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Abstract 

Computational Biology is one of the evolutionary scientific areas that the Electronics 

and Computer Engineers study. The Bioinformatics results can be used in biology, 

medicine and pharmaceutics and they can lead into new medicines and therapy 

methods. The Bioinformatics area consists of really high compute intensive and 

resource demanding problems. 

The Bowtie algorithm is a sequence alignment algorithm that was introduced in 2009. 

This algorithm uses a different methodology and techniques from the other sequent 

alignment algorithms. In more details, the Bowtie algorithm uses the Burrows & Wheeler 

compression method and the FM – Index technique, which is a pattern matching 

method for very fast search for similar patterns. The Bowtie algorithm takes as input an 

organism’s genetic database and genetic sequences-“queries” with high or low similarity 

to the input database. The algorithm’s result shows the similarity between each input 

query and the genetic database. 

This thesis presents a reconfigurable hardware-based implementation of the Bowtie 

algorithm. The search process of the algorithm, which is the most compute intensive 

part, is implemented on a multi-FPGA platform. The final system offers one order of 

magnitude execution speedup vs. the official software, as far as the most time 

consuming part of the Bowtie algorithm.  
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Chapter 1 

Introduction 
 

Computational Biology, sometimes referred to as bioinformatics, is the science of using 

biological data to develop algorithms and relations among various biological systems. 

Prior to the advent computational biology, biologists were unable to have access to a 

large amount of data. Researchers were able to develop analytical methods for 

interpreting biological information, but were unable to share them quickly among 

colleagues [36]. 

Bioinformatics began to develop in the early 1970s. It was considered the science of 

analyzing informatics processes of various biological systems. At this time, research in 

artificial intelligence was using network models of the human brain in order to generate 

new algorithms. This use of biological data to develop other fields, pushed biological 

researchers to revisit the idea of using computers to evaluate and compare large data 

sets. By 1982, information was being shared amongst researchers through the use of 

punch cards. The amount of data being shared began to grow exponentially by the end 

of the 1980s. This required the development of new computational methods in order to 

quickly analyze and interpret relevant information [36]. 

Since the late 1990s, computational biology has become an important part of 

developing emerging technologies for the field of biology. The terms computational 

biology and evolutionary computation have a similar name, but are not to be confused. 

Unlike computational biology, evolutionary computation is not concerned with modeling 

and analyzing biological data. It instead creates algorithms based on the ideas of 

evolution across species. Sometimes is referred as genetic algorithms, the research of 

this field can be applied to computational biology. While evolutionary computation is not 

inherently a part of computational biology, Computational evolutionary biology is a 

subfield of it [37] [38]. 

Computational biology has been used to help sequence the human genome, create 

accurate models of the human brain, and assist in modeling biological systems. 

 

1.1 The Problem 

Computational biology executes very complex algorithms and in addition with the huge 

sized files that process, it needs computational recourses. Even if you have the most hi-

tech computer running your algorithms the time that you need to reach a result it may 

varies from a few minutes to a few days, even months.  

http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Algorithms
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Algorithms
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This is one of the most important problems in computational biology that costs enough 

drawbacks. For scientists to have results as fast as they can, they have to spend a 

significant amount of money every year for purchasing computers with very good 

capabilities so they can execute their algorithms. Another drawback is that they select to 

execute their algorithms sacrificing accuracy over performance. Not having results soon 

enough is a big problem enough to stall researches along with that science evolution 

and this is where FPGA’s come to solve efficiently the puzzle saving money and time. 

   

1.2 Motivation 
Bioinformatics is a scientific field that always evolves and is in desperate need of 

computing resources so FPGA’s can make a direct impact helping scientists with their 

work. 

FPGA’s have proved their capabilities through research helping lots of scientists 

achieving their goals and saving a lot of time doing that. This is what encouraged us to 

deal with this nature of problem, selecting a relatively new algorithm, and making all the 

procedures needed so it can be run on a FPGA. 

Bowtie was introduced in 2009 using, for the first time in Bioinformatics, Burrows & 

Wheeler Transformation and FM – Index. This methods work together producing very 

fast and accurate results and they are extremely efficient in bioinformatics due to how 

good they handle pattern matching.  

 

1.3 Diploma Thesis Structure 
The diploma thesis consists of six chapters.  

The next chapter talks about bioinformatics terminologies, gene finding and gene 

aligning algorithms that we have studied and finally the full analysis of the selected 

algorithm.  

In the third chapter, we will talk about the modeling of the algorithm, preparation of input 

data and how the software communicates with the hardware.  

After, in the fourth chapter, we will discuss about the data flow and the architecture 

design of the hardware.  

In the fifth chapter we will talk about the results, comparing them with the software and 

with other relative works and finally in the sixth chapter we will talk about conclusions 

and further work.  
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Chapter 2 

Gene Prediction (Gene Finding), 

Sequence Alignment and algorithms 

that implement it. 
 

2.1 Gene Prediction or Gene Finding 
In computational biology gene prediction or gene finding refers to the process of 

identifying the regions of genomic DNA that encode genes. This includes protein-

coding genes as well as RNA genes, but may also include prediction of other functional 

elements such as regulatory regions. Gene finding is one of the first and most important 

steps in understanding the genome of a species once it has been sequenced. In its 

earliest days, "gene finding" was based on painstaking experimentation on living cells 

and organisms. Statistical analysis of the rates of homologous recombination of several 

different genes could determine their order on a certain chromosome, and information 

from many such experiments could be combined to create a genetic map specifying the 

rough location of known genes relative to each other. Today gene finding has been 

redefined as a largely computational problem due to resources restrictions.  

Gene is a molecular unit of heredity of a living organism. It is a name given to some 

stretches of DNA and RNA that code for a polypeptide or for an RNA chain that has a 

function in the organism. Living beings depend on genes, as they specify all proteins 

and functional RNA chains. Genes hold the information to build and maintain an 

organism's cells and pass genetic traits to offspring, although 

some organelles (e.g. mitochondria) are self-replicating and are not coded for, by the 

organism's DNA [41]. 

Exon is a sequence of DNA that is expressed (transcribed) into RNA and then often, 

but with many noteworthy exceptions, translated into protein. Adjacent exons may be 

separated by an intron, which is later removed from the RNA transcript via the splicing 

mechanism [42]. 

Intron is any nucleotide sequence within a gene that is removed by RNA splicing while 

the final mature RNA product of a gene is being generated [43]. 

http://en.wikipedia.org/wiki/Computational_biology
http://en.wikipedia.org/wiki/Genes
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/RNA_gene
http://en.wikipedia.org/wiki/Regulatory_regions
http://en.wikipedia.org/wiki/Sequencing
http://en.wikipedia.org/wiki/Homologous_recombination
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Genetic_map
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Polypeptide
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Cell_(biology)
http://en.wikipedia.org/wiki/Trait_(biology)
http://en.wikipedia.org/wiki/Organelles
http://en.wikipedia.org/wiki/Mitochondria
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Intron
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/RNA_splicing
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Splicing is a modification of the nascent pre-mRNA taking place after or concurrently 

with its transcription, in which introns are removed and exons are joined. This is needed 

for the typical eukaryotic messenger RNA before it can be used to produce a correct 

protein through translation [44]. 

 

 

2.2 Sequence alignment 
Is a way of arranging the sequences of DNA, RNA, or protein to identify regions of 

similarity that may be a consequence of functional, structural, 

or evolutionary relationships between the sequences. Aligned sequences 

of nucleotide or amino acid residues are typically represented as rows within a matrix. 

Gaps are inserted between the residues so that identical or similar characters are 

aligned in successive columns. 

 

  

Gene Structure [39] 

mRNA before and after splicing [40] 

http://en.wikipedia.org/wiki/Pre-mRNA
http://en.wikipedia.org/wiki/Transcription_(genetics)
http://en.wikipedia.org/wiki/Introns
http://en.wikipedia.org/wiki/Exons
http://en.wikipedia.org/wiki/Eukaryotic
http://en.wikipedia.org/wiki/Messenger_RNA
http://en.wikipedia.org/wiki/Translation_(biology)
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Structural_biology
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Residue_(chemistry)
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2.3 Gene Finding or Gene Prediction Algorithms 
Generally an algorithm is a step-by-step procedure for calculations. A Gene Finding or 

Gene Prediction algorithm uses methods (e.g. Interpolated Markov Models, Hidden 

Markov Models) so as to determine the beginning and end positions of genes in a 

genome. 

 

2.3.1 Glimmer (Gene Locator and Interpolated Markov ModelER) uses interpolated 

Markov models (IMMs) to identify the coding regions and distinguish them from non 
coding DNA. Some of the advantages are low false positive rate, predicts many start 
sites correctly and high true positive rate [1], [2], [3]. 

 

2.3.2 TWAIN is a new syntenic gene finder which employs a Generalized Pair Hidden 

Markov Model (GPHMM) to predict genes in two closely related eukaryotic genomes 

simultaneously. TWAIN performs very well on two related Aspergillus species, 

A.fumigatus and A.nidulans.Some disadvantages are that needs a better accuracy and 

wider area of organisms [4]. 

 

2.3.3 GlimmerHMM is a gene finder based on a Generalized Hidden Markov Model 

(GHMM). It utilizes Interpolated Markov Models for the coding and noncoding models. 

Currently, GlimmerHMM's (GHMM) structure includes introns of each phase, intergenic 

regions, and four types of exons (initial, internal, final, and single). GlimmerHMM is very 

fast and memory efficient [6], [7]. 

 

2.3.4 GENSCAN is based on probabilistic model of gene structure similar to Hidden 

Markov Models (HMMs). GENSCAN uses a training set in order to estimate the HMM 

parameters, then the algorithm returns the exon structure using maximum likelihood 

approach standard to many HMM algorithms. It does not use similarity search to predict 

genes, it does not address alternative splicing and it could combine two exons from 

consecutive genes together [5]. 

 

2.3.5 GeneZilla(former TigrScan) is a gene finder based on the Generalized 

Hidden Markov Model framework, similar to Genscan. The run time and memory 

requirements are linear in the sequence length. It utilizes Interpolated Markov Models 

(IMMs), Maximal Dependence Decomposition (MDD), and includes states for signal 
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peptides, branch points, TATA boxes, CAP sites, and will soon model CpG islands as 

well. GeneZilla is not so fast (compared to GlimmerHMM) but is extremely memory 

efficient [6], [7]. 

