
TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERS

Diploma Thesis

Study, analysis and implementation of gene alignment algorithm on a

platform based on reconfigurable hardware

Orestis Xeni

Examining Board

Professor Dollas Apostolos (Supervisor)

Professor Pneumatikatos Dionysios

Associate Professor Papaeustathiou Ioannis

Chania, 2013

2

3

Acknowledgements

Firstly I would like to thank my family for sponsoring me and always being there when I

needed them. Then I would like to thank my supervisor Professor Dollas Apostolos for

supervising my diploma thesis and giving me the opportunity to work with him. Also I

would like to thank Dr. Euripides Sotiriades for his guidance and his support through the

whole process of the elaboration of my diploma thesis. As well, I would like to thank Mr.

Gregory Chrysos for his technical support and the valuable time that he spent with me. I

would like to thank the whole community of the MHL for their support and finally my

friends for their psychological support.

4

5

Abstract

Computational Biology is one of the evolutionary scientific areas that the Electronics

and Computer Engineers study. The Bioinformatics results can be used in biology,

medicine and pharmaceutics and they can lead into new medicines and therapy

methods. The Bioinformatics area consists of really high compute intensive and

resource demanding problems.

The Bowtie algorithm is a sequence alignment algorithm that was introduced in 2009.

This algorithm uses a different methodology and techniques from the other sequent

alignment algorithms. In more details, the Bowtie algorithm uses the Burrows & Wheeler

compression method and the FM – Index technique, which is a pattern matching

method for very fast search for similar patterns. The Bowtie algorithm takes as input an

organism’s genetic database and genetic sequences-“queries” with high or low similarity

to the input database. The algorithm’s result shows the similarity between each input

query and the genetic database.

This thesis presents a reconfigurable hardware-based implementation of the Bowtie

algorithm. The search process of the algorithm, which is the most compute intensive

part, is implemented on a multi-FPGA platform. The final system offers one order of

magnitude execution speedup vs. the official software, as far as the most time

consuming part of the Bowtie algorithm.

6

7

Contents
Chapter 1 .. 11

Introduction ... 11

1.1 The Problem .. 11

1.2 Motivation ... 12

1.3 Diploma Thesis Structure ... 12

Chapter 2 .. 13

Gene Prediction (Gene Finding), Sequence Alignment and algorithms that implement it.

 .. 13

2.1 Gene Prediction or Gene Finding ... 13

2.2 Sequence alignment .. 14

2.3 Gene Finding or Gene Prediction Algorithms ... 15

2.3.1 Glimmer ... 15

2.3.2 TWAIN ... 15

2.3.3 GlimmerHMM ... 15

2.3.4 GENSCAN ... 15

2.3.5 GeneZilla(former TigrScan) ... 15

2.3.6 GeneSplicer ... 16

2.3.7 ExAlt .. 16

2.3.8 JIGSAW ... 16

2.4 Gene Aligning & Short Reads Mapping Algorithms .. 17

2.4.1 Maq .. 17

2.4.2 SOAP ... 17

2.4.3 RMAP .. 17

2.4.4 SHRiMP ... 17

2.5 Bowtie Algorithm, Burrows & Wheeler Transformation and FM Index 18

2.6 Related Work ... 33

2.6.1 State of the Art on Hardware Acceleration on bioinformatics software tools .. 33

2.6.2. Previous Work on Bowtie .. 33

Chapter 3 .. 35

8

System Modeling ... 35

3.1 Profiling .. 35

3.2 Modeling the build process of Bowtie ... 36

3.2.1 Obtain Data .. 36

3.2.2 Processing Data .. 36

3.3 Connecting Input Data with Hardware ... 40

Chapter 4 .. 41

Implementation .. 41

4.1 Block Diagram .. 41

4.1.1 Fetch Character Component .. 44

4.1.2 STOP Module .. 46

4.1.3 Results component .. 48

4.1.4. FindInText component .. 50

4.1.5 Design Evaluation .. 52

4.2 FSM ... 54

4.3 Hardware Implementation .. 57

Chapter 5 .. 59

Results .. 59

5.1 Validation ... 59

5.2 Analysis and Comparison .. 59

5.3 Related Work ... 63

Chapter 6 .. 65

Conclusions & Future Work ... 65

6.1 Conclusions ... 65

6.2 Future Work ... 65

References .. 67

Appendix A .. 73

MATLAB code for processing input data. .. 73

A.1 Code for processing database files ... 73

A.2 Code for processing short read files .. 77

A.2.1 Code for processing fasta files .. 77

9

A.2.2 Code for processing fastq files .. 79

Appendix B .. 82

C code for reading text files we created in MATLAB ... 82

10

11

Chapter 1

Introduction

Computational Biology, sometimes referred to as bioinformatics, is the science of using

biological data to develop algorithms and relations among various biological systems.

Prior to the advent computational biology, biologists were unable to have access to a

large amount of data. Researchers were able to develop analytical methods for

interpreting biological information, but were unable to share them quickly among

colleagues [36].

Bioinformatics began to develop in the early 1970s. It was considered the science of

analyzing informatics processes of various biological systems. At this time, research in

artificial intelligence was using network models of the human brain in order to generate

new algorithms. This use of biological data to develop other fields, pushed biological

researchers to revisit the idea of using computers to evaluate and compare large data

sets. By 1982, information was being shared amongst researchers through the use of

punch cards. The amount of data being shared began to grow exponentially by the end

of the 1980s. This required the development of new computational methods in order to

quickly analyze and interpret relevant information [36].

Since the late 1990s, computational biology has become an important part of

developing emerging technologies for the field of biology. The terms computational

biology and evolutionary computation have a similar name, but are not to be confused.

Unlike computational biology, evolutionary computation is not concerned with modeling

and analyzing biological data. It instead creates algorithms based on the ideas of

evolution across species. Sometimes is referred as genetic algorithms, the research of

this field can be applied to computational biology. While evolutionary computation is not

inherently a part of computational biology, Computational evolutionary biology is a

subfield of it [37] [38].

Computational biology has been used to help sequence the human genome, create

accurate models of the human brain, and assist in modeling biological systems.

1.1 The Problem

Computational biology executes very complex algorithms and in addition with the huge

sized files that process, it needs computational recourses. Even if you have the most hi-

tech computer running your algorithms the time that you need to reach a result it may

varies from a few minutes to a few days, even months.

http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Algorithms
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Algorithms

12

This is one of the most important problems in computational biology that costs enough

drawbacks. For scientists to have results as fast as they can, they have to spend a

significant amount of money every year for purchasing computers with very good

capabilities so they can execute their algorithms. Another drawback is that they select to

execute their algorithms sacrificing accuracy over performance. Not having results soon

enough is a big problem enough to stall researches along with that science evolution

and this is where FPGA’s come to solve efficiently the puzzle saving money and time.

1.2 Motivation
Bioinformatics is a scientific field that always evolves and is in desperate need of

computing resources so FPGA’s can make a direct impact helping scientists with their

work.

FPGA’s have proved their capabilities through research helping lots of scientists

achieving their goals and saving a lot of time doing that. This is what encouraged us to

deal with this nature of problem, selecting a relatively new algorithm, and making all the

procedures needed so it can be run on a FPGA.

Bowtie was introduced in 2009 using, for the first time in Bioinformatics, Burrows &

Wheeler Transformation and FM – Index. This methods work together producing very

fast and accurate results and they are extremely efficient in bioinformatics due to how

good they handle pattern matching.

1.3 Diploma Thesis Structure
The diploma thesis consists of six chapters.

The next chapter talks about bioinformatics terminologies, gene finding and gene

aligning algorithms that we have studied and finally the full analysis of the selected

algorithm.

In the third chapter, we will talk about the modeling of the algorithm, preparation of input

data and how the software communicates with the hardware.

After, in the fourth chapter, we will discuss about the data flow and the architecture

design of the hardware.

In the fifth chapter we will talk about the results, comparing them with the software and

with other relative works and finally in the sixth chapter we will talk about conclusions

and further work.

13

Chapter 2

Gene Prediction (Gene Finding),

Sequence Alignment and algorithms

that implement it.

2.1 Gene Prediction or Gene Finding
In computational biology gene prediction or gene finding refers to the process of

identifying the regions of genomic DNA that encode genes. This includes protein-

coding genes as well as RNA genes, but may also include prediction of other functional

elements such as regulatory regions. Gene finding is one of the first and most important

steps in understanding the genome of a species once it has been sequenced. In its

earliest days, "gene finding" was based on painstaking experimentation on living cells

and organisms. Statistical analysis of the rates of homologous recombination of several

different genes could determine their order on a certain chromosome, and information

from many such experiments could be combined to create a genetic map specifying the

rough location of known genes relative to each other. Today gene finding has been

redefined as a largely computational problem due to resources restrictions.

Gene is a molecular unit of heredity of a living organism. It is a name given to some

stretches of DNA and RNA that code for a polypeptide or for an RNA chain that has a

function in the organism. Living beings depend on genes, as they specify all proteins

and functional RNA chains. Genes hold the information to build and maintain an

organism's cells and pass genetic traits to offspring, although

some organelles (e.g. mitochondria) are self-replicating and are not coded for, by the

organism's DNA [41].

Exon is a sequence of DNA that is expressed (transcribed) into RNA and then often,

but with many noteworthy exceptions, translated into protein. Adjacent exons may be

separated by an intron, which is later removed from the RNA transcript via the splicing

mechanism [42].

Intron is any nucleotide sequence within a gene that is removed by RNA splicing while

the final mature RNA product of a gene is being generated [43].

http://en.wikipedia.org/wiki/Computational_biology
http://en.wikipedia.org/wiki/Genes
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/RNA_gene
http://en.wikipedia.org/wiki/Regulatory_regions
http://en.wikipedia.org/wiki/Sequencing
http://en.wikipedia.org/wiki/Homologous_recombination
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Genetic_map
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Polypeptide
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Cell_(biology)
http://en.wikipedia.org/wiki/Trait_(biology)
http://en.wikipedia.org/wiki/Organelles
http://en.wikipedia.org/wiki/Mitochondria
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Intron
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/RNA_splicing

14

Splicing is a modification of the nascent pre-mRNA taking place after or concurrently

with its transcription, in which introns are removed and exons are joined. This is needed

for the typical eukaryotic messenger RNA before it can be used to produce a correct

protein through translation [44].

2.2 Sequence alignment
Is a way of arranging the sequences of DNA, RNA, or protein to identify regions of

similarity that may be a consequence of functional, structural,

or evolutionary relationships between the sequences. Aligned sequences

of nucleotide or amino acid residues are typically represented as rows within a matrix.

Gaps are inserted between the residues so that identical or similar characters are

aligned in successive columns.

Gene Structure [39]

mRNA before and after splicing [40]

http://en.wikipedia.org/wiki/Pre-mRNA
http://en.wikipedia.org/wiki/Transcription_(genetics)
http://en.wikipedia.org/wiki/Introns
http://en.wikipedia.org/wiki/Exons
http://en.wikipedia.org/wiki/Eukaryotic
http://en.wikipedia.org/wiki/Messenger_RNA
http://en.wikipedia.org/wiki/Translation_(biology)
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Structural_biology
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Residue_(chemistry)

15

2.3 Gene Finding or Gene Prediction Algorithms
Generally an algorithm is a step-by-step procedure for calculations. A Gene Finding or

Gene Prediction algorithm uses methods (e.g. Interpolated Markov Models, Hidden

Markov Models) so as to determine the beginning and end positions of genes in a

genome.

2.3.1 Glimmer (Gene Locator and Interpolated Markov ModelER) uses interpolated

Markov models (IMMs) to identify the coding regions and distinguish them from non
coding DNA. Some of the advantages are low false positive rate, predicts many start
sites correctly and high true positive rate [1], [2], [3].

2.3.2 TWAIN is a new syntenic gene finder which employs a Generalized Pair Hidden

Markov Model (GPHMM) to predict genes in two closely related eukaryotic genomes

simultaneously. TWAIN performs very well on two related Aspergillus species,

A.fumigatus and A.nidulans.Some disadvantages are that needs a better accuracy and

wider area of organisms [4].

