

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΔΑΙΣΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

«ΑΝΑΛΥΣΗ ΜΕΤΡΗΣΕΩΝ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΤΗΣ ΣΤΑΘΜΗΣ ΤΗΣ ΘΑΛΑΣΣΑΣ ΚΑΙ ΔΟΡΥΦΟΡΙΚΗ ΑΛΤΙΜΕΤΡΙΑ»

ΑΘΑΝΑΣΙΟΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Συμβουλευτική επιτροπή:

ΣΤΥΛΙΑΝΟΣ ΜΕΡΤΙΚΑΣ (ΚΑΘΗΓΗΤΗΣ- Πολυτεχνείο Κρήτης) ΗΛΙΑΣ ΤΖΙΑΒΟΣ (ΚΑΘΗΓΗΤΗΣ- Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης) ΕΡΡΙΚΟΣ ΠΑΥΛΗΣ (ASSOCIATE PROFESSOR- University of Maryland, Baltimore, ΗΠΑ)

ΦΕΒΡΟΥΑΡΙΟΣ 2009

Στον πατέρα μου Λουκιανό και στη μητέρα μου Αλίκη

"The next day, Monday, we were playing in the fields and this boy said to me, "See that bird standing on the stump there? What's the name of it?"

I said, "I haven't got the slightest idea."

He said, 'It's a brown-throated thrush. Your father doesn't teach you much about science."

I smiled to myself, because my father had already taught me that [the name] doesn't tell me anything about the bird. He taught me "See that bird? It's a brown-throated thrush, but in Germany it's called a halsenflugel, and in Chinese they call it a chung ling and even if you know all those names for it, you still know nothing about the bird--you only know something about people; what they call that bird. Now that thrush sings, and teaches its young to fly, and flies so many miles away during the summer across the country, and nobody knows how it finds its way," and so forth. There is a difference between the name of the thing and what goes on."

Richard Feynman

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να ευχαριστήσω τον επιβλέποντα της διατριβής μου Καθηγητή κ. Στυλιανό Μερτίκα καθώς και τα άλλα δύο μέλη της συμβουλευτικής επιτροπής μου Καθηγητή κ. Ηλία Τζιαβό και Prof. κ. Ερρίκο Παυλή για την καθοδήγησή τους τα τελευταία χρόνια. Είμαι ευγνώμων στον Dr. Μίκη Τσίμπλη για την συνεργασία και τις συμβουλές του.

Τα δεδομένα του παλιρροιογράφου της Σούδας παραχωρήθηκαν από την Υδρογραφική Υπηρεσία του Πολεμικού Ναυτικού. Το παλιρροϊκό μοντέλο GOT00.2 και τα αλτιμετρικά δεδομένα του Jason-1 καθώς και τα δεδομένα του ακουστικού παλιρροιογράφου παραχωρήθηκαν από τον Prof. Ε. Παυλή. Το μοντέλο "HIPOCAS" και οι κατατομές αλατότητας / θερμοκρασίας για τη Μεσόγειο Θάλασσα χορηγήθηκαν από τον Dr. Μίκη Τσίμπλη. Τα δεδομένα θερμοκρασίας της θάλασσας και οι καταγραφές του πιεσομετρικού παλιρροιογράφου της Γαύδου χορηγήθηκε από το Ελληνικό Κέντρο Θαλασσίων Ερευνών.

Mέρος της διατριβής αυτής στηρίχθηκε από τα προγράμματα: EC EVR1-CT-2001 40019, GAVDOS project, και PYTHAGORAS-II (Environment): Technical University of Crete, Greece, No. M 2.6, MIS 97511, Third Community Support Framework co-financed by the European Social Fund.

ΠΕΡΙΛΗΨΗ

Η διατριβή αυτή αποτελεί μια ανάλυση της μεταβλητότητας της θαλάσσιας στάθμης στην περιοχή της Δυτικής Κρήτης. Πρώτος σκοπός της ήταν ο προσδιορισμός και η ερμηνεία των μεταβολών του εποχικού κύκλου της θαλάσσιας στάθμης. Δεύτερος σκοπός της ήταν να αναδείξει το πόσο σημαντικό είναι να λαμβάνονται υπόψιν οι μεταβολές αυτές στις μελέτες που αφορούν την θαλάσσια στάθμη. Για την επίτευξη του δεύτερου σκοπού, η διατριβή κινήθηκε σε τρεις διαφορετικές κατευθύνσεις:

- 1) Μελέτη των ακραίων τιμών της θαλάσσιας στάθμης,
- 2) μελέτη των συστηματικών τάσεων της θαλάσσιας στάθμης,
- προσδιορισμό του συστηματικού σφάλματος του αλτίμετρου της δορυφορικής αποστολής Jason-1 με βάση προηγούμενες μελέτες.

