMP1│MMP11│FN1
34.Chorioamnionitis 5.28e-05 0.0002 OXTR│MMP11│FN1
35.Bronchitis 0.0001 0.0003 CXCL9│MMP1│CCL19
36.Carcinoma, Acinar Cell 0.0001 0.0003 KLK8│FN1
37.Intestinal Neoplasms 0.0002 0.0005 CEACAM6│MMP11│NAT1
38.Colonic Diseases 0.0002 0.0005 MMP1│CEACAM6│NAT1
39.Polymyositis 0.0002 0.0005 CXCL9│CCL19
40.Adenocarcinoma, Mucinous 0.0002 0.0005 CEACAM6│S100P
41.Myositis 0.0002 0.0005 CXCL9│CCL19
42.Osteoarthritis, Hip 0.0002 0.0005 MMP1│COMP
43.Joint Diseases 0.0002 0.0005 MMP1│CILP│COMP
44.Rheumatic Diseases 0.0003 0.0007 MMP1│CILP│COMP
45.Connective Tissue Diseases 0.0003 0.0007 MMP1│CILP│COMP
46.Hernia 0.0004 0.0008 CILP│COL11A1
47.Polyps 0.0004 0.0008 AQP5│CEACAM6
48.Fibrosarcoma 0.0004 0.0008 MMP1│FN1
49.Chondrosarcoma 0.0004 0.0008 MMP1│COMP
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50.Colonic Diseases, Functional 0.0004 0.0008 MMP1│CEACAM6
51.Intestinal Diseases 0.0004 0.0008 MMP1│CEACAM6│NAT1
52.Musculoskeletal Abnormalities 0.0004 0.0008 COL11A1│COMP│NAT1
53.Lung Diseases 0.0005 0.0009 MMP1│AQP5│PIGR
54.Breast Diseases 0.0005 0.0009 MMP1│MMP11│NAT1
55.Scleroderma, Systemic 0.0005 0.0009 MMP1│COMP
56.Endometriosis 0.0006 0.0011 MMP1│OXTR
57.Nasopharyngeal Neoplasms 0.0006 0.0011 MMP1│PIGR
58.Refractive Errors 0.0008 0.0014 MMP1│COL11A1
59.Skin Diseases 0.0008 0.0014 KRT15│MMP1│MMP11
60.Carcinoma, Papillary 0.0009 0.0015 FN1│S100P
APPENDIX B. SUPPLEMENTARY TABLE IV

Genes involved in Disease
61.Thyroid Neoplasms 0.0010 0.0017 MMP11│FN1
62.Pharyngeal Neoplasms 0.0010 0.0017 MMP1│PIGR
63.Skin and Connective Tissue 
Diseases

0.0012 0.0020 KRT15│MMP1│MMP11

64.Thyroid Diseases 0.0014 0.0022 CXCL9│FN1
65.Mouth Neoplasms 0.0014 0.0022 MMP1│KLK8
66.Lung Diseases, Obstructive 0.0016 0.0025 MMP1│AQP5
67.Cholangiocarcinoma 0.0017 0.0026 NAT1│S100P
68.Pulmonary Disease, Chronic 
Obstructive

0.0018 0.0027 MMP1│AQP5

69.Pathologic Processes 0.0018  0.0027 MMP1│MMP11│NAT1
70.Pancreatic Diseases 0.0019 0.0028 CEACAM6│S100P
71.Pain 0.0019 0.0028 OXTR│COMP
72.Recurrence 0.0024 0.0034 MMP1│MMP11
73.Bacterial Infections 0.0027 0.0037 CXCL9│PIGR
74.Adhesion 0.0027 0.0037 CEACAM6│CCL19│FN1
75.Colonic Neoplasms 0.0026 0.0037 CEACAM6│PIGR
76.Growth Disorders 0.0029 0.0039 CILP│COMP
77.Cleft Lip 0.0029 0.0039 COL11A1│NAT1
78.Cleft Palate 0.0035 0.0045 COL11A1│NAT1
79.Gastroenteritis 0.0035 0.0045 CXCL9│CEACAM6
80.Pancreatic Neoplasms 0.0034 0.0045 CEACAM6│S100P
81.Transplantation 0.0036 0.0046 CXCL9│FAP
82.Bronchiolitis 0.0041 0.0051 CXCL9│CCL19
83.Lymphoma, Low-Grade 0.0041 0.0051 CCL19│NAT1
84.Disease Progression 0.0042 0.0052 MMP1│MMP11
85.Genetic Predisposition to Disease 0.0051 0.0061 MMP1│OXTR│NAT1
86.Respiratory Tract Infections 0.0051 0.0061 CXCL9│CCL19
87.Common Cold 0.0052 0.0062 CXCL9│CCL19
88.Disease Susceptibility 0.0054 0.0063 MMP1│OXTR│NAT1
89.Head and Neck Neoplasms 0.0059 0.0068 MMP1│FN1
APPENDIX B. SUPPLEMENTARY TABLE IV