2.3.3 GlimmerHMM is a gene finder based on a Generalized Hidden Markov Model

(GHMM). It utilizes Interpolated Markov Models for the coding and noncoding models.

Currently, GlimmerHMM's (GHMM) structure includes introns of each phase, intergenic

regions, and four types of exons (initial, internal, final, and single). GlimmerHMM is very

fast and memory efficient [6], [7].

2.3.4 GENSCAN is based on probabilistic model of gene structure similar to Hidden

Markov Models (HMMs). GENSCAN uses a training set in order to estimate the HMM

parameters, then the algorithm returns the exon structure using maximum likelihood

approach standard to many HMM algorithms. It does not use similarity search to predict

genes, it does not address alternative splicing and it could combine two exons from

consecutive genes together [5].

2.3.5 GeneZilla(former TigrScan) is a gene finder based on the Generalized

Hidden Markov Model framework, similar to Genscan. The run time and memory

requirements are linear in the sequence length. It utilizes Interpolated Markov Models

(IMMs), Maximal Dependence Decomposition (MDD), and includes states for signal

16

peptides, branch points, TATA boxes, CAP sites, and will soon model CpG islands as

well. GeneZilla is not so fast (compared to GlimmerHMM) but is extremely memory

efficient [6], [7].

2.3.6 GeneSplicer is a fast, flexible system for detecting splice sites (the locations

of the start codons, all the exons and introns and the stop codon for each gene) in the

genomic DNA of various eukaryotes. The system has been trained and tested

successfully on Plasmodium falciparum (malaria), Arabidopsis thaliana,

human, Drosophila, and rice. GeneSplicer advantages are accuracy, memory efficiency

and speed [14].

2.3.7 ExAlt is a software program designed to predict alternatively spliced overlapping

exons in genomic sequence. The program works in several ways depending on the

available input. ExAlt can use information about existing gene structure as well as

sequence conservation to improve the precision of its predictions. ExAlt can also make

predictions when only a single genomic sequence is available. ExAlt has been

extensively tested on Drosophila melanogaster, but can be adapted to run on other

species.

The typical input to ExAlt is a known (or predicted) gene structure, which should

be checked for alternative splicing. The core program takes as input a multiple

sequence alignment and a phylogenetic tree and returns a GFF file containing the

sequence coordinates of exon predictions. Wrapper scripts are provided to take

a Drosophila melanogaster gene (using the CG identifier) and iterate through each

exon, using blastn to find matches in closely releated species and muscle to generate

multiple sequence alignments for input to ExAlt [15].

2.3.8 JIGSAW is a program designed to use the output from gene finders, splice site

prediction programs and sequence alignments to predict gene models. The program

provides an automated way to take advantage of the many successful methods for

computational gene prediction and can provide substantial improvements in accuracy

over an individual gene prediction program. JIGSAW is available for all species [7],

[16], [17].

http://blast.wustl.edu/
http://www.drive5.com/

17

2.4 Gene Aligning & Short Reads Mapping

Algorithms
Gene aligning & short reads mapping algorithms are algorithms that use various

methods to align two or more short read gene sequences and come to conclusions for

this genes, if they are related, or if they have evolve, or even if they have been mutated.

Different algorithms exists using different methods, each one solving a different problem

such as accuracy, performance, sequence size, memory foot print.

2.4.1 Maq can build assemblies by mapping shotgun short reads to a reference

genome, using quality scores to derive genotype calls of the consensus sequence of a
diploid genome, e.g., from a human sample. MAQ makes full use of mate-pair
information and estimates the error probability of each read alignment using the Eland –
like hashing technique. Error probabilities are also derived for the final genotype calls,
using a Bayesian statistical model that incorporates the mapping qualities, error
probabilities from the raw sequence quality scores, sampling of the two haplotypes, and
an empirical model for correlated errors at a site. MAQ is accurate, efficient, versatile,
and user-friendly [8].

2.4.2 SOAP is designed to handle the huge amounts of short reads generated by

parallel sequencing using the seed and hash look-up table algorithm. SOAP is
compatible with numerous applications, including single-read or pair-end resequencing,
small RNA discovery and mRNA tag sequence mapping. SOAP is a command-driven
program, which supports multi-threaded parallel computing, and has a batch module for
multiple query sets [9], [18].

2.4.3 RMAP can map reads having a wide range of lengths and allows base-call

quality scores to determine which positions in each read are more important when
mapping using the filtration method, a pattern matching method [10].

2.4.4 SHRiMP algorithm draws upon three recent developments in the field of

sequence alignment: q-gram filter approaches, spaced seeds and specialized vector
computing hardware to speed up the Smith-Waterman Algorithm to rapidly find the likely
locations for the reads on the genome. Once these locations are identified, Smith-
Waterman based algorithm is conducted thoroughly to rigorously evaluate the
alignments [12], [25], [26], [27], [28], [29].

18

2.5 Bowtie Algorithm, Burrows & Wheeler

Transformation and FM Index
Bowtie is an algorithm that can align sequences of characters of genes with specified

methods and determine if they are related, and if they are related if an evolution or a

mutation exist [13]. It is used specifically in the section of computational biology from

research and science centers. It is a new algorithm, released in 2009, ultra fast, very

low memory foot print(approximately 1.3 GB) and has over 1200 citations. The

pioneering of bowtie algorithm is the use for the first time in bioinformatics of the

Burrows and Wheeler transformation (BWT) which was presented in 1994 by M.

Burrows and D.J. Wheeler, [19], two mathematicians as a data compression method

and FM Index an exact pattern matching method [30], [31], [32]. The FM Index is

extremely fast in searching sequence patterns in very large text files and is already

been used in other scientific fields and sections. One example is that it is used in LUT’s

of node routers in enormous networks.

Bowtie algorithm is divided into two sections. The first section is about building the

database that you want to match your query pattern and the second one is doing the

search [20], [22], [23], [24].

To build the database bowtie algorithm takes a genome sequence and uses the

Burrows & Wheeler Transformation (BWT) to extract the transformed sequence. Given

a text Q we denote by BWT(Q) its transform. The BWT of a string, or in our case

sequence, is generated in five steps:

1. Terminate the text Q with a unique character: “$”.
2. Generate all rotations of the text.
3. Sort all the rotations.
4. Extract the last characters of all the entries of the sorted list.
5. Join the characters in the same order they appeared in the sorted list.
The newly generated text is the BWT(Q).

For example lets set

Q= GAACGATACCCACCCAACTATCGCCATTCCAGCAT.

After the first step Q will become

 Q= GAACGATACCCACCCAACTATCGCCATTCCAGCAT$.

Then by fully rotating the sequence, executing the second step, our result is shown in
Table 2.1 below.

19

Index Rotated Sequence Details

0 GAACGATACCCACCCAACTATCGCCATTCCAGCAT$ Initial Sequence

1 AACGATACCCACCCAACTATCGCCATTCCAGCAT$G

2 ACGATACCCACCCAACTATCGCCATTCCAGCAT$GA

3 CGATACCCACCCAACTATCGCCATTCCAGCAT$GAA

4 GATACCCACCCAACTATCGCCATTCCAGCAT$GAAC

5 ATACCCACCCAACTATCGCCATTCCAGCAT$GAACG

6 TACCCACCCAACTATCGCCATTCCAGCAT$GAACGA

7 ACCCACCCAACTATCGCCATTCCAGCAT$GAACGAT

8 CCCACCCAACTATCGCCATTCCAGCAT$GAACGATA

9 CCACCCAACTATCGCCATTCCAGCAT$GAACGATAC

10 CACCCAACTATCGCCATTCCAGCAT$GAACGATACC

11 ACCCAACTATCGCCATTCCAGCAT$GAACGATACCC

12 CCCAACTATCGCCATTCCAGCAT$GAACGATACCCA

13 CCAACTATCGCCATTCCAGCAT$GAACGATACCCAC

14 CAACTATCGCCATTCCAGCAT$GAACGATACCCACC
15 AACTATCGCCATTCCAGCAT$GAACGATACCCACCC

16 ACTATCGCCATTCCAGCAT$GAACGATACCCACCCA

17 CTATCGCCATTCCAGCAT$GAACGATACCCACCCAA

18 TATCGCCATTCCAGCAT$GAACGATACCCACCCAAC

19 ATCGCCATTCCAGCAT$GAACGATACCCACCCAACT

20 TCGCCATTCCAGCAT$GAACGATACCCACCCAACTA

21 CGCCATTCCAGCAT$GAACGATACCCACCCAACTAT

22 GCCATTCCAGCAT$GAACGATACCCACCCAACTATC

23 CCATTCCAGCAT$GAACGATACCCACCCAACTATCG

24 CATTCCAGCAT$GAACGATACCCACCCAACTATCGC

25 ATTCCAGCAT$GAACGATACCCACCCAACTATCGCC

26 TTCCAGCAT$GAACGATACCCACCCAACTATCGCCA

27 TCCAGCAT$GAACGATACCCACCCAACTATCGCCAT

28 CCAGCAT$GAACGATACCCACCCAACTATCGCCATT

29 CAGCAT$GAACGATACCCACCCAACTATCGCCATTC

30 AGCAT$GAACGATACCCACCCAACTATCGCCATTCC

31 GCAT$GAACGATACCCACCCAACTATCGCCATTCCA

32 CAT$GAACGATACCCACCCAACTATCGCCATTCCAG

33 AT$GAACGATACCCACCCAACTATCGCCATTCCAGC

34 T$GAACGATACCCACCCAACTATCGCCATTCCAGCA

35 $GAACGATACCCACCCAACTATCGCCATTCCAGCAT

Table 2.1: Example of rotating a sequence in step 2 of Burrows & Wheeler Transformation.

20

Then, executing the third step of the transformation, sorting the rotated sequences

lexicographically, our table changes as we can see in Table 2.2.

Index Sequence
0 $GAACGATACCCACCCAACTATCGCCATTCCAGCAT
1 AACGATACCCACCCAACTATCGCCATTCCAGCAT$G

2 AACTATCGCCATTCCAGCAT$GAACGATACCCACCC
3 ACCCAACTATCGCCATTCCAGCAT$GAACGATACCC

4 ACCCACCCAACTATCGCCATTCCAGCAT$GAACGAT

5 ACGATACCCACCCAACTATCGCCATTCCAGCAT$GA

6 ACTATCGCCATTCCAGCAT$GAACGATACCCACCCA
7 AGCAT$GAACGATACCCACCCAACTATCGCCATTCC
8 AT$GAACGATACCCACCCAACTATCGCCATTCCAGC
9 ATACCCACCCAACTATCGCCATTCCAGCAT$GAACG

10 ATCGCCATTCCAGCAT$GAACGATACCCACCCAACT
11 ATTCCAGCAT$GAACGATACCCACCCAACTATCGCC
12 CAACTATCGCCATTCCAGCAT$GAACGATACCCACC

13 CACCCAACTATCGCCATTCCAGCAT$GAACGATACC

14 CAGCAT$GAACGATACCCACCCAACTATCGCCATTC
15 CAT$GAACGATACCCACCCAACTATCGCCATTCCAG
16 CATTCCAGCAT$GAACGATACCCACCCAACTATCGC
17 CCAACTATCGCCATTCCAGCAT$GAACGATACCCAC

18 CCACCCAACTATCGCCATTCCAGCAT$GAACGATAC

19 CCAGCAT$GAACGATACCCACCCAACTATCGCCATT
20 CCATTCCAGCAT$GAACGATACCCACCCAACTATCG
21 CCCAACTATCGCCATTCCAGCAT$GAACGATACCCA

22 CCCACCCAACTATCGCCATTCCAGCAT$GAACGATA

23 CGATACCCACCCAACTATCGCCATTCCAGCAT$GAA

24 CGCCATTCCAGCAT$GAACGATACCCACCCAACTAT
25 CTATCGCCATTCCAGCAT$GAACGATACCCACCCAA
26 GAACGATACCCACCCAACTATCGCCATTCCAGCAT$

27 GATACCCACCCAACTATCGCCATTCCAGCAT$GAAC

28 GCAT$GAACGATACCCACCCAACTATCGCCATTCCA
29 GCCATTCCAGCAT$GAACGATACCCACCCAACTATC
30 T$GAACGATACCCACCCAACTATCGCCATTCCAGCA
31 TACCCACCCAACTATCGCCATTCCAGCAT$GAACGA

32 TATCGCCATTCCAGCAT$GAACGATACCCACCCAAC
33 TCCAGCAT$GAACGATACCCACCCAACTATCGCCAT
34 TCGCCATTCCAGCAT$GAACGATACCCACCCAACTA
35 TTCCAGCAT$GAACGATACCCACCCAACTATCGCCA

Table 2.2: Example of sorting a sequence in step 3 of Burrows & Wheeler Transformation.