Οι μέχρι σήμερα μελέτες που σχετίζονται με τη θαλάσσια στάθμη θεωρούν ότι ο εποχικός κύκλος της θαλάσσιας στάθμης παραμένει σταθερός. Αυτή η προσέγγιση του εποχικού κύκλου ως ένα σταθερό ως προς το χρόνο σήμα ενδέχεται να εισαγάγει συστηματικά σφάλματα στα αποτελέσματα των μελετών αυτών.

Ο πρώτος στόχος της διατριβής ήταν η καταγραφή και η ερμηνεία των διακυμάνσεων του εποχικού κύκλου της θαλάσσιας στάθμης στην περιοχή ενδιαφέροντος. Για το σκοπό αυτό υπολογίστηκαν ο εποχικός κύκλος κάθε έτους δεδομένων από τον παλιρροιογράφο της Σούδας και τις τιμές ενός μοντέλου (HIPOCAS) που περιγράφει την μετεωρολογική συνιστώσα της θαλάσσιας στάθμης στην περιοχή. Έτσι καταγράφτηκαν οι διακυμάνσεις τόσο του εποχικού κύκλου της θαλάσσιας στάθμης, όσο και των δύο συνιστωσών του, της μετεωρολογικής και της θερμοάλιος.

Τα αποτελέσματα έδειξαν ότι το πλάτος του ετήσιου κύκλου κατά την διάρκεια της δεκαετίας 1990 εμφανίζεται αυξημένο και με μεγαλύτερες διακυμάνσεις από ότι στην δεκαετία του 1980. Επίσης, υψηλότερα πλάτη από το μέσο πλάτος του ετήσιου κύκλου της μετεωρολογικής συνιστώσας συναντώνται μεταξύ 1989-1992, μια περίοδο δηλαδή που συνδέεται με την «Πρόσκαιρη Μεταβολή της Ανατολικής Μεσογείου» (Eastern Mediterranean Transient – EMT).

Για την ερμηνεία των υπερετήσιων αυτών μεταβολών, αναζητήθηκε η σχέση τους με το κλίμα της ευρύτερης περιοχής και ειδικότερα με την Διακύμανση του Βορείου Ατλαντικού (ΔΒΑ, North Atlantic Oscillation - NAO). Η ΔΒΑ αποτελεί το βασικότερο μοτίβο διακύμανσης (oscillation pattern) του κλίματος στο Βόρειο ημισφαίριο και επηρεάζει τις μετεωρολογικές συνθήκες σε ολόκληρη την Ευρώπη ιδιαίτερα κατά τους χειμερινούς μήνες. Η φάση του ετήσιου κύκλου της θαλάσσιας στάθμης στο Νότιο Αιγαίο Πέλαγος σχετίζεται με την ΔΒΑ. Η ΔΒΑ επηρεάζει την φάση τόσο της μετεωρολογικής συνιστώσας του ετήσιου κύκλου, όσο και αυτής που σχετίζεται με μεταβολές στην πυκνότητα των υδάτων. Η επίδραση της ΔΒΑ στην μετεωρολογική συνιστώσα του ετήσιου κύκλου στην περιοχή, έχει αυξηθεί κατά τις τελευταίες δύο δεκαετίες. Επίσης, η ΔΒΑ επηρεάζει έμμεσα και το πλάτος του ετήσιου κύκλου επιδρώντας στην φάση των δύο συνιστωσών του.

Δεύτερος στόχος της διατριβής ήταν η ανάδειξη της σημασίας των διακυμάνσεων του εποχικού κύκλου στις μελέτες που σχετίζονται με την θαλάσσια στάθμη. Τέτοιες μελέτες μπορεί να αφορούν την παράκτια επικινδυνότητα, την παράκτια μηχανική, την αλλαγή του κλίματος, ή ακόμα και την βαθμονόμηση δορυφορικών αλτιμέτρων.

Για την επίτευξη του δεύτερου στόχου, α) υλοποιήθηκε μια ανάλυση των ακραίων τιμών της θαλάσσιας στάθμης στην περιοχή, β) μελετήθηκαν οι γραμμικές συστηματικές τάσεις της Μέσης Στάθμης της Θάλασσας (ΜΣΘ) στην Μεσόγειο Θάλασσα και γ) επαναπροσδιορίστηκε το συστηματικό σφάλμα του δορυφορικού αλτιμέτρου του Jason-1. Και οι τρεις αυτές εργασίες υλοποιήθηκαν λαμβάνοντας τις διακυμάνσεις του εποχικού κύκλου στο χρόνο ή στο χώρο.