Genes involved in Disease
90.Arthritis, Rheumatoid 0.0060 0.0069 MMP1│COMP
91.Craniofacial Abnormalities 0.0070 0.0079 COL11A1│NAT1
92.Chronic Disease 0.0080 0.0090 CXCL9│MMP1
93.Skin Diseases, Genetic 0.0081 0.0090 MMP1│NAT1
94.Abnormalities, Multiple 0.0097 0.0106 COL11A1│COMP
95.Lymphatic Diseases 0.0110 0.0119 CCL19│NAT1
96.Lymphoproliferative Disorders 0.0116 0.0123 CCL19│NAT1
97.Respiratory Tract Diseases 0.0116 0.0123 MMP1│AQP5
98.Breast Neoplasms 0.0118 0.0124 MMP11│NAT1
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99.Urogenital Neoplasms 0.0153 0.0159 KLK8│NAT1
100.Inflammation 0.0155 0.0160 CXCL9│MMP1
101.Virus Diseases 0.0192 0.0196 CXCL9│CCL19
102.Infection 0.0214 0.0216 CXCL9│CCL19
103.Immune System Diseases 0.0356 0.0356 CXCL9│CCL19
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‘16 Common-Gene Signature’ 

APPENDIX C. SUPPLEMENTARY TABLE I. GENE LIST - DESCRIPTION

gene id
gene

symbol description
10381 TUBB3 tubulin, beta 3
1301 COL11A1 collagen, type XI, alpha 1
1311 COMP cartilage oligomeric matrix protein
1907 EDN2 endothelin 2
2335 FN1 fibronectin 1

23532 PRAME preferentially expressed antigen in melanoma
2938 GSTA1 glutathione S-transferase alpha 1
3500 IGHG1 immunoglobulin heavy constant gamma 1 (G1m marker)
4321 MMP12 matrix metallopeptidase 12 (macrophage elastase)
6278 S100A7 S100 calcium binding protein A7
6286 S100P S100 calcium binding protein P
6363 CCL19 chemokine (C-C motif) ligand 19
7031 TFF1 trefoil factor 1
7980 TFPI2 tissue factor pathway inhibitor 2
8483 CILP cartilage intermediate layer protein, nucleotide pyrophosphohydrolase
8788 DLK1 delta-like 1 homolog (Drosophila)

GENENAME: associated with breast cancer

GENENAME: not associated yet with breast cancer
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KEGG PATHWAYS
‘16 Common-Gene Signature’ (p≤0.05)

APPENDIX C. SUPPLEMENTARY TABLE II

KEGG Pathways P adjP Genes participated in KEGG Pathways
1.ECM-receptor interaction 4.06e-06 1.62e-05 COL11A1│ FN1│ COMP
2.Focal adhesion 5.26e-05 0.0001 COL11A1│ FN1│ COMP
3.Amoebiasis 0.0007 0.0009 COL11A1│ FN1
4.Phagosome 0.0015 0.0015 COMP│ TUBB3
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GENE ONTOLOGY ENRICHMENT ANALYSIS in terms of BIOLOGICAL
PROCESS

‘16 Common-Gene Signature’ (p≤0.05)

APPENDIX C. SUPPLEMENTARY TABLE III

Biological Process P adjP Genes participated in Biological Process
1.cellular component movement 0.0001 0.0027 MMP12│EDN2│S100A7│FN1│CCL19│TUBB3│S100P
2.leukocyte migration 0.0001 0.0027 EDN2│S100A7│FN1│CCL19
3.positive regulation of leukocyte chemotaxis 2.04e-05 0.0027 EDN2│S100A7│CCL19
4.positive regulation of behavior 0.0001 0.0027 EDN2│S100A7│CCL19
5.response to stimulus 6.46e-05 0.0027 TFF1│MMP12│EDN2│PRAME│TFPI2│CILP│S100A7