21

In step 4 we have to extract the last characters of all the entries of the sorted list, hence

our table becomes as shown in Table 2.3.

Index Sequence
0 $GAACGATACCCACCCAACTATCGCCATTCCAGCA - T
1 AACGATACCCACCCAACTATCGCCATTCCAGCAT$ - G

2 AACTATCGCCATTCCAGCAT$GAACGATACCCACC - C
3 ACCCAACTATCGCCATTCCAGCAT$GAACGATACC - C

4 ACCCACCCAACTATCGCCATTCCAGCAT$GAACGA - T

5 ACGATACCCACCCAACTATCGCCATTCCAGCAT$G - A

6 ACTATCGCCATTCCAGCAT$GAACGATACCCACCC - A
7 AGCAT$GAACGATACCCACCCAACTATCGCCATTC - C
8 AT$GAACGATACCCACCCAACTATCGCCATTCCAG - C
9 ATACCCACCCAACTATCGCCATTCCAGCAT$GAAC - G

10 ATCGCCATTCCAGCAT$GAACGATACCCACCCAAC - T
11 ATTCCAGCAT$GAACGATACCCACCCAACTATCGC - C
12 CAACTATCGCCATTCCAGCAT$GAACGATACCCAC - C

13 CACCCAACTATCGCCATTCCAGCAT$GAACGATAC - C

14 CAGCAT$GAACGATACCCACCCAACTATCGCCATT - C
15 CAT$GAACGATACCCACCCAACTATCGCCATTCCA - G
16 CATTCCAGCAT$GAACGATACCCACCCAACTATCG - C
17 CCAACTATCGCCATTCCAGCAT$GAACGATACCCA - C

18 CCACCCAACTATCGCCATTCCAGCAT$GAACGATA - C

19 CCAGCAT$GAACGATACCCACCCAACTATCGCCAT - T
20 CCATTCCAGCAT$GAACGATACCCACCCAACTATC - G
21 CCCAACTATCGCCATTCCAGCAT$GAACGATACCC - A

22 CCCACCCAACTATCGCCATTCCAGCAT$GAACGAT - A

23 CGATACCCACCCAACTATCGCCATTCCAGCAT$GA - A

24 CGCCATTCCAGCAT$GAACGATACCCACCCAACTA - T
25 CTATCGCCATTCCAGCAT$GAACGATACCCACCCA - A
26 GAACGATACCCACCCAACTATCGCCATTCCAGCAT - $

27 GATACCCACCCAACTATCGCCATTCCAGCAT$GAA - C

28 GCAT$GAACGATACCCACCCAACTATCGCCATTCC - A
29 GCCATTCCAGCAT$GAACGATACCCACCCAACTAT - C
30 T$GAACGATACCCACCCAACTATCGCCATTCCAGC - A
31 TACCCACCCAACTATCGCCATTCCAGCAT$GAACG - A

32 TATCGCCATTCCAGCAT$GAACGATACCCACCCAA - C
33 TCCAGCAT$GAACGATACCCACCCAACTATCGCCA - T
34 TCGCCATTCCAGCAT$GAACGATACCCACCCAACT - A
35 TTCCAGCAT$GAACGATACCCACCCAACTATCGCC - A

Table 2.3: Example of step 4 of the Burrows & Wheeler Transformation.

22

Finally by joining the characters in the same order they appeared in the sorted list we

generate the Burrows & Wheeler Transformation of sequence Q.

 BWT (Q) = TGCCTAACCGTCCCCGCCCTGAAATA$CACAACTAA

After finishing with the transformation we use it to generate the sorted Burrows &

Wheeler Transformation (SBWT) and the tables C and I which combined it together with

the method of FM – Index help us to identify patterns in text.

 Sorting BWT (Q) give us

 SBWT (Q) = $AAAAAAAAAAACCCCCCCCCCCCCCGGGGTTTTTT

I-table stores the first occurrence of each character on the sorted BWT(Q) as shown in
Table 2.4.

Index Character Index Character Index Character

0 $ 12 C 24 C

1 A 13 C 25 C

2 A 14 C 26 G

3 A 15 C 27 G

4 A 16 C 28 G

5 A 17 C 29 G

6 A 18 C 30 T

7 A 19 C 31 T

8 A 20 C 32 T

9 A 21 C 33 T

10 A 22 C 34 T

11 A 23 C 35 T
Table 2.4: SBWT (Q)

As a result I – Table is shown in Table 2.5.

A C G T

1 12 26 30
Table 2.5: I – Table

23

The C-table stores the count of each character on a previous location as shown in Table
2.6.

Index BWT(Q) A C G T

0 T 0 0 0 0

1 G 0 0 0 1

2 C 0 0 1 1

3 C 0 1 1 1

4 T 0 2 1 1

5 A 0 2 1 2

6 A 1 2 1 2

7 C 2 2 1 2

8 C 2 3 1 2

9 G 2 4 1 2

10 T 2 4 2 2

11 C 2 4 2 3

12 C 2 5 2 3

13 C 2 6 2 3

14 C 2 7 2 3

15 G 2 8 2 3
16 C 2 8 3 3

17 C 2 9 3 3

18 C 2 10 3 3

19 T 2 11 3 3

20 G 2 11 3 4

21 A 2 11 4 4

22 A 3 11 4 4

23 A 4 11 4 4

24 T 5 11 4 4

25 A 5 11 4 5

26 $ 6 11 4 5

27 C 6 11 4 5

28 A 6 12 4 5

29 C 7 12 4 5

30 A 7 13 4 5

31 A 8 13 4 5

32 C 9 13 4 5

33 T 9 14 4 5

34 A 9 14 4 6

35 A 10 14 4 6

36 Total 11 14 4 6

Table 2.6: C - Table

The FM-index is a pattern searching technique that operates on the BWT. The FM-
index consists of two pointers: top and bottom [21]. The indices between the top and
bottom pointers are all the suffix locations where a pattern occurs on the text. Top

24

points to an index of the suffix array element where a specific pattern is first located.
The bottom pointer limits where the pattern can be last found. If bottom points to an
index that is less than or equal to an index pointed by top, then the pattern does not
occur on the text.

Pattern searching using the FM-index starts with initializing the top and bottom pointers
to the first and last indices of the C - table respectively. To search for a pattern, we
process one character at a time, beginning with the last character of the pattern. The
top and bottom pointers move to different suffix array indices according to the current
character processed and the current index where the top and bottom pointers are
indexing. To compute the new location of the pointers, we follow Equation 1 for the top
and bottom pointer respectively.

For example let’s search the pattern ACCCACCC on the string Q using the FM – Index.
Equation 1:

Topnew = C – Table[n, Topcurrent] + I – Table[n]

Bottomnew = C – Table[n, Bottomcurrent] + I – Table[n]

Topcur = 0, Botcur = 36

1st Iteration: n=C

Topnew = CC(Topcur) + I(C) = 0 + 12 = 12

Botnew = CC(Botcur) + I(C) = 14 + 12 = 26

Index BWT(Q) A C G T

0 T 0 0 0 0

1 G 0 0 0 1

2 C 0 0 1 1

3 C 0 1 1 1

4 T 0 2 1 1

5 A 0 2 1 2

6 A 1 2 1 2

7 C 2 2 1 2

8 C 2 3 1 2

9 G 2 4 1 2

10 T 2 4 2 2

11 C 2 4 2 3

12 C 2 5 2 3

13 C 2 6 2 3

14 C 2 7 2 3

15 G 2 8 2 3
16 C 2 8 3 3

25

17 C 2 9 3 3

18 C 2 10 3 3

19 T 2 11 3 3

20 G 2 11 3 4

21 A 2 11 4 4

22 A 3 11 4 4

23 A 4 11 4 4

24 T 5 11 4 4

25 A 5 11 4 5

26 $ 6 11 4 5

27 C 6 11 4 5

28 A 6 12 4 5

29 C 7 12 4 5

30 A 7 13 4 5

31 A 8 13 4 5

32 C 9 13 4 5

33 T 9 14 4 5

34 A 9 14 4 6

35 A 10 14 4 6

36 Total 11 14 4 6

That means 26 – 12 = 14, we can find C fourteen times in the current sequence.

GAACGATACCCACCCAACTATCGCCATTCCAGCAT.

Topcur = 12, Botcur = 26

2nd Iteration: n=C

Topnew = CC(Topcur) + I(C) = 5 + 12 = 17

Botnew = CC(Botcur) + I(C) = 11 + 12 = 23

Index BWT(Q) A C G T

0 T 0 0 0 0

1 G 0 0 0 1

2 C 0 0 1 1

3 C 0 1 1 1

4 T 0 2 1 1

5 A 0 2 1 2

6 A 1 2 1 2

7 C 2 2 1 2

8 C 2 3 1 2

9 G 2 4 1 2

10 T 2 4 2 2

26

11 C 2 4 2 3

12 C 2 5 2 3

13 C 2 6 2 3

14 C 2 7 2 3

15 G 2 8 2 3
16 C 2 8 3 3

17 C 2 9 3 3

18 C 2 10 3 3

19 T 2 11 3 3

20 G 2 11 3 4

21 A 2 11 4 4

22 A 3 11 4 4

23 A 4 11 4 4

24 T 5 11 4 4

25 A 5 11 4 5

26 $ 6 11 4 5

27 C 6 11 4 5

28 A 6 12 4 5

29 C 7 12 4 5

30 A 7 13 4 5

31 A 8 13 4 5

32 C 9 13 4 5

33 T 9 14 4 5

34 A 9 14 4 6

35 A 10 14 4 6

36 Total 11 14 4 6

23 - 17 = 6, CC appears six times in the sequence.

GAACGATACCCACCCAACTATCGCCATTCCAGCAT.

Topcur = 17, Botcur = 23

3d Iteration: n=C

Topnew = CC(Topcur) + I(C) = 9 + 12 = 21

Botnew = CC(Botcur) + I(C) = 11 + 12 = 23

Index BWT(Q) A C G T

0 T 0 0 0 0

1 G 0 0 0 1

2 C 0 0 1 1

3 C 0 1 1 1

4 T 0 2 1 1

27

5 A 0 2 1 2

6 A 1 2 1 2

7 C 2 2 1 2

8 C 2 3 1 2

9 G 2 4 1 2

10 T 2 4 2 2

11 C 2 4 2 3

12 C 2 5 2 3

13 C 2 6 2 3

14 C 2 7 2 3

15 G 2 8 2 3
16 C 2 8 3 3

17 C 2 9 3 3

18 C 2 10 3 3

19 T 2 11 3 3

20 G 2 11 3 4

21 A 2 11 4 4

22 A 3 11 4 4

23 A 4 11 4 4

24 T 5 11 4 4

25 A 5 11 4 5

26 $ 6 11 4 5

27 C 6 11 4 5

28 A 6 12 4 5

29 C 7 12 4 5

30 A 7 13 4 5

31 A 8 13 4 5

32 C 9 13 4 5

33 T 9 14 4 5

34 A 9 14 4 6

35 A 10 14 4 6

36 Total 11 14 4 6

23 - 21 = 2, CCC appears only twice in the text.

GAACGATACCCACCCAACTATCGCCATTCCAGCAT.