1) Στη μελέτη των ακραίων τιμών της θαλάσσιας στάθμης χρησιμοποιήθηκαν τα δεδομένα του παλιρροιογράφου της Σούδας καθώς και το μοντέλο HIPOCAS, πριν και μετά τις διορθώσεις για τις επιδράσεις των διακυμάνσεων της Μέσης Στάθμης Θάλασσας (ΜΣΘ, Mean Sea Level – MSL) και του εποχικού κύκλου. Υπολογίστηκαν οι συστηματικές τάσεις στα ανώτερα ετήσια εκατοστημόρια στις παραπάνω χρονοσειρές και διαπιστώθηκε ότι εάν οι μεταβολές του εποχικού κύκλου δεν ληφθούν υπόψιν, ενδέχεται να μη γίνουν αντιληπτές οι ανοδικές τάσεις που παρατηρούνται στην ένταση των πιο ακραίων θαλάσσιων καταιγίδων (storm surges).

Επίσης συστηματικά σφάλματα υπεισέρχονται και στον προσδιορισμό συσχετίσεων των ανώτερων εκατοστημορίων (99^α, 99,9^α και ετήσια μέγιστα) των δεδομένων της θαλάσσιας στάθμης με κλιματικούς δείκτες. Συγκεκριμένα βρέθηκε ότι το μέγεθος των πιο ακραίων τιμών της θαλάσσιας στάθμης στο Νότιο Αιγαίο Πέλαγος δε συνδέεται με την ΔΒΑ.

Τέλος, επηρεάζεται και ο υπολογισμός των σταθμών επαναφοράς (return levels) και των αντίστοιχων περιόδων επαναφοράς (return periods). Το μοντέλο HIPOCAS δεν προσδιορίζει αντιπροσωπευτικά το μέγεθος των ακραίων τιμών θαλάσσιας στάθμης και οι περίοδοι επαναφοράς που υπολογίζονται με αυτό είναι αρκετά εκατοστόμετρα μικρότερες από αυτές που υπολογίζονται από τα δεδομένα του παλιρροιογράφου.

Οι εκατονταετείς περίοδοι επαναφοράς που υπολογίζονται από τις παρατηρήσεις του παλιρροιογράφου κατά την διάρκεια της δεκαετίας του 1980 είναι αρκετά δεκατόμετρα μικρότερες από αυτές που υπολογίζονται στην δεκαετία του 1990. Η αύξηση αυτή δεν εμφανίζεται στις περιόδους επαναφοράς που υπολογίζονται από το μοντέλο HIPOCAS. Οι περίοδοι επαναφοράς που υπολογίζονται από το HIPOCAS είναι σημαντικά χαμηλότερες από αυτές που προκύπτουν από τα δεδομένα του παλιρροιογράφου.

2) Οι συστηματικές γραμμικές τάσεις στην ΜΣΘ έχουν εποχικό χαρακτήρα. Διαχωρίζοντας τα χειμερινά από τα θερινά δεδομένα και υπολογίζοντας τις συστηματικές τάσεις στα δεδομένα αυτά, βρέθηκε ότι οι μεταβολές της ΜΣΘ στη Μεσόγειο Θάλασσα εκφράζονται κυρίως κατά τη διάρκεια του χειμώνα. Αυτό σημαίνει ότι η μέση ετήσια άνοδος της ΜΣΘ είναι μικρότερη από την μέση χειμερινή άνοδο. Επομένως, οι επιπτώσεις της αύξησης της θαλάσσιας στάθμης, θα πρέπει να αποτιμούνται βάσει των χειμερινών ρυθμών ανόδου και όχι βάσει του μέσου ετήσιου ρυθμού.

3) Προσδιορίστηκε το συστηματικό σφάλμα του αλτίμετρου του Jason-1 από το σταθμό βαθμονόμησης δορυφορικών αλτιμέτρων στην Γαύδο για τους κύκλους (cycles) 70-90. Η βαθμονόμηση έγινε διορθώνοντας το σφάλμα του Jason-1 που αναφέρουν παλαιότερες μελέτες. Η διόρθωση έγινε λαμβάνοντας υπόψιν τις διαφορές μεταξύ του εποχικού κύκλου στην περιοχή ανοιχτά της Γαύδου, όπου μετράει το αλτίμετρο, και της παράκτιας ζώνης, όπου βρίσκονται οι παλιρροιογράφοι του σταθμού.