│FN1│CCL19│S100P│ 
COL11A1│IGHG1│DLK1│TUBB3│GSTA1

6.regulation of leukocyte migration 9.35e-05 0.0027 EDN2│ S100A7│CCL19
7.positive regulation of leukocyte migration 3.90e-05 0.0027 EDN2│ S100A7│CCL19
8.positive regulation of chemotaxis 6.37e-05 0.0027 EDN2│ S100A7│CCL19
9.regulation of leukocyte chemotaxis 3.19e-05 0.0027 EDN2│ S100A7│CCL19
10.locomotion 0.0002 0.0041 MMP12│EDN2│S100A7│FN1│CCL19│TUBB3│S100P 
11.regulation of chemotaxis 0.0002 0.0041 EDN2│S100A7│CCL19
12.cell migration 0.0002 0.0041 MMP12│EDN2│S100A7│FN1│CCL19│S100P
13.cell motility 0.0003 0.0049 MMP12│EDN2│S100A7│FN1│CCL19│S100P
14.localization of cell 0.0003 0.0049 MMP12│EDN2│S100A7│FN1│CCL19│S100P
15.leukocyte chemotaxis 0.0003 0.0049 EDN2│S100A7│CCL19
16.regulation of behavior 0.0004 0.0061 EDN2│S100A7│CCL19
17.cell chemotaxis 0.0005 0.0068 EDN2│S100A7│CCL19
18.positive regulation of response to external 
stimulus

0.0005 0.0068 EDN2│S100A7│CCL19

19.neutrophil chemotaxis 0.0013 0.0167 EDN2│CCL19
20.positive regulation of cell motility 0.0018 0.0209 EDN2│S100A7│CCL19
21.positive regulation of cell migration 0.0018 0.0209 EDN2│S100A7│CCL19
22.positive regulation of cellular component 
movement

0.0020 0.0212 EDN2│S100A7│CCL19

23.positive regulation of locomotion 0.0020 0.0212 EDN2│S100A7│CCL19
24.positive regulation of immune system 
process

0.0025 0.0254 EDN2│S100A7│CCL19│IGHG1

25.sequestering of metal ion 0.0027 0.0264 S100A7│CCL19
26.taxis 0.0033 0.0298 EDN2│S100A7│CCL19│TUBB3
27.chemotaxis 0.0033 0.0298 EDN2│S100A7│CCL19│TUBB3
28.positive regulation of ERK1 and ERK2 
cascade

0.0040 0.0349 S100A7│CCL19

29.positive regulation of cell proliferation 0.0047 0.0395 MMP12│EDN2│PRAME│CCL19
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DISEASE ASSOCIATION ANALYSIS
‘16 Common-Gene Signature’ (p≤0.05)

APPENDIX C. SUPPLEMENTARY TABLE IV

DISEASE P adjP Genes involved in Disease
1.Neoplasms 1.14e-08 9.35e-07 TFF1│PRAME│TFPI2│ S100A7│TUBB3│GSTA1 │S100P
2.Disease Progression 1.14e-06 2.33e-05 TFF1│MMP12│PRAME│S100A7
3.Carcinoma 9.97e-07 2.33e-05 TFF1│TFPI2│S100A7││TUBB3│S100P
4.cancer or viral infections 7.50e-07 2.33e-05 TFF1│PRAME│TFPI2│S100A7│TUBB3│S100P
5.Cartilage Diseases 1.42e-06 2.33e-05 CILP│COL11A1│COMP
6.Osteoarthritis, Knee 2.26e-06 3.09e-05 CILP│COL11A1│COMP
7.Collagen Diseases 5.86e-06 6.86e-05 COL11A1│FN1│COMP
8.Neoplastic Processes 1.35e-05 0.0001 PRAME│TFPI2│FN1│ S100P
9.Neoplasm of unspecified nature of 
digestive system

1.84e-05 0.0002 TFF1│TFPI2│GSTA1│S100P

10.Osteoarthritis 2.06e-05 0.0002 CILP│COL11A1│COMP
11.Pancreatic Diseases 2.10e-05 0.0002 TFF1│TFPI2│S100P
12.Pancreatic Neoplasms 5.03e-05 0.0003 TFF1│TFPI2│S100P
13.Lumbar Disc Herniation 5.96e-05 0.0003 CILP│ COL11A1
14.Degeneration of lumbar intervertebral 
disc