28

Topcur = 21, Botcur = 23

4th Iteration: n=A

Topnew = CA(Topcur) + I(A) = 2 + 1 = 3

Botnew = CA(Botcur) + I(A) = 4 + 1 = 5

Index BWT(Q) A C G T

0 T 0 0 0 0

1 G 0 0 0 1

2 C 0 0 1 1

3 C 0 1 1 1

4 T 0 2 1 1

5 A 0 2 1 2

6 A 1 2 1 2

7 C 2 2 1 2

8 C 2 3 1 2

9 G 2 4 1 2

10 T 2 4 2 2

11 C 2 4 2 3

12 C 2 5 2 3

13 C 2 6 2 3

14 C 2 7 2 3

15 G 2 8 2 3
16 C 2 8 3 3

17 C 2 9 3 3

18 C 2 10 3 3

19 T 2 11 3 3

20 G 2 11 3 4

21 A 2 11 4 4

22 A 3 11 4 4

23 A 4 11 4 4

24 T 5 11 4 4

25 A 5 11 4 5

26 $ 6 11 4 5

27 C 6 11 4 5

28 A 6 12 4 5

29 C 7 12 4 5

30 A 7 13 4 5

31 A 8 13 4 5

32 C 9 13 4 5

33 T 9 14 4 5

34 A 9 14 4 6

35 A 10 14 4 6

36 Total 11 14 4 6

29

5 - 3 = 2, ACCC appears twice.

GAACGATACCCACCCAACTATCGCCATTCCAGCAT.

Topcur = 3, Botcur = 5

5th Iteration: n=C

Topnew = CC(Topcur) + I(C) = 1 + 12 = 13

Botnew = CC(Botcur) + I(C) = 2 + 12 = 14

Index BWT(Q) A C G T

0 T 0 0 0 0

1 G 0 0 0 1

2 C 0 0 1 1

3 C 0 1 1 1

4 T 0 2 1 1

5 A 0 2 1 2

6 A 1 2 1 2

7 C 2 2 1 2

8 C 2 3 1 2

9 G 2 4 1 2

10 T 2 4 2 2

11 C 2 4 2 3

12 C 2 5 2 3

13 C 2 6 2 3

14 C 2 7 2 3

15 G 2 8 2 3
16 C 2 8 3 3

17 C 2 9 3 3

18 C 2 10 3 3

19 T 2 11 3 3

20 G 2 11 3 4

21 A 2 11 4 4

22 A 3 11 4 4

23 A 4 11 4 4

24 T 5 11 4 4

25 A 5 11 4 5

26 $ 6 11 4 5

27 C 6 11 4 5

28 A 6 12 4 5

29 C 7 12 4 5

30 A 7 13 4 5

31 A 8 13 4 5

30

32 C 9 13 4 5

33 T 9 14 4 5

34 A 9 14 4 6

35 A 10 14 4 6

36 Total 11 14 4 6

14 -13 = 1, CACCC appears only once.

GAACGATACCCACCCAACTATCGCCATTCCAGCAT.

Topcur = 13, Botcur = 14

6th Iteration: n=C

Topnew = CC(Topcur) + I(C) = 6 + 12 = 18

Botnew = CC(Botcur) + I(C) = 7 + 12 = 19

Index BWT(Q) A C G T

0 T 0 0 0 0

1 G 0 0 0 1

2 C 0 0 1 1

3 C 0 1 1 1

4 T 0 2 1 1

5 A 0 2 1 2

6 A 1 2 1 2

7 C 2 2 1 2

8 C 2 3 1 2

9 G 2 4 1 2

10 T 2 4 2 2

11 C 2 4 2 3

12 C 2 5 2 3

13 C 2 6 2 3

14 C 2 7 2 3

15 G 2 8 2 3
16 C 2 8 3 3

17 C 2 9 3 3

18 C 2 10 3 3

19 T 2 11 3 3

20 G 2 11 3 4

21 A 2 11 4 4

22 A 3 11 4 4

23 A 4 11 4 4

24 T 5 11 4 4

25 A 5 11 4 5

26 $ 6 11 4 5

31

27 C 6 11 4 5

28 A 6 12 4 5

29 C 7 12 4 5

30 A 7 13 4 5

31 A 8 13 4 5

32 C 9 13 4 5

33 T 9 14 4 5

34 A 9 14 4 6

35 A 10 14 4 6

36 Total 11 14 4 6

19 -18 = 1, CCACCC appears only once.

GAACGATACCCACCCAACTATCGCCATTCCAGCAT.

Topcur = 18, Botcur = 19

7th Iteration: n=C

Topnew = CC(Topcur) + I(C) = 10 + 12 = 22

Botnew = CC(Botcur) + I(C) = 11 + 12 = 23

Index BWT(Q) A C G T

0 T 0 0 0 0

1 G 0 0 0 1

2 C 0 0 1 1

3 C 0 1 1 1

4 T 0 2 1 1

5 A 0 2 1 2

6 A 1 2 1 2

7 C 2 2 1 2

8 C 2 3 1 2

9 G 2 4 1 2

10 T 2 4 2 2

11 C 2 4 2 3

12 C 2 5 2 3

13 C 2 6 2 3

14 C 2 7 2 3

15 G 2 8 2 3
16 C 2 8 3 3

17 C 2 9 3 3

18 C 2 10 3 3

19 T 2 11 3 3

20 G 2 11 3 4

32

21 A 2 11 4 4

22 A 3 11 4 4

23 A 4 11 4 4

24 T 5 11 4 4

25 A 5 11 4 5

26 $ 6 11 4 5

27 C 6 11 4 5

28 A 6 12 4 5

29 C 7 12 4 5

30 A 7 13 4 5

31 A 8 13 4 5

32 C 9 13 4 5

33 T 9 14 4 5

34 A 9 14 4 6

35 A 10 14 4 6

36 Total 11 14 4 6

23 -22 = 1, CCCACCC appears only once and we have successfully found the pattern we

were searching.

GAACGATACCCACCCAACTATCGCCATTCCAGCAT.

Now let’s search in the same text but with a different text, so our next example will be
with text Q and pattern ACCGT.

Topcur = 0, Botcur = 36

1st Iteration: n=T

Topnew = CT(Topcur) + I(T) = 0 + 30 = 30

Botnew = CT(Botcur) + I(T) = 6 + 30 = 36

36-30=6, T appears six times in the text.

GAACGATACCCACCCAACTATCGCCATTCCAGCAT.

2nd Iteration: n=G

Topnew = CG(Topcur) + I(G) = 4 + 26 = 34

Botnew = CG(Botcur) + I(G) = 4 + 26 = 34

34-34=0, As we can see GT doesn’t appear in our text so we stop searching.

33

2.6 Related Work

2.6.1 State of the Art on Hardware Acceleration on bioinformatics

software tools

The reconfigurable hardware community used DNA sequence matching and database

search as one of the first problems to show how computationally intensive problems can

be solved using FPGAs. The venerable Splash 2 platform was used during the early

1990s by Hoang et. al. [49][50]. Later Guccione et. al. [51] used Jbits technology and

both the Virginia Tech Configurable Computing Laboratory [52] and Nanyang

Technological University [53] used run time reconfiguration for the same problem. Then,

the [54] Technical University of Crete introduced their Hardware Acceleration design for

BLAST Algorithm and later on in [55] again Technical University of Crete introduced

their Hardware Acceleration design for GlimmerHMM. Other works on this area from

Technical University of Crete are shown in [56], [61], [62], [63], [64], [65], [66]. Later,

an implementation of K – means algorithm for bioinformatics was introduced by

University of Edinburgh in [57], then hardware acceleration of GASSST by Nanyang

Technological University [59]. Finally we have Smith and Waterman algorithm hardware

acceleration by Y. Yamaguchi et al. [60] and the hardware acceleration of BWA – SW

algorithm from University of Science and Technology of China [58].

2.6.2. Previous Work on Bowtie

Designing the Bowtie software tool on hardware and executing it on FPGA first

appeared in [21]. This work appeared first time, early in 2011 and implements the

search function of the algorithm and executing it on a Xilinx Virtex 6 (XC6VLX760)

FPGA with promising results achieving significant speed ups but with limited

functionality of the algorithm. Later, improving their designs, the next attempt appeared

in [20] in 2012. This time the platform was the Convey HC – 1 with Intel Xeon L540B

with 2 dual cores running at 2.13 GHz as the host processor, 192GB of RAM and four

Virtex 5 FPGAs (XC5VLX330) as coprocessor. In this work they have implemented

more functionalities of the algorithm and with the help of the Convey HC – 1 they

parallelized their design helping them to reach speed ups up to 70x.

34

35

Chapter 3

System Modeling
In this chapter we will discuss about profiling and analyzing the algorithm and also the

steps we follow to obtain input data for the system, the processing of this data and

bringing it to the right form in order to connect them to our architecture design and

finally how do we connect the data that we have prepared to the system.

3.1 Profiling
In order to understand better the algorithm, we use a couple tools to profile Bowtie. The

tools that we use are GNU gprof and Intel Vtune. After collecting the results we have

noticed that for different datasets the compute intensive function changed and if it was

the same, the execution time changed, so we decided that we will continue our work by

implementing the search functionality of the algorithm and not a specific function.

Below, in Tables 3.1, 3.2, 3.3, 3.4 we can see the results from the experiments that we

have performed.

Test 1 Test 2
Execution Time Function Execution Time Function

76% Backtrack() 91% Backtrack()

16% mapLFEx() 7% initFromRow()
Table 3.1 Functions with significant execution time from Test 1 and Test 2.

Test 3 Test 4
Execution Time Function Execution Time Function

31% Backtrack() 40% Backtrack()

29% countUpToEx() 20% countBWside()

18% countBWSide() 20% countBWSideEx()

18% countFWSide() 20% countFWSide()
Table 3.2 Functions with significant execution time from Test 3 and Test 4.

Test 5 Test 6
Execution Time Function Execution Time Function

48% Bowtie() 48% Samples()

13% setQuery() 27% nextBlock()
Table 3.3 Functions with significant execution time from Test 5 and Test 6.

36

Test 7 Test 8
Execution Time Function Execution Time Function

45% Samples() 41% bucketSortSufDcU8()

30% nextBlock() 17% nextBlock()

 14% Samples()
Table 3.4 Functions with significant execution time from Test 7 and Test 8.

3.2 Modeling the build process of Bowtie

3.2.1 Obtain Data

In order to find files that contain genome databases and short reads to map on the

databases we go to the webpage of National Center for Biotechnology Information

(NCBI). To find database files we go to the genome base [33], and to find short reads

files we change to the short reads base [34]. After we find and identify the files that we

are going to use we download the files. The database files do not need any further

processing but for the short read files we need to change the format from .sra to .fastq.

To do that, we use the SRAtoolkit which is a tool offered from NCBI and is free for

downloading and using [35].

3.2.2 Processing Data

To be able to send data to our system it was necessary to model the algorithm’s build

function. We write six different scripts using MATLAB software, reading the .fasta and

.fastq files that contains the database, finding its BWT, creating the tables C and I and

finally writing the data to a .txt file [A].

As we have mentioned before and continuing with our previous example in chapter 2.5,

the first step is to read the database.

Picture 3.1 Reading database using Matlab snapshot

37

After we have read the database the next step is putting the $ character at the end of

the sequence and generate all rotations of the text.

Picture 3.2 Creating Suffix Array using Matlab snapshot.

38

The next step is to sort lexicographical the Suffix Array and extract the Burrow’s and

Wheeler’s Transformation.

Picture 3.3 Extracting BWT using Matlab snapshot.

After we extract the Burrow’s and Wheeler’s Transformation, we move to the creating of

tables SBWT, C and I.

Picture 3.4 Extracting SBWT using Matlab snapshot.

 Picture 3.5 Creating Table I using Matlab snapshot.

39

Picture 3.6 Creating Table C using Matlab snapshot.

Finally, we write this data in text files in order to make the connection between software

and hardware.

40

3.3 Connecting Input Data with Hardware
To connect our design with the input files we read the text files we created using C

language and then, send them to the design [B]. Our design can accept files with the

extension .FASTA and .FASTQ. For the database file in the first lines we write the

minimum and maximum values of top and bottom pointers, and Table I’s contexts.

Then, we write the depth size of Table C and then each of its columns respectively. For

the query file, the first line is filled with the amount of sequences containing the file and

then the sequences are written respectively separating each sequence by writing a zero

at the end, allowing us to send different length sequences in the same file.