 

2.3.6 GeneSplicer is a fast, flexible system for detecting splice sites (the locations 

of the start codons, all the exons and introns and the stop codon for each gene) in the 

genomic DNA of various eukaryotes. The system has been trained and tested 

successfully on Plasmodium falciparum (malaria), Arabidopsis thaliana, 

human, Drosophila, and rice. GeneSplicer advantages are accuracy, memory efficiency 

and speed [14]. 

 

2.3.7 ExAlt is a software program designed to predict alternatively spliced overlapping 

exons in genomic sequence. The program works in several ways depending on the 

available input. ExAlt can use information about existing gene structure as well as 

sequence conservation to improve the precision of its predictions. ExAlt can also make 

predictions when only a single genomic sequence is available. ExAlt has been 

extensively tested on Drosophila melanogaster, but can be adapted to run on other 

species.  

The typical input to ExAlt is a known (or predicted) gene structure, which should 

be checked for alternative splicing. The core program takes as input a multiple 

sequence alignment and a phylogenetic tree and returns a GFF file containing the 

sequence coordinates of exon predictions. Wrapper scripts are provided to take 

a Drosophila melanogaster gene (using the CG identifier) and iterate through each 

exon, using blastn to find matches in closely releated species and muscle to generate 

multiple sequence alignments for input to ExAlt [15]. 

 

2.3.8 JIGSAW is a program designed to use the output from gene finders, splice site 

prediction programs and sequence alignments to predict gene models. The program 

provides an automated way to take advantage of the many successful methods for 

computational gene prediction and can provide substantial improvements in accuracy 

over an individual gene prediction program. JIGSAW is available for all species [7], 

[16], [17]. 

 

http://blast.wustl.edu/
http://www.drive5.com/
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2.4 Gene Aligning & Short Reads Mapping 

Algorithms 
Gene aligning & short reads mapping algorithms are algorithms that use various 

methods to align two or more short read gene sequences and come to conclusions for 

this genes, if they are related, or if they have evolve, or even if they have been mutated. 

Different algorithms exists using different methods, each one solving a different problem 

such as accuracy, performance, sequence size, memory foot print. 

2.4.1 Maq can build assemblies by mapping shotgun short reads to a reference 

genome, using quality scores to derive genotype calls of the consensus sequence of a 
diploid genome, e.g., from a human sample. MAQ makes full use of mate-pair 
information and estimates the error probability of each read alignment using the Eland – 
like hashing technique. Error probabilities are also derived for the final genotype calls, 
using a Bayesian statistical model that incorporates the mapping qualities, error 
probabilities from the raw sequence quality scores, sampling of the two haplotypes, and 
an empirical model for correlated errors at a site. MAQ is accurate, efficient, versatile, 
and user-friendly [8]. 
 
 

2.4.2 SOAP is designed to handle the huge amounts of short reads generated by 

parallel sequencing using the seed and hash look-up table algorithm. SOAP is 
compatible with numerous applications, including single-read or pair-end resequencing, 
small RNA discovery and mRNA tag sequence mapping. SOAP is a command-driven 
program, which supports multi-threaded parallel computing, and has a batch module for 
multiple query sets [9], [18]. 
 

 

2.4.3 RMAP can map reads having a wide range of lengths and allows base-call 

quality scores to determine which positions in each read are more important when 
mapping using the filtration method, a pattern matching method [10]. 
 

 

2.4.4 SHRiMP algorithm draws upon three recent developments in the field of 

sequence alignment: q-gram filter approaches, spaced seeds and specialized vector 
computing hardware to speed up the Smith-Waterman Algorithm to rapidly find the likely 
locations for the reads on the genome. Once these locations are identified, Smith-
Waterman based algorithm is conducted thoroughly to rigorously evaluate the 
alignments [12], [25], [26], [27], [28], [29]. 
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2.5 Bowtie Algorithm, Burrows & Wheeler 

Transformation and FM Index 
Bowtie is an algorithm that can align sequences of characters of genes with specified 

methods and determine if they are related, and if they are related if an evolution or a 

mutation exist [13]. It is used specifically in the section of computational biology from 

research and science centers. It is a new algorithm, released in 2009, ultra fast, very 

low memory foot print(approximately 1.3 GB) and has over 1200 citations. The 

pioneering of bowtie algorithm is the use for the first time in bioinformatics of the 

Burrows and Wheeler transformation (BWT) which was presented in 1994 by M. 

Burrows and D.J. Wheeler, [19], two mathematicians as a data compression method 

and FM Index an exact pattern matching method [30], [31], [32]. The FM Index is 

extremely fast in searching sequence patterns in very large text files and is already 

been used in other scientific fields and sections. One example is that it is used in LUT’s 

of node routers in enormous networks.  

Bowtie algorithm is divided into two sections. The first section is about building the 

database that you want to match your query pattern and the second one is doing the 

search [20], [22], [23], [24].  

To build the database bowtie algorithm takes a genome sequence and uses the 

Burrows & Wheeler Transformation (BWT) to extract the transformed sequence. Given 

a text Q we denote by BWT(Q) its transform. The BWT of a string, or in our case 

sequence, is generated in five steps: 

1. Terminate the text Q with a unique character: “$”. 
2. Generate all rotations of the text. 
3. Sort all the rotations. 
4. Extract the last characters of all the entries of the sorted list. 
5. Join the characters in the same order they appeared in the sorted list.  
The newly generated text is the BWT(Q).  
 
For example lets set  
 

Q= GAACGATACCCACCCAACTATCGCCATTCCAGCAT. 
 
After the first step Q will become 
 
  Q= GAACGATACCCACCCAACTATCGCCATTCCAGCAT$. 
 
Then by fully rotating the sequence, executing the second step, our result is shown in 
Table 2.1 below. 
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Index Rotated Sequence Details 

0 GAACGATACCCACCCAACTATCGCCATTCCAGCAT$ Initial Sequence 

1 AACGATACCCACCCAACTATCGCCATTCCAGCAT$G  

2 ACGATACCCACCCAACTATCGCCATTCCAGCAT$GA  

3 CGATACCCACCCAACTATCGCCATTCCAGCAT$GAA  

4 GATACCCACCCAACTATCGCCATTCCAGCAT$GAAC  

5 ATACCCACCCAACTATCGCCATTCCAGCAT$GAACG  

6 TACCCACCCAACTATCGCCATTCCAGCAT$GAACGA  

7 ACCCACCCAACTATCGCCATTCCAGCAT$GAACGAT  

8 CCCACCCAACTATCGCCATTCCAGCAT$GAACGATA  

9 CCACCCAACTATCGCCATTCCAGCAT$GAACGATAC  

10 CACCCAACTATCGCCATTCCAGCAT$GAACGATACC  

11 ACCCAACTATCGCCATTCCAGCAT$GAACGATACCC  

12 CCCAACTATCGCCATTCCAGCAT$GAACGATACCCA  

13 CCAACTATCGCCATTCCAGCAT$GAACGATACCCAC  

14 CAACTATCGCCATTCCAGCAT$GAACGATACCCACC  
15 AACTATCGCCATTCCAGCAT$GAACGATACCCACCC  

16 ACTATCGCCATTCCAGCAT$GAACGATACCCACCCA  

17 CTATCGCCATTCCAGCAT$GAACGATACCCACCCAA  

18 TATCGCCATTCCAGCAT$GAACGATACCCACCCAAC  

19 ATCGCCATTCCAGCAT$GAACGATACCCACCCAACT  

20 TCGCCATTCCAGCAT$GAACGATACCCACCCAACTA  

21 CGCCATTCCAGCAT$GAACGATACCCACCCAACTAT  

22 GCCATTCCAGCAT$GAACGATACCCACCCAACTATC  

23 CCATTCCAGCAT$GAACGATACCCACCCAACTATCG  

24 CATTCCAGCAT$GAACGATACCCACCCAACTATCGC  

25 ATTCCAGCAT$GAACGATACCCACCCAACTATCGCC  

26 TTCCAGCAT$GAACGATACCCACCCAACTATCGCCA  

27 TCCAGCAT$GAACGATACCCACCCAACTATCGCCAT  

28 CCAGCAT$GAACGATACCCACCCAACTATCGCCATT  

29 CAGCAT$GAACGATACCCACCCAACTATCGCCATTC  

30 AGCAT$GAACGATACCCACCCAACTATCGCCATTCC  

31 GCAT$GAACGATACCCACCCAACTATCGCCATTCCA  

32 CAT$GAACGATACCCACCCAACTATCGCCATTCCAG  

33 AT$GAACGATACCCACCCAACTATCGCCATTCCAGC  

34 T$GAACGATACCCACCCAACTATCGCCATTCCAGCA  

35 $GAACGATACCCACCCAACTATCGCCATTCCAGCAT  

Table 2.1: Example of rotating a sequence in step 2 of Burrows & Wheeler Transformation. 
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Then, executing the third step of the transformation, sorting the rotated sequences 

lexicographically, our table changes as we can see in Table 2.2. 