Το συστηματικό σφάλμα υπολογίστηκε ότι είναι +112,3 mm και +134,3 mm για τις διελεύσεις (passes) No. 18 και No. 109 αντιστοίχως. Η μέση τιμή του συστηματικού σφάλματος στους κύκλους αυτούς είναι 123mm. Το σφάλμα στους υπολογισμούς αυτούς είναι μικρότερο από ±15mm. Η αναθεωρημένη αυτή τιμή του σφάλματος του Jason-1 είναι μικρότερη από την προηγούμενη τιμή που είχε αναφερθεί από τον σταθμό της Γαύδου κατά 8 mm. Έτσι επιτεύχθηκε καλύτερη συμφωνία με τις τιμές που αναφέρουν οι δύο άλλοι σταθμοί βαθμονόμησης που βρίσκονται στην Μεσόγειο θάλασσα (Corsica- Γαλλία και Ibiza- Ισπανία).

Η ανάλυση των ακραίων τιμών της θαλάσσιας στάθμης αλλά και το γεγονός ότι η αξιοπιστία του μοντέλου που χρησιμοποιείται για την αναγωγή των δεδομένων της θαλάσσιας στάθμης κατά την βαθμονόμηση του Jason-1 δεν είχε επικυρωθεί, επέβαλαν την διεξαγωγή μιας μελέτης για την θαλάσσια παλίρροια στην περιοχή. Οι προβλέψεις του παλιρροϊκού μοντέλου GOT00.2 συγκρίθηκαν με αυτές του μοντέλου T95 και με αυτές που προέκυψαν από δεδομένα παλιρροιογράφων. Τα αποτελέσματα έδειξαν ότι το GOT00.2 δεν προσδιορίζει αντιπροσωπευτικές τιμές για την παλίρροια στην περιοχή. Παρ' όλα αυτά, οι προηγούμενες τιμές για το συστηματικό σφάλμα του Jason-1 που αναφέρονται από τον σταθμό της Γαύδου, δεν περιέχουν συστηματικά σφάλματα λόγω της μειωμένης επίδοσης του GOT00.2.

Για την περιγραφή του τοπικού κλίματος, η διατριβή περιορίστηκε στην ΔΒΑ. Από τα αποτελέσματα της διατριβής προέκυψε ότι ένα σημαντικό ποσοστό των συστηματικών- ανοδικών τάσεων της χειμερινής θαλάσσιας στάθμης στην Μεσόγειο κατά την δεκαετία του 1990 δεν μπορεί να αποδοθεί στην επίδραση της ΔΒΑ. Επιπροσθέτως, το πλάτος του ετήσιου κύκλου της θαλάσσιας στάθμης δεν επηρεάζεται από την ΔΒΑ.

Επομένως για την σύνδεση των παρατηρήσεων αυτών με το τοπικό κλίμα, θα πρέπει να αναζητηθούν άλλοι εναλλακτικοί μηχανισμοί. Πρόσφατες μελέτες έχουν δείξει ότι το κλίμα στην περιοχή του Αιγαίου Πελάγους επηρεάζονται και από ένα άλλο φαινόμενο γνωστό ως «Διακύμανση της Βόρειας Κασπίας» (North Caspian Pattern – NCP). Στο μέλλον θα πρέπει να αναζητηθεί ο τρόπος με τον οποίο η Διακύμανση της Βόρειας επηρεάζει τις μεταβολές της θαλάσσιας στάθμης τόσο στο Αιγαίο Πέλαγος όσο και σε ολόκληρη τη λεκάνη της Μεσογείου.

Η ανάλυση των ακραίων τιμών έδειξε ότι κατά τη διάρκεια της δεκαετίας του 1990 οι θαλάσσιες καταιγίδες είναι μεγαλύτερης έντασης από αυτές της δεκαετίας του 1980. Τα αίτια όμως που δημιούργησαν την αύξηση αυτή δεν εξετάστηκαν. Οι θαλάσσιες καταιγίδες δημιουργούνται από την άμεση επίδραση της ατμόσφαιρας μέσω του ανέμου και της ατμοσφαιρικής πίεσης.

Παράλληλα, η ασφάλεια των παράκτιων περιοχών δεν εξαρτάται μόνο από τις ακραίες τιμές της θαλάσσιας στάθμης όπως αυτή καταγράφεται από τους παλιρροιογράφους. Άλλος ένας σημαντικός παράγοντας που αφορά στην ασφάλεια των παράκτιων περιοχών είναι η στιγμιαία θαλάσσια στάθμη. Για το λόγο αυτό υπογραμμίζεται η ανάγκη να πραγματοποιηθεί μελλοντικά μια αντίστοιχη μελέτη ακραίων τιμών στα παραπάνω μεγέθη.