41

Chapter 4

Implementation
In this chapter we will discuss and analyze the architectural design, the basic structure

is inspired by [21], of the algorithm that we decided to implement. We will begin by

explaining our first design which helped us confirm that it works and return correct

output, determine the dataflow and identify how many of the FPGA’s resources we are

going to need. Our design it consists out of five basic components. The “Find In Text”

component which is responsible for reporting if a character or sequence of characters

exist or not in the database, the “Fetch Character” component which delivers a new

character to be searched, the “Stop Module” component which decides when to stop

searching, the “Results” which is responsible to deliver the output after the processing

of a sequence is finished and finally the “Control Unit”, the FSM, which is responsible for

synchronizing and making the other four components working together.

4.1 Block Diagram
The design has totally twenty - five input signals and three output signals. Firstly, we

have Clock and Reset which goes to every component. Secondly, we have the input

that we import the query sequence into the design and then six inputs that we use

initializing registers and signals in the design. Then, we have four which defines the

address of each memory, another four for the input data and another four for the write

enable of each memory. If we want to input a new query we use the ResetQr and after

we finish writing, we switch on the FinishWrQr. Finally, ResetDb resets the memories

and registers and prepares it for writing a new database and FinishWrDb indicates

when the writing of the memories is finished. Moving on to the outputs, the first one if

we have a hit or miss, the second one, how many hits we have if we have any and the

third if the search is finished. The inputs and outputs are shown below fully detailed in

Table 4.1 and the design in Picture 4.1.

42

Index Description Size I/O

1 Clock 1 bit Input

2 Reset 1 bit Input

3 NewCharacter 3 bit Input

4 InitTop 16 bit/17 bit Input

5 InitBot 16 bit Input

6 InitRegA 16 bit Input

7 InitRegC 16 bit/17 bit Input

8 InitRegG 16 bit/17 bit Input

9 InitRegT 16 bit/17 bit Input

10 AddressInA 16 bit/17 bit Input

11 AddressInC 16 bit/17 bit Input
12 AddressInG 16 bit/17 bit Input
13 AddressInT 16 bit/17 bit Input
14 DataInA 16 bit/17 bit Input
15 DataInC 16 bit/17 bit Input
16 DataInG 16 bit/17 bit Input
17 DataInT 16 bit/17 bit Input
18 WriteEnableA 1 bit Input
19 WriteEnableC 1 bit Input
20 WriteEnableG 1 bit Input
21 WriteEnableT 1 bit Input
22 FinishWrDb 1 bit Input
23 FinishWrQr 1 bit Input
24 ResetDb 1 bit Input
25 ResetQr 1 bit Input
26 FiFoWE 1 bit Input

27 NofResults 16 bit/17 bit Output

28 searchResult 1 bit Output
29 Finish 1 bit Output

 Table 4.1 Inputs and outputs of the design

43

Picture 4.1 Full Design Block Diagram

44

4.1.1 Fetch Character Component

Fetch Character component is the one which is marked with blue in Picture 4.2. Its

basic operation is to deliver the next character to the other components.

Picture 4.2 Identifying Fetch Character component in the design

Fetch Character component it consists from a FIFO memory, two registers and a

multiplexor as shown in Picture 4.3.

45

 Picture 4.3 Block Diagram of Fetch Character Component.

Every new sequence that come it is saved in FIFO. FIFO has a size of 1024 places,

which means that it can store up to 1024 characters which is the maximum size of

sequence that it can be examined by the algorithm. RegFIFO is a register that holds the

value that FIFO had in the previous cycle. RegControl is a register that holds the value

that the character that comes from the Control Unit component had in the previous

cycle. Finally the multiplexor MuxCharacter selects in of the four values available for

output. If the ResetQr signal is switched on, then everything written in FIFO is erased.

46

The inputs and outputs of Fetch Character component are shown in detailed in Table

4.2.

Index Description Size I/O

1 NewCharacter 3 bit Input

2 tryCharacter 3 bit Input

3 RegControlEnable 1 bit Input

4 RegFIFOEnable 1 bit Input

5 MuxCharSel 2 bit Input

6 FIFOwe 1 bit Input

7 FIFOre 1 bit Input

8 ResetQr 1 bit Input

9 FIFOfull 1 bit Output

10 FIFOempty 1 bit Output

11 NextCharacter 3 bit Output
 Table 4.2 Inputs and Outputs of Fetch Character Component.

4.1.2 STOP Module

STOP Module component is shown below in Picture 4.4.

 Picture 4.4 STOP Module Component.

47

STOP Module component is the component that is responsible to inform the control unit

if it is necessary to stop, after we have completed three misses. Block diagram of the

component is shown in Picture 4.5.

 Picture 4.5 STOP Module component block diagram.

STOP Module component is consisted from two other components, CountMisses and

WhenToStop. CountMisses holds the sum of misses that have arrived. If the amount of

misses reach three before the sequence end, then WhenToStop component triggers the

STOP signal. STOP signal is also triggered if CharIn is zero meaning that the sequence

is finished. In Table 4.3 it is detailed shown inputs and outputs of the component.

Index Description Size I/O

1 Start 1 bit Input

2 hitMiss 1 bit Input

3 CharIn 3 bit Input

4 STOP 1 bit Output
 Table 4.3 STOP Module Component Inputs and Outputs.

48

4.1.3 Results component

This component is responsible for synchronizing the results. In Picture 4.6 we can see

where the component is located and in Picture 4.7 the block diagram of the component.

Picture 4.6 Results component

49

Picture 4.7 Results component block diagram

It consists from two registers and the component Final Result. When the STOP signal is

switched on, then we check what the searchResult is and then give the right value to

the output signals. In Table 4.4 it is detailed shown inputs and outputs of the

component.

Index Description Size I/O

1 searchResult 1 bit Input

2 NoOfResults 16 bit/17 bit Input

3 STOP 1 bit Input

4 Finish 1 bit Output

5 searchResult 1 bit Output

6 NoOfResults 16 bit/17 bit Output
 Table 4.4 Result component inputs and outputs.

50

4.1.4. FindInText component

FindInText component is the component responsible for finding if a character or a

sequence of characters exists in the database. It is the largest component and it

consists of four BRAMs, eight multiplexors, six registers, two adders, two subtracters,

fourteen inputs and two outputs. In Picture 4.8 it is shown where the component is

located in the design and in Picture 4.9 it is shown the block diagram of FindInText

component in detail.

 Picture 4.8 FindInText Component.

51

 Picture 4.9. FindInText component datapath.

Firstly, BRAMs, A,C,G,T registers and the signals InitBot and InitTop are initialized. The

value that passes through the multiplexors Top and Bot are the initTop and the initBot

respectively. As a result, we have the initial address to start extracting values from the

BRAMs. If we write data in the BRAMs we select the external address signals otherwise

we select the signal that comes from multiplexor Top. Until a character arrives, the

values are ready for multiplexors A,B and Table I to be selected from the character.

After we have selected the correct value we pass it to the adders, and when the result is

ready is sent to the multiplexor selecting the current value or the value the adder had in

the previous cycle. After that we sent it through the multiplexors Top and Bot, this time

selecting not the initialize value but the value that we have calculated and we sent it as

an address to the BRAMs to select the next values and to the subtracter. If the result of

the subtracter is greater than zero then we have a hit, otherwise we have a miss. Table

4.5 shows input and output signals of the component.

52

Index Description Length I/O

1 nextChar 3 bit Input

2 InitTop 16 bit/17 bit Input

3 InitBot 16 bit/17 bit Input

4 InitCharA 16 bit/17 bit Input

5 InitCharC 16 bit/17 bit Input

6 InitCharG 16 bit/17 bit Input

7 InitCharT 16 bit/17 bit Input

8 SelTopBot 1 bit Input

9 SelTopTop 1 bit Input

10 SelResultBot 1 bit Input

11 SelResultTop 1 bit Input

12 RegEnable 1 bit Input

13 DataInA 16 bit/17 bit Input

14 DataInC 16 bit/17 bit Input

15 DataInG 16 bit/17 bit Input

16 DataInT 16 bit/17 bit Input

17 WEA 1 bit Input

18 WEC 1 bit Input

19 WEG 1 bit Input

20 WET 1 bit Input

21 searchResult 1 bit Output

22 NoOfResults 16 bit/17 bit Output
 Table 4.5 FindInText Component Inputs and outputs.

4.1.5 Design Evaluation

After evaluating the results and observed that they are correct, we notice that we use

1% of logic utilization, 42% of block memory utilization but having a clock frequency of

42MHz frequency.

Studying the results we decided to proceed with two designs, one with memories up to

50% but fitting it twice in the FPGA and the other one with memories up to 100% and

fitting it only once in the FPGA. The trade offs of this choice is that with small memories

it means that we can serve genomes with smaller database but executing 8 threads

simultaneously and with the largest memories we can serve genomes with a bigger

sequence but executing 4 threads simultaneously. The next thing to do was to modify

our design due to timing constraints and the low clock frequency. We inserted five levels

of pipeline overall in the whole design which the four of them are in the FindInText

module. Picture 4.10 shows the pipelined design of this module and Picture 4.11 shows

the overall pipelined design.

53

Picture 4.10 Pipelined block diagram of Find In Text module.

 Picture 4.11 Pipelined block diagram of the overall design.

54

4.2 FSM
In this section the brains of the design is going to be discussed. The control unit

component controls every signal at any given time. The FSM consists of twenty five

states. The first state, State A, is the state where the system is in Reset mode for as

long we have switch on the Reset. When the Reset signal is turned off we move to the

next state, State B. We remain in State B until we receive ResetQr or ResetDb. If

ResetDb is on, then we move to State C, which is responsible for the writing of the

database to the BRams, and we stay there until the signal FinishDb is switched on.

When is switched on indicating that the writing of the database in the memories is

finished and that the registers took the correct value, we move back to state B. Now if

ResetQr is on, this time we move to State D. State D is the state responsible controlling

the signals for loading the queries. We remain in this state until the signal FinishQr is

switched on indicating that the query is written in memory. After we exit State D we

move to State E where all the Read Enable signals of the system are on (Memories,

Registers), so data can start flowing through our system. We need 10 cycles until we fill

up our pipeline and begin to receive results. The first result comes in State N so we are

able to check the result if it is true or not, if search result is true then we move to State K

and load a new character but if the result is false then we pause the system and we

move to one of the following error states, State O, P, Q or R. The movement happens

according to what was the last character. After we select character we wait until State V

to get the result and check it. If the result is true then we move back to State M through

States W, X, Y and Z, if not then we move to one of the remaining error states and try

another character until we find the correct one. The process ends when the Finish

signal is switched on and at the same time we store the result. When we are finished we

move to State B and wait for a new database or a new query. When Reset is turned on

then on whatever state the system is, it returns to State A. A general layout of the FSM

is shown below in Picture 4.12 and a more detailed in Picture 4.13.

55

Picture 4.12 General FSM Layout

56

Picture 4.13 Detailed FSM layout

searchResult=0 searchResult=0

searchResult=0
searchResult=0

searchResult=0
searchResult=0

searchResult=0

searchResult=0
tryCharacter=’T’

tryCharacter=’G’ tryCharacter=’C’
tryCharacter=’A’

Finish=1

searchResult=1

ResetQr=1

ResetQr=0 or ResetDb=0

Reset=0

Reset=1 A

B

E F G H I

J K L

C D

ResetDb=1

FinishDb=1

FinishQr=1

M N

O P
Q R

S T U V

searchResult=1

W X Y Z

General State 1

General State 2

General State 3

General State 4

57

4.3 Hardware Implementation

For the hardware implementation we have use the Convey Computer HC – 1 a hybrid

computer with FPGA’s which it was introduced in 2009. The system specifications are

dual – socket Intel Server motherboard, Intel 5400 memory controller hub chipset, 24

GBytes of RAM, 1066 MHz FSB, 2.13 GHz Xeon, a quad – core, low – voltage

processor and four VIRTEX – 55 LX 330s. In the picture below we can see the

configuration of HC – 1 [46], [47], [48].