Index Sequence 
0 $GAACGATACCCACCCAACTATCGCCATTCCAGCAT 
1 AACGATACCCACCCAACTATCGCCATTCCAGCAT$G 

2 AACTATCGCCATTCCAGCAT$GAACGATACCCACCC 
3 ACCCAACTATCGCCATTCCAGCAT$GAACGATACCC 

4 ACCCACCCAACTATCGCCATTCCAGCAT$GAACGAT 

5 ACGATACCCACCCAACTATCGCCATTCCAGCAT$GA 

6 ACTATCGCCATTCCAGCAT$GAACGATACCCACCCA 
7 AGCAT$GAACGATACCCACCCAACTATCGCCATTCC 
8 AT$GAACGATACCCACCCAACTATCGCCATTCCAGC 
9 ATACCCACCCAACTATCGCCATTCCAGCAT$GAACG 

10 ATCGCCATTCCAGCAT$GAACGATACCCACCCAACT 
11 ATTCCAGCAT$GAACGATACCCACCCAACTATCGCC 
12 CAACTATCGCCATTCCAGCAT$GAACGATACCCACC 

13 CACCCAACTATCGCCATTCCAGCAT$GAACGATACC 

14 CAGCAT$GAACGATACCCACCCAACTATCGCCATTC 
15 CAT$GAACGATACCCACCCAACTATCGCCATTCCAG 
16 CATTCCAGCAT$GAACGATACCCACCCAACTATCGC 
17 CCAACTATCGCCATTCCAGCAT$GAACGATACCCAC 

18 CCACCCAACTATCGCCATTCCAGCAT$GAACGATAC 

19 CCAGCAT$GAACGATACCCACCCAACTATCGCCATT 
20 CCATTCCAGCAT$GAACGATACCCACCCAACTATCG 
21 CCCAACTATCGCCATTCCAGCAT$GAACGATACCCA 

22 CCCACCCAACTATCGCCATTCCAGCAT$GAACGATA 

23 CGATACCCACCCAACTATCGCCATTCCAGCAT$GAA 

24 CGCCATTCCAGCAT$GAACGATACCCACCCAACTAT 
25 CTATCGCCATTCCAGCAT$GAACGATACCCACCCAA 
26 GAACGATACCCACCCAACTATCGCCATTCCAGCAT$ 

27 GATACCCACCCAACTATCGCCATTCCAGCAT$GAAC 

28 GCAT$GAACGATACCCACCCAACTATCGCCATTCCA 
29 GCCATTCCAGCAT$GAACGATACCCACCCAACTATC 
30 T$GAACGATACCCACCCAACTATCGCCATTCCAGCA 
31 TACCCACCCAACTATCGCCATTCCAGCAT$GAACGA 

32 TATCGCCATTCCAGCAT$GAACGATACCCACCCAAC 
33 TCCAGCAT$GAACGATACCCACCCAACTATCGCCAT 
34 TCGCCATTCCAGCAT$GAACGATACCCACCCAACTA 
35 TTCCAGCAT$GAACGATACCCACCCAACTATCGCCA 

Table 2.2: Example of sorting a sequence in step 3 of Burrows & Wheeler Transformation. 

 



21  

 

In step 4 we have to extract the last characters of all the entries of the sorted list, hence 

our table becomes as shown in Table 2.3. 

Index Sequence 
0 $GAACGATACCCACCCAACTATCGCCATTCCAGCA - T 
1 AACGATACCCACCCAACTATCGCCATTCCAGCAT$ - G 

2 AACTATCGCCATTCCAGCAT$GAACGATACCCACC - C 
3 ACCCAACTATCGCCATTCCAGCAT$GAACGATACC - C 

4 ACCCACCCAACTATCGCCATTCCAGCAT$GAACGA - T 

5 ACGATACCCACCCAACTATCGCCATTCCAGCAT$G - A 

6 ACTATCGCCATTCCAGCAT$GAACGATACCCACCC - A 
7 AGCAT$GAACGATACCCACCCAACTATCGCCATTC - C 
8 AT$GAACGATACCCACCCAACTATCGCCATTCCAG - C 
9 ATACCCACCCAACTATCGCCATTCCAGCAT$GAAC - G 

10 ATCGCCATTCCAGCAT$GAACGATACCCACCCAAC - T 
11 ATTCCAGCAT$GAACGATACCCACCCAACTATCGC - C 
12 CAACTATCGCCATTCCAGCAT$GAACGATACCCAC - C 

13 CACCCAACTATCGCCATTCCAGCAT$GAACGATAC - C 

14 CAGCAT$GAACGATACCCACCCAACTATCGCCATT - C 
15 CAT$GAACGATACCCACCCAACTATCGCCATTCCA - G 
16 CATTCCAGCAT$GAACGATACCCACCCAACTATCG - C 
17 CCAACTATCGCCATTCCAGCAT$GAACGATACCCA - C 

18 CCACCCAACTATCGCCATTCCAGCAT$GAACGATA - C 

19 CCAGCAT$GAACGATACCCACCCAACTATCGCCAT - T 
20 CCATTCCAGCAT$GAACGATACCCACCCAACTATC - G 
21 CCCAACTATCGCCATTCCAGCAT$GAACGATACCC - A 

22 CCCACCCAACTATCGCCATTCCAGCAT$GAACGAT - A 

23 CGATACCCACCCAACTATCGCCATTCCAGCAT$GA - A 

24 CGCCATTCCAGCAT$GAACGATACCCACCCAACTA - T 
25 CTATCGCCATTCCAGCAT$GAACGATACCCACCCA - A 
26 GAACGATACCCACCCAACTATCGCCATTCCAGCAT - $ 

27 GATACCCACCCAACTATCGCCATTCCAGCAT$GAA - C 

28 GCAT$GAACGATACCCACCCAACTATCGCCATTCC - A 
29 GCCATTCCAGCAT$GAACGATACCCACCCAACTAT - C 
30 T$GAACGATACCCACCCAACTATCGCCATTCCAGC - A 
31 TACCCACCCAACTATCGCCATTCCAGCAT$GAACG - A 

32 TATCGCCATTCCAGCAT$GAACGATACCCACCCAA - C 
33 TCCAGCAT$GAACGATACCCACCCAACTATCGCCA - T 
34 TCGCCATTCCAGCAT$GAACGATACCCACCCAACT - A 
35 TTCCAGCAT$GAACGATACCCACCCAACTATCGCC - A 

Table 2.3: Example of step 4 of the Burrows & Wheeler Transformation. 
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Finally by joining the characters in the same order they appeared in the sorted list we 

generate the Burrows & Wheeler Transformation of sequence Q. 

 

  BWT (Q) = TGCCTAACCGTCCCCGCCCTGAAATA$CACAACTAA 

  

After finishing with the transformation we use it to generate the sorted Burrows & 

Wheeler Transformation (SBWT) and the tables C and I which combined it together with 

the method of FM – Index help us to identify patterns in text. 

 Sorting BWT (Q) give us 

   

  SBWT (Q) = $AAAAAAAAAAACCCCCCCCCCCCCCGGGGTTTTTT 

 

I-table stores the first occurrence of each character on the sorted BWT(Q) as shown in 
Table 2.4. 
 
 

Index Character Index Character Index Character 

0 $ 12 C 24 C 

1 A 13 C 25 C 

2 A 14 C 26 G 

3 A 15 C 27 G 

4 A 16 C 28 G 

5 A 17 C 29 G 

6 A 18 C 30 T 

7 A 19 C 31 T 

8 A 20 C 32 T 

9 A 21 C 33 T 

10 A 22 C 34 T 

11 A 23 C 35 T 
Table 2.4: SBWT (Q) 
 
As a result I – Table is shown in Table 2.5. 
 
 

A C G T 

1 12 26 30 
Table 2.5: I – Table 
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The C-table stores the count of each character on a previous location as shown in Table 
2.6. 
 
 

Index BWT(Q) A C G T 

0 T 0 0 0 0 

1 G 0 0 0 1 

2 C 0 0 1 1 

3 C 0 1 1 1 

4 T 0 2 1 1 

5 A 0 2 1 2 

6 A 1 2 1 2 

7 C 2 2 1 2 

8 C 2 3 1 2 

9 G 2 4 1 2 

10 T 2 4 2 2 

11 C 2 4 2 3 

12 C 2 5 2 3 

13 C 2 6 2 3 

14 C 2 7 2 3 

15 G 2 8 2 3 
16 C 2 8 3 3 

17 C 2 9 3 3 

18 C 2 10 3 3 

19 T 2 11 3 3 

20 G 2 11 3 4 

21 A 2 11 4 4 

22 A 3 11 4 4 

23 A 4 11 4 4 

24 T 5 11 4 4 

25 A 5 11 4 5 

26 $ 6 11 4 5 

27 C 6 11 4 5 

28 A 6 12 4 5 

29 C 7 12 4 5 

30 A 7 13 4 5 

31 A 8 13 4 5 

32 C 9 13 4 5 

33 T 9 14 4 5 

34 A 9 14 4 6 

35 A 10 14 4 6 

36 Total 11 14 4 6 

Table 2.6: C - Table 
 
The FM-index is a pattern searching technique that operates on the BWT. The FM-
index consists of two pointers: top and bottom [21]. The indices between the top and 
bottom pointers are all the suffix locations where a pattern occurs on the text. Top 
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points to an index of the suffix array element where a specific pattern is first located. 
The bottom pointer limits where the pattern can be last found. If bottom points to an 
index that is less than or equal to an index pointed by top, then the pattern does not 
occur on the text. 
 
Pattern searching using the FM-index starts with initializing the top and bottom pointers 
to the first and last indices of the C - table respectively. To search for a pattern, we 
process one character at a time, beginning with the last character of the pattern. The 
top and bottom pointers move to different suffix array indices according to the current 
character processed and the current index where the top and bottom pointers are 
indexing. To compute the new location of the pointers, we follow Equation 1 for the top 
and bottom pointer respectively. 
 
For example let’s search the pattern ACCCACCC on the string Q using the FM – Index. 
Equation 1: 

Topnew = C – Table[n, Topcurrent] + I – Table[n] 

Bottomnew = C – Table[n, Bottomcurrent] + I – Table[n] 
 
 
Topcur = 0, Botcur = 36 

1st Iteration: n=C 

Topnew = CC(Topcur) + I(C) = 0 + 12 = 12 

Botnew = CC(Botcur) + I(C) = 14 + 12 = 26 

Index BWT(Q) A C G T 

0 T 0 0 0 0 

1 G 0 0 0 1 

2 C 0 0 1 1 

3 C 0 1 1 1 

4 T 0 2 1 1 

5 A 0 2 1 2 

6 A 1 2 1 2 

7 C 2 2 1 2 

8 C 2 3 1 2 

9 G 2 4 1 2 

10 T 2 4 2 2 

11 C 2 4 2 3 

12 C 2 5 2 3 

13 C 2 6 2 3 

14 C 2 7 2 3 

15 G 2 8 2 3 
16 C 2 8 3 3 
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17 C 2 9 3 3 

18 C 2 10 3 3 

19 T 2 11 3 3 

20 G 2 11 3 4 

21 A 2 11 4 4 

22 A 3 11 4 4 

23 A 4 11 4 4 

24 T 5 11 4 4 

25 A 5 11 4 5 

26 $ 6 11 4 5 

27 C 6 11 4 5 

28 A 6 12 4 5 

29 C 7 12 4 5 

30 A 7 13 4 5 

31 A 8 13 4 5 

32 C 9 13 4 5 

33 T 9 14 4 5 

34 A 9 14 4 6 

35 A 10 14 4 6 

36 Total 11 14 4 6 

 

That means 26 – 12 = 14, we can find C fourteen times in the current sequence. 

GAACGATACCCACCCAACTATCGCCATTCCAGCAT. 