Το μοντέλο HIPOCAS εξηγεί σημαντικό μέρος της διακύμανσης στα δεδομένα του παλιρροιογράφου της Σούδας. Αυτό συνηγορεί υπέρ της χρήσης του μοντέλου αυτού σε μελλοντικές δραστηριότητες βαθμονόμησης δορυφορικών αλτιμετρικών αποστολών.

Τέλος, στη διατριβή αυτή το σφάλμα του Jason-1 προσδιορίστηκε με έμμεσο τρόπο. Συγκεκριμένα βασίστηκε σε παλαιότερα αποτελέσματα του σταθμού της Γαύδου. Για να είναι συγκρίσιμα τα αποτελέσματα από όλους τους σταθμούς βαθμονόμησης δορυφορικών αλτιμέτρων, θα πρέπει οι μέθοδοι οι οποίες ακολουθούνται να είναι ίδιες. Λόγω της διαφορετικότητας όμως μεταξύ των σταθμών βαθμονόμησης κάτι τέτοιο δεν είναι απόλυτα εφικτό. Στα μελλοντικά σχέδια ήταν η ανάπτυξη μιας μεθοδολογίας αντίστοιχης με αυτής που εφαρμόζεται στους δύο πρωτεύοντες σταθμούς βαθμονόμησης (Harvest - USA, Corsica – France). Πλέον, αυτό έχει ήδη υλοποιηθεί από τον γραφών υπό την επίβλεψη του Καθηγητή κ. Σ. Μερτίκα.

ΕΥΧΑΡΙΣΤΙΕΣ	5
ПЕРІАНѰН	7
ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ	15
1.1 Σκοπός της Διατριβής	15
1.2 ΚΊΝΗΤΡΑ, ΚΑΙΝΟΤΟΜΊΕΣ ΚΑΙ ΠΕΡΙΓΡΑΦΉ ΤΩΝ ΕΡΓΑΣΙΏΝ	16
κεφαλαίο 2: τα δεδομένα της Θαλάσσιας σταθμής	21
2.1 Ο ΠΑΛΙΡΡΟΙΟΓΡΆΦΟΣ ΣΤΟΝ ΚΌΛΠΟ ΤΗΣ ΣΟΎΛΑΣ	
2.2 Οι παλιρροιογράφοι της Γαύδου	23
2.2.1 Ποιοτικός έλεγχος των δεδομένων των παλιρροιογράφων της Γαύδου	26
2.3 Η ΜΕΤΕΩΡΟΛΟΓΙΚΉ ΣΥΝΙΣΤΏΣΑ ΤΗΣ ΘΑΛΆΣΣΙΑΣ ΣΤΆΘΜΗΣ	27
2.4 ΤΑ ΔΕΔΟΜΈΝΑ ΤΟΥ ΔΟΡΥΦΟΡΙΚΟΎ ΑΛΤΙΜΈΤΡΟΥ ΤΟΥ JASON-1	29
2.4.1 Η προετοιμασία των αλτιμετρικών δεδομένων	30
ΚΕΦΑΛΑΙΟ 3: Η ΘΑΛΑΣΣΙΑ ΠΑΛΙΡΡΟΙΑ ΣΤΗΝ ΠΕΡΙΟΧΗ	37
3.1 Εισαγωγή στην παλιρροία	37
3.2 Σκοπός, κινητρά και περιγραφή της μελετής	39
3.3 ТА МОЛТЕЛА GOT00.2 КАІ Т95	41
3.4 ΠΑΛΙΡΡΟΙΑΚΈΣ ΣΥΝΙΣΤΏΣΕΣ – ΜΕΘΟΔΟΛΟΓΊΑ	43
3.5 ΤΑ ΑΠΟΤΕΛΈΣΜΑΤΑ ΤΗΣ ΑΡΜΟΝΙΚΉΣ ΑΝΆΛΥΣΗΣ	45
3.5.1 Αποτελεσματα στη 2000α	43 52
3.5.2.11 ανά είος αρμονική αναλοση	52 54
3 6 ΣΥΜΠΕΡΑΣΜΑΤΙΚΆ ΣΧΌΛΙΑ	57
ΚΕΦΑΛΑΙΟ 4: Ο ΕΠΟΧΙΚΟΣ ΚΥΚΛΟΣ ΤΗΣ ΘΑΛΑΣΣΙΑΣ ΣΤΑΘΜΗΣ ΣΤΗΝ ΠΕΡΙΟΧ	KH 59
	50
4.1 EIZAI Ω I H	39 60
4.2.0 ΠΕΟΔΙΟΕΙΔΙΟΓΙΔΙΝΟΙ ΤΟΤ ΕΠΟΧΙΚΟΤ ΚΤΚΛΟΤ	00 60
4.2.2 Αποτελέσματα από τον σταθμό της Σούδας	64
4.2.3 Αποτελέσματα από το σταθμό της Γαύδου	76
4.3 Δειγματοληψίας και προσδιορισμό του εποχικού κύκλου	78
4.4 Έλεγχος της καταλληλότητας του μοντελού παλινδρομήσης	80
4.5 Συμπερασματικά σχολια	83
ΚΕΦΆΛΑΙΟ 5: ΑΝΑΛΥΣΗ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΘΑΛΑΣΣΙΑΣ ΣΤΑΘΜΗΣ ΣΤΟ ΝΟΤΙΟ ΑΙΓΑΙΟ	85
	05
5.1 ΕΙΣΑΓΩΓΉ	85
5.2 ΔΕΔΟΜΕΝΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ	88 00
5.2.1. 20γκριση μεταξύ μοντελού και παρατηρησεών	90 91
5.2.2 Οι ακραίες τημες στη στασμη της σαλασσας 5.2.3. Μοντελοποίηση των ακραίων τιμών	
5.2.4. Η μέθοδος r-μεγίστων τιμών	94
5.3.1 Σύγκριση Μοντέλου-Παρατηρήσεων	97
5.3.2 Ανάλυση εκατοστημορίων	98
5.3.3 Στάθμες επαναφοράς και οι σχετικές περιόδοι επαναφοράς	106
5.4 Συμπερασματικά σχολια	114
ΚΕΦΆΛΑΙΟ 6: ΕΠΟΧΙΚΟΤΗΤΑ ΣΤΙΣ ΣΥΣΤΗΜΑΤΙΚΕΣ ΤΑΣΕΙΣ ΤΗΣ ΘΑΛΑΣΣΙΑΣ	117
	11 /
6.1 Еібагагн	117
6.2 ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΟΛΟΓΊΑ	118
0.3 ΑΠΟΤΕΛΕΣΜΑΤΑ	120 124
	124
ΚΕΦΆΛΑΙΟ 7: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΣΥΣΤΗΜΑΤΙΚΟΥ ΣΦΑΛΜΑΤΟΣ ΤΟΥ JASON	N-1 125

