TECHNICAL UNIVERSITY OF CRETE, GREECE

SCHOOL OF ELECTRONIC AND COMPUTER ENGINEERING

Private Data Analytics in Cloud Computing
Environments

Demertzis loannis

Thesis Committee
Professor Minos Garofalakis (ECE)
Assistant Professor Antonios Deligiannakis(ECE)
Professor Stavros Christodoulakis (ECE)

Chania, October 2013

http://www.tuc.gr
http://www.ece.tuc.gr

loannis Demertzis ii October 2013

[IOAYTEXNEIO KPHTHY

Y XOAH HAEKTPONIKON MHXANIKON KATI MHXANIKON TTIOAOTISTON

Avdivon Ilpoocwnixwv Asdouevwy oc
CUC TAUATA VEQWY UTTOAOYLC TV

[wdvyne Agueptliic

EZetaoting Emtpony
Kod. Mivee T'apogardxne (HMMTY)
Enx. Koad. Avtdvioc Aehnytavvéxne (HMMTY)
Ko, Etadpoc Xptotodovhdxne (HMMTY)

Xawid, OxteBelog 2013

http://www.tuc.gr
http://www.ece.tuc.gr

loannis Demertzis v October 2013

Abstract

The term of Cloud Computing is frequently encountered, since it offers a variety of com-
puting features, such as services and resources, that are delivered over the Internet to the
service provider’s infrastructure. What makes cloud computing appealing is the reduced
cost, as well as benefits, such as scalability and elasticity. However, it is noted that cloud
computing is preferred by applications that use less sensitive data, because security issues
have not been yet completely resolved, with respect to efficiency. Approaches proposed
by different scientific fields have tried to eliminate this problem and provide the desirable
efficiency and security guarantees. Although improvements have been made to privacy
preserving queries, few concern privacy preserving range queries.

This thesis suggests an encryption scheme that allows the execution of range queries
on encrypted data in an efficient and secure manner. We assume that the adversary
has statistical information about the distribution and the domain of the values, as well
as that he is honest but curious. Regarding the efficiency of our approach, we answer
range queries at logarithmic computation cost and without revealing the order of the ci-
phertexts, by using the dyadic intervals technique. Furthermore, our encryption scheme
satisfies strong security definitions provided by the Crypto community and resolves com-
plex and practical issues, such as the Query Access Pattern problem and the protection
against statistical attacks. To the best of our knowledge this work is the first that si-
multaneously satisfies the desirable efficiency and privacy guarantees, while dealing with

severe and complex issues in the case of privacy preserving range queries.

loannis Demertzis vi October 2013

ITepiindn

To Cloud Computing etvor €vog 6pog ToU CUVAVTAPE CUY VA, xadne Tapéyel o Toxth{-
o and UTnpeeoiec xou TOEOLS, Ta OTold TEOCPEPOVTAL UG TOU BLUBIXTOOU GTIC UTOBOUES
TV ToEOY WY UTNEEC®Y. Exetva mtou xadiotodv to Cloud Computing deheactind etvor to
UELOUEVO XOGTOG, XadG X OQEAY), OTWS 1) EAXC TIXOTNTA Xa 1) EMEXTAUCLUOTNTA. Tlop” Ohat
QUTA, OMUELWVETAL OTL 1) CUYXEXQUIEVT] TEY VoroYid TROTIUATOL ATtd EQUPUOYESC TTOU BEV YENOL-
Homololy ualoUnta Bedouéva, xodng dev €youy emavdel oha T {nTrpota Tou oyeTilovto
UE TNV TeooTacior TwV SE00UEVKY auT®Y, haudvovtac urddn o Ty anddoor. Teyvixéc
Tou €youv mpoTael amd BLaUPOPETIXG EMO TNOVIXE Tedlar €youy TpooTalioel Vo eCahelpouy
TO TOEUTAVE TEOBANUA XU VoL TUREYOUY TNV ETIUUNTY ATOTEASCUATIXOTNTO X TIC Aopa-
TNTEC EYYVUHOELS ao@dhetag. Av xon £youy onuetwiel BEATIOOEIC OYETHE UE EMEPWTHOELS OF
amoVNHEVPEVOL LOLWTIXG BEBOPEVA, ALYEC OO AUTEC APOPOLUY EMEQHTACELS EVEOUC.

H ouyxexpiuévn dimAouatin] TeoTelVEL EVa OYEDO XPUTTOYQRAPNONG TOU EMLTEETEL TNV
EXTEAEDT) EMEPWTHOEWY EVPOUG OF XPUTTOYQUPTUEVO DEDOUEVY, ATOTEAEOUNTIXG UAAS Tou-
TOYPOVLS Xl e aopdieta. Trodétouue 6Tl 0 avtinorog dladétel oTatio Tnég TANPOPOpieg
TIOL 0POEOVY TNV XATUVOUT X0 TO TESIO OPLOUOU TV BEBOUEVLV, EVK O (Blog Efval elAtxELVAS,
oAAd Teplepyoc. ‘Ocov apopd TNV AMOTEAEGUATIXOTNTA TN TROCEYYIONG KOG, 1) ATAVTNOY OE
emepwThoelg e0poug Yivetar o hoyoprduixd x0GTOC UTOAOYIOHOU Xal Y0l TNV amoxdiudn
NG OLETAENS TV XPUTTOYRAPTUEVLY BEBOUEVWY, UE TN YENON TNG TEYVIXNAS TWV dUABIXMY
0évTpwy. Emmhéov, 10 TpoTEWVOUEVO GYEDLO XPUTTOYEAPNONS EYYUTHUL LoYUEOUS OPLOUOUS
ACPUAELNG IOV TIOREYOVTAL OO TNV XOWOTNTA TNG XEUTTOAOYIOG o ETAVEL TEpimhoXa X
eEMo TS {NTAATA, OTWE TO TEOTUTO BLAGYLONG EPWTNUATWY Xl TNV TeooTaola anévavTt
o€ EMWECELS TIOL £Y0UV KOG GTOYO TNV BLIPEOT| TNG XUTAVOUNG TWV DEBOUEVWY. LUUPOVA
UE Ta 6oa YVoRILOUUE €we TOPA, 1) CUYXEXPUEVY GOVAELL Eivol 1) TEMT TOU TAUTOYEOVA
metuyadvel TNV emJuUNTY AMOTEAEOUUTIXOTNTA XU EYYUATAUL TNV ATOUTOVUEVY] ACPIAELYL, €-
Vo) avTipeToniler oofBapd {nTAUAT, OTNY TERITTWON TWV ETEPWTNOEWY EVEOUC EMAVL OE

AmOVNHEVPEVAL LOLWTIXG DEDOUEVAL.

loannis Demertzis viii October 2013

Acknowledgements

First of all, I would like to express my sincere gratitude to my advisor, professor Minos
Garofalakis, for initiating me to the world of encryption, supervising and motivating me.
I would also like to thank assistant professor Antonios Deligiannakis for his cooperation,
support and our fruitful discussions.

[remember the encouragement and the knowledge that professor Stavros Christodoulakis
gave me in the area of Databases, and not only, and for that I would like to thank him.

Next, I am deeply grateful and I acknowledge the time that doctor Odysseas Pa-
papetrou spent, in order to guide me throughout this whole process, as well as for his
thoughtful and detailed comments.

My parents, Michalis and Chrysanthi, as well as my younger brother, Athanasios-
Rafail who stood by me and therefore I would like to thank them for their love and
compassion.

I am thankful to my precious Sofia Nikolakaki who has been encouraging and sup-
porting me a lot, in the last few years.

Last but not least I would like to thank my good friend I. Perros, for the hours in the
office we spent together that passed so pleasantly, as well as all my friends, M. Alimpertis,
F. Abatzi, K. Douzis, N. Kofinas, T. Magounaki, D. Makris, K. Makris, A. Markopoulos,
M. Orfanoudakis, D. Paliatsa, N. Pavlakis, A. Soula, E. Soulas and G. Vlachantonis, for

all the moments, surprises and experiences that we have shared together.

loannis Demertzis X October 2013

Contents

1 Introduction
1.1 Thesis Contribution
1.2 Thesis Outline

2 Background 5
2.1 Encryptiono 5)
2.1.1 Nondeterministic and Deterministic Encryption Schemes 6
2.1.2 Security of Encryption Schemes 8
2.1.2.1 Shannon’s definition of Security and Semantic Security . 9
2.1.2.2 Indistinguishable under chosen plaintext attacks

(IND-CPA) 11

2.1.2.3 Indistinguishable under distinct chosen plaintext attacks
(IND-DCPA) 12

2.1.2.4 Indistinguishable under ordered chosen plaintext attacks
(IND-OCPA) 13
2.1.3 Block ciphers 15
2.2 Adversary Models 19
2.3 Dyadic Intervalso 20
3 Problem Statement and Related Work 23
3.1 Privacy Preserving Range Queries 23
3.1.1 Identifying the problem 23
3.1.2 An ideal Privacy Preserving Range Query Approach 26
3.2 Related Worko 26
3.2.1 Homomorphic and Fully Homomorphic Encryption 26
3.2.2 Order Preserving Encryption Approaches 28

loannis Demertzis xi October 2013

CONTENTS

3.2.3 Bucketization Approaches 32

3.2.4 Distribution instead of Encryption Approaches 35

3.2.5 Tamper-Resistant Trusted Hardware 37

4 Owur Approach 39
4.1 Architecture 40
4.2 Security levelo 42
4.3 Query Access Pattern Problem 0. 44
4.3.1 Single Server Approach L. 45

4.3.2 Two-Server Approach 46

4.3.3 k-Server Approach 47

4.3.4 LogN-Server and 2LogN-Server Approach 49

4.4 Distributiono 51
4.5 Updates 54

5 Conclusion and Future Work 61
5.1 Conclusion 61
5.2 Future Work 62

6 Appendix 63
6.1 Appendix A 63
6.2 Appendix B 66
References 72

Joannis Demertzis

xii

October 2013

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Encryption and Decryption 6
Nondeterministic Encryption Scheme(AES + CBC + random IV) 7
Deterministic Encryption Scheme(AES + CBC + constant IV) 8
Cipher Block Chaining (CBC) mode encryption 16
Cipher Block Chaining (CBC) mode decryption 17
Counter (CTR) mode encryption 18
Counter (CTR) mode decryption 19
Dyadic Interval tree 21
Gartner’s statistical study on concerns about the use of a Public Cloud . 24
Trade-off between functionality-performance and confidentiality-privacy . 25
Paillier’s cryptosystem oo 27
Fully Homomorphic Encryption Model 27
OPE schemes 29
Overview of mOPE’s data structure 29
Data storage model of the Hore architecture 33
Example of Shamir’s Secret Sharing Algorithm 36
Dyadic tree 41
Distributed Dyadic tree in 2 servers 48
Distributed Dyadic tree in LogN servers 49
Distributed Dyadic tree in 2LogN servers 50
Ist-level index L 54
2nd-level indexo 55
Update storage policy (2nd-level index) 57
Update storage policy hiding the order (2nd-level index) 59

loannis Demertzis xiii October 2013

LIST OF FIGURES

loannis Demertzis xiv October 2013

Chapter 1

Introduction

Cloud computing is regarded as a swiftly emerging computing trend, since its usage has
rapidly increased throughout the last few years. This augmented interest has appeared
due to benefits that cloud computing offers, such as scalability and elasticity, the cost re-
duction for small and medium businesses, the easy access on data that has been stored. In
general, early adopters are low risk applications that involve less sensitive data and there-
fore it is not common to move private data to the cloud side yet. It is essential that we first
resolve all security issues and that privacy is guaranteed at all times. In order to succeed,
no information should be provided to the server about the actual values of the data that
has been stored and that’s why encryption is implemented on the client side before up-
loading the data; querying takes place on the encrypted data without requiring decryption
(on the cloud side). Recent work on fully homomorphic encryption has allowed the exe-
cution of arbitrary computations on encrypted data but with a prohibitively high cost on
performance, that makes it impractical. Another more practical approach to the problem
suggests the use of Partial Homomorphic Encryption (PHE), in order to be able to per-
form certain functions. More specifically PHE allows us to sum and multiply the values of
plaintexts, while in encrypted form, using Paillier (Dec(Enc(ml) * Enc(m2) mod n?) =
ml + m2 mod n) and ElGamal (Dec(Enc(ml1)™ mod n* = ml x m2 mod n) cryp-
tosytems, respectively. However, the above cryptosystems are quite expensive, indicating
that we need to start taking into account more practical solutions, such as Nondeter-
ministic Encryption, Deterministic Encryption and finally Order-Preserving-Encryption
(OPE). The first provides no functionality over the encrypted data since it produces
different ciphertexts for the same plaintext (e = b < Enc(a) <> Enc(b)) but at the

loannis Demertzis 1 October 2013

1. INTRODUCTION

same time it provides strong security guarantees. The second allows us to check whether
2 plaintexts are equal by checking whether their corresponding ciphertexts are equal
(a =b < Enc(a) = Enc(b)). Finally, the latter allows the execution of order operations
on plaintexts, such as range queries and can perform the same operations on ciphertexts
in a similar manner (a <= b < Enc(a) <= Enc(b)). Consequently little change on the
existing software is needed, i.e. easier adaptation and better performance is achieved but
at the same time the security level is being degraded. Any order-preserving encryption
is not secure against tight estimation exposure, if the adversary can guess the domain,
knows the distribution of values in that domain, is able to construct a mapping between
ordered ciphertexts and plaintexts. The above indicates a weakness of all OPE schemes,
a weakness that may reveal order information to an untrusted server. Also, besides the
recent work of MIT, mOPE;, all previous OPE schemes allowed further information leak-
age, in addition to order. Hence, it is necessary to construct a cryptographic scheme that
will let us execute range queries efficiently without revealing the order of the ciphertexts

and without allowing any leakage.

1.1 Thesis Contribution

In this work, we propose an encryption scheme that allows the execution of range queries
on encrypted data in an efficient and secure manner. Our approach can answer range
queries in logarithmic cost in the dataset size, by using the dyadic intervals technique.
Furthermore, our approach satisfies strong security definitions provided by the crypto
community, the IND-CPA and IND-DCPA definitions, depending on what is being en-
crypted. Our encryption scheme also deals with and resolves complex and practical
problems, such as the Query Access Patterns issue and the protection against statistical
attacks that aim to Distribution leakages. Therefore, it is targeted for real life applications
and conditions. Regarding the efficiency of our technique compared to other approaches,
such as in Order Preserving Encryption Schemes, it is worth noting that in our case the
required efficiency level is reached without revealing the order of the ciphertexts, while
in other cases security is relative, depending on how much we want to improve efficiency.
Moreover our technique does not assume the existence of trusted hardware in the Cloud
Infrastructure, which also strengthens our claim that our encryption scheme can be eas-

ily adapted to the real world requirements. Finally, our encryption structure allows the

loannis Demertzis 2 October 2013

1.2 Thesis Outline

execution of updates under some assumptions and could form the base for more complex

queries at logarithmic cost.

1.2 Thesis Outline

Chapter 2 presents basic notions of encryption, followed by more detailed descriptions
about two block cipher schemes, the Cipher Block Chaining Mode and the Cipher Block
Counter Mode, that are used in our approach. At the end of this chapter the concept of
Dyadic Intervals is analyzed, since it is the structure that we use in order to organize the
data in the cloud. Chapter 3 deals with the problem of how to execute privacy preserving
range queries. In particular, the related work that studies the above problem is outlined,
with the most commonly practiced approaches being the Order Preserving Encryption
Approaches, introduced by the crypto community. In Chapter 4 we discuss in detail our
approach that focuses on how to answer encrypted range queries in a guaranteed secure
manner, without revealing the order of ciphertexts. More specifically, our architecture
handles data, that is transformed in a key-value pair form, where both the key and the
value are encrypted prior to the storage on the server side. Additionally, the dyadic
intervals technique is applied, in order to answer range queries in logarithmic time and a
justification for the use of, the DET and RAND encryption schemes in order to guarantee
that the encryption of the key and the value respectively are semantically secure. In the
same chapter we also face and deal with the Query Access Pattern issue, as well as the
Distribution of the values problem, that could threat on overall system security. The
first is resolved with the use of 2F'N servers, while the latter is prevented with the
implementation of a first and second level dyadic tree index. Furthermore, we describe
how updates are performed in our architecture, given that the order of the encrypted
buckets is concealed from the attacker, while less information is revealed compared to
other OPE schemes. Finally, in Chapter 5 we conclude the thesis and outline potential

directions for future work.