 

Topcur = 12, Botcur = 26 

2nd Iteration: n=C 

Topnew = CC(Topcur) + I(C) = 5 + 12 = 17 

Botnew = CC(Botcur) + I(C) = 11 + 12 = 23 

Index BWT(Q) A C G T 

0 T 0 0 0 0 

1 G 0 0 0 1 

2 C 0 0 1 1 

3 C 0 1 1 1 

4 T 0 2 1 1 

5 A 0 2 1 2 

6 A 1 2 1 2 

7 C 2 2 1 2 

8 C 2 3 1 2 

9 G 2 4 1 2 

10 T 2 4 2 2 
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11 C 2 4 2 3 

12 C 2 5 2 3 

13 C 2 6 2 3 

14 C 2 7 2 3 

15 G 2 8 2 3 
16 C 2 8 3 3 

17 C 2 9 3 3 

18 C 2 10 3 3 

19 T 2 11 3 3 

20 G 2 11 3 4 

21 A 2 11 4 4 

22 A 3 11 4 4 

23 A 4 11 4 4 

24 T 5 11 4 4 

25 A 5 11 4 5 

26 $ 6 11 4 5 

27 C 6 11 4 5 

28 A 6 12 4 5 

29 C 7 12 4 5 

30 A 7 13 4 5 

31 A 8 13 4 5 

32 C 9 13 4 5 

33 T 9 14 4 5 

34 A 9 14 4 6 

35 A 10 14 4 6 

36 Total 11 14 4 6 

 

23 - 17 = 6, CC appears six times in the sequence. 

GAACGATACCCACCCAACTATCGCCATTCCAGCAT. 

 

Topcur = 17, Botcur = 23 

3d Iteration: n=C 

Topnew = CC(Topcur) + I(C) = 9 + 12 = 21 

Botnew = CC(Botcur) + I(C) = 11 + 12 = 23 

Index BWT(Q) A C G T 

0 T 0 0 0 0 

1 G 0 0 0 1 

2 C 0 0 1 1 

3 C 0 1 1 1 

4 T 0 2 1 1 
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5 A 0 2 1 2 

6 A 1 2 1 2 

7 C 2 2 1 2 

8 C 2 3 1 2 

9 G 2 4 1 2 

10 T 2 4 2 2 

11 C 2 4 2 3 

12 C 2 5 2 3 

13 C 2 6 2 3 

14 C 2 7 2 3 

15 G 2 8 2 3 
16 C 2 8 3 3 

17 C 2 9 3 3 

18 C 2 10 3 3 

19 T 2 11 3 3 

20 G 2 11 3 4 

21 A 2 11 4 4 

22 A 3 11 4 4 

23 A 4 11 4 4 

24 T 5 11 4 4 

25 A 5 11 4 5 

26 $ 6 11 4 5 

27 C 6 11 4 5 

28 A 6 12 4 5 

29 C 7 12 4 5 

30 A 7 13 4 5 

31 A 8 13 4 5 

32 C 9 13 4 5 

33 T 9 14 4 5 

34 A 9 14 4 6 

35 A 10 14 4 6 

36 Total 11 14 4 6 

 

23 - 21 = 2, CCC appears only twice in the text. 

GAACGATACCCACCCAACTATCGCCATTCCAGCAT. 
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Topcur = 21, Botcur = 23 

4th Iteration: n=A 

Topnew = CA(Topcur) + I(A) = 2 + 1 = 3 

Botnew = CA(Botcur) + I(A) = 4 + 1 = 5 

Index BWT(Q) A C G T 

0 T 0 0 0 0 

1 G 0 0 0 1 

2 C 0 0 1 1 

3 C 0 1 1 1 

4 T 0 2 1 1 

5 A 0 2 1 2 

6 A 1 2 1 2 

7 C 2 2 1 2 

8 C 2 3 1 2 

9 G 2 4 1 2 

10 T 2 4 2 2 

11 C 2 4 2 3 

12 C 2 5 2 3 

13 C 2 6 2 3 

14 C 2 7 2 3 

15 G 2 8 2 3 
16 C 2 8 3 3 

17 C 2 9 3 3 

18 C 2 10 3 3 

19 T 2 11 3 3 

20 G 2 11 3 4 

21 A 2 11 4 4 

22 A 3 11 4 4 

23 A 4 11 4 4 

24 T 5 11 4 4 

25 A 5 11 4 5 

26 $ 6 11 4 5 

27 C 6 11 4 5 

28 A 6 12 4 5 

29 C 7 12 4 5 

30 A 7 13 4 5 

31 A 8 13 4 5 

32 C 9 13 4 5 

33 T 9 14 4 5 

34 A 9 14 4 6 

35 A 10 14 4 6 

36 Total 11 14 4 6 
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5 - 3 = 2, ACCC appears twice. 

GAACGATACCCACCCAACTATCGCCATTCCAGCAT. 
 
 

Topcur = 3, Botcur = 5 

5th Iteration: n=C 

Topnew = CC(Topcur) + I(C) = 1 + 12 = 13 

Botnew = CC(Botcur) + I(C) = 2 + 12 = 14 

Index BWT(Q) A C G T 

0 T 0 0 0 0 

1 G 0 0 0 1 

2 C 0 0 1 1 

3 C 0 1 1 1 

4 T 0 2 1 1 

5 A 0 2 1 2 

6 A 1 2 1 2 

7 C 2 2 1 2 

8 C 2 3 1 2 

9 G 2 4 1 2 

10 T 2 4 2 2 

11 C 2 4 2 3 

12 C 2 5 2 3 

13 C 2 6 2 3 

14 C 2 7 2 3 

15 G 2 8 2 3 
16 C 2 8 3 3 

17 C 2 9 3 3 

18 C 2 10 3 3 

19 T 2 11 3 3 

20 G 2 11 3 4 

21 A 2 11 4 4 

22 A 3 11 4 4 

23 A 4 11 4 4 

24 T 5 11 4 4 

25 A 5 11 4 5 

26 $ 6 11 4 5 

27 C 6 11 4 5 

28 A 6 12 4 5 

29 C 7 12 4 5 

30 A 7 13 4 5 

31 A 8 13 4 5 
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32 C 9 13 4 5 

33 T 9 14 4 5 

34 A 9 14 4 6 

35 A 10 14 4 6 

36 Total 11 14 4 6 

 
14 -13 = 1, CACCC appears only once. 

GAACGATACCCACCCAACTATCGCCATTCCAGCAT. 
 
 
Topcur = 13, Botcur = 14 

6th Iteration: n=C 

Topnew = CC(Topcur) + I(C) = 6 + 12 = 18 

Botnew = CC(Botcur) + I(C) = 7 + 12 = 19 
 

Index BWT(Q) A C G T 

0 T 0 0 0 0 

1 G 0 0 0 1 

2 C 0 0 1 1 

3 C 0 1 1 1 

4 T 0 2 1 1 

5 A 0 2 1 2 

6 A 1 2 1 2 

7 C 2 2 1 2 

8 C 2 3 1 2 

9 G 2 4 1 2 

10 T 2 4 2 2 

11 C 2 4 2 3 

12 C 2 5 2 3 

13 C 2 6 2 3 

14 C 2 7 2 3 

15 G 2 8 2 3 
16 C 2 8 3 3 

17 C 2 9 3 3 

18 C 2 10 3 3 

19 T 2 11 3 3 

20 G 2 11 3 4 

21 A 2 11 4 4 

22 A 3 11 4 4 

23 A 4 11 4 4 

24 T 5 11 4 4 

25 A 5 11 4 5 

26 $ 6 11 4 5 
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27 C 6 11 4 5 

28 A 6 12 4 5 

29 C 7 12 4 5 

30 A 7 13 4 5 

31 A 8 13 4 5 

32 C 9 13 4 5 

33 T 9 14 4 5 

34 A 9 14 4 6 

35 A 10 14 4 6 

36 Total 11 14 4 6 

 
19 -18 = 1, CCACCC appears only once. 

GAACGATACCCACCCAACTATCGCCATTCCAGCAT. 
 
 

Topcur = 18, Botcur = 19 

7th Iteration: n=C 

Topnew = CC(Topcur) + I(C) = 10 + 12 = 22 

Botnew = CC(Botcur) + I(C) = 11 + 12 = 23 
 

Index BWT(Q) A C G T 

0 T 0 0 0 0 

1 G 0 0 0 1 

2 C 0 0 1 1 

3 C 0 1 1 1 

4 T 0 2 1 1 

5 A 0 2 1 2 

6 A 1 2 1 2 

7 C 2 2 1 2 

8 C 2 3 1 2 

9 G 2 4 1 2 

10 T 2 4 2 2 

11 C 2 4 2 3 

12 C 2 5 2 3 

13 C 2 6 2 3 

14 C 2 7 2 3 

15 G 2 8 2 3 
16 C 2 8 3 3 

17 C 2 9 3 3 

18 C 2 10 3 3 

19 T 2 11 3 3 

20 G 2 11 3 4 
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21 A 2 11 4 4 

22 A 3 11 4 4 

23 A 4 11 4 4 

24 T 5 11 4 4 

25 A 5 11 4 5 

26 $ 6 11 4 5 

27 C 6 11 4 5 

28 A 6 12 4 5 

29 C 7 12 4 5 

30 A 7 13 4 5 

31 A 8 13 4 5 

32 C 9 13 4 5 

33 T 9 14 4 5 

34 A 9 14 4 6 

35 A 10 14 4 6 

36 Total 11 14 4 6 

 
23 -22 = 1, CCCACCC appears only once and we have successfully found the pattern we 

were searching. 

GAACGATACCCACCCAACTATCGCCATTCCAGCAT. 
 
 
Now let’s search in the same text but with a different text, so our next example will be 
with text Q and pattern ACCGT. 
 
Topcur = 0, Botcur = 36 

1st Iteration: n=T 

Topnew = CT(Topcur) + I(T) = 0 + 30 = 30 

Botnew = CT(Botcur) + I(T) = 6 + 30 = 36 

36-30=6, T appears six times in the text. 

GAACGATACCCACCCAACTATCGCCATTCCAGCAT. 
 