7.1 Σκοπος, κινητρα και περιγραφή εργασιών	125
$7.2~{\rm H}$ appanding browned the Lopyforkee apostome antimetries toy Jason-1 .	125
7.2 Ο ΕΠΟΧΙΚΌΣ ΚΎΚΛΟΣ ΣΤΗ ΒΑΘΜΟΝΌΜΗΣΗ ΤΟΥ JASON-1 ΣΤΗ ΓΑΎΔΟ	131
7.3 Η παλτρροία στην βαθμονομήση του Jason-1 στην Γαύδο	136
7.4 Συμπερασματικά σχώλια	138
7.5 Προσφατές εξελιξείς στην βαθμονομήση των απόστολων Jason.	139
ΚΕΦΑΛΑΙΟ 8: ΣΥΜΠΕΡΑΣΜΑΤΑ	141
ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΑΝΑΦΟΡΕΣ	145
ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΑΝΑΦΟΡΕΣ ΠΑΡΑΡΤΗΜΑ Ι	145 161
ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΑΝΑΦΟΡΕΣ ΠΑΡΑΡΤΗΜΑ Ι ΠΑΡΑΡΤΗΜΑ ΙΙ	145 161 163
ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΑΝΑΦΟΡΕΣ ΠΑΡΑΡΤΗΜΑ Ι ΠΑΡΑΡΤΗΜΑ ΙΙ ΠΑΡΑΡΤΗΜΑ ΙΙ	145 161 163 165
ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΑΝΑΦΟΡΕΣ ΠΑΡΑΡΤΗΜΑ Ι ΠΑΡΑΡΤΗΜΑ ΙΙ ΠΑΡΑΡΤΗΜΑ ΙΙΙ ΠΑΡΑΡΤΗΜΑ ΙΙΙ ΠΑΡΑΡΤΗΜΑ ΙV	145 161 163 165 188

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ

1.1 Σκοπός της Διατριβής

Στη Νήσο Γαύδο, Νότια της Κρήτης, έχει εγκαθιδρυθεί ένας μόνιμος σταθμός βαθμονόμησης δορυφορικών αλτιμέτρων. Παράλληλα έχουν εγκατασταθεί, ή πρόκειται να εγκατασταθούν, στη Δυτική Κρήτη νέοι υποσταθμοί στις περιοχές Καστέλι, Ροδάκινο, και Χρυσοκαλίτισσα. Απώτερος σκοπός του δικτύου αυτού είναι η υποστήριξη της διαδικασίας της βαθμονόμησης των δορυφορικών αλτιμέτρων. Έτσι η ευρύτερη θαλάσσια περιοχή της Δυτικής Κρήτης αρχίζει να αποτελεί πλέον ζώνη υψηλού ενδιαφέροντος όσον αφορά τις διακυμάνσεις της θαλάσσιας στάθμης.