Joannis Demertzis 3 October 2013

1. INTRODUCTION

loannis Demertzis 4 October 2013

Chapter 2

Background

2.1 Encryption

Cryptography (or cryptology) is the practice and study of techniques for secure communi-
cation, in the presence of adversaries. Secure communication leads to both confidentiality
(in order to prevent the exposure of transmitted data) and integrity or authenticity (in
order to avoid their modification). In this Section, we deal with data confidentiality.

In cryptography, encryption is the process of encoding messages (or information) in
such a way, that no one but the authorized parties can understand them (protection
against eavesdroppers). In an encryption scheme, the message or information is re-
ferred as the plaintext. By using an encryption algorithm and an encryption key, the
initial message is encoded in order to produce a plaintext in an unreadable (by a human
or computer) form. This message is referred as the ciphertext. Any adversary that
obtains the ciphertext should not be able to extract any information about the original
message. An authorized party, however, shall be able to decode the ciphertext using a
decryption algorithm, that usually requires a secret decryption key, not available to ad-
versaries. The above process is shown in Figure 2.1. For technical reasons, an encryption
scheme usually needs a key-generation algorithm, to randomly produce key.

There are two fundamental types of encryption schemes: symmetric-key and public-
key encryption. In symmetric-key encryption, the encryption and decryption keys are
identical, forcing the contracting parties to agree on a secret key prior to original message

exchange. In public-key schemes, the encryption key is publicly available for encryption

Joannis Demertzis 5 October 2013

2. BACKGROUND

Initial
Plaintext Ciphertext Plaintext
Encryption Decryption
Secret Key Secret Key

Figure 2.1: Encryption and Decryption

purposes, but only the receiving party has access to the decryption key, which means
that only authorized parties can decrypt the encrypted messages.

An encryption scheme is charaterized by (M, €, K,Enc, Dec), where M are all the
possible messages (plaintexts), € is a set of all possible ciphertexts and X are all the pos-
sible keys, that belong to a keyspace. Enc and Dec are "efficient” functions (algorithms),
parametrized by keys where Enc: K x M — €, Dec: K x € — M. Additionally, the al-
gorithms Enc and Dec need to be "efficient”, in the sense of running in polynomial time
(theoretically), or having concrete time constraints (practical approach).For all possible

messages, the following consistency equation should be satisfied :
VYm € M,Vk € K : Dec(k, Enc(k,m)) =m

Usually algorithm Enc is randomized, but Dec is always deterministic.

In order to highlight the differences among the aforementioned encryption schemes,
note that the advantages of symmetric algorithms are the concrete security and high
speed they provide. Public-key algorithms, on the other hand, need keys of length at
least 3,000 bit, in order to achieve the same level of security with a 128-bit symmetric
algorithm. Thus, public-key algorithms are incredibly slow and this is impractical for
encryption of large amounts of data. Typically, symmetric algorithms are about 1,000

times faster than asymmetric ones.

2.1.1 Nondeterministic and Deterministic Encryption Schemes

Nondeterministic encryption schemes use randomness in the encryption algorithm.
More specifically, encrypting the same message several times and under the same key,
extracts in general different ciphertexts. From the perspective of databases, we support

that nondeterministic encryption schemes cannot provide any functionality, since they

Joannis Demertzis 6 October 2013

2.1 Encryption

preserve strong security levels but do not support any search over the ciphertexts. Still, we
can apply them on attributes, but only on those that will not execute selection predicates.
The property of Non-Deterministic Encryption Schemes is shown in Figure 2.2. We can

observe the different ciphertexts, for the same pair (key,message).

Key: 1234567890912345612345678908123456

F935bh4dc5f0ea7f50acdb

The quick brown fox jumps 783367911f0dfe12469be

over the lazy dog C9bbc9dc8b04fa73cdalb
59dd35h6edb3d66880df3
30c464eechde

12345678901234561234567890123456

2fddc3abec692e1572d9b
7d629172a05caf230bc7c
8fd2d26ccfd65f9c545269
84f7ch1c4326ef058cd7b

ee3967299%3

The quick brown fox jumps
over the lazy dog

Figure 2.2: Nondeterministic Encryption Scheme(AES + CBC + random IV)

A deterministic encryption scheme is an encryption scheme, that always produces
the same ciphertext for a given pair of plaintext and key, even over separate executions of
the encryption algorithm. We can conclude that in any Deterministic Encryption Scheme

the following formula exists:
sk € K, mg,m; € M, Enc(sk, mg) = Enc(sk,my), iff m; = myq

The property of Deterministic Encryption Schemes is shown in Figure 2.3 . It is clear
that the same ciphertext is created for the same key, message pair. Consequently, the
existence of same ciphertexts implies same plaintexts and therefore the encryption of
the same message leaks information and leads to severe attacks, especially when the
message space M is small. A solution, in order to resolve the above issue is to enforce the
encryptor to never encrypt the same message twice, by choosing messages in a random
manner and from a message structure that ensures uniqueness.

A special category of deterministic encryption schemes are the Order Preserving

Encryption (OPE) schemes, that preserve the order of the plaintexts. More specifically:

Enc(sk,my) < Enc(sk,my), iff my < m; for any key sk

Joannis Demertzis 7 October 2013

2. BACKGROUND

Key: 000102030405060703090a0b0codoeaf

7eda336b82f3e279%e76
The auick brown fox jumps 38fecccfffc65fbef8dabdf
9 June 76d9767d8cfa85bce2ae
over the lazy dog
9ca2ed34a48f85af2909
654d5b0de0th?

000102030105060708090a0bo cOdOed

7eda336b82f3e279ae76
The quick brown fox jumps 38fecccftfcb5thef8dabdf
over the lazy dog 76d9767d8cfa85bhce2ae

9ca2ed34a48f85af2909

654d5b0de0fb7

Figure 2.3: Deterministic Encryption Scheme(AES + CBC + constant IV)

2.1.2 Security of Encryption Schemes

In this Section we define the notion of security from the aspect of confidentiality.

The ability to observe ciphertexts determines the attacker’s power, while the her goal
is to break the encryption scheme and therefore in order to start understanding the term
security, it is essential to comprehend when an encryption scheme is insecure or when
it is most likely that the attacker will break it. Then, we immediately have to face two

security issues:

The attacker should not be able to recover the secret key
or

The attacker should not be able to recover the entire plaintext

Even though the above sentences help us get an idea about the notion of security, still
its definition remains inadequate, while the main question that should be answered is:
”What is a secure ciphertext?”. In order to answer, we present Shannon’s perception
of security in 2.1.2.1 that will help the understanding of security definitions of Nondeter-
ministic Encryptions schemes in 2.1.2.2, for Deterministic Encryption schemes in 2.1.2.3

and for Order Preserving Encryption schemes 2.1.2.4, proposed by Crypto community:.

Joannis Demertzis 8 October 2013

2.1 Encryption

2.1.2.1 Shannon’s definition of Security and Semantic Security

Shannon was the first to believe that ”Ciphertext should not reveal any information about

plaintext” and he introduced the notion of perfect secrecy, which is defined below.

Definition 1: A cipher (Enc,Dec) over (X, M, C) has perfect secrecy if

Pr{Enc(k,mg) = c| = Pr[Enc(k,m;) = |
Y mg,my € M, length(mg) = lentgh(my) and Ve € €,

where k is uniformly distributed in X

More specifically, even if a ciphertext is given to an attacker, she still cannot dis-
tinguish whether the specific ciphertext corresponds to mgy or m; and therefore cannot
extract any information about the plaintext corresponding to the ciphertext that is be-
ing studied. Consequently, the ciphertext remains secure (only from ciphertext attacks).

Unfortunately Shannon also proved the following theorem:
Shannon’s Theorem: Perfect secrecy implies that |K| > | M|

Therefore, it is difficult to achieve perfect secrecy in practice, because it assumes that
the key space is greater or equal to the message space. In order to give a more practical

approach to what a secure cipher is, we restate the first definition to the following:

Let a cipher (Enc,Dec) over (K,M, €). Then, according to Shannon’s perfect secrecy:
Definition 2: (Enc,Dec) has perfect secrecy, if Ymg, m; € M (|Jmo| = |ma])

Distribution of Enc(k,mgy) = Distribution of Enc(k,m) ,where k + K

Compared to Shannon’s initial definition, this definition randomly picks a key k. Then
the distribution of ciphertexts, when we encrypt mg is exactly the same distribution as
if we encrypted m;. Consequently, even if the adversary observes the ciphertext she still
does not know whether it came from the distribution as the result of encrypting mg or
if it came from the distribution as the result of encrypting m; and therefore she cannot

tell whether we encrypted mg or m;. The same thing applies for all messages of the

Joannis Demertzis 9 October 2013

2. BACKGROUND

same length and as a final result the attacker does not really know what message was
encrypted. The above definition is too strong, in the sense that it requires long keys.

Lets try to weaken the above distribution in the following:

Definition 3: (Enc,Dec) has perfect secrecy, if Ymg, m; € M (Jmo| = |ma])

Distribution of Enc(k,mg) =, Distribution of Enc(k, my), where k <— K

The difference between definitions 2 and 3, is that definition 3 supports two computa-
tionally indistinguishable distributions, meaning that the attacker cannot distinguish the
two distributions, even if they are very different. More specifically, assuming we provide
to the attacker a sample from each distribution, she remains incapable of determining
the source of each sample. The problem with this definition, is that it remains too strong
and therefore we need to add another constraint so that instead of V mg, my, only for
pairs mg, my, the attacker actually exhibits. That leads us to the following definition of
semantic security, that considers only one time keys, meaning that we do not use the

same key to encrypt multiple messages.

Definition: Semantic Security(one-time key)

E = (Enc, Dec) a cipher defined over (K, M, C)

For b=0,1 define experiments EXP(0) and EXP(1),

1. Chal. C takes a random key

2. Adv. A output to C mgy,m; € M so that |mg| = |my]|
3. Chal. C output to A, ¢ < Enc(k,my)

for b=0,1: W, := [event that EX P(b) = 1]
Advgs[A, E] := | Pr[Wo] — Pr[Wi] € [0, 1]

E is semantically secure if for all ”efficient” adversaries A, Advgs[A, E] is negligible

We define for b=0,1 two experiments EXP(0) and EXP(1) as follows: Assume we have
an adversary A, determined to break the system and a challenger C, who receives as

input variable b. First, the challenger C gets a random key, while the adversary outputs

Joannis Demertzis 10 October 2013

2.1 Encryption

two messages, mg,m; € M and |mg| = |m4|, i.e. an explicit pair of messages, on which
the attacker wishes to be challenged. Note that the attacker is aware of the length of
the messages. Afterwards, the challenger outputs either the encryption of mg, or the
encryption of my. So, in the case of b=0, the challenger outputs the encryption of my,
while in the case of b=1, the challenger outputs the encryption of m;.

Then, the adversary tries to guess the value of b. We define as events W, all events
that for b=0,1: W, := [event that EX P(b) = 1]. At this point, we present the advantage
of the adversary that is used in the above experiment, which is defined as the semantic
security advantage of adversary A against scheme &, to be the difference of the probability
of the events Wy and ;. More formally:

Ad’l]gs[A, E] = |P7’[W0] — PT[Wl] S [0, 1]

In order for the encryption scheme E to be semantically secure, the Advgs[A, E] should
be negligible. The notions of non-negligible and negligible follow.

Non-negligible and negligible:

In practice € is scalar and

- € non-negligible : ¢ > 1/23° (likely to happen over 1GB of data)

- € negligible : ¢ < 1/2% (will not happen over life of key)

In theory € is function :Z2° — R=° and

- € non-negligible : 3d: € > 1/\? inf. often (e > 1/poly, for many \)

- e negligible : V. d, ;A > X\g:e(A\) <1/ (e < 1/poly, for large \)

2.1.2.2 Indistinguishable under chosen plaintext attacks
(IND-CPA)

We generalize the above definition of semantic security, which considers only one-time
keys, in a security definition, which considers many-time keys. With the term many-
time key, we refer to encryption schemes that use the same key in order to encrypt
multiple messages. The fact that a key is used more than once, means that the adversary
will observe many ciphertexts, encrypted under the same key. We note that the term
indistinguishable under chosen plaintext attack (IND-CPA) is equivalent to the
term semantically secure under chosen plaintext attacks and they are both used in the

bibliography.

loannis Demertzis 11 October 2013

2. BACKGROUND

The adversary’s goal is to break the semantic security. The following definition is
a standard semantic security game, similar to the previous one, only now we perform
iteration over many queries (over q queries), so that the attacker can issue queries adap-
tively one after the other in order to simulate the attacker’s ability to distinguish multiple
ciphertexts encrypted under the same key. Note that in the following security game we

select b only once in the beginning of the game and we use the same b for all q queries.

Definition: Semantic Security many-time key (IND-CPA security)
E = (Enc, Dec) a cipher defined over (X, M, C)
For b=0,1 define experiments EXP(0) and EXP(1),
1. Chal. C takes a random key
for i=1,...,q
2. Adv. A output to C m;g,m;1 € M so that |m;o| = |m; 1]
3. Chal. C output to A ¢; < Enc(k,m;)

for b=0,1: W, := [event that EXP(b) = 1]
AdUCPA[A, E] = |PT[W()] - PT[Wl] c [0, 1]

F is semantically secure if for all "efficient” adversaries A, AdvcpalA, E] is negligible

2.1.2.3 Indistinguishable under distinct chosen plaintext attacks (IND-DCPA)

Using the above definition of IND-CPA security and given the same plaintext in an
encryption scheme FE, which always produces the same ciphertext under a certain key
(Deterministic Encryption Scheme), then E is not CPA secure with AdvcpalA, E] = 1.

This can be easily shown as follows:

The adversary

1. In round q=1 ask for m; ¢,m1,1 so that m; o =my 1 = m,
Takes back the ¢, = Enc(k, m,)

2. In round q=2 ask for mg o = m.,ma; <> m.

3. Adversary outputs 0 if ¢ = ¢, with Advepa[A, E] =1

loannis Demertzis 12 October 2013

2.1 Encryption

We can translate the above problem, to terms of the database world. More specifically,
the database has duplicates and therefore, under deterministic encryption, these ”equal”
tuples will be encrypted to the same ciphertext. However, the adversary can observe
when two ciphertexts encrypt the same plaintext, which leads to information leakage.
In order to provide a security definition for Deterministic encryption schemes, transform
the IND-CPA security game to the IND-DCPA (indistinguishable under distinct
chosen plaintext attacks) security game, where the adversary is bound to ask for
distinct right and left messages, m;o,m; 1 respectively in order to prohibit the attacker
from encrypting the same key, message pair twice. Conclusively, the definition of IND-
DCPA is weaker compared to IND-CPA, but in the case of encrypting a domain with

unique messages the two definitions become equivalent.

Definition: Semantic Security many-time key (IND-DCPA security)
E = (Enc, Dec) a cipher defined over (X, M, C)
For b=0,1 define experiments EXP(0) and EXP(1),
1. Chal. C takes a random key
for i=1,...,q
2. Adv. A output to C m;g,m;1 € M so that |m;o| = |m; 1]
3. Chal. C output to A ¢; < Enc(k,m;)

where my,...,myo are distinct and m;,,...,m,; are distinct

for b=0,1: W, := [event that EX P(b) = 1]
AdUDCPA[A, E] = |PT‘[WQ] - PT’[Wl] S [0, 1}

E is sem. secure, if for all "efficient” adversaries A, AdvpcpalA, E] is negligible

2.1.2.4 Indistinguishable under ordered chosen plaintext attacks (IND-OCPA)

First of all OPE schemes, as all deterministic encryption schemes, cannot be IND-CPA.
Secondly, an OPE scheme cannot be IND-DCPA, since by definition IND-DCPA solves

the problem of determinism, when in our case an OPE also preserves the order of the

Joannis Demertzis 13 October 2013

2. BACKGROUND

ciphertexts. In order to propose a security definition for all OPE schemes, we have to con-
siderably weaken IND-DCPA. The strongest definition for OPE schemes is called IND-
OCPA (indistinguishable under ordered chosen plaintext attacks), as mentioned
in [1]. IND-OCPA aims to hide all information about the plaintext values, except from
the ciphertext order, which is the minimum requirement that should be satisfied in or-
der to guarantee the order-preserving property. The IND-OCPA definition, is similar to
the previous ones, except that now we enforce additional constraints on the adversary’s
queries (relaxing IND-DCPA). In [1] and in [2] a proof for the following Theorem is pro-
vided.
Theorem: Any OPE scheme, that is IND-OCPA secure has ciphertext size exponential
in the plaintext size.