2nd Iteration: n=G 

Topnew = CG(Topcur) + I(G) = 4 + 26 = 34 

Botnew = CG(Botcur) + I(G) = 4 + 26 = 34 

34-34=0, As we can see GT doesn’t appear in our text so we stop searching.  
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2.6 Related Work 

2.6.1 State of the Art on Hardware Acceleration on bioinformatics 

software tools 

The reconfigurable hardware community used DNA sequence matching and database 

search as one of the first problems to show how computationally intensive problems can 

be solved using FPGAs. The venerable Splash 2 platform was used during the early 

1990s by Hoang et. al. [49][50]. Later Guccione et. al. [51] used Jbits technology and 

both the Virginia Tech Configurable Computing Laboratory [52] and Nanyang 

Technological University [53] used run time reconfiguration for the same problem. Then, 

the [54] Technical University of Crete introduced their Hardware Acceleration design for 

BLAST Algorithm and later on in [55] again Technical University of Crete introduced 

their Hardware Acceleration design for GlimmerHMM. Other works on this area from 

Technical University of Crete are shown in [56], [61], [62], [63], [64], [65], [66]. Later, 

an implementation of K – means algorithm for bioinformatics was introduced by 

University of Edinburgh in [57], then hardware acceleration of GASSST by Nanyang 

Technological University [59]. Finally we have Smith and Waterman algorithm hardware 

acceleration by Y. Yamaguchi et al. [60] and the hardware acceleration of BWA – SW 

algorithm from University of Science and Technology of China [58].  

2.6.2. Previous Work on Bowtie 

Designing the Bowtie software tool on hardware and executing it on FPGA first 

appeared in [21]. This work appeared first time, early in 2011 and implements the 

search function of the algorithm and executing it on a Xilinx Virtex 6 (XC6VLX760) 

FPGA with promising results achieving significant speed ups but with limited 

functionality of the algorithm. Later, improving their designs, the next attempt appeared 

in [20] in 2012. This time the platform was the Convey HC – 1 with Intel Xeon L540B 

with 2 dual cores running at 2.13 GHz as the host processor, 192GB of RAM and four 

Virtex 5 FPGAs (XC5VLX330) as coprocessor. In this work they have implemented 

more functionalities of the algorithm and with the help of the Convey HC – 1 they 

parallelized their design helping them to reach speed ups up to 70x. 
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Chapter 3 

System Modeling 
In this chapter we will discuss about profiling and analyzing the algorithm and also the 

steps we follow to obtain input data for the system, the processing of this data and 

bringing it to the right form in order to connect them to our architecture design and 

finally how do we connect the data that we have prepared to the system.  

3.1 Profiling 
In order to understand better the algorithm, we use a couple tools to profile Bowtie. The 

tools that we use are GNU gprof and Intel Vtune. After collecting the results we have 

noticed that for different datasets the compute intensive function changed and if it was 

the same, the execution time changed, so we decided that we will continue our work by 

implementing the search functionality of the algorithm and not a specific function. 

Below, in Tables 3.1, 3.2, 3.3, 3.4 we can see the results from the experiments that we 

have performed. 

Test 1 Test 2 
Execution Time Function Execution Time Function 

76% Backtrack() 91% Backtrack() 

16% mapLFEx() 7% initFromRow() 
Table 3.1 Functions with significant execution time from Test 1 and Test 2.  
 

Test 3 Test 4 
Execution Time Function Execution Time Function 

31% Backtrack() 40% Backtrack() 

29% countUpToEx() 20% countBWside() 

18% countBWSide() 20% countBWSideEx() 

18% countFWSide() 20% countFWSide() 
Table 3.2 Functions with significant execution time from Test 3 and Test 4. 
  

Test 5 Test 6 
Execution Time Function Execution Time Function 

48% Bowtie() 48% Samples() 

13% setQuery() 27% nextBlock() 
Table 3.3 Functions with significant execution time from Test 5 and Test 6. 
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Test 7 Test 8 
Execution Time Function Execution Time Function 

45% Samples() 41% bucketSortSufDcU8() 

30% nextBlock() 17% nextBlock() 

  14% Samples() 
Table 3.4 Functions with significant execution time from Test 7 and Test 8.  

 

3.2 Modeling the build process of Bowtie  

3.2.1 Obtain Data 

In order to find files that contain genome databases and short reads to map on the 

databases we go to the webpage of National Center for Biotechnology Information 

(NCBI). To find database files we go to the genome base [33], and to find short reads 

files we change to the short reads base [34]. After we find and identify the files that we 

are going to use we download the files. The database files do not need any further 

processing but for the short read files we need to change the format from .sra to .fastq. 

To do that, we use the SRAtoolkit which is a tool offered from NCBI and is free for 

downloading and using [35].   

3.2.2 Processing Data 

To be able to send data to our system it was necessary to model the algorithm’s build 

function. We write six different scripts using MATLAB software, reading the .fasta and 

.fastq files that contains the database, finding its BWT, creating the tables C and I and 

finally writing the data to a .txt file [A].  

As we have mentioned before and continuing with our previous example in chapter 2.5, 

the first step is to read the database. 

 

Picture 3.1 Reading database using Matlab snapshot 
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After we have read the database the next step is putting the $ character at the end of 

the sequence and generate all rotations of the text. 

 

Picture 3.2 Creating Suffix Array using Matlab snapshot. 
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The next step is to sort lexicographical the Suffix Array and extract the Burrow’s and 

Wheeler’s Transformation. 

 

Picture 3.3 Extracting BWT using Matlab snapshot. 
 

After we extract the Burrow’s and Wheeler’s Transformation, we move to the creating of 

tables SBWT, C and I. 

 

Picture 3.4 Extracting SBWT using Matlab snapshot. 

 

  Picture 3.5 Creating Table I using Matlab snapshot. 
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Picture 3.6 Creating Table C using Matlab snapshot. 
 

Finally, we write this data in text files in order to make the connection between software 

and hardware. 
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3.3 Connecting Input Data with Hardware 
To connect our design with the input files we read the text files we created using C 

language and then, send them to the design [B]. Our design can accept files with the 

extension .FASTA and .FASTQ. For the database file in the first lines we write the 

minimum and maximum values of top and bottom pointers, and Table I’s contexts. 

Then, we write the depth size of Table C and then each of its columns respectively. For 

the query file, the first line is filled with the amount of sequences containing the file and 

then the sequences are written respectively separating each sequence by writing a zero 

at the end, allowing us to send different length sequences in the same file. 
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Chapter 4 

Implementation 
In this chapter we will discuss and analyze the architectural design, the basic structure 

is inspired by [21], of the algorithm that we decided to implement. We will begin by 

explaining our first design which helped us confirm that it works and return correct 

output, determine the dataflow and identify how many of the FPGA’s resources we are 

going to need. Our design it consists out of five basic components. The “Find In Text” 

component which is responsible for reporting if a character or sequence of characters 

exist or not in the database, the “Fetch Character” component which delivers a new 

character to be searched, the “Stop Module” component which decides when to stop 

searching, the “Results” which is responsible to deliver the output after the processing 

of a sequence is finished and finally the “Control Unit”, the FSM, which is responsible for 

synchronizing and making the other four components working together. 

 

4.1 Block Diagram  
The design has totally twenty - five input signals and three output signals. Firstly, we 

have Clock and Reset which goes to every component. Secondly, we have the input 

that we import the query sequence into the design and then six inputs that we use 

initializing registers and signals in the design. Then, we have four which defines the 

address of each memory, another four for the input data and another four for the write 

enable of each memory. If we want to input a new query we use the ResetQr and after 

we finish writing, we switch on the FinishWrQr. Finally, ResetDb resets the memories 

and registers and prepares it for writing a new database and FinishWrDb indicates 

when the writing of the memories is finished. Moving on to the outputs, the first one if 

we have a hit or miss, the second one, how many hits we have if we have any and the 

third if the search is finished. The inputs and outputs are shown below fully detailed in 

Table 4.1 and the design in Picture 4.1. 
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Index Description Size I/O 

1 Clock 1 bit Input 

2 Reset 1 bit Input 

3 NewCharacter 3 bit Input 

4 InitTop 16 bit/17 bit Input 

5 InitBot 16 bit Input 

6 InitRegA 16 bit Input 

7 InitRegC 16 bit/17 bit Input 

8 InitRegG 16 bit/17 bit Input 

9 InitRegT 16 bit/17 bit Input 

10 AddressInA 16 bit/17 bit Input 

11 AddressInC 16 bit/17 bit Input 
12 AddressInG 16 bit/17 bit Input 
13 AddressInT 16 bit/17 bit Input 
14 DataInA 16 bit/17 bit Input 
15 DataInC 16 bit/17 bit Input 
16 DataInG 16 bit/17 bit Input 
17 DataInT 16 bit/17 bit Input 
18 WriteEnableA 1 bit Input 
19 WriteEnableC 1 bit Input 
20 WriteEnableG 1 bit Input 
21 WriteEnableT 1 bit Input 
22 FinishWrDb 1 bit Input 
23 FinishWrQr 1 bit Input 
24 ResetDb 1 bit Input 
25 ResetQr 1 bit Input 
26 FiFoWE 1 bit Input 

27 NofResults 16 bit/17 bit Output 

28 searchResult 1 bit Output 
29 Finish 1 bit Output 

    Table 4.1 Inputs and outputs of the design 
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Picture 4.1 Full Design Block Diagram 
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4.1.1 Fetch Character Component 

Fetch Character component is the one which is marked with blue in Picture 4.2. Its 

basic operation is to deliver the next character to the other components.  

Picture 4.2 Identifying Fetch Character component in the design 

 

Fetch Character component it consists from a FIFO memory, two registers and a 

multiplexor as shown in Picture 4.3. 
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     Picture 4.3 Block Diagram of Fetch Character Component. 
 

Every new sequence that come it is saved in FIFO. FIFO has a size of 1024 places, 

which means that it can store up to 1024 characters which is the maximum size of 

sequence that it can be examined by the algorithm. RegFIFO is a register that holds the 

value that FIFO had in the previous cycle. RegControl is a register that holds the value 

that the character that comes from the Control Unit component had in the previous 

cycle. Finally the multiplexor MuxCharacter selects in of the four values available for 

output. If the ResetQr signal is switched on, then everything written in FIFO is erased. 
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The inputs and outputs of Fetch Character component are shown in detailed in Table 

4.2. 