Η παρούσα διατριβή διερευνά τις διακυμάνσεων της θαλάσσιας στάθμης στην περιοχή της Δυτικής Κρήτης (Κεφάλαια 3-6). Παράλληλα, τα αποτελέσματα από την ανάλυση εφαρμόζονται στον προσδιορισμό του συστηματικού σφάλματος του αλτίμετρου της δορυφορικής αποστολής Jason-1 (Κεφάλαιο 7).

Συγκεκριμένα, πρώτος στόχος της διατριβής είναι η μελέτη των μεταβολών του εποχικού κύκλου της θαλάσσιας στάθμης στην περιοχή ενδιαφέροντος. Δεύτερος στόχος της διατριβής είναι να αναδείξει την σημαντικότητα των διακυμάνσεων αυτών στις μελέτες που σχετίζονται με την θαλάσσια στάθμη.

Για την επίτευξη του πρώτου στόχου (Κεφάλαιο 4), αρχικά καταγράφτηκαν οι διακυμάνσεις τόσο του εποχικού κύκλου της θαλάσσιας στάθμης, όσο και των δύο συνιστωσών του, της μετεωρολογικής και της θερμοάλιος. Για την ερμηνεία των υπερετήσιων αυτών μεταβολών, αναζητήθηκε η σχέση τους με το κλίμα της ευρύτερης περιοχής και ειδικότερα με την Διακύμανση του Βορείου Ατλαντικού (ΔBA, North Atlantic Oscillation - NAO).

Για την επίτευξη του δεύτερου στόχου, η διατριβή κινήθηκε προς τρεις διαφορετικές κατευθύνσεις. Οι δύο πρώτες αφορούν ζητήματα που σχετίζονται με την αλλαγή του κλίματος και τις διακυμάνσεις της θαλάσσιας στάθμης, ενώ την ίδια στιγμή αφορούν άμεσα και τις μελέτες παράκτιας επικινδυνότητας και παράκτιας μηχανικής. Αναφορικά, υλοποιήθηκε ανάλυση των ακραίων τιμών της θαλάσσιας στάθμης στην περιοχή (Κεφάλαιο 5) και επίσης μελετήθηκαν και οι γραμμικές συστηματικές τάσεις της Μέσης Στάθμης της Θάλασσας (ΜΣΘ) στην Μεσόγειο Θάλασσα (Κεφάλαιο 6). Η τρίτη κατεύθυνση αφορά την βαθμονόμηση του δορυφορικού αλτιμέτρου της αποστολής Jason-1 (Κεφάλαιο 7).

1.2 Κίνητρα, καινοτομίες και περιγραφή των εργασιών

Στην διατριβή αυτή για την μελέτη των διακυμάνσεων της θαλάσσιας στάθμης χρησιμοποιήθηκαν δεδομένα από τους δύο παλιρροιογράφους που βρίσκονται εγκατεστημένοι στην περιοχή (κόλπος Σούδας (Χανιά) και λιμάνι Καραβέ (Γαύδος), Σχήμα 1.1), καθώς και αλτιμετρικά δεδομένα του δορυφόρου Jason-1 (Jason-1 Project, 2003).

Σχήμα 1. 1: Η θέση των παλιρροιογράφων στον κόλπο της Σούδας στην Κρήτη και του Καραβέ στη Γαύδου.

Το παλιρροϊκό καθεστώς στην περιοχή είναι σε γενικές γραμμές γνωστό (π.χ. Tsimplis, 1992) και λόγω του μικρού εύρους του, δεν παρουσιάζει ιδιαίτερο ερευνητικό ενδιαφέρον. Παρόλ' αυτά θεωρήθηκε απαραίτητο να συμπεριληφθεί μια τέτοια μελέτη για τρεις λόγους. Πρώτον, στα πλαίσια της διατριβής πραγματοποιήθηκε ανάλυση των ακραίων τιμών της θαλάσσιας στάθμης, η οποία προϋποθέτει την *a priori* γνώση της τοπικής παλίρροιας.