The above indicates that OPE schemes, satisfying IND-OCPA under the strongest
definition, are impractical. IND-OCPA’s definition is shown below.

Definition: Semantic Security many-time key for OPE scheme (IND-OCPA
security)
E = (Enc, Dec) a cipher defined over (X, M, C)
For b=0,1 define experiments EXP(0) and EXP(1),
1. Chal. C takes a random key
for i=1,...,q
2. Adv. A output to C m;g,m;1 € M so that |m,o| = [m;]
3. Chal. C output to A ¢; <= Enc(k,m;)
where my o, ..., my o are distinct and my 1, ..., my1 are distinct

and mpo < Mjo <> My < MmMj for 1 <1,5 <,q

for b=0,1: W} := [event that EX P(b) = 1]
Ad’UDCPA[A, E] = |P7"[WQ] — P’I”[Wl] S [0, 1}

FE is semantically secure, if for all "efficient” adversaries A, AdvocpalA, F] is negli-

gible

Thus, IND-OCPA is too strong a definition to be achieved, with respect to efficiency. In

order to create practical encryption schemes, a weaker security definition is described in

loannis Demertzis 14 October 2013

2.1 Encryption

[3]. By the term weaker, we imply that we try to weaken the definition of IND-OCPA and
as a result we get the definition of IND-OLCPA (indistinguishable under ordered
and local chosen plaintext attack). The IND-OLCPA security definition suggests
that the adversary learns the encryption only for nearby values, but still it is difficult to
enforce such a property in a practical system. An alternative definition of security is pro-
posed by Boldyreva in [1] [4], where the notion of random order-preserving function
(ROPF) is defined. It has been shown that, apart from the order of the ciphertexts, the
security definition of ROMF reveals other information too. More specifically, it leaks at
least half of the plaintext bits. The above is mentioned in [4] [5]. There are other security
definitions too, only they are significantly weaker and inapplicable in practice, compared
to what we have seen above. Consequently, we assume that the adversary attacks will be

more restricted and therefore there will be no further reference to them.

2.1.3 Block ciphers

A block cipher is a method for encrypting plaintexts. More specifically, an algorithm
and a cryptographic key are applied on a block of data. Block ciphers may either be
deterministic or non-deterministic, depending on whether the Initialization Vector (IV)
is constant or random respectively. IV corresponds to a unique nonce, meaning that the
(key,nonce) pair is used for a unique message. The method of Block ciphers implies, that
we first partition a message into blocks of equal size and then carry out an encryption on
each block. A ciphertext is formed, after concatenating the IV, with the encoded blocks.
At this point, we will present two methods for creating block ciphers, Cipher Block
Chaining mode(CBC-mode) and Counter mode (CTR-mode). Afterwards, we
will mention theorems derived from their IND-CPA analysis.

Cipher Block Chaining (CBC)

In CBC, each block of the plainetext is XORed with the previous ciphertext block before
being encrypted. More specifically, assume that the above procedure has just started.
Then, the first block is XORed with a key and the Initialization Vector. In Figure 2.4

and 2.5 we present the encryption and the decryption circuits respectively. At this point

we are going to describe the encryption procedure, which uses the same encryption
algorithm on each block. At first, a XOR function is executed between the first block
and the IV. The result is encrypted under a key, producing the first ciphertext. Then,

Joannis Demertzis 15 October 2013

2. BACKGROUND

the ciphertext that was derived from the first block, is XORed with the second block and
again the result is encrypted under a key, producing the second ciphertext. The above
procedure is repeated, until the final block is XORed with its previous ciphertext and
encrypted under a key.

m[0] m[1] m[2]

Ay
o
/F
N
L 4
A
N

nIIIIIIIIIIII LTI T
clo] c[1] c[2]

1
ciphertext

Figure 2.4: Cipher Block Chaining (CBC) mode encryption

The reverse procedure is implemented, in order to achieve decryption and the same
decryption algorithm is implemented on all encrypted blocks. First, we perform de-
cryption on the first encrypted block (ciphertext), which is followed by a XOR function
between the product of the decryption and the IV. The result constitutes the plaintext
of the first block. Then, we decrypt the second block under the same key and we ex-
ecute the XOR function between the decrypted second block and the plaintext of the
first block, thereby getting the plaintext of the second block. Similarly to the encoding
procedure, the above process is repeated until we get the plaintext that corresponds to
the last ciphertext.

Pseudo Random Permutation(PRP) is a function that receives as input a key and a
message and produces a permutation of the message. Both the output of the pseudo ran-

dom permutation function and the message have the same domain. Furthermore, both

Joannis Demertzis 16 October 2013

2.1 Encryption

cl0] c[1] c[2]

» L N

v v h

m[0] mJ1] ml2]

Figure 2.5: Cipher Block Chaining (CBC) mode decryption

PRP and its inverse function should be efficient. Also, PRP is secure if all efficient adver-
saries cannot distinguish PRP from the Truly Random Permutation with non-negligible
advantage, as mentioned in [6].

Note that Enc and Dec are secure PRPs. The encryption algorithm, as any PRP
algorithm, consists of: Enc: K x {0,1}" — {0,1}". Decryption is also PRP since it is
the inverse algorithm of encoding.

In order to present the CPA analysis of CBC, we describe the following theorem:
CBC Theorem: For any L > 0, if E is a secure PRP over (X, X) , then
The CBC encryption scheme is semantically secure under CPA over (XK, Xt XL+1).

In particular, assume that we have a g-query adversary A attacking a CBC encryption

scheme Fcpe. Then, there exists a PRP adversary B s.t.
AdUCPA[A, EOBC] S 2Ad’l)pRp[B, E] + 2(]2L2/|X|

which implies that CBC is only secure as long as ¢>L?* << | X|, where q is the number of
encrypted messages with a specific secret key, and L is the length of the biggest message.
Counter mode (CTR-mode) CTR-mode is a block cipher method, that uses secure
Pseudo Random Functions (PRFs). PRFs differs from PRPs, because they receive as

input a key and a message and produce an output that may not have the same domain

Joannis Demertzis 17 October 2013

2. BACKGROUND

with the message. A PRF is secure if all efficient adversaries cannot distinguish PRF
from the Truly Random Function as mentioned in [6]. Unlike CBC, CTR is parallelizable
in both, the encryption and the decryption phases. The use of PRFs does not require a
different Decryption function, since a PRF with same k and IV values is applied. In this
method the IV is split in half. More specifically, the first half corresponds to a nonce,
while the latter corresponds to a counter. In Figure 2.6 and Figure 2.7 we note the
encryption and the decryption circuits respectively.

With the implementation of PRF, some changes occur in the encryption and decryp-
tion algorithms. Regarding the encryption algorithm we divide the plaintext into
constant blocks and the XOR function is not executed between blocks and ciphertexts,
but between blocks and the output of PRF. Now, the IV and the key consist the inputs of
PREF. Furthermore, the counter of IV is increased by one every time a block is encrypted,
e.g. the counter of IV in the first block is 0, in the second is 1, in i-th is i+1.

m[0] m[1] m(2]

n|||||||||||| EEEEEEEEEEE
clo] cl1] c[2]

1
ciphertext n = | Nonce | Counter

Figure 2.6: Counter (CTR) mode encryption

Similarly to the encryption algorithm, the decryption algorithm uses the XOR
function between the encoded blocks (ciphertexts) and the PRF output. In this case, the
inputs of PRF are the key that was also used in the encryption algorithm and the IV,

whose counter represents the number of blocks. In order to present the CPA analysis of

Joannis Demertzis 18 October 2013

2.2 Adversary Models

CTR, we need to describe the following theorem:

CTR-mode Theorem: For any L > 0, if F is a secure PRF over (X, X, X) , then
CTR-mode encryption scheme is semantically secure under CPA over (X, XL, X5+1).
More specifically, assume that we have a g-query adversary A attacking a CTR encryption

scheme Ecorgr. Then, a PRF adversary B exists s.t.
AdvepalA, Ecrr) < 2Advpgp|B, F| +2¢°L/| X]|

At this point we must notice that CTR-mode is only secure as long as ¢*L << |X]|,
where ¢ is the number of encrypted messages with a specific secret key, and L is the

length of the max message.

c[0] c[1] cl2]

nIIIIIIIIIIII EEEEEEEEEEn
mI0] m[1] m|2]

1
ciphertext n = | Nonce | Counter

Figure 2.7: Counter (CTR) mode decryption

2.2 Adversary Models

In the previous Section we presented security definitions, proposed by the crypto commu-
nity. In the same Section we considered that the adversary was only capable of obtaining
ciphertexts. Now, we differentiate the adversary into two categories. The first includes

those who can be considered as third party attackers, interested in attacking the Cloud

Joannis Demertzis 19 October 2013

2. BACKGROUND

and the latter comprises only the server, where the sensitive data are stored (untrusted
server).

Passive or curious Adversary but not malicious: The attacker in this model is
able to obtain and derive data and queries; she has the complete access to the database
server. She is capable of perceiving the distribution of the ciphertexts if the respective
leakage of information occurs, thereby inferring access patterns or query results. Her goal
is to gather as much information she can.

Active or malicious Adversary: The difference of this type of adversary, compar-
ing to the previous one is that she may misbehave and affect the query processing. More
specifically, she has the ability to modify the encrypted data or to alter the answer of the
queries that have been submitted by the user.

Both of the adversaries in their attempt to extract information about the encrypted
data, may know the type of the plaintext values that are being processed and stored
(domain). Otherwise, some of them could also be able to guess this domain or even
figure out statistical information regarding the values, the distribution of the values, the

domain etc.

2.3 Dyadic Intervals

Dyadic intervals of a specific domain are intervals arranged in a certain hierarchical
structure, that have some useful properties. First, the length of a dyadic interval is always
equal to an integer power of two. Furthermore, a dyadic interval is included in one and
only parent node and comprises two children nodes that are also dyadic intervals, but
with half length. These properties are not satisfied in case the dyadic intervals correspond
to single points or when they have the same starting and ending point e.g. ”71-1"="1".
The structure of a dyadic tree is shown in Figure 2.8. Also, a formal definition of
dyadic intervals follows:

Dyadic Interval Definition: A dyadic interval over the domain I = 0,1,.... N — 1,|I| =
N = 2" is an interval of the form [¢27, (¢ + 1)27), where 0 < j <mand 0 < g < 2" — 1.
Property 1: Dyadic tree level j includes exactly 2/ dyadic intervals with each containing
2"~J points from the domain.

Property 2: Dyadic tree level j, 0 < j < n, contains dyadic intervals that consist a

partition of the domain. More specifically, these intervals are disjoint and their union

Joannis Demertzis 20 October 2013

2.3 Dyadic Intervals

Figure 2.8: Dyadic Interval tree

equals the entire domain.

Property 3: Consider distinct and arbitrary dyadic intervals, 6; and d,. In case
51 Ny # 0, then either 6; C dy or dy C 6.

At this point we will describe how is it possible to express any arbitrary interval as the
union of dyadic intervals; note that we do not have a unique decomposition of ranges in
dyadic intervals. We introduce the notion of minimal dyadic cover as the minimal de-
composition depending on the number of elements. More formally we define the minimal
dyadic cover as:

Definition Minimal dyadic cover (D([a, 5])): The minimal dyadic cover of an inter-
val [a, (], is the set of dyadic intervals 01, s, ..., 0, for the minimum value of m, so that
dUdU...Ub, = [a, f].

Property 4: The minimal dyadic cover D([a, f]) contains at most 2j dyadic intervals,
from which at most two are from the same level.

In order to understand the notion of minimal dyadic cover we give the following ex-
ample. For the dyadic tree which is represented in Figure 2.8 and the range [1,6] the
minimal dyadic cover D[1,6] = [1,2) U [2,4) U [4,6) U [6,7) (with different notation
D[1,6] ={1}u{2-3}u{4 -5} uU{6})

The complexity of the Minimal Dyadic Cover algorithm is equal to O(Loga(8 — «)) i.e.
logarithmic in the size of the range. More properties as well as definitions are presented
in [7].

loannis Demertzis 21 October 2013

2. BACKGROUND

loannis Demertzis 22 October 2013

Chapter 3

Problem Statement and Related
Work

In this Section, we introduce the concept and describe the significance of privacy pre-
serving querying on cloud infrastructures. More specifically, we focus on the main issue
that these queries face, which is encountered in the case of range queries. Furthermore,
we present in Section 3.2 different approaches that implement privacy preserving range

queries, that were summarized in recent 2013 turorial at ICDE [8].

3.1 Privacy Preserving Range Queries

3.1.1 Identifying the problem

In the last few years, an increasing usage of cloud computing has been observed; this
trend has become recently more attractive, due to the fact that cloud infrastructures
offer luring features concerning computing and storage abilities, while they also offer more
essential features, such as pay per use, scalability and elasticity. However, two significant
issues that prevent cloud computing from easily being adopted and spread, are security
and privacy. Therefore, applications with low risk and less sensitive data constitute the
early adopters. Cloud computing is also attractive, due to its ability to allow ubiquitous
access on consolidated data and the sharing of infrastructures that reduces the overall
cost. Nevertheless, the crucial question is whether cloud computing can guarantee at this

point safety and security to the enterprises that will take advantage of it. The answer to

Joannis Demertzis 23 October 2013

3. PROBLEM STATEMENT AND RELATED WORK

this question is the reason for which DBMS that manage crucial and sensitive data are
not entirely moving to cloud technology yet. Cloud infrastructures tend to be tempting
attack targets, because with a single attack on a service provider, many businesses and
companies are threatened, leading to the disclosure of sensitive data whose exploitation
could result to big profits. According to a study of Gartner’s statistics in Figure 3.1, it
is clear that there is a significant concern regarding the adaptation of cloud computing,

in terms of security and privacy, indicating the imperative need to resolve these matters.

Concerns With Public Cloud Computing

What are your top three concerns
Uptime W 13 (in priority order) with external
cloud computing services?
Skils W 7
< Security and privacy G 50
Regulatory compliance NN 53

Performance I 5¢

Dec. 2009 Gartner Data

Lock-in [N 32 Center Conference Poll
43 n=54
Integration (IR Weighted scores:
1#1 pricrity = 3
Immaturity I - 20 priority = 2
3= priority =1
Costs [N 26
Gartner,

Figure 3.1: Gartner’s statistical study on concerns about the use of a Public Cloud

In an attempt to find a solution to the security and privacy issues, two directions
have been explored. The first is proposed by the Database Community and provides a
practical solution that offers the same functionality with Database Management Systems
in terms of efficiency. However, in order to achieve the desirable functionality and per-
formance they sacrifice levels of security. The second direction comes from the Crypto
Community. In this case, the proposed approaches achieve the required security but they
limit the supported functionality and marginalize the efficiency matter, since many of
the recommended solutions are computationally impractical. As shown in Figure 3.2, a
solution to these major issues can potentially be achieved with the integration of these

different techniques and algorithms proposed by the two fields.

loannis Demertzis 24 October 2013

3.1 Privacy Preserving Range Queries

High 4 _
EX'SF”"Q Ideal State
Services
Qo M
m <
:h 3
o5
S 5
S &
0 =
D <<
Many Crypto
Systems/Protocols
>
Low .
Confidentiality / Privacy High

Figure 3.2: Trade-off between functionality-performance and confidentiality-privacy

In this effort to integrate approaches recommended by the Crypto and Database
communities a solution has been introduced that attempts to resolve the problem of
privacy preserving querying in Cloud infrastructures; CryptDB [9] presents an integrated
DBMS with almost all the functionality of MySQL. More specifically, a wide range of
SQL queries is supported, but there is also a significant drawback, with respect to the
efficient and at the same time secure execution of range queries. CryptDB uses an OPE
scheme proposed by Boldyreva in [4], that satisfies weak security definitions and also leaks
additional information. Thus, the system proposed by CryptDB is completely insecure
and vulnerable to severe attacks.