Index Description Size I/O 

1 NewCharacter 3 bit Input 

2 tryCharacter 3 bit Input 

3 RegControlEnable 1 bit Input 

4 RegFIFOEnable 1 bit Input 

5 MuxCharSel 2 bit Input 

6 FIFOwe 1 bit Input 

7 FIFOre 1 bit Input 

8 ResetQr 1 bit Input 

9 FIFOfull 1 bit Output 

10 FIFOempty 1 bit Output 

11 NextCharacter 3 bit Output 
   Table 4.2 Inputs and Outputs of Fetch Character Component.   

 

4.1.2 STOP Module 

STOP Module component is shown below in Picture 4.4.  

 Picture 4.4 STOP Module Component. 
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STOP Module component is the component that is responsible to inform the control unit 

if it is necessary to stop, after we have completed three misses. Block diagram of the 

component is shown in Picture 4.5. 

 

   Picture 4.5 STOP Module component block diagram. 
 

STOP Module component is consisted from two other components, CountMisses and 

WhenToStop. CountMisses holds the sum of misses that have arrived. If the amount of 

misses reach three before the sequence end, then WhenToStop component triggers the 

STOP signal. STOP signal is also triggered if CharIn is zero meaning that the sequence 

is finished. In Table 4.3 it is detailed shown inputs and outputs of the component. 

Index Description Size I/O 

1 Start 1 bit Input 

2 hitMiss 1 bit Input 

3 CharIn 3 bit Input 

4 STOP 1 bit Output 
         Table 4.3 STOP Module Component Inputs and Outputs. 
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4.1.3 Results component 

This component is responsible for synchronizing the results. In Picture 4.6 we can see 

where the component is located and in Picture 4.7 the block diagram of the component.  

 

Picture 4.6 Results component 
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Picture 4.7 Results component block diagram 

 

It consists from two registers and the component Final Result. When the STOP signal is 

switched on, then we check what the searchResult is and then give the right value to 

the output signals. In Table 4.4 it is detailed shown inputs and outputs of the 

component.  

Index Description Size I/O 

1 searchResult 1 bit Input 

2 NoOfResults 16 bit/17 bit Input 

3 STOP 1 bit Input 

4 Finish 1 bit Output 

5 searchResult 1 bit Output 

6 NoOfResults 16 bit/17 bit Output 
        Table 4.4 Result component inputs and outputs. 
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4.1.4. FindInText component 

FindInText component is the component responsible for finding if a character or a 

sequence of characters exists in the database. It is the largest component and it 

consists of four BRAMs, eight multiplexors, six registers, two adders, two subtracters, 

fourteen inputs and two outputs. In Picture 4.8 it is shown where the component is 

located in the design and in Picture 4.9 it is shown the block diagram of FindInText 

component in detail. 

 

   Picture 4.8 FindInText Component. 
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   Picture 4.9. FindInText component datapath. 
 

Firstly, BRAMs, A,C,G,T registers and the signals InitBot and InitTop are initialized. The 

value that passes through the multiplexors Top and Bot are the initTop and the initBot 

respectively. As a result, we have the initial address to start extracting values from the 

BRAMs. If we write data in the BRAMs we select the external address signals otherwise 

we select the signal that comes from multiplexor Top. Until a character arrives, the 

values are ready for multiplexors A,B and Table I to be selected from the character. 

After we have selected the correct value we pass it to the adders, and when the result is 

ready is sent to the multiplexor selecting the current value or the value the adder had in 

the previous cycle. After that we sent it through the multiplexors Top and Bot, this time 

selecting not the initialize value but the value that we have calculated and we sent it as 

an address to the BRAMs to select the next values and to the subtracter. If the result of 

the subtracter is greater than zero then we have a hit, otherwise we have a miss. Table 

4.5 shows input and output signals of the component.     
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Index Description Length I/O 

1 nextChar 3 bit Input 

2 InitTop 16 bit/17 bit Input 

3 InitBot 16 bit/17 bit Input 

4 InitCharA 16 bit/17 bit Input 

5 InitCharC 16 bit/17 bit Input 

6 InitCharG 16 bit/17 bit Input 

7 InitCharT 16 bit/17 bit Input 

8 SelTopBot 1 bit Input 

9 SelTopTop 1 bit Input 

10 SelResultBot 1 bit Input 

11 SelResultTop 1 bit Input 

12 RegEnable 1 bit Input 

13 DataInA 16 bit/17 bit Input 

14 DataInC 16 bit/17 bit Input 

15 DataInG 16 bit/17 bit Input 

16 DataInT 16 bit/17 bit Input 

17 WEA 1 bit Input 

18 WEC 1 bit Input 

19 WEG 1 bit Input 

20 WET 1 bit Input 

21 searchResult 1 bit Output 

22 NoOfResults 16 bit/17 bit Output 
         Table 4.5 FindInText Component Inputs and outputs. 

4.1.5 Design Evaluation 

After evaluating the results and observed that they are correct, we notice that we use 

1% of logic utilization, 42% of block memory utilization but having a clock frequency of 

42MHz frequency.  

Studying the results we decided to proceed with two designs, one with memories up to 

50% but fitting it twice in the FPGA and the other one with memories up to 100% and 

fitting it only once in the FPGA. The trade offs of this choice is that with small memories 

it means that we can serve genomes with smaller database but executing 8 threads 

simultaneously and with the largest memories we can serve genomes with a bigger 

sequence but executing 4 threads simultaneously. The next thing to do was to modify 

our design due to timing constraints and the low clock frequency. We inserted five levels 

of pipeline overall in the whole design which the four of them are in the FindInText 

module.  Picture 4.10 shows the pipelined design of this module and Picture 4.11 shows 

the overall pipelined design. 
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Picture 4.10 Pipelined block diagram of Find In Text module. 
 

 
 Picture 4.11 Pipelined block diagram of the overall design. 
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4.2 FSM 
In this section the brains of the design is going to be discussed. The control unit 

component controls every signal at any given time. The FSM consists of twenty five 

states. The first state, State A, is the state where the system is in Reset mode for as 

long we have switch on the Reset. When the Reset signal is turned off we move to the 

next state, State B. We remain in State B until we receive ResetQr or ResetDb. If 

ResetDb is on, then we move to State C, which is responsible for the writing of the 

database to the BRams, and we stay there until the signal FinishDb is switched on. 

When is switched on indicating that the writing of the database in the memories is 

finished and that the registers took the correct value, we move back to state B. Now if 

ResetQr is on, this time we move to State D. State D is the state responsible controlling 

the signals for loading the queries. We remain in this state until the signal FinishQr is 

switched on indicating that the query is written in memory. After we exit State D we 

move to State E where all the Read Enable signals of the system are on (Memories, 

Registers), so data can start flowing through our system. We need 10 cycles until we fill 

up our pipeline and begin to receive results. The first result comes in State N so we are 

able to check the result if it is true or not, if search result is true then we move to State K 

and load a new character but if the result is false then we pause the system and we 

move to one of the following error states, State O, P, Q or R. The movement happens 

according to what was the last character. After we select character we wait until State V 

to get the result and check it. If the result is true then we move back to State M through 

States W, X, Y and Z, if not then we move to one of the remaining error states and try 

another character until we find the correct one. The process ends when the Finish 

signal is switched on and at the same time we store the result. When we are finished we 

move to State B and wait for a new database or a new query. When Reset is turned on 

then on whatever state the system is, it returns to State A. A general layout of the FSM 

is shown below in Picture 4.12 and a more detailed in Picture 4.13.  
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Picture 4.12 General FSM Layout 
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Picture 4.13 Detailed FSM layout 
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4.3 Hardware Implementation 
 

For the hardware implementation we have use the Convey Computer HC – 1 a hybrid 

computer with FPGA’s which it was introduced in 2009. The system specifications are 

dual – socket Intel Server motherboard, Intel 5400 memory controller hub chipset, 24 

GBytes of RAM, 1066 MHz FSB, 2.13 GHz Xeon, a quad – core, low – voltage 

processor and four VIRTEX – 55 LX 330s. In the picture below we can see the 

configuration of HC – 1 [46], [47], [48]. 

  Picture 4.14 Convey Computer HC – 1 configuration. 

 

To be able to connect our design with the Convey HC – 1, we wrote C and Verilog code 

(Wrapper), were we read the input files and then we send them to the design. The 

design clock frequency that we achieved is 227MHz for the small design and 198MHz 

for the big design and the actual clock frequency that we achieved is 128MHz for the 

small design and 116MHz for the big one. This is due mapping and routing on the 

FPGA. In picture 4.15 we can see the designs that we have implemented and 

connected on Convey HC – 1 platform.   
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Picture 4.15 Left: System with one design on every FPGA. Right: System with two designs on 
every FPGA.  
 

Another important subject for discussion is the device utilization summary. Below, in 

Table 4.6, we can see the logic used by the two designs after we have synthesized 

them on a Virtex 5 XC5VLX330 FPGA, and after on the Convey HC – 1. 

 Design for 60K Characters Design for 100K Characters 

XC5VLX330 Convey HC – 1 XC5VLX330 Convey HC – 1 

Number of 
occupied Slices 

542/51840 1% 30103/521840 58% 850/51840 1% 25192/51840 48% 

Number of 
BRAM/FIFO 

121/288 42% 288/288 100% 197/288 68% 257/288 89% 

Number of 
DSP’s 

0/192 0% 0/192 0% 0/192 0% 0/192 0% 

Table 4.6 Device Utilization Summary. 
 

After we have examined Table 4.6 we came to the conclusion that the Convey HC – 1 

needs another 53% on average of Logic and 20% of BRAMs for the connection to our 

design. The reason that logic utilization of the small design is more than the big design 

is because the small design is placed twice on every FPGA. The extra memory and 

logic allocation is due to the extra verilog code, 1 FSM for every port we use, we wrote 

to read data from different ports of the memory controller. Totally we use 6 out of the 16 

available ports for the big design and 12 out of 16 for the small design. We could use 

less memory controllers, meaning using less logic, but in this way we can transfer data 

much faster.  
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Chapter 5 

Results 
In this Chapter we are going to discuss about the results, how did they occur and their 

meaning. 

5.1 Validation 
To ensure the correct functionality of our design we aligned, firstly, some of our own 

examples and, afterwards, reads from the NCBI both to the software design and to our 

design. Once we got the results from both designs, extracting them in text files, we read 

them using a script written in MATLAB and compare the results. 

For the execution of our experiments and the creation of the database files we used the 

NC_00978C.fna, a FASTA file containing the complete sequence of Escherichia coli 

E24377A plasmid pETEC_80, for the 100.000 characters design and the 

NC_017647.fna, a FASTA file containing the complete sequence of Escherichia coli 

07:K1 str. CE10 plasmid PCE10A, for the 60.000 characters design. In Table 5.1 we 

can see the files for the queries that we used.  