 Picture 4.14 Convey Computer HC – 1 configuration.

To be able to connect our design with the Convey HC – 1, we wrote C and Verilog code

(Wrapper), were we read the input files and then we send them to the design. The

design clock frequency that we achieved is 227MHz for the small design and 198MHz

for the big design and the actual clock frequency that we achieved is 128MHz for the

small design and 116MHz for the big one. This is due mapping and routing on the

FPGA. In picture 4.15 we can see the designs that we have implemented and

connected on Convey HC – 1 platform.

58

Picture 4.15 Left: System with one design on every FPGA. Right: System with two designs on
every FPGA.

Another important subject for discussion is the device utilization summary. Below, in

Table 4.6, we can see the logic used by the two designs after we have synthesized

them on a Virtex 5 XC5VLX330 FPGA, and after on the Convey HC – 1.

 Design for 60K Characters Design for 100K Characters

XC5VLX330 Convey HC – 1 XC5VLX330 Convey HC – 1

Number of
occupied Slices

542/51840 1% 30103/521840 58% 850/51840 1% 25192/51840 48%

Number of
BRAM/FIFO

121/288 42% 288/288 100% 197/288 68% 257/288 89%

Number of
DSP’s

0/192 0% 0/192 0% 0/192 0% 0/192 0%

Table 4.6 Device Utilization Summary.

After we have examined Table 4.6 we came to the conclusion that the Convey HC – 1

needs another 53% on average of Logic and 20% of BRAMs for the connection to our

design. The reason that logic utilization of the small design is more than the big design

is because the small design is placed twice on every FPGA. The extra memory and

logic allocation is due to the extra verilog code, 1 FSM for every port we use, we wrote

to read data from different ports of the memory controller. Totally we use 6 out of the 16

available ports for the big design and 12 out of 16 for the small design. We could use

less memory controllers, meaning using less logic, but in this way we can transfer data

much faster.

59

Chapter 5

Results
In this Chapter we are going to discuss about the results, how did they occur and their

meaning.

5.1 Validation
To ensure the correct functionality of our design we aligned, firstly, some of our own

examples and, afterwards, reads from the NCBI both to the software design and to our

design. Once we got the results from both designs, extracting them in text files, we read

them using a script written in MATLAB and compare the results.

For the execution of our experiments and the creation of the database files we used the

NC_00978C.fna, a FASTA file containing the complete sequence of Escherichia coli

E24377A plasmid pETEC_80, for the 100.000 characters design and the

NC_017647.fna, a FASTA file containing the complete sequence of Escherichia coli

07:K1 str. CE10 plasmid PCE10A, for the 60.000 characters design. In Table 5.1 we

can see the files for the queries that we used.

Number of queries Files

1.000 SRR000001.sra SRR000135.sra

10.000 SRR000004.sra SRR000920.sra

100.000 SRR000066.sra SRR001316.sra

500.000 SRR005039.sra SRR011186.sra

1.000.000 SRR029691.sra SRR023975.sra

10.000.000 SRR029703.sra SRR036755.sra

100.000.000 SRR036753.sra SRR388772.sra
Table 5.1. List of SRA files that we used.

The sra files need processing with the SRAtoolkit, transforming them to FASTQ for

running and on software and on hardware. All files are located in the NCBI database

and are free for downloading and using.

5.2 Analysis and Comparison
We compare our results to the Bowtie software tool used for mapping DNA sequences.

We executed the Bowtie software tool selecting full sensitivity, allowing three

mismatches, using the Convey HC – 1. Table 5.2 shows the specifications of CPU

running bowtie and our implementation.

60

 CPU

CPU Type Xeon 5138

Number of Cores Quad Core

Memory Size 24GB

Frequency 2.13 GHz
 Table 5.2 Convey HC – 1 specifications.

We measured the execution time of searching 111 million reads in total with length 36 to

1024 base pairs on each design.

On each design we have tested seven query files, executing on hardware and on

software. The files include a range from 1.000 to 100.000.000 respectively. The

measurements that we took for the 60.000 Characters design are shown in Table 5.3

and for the 100.000 Characters design are shown in Table 5.4.

Number of
Queries

60K Design Time
(sec)

Bowtie Software
Tool (sec)

Speed Up

1.000 0,00576 0,054128 9,40

10.000 0,025074 0,291998 11,65

100.000 0,217123 2,786437 12,83

500.000 1,089616 13,573387 12,46

1.000.000 2,113375 27,883339 13,19

10.000.000 21,247458 354,40833 16,68

100.000.000 212,990961 3281,239732 15,41
Table 5.3 Execution times comparing our 60.000 Characters Design versus Bowtie Software Tool.

Number of
Queries

100K Design Time
(sec)

Bowtie Software
Tool (sec)

Speed Up

1.000 0,007977 0,054343 6,81

10.000 0,036598 0,278742 7,61

100.000 0,324073 2,722579 8,40

500.000 1,563452 18,095577 11,57

1.000.000 3,114806 27,729114 8,90

10.000.000 31,514343 302,813397 9,61

100.000.000 314,692125 3213,217386 10,21
Table 5.4 Execution times comparing our 100.000 Characters Design versus Bowtie Software Tool.

In the execution times above for our designs we aggregate and the time for loading the

database which is 0,004218 sec for the small design and 0,005295 for the big one.

Studying the results from the tables above we can see that our designs are faster from

the Bowtie software tool achieving a 6x-16x speed up. In this speed up our design starts

to make the difference processing files with content more than 500.000 queries and we

can see that as long as the queries increases the speed up increases.

61

In figure 5.1 below it is shown the execution time of the bowtie software tool comparing

to our design of 60.000 characters and figure 5.2 shows the execution time of the

bowtie software tool comparing to our design of 100.000 characters.

Figure 5.1. Execution time of 60K Characters design comparing to Bowtie Software Tool.

0

500

1000

1500

2000

2500

3000

3500

1K 10K 100K 500K 1M 10M 100M

Ti
m

e
 (

se
c)

Queries

Execution Time of 60K Characters Design vs
Bowtie Software Tool

Bowtie Software Tool

60K Design

62

Figure 5.2. Execution time of 100K Characters design comparing to Bowtie Software Tool.

The 60.000 Characters design is faster than the 100.000 Characters design, as

expected, because of larger clock frequency and for the reason that the design runs

twice on every FPGA. Figure 5.3 shows the speed up that we achieved comparing our

two designs.

0

500

1000

1500

2000

2500

3000

3500

1K 10K 100K 500K 1M 10M 100M

Ti
m

e
 (

se
c)

Queries

Execution Time of 100K Characters Design vs
Bowtie Software Tool

Bowtie Software Tool

100K Design

63

Figure 5.3. Comparing our two designs by the achieved Speed Up.

5.3 Related Work
We have compare our design with the designs appeared in [21], Design 1, and [20],

Design 2. From the results we can see that we are slower from both implementations.

Comparing our design to Design 1 we can see that our FPGA has half the number of

Slices and one third of BRAMs from the FPGA used in Design 1. Also we both use the

Escherichia coli database but we use a bigger range size on query length. Another

difference is that our implementation supports three mismatches and Design 1 supports

none. The differences between our design and Design 2 is that the memory on our

Convey is a lot less, and again we use a bigger range size on query length. Table 5.5

shows the differences of the three designs in a brief.

0

2

4

6

8

10

12

14

16

18

1K 10K 100K 500K 1M 10M 100M

Sp
e

e
d

 U
p

 (
x)

Queries

Speed Up of the two designs

60K Design

100K Design

64

 TUC Design Riverside
Design 1

Riverside
Design 2

FPGA XC5VLX330 XC6VLX760 XC5VLX330

Number of Slices 51480 118560 51480

Number of BRAM/FIFO 288 720 288

CPU Type Xeon 5138 - Xeon L540B

CPU Frequency 2.13GHz - 2.13GHz

Memory 24GB - 192GB

Algorithm functionality Search Limited Search Search

Database Escherichia coli Escherichia coli Chromosome 14

Queries Length 36-1024 36-108 101

Speed Ups 6x-16x 124x-196x 7x-70x
Table 5.5 Comparing our design with Design 1 and Design 2 of Riverside.

65

Chapter 6

Conclusions & Future Work
Chapter 6 talks about final conclusions and future work.

6.1 Conclusions
In this diploma thesis we have studied and analyzed the methods of Burrows and

Wheeler Transformation, FM – Index and short read mapping algorithm Bowtie. Then

we designed it on hardware and implemented it. Our design running on a Convey HC –

1 platform was faster than Bowtie on the same platform. Bowtie algorithm loses of

speed when the sequence is not correct and tries to replace the wrong character with

the correct one, when it finishes the processing of a sequence and tries to move to the

next one and finally as long as the short reads size increases the performance of the

algorithm decreases. We can align databases up to 100.000 characters long serving

mostly bacteria such as Escherichia coli, Enterococcus, Enterobacter, Acetobaster

pasteurianus etc. Furthermore, you can work easily from your office on the Convey HC

– 1 platform, the output results come right out on the terminal on your desktop with no

further equipment needed and finally, many problems can be solved easily and quick

using the tools that come along with the platform.

6.2 Future Work
Some further work on this diploma thesis could be:

1) Further analyze of Bowtie so more functionalities of the algorithm can be

implemented such as aligning colorspaces.

2) Using FM – Index and BWT on existing designs for improving their performance not

only in Bioinformatics but also in Networking, Systems, Software etc.

3) Improving the architecture design in order to improve the clock frequency.

4) Improving the architecture design and the memory design in order to serve bigger

databases.

5) Improving the code written in verilog in the wrapper of the Convey platform in order to

decrease the logic and memory utilization.

6) Try to implement the resource demanding functions in hardware of the algorithm and

not a whole functionality.

66

67

References
[1] S. L. Salzberg, A. L. Delcher, S. Kasif, O. White. “Microbial gene identification

using interpolated Markov models.” Nucleic Acids Redearch, 1998, Vol. 26, No. 2.

[2] A. L. Delcher, D. Harmon, S. Kasif, O. White, S. L. Salzberg. “Improved microbial

gene identification with GLIMMER.” Nucleic Acids Research, 1999, Vol. 27, No. 23.

[3] A. L. Delcher, K. A. Bratke, E. C. Powers, S. L. Salzberg. “Identifying Bacterial

genes and endosymbiont DNA with Glimmer.” Bioinformatics 2007.

[4] W.H. Majoros, M. Pertea, S. L. Salzberg. “Efficient implementation of a

generalized pair hidden Markov model for comparative gene finding.”

Bioinformatics Vol. 21, no. 9, 2005, pages 1782 – 1788.

[5] C. Burge, S. Karlin. “Prediction of Complete Gene Structures in Human

Genomic DNA.” Journal of Molecular Biology (1997) 268, 79 – 94.

[6] W. H. Majoros, M. Pertea, S. L. Salzberg. “TigrScan and GlimmerHMM: two open

source ab initio eukaryotic gene-finders.” Bioinformatics, 2004 – Oxford Univ Press.

[7] J.E. Allen, W.H. Majoros, M. Pertea, S. L Salzberg. “JIGSAW, GeneZilla, and

GlimmerHMM: puzzling out the features of human genes in the ENCODE regions.”

Genome Biology, 2006.

[8] H. Li, J. Ruan, R. Durbin. “Mapping short DNA sequencing reads and calling

variants using mapping quality scores.” Genome research, 2008.

[9] R. Li, Y. Li, K. Kristiansen, J. Wang. “SOAP: short oligonucleotide alignment

program.” Bioinformatics, 2008 – Oxford Univ. Press.

[10] A. D. Smith, Z. Xuan, M. Q. Zhang. “Using quality scores and longer reads

improves accuracy of Solexa read mapping.” BMC bioinformatics, 2008.

[11] H. Lin, Z. Zhang, M.Q. Zhang, B. Ma, M. Li. “ZOOM! Zillions of oligos mapped.”

Bioinformatics, 2008- Oxford Univ Press.

[12] S.M. Rumble, P. Lacroute, A.V. Dalca, M. Fiume, A. Sidow, M. Brudno. “SHRiMP:

Accurate Mapping of Short Color – space Reads.” PLoS computational Biology,

2009.