Another technique that attempts the integration of different algorithms is MONOMI
[10], that utilizes the CryptDB approach with an enhanced efficiency system, but it still
exhibits the same security matters with CryptDB.

Conclusively, the most essential problem concerning the privacy preserving querying
on cloud infrastructures, is finding a solution that is efficient and simultaneously secure in
the case of range queries. The 2013 ICDE tutorial also reaches the same conclusion, and
therefore it poses the Privacy Preserving Range Querying as an open research subject.

Many approaches from different fields have attempted to resolve the problem of range
queries, under the requirements of security and privacy. The most practiced ones are
proposed by the Order Preserving Encryption family of approaches, introduced by the
Crypto community. Other techniques from the Database field use the notion of buck-

Joannis Demertzis 25 October 2013

3. PROBLEM STATEMENT AND RELATED WORK

etization, while others focus on the way that the data is distributed and less on the

encryption used. In the following Section we briefly review.

3.1.2 An ideal Privacy Preserving Range Query Approach

In order to contribute to the effort of executing Privacy Preserving Range Queries under
certain demands, we suggest requirements that could be essential for an ideal privacy
preserving range querying approach. More specifically an optimal approach requires
that:

e All queries are executed in logarithmic time

e Updates are executed efficiently

e The work assigned on the client side is as low as possible, or even negligible
e The concealment of the order of ciphertexts from the untrusted server

e Problems, such as the Query Access Pattern problem and the leak of statistical

information, are resolved
e Strong security crypto definitions are achieved
e Efficiency and security requirements are satisfied simultaneously

To the best of our knowlege, none of the existing approaches meets the requirements of

the ideal solution.

3.2 Related Work

3.2.1 Homomorphic and Fully Homomorphic Encryption

Homomorphic encryptions allow mathematical operations to be performed on encrypted
data without compromising the encryption. Paillier’s homomorphic cryptosystem allows
the execution of addition directly on the ciphertexts as shown in Figure 3.3. ElGamal’s
cryptosystem is a similar cryptosystem that allows direct multiplication of the cipher-

texts. It is shown that homomorphic encryption solutions combine the desirable security

Joannis Demertzis 26 October 2013

3.2 Related Work

level with a high but not impractical cost. However, in the case of range queries no

homomorphic based encryption solution has been proposed.

Enc (1)
643998664185468303
+Encryption 1469424841111173594
871978013779755776 Enc(1)*Enc1) mod n* Enc (2)
Enc (1)

Figure 3.3: Paillier’s cryptosystem

Fully homomorphic encryptions are a generalization of homomorphic encryptions.
However, unlike homorphic encryptions, fully homomorphic encryptions allow the execu-
tion of any arbitrary function, including range queries, on the encrypted ciphertexts,
without requiring any decryption as shown in Figure 3.4. In 2009, Craig Gentry proposed
the first fully homomorphic encryption scheme in his PhD thesis ” A Fully Homomorphic
Encryption Scheme” [11]. A more formal definition of fully homomorphic encryption is
given in [11] and in [12]. Fully homomorphic encryption may seem like a solution to
all problems but the essential question remains as to whether it can achieve the desired
security level and with what efficiency. Fully homomorphic encryption appears to be to-
tally impractical, due to the required ciphertext size and the necessary computational

time, that increases sharply as we increase the security level.

= > N

-l 2227777

query - Enc[query] 5
<€

results - Enc[results]

Cloud Server
Figure 3.4: Fully Homomorphic Encryption Model
Conclusively neither homomorphic cryptosystems can support Privacy Preserving

Range Queries, since an appropriate range query homomorphic cryptosystem does not

exist, nor the fully homorphic cryptosystems can, since they are completely impractical.

Joannis Demertzis 27 October 2013

3. PROBLEM STATEMENT AND RELATED WORK

3.2.2 Order Preserving Encryption Approaches

As we already mentioned in Chapter 2 Order Preserving Encryption (OPE) schemes are
deterministic schemes that preserve the order of the plaintexts. OPE cannot be IND-CPA
secure, since it does not only leak information about the order of the plaintexts, but it
reveals other information too. We consider an OPE scheme perfectly secure, if the only
possible leak can be caused by the order of ciphertexts. As shown in Figure 3.5, there are
two different categories of OPE schemes. Category A includes schemes that apart from
the order of ciphertexts, reveal other information too. In order to achieve a higher security
level in such cases, the size of the ciphertext is increased. Still, this approach makes OPE
schemes computationally impractical (in order to achieve the desired security level). The
strongest security definition that an OPE scheme can achieve is IND-OCPA, proposed
by Boldyreval in [1], but no existing work of category A has achieved it. Category B of
OPE schemes comprises only the recent work of mOPE [2], the first scheme that achieves
IND-OCPA i.e. does not leak any information besides of the ciphertext order. Moreover,
mOPE achieves 1 to 2 orders of magnitude higher performance than any OPE scheme,
as mentioned in [2] and therefore dominates all previous OPE approaches in terms of
security and efficiency. For this purpose we study in detail this novel work in order to
compare it with our approach. We will first describe the idea introduced by mOPE,
shown in Figure 3.6.

In Figure 3.6 we note that mOPE consists of two parties the untrusted server and
the secure OPE client. Regarding the first, mOPE considers two different models of
adversary. The first one is Passive or honest-but curious and the other is Active or
malicious. The paper first provides an analysis for passive kind of attackers and then
mentions that an appropriate integration of message authentication techniques can be
used in order to extend the approach to the case of malicious attackers. As shown in
Figure 3.6, mOPE keeps encrypted numerical values in an OPE tree i.e. a Binary Search
Tree that contains ciphertexts of the inserted values.

Each ciphertext of the OPE tree is arranged in such way, so as to allow the identifi-
cation of its location simply by looking at the path from the root to down to the node.
More specifically, beginning from the root and following the path towards the node of
interest, we mark each left edge wih '0’ and each right edge with "1’. The paths that are

Joannis Demertzis 28 October 2013

3.2 Related Work

Cat. | OPE scheme Guarantees Leakage besides order
Ozsoyoglu *03 [13] None Yes
Agrawal ‘04 [14] None Yes
Boldyreva '09 [1] [4] | POPF [1] Half of plaintext bits
Agrawal 09 [15] None Yes
Lee ’09 [16] None Yes
Kadhem 10 [17] None Yes
A Kadhem 10 [18] None Yes
Xiao '12 [19] None Yes
Xiao '12 [3] IND-OLCPA [3] Yes
Yum 12 [20] POPF [1] Half of plaintext bits
Liu and Wang'12 [21] | None Most of the plaintext
Ang et al.’12 [22] None Yes
Liu and Wang’13 [23] | None Most of the plaintext
B Popa ’13 [2](mOPE) | ideal : IND-OCPA | None
Figure 3.5: OPE schemes
OPE Server
OPE Clicnt OPE Tree: OPE Table: Cipherext %Egﬁ%f%ding
0 I x93d12a [[1100 = decimal 4
secretkey | interaction x13e72b | [0]10 = decimal 2

[x13e72b =20] (x27716c =69]

Y N

(x54256¢ (= 10)) (xcTasce (=25)

vy

4

x27716¢ | [1]10 = decimal 6
x54256e | [00]1 = decimal 1
xc7a5ce | [01]1 = decimal 3

Figure 3.6: Overview of mOPE’s data structure

created in the tree, with their respective labels allow us construct the OPE enconding

using the following formula.
OPE encoding = [path]10...0

More specifically, an OPE encoding is constructed from the concatenation of bit values
on the respective OPE tree path concatenated with 1" and followed by an appropriate
zero padding. The length of an OPE encoding is fixed and predetermined. The OPE

encoding construction has the interesting property of indicating the relative location of

Joannis Demertzis 29 October 2013

3. PROBLEM STATEMENT AND RELATED WORK

a ciphertext in respect to the other ciphertexts. In Figure 3.6 we observe an OPE tree
constructed for values (32,20,69,10,25), as well as an OPE table that contains all possible
ciphertext pairs with their respective OPE encoding. Another way used in order to show
that the OPE encoding works is by depicting the decimal representation of each OPE
encoding that corresponds to the actual location of the ciphertext in the tree. Note that
the purpose of the OPE table is not limited for the needs of an example, but mOPE [2]
takes further advantage of it in order to improve efficiency and deal with issues such as
stale encodings.

It is significant to maintain a balanced tree structure although it may require the
implementation of balancing operations, in order to guarantee that OPE encodings stay
short. Whenever the OPE tree is rebalanced the server side needs to update the stored
OPE encodings to their new values, since certain ciphertext positions will have changed.
Popa claims that the above procedure consists of locating and modifying previous stored
OPE encodings and is completed in one pass using a summary with O(LogN) size.

An OPE encoding is stored in the database for each tuple, thus allowing the execution
of range queries. The function MOPE_ORDER, is responsible for calculating the OPE
encodings of the intervals corresponding to a specific query range. For that purpose,
mOPE first checks whether these intervals have been considered and the respective en-
codings are in the OPE table. If not found, these intervals are neither in the OPE tree
nor in the database and in that case the OPE tree is used in order to find the tightest

intervals for the specific range. Assume that the following query is to be executed:
Select * from secret where val> 5

At first, mOPE transforms the above query to the one shown below:
Select * from secret where val>MOPE_ORDER(5)

First, mOPE will search for the encryption of 5 (Enc(5)) and for its corresponding
OPE encoding in the OPE table. If found, then the OPE table will return the OPE
encoding of 5 and will request from the server to return all OPE encodings bigger than
5. Otherwise, mOPE looks for the tightest interval bound. For example, if encodings for
the values (1,2,7,9) exist in the OPE table and there is not one for value 5, the mOPE
considers value 7 as the closest upper bound and the corresponding OPE encoding is

returned in order to answer the range query.

Joannis Demertzis 30 October 2013

3.2 Related Work

After determining the OPE encodings, the cost of retrieving the answer depends on the
structure of the database. In other words, the existence of indexes allows for logarithmic
execution cost of range queries.

Popa also claims that both the client work and the number of OPE encoding bits
required for the above procedure are O(LogN), where N is the number of encoded val-
ues, due to the logarithmic tree height. Furthermore, rebalancing requires only order
information which is provided to the server by the tree and therefore the client side is
not involved in this process. Note that during rebalancing few ciphertext nodes may be
relocated, but the actual number of affected ciphertexts is equal to the number of chil-
dren in their respective subtrees. More specifically, assume that a ciphertext is relocated
to a higher tree level and hence its relative order with respect to the other ciphertexts
as well as its OPE encoding are also modified. Then, the respective children will also
have new OPE encodings since the order has changed. Also, two different tree structures
were considered for the mOPE scheme, the scapegoat tree and the B-tree. Although the
latter does not have logarithmic worst-case cost, experiments indicated that its actual
cost was smaller compared to the first and there was a lower average of updated cipher-
texts. Unlike B-trees, scapegoat trees which are self-balancing binary search trees, have
O(LogN) cost in the suggested model but are only recommended if the proposed scheme
is embedded in another theoretical one with constraints of asymptotic performance on
the server side.

MOPE also uses the notion of mutability on ciphertexts. Mutable ciphertexts
are defined, as ciphertexts that change over time, for a small number of plaintext values.
They show that the existence of mutability is necessary in order to satisfy the IND-OCPA
security definition. More precisely, Boldyreva in [1] proves that any IND-OCPA secure
scheme must create ciphertexts with size exponential to the size of the corresponding
plaintexts. For example, if we wanted to encrypt a 64 bit number, with the use of an
OPE scheme, then 2% ciphertext bits would be required so as to guarantee the desirable
security. Popa also mentions that the existence of mutability is necessary in order to
render the encryption scheme practical (without exponential length size ciphertexts).

Finally, Popa claims that only in the case of database systems a stronger notion of
security is possible and can be achieved. This notion is defined as, same-time OPE se-
curity (stOPE) and presupposes that the adversary is only aware of the order of items

placed in the database at the same time. Moreover, it consists an improved and refined

Joannis Demertzis 31 October 2013

3. PROBLEM STATEMENT AND RELATED WORK

version of mOPE since it guarantees a stronger security definition.
Drawbacks of mOPE
We present the drawbacks of mOPE after verifying whether or not it satisfies the require-

ments of an optimal approach mentioned in 3.1.2.

e As all OPE schemes, mOPE reveals the ciphertext order.

e The mOPE approach is the only OPE scheme that achieves the IND-OCPA security

definition. Yet, mOPE still does not achieve the desired security level.

e An OPE encoding is stored for each tuple located in the database, resulting to
frequent attacks caused by the untrusted server. We assume an adversary aware
of the domain of the encrypted values, who can derive statistical information from
any distribution leakage. Thus, she can create a mapping between actual records

and OPE encodings and crack the mOPE encryption scheme.

3.2.3 Bucketization Approaches

In VLDB’04 Hore [24] proposed a privacy preserving range querying technique using the
idea of bucketization, in order to make the execution of range queries more efficient.
Hore’s approach assumes a realistic model where a reliable client and an untrusted server
exist. A similar approach is proposed by Hacigumus, in [25]. Many ideas presented in the
work of Hore were initially introduced by Hacigumus, with the difference that Hore offers
a more complete and applicable approach in the case of range queries and in terms of
security. The key idea of this approach is that it splits the query Q) into two components,
Qsecure + Qinsecure; Where Qinsecure 18 €xecuted on the server side and on encrypted values,
so as to compute a super set of results of Q. Qgecure 1S executed within the safe limits
of the trusted hardware (client side), in order to filter out the false positives. The
objective is to push as much work as possible, concerning the query execution, to the
server side. Regarding the bucketization approach, an attribute domain is partitioned
into a set of buckets, each one of which is identified by a tag; these bucket tags are defined
as crypto-indices and are used by the server in order to execute range queries. In this
paper Hore, presents privacy threats arising from the creation of bucketization-based
indices, that need to be taken into account. He also provides different algorithms for

bucketization schemes, depending on whether the priority should be given on privacy or

Joannis Demertzis 32 October 2013

3.2 Related Work

efficiency or equally on both, so that an appropriate one can be selected depending on

the requirements of the system.

Clientside storage Server side data

buckets Metadata

Y N\

20 71 zZ2 Z3 Z4
|]] |] J

0 200 450 600 650 700

/

Original Table (plain text) R \ L : Server side Table (encrypted + indexed) RA

eid | name | addr | shares | age | sal : etuple | shares? | age? | sal#
|

345 | Tom | Maple | 5400 32 390K I X@H#$"&FT X1 y2 Z1
I

876 | Mary | Main | 5800 22 423K I CH$ = (c#I x2 ¥1 z1
]

234 | John | River | 6000 34 598K 1 “$rDRLH X3 v2 z2
I

780 | Jerry | Ocean | 6200 48 632K 1 *%GH®BE) S X3 Y3 Z3 ‘—‘
| [

L —

b > | Bucket-tags

Figure 3.7: Data storage model of the Hore architecture

Using Figure 3.7 the key idea of Hore’s approach will be described. A relation table is
shown on the left and its server side representation is shown on the right. Hore’s idea is to
encrypt each row of the table and maintain it as a single tuple on the server. The above
process is executed as follows. For each attribute to be queried, the algorithm partitions
the respective values into buckets in some manner and stores the bucket-tags of these
tuples as indexing information on the server instead of storing the actual values. The
algorithm also stores this value-to-bucket mapping information on the client, which is

used for translating user queries to server-side queries. The following example shows the

execution of a simple query.

Select * from R where R.sal € [400K,600K] (Client-side query)

Using the metadata which is also shown in Figure 3.7 this query is translated into the

following.