Number of queries Files 

1.000 SRR000001.sra SRR000135.sra 

10.000 SRR000004.sra SRR000920.sra 

100.000 SRR000066.sra SRR001316.sra 

500.000 SRR005039.sra SRR011186.sra 

1.000.000 SRR029691.sra SRR023975.sra 

10.000.000 SRR029703.sra SRR036755.sra 

100.000.000 SRR036753.sra SRR388772.sra 
Table 5.1. List of SRA files that we used. 
 

The sra files need processing with the SRAtoolkit, transforming them to FASTQ for 

running and on software and on hardware. All files are located in the NCBI database 

and are free for downloading and using. 

5.2 Analysis and Comparison 
We compare our results to the Bowtie software tool used for mapping DNA sequences. 

We executed the Bowtie software tool selecting full sensitivity, allowing three 

mismatches, using the Convey HC – 1. Table 5.2 shows the specifications of CPU 

running bowtie and our implementation. 
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 CPU 

CPU Type Xeon 5138 

Number of Cores Quad Core 

Memory Size 24GB 

Frequency 2.13 GHz 
   Table 5.2 Convey HC – 1 specifications. 

 

We measured the execution time of searching 111 million reads in total with length 36 to 

1024 base pairs on each design.   

On each design we have tested seven query files, executing on hardware and on 

software. The files include a range from 1.000 to 100.000.000 respectively. The 

measurements that we took for the 60.000 Characters design are shown in Table 5.3 

and for the 100.000 Characters design are shown in Table 5.4.  

Number of 
Queries 

60K Design Time 
(sec) 

Bowtie Software 
Tool (sec) 

Speed Up 

1.000 0,00576 0,054128 9,40 

10.000 0,025074 0,291998 11,65 

100.000 0,217123 2,786437 12,83 

500.000 1,089616 13,573387 12,46 

1.000.000 2,113375 27,883339 13,19 

10.000.000 21,247458 354,40833 16,68 

100.000.000 212,990961 3281,239732 15,41 
Table 5.3 Execution times comparing our 60.000 Characters Design versus Bowtie Software Tool. 
 

Number of 
Queries 

100K Design Time 
(sec) 

Bowtie Software 
Tool (sec) 

Speed Up 

1.000 0,007977 0,054343 6,81 

10.000 0,036598 0,278742 7,61 

100.000 0,324073 2,722579 8,40 

500.000 1,563452 18,095577 11,57 

1.000.000 3,114806 27,729114 8,90 

10.000.000 31,514343 302,813397 9,61 

100.000.000 314,692125 3213,217386 10,21 
Table 5.4 Execution times comparing our 100.000 Characters Design versus Bowtie Software Tool. 
 

In the execution times above for our designs we aggregate and the time for loading the 

database which is 0,004218 sec for the small design and 0,005295 for the big one. 

Studying the results from the tables above we can see that our designs are faster from 

the Bowtie software tool achieving a 6x-16x speed up. In this speed up our design starts 

to make the difference processing files with content more than 500.000 queries and we 

can see that as long as the queries increases the speed up increases.  
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In figure 5.1 below it is shown the execution time of the bowtie software tool comparing 

to our design of 60.000 characters and figure 5.2 shows the execution time of the 

bowtie software tool comparing to our design of 100.000 characters.  

 
 
Figure 5.1. Execution time of 60K Characters design comparing to Bowtie Software Tool.  
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Figure 5.2. Execution time of 100K Characters design comparing to Bowtie Software Tool. 

 

The 60.000 Characters design is faster than the 100.000 Characters design, as 

expected, because of larger clock frequency and for the reason that the design runs 

twice on every FPGA. Figure 5.3 shows the speed up that we achieved comparing our 

two designs. 
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Figure 5.3. Comparing our two designs by the achieved Speed Up.  

  

5.3 Related Work 
We have compare our design with the designs appeared in [21], Design 1, and [20], 

Design 2. From the results we can see that we are slower from both implementations. 

Comparing our design to Design 1 we can see that our FPGA has half the number of 

Slices and one third of BRAMs from the FPGA used in Design 1. Also we both use the 

Escherichia coli database but we use a bigger range size on query length. Another 

difference is that our implementation supports three mismatches and Design 1 supports 

none. The differences between our design and Design 2 is that the memory on our 

Convey is a lot less, and again we use a bigger range size on query length. Table 5.5 

shows the differences of the three designs in a brief. 
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 TUC Design Riverside 
Design 1 

Riverside 
Design 2 

FPGA XC5VLX330 XC6VLX760 XC5VLX330 

Number of Slices 51480 118560 51480 

Number of BRAM/FIFO 288 720 288 

CPU Type Xeon 5138 - Xeon L540B 

CPU Frequency 2.13GHz - 2.13GHz 

Memory 24GB - 192GB 

Algorithm functionality Search Limited Search Search 

Database Escherichia coli Escherichia coli Chromosome 14 

Queries Length 36-1024 36-108 101 

Speed Ups 6x-16x 124x-196x 7x-70x 
Table 5.5 Comparing our design with Design 1 and Design 2 of Riverside. 
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Chapter 6 

Conclusions & Future Work 
Chapter 6 talks about final conclusions and future work. 

6.1 Conclusions 
In this diploma thesis we have studied and analyzed the methods of Burrows and 

Wheeler Transformation, FM – Index and short read mapping algorithm Bowtie. Then 

we  designed it on hardware and implemented it. Our design running on a Convey HC – 

1 platform was faster than Bowtie on the same platform. Bowtie algorithm loses of 

speed when the sequence is not correct and tries to replace the wrong character with 

the correct one, when it finishes the processing of a sequence and tries to move to the 

next one and finally as long as the short reads size increases the performance of the 

algorithm decreases. We can align databases up to 100.000 characters long serving 

mostly bacteria such as Escherichia coli, Enterococcus, Enterobacter, Acetobaster 

pasteurianus etc. Furthermore, you can work easily from your office on the Convey HC 

– 1 platform, the output results come right out on the terminal on your desktop with no 

further equipment needed and finally, many problems can be solved easily and quick 

using the tools that come along with the platform.    

6.2 Future Work 
Some further work on this diploma thesis could be: 

1) Further analyze of Bowtie so more functionalities of the algorithm can be 

implemented such as aligning colorspaces. 

2) Using FM – Index and BWT on existing designs for improving their performance not 

only in Bioinformatics but also in Networking, Systems, Software etc. 

3) Improving the architecture design in order to improve the clock frequency. 

4) Improving the architecture design and the memory design in order to serve bigger 

databases.  

5) Improving the code written in verilog in the wrapper of the Convey platform in order to 

decrease the logic and memory utilization. 

6) Try to implement the resource demanding functions in hardware of the algorithm and 

not a whole functionality.  
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Appendix A 

MATLAB code for processing input 

data. 
 

A.1 Code for processing database files 
 

%% Open and read file 
disp('Reading Database...') 
pause on 
pause off 
[fileID, message]=fopen('database1.txt'); 
A=fscanf(fileID,'%s'); 
fclose('all'); 
disp('Read Database succesfully!') 
pause on 
pause off 

  
%% Procedure BWT 
tic; 
disp('Starting...') 
pause on 
pause off 
BWT=CreateBWT(A); 
disp('BWT Created!') 
disp('Sorting...') 
pause on 
pause off 
SBWT=CreateSBWT(BWT); 
disp('Sorted!') 
disp('Creating Table I...') 
pause on 
pause off 
TableI=CreateTableI(SBWT); 
%clear SBWT; 
disp('Table I Created!') 
disp('Creating Table C...') 
pause on 
pause off 
TableC=CreateTableC(BWT); 
%clear BWT; 
disp('Table C Created!') 
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pause on 
pause off 
TotalTime=toc/60; 
disp(['BWT Procedure Total Execution Time=',num2str(TotalTime),'mins']) 
pause on 
pause off 

  
%% Export .txt file importing in C with all values 

  
MemoryWidth=16; 
largest=max(max(TableC)); 
bits=ceil(log2(largest)); 

  
MemoryDepth=16384; 

  
tic; 
disp('Creating BowtieValues.txt...') 
pause on 
pause off 
fileID=fopen('BowtieValues.txt','w'); 
FilesOk=CreateTxtFile(fileID,TableC,MemoryWidth,MemoryDepth,TableI); 

  
if FilesOk>0 
    disp('BowtieValues.txt file was created succesfuly!') 
    pause on 
    pause off 
else 
    disp('There was an error creating BowtieValues.txt file!') 
end 

  
TotalTime=toc/60; 
disp(['Creating .txt file Total Execution Time=',num2str(TotalTime),'mins']) 
pause on 
pause off 

 

function BWT=CreateBWT(TextStream) 

     
    %Copy the Stream into a temporary variable 
    disp('Copy the Stream into a temporary variable...') 
    pause on 
    pause off 
    for i=1:max(size(TextStream)) 
        temp(i)=TextStream(i); 
    end 

     

     
    %Put Character $ at the end 
    disp('Put Character $ at the end...') 
    pause on 
    pause off 
    temp(max(size(TextStream))+1)='$'; 

     
    %Initialize table SuffixArray 
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    disp('Initialize table SuffixArray...') 
    pause on 
    pause off 
    for i=1:max(size(temp)) 
        for j=1:max(size(temp)) 
            SuffixArray(i,j)='A'; 
        end 
    end 

     
    %Copy on the first row of Suffix Array the Text Stream after we 
    %inserted character $ 
    disp('Copy on the first row of Suffix Array the Text Stream after we 

inserted character $...') 
    pause on 
    pause off  
    for i=1:max(size(temp)) 
        SuffixArray(1,i)=temp(i); 
    end 

    
    %Fill the rest rows by rotating the last letter every time 
    disp('Rotating...') 
    pause on 
    pause off  
    for j=2:max(size(temp)) 
      SuffixArray(j,max(size(temp)))=SuffixArray(j-1,1); 
      for i=max(size(temp)):-1:2 
        SuffixArray(j,i-1)=SuffixArray(j-1,i); 
      end 
    end 

         
    %Sort lexicographicaly the rows of suffix array 
    disp('Sort lexicographicaly the rows of suffix array...') 
    pause on 
    pause off  
    sortedSuffixArray=sortrows(SuffixArray); 