68

[13] B. Langmead, C. Trapnell, M. Pop, S.L. Salzberg. “Ultrafast and memory –

efficient alignment of short DNA sequences to the human genome.” Genome

Biology, 2009.

[14] M. Pertea , X. Lin , S. L. Salzberg . “GeneSplicer : a new computational method

for splice site prediction .” Nucleic Acids Res . 2001 Mar 1;29(5):1185-90 .

[15] J. E. Allen and S. L. Salzberg. “A phylogenetic generalized hidden Markov

model for predicting alternatively spliced exons.” Algorithms for Molecular Biology,

1:14, 2006.

[16] J. E. Allen, M. Pertea and S. L. Salzberg. “Computational gene prediction using

multiple sources of evidence.” Genome Research, 14(1), 2004.

[17] J. E. Allen and S. L. Salzberg. “JIGSAW: integration of multiple sources of

evidence for gene prediction.” Bioinformatics21(18): 3596-3603, 2005.

[18] R. Li, C. Yu, Y. Li, T.W. Lam, S. M. Yiou, K. Kristiansen, J. Wang. “SOAP2: an

improved ultrafast tool for short read alignment.” Bioinformatics, 2009 – Oxford

Univ. Press.

[19] M. Burrows, D. J. Wheeler. “A Block – sorting Lossless Data Compression

Algorithm.” 1994 – Citeseer.

[20] E. Fernandez, W. Najjar, S. Lonardi and J. Villarreal. “Multithreaded FPGA

Acceleration of DNA Sequence Mapping.” 2012 IEEE High Performance Extreme

Computing Conference (HPEC ‘12), Waltham, MA USA, 2012.

[21] E. Fernandez, W. Najjar, and S. Lonardi, “String Matching in Hardware using

the FM-Index.” In Proc. IEEE Int. Symp. on Field-Programmable Custom Computing

Machines, FCCM 2011, pages 218-225, Salt Lake City, UT, USA, 2011.

[22] E. Fernandez, W. Najjar, E. Harris and S. Lonardi, Exploration of Short Reads

Genome Mapping in Hardware, In Proc. of 20th Int. Conf. on Field Programmable

Logic and Application, 2010.

[23] H. Li and R. Durbin, “Fast and Accurate Short Read Alignment with Burrows-

Wheeler Transforms.” Bioinformatics, 2009.

[24] C. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck, W. Ruzzo,

“Hardware Acceleration of Short Read Mapping.” in Proc. IEEE Int. Symp. on Field-

Programmable Custom Computing Machines, FCCM 2012.

[25] T. F. Smith, M. S. Waterman. “Identification of common molecular
subsequences”. Journal of Molecular Biology 147: 195–197, 1981.

http://cbcb.umd.edu/papers/genesplicer.pdf
http://cbcb.umd.edu/papers/genesplicer.pdf
http://www.almob.org/content/1/1/14
http://www.almob.org/content/1/1/14
http://cbcb.umd.edu/software/jigsaw/cpaper.pdf
http://cbcb.umd.edu/software/jigsaw/cpaper.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/21/18/3596.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/21/18/3596.pdf

69

[26] T. Rognes, E. Seeberg. “Six-fold speed-up of smith-waterman sequence
database searches using parallel processing on common microprocessors”.
Bioinformatics 16: 699–706, 2000.

[27] M. Farrar. “Striped smith-waterman speeds database searches six times over
other simd implementations”. Bioinformatics 23: 156–161, 2007.

[28] A. Wozniak. “Using video-oriented instructions to speed up sequence
comparison”. Comput Appl Biosci. pp 145–150, 1997.

[29] M. David, M. Dzamba, D. Lister, L. Ilie, M. Brudno. “SHRiMP2: sensitive yet
practical short read mapping”. Bioinformatics, 27, 1011, 2011.

[30] P. Ferragina, G. Manzini, V. Makinen, G. Navarro. “An Alphabet – Friendly FM -
Index”. In Proceedings of the 11th International Symposium on String Processing and
Information Retrieval (SPIRE). Lecture Notes in Computer Science, vol. 3246. Springer-
Verlag, Berlin, Germany, 150–160, 2004.

[31] S. Grabowski, V. Makinen, G. Navarro. “First Huffman, then Burrows-Wheeler:
An alphabet independent FM-index”. In Proceedings of the 11th International
Symposium on String Processing and Information Retrieval (SPIRE). Lecture Notes in
Computer Science, vol. 3246. Springer-Verlag, Berlin, Germany, 210–211, 2004.

[32] S. Grabowski, G. Navarro, R. Przywarski, A. Salinger, V. Makinen. “A simple
alphabetindependent FM-index”. Int. J. Found. Comput. Sci. 17, 6, 1365–1384, 2006.

[33] ftp://ftp.ncbi.nlm.nih.gov/genomes/

[34] http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=download_reads

[35] http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software

[36] P. Hogeweg. “The Roots of Bioinformatics in Theoretical Biology”. PLoS
Comput Biol 7(3): e1002021. doi:10.1371/journal.pcbi.1002021, 2011

[37] C. A. Ouzounis. “Rise and Demise of Bioinformatics? Promise and Progress”.
PLoS Comput Biol 8(4): e1002487. doi:10.1371/journal.pcbi.1002487, 2012.

[38] J. A. Foster. "Evolutionary Computation". Nature Reviews Genetics, 2001.

[39] http://en.wikipedia.org/wiki/File:Gene_structure.svg

[40] http://en.wikipedia.org/wiki/File:Pre-mRNA_to_mRNA.svg

[41] http://en.wikipedia.org/wiki/Gene#cite_note-1

ftp://ftp.ncbi.nlm.nih.gov/genomes/
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=download_reads
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
http://en.wikipedia.org/wiki/File:Gene_structure.svg
http://en.wikipedia.org/wiki/File:Pre-mRNA_to_mRNA.svg
http://en.wikipedia.org/wiki/Gene#cite_note-1

70

[42] http://en.wikipedia.org/wiki/Exon

[43] http://en.wikipedia.org/wiki/Intron

[44] http://en.wikipedia.org/wiki/RNA_splicing

[45] J. D. Bakos. “High- Performance Heterogeneous Computing with the Convey
HC – 1”. Scholar Commons, 2010.

[46] http://www.conveycomputer.com/technology/partners/

[47] Convey Computer. “Convey Personality Development Kit Reference Manual”.
Version 5.2, April 2012.

[48] K. S. P. Pereira. “Characterization of FPGA – based High Performance
Computers”. Blacksburg, Virginia, 2011.

[49] D. Hoang et. al. “FPGA Implementation of Systolic Sequence Alignment”,
Proceedings of the 2nd International Workshop on Field-Programmable Logic and
Applications, Lecture Notes in Computer Science 705, pp 183-191, 1992.

[50] D. Hoang. “Searching Genetic Databases on Splash 2”, Proceedings IEEE
Workshop on FPGAs for Custom Computing Machines (FCCM), pp 185-191, 1993.

[51] S. Guccione, E. Keller. “Gene Matching Using JBits”, Proceedings of the 12th
International Conference on Field-Programmable Logic and Applications, Lecture Notes
In Computer Science; Vol. 2438, pp 1168-1171, 2002.

[52] K. Puttegowda et. Al. “A Run-Time Reconfigurable System for Gene-Sequence
Searching”, Proceedings, 16th International Conference on VLSI Design pp 561 – 566,
New Delhi 2003.

[53] T. Oliver, B. Schmidt, D. Maskel. "Reconfigurable Architectures for Bio-
sequence Database Scanning on FPGAs", IEEE Transactions on Circuits and
Systems II, Vol, 52, No, 12, pp, 851-855, 2005.

[54] E. Sotiriades, A. Dollas. “A General Reconfigurable Architecture for the BLAST
algorithm”, The Journal of VLSI Signal Processing Systems for Signal, Image, and
Video Technology, Special Issue on Computing Architectures and Acceleration for
Bioinformatics Algorithms, Kluwer Academic Publishers Volume 48, Issue 3 Pages: 189
– 208, September, 2007.

[55] G. Chrysos, E. Sotiriades, I. Papaefstathiou, A. Dollas. “ A FPGA based
coprocessor for gene finding using Interpolated Markov Model (IMM).” In Field

http://en.wikipedia.org/wiki/Exon
http://en.wikipedia.org/wiki/Intron
http://en.wikipedia.org/wiki/RNA_splicing
http://www.conveycomputer.com/technology/partners/

71

Programmable Logic and Applications, 2009. FPL 2009. International Conference
on (pp. 683-686). IEEE, 2009
[56] N. Alachiotis, E. Sotiriades, A. Dollas, A. Stamatakis. “Exploring FPGAs for
accelerating the phylogenetic likelihood function.” InParallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on (pp. 1-8). IEEE, May,
2009.

[57] H. M. Hussain, K. Benkrid, H. Seker, A. T. Erdogan. “FPGA implementation of K-
means algorithm for bioinformatics application: an accelerated approach to
clustering Microarray data.” In Adaptive Hardware and Systems (AHS), 2011
NASA/ESA Conference on (pp. 248-255). IEEE, June, 2011

[58] P. Chen, C. Wang, X. Li, X. Zhou. “Acceleration of the long read mapping on a
PC-FPGA architecture.” In Proceedings of the ACM/SIGDA international symposium
on Field programmable gate arrays (pp. 271-271). ACM, February, 2013.

[59] Y. Chen, B. Schmidt, D. L. Maskell. “Accelerating short read mapping on an
FPGA.” In Proceedings of the ACM/SIGDA international symposium on Field
Programmable Gate Arrays (pp. 265-265). ACM, February, 2012.

[60] Y. Yamaguchi, Y. Osana, M. Yoshimi, H. Amano. “FPGA-Based HPRC for
Bioinformatics Applications.” In High-Performance Computing Using FPGAs (pp.
137-175). Springer New York, 2013.

[61] P. Afratis, E. Sotiriades, G. Chrysos, S. Fytraki, D. Pnevmatikatos. “A rate-based
prefiltering approach to BLAST acceleration.” In Field Programmable Logic and
Applications, 2008. FPL 2008. International Conference on (pp. 631-634). IEEE,
September, 2008.

[62] G. Chrysos, E. Sotiriades, I. Papaefstathiou, A. Dollas. “A FPGA based
coprocessor for gene finding using Interpolated Markov Model (IMM)”. In Field
Programmable Logic and Applications, 2009. FPL 2009. International Conference
on (pp. 683-686). IEEE, August, 2009.

[63] E. Sotiriades, C. Kozanitis, G. Chrysos, A. Dollas. “Rapid Phototyping of a
System-on-a-Chip for the BLAST Algorithm Implementation”. InRapid System
Prototyping, 2006. Seventeenth IEEE International Workshop on(pp. 223-229). IEEE,
June, 2006.

[64] P. Afratis, C. Galanakis, E. Sotiriades, G. G. Mplemenos, G. Chrysos, I.
Papaefstathiou, D. Pnevmatikatos. ” Design and implementation of a database filter
for BLAST acceleration.” In Design, Automation & Test in Europe Conference &
Exhibition, 2009. DATE'09. (pp. 166-171). IEEE, April, 2009.

[65] M. Smerdis, P. Dagritzikos, G. Chrysos, E. Sotiriades, A. Dollas. “Reconfigurable
Systems for the Zuker and Predator Algorithms for Secondary Structure

72

Prediction of Genetic Data.” In Field Programmable Logic and Applications (FPL),
2010 International Conference on (pp. 448-451). IEEE, August, 2010.
[66] N. Chrysanthou, G. Chrysos, E. Sotiriades, I. Papaefstathiou. “Parallel
accelerators for GlimmerHMM bioinformatics algorithm.” InDesign, Automation &
Test in Europe Conference & Exhibition (DATE), 2011(pp. 1-6). IEEE, March, 2011.

73

Appendix A

MATLAB code for processing input

data.