Select etuple from R# where R*.sal* = 21V 22 (Server-side query)

Joannis Demertzis 33 October 2013

3. PROBLEM STATEMENT AND RELATED WORK

As a result, 3 rows are selected and returned to the client. The client-side should discard
the one record that is false-positive.

Hore designed algorithms in order to study privacy-efficiency trade-offs in the
case of bucketization schemes. At first he designed an optimal data bucketization-based
solution for the case of range queries. In order to have some measurement parameters,
he presents certain precision metrics that need to be maximized over all possible range
queries. The respective cost for optimal bucketization has time complexity of O(n*M)
and space complexity of O(nM), where n is the number of distinct values of the dataset
and M indicates the number of buckets. Afterwards, a set of privacy analysis and mea-
surements need to be taken for every instance of the bucketized data. Hore also assumes
that adversary A knows the exact distribution of values of every bucket and hence tries
to resolve this issue.

Furthermore, Hore introduced the notion of Value Estimation Power (VEP). This
value indicates the adversary’s ability to localize the value of an instance, like for example
to determine the salary of an individual. Moreover, he presented the notion of average
error that constitutes the error in the adversary’s guess about a value and this number
is lower bounded by the variance of the bucket distribution it comes. Note that the
proposed work considers the variance of a bucket distribution as an inverse measure of
VEP i.e. the bigger the variance, the smaller the chance of defining the value of an
instance. Another metric regarding privacy, is the Set Estimation Power (SEP) of the
adversary. An intuitive approach for this measurement can be the following; assume an
adversary that wants to identify all salary records with values in a given range. The
ability of answering the specific query is defined as the SET of the adversary. Moreover,
Hore proposes Entropy as an appropriate measure of SEP; entropy is a universal measure
of uncertainty and Hore considers entropy as the second metric of privacy, whereas the
first was SEP. In terms of privacy, the objective goal is to maximize the SEP and Entropy
metrics.

As mentioned in [24], the combination of metrics in Optimal bucketization may lead
to less privacy than required. Small variance leads to partial disclosure of the numeric
values, while small entropy leads with high probability to a complete leak of information.
For this purpose, Hore developed a novel privacy-preserving re-bucketization technique

which yields bounded overhead while maximizing the security level. This re-bucketization

Joannis Demertzis 34 October 2013

3.2 Related Work

technique allows trading-off bounded amount of query precision for greater variance and
entropy.

The key idea of the re-bucketization technique is that it first creates Optimal Buckets
and then diffuses the elements placed in these buckets in order to construct new com-
posite buckets. The regulated diffusion that is applied, aims to maximize the entropy
and the variance of the new composite buckets. In order to perceive the trade-off be-
tween efficiency and privacy, a control parameter is introduced and defined as the max
degradation factor K. It is used in order to adjust the level of efficiency to the desirable
level, while degrading the security level of the system. The use of Controlled Diffusion
algorithms increases the metadata size from O(M) to O(KM) and the number of buckets
that need to be retrieved in the case of range queries is K times greater than before.

Review of Hore’s approach

Moreover, computations are executed in an efficient manner on the server side. How-
ever, the time complexity regarding range queries depends on the bucketization technique
that is implemented and the security parameter K. A cost analysis is not presented in
their work due to the existence of false positives. Still in the specific protocol false pos-
itives add an extra cost on the client side, since the server returns a super set of the
answer. As a result the client has to decrypt the whole answer that he received, in order
to filter out all false positives leading to an often prohibitive additional cost, especially in
the case where the client is on a mobile device. Furthermore, updating data is expensive,
since a re-distribution is required. In terms of security this approach does not provide
any proofs but uses the trade-off between efficiency and privacy. Therefore, in order to
achieve the desired security level, they suggest increasing security parameter K, which
however implies degradation of efficiency. Finally, this approach is vulnerable to leakage

of the value distribution.

3.2.4 Distribution instead of Encryption Approaches

This family of approaches aims to reduce the encryption and decryption overhead. They
prefer extending the distribution of the data among the servers instead of encrypting the
data. The work in [26] and [27] focuses on both, distributing the data and providing
an efficient query processing technique, with the use of secret sharing algorithms. The

work of Emekei [27] provides operations, such as intersections, joins and aggregations,

Joannis Demertzis 35 October 2013

3. PROBLEM STATEMENT AND RELATED WORK

but it does not support range queries on the data, unlike Agrawal [26]. More particularly,
Agrawal proposes an approach that offers great functionality, such as exact match, range
and aggregation queries, as well as join operations. His work also considers updates and

allows nominal attributes that are converted into numeric ones.

Serverl
Salary
210K
30K
42K
Salary Polynomial 64K Server2
10K Q10(x)=100x+10 88K Salary
20K O50(X)=5%+20 410K
40K Oao(X)=X+40 > 40K
60K OgolX)=2x+60 44K
BOK | 0glx)=4x+80 Server3 68K
Salary 96K
110K
25K
41K
62K
84K

Figure 3.8: Example of Shamir’s Secret Sharing Algorithm

The approaches that we are currently studying are based on Shamir’s secret sharing
method that operates as follows. Data source D, is responsible for dividing numeric
values u4 into n partitions and storing each one of them on a different server, in order to
know any k < n partitions. Additionally, some secret information X is known only to the
data source D. These two elements are sufficient in order to reconstruct the secret. This
method is information theoretically secure, since even if X is known, having complete
knowledge about the k-1 servers is still not sufficient in order to derive any information
about the secret. As for the secret sharing method, data source D selects a random
polynomial q(x) of degree k-1, where the constant term comprises the secret value ug

and secret information X which is a set of n random points, each corresponding to one

Joannis Demertzis 36 October 2013

3.2 Related Work

of the servers. Then, data source D computes the partition that will be given to to each
server as q(x;), where z; € X and propagates it to the respective server. In Figure 3.8
an example is shown, of Shamir’s algorithm for n=3, k=2 and X=x1=2,x2=4,x3=1, one
for each server.

In order to support range queries Agrawal proposes in [26] two solutions. The first
uses the labeling technique which as mentioned in the paper is completely insecure, while
the second is based on a modification of Shamir’s algorithm and uses an order preserving
polynomial construction technique for a specific type of values. However, the latter does
not provide any proof of the security achieved in the case of range queries. Still, in the
case of exact match queries (joins with equality predicates) the same approach achieves

the same security level with Shamir’s secret sharing algorithm.

3.2.5 Tamper-Resistant Trusted Hardware

An alternative way for solving the problem of privacy preserving range querying is intro-
duced by the Hardware community. Tamper-resistant secure hardware provides a secure
execution environment (board), with restricted processing and memory resources. In the
case of illicit physical handling, the devices are programmed in such way, as to destroy
their internal state and shut down. The advantage of such approaches is mainly that they
support almost any existing DBMS functionality, while the cost per query appears to be
orders of magnitude lower than any existing software mechanism. Current work from
this field is TrustedDB [28], where in order to avoid having secure CPU-related storage
limitations, the outsourced data is stored in the host provider and the query processing
takes place in both the server and the secure CPU side. A more optimized approach is the
Cipherbase [29], which however affords limited computing and memory resources. Hence,
neither a large number of clients, nor a high throughput can be supported. Furthermore,
in this approach the secret key is passed from the user to the trusted hardware, which
needs to be performed with great caution. Finally, in the case of range queries, the ap-
proaches studied in this Section have as much leakage as CryptDB [9] and MONOMI [10].
Therefore, the privacy preserving range querying has not been resolved either by the field

of hardware.

Joannis Demertzis 37 October 2013

3. PROBLEM STATEMENT AND RELATED WORK

Joannis Demertzis 38 October 2013

Chapter 4

Our Approach

The basic notion of our approach is that we want to transform range queries into point
queries, in order to be able to answer securely to encrypted range queries. Our aim is to
answer to range queries without revealing the order of ciphertext. A naive approach
to this direction would be to answer to range queries related to ages that belong to
the range from 19 to 23, by separating the range into unique units (19,20,21,22,23),
encrypting each of these values under the key and request from the server all encrypted
tuples with values (19,20,21,22,23) separately. The basic drawback of the above solution
is its efficiency, since for each of the unique values, the server will need to search the
entire database. Furthermore, this sequential scan might lead to a leak of information,
concerning these values. In order to support range queries efficiently and at the same
time satisfy the security primitives, we use dyadic intervals as mentioned in Section 2.3.
Our method achieves a desirable logarithmic complexity stemming from the dyadic
intervals and provides strong security guarantees. Our approach combines deterministic
and non-deterministic encryption schemes which apply to the distributed Key-Value store,
stored in the cloud.

In Section 4.1 we present the basic architecture, we describe the interaction between
cloud and client and the way in which we have used the dyadic intervals, so as to achieve
the desirable logarithmic cost. In Section 4.2, we outline the security level of our approach.
In Sections 4.3 - 4.4 we provide solutions to more difficult, realistic and complex attacks.
Finally, in Sections 4.5 we discuss how we enforce and make efficient updates in our

privacy preserving data structure.

Joannis Demertzis 39 October 2013

4. OUR APPROACH

4.1 Architecture

In order to provide solutions to more complex security problems than those tackled by
related work, we propose a modification of the standard Key-Value store, which allows

the execution of the following commands:

get(Enc(skgey,”id”), Server;p)
put(Enc(skkey,”1d”), Enc(skyaue,” value”), Server;p)

remove(Enc(skg.,,”id”), Server;p)

These correspond to the basic operations used to enable the interaction between the
cloud infrastructure, containing data organized in a distributed Key-Value store, and
the user(data owner). This modification of the standard Key-Value store’s commands
allows us to determine the server on which each of them has to executed. Every key
in the Key-Value store is encrypted and corresponds to a specific range, e.g. for range
[, 3] the key is ”«a-3”, while for identity ranges like [,] the key is "a-a”. The value
in the Key-Value store corresponds to a list of tuple ids or a list that contains the tuples
themselves and these lists are where the key refers to. Without loss of generality, we
assume that the value in a Key-Value store is a list of tuple ids, that correspond to
encrypted tuples.

We use different encryption schemes, depending on whether we want to encrypt the
key or the value.

Key Encryption: We encrypt the key of a Key-Value pair using a deterministic algo-
rithm DET, which means that every time we encrypt the value x under a specific key,
the ciphertext remains the same. This property allows the existence of search-ability.
The deterministic nature of DET also guarantees the IND-DCPA security level.

Value Encryption: We encrypt the value of a Key-Value pair using a randomized en-
cryption scheme RND), so that every time we encrypt a message under a specific key, the
produced ciphertext is different. Another reason for choosing a randomized algorithm,
is because it achieves IND-CPA. In Section 4.2, we will focus on encryption schemes
that belong to the family of DET and RND and a security analysis for these encryption
schemes will be provided.

The ranges’ formation of our keys in the Key-Value store follow the dyadic intervals’

approach. As shown in Figure 4.1, each node of the tree reflects a dyadic interval and

Joannis Demertzis 40 October 2013

4.1 Architecture

is represented by a key in the Key-Value store. Starting a description from the bottom
to the top of the tree, we need to mention that the leaves are the nodes that store the
encrypted tuples of the corresponding values, while nodes in higher levels store the union
of their descendants’ nodes. Assuming that we want to execute range queries on the
column Salary, the first leaf node with node id 1 stores all tuples corresponding to salary
1K, the second leaf node with node id 2 stores all tuples that correspond to salary 2K
etc. As a result, the dyadic interval ”1-2” contains the union of the tuples of both node

1 and node 2. Similarly, we can construct the dyadic tree, as displayed in Figure 4.1.

T1-T16

/ / \
T1-T10 / \ T11/714 T15'716

‘ 12 ‘ ‘ 3.4 ‘ ‘ 56 ‘ ‘ 7-8 ‘
n o T11 T14 T15 T16

e T12

14 113

E

6

7

18

0

10

Figure 4.1: Dyadic tree

A brief description of how the range query execution is performed is essential in order
to comprehend different kinds of weaknesses that need to be resolved. Consider the
following range query that is performed on a column Salary:

SELECT *
FROM TABLE as T
WHERE T.SALARY >= 2K AND T.SALARY <= 7K.

Firstly, we break the above range into the following dyadic intervals: 2, 3-4, 5-6

and 7. This sequence of intervals constitutes the minimum dyadic cover, explained in

Section 2.3. Then, the following commands are executed:

get(Enc(skkey, 72”),Servery),

loannis Demertzis 41 October 2013

4. OUR APPROACH

get(Enc(skkey, ”3-47),Server;),
get(Enc(skkey, ”5-6"),Servery),
get(Enc(skkey, ”77),Servery)

, assuming that we have already stored an encrypted form of the requested values on
the server and that there is only one of them. Then, the server returns the requested
values in an encrypted form and it is up to the client side to decrypt these values, under
their secret key. The range queries that we described are answered in O(Log(8 — «))
time complexity, where o, are integers which form the requested range [a, 3]. For
simplicity purposes, we refer to this complexity by the upper bound of O(Log(N)), as
b — a < n, where N is the size of the domain space. As for the space complexity, it
is O(M LogM), where M is the number of the tuples and N the maximum value of the

domain. For example, if we have integer values , then N = 232,

4.2 Security level

In this Section we will describe the usage of encryption schemes DET, RND by our
approach and their security analysis.

DET: Using the notation DET, we refer to any deterministic algorithm that has the
security property of a pseudo-random function (PRF) or pseudo-random permutation.
DET consists of 3 parts, a key generator, an encryption algorithm and a decryption
algorithm. In order to summarize this functionality of DET we are using the following

notation:
DET = (DET.KeyGen,DET.Enc,DET.Dec)

DET.KeyGen: KeyGen takes as input x, which is a security parameter and produces
as output a secret key sk. (sk «— KeyGen(17))

DET.Enc: Enc is the encryption function that takes as input a secret key sk and a
message m and it outputs a ciphertext (¢ - Enc(sk,m))

DET.Dec: Dec is the decryption function that takes as input a ciphertext ¢ and a secret
key sk and outputs the message (m <— Dec(sk,c)). As we have already mentioned in the

Background section, DET is characterized by the following property:

YV mg,m; € M : Enc(sk,mg) = Enc(sk,my) iff mg = my

loannis Demertzis 42 October 2013

4.2 Security level

Using the above property, all messages m € M become search-able.

RND:Using the notation RND, we refer to any non-deterministic algorithm that has the
security property of a pseudo-random function (PRF) or a pseudo-random permutation
(PRP). Similarly to DET, RND is comprises 3 parts, a key generator, an encryption
algorithm and a decryption algorithm. Furthermore, in order to summarize the above

functionality of RND we using the following notation:
RND = (RND.KeyGen,RND.Enc,RND.Dec)

RND.KeyGen, RND.Enc and RND.Dec are defined similarly to the DET encryption

scheme. As we have already mentioned in the Background section, RND has the following

property:

Vm € M: Enc(sk,m) <> Enc(sk,m)

We use the DET encryption scheme, in order to encrypt the key in the Key-Value
store; the keys correspond to the identifiers of the dyadic intervals that are unique. This
means that the encryptor (the client) never encrypts the same dyadic interval twice and
consequently our DET approach achieves the IND-DCPA security definition. On the
other hand, the RND scheme’s usage upon the values of the Key-Value store leads to the
achievement of the IND-CPA security definition.

In order to implement both of the above schemes, we make use of two Block ciphers,
the AES-CBC mode and the AES-Counter (AES-Ctr) mode, which have been already
described in the Chapter 2 . The only difference between these implementations is that in
the case of the DET encryption scheme we use a fixed-I'V while in the case of the RND
encryption we use a random-IV. The security analysis of those schemes is provided in
the Appendix A, where we end up to the following conclusions.

AES-Ctr can be IND-CPA in the case of RND by using a random IV, but it does
not enable the design of a secure DET. Moreover, in the case of RND, AES-Ctr is more
efficient than AES-CBC, since for the same security level it can encrypt more AES-blocks
than AES-CBC. Besides this, it is completely parallelizeable and easy to implement due
to the fact that the same circuit is used for both, encryption and decryption.

Furthermore, in the case of deterministic encryption schemes, such as AES-CBC, the
required level of security is guaranteed, if the size of the message is less than 1 block i.e.