     
    %Export BWT 
    disp('Exporting BWT...') 
    pause on 
    pause off  
    for i=1:max(size(temp)) 
        temp2(i)=sortedSuffixArray(i,max(size(temp))); 
    end 

     
    for i=1:max(size(temp)) 
        BWT(i)=temp2(i); 
    end 

     
end 

 

function SBWT=CreateSBWT(BWT) 

     
    %Sort BWT sequence and export SBWT 
    SBWT=sort(BWT); 
    SBWT 
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end 

 
function TableI=CreateTableI(SBWT) 

  
    sumA=0; 
    sumC=0; 
    sumG=0; 
    sumT=0; 
    sum=0; 

     
    %Fill TableI 
    %Check for the character and increase sum by 1 
    for i=2:max(size(SBWT)) 
        if(SBWT(i)=='A') 
            sumA=sumA+1; 
        elseif (SBWT(i)=='C') 
            sumC=sumC+1; 
        elseif (SBWT(i)=='G') 
            sumG=sumG+1; 
        elseif (SBWT(i)=='T') 
            sumT=sumT+1; 
        else 
            sum=sum+1; 
        end 
    end 

     
    %Insert the calculated values into TableI 
    TableI(1)=1; 
    TableI(2)=TableI(1)+sumA; 
    TableI(3)=TableI(2)+sumC; 
    TableI(4)=TableI(3)+sumG; 

  
End 

 

function TableC=CreateTableC(BWT) 

  
    sumA=0; 
    sumC=0; 
    sumG=0; 
    sumT=0; 
    sum=0; 

     
    %Fill TableC 
    for i=1:max(size(BWT)) 

         
        TableC(i,1)=sumA; 
        TableC(i,2)=sumC; 
        TableC(i,3)=sumG; 
        TableC(i,4)=sumT; 

         
        %Check the character and increase sum by 1 
         if(BWT(i)=='A') 
            sumA=sumA+1; 
        elseif (BWT(i)=='C') 
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            sumC=sumC+1; 
        elseif (BWT(i)=='G') 
            sumG=sumG+1; 
        elseif (BWT(i)=='T') 
            sumT=sumT+1; 
        else 
            sum=sum+1; 
         end 
    end 

     
    %Insert the calculated values into the next row of TableC 
    TableC(i+1,1)=sumA; 
    TableC(i+1,2)=sumC; 
    TableC(i+1,3)=sumG; 
    TableC(i+1,4)=sumT; 
  end 

 

 

A.2 Code for processing short read files 

A.2.1 Code for processing fasta files 

 

%% Read .fasta file and write it on .txt file 
InfoStruct=fastainfo('e_coli_1000.fa'); 
FASTAData=fastaread('e_coli_1000.fa'); 
[header, sequence]=fastaread('e_coli_1000.fa'); 

  
fileID=fopen('FastaQuery.txt','w'); 

  
if fileID>0 
    disp('FastaQuery.txt file was created succesfuly!') 
    pause on 
    pause off 
else 
    disp('There was an error creating FastaQuery.txt file!') 
end 

  
fprintf(fileID,'%s\r\n',FASTAData.Sequence); 
fclose(fileID); 

 

%% Read the .txt file we write above 

  
disp('Reading Query...') 
pause on 
pause off 
[fileID, message]=fopen('FastaQuery.txt'); 

  
tline=fgetl(fileID); 
ActualquerySize=max(size(tline)); 
i=1; 
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while ischar(tline) 

     
    for j=1:ActualquerySize 
        queries(i,j)=tline(j); 
    end 
    tline = fgetl(fileID); 
    i=i+1; 
end 

  
fclose('all'); 
disp('Read Query succesfully!') 
pause on 
pause off 
 

%% Write to .txt in convey form 

  
No_Of_Queries=InfoStruct.NumberOfEntries; 
querySize=1024; 
fileID=fopen('MyQueryFa.txt','w'); 
FilesOk=CreateQueryFileFa(fileID,queries,querySize,ActualquerySize,No_Of_Quer

ies); 

  
if FilesOk>0 
    disp('MyQueryFa.txt file was created succesfuly!') 
    pause on 
    pause off 
else 
    disp('There was an error creating MyQueryFa.txt file!') 
end 

 

function 

fid=CreateQueryFileFa(fileID,queries,querySize,ActualquerySize,NoOfQuerries) 

  
%Read and rewrite backwards every sequence and replace each character 
%with is equivalent integer 
for i=1:NoOfQuerries 
    for j=1:ActualquerySize 
        if queries(i,j)=='A' 
            temp(i,ActualquerySize+1-j)=1; 
        elseif queries(i,j)=='C' 
            temp(i,ActualquerySize+1-j)=2; 
        elseif queries(i,j)=='G' 
            temp(i,ActualquerySize+1-j)=3; 
        else 
            temp(i,ActualquerySize+1-j)=4; 
        end     
    end 
end 

  
 %First line is the number of queries 
 fprintf(fileID,'%d\r\n',NoOfQuerries); 

  
 %Write the query 
 for j=1:NoOfQuerries 
     for i=1:ActualquerySize 
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        fprintf(fileID,'%d\r\n',temp(i)); 
     end 

  
     fprintf(fileID,'%d\r\n',0); 
end 

  
fclose(fileID); 
fid=fileID; 
end 

 

 

A.2.2 Code for processing fastq files 

 

%% Read .fastq file and write it on .txt file 
FASTQStruct = fastqread('DRR000019.fastq'); 
[Header, Sequence] = fastqread('DRR000019.fastq'); 

  
No_of_FastQ_Queries= max(size(FASTQStruct)); 

  
x=FastQFiles(FASTQStruct,No_of_FastQ_Queries); 

  
if x>0 
    disp('MyQueryFq.txt file was created succesfuly!') 
    pause on 
    pause off 
else 
    disp('There was an error creating MyQueryFq.txt file!') 
end 

 

function fid=FastQFiles(FASTQStruct,No_Of_Queries) 

  
    %% Read .fastq file and write it on .txt file 
    fileID=fopen('FastqQuery.txt','w'); 
    fprintf(fileID,'%s\r\n',FASTQStruct.Sequence); 
    fclose(fileID); 

     
    %% Read the .txt file we write above 
    disp('Reading Query...') 
    pause on 
    pause off 
    [fileID, message]=fopen('FastqQuery.txt'); 

  
    %Initialize index table with zeros 
    index=zeros(max(size(FASTQStruct)),1)   ; 
    tline=fgetl(fileID); 
    ActualquerySize=max(size(tline)); 
    i=1; 

     
    %Read the characters from the file and place them in a table, and also 
    %save in index table how many characters are they. Some times queries 
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    %inside fastq files are not the same length. 
    while ischar(tline) 

         
        ActualquerySize=max(size(tline)); 
        index(i,1)=ActualquerySize; 
        for j=1:ActualquerySize 
            queries(i,j)=tline(j); 
        end 
        tline = fgetl(fileID); 
        i=i+1; 
    end 

  
    fclose('all'); 
    disp('Read Query succesfully!') 
    pause on 
    pause off 
    %% Writing .txt file in convey form 
    size(index); %[11052 1]; 
    fileID=fopen('MyQueryFq.txt','w'); 

     
    disp('Converting chars to integers and reversing...') 
    pause on 
    pause off 
    for i=1:No_Of_Queries 
    for j=1:index(i,1) 
        if queries(i,j)=='A' 
            temp(i,index(i,1)+1-j)=1; 
        elseif queries(i,j)=='C' 
            temp(i,index(i,1)+1-j)=2; 
        elseif queries(i,j)=='G' 
            temp(i,index(i,1)+1-j)=3; 
        else 
            temp(i,index(i,1)+1-j)=4; 
        end     
    end 
    end 
    temp; 
    disp('Writing .txt file...') 
    pause on 
    pause off 
    %First line is the number of queries 
     fprintf(fileID,'%d\r\n',No_Of_Queries); 

  
     %Write the characters 
     for j=1:No_Of_Queries 
         for i=1:index(j,1) 
            fprintf(fileID,'%d\r\n',temp(i));    
         end 

  
       %Put a zero at the end   
         fprintf(fileID,'%d\r\n',0); 
     end 

  
    disp('.txt file was created succesfully!!!!') 
    pause on 
    pause off 
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    fclose(fileID); 
    fid=fileID; 
end 
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Appendix B 

C code for reading text files we 

created in MATLAB 
 

#include <stdio.h> 

int main ( void ) 

{ 

    //Open txt file for reading, and count the lines so we now how big  

    //to make the arrays 

 FILE* myfile = fopen("BowtieValues.txt", "r"); 

 int ch, number_of_lines = 0; 

 

 do { 

     ch = fgetc(myfile); 

     if(ch == '\n') 

      number_of_lines++; 

 } while (ch != EOF); 

 fclose(myfile); 

/****************************************************************************

*/  

//Reading DataBase 

int i = 0, a=0; 

 int values[7]; 

 int top,bot,CharA,CharC,CharG,CharT,depth; 

 

int *numbers = (int*)malloc(sizeof(int)*number_of_lines); 
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//Read the file and store the elements in variables 

static const char filename[] = "BowtieValues.txt"; 

    FILE *file = fopen ( filename, "r" ); 

 

    for (i=0;i<=number_of_lines;i++) 

    { 

      if(i<7){ 

       fscanf(file,"%d",&values[i]); 

   } 

   else{ 

   fscanf(file,"%d",&numbers[a]); 

   a++; 

   } 

    } 

    fclose(file); 

/*********************************************************************/ 

 

 myfile = fopen("MyQuery.txt", "r"); 

 ch, number_of_lines = 0; 

 do { 

     ch = fgetc(myfile); 

     if(ch == '\n') 

      number_of_lines++; 

 } while (ch != EOF); 

 fclose(myfile); 

/***********************************************************************/    

  // Reading query 

     i = 0, a=0; 

    int querySize;   

    int *query = (int*)malloc(sizeof(int)*(number_of_lines-1)); 
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    static const char filename2[] = "MyQuery.txt"; 

    FILE *file2 = fopen ( filename2, "r" ); 

 

    for (i=0;i<=number_of_lines;i++) 

    { 

      if(i<1){ 

       fscanf(file2,"%d",&querySize); 

   } 

   else{ 

   fscanf(file2,"%d",&query[a]); 

   a++; 

   } 

    } 

    fclose(file);   

 

 

 

 

 

 

 

 

 

  