4.85e-05 0.0003 CILP │COL11A1

15.Bone Diseases 9.60e-05 0.0005 CILP│ COL11A1│COMP
16.Adenocarcinoma, Papillary 0.0002 0.0008 TFPI2│S100P
17.Adenocarcinoma, Mucinous 0.0002 0.0008 TFF1│S100P
18.Arthritis 0.0002 0.0008 CILP│ COL11A1│ COMP
19.Epithelial cancers 0.0002 0.0008 TFF1│S100A7│S100P
20.Neuroectodermal Tumors 0.0002 0.0008 PRAME│TFPI2│ DLK1
21.Neoplasm Invasiveness 0.0002 0.0008 MMP12│ TFPI2│ S100P
22.Breast Neoplasms 0.0003 0.0009 TFF1│ S100A7│GSTA1
23.Breast Diseases 0.0003 0.0009 TFF1│ S100A7│GSTA1
24.Hernia 0.0003 0.0009 CILP│COL11A1
25.Gastrointestinal Neoplasms 0.0003 0.0009 TFF1│TFPI2│GSTA1
26.Skeletal Dysplasia 0.0003 0.0009 COL11A1│COMP
27.Fibrosarcoma 0.0003 0.0009 TFPI2│FN1
28.Adenocarcinoma 0.0003 0.0009 TFF1│TUBB3│S100P
29. Scoliosis 0.0004 0.0011 COMP│DLK1
30.Gastrointestinal Diseases 0.0004 0.0011 TFF1│ TFPI2│GSTA1
31.Precancerous Conditions 0.0005 0.0013 TFF1│S100A7
32.Inflammation 0.0005 0.0013 MMP12│EDN2│S100A7
33.Osteochondrodysplasias 0.0006 0.0014 COL11A1│COMP
APPENDIX C. 
SUPPLEMENTARY TABLE IV

DISEASE P adjP Genes involved in Disease
34.Carcinoma, Papillary 0.0006 0.0014 FN1│S100P
35.Musculoskeletal Diseases 0.0006 0.0014 CILP│COL11A1│COMP
36.Kidney Neoplasms 0.0011 0.0025 EDN2│DLK1
37.Cholangiocarcinoma 0.0012 0.0027 TFF1│S100P
38.Spinal Diseases 0.0013 0.0028 CILP│COL11A1
39.Bile Duct Neoplasms 0.0014 0.0029 TFF1│S100P
40.Rupture 0.0014 0.0029 MMP12│FN1
41.Preterm rupture of membranes 0.0016 0.0032 MMP12│FN1
42.Chorioamnionitis 0.0017 0.0033 MMP12│FN1
43.Fibrosis 0.0021 0.0038 FN1│COMP
44.Urologic Neoplasms 0.0021 0.0038 EDN2│DLK1
45.Growth Disorders 0.0021 0.0038 CILP│COMP
46.Premature Birth 0.0025 0.0045 EDN2│FN1
47.Neuroendocrine Tumors 0.0027 0.0047 PRAME│DLK1
48.Obstetric Labor Complications 0.0028 0.0048 EDN2│FN1
49.Lymphoma, Low-Grade 0.0029 0.0049 PRAME│CCL19
50.Lymphoma, B-Cell 0.0033 0.0054 PRAME│CCL19
51.Bronchitis 0.0034 0.0055 MMP12│CCL19
52.Pregnancy Complications 0.0035 0.0055 EDN2│TFPI2
53.Colorectal Neoplasms 0.0041 0.0063 TFPI2│GSTA1
54.Joint Diseases 0.0043 0.0064 CILP│COMP
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DISEASE ASSOCIATION ANALYSIS  
‘16 Common-Gene Signature’ (p≤0.05)

55.Intestinal Neoplasms 0.0044 0.0064 TFF1│GSTA1
56.Head and Neck Neoplasms 0.0042 0.0064 S100A7│FN1
57.Connective Tissue Diseases 0.0051 0.0073 CILP│COMP
58.Rheumatic Diseases 0.0053 0.0075 CILP│ COMP
59.Chronic Disease 0.0057 0.0077 MMP12│PRAME
60.Lung Neoplasms 0.0056 0.0077 MMP12│TUBB3
61.Bronchial Diseases 0.0057 0.0077 MMP12│CCL19
62.Neoplasm Metastasis 0.0060 0.0079 TFPI2│S100P
63.Musculoskeletal Abnormalities 0.0064 0.0083 COL11A1│COMP
64.Intestinal Diseases 0.0066 0.0085 TFF1│GSTA1
65.Abnormalities, Multiple 0.0069 0.0087 COL11A1│COMP
66.Lung Diseases 0.0075 0.0093 MMP12│TUBB3
67.Lymphatic Diseases 0.0078 0.0095 PRAME│CCL19
APPENDIX C. 
SUPPLEMENTARY TABLE IV