16 bytes. If the values’ domain consists of integers (n = 23?) or double int (n = 2%4), then

Joannis Demertzis 43 October 2013

4. OUR APPROACH

16 bytes are enough to index all the dyadic intervals in our approach. If the 16 bytes
were not enough, we could propose other encryption schemes, such as Synthetic-IV [30]
that has an extra property of DAE (Deterministic Authenticated Encryption), or CMC
in [31], EME [32] and XTS [33], that are regarded as disk encryption schemes and can
be used in the case of more than 16 bytes. However, in terms of efficiency and if we are
encoding less than 16 bytes, AES-CBC appears to perform better than the rest of the
encryption schemes we mentioned above. The conclusion of the above analysis is that
we can use one of the implementations described, in order to be secure against distinct
chosen plaintext attacks that aim for the key of the Key-Value pair (encrypted dyadic
intervals). Another aspect of our approach, which is achieved through the use of random
IVs, is the ability to encrypt messages of arbitrary size.

In this Section, we mentioned that either for the key, or the value of the Key-Value
pair, we use encryption schemes that allow us to guarantee strong security definitions, as
in the examples of IND-DCPA or IND-CPA. These definitions claim that all the key and
value ciphertexts in the Key-Value pair are distinctly secure. We show that in case of a
more powerful attacker, then the combination of the key and the value in the Key-Value
pair may reveal information. This problem is called the distribution problem, for which
we propose an efficient solution in Section 4.4. We firstly issue our approach towards

resolving the Query Access Pattern problem.

4.3 Query Access Pattern Problem

Unlike OPE schemes, our approach answers efficiently to range queries, without revealing
the order of the ciphertexts to an untrustful server. In order to achieve this, we propose
a solution to the the Query Access Pattern problem, which will be described below.
The recent work in EDBT’13 [34] introduces a novel attack for Precise Query Proto-
cols i.e. protocols and schemes that return the exact query answer without false positives.
Related work on these protocols though, does not examine a solution to this problem.
In order to solve the Query Access Pattern problem, we could utilize two different
approaches. The first one would be to apply a technique from the Oblivious RAM area.
The main notion of those techniques is the replacement of single queries by sets of queries.

The original Oblivious RAM model though requires O(Log*n) queries, while in [35], a

loannis Demertzis 44 October 2013

4.3 Query Access Pattern Problem

technique is proposed that requires O(Log?n) queries and /n space requirements at the
client side, where n is the number of encrypted data.

Another possible approach towards the tackling of the Query Access Pattern problem
would be the periodical re-encryption of the ciphertexts, at a frequency greater than the
one needed to launch an access pattern based attack.

The adoption of either one of the above techniques though, would incur an additional
cost. We instead propose an efficient solution that exploits the structure of the dyadic
interval and the nature of cloud environments i.e. the number of servers (nodes) available.
The only constraint is that the servers can communicate but they cannot collaborate
towards the achievement of a malicious goal. In the next Section, we describe the trade-
off between the number of servers provided and the achieved security level. It is worth
mentioning that the single server’s case may be reduced to the existence of an arbitrary
number of available servers. In this case though, all of these servers collaborate with each
other, forming a single group. As a result, the case of the k-server approach corresponds
to k non-collaborating and disjoint groups of k or greater number of nodes. Thus, our
approach is scalable and the restriction upon the number of servers has to do with the

amount of them that will not collaborate with each other.

4.3.1 Single Server Approach

First, we use an intuitive way to illustrate why the Query Access Pattern problem exists.
We consider a query requesting all salaries with values between 2K and 6K. Then, we
break this range into dyadic intervals and the following dyadic intervals are created: 2,
3-4 and 5-6, which we will be later requested in an encrypted form. The mapping created

for the three intervals we have obtained is as follows:
a F 772’7’b e 773 _ 47’76 F 775 _ 677

The number of possible combinations that can be formed is equal to 3! and all possible

combinations are displayed below:
1)abe, 2)ach, 3)bac, 4)bca, 5)cab, 6)cba.

Assume that a legitimate user additionally executes queries 2K - 4K (which is the

ab sequence) and 3K - 6K (which is the bc sequence). A server observing these queries

Joannis Demertzis 45 October 2013

4. OUR APPROACH

understands that a is a neighbor of b, but it will not be able to determine whether a
has a bigger value than b or vice versa. Similarly, in the case of the bc sequence, the
server will not be able to determine whether b has a bigger value than ¢ or vice versa.
However, using the above information the server is aware that a is a neighbor of b and ¢
is a neighbor of b. Therefore, it can exclude all cases, where a and b, as well as b and ¢
are not neighbors, i.e. cases 2, 3, 4 and 5, in the above example. Immediately, it becomes
clear that the server has reduced the 6 combinations to 2 (n! — 2), but it cannot decide
whether the first or the sixth is valid. Thus, the server ends up having two feasible
sequences, the abc and the cba. Notice that this can be observed for any sequence
that can be created during a query. The first of these sequences constitutes the actual
and the latter its mirroring sequence. This is defined as the mirror property and we
will show that it applies for any Precise Query Protocol that does not examine the Query
Access Pattern problem. The analysis of this claim is provided in the Appendix B.

The worst-case scenario of the single server approach occurs when all the possible
range queries have been executed. By observing them, the untrusted server is able to
determine the partial ordering of all those ciphertexts, leading to the ability of deducing
two equally probable orders of them (mirror property). Even in this extreme case, our
solution provides a higher security level than all OPE schemes, which by definition reveal
the ordering of data. Despite this advantage of our approach against OPE schemes, in
the next Sections, we illustrate the manner in which the Query Access Pattern problem

is completely resolved.

4.3.2 Two-Server Approach

In the mirror property described above, we concluded that the n! possible ordering com-
binations are reduced to 2 by observing the answers (dyadic intervals) of length 2. All
these pairs are defined as bad neighbors, as their co-existence as part of an answer
is the most harmful towards revealing the data order. For example, the two nodes 72"
and ”3-4” are considered as "bad neighbors”, as they set the continuous interval 2-4.
Similarly, the two nodes ”2” and ”3” are considered as "bad neighbors”, as they set the
continuous interval 2-3.

So as to avoid the above information leakage, our effort focuses on placing these ”bad

neighbors” into different servers. We distribute the nodes to the two servers as shown

Joannis Demertzis 46 October 2013

4.3 Query Access Pattern Problem

in Figure 4.2. More specifically, each left child node is assigned to server 0 and each
right child node is assigned to server 1. The root node can be assigned to any of the two
servers. This partitioning prevents privacy leakage in the case of some of the overlapping
queries that were provoking problems with the single-server approach. As an example,
consider the request of the range ”3-6”, when the returned dyadic intervals are ”73-47,
”5-6", which are returned from different servers (S1 and SO respectively). Thus, in this
case, we avoid the information leakage described in our single-server approach.

On the other hand, querying for the range ”3-8” will be decomposed to two dyadic
intervals, 73-4” and ”5-8”, which will both be redirected to the same server. Therefore,
our solution does not yet succeed to completely isolate the bad neighbors.

In order to achieve this, we relax our restriction upon returning the minimal dyadic
cover as the query’s answer. On the contrary, we break the interval that is located in
the higher tree level and retrieve its information from its children. For example, we can
retrieve the answers for the range 3-8 from the nodes ”3-4” and the children of 75-8" i.e.
75-6”" and ”7-8”. The time complexity remains O(LogN).

Each of the two servers has half of the domain values, which means that his knowledge

about the overall ordering of all dyadic intervals equals to:
2% (2!) % (n/2)!

The use of the above 3 factors is justified as follows: The factor 2 that appears first
reflects the fact that the adversary can observe only half of the domain. In this case,
because of the mirror property the number of all possible permutations is reduced to 2.
Furthermore, the number (2!) indicates the lack of knowledge concerning the relative
position of the data stored in each of the two servers. The factor (n/2)! indicates that
the attacker cannot observe sets of queries and responses, concerning the remaining half
of the domain, for which she makes no observations. Thus, she is not able to exclude any
permutations, as of the other server’s contents. In Figure 4.2 we present a dyadic tree in

which the domain is partitioned to two servers.

4.3.3 k-Server Approach

In this case, we can compute a lower bound for the number of combinations that an

adversary can perceive. We assume that the answers’ domain is equally and uniformly

Joannis Demertzis 47 October 2013

4. OUR APPROACH

|
/51 S0/\S1
i i

T1 T2 T11 T14 T15 T16
T3 T12
T4 Ti3

Figure 4.2: Distributed Dyadic tree in 2 servers

distributed to the servers. The following formula presents the number of remaining

permutations in the case of k servers.
2% (k) * (2% (k—1)xn/k)!

As to explain the above formula, we need to mention that in the case of k-servers ap-
proach, a server holds n/k of the overall dyadic intervals. In other words, by observing
all the possible queries, an adversary is able to reduce the number of permutations from
(n/k)! to 2; for this reason we first multiply by 2. Furthermore, the factor k! indicates
that the specific server cannot determine the starting point of his sequence, compared to
the other k-1 sequences. We already know that all the possible combinations that can be
formed, are k!. Finally, the factor (2*(k-1)*n/k)! refers to the unknown portion of data,
for which the other k — 1 servers are responsible for.

The reason for which the above formula constitutes a lower bound of combinations, lies
in the fact that when a server provides more than one dyadic intervals as part of an answer,
it is not aware of the dyadic intervals’ relative distance. Besides this, it knows neither

the parameter k, nor the maximum path of dyadic intervals which forms an answer. In

Joannis Demertzis 48 October 2013

4.3 Query Access Pattern Problem

general | it is straightforward that the greater the number of non-collaborating servers,
the stronger the security guarantees that are achieved. It is worth mentioning that the

parameter k is bounded by the maximum length of the minimal dyadic cover.

4.3.4 LogN-Server and 2LogN-Server Approach

We assume that we have in our disposal LogN servers, which are exploited via assigning
the contents of each level of the dyadic tree to a different one. This assignment is depicted

in Figure 4.3.

s1/ 1\ s1/
1-2 ‘ 3.4 ‘ ‘ 5-6 ‘
SO S0 S0, \S0 SO S0 <

3)14 6

n mn T11 T14 T15 T16
e 112
T4 113
)
6
7
8
0
10

Figure 4.3: Distributed Dyadic tree in LogN servers

This assignment policy guarantees that each node contributes by at most two cipher-
texts, as a result of Property 4 described in Section 2.3. Also the LogN number of servers
is equal to half of the upper bound of the dyadic interval’s maximum search path.

We claim that the assignment policy used in the LogN-Server approach prevents any
information leakage, only if the server is not aware that the dyadic intervals technique is
applied. Otherwise, this approach suffers from information leakage. For example, assume
that we have a range query requesting for all salaries that belong to the range 2K to 7K.
Then we will get the following dyadic intervals: 727, 73-47 75-6”, "7”. We can see in

Joannis Demertzis 49 October 2013

4. OUR APPROACH

figure 4.3 that the first server contributes with the dyadic intervals ”72” and ”7”. Now
assuming it knows that our approach uses the dyadic intervals’ technique, it still cannot
be sure about which one of the two intervals comes first. However, due to the fact that
dyadic intervals 71”7 and ”8” are always requested alone, none of the requested dyadic
intervals could be one of them. Conclusively, the number of ciphertext rearrangement
combinations is not feasible to reach the desired n!, which corresponds to a completely
secure solution.

The above limitation is avoided when we have 2LogN servers at our disposal. Since
2LogN is the longest possible path forming a minimal dyadic cover, there exists at least
one suitable assignment that guarantees that each server contributes by at most one
dyadic interval, as shown in Figure 4.4. A proof of this argument can be obtained by
using the aforementioned dyadic tree’s Property 4, the assignment of each left and right
child to a different server and the fact that each answer will not consist of more than one

left or right dyadic interval from the same level.

y
52/ 3\, s2/ 53\,
‘1-2 ‘3-4‘ ‘5—6‘ ‘?—8‘
Swl SW]. SO/ S1 SO/ \S1
3][4] 78]
n T11 T14 T15 T16
13 12
T4 T13
15
6
17
8
D)
10

Figure 4.4: Distributed Dyadic tree in 2LogN servers
Beyond the solution of the Query Access Pattern problem, we have to face the leak-

age of the distribution followed by the stored values. This Distribution problem is not

efficiently tackled by any related work. Our approach towards its solution follows.

Joannis Demertzis 50 October 2013

4.4 Distribution

4.4 Distribution

The distribution problem is illustrated through the following example: As shown in
Figures 4.3, 4.4, server 1 contributes with nine tuples, in the case of 2K, while in cases
4K and 6K the same server contributes with zero or one tuple respectively. Therefore,
the untrusted server draws the conclusion that the tuple corresponding to the 2K value
is more frequent than the rest of the tuples. As a result, it gains knowledge about the
distribution of the data, provoking information leakage. The occurrence of this problem is
also met in an example that studies the salaries of a less developed country’s population.
In this case, the observation of a frequent tuple residing in the Key-Value store, would
result to the assumption that this tuple corresponds to the country’s minimum salary -
as this is obtained by the majority of the population.

In order to address the aforementioned problem, we introduce an additional dyadic
tree index. Briefly, the first level dyadic tree index stores a mapping between the actual
values and their position on a secondary structure. This is represented by a second level
dyadic tree that facilitates the distribution of all information in a uniformed way. It is
clear, that if the distribution is uniformed at the lowest level of the tree, then it will be
uniformed and at the rest of the tree. One way to achieve the desirable distribution, is
if we convert the tree that is shown in Figure 4.4 to the tree that is shown in Figure
4.6. In order to perform this conversion we follow the steps that are described in the
initialization algorithm.

In the initialization phase, we perform the group by function on the desired column,
in order execute the range query. The group by is performed on entire tuples or tuple
IDs. Then, we partition the groups into buckets of constant size. If the created buckets
are not filled, then we use the zero padding technique, in order to hide from the server
the actual size of the buckets. Each bucket is assigned to an id, which is based on an
incremental counter and also corresponds to the leaves of the second level dyadic index,
as shown in Figure 4.6. Consecutive leaves in the second level index, indicate that the
value of the leaf i is smaller or equal to the value of the leaf i+1. In order to store the
starting and ending point of each of the second level’s index buckets, we need to save the
corresponding ids in the leaves of the first dyadic interval tree. The rest of the procedure,

consists of the construction of the rest of the tree i.e. the construction of the rest of

Joannis Demertzis 51 October 2013

4. OUR APPROACH

the dyadic intervals in the first and second level index. The algorithm of Initialization is

presented in 1.

Algorithm 1 Initialization Algorithm
Input: Table as t, BucketSize as b,Secret key skxpy ,Secret key skyarve

1: Group by t.Salary

2: w41

3: for each group Gi do

4: Partition Gi into bucket size of b

5 start <— w

6 for each bucket bj do

7: put(Enc(skxpy,w), Enc(skvarve, b))

8 W+

9 put(Enc(skkpy,t.Salaryli)), Enc(skyarvg, start|]” —7||w — 1))

10: Build the 1st level dyadic index
11: Build the 2nd level dyadic index

We are considering range queries on encrypted data and therefore the input of the
Search Phase 1 algorithm includes a lower and an upper bound, that define the range
we are interested in. Firstly, this range is broken into dyadic intervals. For each dyadic
interval, we request from the first level index the corresponding encrypted value , using
the command get(Enc(sk, ”id”)), as mentioned above. Then, we decrypt this value in
the client side, under the secret key. Our aim in this phase is to find the minimum and
the maximum value among all the dyadic intervals that we have obtained. These two
values, are given as inputs in the Search Phase 2 algorithm. At this phase, the range
that is defined by the min and max value, is broken into dyadic intervals. We request
each one of the dyadic intervals that we have obtained from the second level dyadic tree
and then we add them to our final answer.

For example, lets assume that we have the following query:

SELECT *

FROM TABLE as T

WHERE T.SALARY >= 2K AND T.SALARY <= 7K.

Firstly, we execute the Search Phase 1 algorithm, using as inputs the values 2K and 7K.