A.1 Code for processing database files

%% Open and read file
disp('Reading Database...')
pause on
pause off
[fileID, message]=fopen('database1.txt');
A=fscanf(fileID,'%s');
fclose('all');
disp('Read Database succesfully!')
pause on
pause off

%% Procedure BWT
tic;
disp('Starting...')
pause on
pause off
BWT=CreateBWT(A);
disp('BWT Created!')
disp('Sorting...')
pause on
pause off
SBWT=CreateSBWT(BWT);
disp('Sorted!')
disp('Creating Table I...')
pause on
pause off
TableI=CreateTableI(SBWT);
%clear SBWT;
disp('Table I Created!')
disp('Creating Table C...')
pause on
pause off
TableC=CreateTableC(BWT);
%clear BWT;
disp('Table C Created!')

74

pause on
pause off
TotalTime=toc/60;
disp(['BWT Procedure Total Execution Time=',num2str(TotalTime),'mins'])
pause on
pause off

%% Export .txt file importing in C with all values

MemoryWidth=16;
largest=max(max(TableC));
bits=ceil(log2(largest));

MemoryDepth=16384;

tic;
disp('Creating BowtieValues.txt...')
pause on
pause off
fileID=fopen('BowtieValues.txt','w');
FilesOk=CreateTxtFile(fileID,TableC,MemoryWidth,MemoryDepth,TableI);

if FilesOk>0
 disp('BowtieValues.txt file was created succesfuly!')
 pause on
 pause off
else
 disp('There was an error creating BowtieValues.txt file!')
end

TotalTime=toc/60;
disp(['Creating .txt file Total Execution Time=',num2str(TotalTime),'mins'])
pause on
pause off

function BWT=CreateBWT(TextStream)

 %Copy the Stream into a temporary variable
 disp('Copy the Stream into a temporary variable...')
 pause on
 pause off
 for i=1:max(size(TextStream))
 temp(i)=TextStream(i);
 end

 %Put Character $ at the end
 disp('Put Character $ at the end...')
 pause on
 pause off
 temp(max(size(TextStream))+1)='$';

 %Initialize table SuffixArray

75

 disp('Initialize table SuffixArray...')
 pause on
 pause off
 for i=1:max(size(temp))
 for j=1:max(size(temp))
 SuffixArray(i,j)='A';
 end
 end

 %Copy on the first row of Suffix Array the Text Stream after we
 %inserted character $
 disp('Copy on the first row of Suffix Array the Text Stream after we

inserted character $...')
 pause on
 pause off
 for i=1:max(size(temp))
 SuffixArray(1,i)=temp(i);
 end

 %Fill the rest rows by rotating the last letter every time
 disp('Rotating...')
 pause on
 pause off
 for j=2:max(size(temp))
 SuffixArray(j,max(size(temp)))=SuffixArray(j-1,1);
 for i=max(size(temp)):-1:2
 SuffixArray(j,i-1)=SuffixArray(j-1,i);
 end
 end

 %Sort lexicographicaly the rows of suffix array
 disp('Sort lexicographicaly the rows of suffix array...')
 pause on
 pause off
 sortedSuffixArray=sortrows(SuffixArray);

 %Export BWT
 disp('Exporting BWT...')
 pause on
 pause off
 for i=1:max(size(temp))
 temp2(i)=sortedSuffixArray(i,max(size(temp)));
 end

 for i=1:max(size(temp))
 BWT(i)=temp2(i);
 end

end

function SBWT=CreateSBWT(BWT)

 %Sort BWT sequence and export SBWT
 SBWT=sort(BWT);
 SBWT

76

end

function TableI=CreateTableI(SBWT)

 sumA=0;
 sumC=0;
 sumG=0;
 sumT=0;
 sum=0;

 %Fill TableI
 %Check for the character and increase sum by 1
 for i=2:max(size(SBWT))
 if(SBWT(i)=='A')
 sumA=sumA+1;
 elseif (SBWT(i)=='C')
 sumC=sumC+1;
 elseif (SBWT(i)=='G')
 sumG=sumG+1;
 elseif (SBWT(i)=='T')
 sumT=sumT+1;
 else
 sum=sum+1;
 end
 end

 %Insert the calculated values into TableI
 TableI(1)=1;
 TableI(2)=TableI(1)+sumA;
 TableI(3)=TableI(2)+sumC;
 TableI(4)=TableI(3)+sumG;

End

function TableC=CreateTableC(BWT)

 sumA=0;
 sumC=0;
 sumG=0;
 sumT=0;
 sum=0;

 %Fill TableC
 for i=1:max(size(BWT))

 TableC(i,1)=sumA;
 TableC(i,2)=sumC;
 TableC(i,3)=sumG;
 TableC(i,4)=sumT;

 %Check the character and increase sum by 1
 if(BWT(i)=='A')
 sumA=sumA+1;
 elseif (BWT(i)=='C')

77

 sumC=sumC+1;
 elseif (BWT(i)=='G')
 sumG=sumG+1;
 elseif (BWT(i)=='T')
 sumT=sumT+1;
 else
 sum=sum+1;
 end
 end

 %Insert the calculated values into the next row of TableC
 TableC(i+1,1)=sumA;
 TableC(i+1,2)=sumC;
 TableC(i+1,3)=sumG;
 TableC(i+1,4)=sumT;
 end

A.2 Code for processing short read files

A.2.1 Code for processing fasta files

%% Read .fasta file and write it on .txt file
InfoStruct=fastainfo('e_coli_1000.fa');
FASTAData=fastaread('e_coli_1000.fa');
[header, sequence]=fastaread('e_coli_1000.fa');

fileID=fopen('FastaQuery.txt','w');

if fileID>0
 disp('FastaQuery.txt file was created succesfuly!')
 pause on
 pause off
else
 disp('There was an error creating FastaQuery.txt file!')
end

fprintf(fileID,'%s\r\n',FASTAData.Sequence);
fclose(fileID);

%% Read the .txt file we write above

disp('Reading Query...')
pause on
pause off
[fileID, message]=fopen('FastaQuery.txt');

tline=fgetl(fileID);
ActualquerySize=max(size(tline));
i=1;

78

while ischar(tline)

 for j=1:ActualquerySize
 queries(i,j)=tline(j);
 end
 tline = fgetl(fileID);
 i=i+1;
end

fclose('all');
disp('Read Query succesfully!')
pause on
pause off

%% Write to .txt in convey form

No_Of_Queries=InfoStruct.NumberOfEntries;
querySize=1024;
fileID=fopen('MyQueryFa.txt','w');
FilesOk=CreateQueryFileFa(fileID,queries,querySize,ActualquerySize,No_Of_Quer

ies);

if FilesOk>0
 disp('MyQueryFa.txt file was created succesfuly!')
 pause on
 pause off
else
 disp('There was an error creating MyQueryFa.txt file!')
end

function

fid=CreateQueryFileFa(fileID,queries,querySize,ActualquerySize,NoOfQuerries)

%Read and rewrite backwards every sequence and replace each character
%with is equivalent integer
for i=1:NoOfQuerries
 for j=1:ActualquerySize
 if queries(i,j)=='A'
 temp(i,ActualquerySize+1-j)=1;
 elseif queries(i,j)=='C'
 temp(i,ActualquerySize+1-j)=2;
 elseif queries(i,j)=='G'
 temp(i,ActualquerySize+1-j)=3;
 else
 temp(i,ActualquerySize+1-j)=4;
 end
 end
end

 %First line is the number of queries
 fprintf(fileID,'%d\r\n',NoOfQuerries);

 %Write the query
 for j=1:NoOfQuerries
 for i=1:ActualquerySize

79

 fprintf(fileID,'%d\r\n',temp(i));
 end

 fprintf(fileID,'%d\r\n',0);
end

fclose(fileID);
fid=fileID;
end

A.2.2 Code for processing fastq files

%% Read .fastq file and write it on .txt file
FASTQStruct = fastqread('DRR000019.fastq');
[Header, Sequence] = fastqread('DRR000019.fastq');

No_of_FastQ_Queries= max(size(FASTQStruct));

x=FastQFiles(FASTQStruct,No_of_FastQ_Queries);

if x>0
 disp('MyQueryFq.txt file was created succesfuly!')
 pause on
 pause off
else
 disp('There was an error creating MyQueryFq.txt file!')
end

function fid=FastQFiles(FASTQStruct,No_Of_Queries)

 %% Read .fastq file and write it on .txt file
 fileID=fopen('FastqQuery.txt','w');
 fprintf(fileID,'%s\r\n',FASTQStruct.Sequence);
 fclose(fileID);

 %% Read the .txt file we write above
 disp('Reading Query...')
 pause on
 pause off
 [fileID, message]=fopen('FastqQuery.txt');

 %Initialize index table with zeros
 index=zeros(max(size(FASTQStruct)),1) ;
 tline=fgetl(fileID);
 ActualquerySize=max(size(tline));
 i=1;

 %Read the characters from the file and place them in a table, and also
 %save in index table how many characters are they. Some times queries

80

 %inside fastq files are not the same length.
 while ischar(tline)

 ActualquerySize=max(size(tline));
 index(i,1)=ActualquerySize;
 for j=1:ActualquerySize
 queries(i,j)=tline(j);
 end
 tline = fgetl(fileID);
 i=i+1;
 end

 fclose('all');
 disp('Read Query succesfully!')
 pause on
 pause off
 %% Writing .txt file in convey form
 size(index); %[11052 1];
 fileID=fopen('MyQueryFq.txt','w');

 disp('Converting chars to integers and reversing...')
 pause on
 pause off
 for i=1:No_Of_Queries
 for j=1:index(i,1)
 if queries(i,j)=='A'
 temp(i,index(i,1)+1-j)=1;
 elseif queries(i,j)=='C'
 temp(i,index(i,1)+1-j)=2;
 elseif queries(i,j)=='G'
 temp(i,index(i,1)+1-j)=3;
 else
 temp(i,index(i,1)+1-j)=4;
 end
 end
 end
 temp;
 disp('Writing .txt file...')
 pause on
 pause off
 %First line is the number of queries
 fprintf(fileID,'%d\r\n',No_Of_Queries);

 %Write the characters
 for j=1:No_Of_Queries
 for i=1:index(j,1)
 fprintf(fileID,'%d\r\n',temp(i));
 end

 %Put a zero at the end
 fprintf(fileID,'%d\r\n',0);
 end

 disp('.txt file was created succesfully!!!!')
 pause on
 pause off

81

 fclose(fileID);
 fid=fileID;
end

82

Appendix B

C code for reading text files we

created in MATLAB

#include <stdio.h>

int main (void)

{

 //Open txt file for reading, and count the lines so we now how big

 //to make the arrays

 FILE* myfile = fopen("BowtieValues.txt", "r");

 int ch, number_of_lines = 0;

 do {

 ch = fgetc(myfile);

 if(ch == '\n')

 number_of_lines++;

 } while (ch != EOF);

 fclose(myfile);

/**

*/

//Reading DataBase

int i = 0, a=0;

 int values[7];

 int top,bot,CharA,CharC,CharG,CharT,depth;

int *numbers = (int*)malloc(sizeof(int)*number_of_lines);

83

//Read the file and store the elements in variables

static const char filename[] = "BowtieValues.txt";

 FILE *file = fopen (filename, "r");

 for (i=0;i<=number_of_lines;i++)

 {

 if(i<7){

 fscanf(file,"%d",&values[i]);

 }

 else{

 fscanf(file,"%d",&numbers[a]);

 a++;

 }

 }

 fclose(file);

/***/

 myfile = fopen("MyQuery.txt", "r");

 ch, number_of_lines = 0;

 do {

 ch = fgetc(myfile);

 if(ch == '\n')

 number_of_lines++;

 } while (ch != EOF);

 fclose(myfile);

/***/

 // Reading query

 i = 0, a=0;

 int querySize;

 int *query = (int*)malloc(sizeof(int)*(number_of_lines-1));

84

 static const char filename2[] = "MyQuery.txt";

 FILE *file2 = fopen (filename2, "r");

 for (i=0;i<=number_of_lines;i++)

 {

 if(i<1){

 fscanf(file2,"%d",&querySize);

 }

 else{

 fscanf(file2,"%d",&query[a]);

 a++;

 }

 }

 fclose(file);