DISEASE P adjP Genes involved in Disease
68.Lentivirus Infections 0.0083 0.0097 CCL19│TUBB3
69.Sexually Transmitted Diseases 0.0084 0.0097 CCL19│TUBB3
70.Lymphoproliferative Disorders 0.0083 0.0097 PRAME│CCL19
71.Respiratory Tract Diseases 0.0083 0.0097 MMP12│TUBB3
72.HIV Infections 0.0087 0.0098 CCL19│TUBB3
73.Retroviridae Infections 0.0087 0.0098 CCL19│TUBB3
74.Immunologic Deficiency Syndromes 0.0094 0.0104 CCL19│TUBB3
75.Skin Diseases 0.0102 0.0112 TFF1│S100A7
76.Skin and Connective Tissue Diseases 0.0134 0.0145 TFF1│S100A7
77.Virus Diseases 0.0138 0.0147 CCL19│TUBB3
78.Adhesion 0.0235 0.0247 FN1│CCL19
79.Immune System Diseases 0.0257 0.0267 PRAME│CCL19
80.HIV 0.0312 0.0320 FN1 │TUBB3
81.Genetic Predisposition to Disease 0.0354 0.0358 MMP12│GSTA1
82.Disease Susceptibility 0.0367 0.0367 MMP12│GSTA1
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‘5 Common-Gene Signature’ 

APPENDIX D. SUPPLEMENTARY TABLE I. GENE LIST - DESCRIPTION

gene id
gene

symbol description
1311 COMP cartilage oligomeric matrix protein
2335 FN1 fibronectin 1
6286 S100P S100 calcium binding protein P
6363 CCL19 chemokine (C-C motif) ligand 19

8483 CILP
cartilage intermediate layer protein, nucleotide

pyrophosphohydrolase

GENENAME: associated with breast cancer

GENENAME: not associated yet with breast cancer
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KEGG PATHWAYS
‘5 Common-Gene Signature’ (p≤0.05)

APPENDIX D. SUPPLEMENTARY TABLE II

KEGG Pathways P adjP Genes participated in KEGG Pathways
1.ECM-receptor interaction 3.82e-05 7.64e-05 FN1│ COMP
2.Focal adhesion 0.0002 0.0002 FN1│ COMP
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GENE ONTOLOGY ENRICHMENT ANALYSIS in terms of BIOLOGICAL
PROCESS

‘5 Common-Gene Signature’ (p≤0.1)

APPENDIX D. SUPPLEMENTARY TABLE III

Biological Process P adjP Genes participated in Biological Process
1.localization of cell 0.0022 0.0602 FN1│CCL19│S100P
2.cell migration 0.0017 0.0602 FN1│CCL19│S100P
3.leukocyte migration 0.0028 0.0602 FN1│CCL19
4.cell motility 0.0022 0.0602 FN1│CCL19│S100P
5.locomotion 0.0054 0.0774 FN1│CCL19│S100P 
6.cellular component movement 0.0047 0.0774 FN1│CCL19│S100P
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DISEASE ASSOCIATION ANALYSIS
‘5 Common-Gene Signature’ (p≤0.05)

APPENDIX D. SUPPLEMENTARY TABLE IV

DISEASE P adjP Genes involved in Disease
1.Osteoarthritis, Knee 2.59e-05 0.0002 CILP│ COMP
2.Collagen Diseases 4.88e-05 0.0002 FN1│COMP
3.Carcinoma, Papillary 5.41e-05 0.0002 FN1│S100P
4.Cartilage Diseases 1.90e-05 0.0002 CILP│ COMP
5.Osteoarthritis 0.0001 0.0003 CILP│ COMP
6.Fibrosis 0.0002 0.0004 FN1│COMP
7.Growth Disorders 0.0002 0.0004 CILP│COMP
8.Rheumatic Diseases 0.0005 0.0006 CILP│COMP
9.Arthritis 0.0005 0.0006 CILP│COMP
10.Joint Diseases 0.0004 0.0006 CILP│COMP
11.Connective Tissue Diseases 0.0004 0.0006 CILP│COMP
12.Bone Diseases 0.0003 0.0006 CILP│COMP
13.Neoplastic Processes 0.0009 0.0010 FN1│ S100P
14.Musculoskeletal Diseases 0.0011 0.0012 CILP│ COMP
15.Adhesion 0.0022 0.0022 FN1│CCL19
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