This range will be broken into the dyadic intervals: 727, 73-4", 75-6”, ”7”. For each one

Joannis Demertzis 52 October 2013

4.4 Distribution

of the intervals we have obtained, we request from the first level index the Enc(sk,”2”),
Enc(sk,”3-4"), Enc(sk,”5-6"), Enc(sk,”7"); we are querying the fist level index as it is
shown in Figure 4.5. Then in the client side we decrypt the servers’ response and we
find the starting point and the ending point among all intervals, which in our case are
the values 2 and 15 respectively. These values constitute the input of the Search Phase 2.
Once more the input range is broken into the dyadic intervals: 72”7, 73-4”, 75-8”, 79-12”,
713-14”, 715”. Finally, each of the above intervals is requested from the second level
dyadic tree Enc(sk,”2”), Enc(sk,”3-4”), Enc(sk,”5-8"), Enc(sk,”9-127), Enc(sk,”13-14"),
Enc(sk,”15”) and the servers’ responses are added to the final answer.

Notice that our solution now addresses both the Query Acces Pattern problem and the
distribution leakage problem; each server contributes with at most one key to the query’s
answer (assuming the availability of 2LogN servers) and the amount of information even-
tually contributed by each server to the final answer is always the same, regardless of
the query or the distribution of values in the indexed data. The time complexity for
each range query is O(LogN + LogM), where N is the maximum unsigned value of the
domain’s data type and M is the number of tuples/b, where b is the bucket size. The
space complexity isSO(N LogM + M LogM).

Algorithm 2 SearchPhasel
Input: LBound,UBound

Output: Answer

1: Break the range to dyadic intervals
2: Find min (starting point) & max (ending point) of all dyadic intervals

3: Answer < SearchPhase2(min, max)

Algorithm 3 SearchPhase2
Input: min,max

Output: Answer
1: Break the range to dyadic intervals
2: for each dyadic interval i do
3: Answer+ = get(E(sk, 1))

Space reduction can be achieved, due to the fact that some of the dyadic intervals are

never used. For example, assuming that we want to retrieve the salary 2K in Figure 4.6,

Joannis Demertzis 53 October 2013

4. OUR APPROACH

we need to retrieve this information from the nodes with value 72”7, ”73-4”.75-8”,79-10".
However, the 2K salary tuples are also stored in nodes 73”7, 74”7, 75" 76", ”5-6", "7,
787, 77-87,797, 7107, that will never be retrieved individually. This enables us to avoid

storing these buckets at the corresponding servers.

Actual Value | Starts Ends
1K 1 1
2K 2 10
3K 0 0
4K 0 0
5K 11 13
6K 14 14
7K 15 15
8K 16 16
1-2K 1 10
3-4K 0 0
5-6K 11 14
7-8K 15 16
1-4K 1 10
5-8K 11 16
1-8K 1 16

Figure 4.5: 1st-level index

4.5 Updates

In this section, a description will be made about how to perform updates on our encrypted
structure. We have already mentioned that during the initialization process buckets of
size b are used and in case of a non-filled bucket, zero padding is applied. This is because
we want to hide the distribution of tuple ids from the adversary. However, by allowing
updates, the distribution of values in the dyadic tree is affected. In other words, the use
of a second level dyadic interval tree is useless (we do not conceal the distribution).

In order to solve the above problem we use the idea of sparsity and we apply it in the

buckets, using zero padding. We define a specific percentage of sparsity and if the bucket

Joannis Demertzis 54 October 2013

4.5 Updates

(/ i Cl
B':L‘SJ 16
7K 8K

is not completely filled then we continue to implement zero padding. Nonetheless, during

wn

/ 4 s) A S
11 || 12 13 || 14
6K

5K

Figure 4.6: 2nd-level index

the initialization process, the empty buckets are created and encrypted according to the
idea of sparsity.

We define as good updates, the updates that correspond to a value that has free
space and therefore is convenient for insertion execution. On the other hand, we introduce
the notion of bad updates as updates that do not offer free space for a new insertion.

In the case of bad updates the 1st and 2nd level dyadic tree intervals need to be rebuilt
while in the case of good updates we can estimate whether or not there is enough free
space in the corresponding nodes so as to execute the insertion. For this purpose we need
to enrich the information contained in the first level tree by adding a supplementary
column indicating the first empty point of the bucket in order to start the insertion
process from there. This number is calculated by subtracting from the bucket size, the
number of tuples that are already in it. As we have already mentioned the bucket size
is fixed since we used zero padding and achieved equi-size buckets in the leaves of the
2nd level index. The first level dyadic tree shows if a good or a bad update is going to
occur as well as the respective id in the second level index where the insertion should be
executed. A significant observation at this point is that the querying happens only on

the leaves of the first level index.

Joannis Demertzis 55 October 2013

4. OUR APPROACH

In order to execute a good update, firstly we need to update the corresponding infor-
mation that is located in the first level index i.e. we need to increase by one the number
of tuples. Then in the second level index, we need to propagate the update towards the
ancestors of the leaf, where the new value was inserted.

Finally we need to mention that updates in the 1st and 2nd level index are executed
in a specific order. At first the respective key-value pair is requested from the key-value
store. Then the value is modified according to the updated value and the old key-value
pair is replaced with the new one that contains the new value. The cost of the above
procedures is equal to O(n) for every insertion.

However, in order to perform the above procedure more efficiently, we modify the
storage policy of our structure. More specifically, the first level index stores additional
information beyond that described previously, so as to achieve a more desirable perfor-
mance in the case of insertions. On the leaves of the second level tree index we continue
to store buckets, with respect to the sparsity approach. The same does not apply for the
higher levels of the second level index, where the value in the key-value pair corresponds
now to an array list of buckets located on the leaves. In Figure 4.7 we can observe the
new storage policy. At this point we need to mention that buckets (B1,B2,...,Bn)are
encrypted. In comparison to the previous storage policy, now each node does not contain
a union of its descendants, but a union of the leaves of the tree, that corresponds to the
respective dyadic interval. As we have already mentioned the value of the key-value pair
contains an array list, that stores buckets that are located on the leaves of the tree. The
position where each bucket is placed, depicts a path. This path starts from a reference
node (current dyadic interval) and ends at the corresponding child (bucket); we mark
every right child with the value "1’ and every left child with the value '0’.

Lets assume that we want to execute a good update for a given value. Firstly, we
request from the first level index the starting and ending point of the given value, in the
second level index. Then, taking into account the information concerning the size of the
bucket and the current number of values that are already stored in it, we can determine
which leaf is appropriate in the second level index for the insertion. At that point, we
retrieve the appropriate bucket and we decrypt it on the client side. Afterwards, we
add the new value to the bucket and therefore the old bucket needs to be replaced by
the updated one in every dyadic interval it appears in. The difference with the previous

implementation is that now we do not need to download all key-value pairs that are

Joannis Demertzis 56 October 2013

4.5 Updates

/ 18 00 01 10 11

1-4 |™——> <Enc(“1-4"), (| B2 ||| B2[|| B3 ||| B4 ||)=

LS

I‘\-‘F‘Q\\

1- 3-4 0 1

[03

1|2 3|4 <Enc(“3-4"),|| B3 B4 |l)>
Bl || B2 B3 || B4

Figure 4.7: Update storage policy (2nd-level index)

located on the ancestors of the reference node, but we already know the exact position
of the node with respect to its ancestors and can execute a good insertion with cost
O(LogN). The final step involves the updating of the first level index, with the new
values that are produced after the insertion of the new value; we need to update only
the corresponding leaf in the first level index, since updates interact only with the first
level’s index leaves.

We have decreased the computation complexity for a good update, but we have to
consider the security level of the above procedure. We can observe that every dyadic
interval in the second level index contains an array list of buckets in a sorted sequence,
which means that the server is aware of the order of the encrypted values in the buckets,
which forms a specific dyadic interval. Additionally the server that contains the root of
the second dyadic tree, knows the order of all encrypted buckets, but it cannot identify
the actual value included in a bucket. However, it can perceive the order of the buckets
i.e. it can realize that bucket n follows bucket n-1 and is before bucket n+1. However
this revealing of the order is less than the one presented in OPE encryption schemes,
something that will be shown in the following paragraphs. We also show how is it possible
in the case of good updates to hide any other ordering, besides the one regarding the
buckets, without sacrificing the O(LogN) complexity cost. This can happen by storing
additional information in the leaves of the second level index.

Deletions can be handled in a similar manner, by first using Search Phase 1 and

Search Phase 2, in order to retrieve the matching tuples existing in the second level

Joannis Demertzis 57 October 2013

4. OUR APPROACH

index. After receiving the answer of these dyadic intervals, we decrypt them and iden-
tify the desired value for deletion. These values enable us to modify the corresponding
buckets, re-encrypt them and propagate the update to the respective dyadical interval
leaves. Depending on the precise point within each bucket that is affected by an update,
an additional transformation may occur, in order to preserve the aforementioned zero-
padding accordingly. This computational cost sums up to: O(logm + logn + log*n), due
to the execution of both Search Phases, as well as relocating the affected buckets, which
is asymptotically equal to O(log?n).
Comparison of the security guarantees of our algorithm with updates of other
OPE schemes

Our approach reveals less information than the other OPE schemes because in our
case the order of the ciphertexts does not indicate the order of the plaintexts. Also, in
order to encrypt the value of the key-value pair, we use a non-deterministic algorithm,
when the OPE schemes use deterministic algorithms. More particularly, we have already
mentioned that the security definition of IND-OCPA, that is used by deterministic en-
cryption schemes, preserves the OPE property. The OPE schemes, that try to meet
the IND-OCPA security definition suffer from big jump attacks, as first mentioned by
Boldyreva [1]. Conclusively, any OPE encryption scheme should have ciphertexts with
size at least exponential to the size of the plaintext in order to face the big jump attack.
The mOPE [2] approach, replaces the ciphertexts with a size at least exponential to the
size of the plaintext, using the idea of mutability. Our update policy does not suffer from
the big jump attack problem, due to the fact that we use a non-deterministic algorithm
which does not have the OPE property. Furthermore our update policy does not allow
the execution of range queries in a subset of values of the dyadic intervals. However, our
approach reveals the order of the buckets, which means that it is exposed to a server that
has knowledge of statistical information and is aware of the domain of the values. For
example if the server knows that the domain of the values corresponds to Greek salaries
in 2013, then it can easily find out about the minimum salary in Greece and hence know
the value of the first bucket. However, the same thing applies for the OPE schemes too.
Finally, the main reason that renders our approach less vulnerable to the server compared
to the OPE schemes, is that it resolves the problem of distribution as we have described
in 4.4, while OPE schemes and the state-of-the-art mOPE approach, do not propose a

solution to this problem.

Joannis Demertzis H8 October 2013

4.5 Updates

Concealing the order of the encrypted buckets from the attacker

We have already shown that even if the encrypted buckets are stored in a sorted
way, based on the order of the actual values, our encryption scheme still achieves IND-
CPA. Nevertheless, if we want to hide this information from the untrusted server, we can
randomly shuffle the buckets. Furthermore, in order to achieve the desirable logarithmic
cost, in the case of good updates, we can store in the leaves of the second level index all
positions where the specific bucket can be found in higher tree levels. In Figure 4.8 an

example of this approach is shown.

000 o001 .. 111

060 01 10 11

/ _ \\)
_"”) <Enc(“1-4”), || 8x ||| Bx ||| Bx ||| B4 || >

Eni
0
B1 || B2 B3 || ea <Enc(“3-4”), || B4 ||| BX || >

<Enc(“4”),| B4 | Enc(011 001)>

Figure 4.8: Update storage policy hiding the order (2nd-level index)

Additionally we can accurately specify the additional storage cost for each leaf with

following formula.

LogaN

14243+ ...+ LogaN= 1—231 i = w
, where N is the number of leaves (ids) in the second level index. The above formula
shows that we require 1 bit in order to determine the position of the specific leaf in his
ancestor node, 2 bits for the position in the ancestor of his ancestor node, ... , Loga N
bits in the case of the root node. We need to mention that the additional information,

that is stored in the leaves is also in an encrypted form.

Joannis Demertzis 59 October 2013

4. OUR APPROACH

Our approach not only supports insertion queries, but deletion queries too. Firstly,
we need to identify in the first level index which dyadic interval contains the tuple id
that we wish to delete. Then, we request from the second level index the corresponding
dyadic interval and we decrypt the respective buckets until we find the one that contains
either the value or the tuple id of interest and we execute deletion. The old bucket is
replaced with an updated one and this happens in all the dyadic intervals, where it is
found. The final step is to update the number of elements in the first level index, that are
respective to the given value, on which the deletion was performed. The cost of the above
procedure, is the same as the one for a simple search query (search phase 1, search phase
2), which is logarithmic. We also take into account, the cost of replacing the bucket is
also logarithmic and therefore the computational complexity is O(LogN).

We have described how is it possible to efficiently execute updates in the case of good
updates. In the case of bad updates we need to reconstruct the first and second level

of the index and the respective cost equals to O(N LogN).

Joannis Demertzis 60 October 2013

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Conclusively, our initial objectives have been met, since we are able to execute range
queries on encrypted data in logarithmic time, without revealing the order of the cipher-
texts and therefore preserving the semantically secure property which is defined by the
crypto definition of security. We also presented a summary that comprises the weaknesses
of approaches that have been proposed until now and to the best of our knowledge we are
the first to simultaneously satisfy the desired efficiency and security requirements, while
resolving the frequently occurring and serious issues of query access patterns and value
distribution, since both of them remain hidden from the adversary. Moreover, update
queries can be performed on our scheme. In the case where the value distribution prob-
lem is not considered, as happens in mOPE [2], then the update queries are answered in
a logarithmic time and with the concealment of the ciphertext ordering. Otherwise, we
differentiate and handle in a different manner the good and bad updates, where in the
first case insertions and deletions are executed in logarithmic time, while in the latter
both the first and second dyadic tree index should be reconstructed, with respect to the
update. Additionally, assumptions regarding the adversary have been made and more
specifically, we expect her to know statistical information about the distribution of the
values, we presume that she is aware of the domain and we consider her honest but cu-
rious. Finally, in our approach we assumed that our scheme works in an environment of

2LogN cooperative servers.

Joannis Demertzis 61 October 2013

5. CONCLUSION AND FUTURE WORK

5.2 Future Work

A significant matter not addressed in this thesis is the case of multi-dimensional range
queries. Therefore, developing a generalization of the proposed approach is an important
aim of the future work, in order to appropriately adapt to this family of queries.

The integration of different techniques into the proposed approach, could allow the
execution of demanding and complex queries, apart from the range queries that are
studied in this work, with respect to the desirable security and efficiency requirements.

Furthermore, an improvement of efficiency in the case of bad updates is essential, since
currently a reconstruction of both dyadic trees is required and therefore the execution
cost is significantly increased. It is also desirable to disengage the client from the query
execution of bad updates and transfer the respective execution cost to the server side.

Moreover, the proposed approach could be integrated with techniques provided by
Private Information Retrieval and Oblivious RAMs in order to satisfy constraints on the
number of available servers, but with an additional computational and storage cost.

Finally, throughout the thesis the adversary is designated with specific properties i.e.
she is curious but honest. It would be interesting to extend the proposed approach in
such a way that malicious adversaries and hostile environments are handled and dealt
with, simulating therefore real world conditions. This can be easily achieved by adding

message integration techniques (MAC protocols).

Joannis Demertzis 62 October 2013

Chapter 6

Appendix

6.1 Appendix A

Firstly we will use CBC and Counter mode theorems in order to show the security level
of RND encryption schemes and then we will determine the security level of DET.
Based on the CBC theorem, that is described in subsection 2.1.3, we reach to the

following conclusion:
AdUCPA[A, ECBC} S 2 % Ad’UPRp[A, EB,E] + 2q2L2/\X|

Ecpe is semantic secure under CPA (IND-CPA) as long as ¢?L? << |X|, where q
is equal to the number of the encrypted messages under the key k, L is equal to the
maximum message length.

In practice, a negligible advantage of the attacker it is describe with the following

notation:

AdvepalA, Ecpe] < 1/2% =
PL2/|X| < 1/22

We consider that the first term is negligible (2 x Advprp[A, Ep g| is negl.) as long as we
are using a secure PRP. In the case of AES-CBC, whenever the key size is 128 bit long
our encryption approach remains secure, if we change the key after every 248 AES blocks,

as shown in the following equation:

| X| =212 = gL < 2%

Joannis Demertzis 63 October 2013

6. APPENDIX

The above security analysis for RND is based on the fact that we are using a random
IV. In the case of DET we have to use a fixed-IV. Then AES-CBC cannot be indistin-
guishable under Chosen Plaintext Attacks (IND-CPA), as happens with all deterministic
encryption schemes that have been already shown in 4.2. Therefore, in the same section
we introduced the notion of indistinguishable under distinct Chosen Plaintext Attacks
(IND-DCPA), in case of deterministic encryption schemes. The above definition of se-
curity is equated with the IND-CPA definition, under the assumption that the same
message-key pair is never encrypted twice. In our approach, the above assumption is
satisfied, since the key in the Key-Value pair consists a unique id. Moreover, AES-CBC
is not DCPA secure, if the maximum message length is greater than 16 bytes. The fol-
lowing type of attack indicates that the adversary is able to win the security game, with
non-negligible advantage.

Insecure CBC with fixed IV(FIV) (|m| > 16 bytes):

We play the IND-DCPA security game:

1. The attacker outputs mg = 0"1" , m1 = 01"

2. The encryptor sends to the attacker ¢, <— [FIV, Enc(k,0" ® FIV), ..

3. The attacker outputs mg = 0",m; = 1"

4. The encryptor sends to the attacker ¢ < [FIV, Enc(k, FIV)] or ¢o < FIV, Enc(k,1"®
FIV) Then the attacker outputs b=0 if co[1] = ¢1[1] with ADVpepalA, Ecpe] = 1.

Lets assume that we encrypt less than 16 bytes, thus the CBC is allowed to encrypt
only one block of 16 bytes. Then the previous kind of attack cannot occur, because then
the attacker is not allowed to output messages which produce more than one AES blocks.
In that case we also assume, that we never encrypt the same message twice under the
same key. We have also already mentioned that we want to use DET on the key of the
key-value pair, which is a unique id. Considering the above, the previous conclusion is

transformed to the following:
AdvpepalA, Ecpe) < 2 x AdvprplA, Ep g) + 2¢*°L? /| X |

CBC is indistinguishable under distinct Chosen Plaintext Attack (IND-DCPA) as long
as ¢*L? << | X|, as happens in the case of RND.

In particular, after 248 AES blocks, the key must be changed, in order to achieve
IND-DCPA (indistinguishable under distinct chosen plaintext attacks).

Joannis Demertzis 64 October 2013

6.1 Appendix A

We can increase the number of AES blocks that can be encrypted under the same key, if
we use AES-CBC with a 256 bit length key.

Otherwise, we can consider a different block cipher, like for example the ctr-mode.
Based on the Counter-mode theorem, that was described in 2.1.3 we reach to the

following conclusion in the case of RND (with Random IV):
AdvepalA, Ecrr) < 2% AdvprplA, Ep) + 2¢°L/| X |

Ecrr is semantically secure under CPA (IND-CPA) as long as ¢*L << |X|, where q is
equal to the number of the encrypted messages under the key k, L is equal to the length
of max message.

In practice a negligible advantage of the attacker could be the following.

AdvepalA, Ecrg] < 1/2% =
¢*L)|X| < 1/2%

since the first term is negligible (2% Advprp[A, Ep g] is negl.) while we are using a secure
PRP. Then in the case of AES-Ctr with key size 128 bit our encryption approach is secure
when after 232 ciphertexts of length 232 | we change the key, the total number of AES

block is 24, as it is shown in the following equation.
X| = 2128 = g[1/2 < 918

Again the above security analysis is for RND in which we use a random IV. In the
case of DET (using fixed-IV) the AES-Ctr cannot be IND-DCPA secure, even if we
force the assumption that we encrypt less than 16 bytes which means only 1 AES block.
We propose the following attack against the AES Ctr-mode.

Insecure Counter-mode with constant IV (|m| > 16 bytes):

We play the IND-DCPA security game:

1. The attacker outputs m, ,m,

2. The encryptor sends to attacker ¢; <— m, ® F(k, FIV)

3. The attacker outputs mq,mq

4. The encryptor sends to attacker co «— my, ® F(k, FI1V') Then the attacker outputs b=0
if ¢3[1] ® ¢1[1] = m. & mgy with ADVpepalA, Ecpe] = 1.

Toannis Demertzis 65 October 2013

6. APPENDIX

6.2 Appendix B

Mirror property analysis: Let n all the possible answers that can be observed by an
attacker. Then, all the different ways of arranging the n answers into a sequence (all the
possible permutations) are factorial of n (n!). Lets assume that the attacker has observed
all the possible range queries that have been executed, without taking into account the
length of the range in the query. Firstly, we prove that in case of a query, where the upper
and lower bound of the range differ by one, then the possible permutations decrease from
n! to 2. Furthermore, we will prove that the execution of range queries with a range
greater than 2 (3,4,...,n-1,n) does not provide more information about the ordering.
Assume that tq,ts,...,t,_1,t, are the possible answers. All the possible answers of
range 2 are t; <> to,ty <> t3,...,t,_9 <> t,_1,t,_1 <> t,. The number of these answers
is exactly n-1. The symbol ”<” implies that the attacker can only observe neighboring
relations, e.g. t; <> t5 means that ¢; and ¢, are neighbors. However, the attacker can not
decide if a is greater than b or vice versa. At this point, we reveal one by one all of the
above pairs to the attacker and he tries to configure the in between relations (n! are all
the possible permutations of the objects)
(Step 1:) Firstly, we know that the attacker will observe the relation (¢; <> t2) and that
he will realize that ¢; and t, are neighbors. Therefore, we can cross out all combinations
that do not consider t; and ¢y as neighbors. Immediately, the number of the remaining
combinations is equal to 2*(n-1)!, since we can define the t; <> ¢y relation as t,. At
this point, the sequence that needs ordering has range n-1 ((n-1)! permutations)and we
multiply the number of permutations with a factor 2, because although we know that ¢,
and t, are neighbors, we still do not whether ¢; precedes ¢, or vice versa.
Consecutively the sequence becomes t; < to,t3,t4, ..., t,_1,t, and has range (n-1).
(Step 2:) Then, we know that the attacker will observe the (t5 <+ t3) relation and there-
fore we can cross out all the combinations of the 2*(n-1)! permutation list, that were
produced in the previous step and do not take into account the adjacency relation between
t2 and t3. Now,the t; <> t5 <> t3 relation is defined as t,, which implies that the number
of the remaining combinations is 2*(n-2)!, since the attacker is aware of t; <> t2(1) and
ty <> t3(2). Also, the relations (1) and (2) should be satisfied simultaneously and this
happens whenever t; — ty — t3 or t; < ty < t3. In this step 2*(n-2)! permutations

are produced, where factor 2 derives from the two previous relations. Consecutively the

Toannis Demertzis 66 October 2013

6.2 Appendix B

sequence becomes t,,ty, ..., t, 1,1, and has range (n-2).

(Step k:) Similarly, we can conclude that the number of permutations after step k is
2*(n-k)!

(Step n-1:) In this step, k = n-1 and therefore, the remaining permutations are 2. So
the attacker cannot decide between t; — to —,...,— t,_1 — t, and t; < ty < ... <
o1t

A step n does not exist, because assuming that we have a domain n, then the possible
range queries that can occur for range 2 are n-1.

Point queries do not reveal adjacency relations to the attacker, since there are no per-
mutations (the number of possible permutations equals to one). Hence, the user cannot
use the above information to his advantage and the number of all possible sequences is
n! sequences.

We have shown that range queries of range 2, can reduce the initial n! number of
permutations to 2 and although the attacker is aware of the tuples’ partial order, he still
cannot decide whether the original or the reversed sequence was sent. Queries of range
m, where m > 2 provide less or equal uncertainty compared to the respective queries
having a range m = 2, since every query of range m can be decomposed to m — 1 queries
of length 2. Hence, the system is not more susceptible to the attacker in this case.

At this point we need to mention that the mirroring property appears in any Precise
Query Protocol and if the attacker observes all the possible queries, then he can reach
to a conclusion about the partial ordering of the objects or the ciphertexts that we have

set.

Joannis Demertzis 67 October 2013

6. APPENDIX

Joannis Demertzis 68 October 2013

References

[1] Boldyreva, A., Chenette, N.; Lee, Y., O Neill, A.: Order-preserving symmetric
encryption. In: Advances in Cryptology-EUROCRYPT 2009. Number *. Springer
(2009) 224-241 14, 15, 28, 29, 31, 58

[2] Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving
encoding. TACR Cryptology ePrint Archive 2013(*) (2013) 129 14, 28, 29, 30, 58,
61

[3] Xiao, L., Yen, I.L., Huynh, D.: A note for the ideal order-preserving encryption
object and generalized order-preserving encryption. IACR Cryptology ePrint Archive
2012 (2012) 350 15, 29

[4] Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited:
improved security analysis and alternative solutions. In: Advances in Cryptology—
CRYPTO 2011. Number *. Springer (2011) 578-595 15, 25, 29

[5] Xiao, L., Yen, I.L.: Security analysis for order preserving encryption schemes. In:
Information Sciences and Systems (CISS), 2012 46th Annual Conference on. Num-
ber *, IEEE (2012) 1-6 15

[6] Goldreich, O.: Foundation of cryptography fragments of a book. february 1995.
(1998) 17, 18

[7] Rusu, F.I.: Sketches for aggregate estimations over data streams. PhD thesis,
University of Florida (2009) 21

[8] Agrawal, D., Abbadi, A., Wang, S.: Secure and privacy preserving database services
in the cloud. In: Data Engineering (ICDE), 2013 IEEE 29th International Conference
on, IEEE (2013) 1268-1271 23

Joannis Demertzis 69 October 2013

REFERENCES

[9]

[10]

[12]

[13]

[15]

[16]

[17]

[18]

Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, ACM (2011) 85-100 25,
37

Tu, S., Kaashoek, M.F., Madden, S., Zeldovich, N.: Processing analytical queries
over encrypted data. In: Proceedings of the 39th international conference on Very
Large Data Bases. Number *, VLDB Endowment (2013) 289-300 25, 37

Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity (2009) 27

Gentry, C.: Computing arbitrary functions of encrypted data. Communications of
the ACM 53(3) (2010) 97-105 27

Ozsoyoglu, G., Singer, D.A., Chung, S.S.: Anti-tamper databases: Querying en-
crypted databases. In: DBSec. Number * (2003) 133-146 29

Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data. Number *, ACM (2004) 563-574 29

Agrawal, D., El Abbadi, A., Emekci, F., Metwally, A.: Database management as a
service: Challenges and opportunities. In: Data Engineering, 2009. ICDE’09. IEEE
25th International Conference on. Number *| IEEE (2009) 1709-1716 29

Seungmin, L., Donghyeok, L., Taekyong, N., Sehun, K.: Chaotic order preserving
encryption for efficient and secure queries on databases. IEICE transactions on
information and systems 92(11) (2009) 22072217 29

Kadhem, H., Amagasa, T., Kitagawa, H.: Mv-opes: Multivalued-order preserving
encryption scheme: A novel scheme for encrypting integer value to many different
values. IEICE TRANSACTIONS on Information and Systems 93(9) (2010) 2520
2533 29

Kadhem, H., Amagasa, T., Kitagawa, H.: A secure and efficient order preserving
encryption scheme for relational databases. In: KMIS. Number * (2010) 25-35 29

Joannis Demertzis 70 October 2013

REFERENCES

[19]

[20]

[21]

[22]

[23]

[25]

[20]

[27]

28]

Xiao, L., Yen, I.L., Huynh, D.T.: Extending order preserving encryption for multi-
user systems. TACR Cryptology ePrint Archive 2012 (2012) 192 29

Yum, D.H., Kim, D.S., Kim, J.S., Lee, P.J., Hong, S.J.: Order-preserving encryption
for non-uniformly distributed plaintexts. In: Information Security Applications.
Springer (2012) 84-97 29

Liu, D., Wang, S.: Programmable order-preserving secure index for encrypted
database query. In: Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on, IEEE (2012) 502-509 29

Ang, G.W., Woelfel, J.H., Woloszyn, T.P.: System and method of sort-order pre-
serving tokenization (2012) US Patent 20,120,278,897. 29

Liu, D., Wang, S.: Nonlinear order preserving index for encrypted database query

in service cloud environments. Concurrency and Computation: Practice and Expe-
rience (*) (2013) 29

Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Proceedings of the Thirtieth international conference on Very large data bases-
Volume 30, VLDB Endowment (2004) 720-731 32, 34

Hacigtimiig, H., Iyer, B., Li, C., Mehrotra, S.: Executing sql over encrypted data in
the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, ACM (2002) 216-227 32

Agrawal, D., El Abbadi, A., Emekci, F., Metwally, A., Wang, S.: Secure data
management service on cloud computing infrastructures. In: New Frontiers in In-
formation and Software as Services. Springer (2011) 57-80 35, 36, 37

Emekci, F., Agrawal, D., Abbadi, A.E., Gulbeden, A.: Privacy preserving query
processing using third parties. In: Data Engineering, 2006. I[CDE’06. Proceedings
of the 22nd International Conference on, IEEE (2006) 27-27 35

Bajaj, S., Sion, R.: Trusteddb: a trusted hardware based database with privacy
and data confidentiality. In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, ACM (2011) 205-216 37

Joannis Demertzis 71 October 2013

REFERENCES

[29] Arasu, A., Blanas, S., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R.,
Venkatesan, R.: Orthogonal security with cipherbase. In: CIDR. (2013) 37

[30] Rogaway, P., Shrimpton, T.: The siv mode of operation for deter-
ministic authenticated-encryption (key wrap) and misuse-resistant nonce-based

authenticated-encryption. Unpublished specification document corresponding to the

above (*) (2007) 44
[31] Halevi, S., Rogaway, P.: A tweakable enciphering mode. (*) (2003) 44

[32] Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Topics in
Cryptology—CT-RSA 2004. Springer (2004) 292-304 44

[33] Martin, L.: Xts: A mode of aes for encrypting hard disks. Security & Privacy, IEEE
8(3) (2010) 6869 44

[34] Dautrich Jr, J.L., Ravishankar, C.V.: Compromising privacy in precise query proto-
cols. In: Proceedings of the 16th International Conference on Extending Database
Technology, ACM (2013) 155-166 44

[35] Pinkas, B., Reinman, T.: Oblivious ram revisited. In: Advances in Cryptology—
CRYPTO 2010. Springer (2010) 502-519 44

Joannis Demertzis 72 October 2013

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Outline

	2 Background
	2.1 Encryption
	2.1.1 Nondeterministic and Deterministic Encryption Schemes
	2.1.2 Security of Encryption Schemes
	2.1.2.1 Shannon's definition of Security and Semantic Security
	2.1.2.2 Indistinguishable under chosen plaintext attacks (IND-CPA)
	2.1.2.3 Indistinguishable under distinct chosen plaintext attacks (IND-DCPA)
	2.1.2.4 Indistinguishable under ordered chosen plaintext attacks (IND-OCPA)

	2.1.3 Block ciphers

	2.2 Adversary Models
	2.3 Dyadic Intervals

	3 Problem Statement and Related Work
	3.1 Privacy Preserving Range Queries
	3.1.1 Identifying the problem
	3.1.2 An ideal Privacy Preserving Range Query Approach

	3.2 Related Work
	3.2.1 Homomorphic and Fully Homomorphic Encryption
	3.2.2 Order Preserving Encryption Approaches
	3.2.3 Bucketization Approaches
	3.2.4 Distribution instead of Encryption Approaches
	3.2.5 Tamper-Resistant Trusted Hardware

	4 Our Approach
	4.1 Architecture
	4.2 Security level
	4.3 Query Access Pattern Problem
	4.3.1 Single Server Approach
	4.3.2 Two-Server Approach
	4.3.3 k-Server Approach
	4.3.4 LogN-Server and 2LogN-Server Approach

	4.4 Distribution
	4.5 Updates

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	6 Appendix
	6.1 Appendix A
	6.2 Appendix B

	References