Δεύτερον, στην βαθμονόμηση του Jason-1 στην Γαύδο (Pavlis *et al.*, 2004), τα δεδομένα θαλάσσιας στάθμης είχαν αναχθεί για την επίδραση της ωκεάνιας παλίρροιας με το μοντέλο GOT00.2. Το μοντέλο αυτό όμως δημιουργήθηκε για την πρόβλεψη της παλίρροιας στον ανοικτό ωκεανό και όχι σε κλειστές θάλασσες όπως η Μεσόγειος ή/και σε παράκτιες τοποθεσίες που βρίσκονται οι παλιρροιογράφοι (Schrama and Ray, 1994; Ray, 1999). Τέλος, η αξιοπιστία του μοντέλου αυτού δεν είχε ως τώρα αξιολογηθεί στην Μεσόγειο Θάλασσα. Κρίθηκε επομένως απαραίτητο να διερευνηθεί το κατά πόσο είναι ικανό να περιγράψει την παρατηρούμενη παλίρροια στην περιοχή όπου εκτελείται η βαθμονόμηση του δορυφόρου.

Έτσι στο Κεφάλαιο 3 αρχικά δημιουργείται ένα παλιρροϊκό μοντέλο από τα 22 έτη δεδομένων που διαθέτει ο παλιρροιογράφος της Σούδας. Το μοντέλο αυτό χρησιμοποιήθηκε στην μελέτη των ακραίων τιμών και σε συνδυασμό με το μοντέλο πρόβλεψης T95 (Tsimplis *et al.*, 1995), στην αξιολόγηση του μοντέλου GOT00.2. Η αξιοπιστία των προβλέψεων της παλίρροιας από χρονοσειρές μικρής διάρκειας όπως αυτές της Γαύδου (9 και 23 μήνες σε διάρκεια δεδομένων από τον ακουστικό και τον πιεσομετρικό παλιρροιογράφο αντίστοιχως, βλέπε παράγραφο 2.2) διαπιστώθηκε με την ανά έτος ανάλυση των δεδομένων της Σούδας.

Η παλίρροια στο πείραμα βαθμονόμησης της Γαύδου αφαιρέθηκε από τα δεδομένα και των δύο συστημάτων καταγραφής της θαλάσσιας στάθμης χρησιμοποιώντας τις προβλέψεις του ίδιου μοντέλου ώστε να απαλειφθούν τα τυχόν συστηματικά σφάλματα. Κρίθηκε επομένως απαραίτητο να εξεταστούν επιπλέον δύο παράμετροι. Πρώτον, το αν στις τοποθεσίες όπου βρίσκονται οι παλιρροιογράφοι λαμβάνουν χώρα φαινόμενα αβαθών υδάτων που επηρεάζουν το σχήμα της παλίρροιας. Και δεύτερον, το αν η επίδραση της ατμόσφαιρας στην παλίρροια της περιοχής είναι σημαντική, ώστε να πρέπει να ληφθεί υπόψιν στην βαθμονόμηση. Η μετεωρολογική συνιστώσα της θαλάσσιας παλίρροιας προσδιορίστηκε από τις τιμές του μοντέλου HIPOCAS (Guedes *et al.*, 2002) που περιγράφει τις διακυμάνσεις της θαλάσσιας στάθμης που οφείλονται στην άμεση επίδραση της ατμόσφαιρας (δηλαδή στις μεταβολές της ατμοσφαιρικής πίεσης και του ανέμου). Ο διαχωρισμός της μετεωρολογικής από την αστρονομική συνιστώσα της παλίρροιας στην περιοχή

Το Κεφάλαιο 4 ασχολείται με τον πρώτο στόχο της διατριβής, δηλαδή την καταγραφή και ερμηνεία των παρατηρούμενων διακυμάνσεων του εποχικού κύκλου στην περιοχή. Ο εποχικός κύκλος της θαλάσσιας στάθμης θεωρείται συνήθως σταθερός. Στην πραγματικότητα όμως εμφανίζει διακυμάνσεις. Έχει ήδη διατυπωθεί ότι οι διακυμάνσεις αυτές θα πρέπει να λαμβάνονται στις μελέτες για την αλλαγή του κλίματος (Plag and Tsimplis, 1999). Παρ' όλα αυτά, συνολικά στη βιβλιογραφία οι αναφορές στις διακυμάνσεις του εποχικού κύκλου είναι ελάχιστες (πρώτη αναφορά είναι μόλις το 1990), ενώ για τη Μεσόγειο Θάλασσα είναι μόνο δύο (Zerbini *et al.*, 1996 και Baker *et al.*, 1995).

Στη διατριβή αυτή καταγράφονται οι διακυμάνσεις του εποχικού κύκλου για τη περιοχή της Σούδας. Οι μεταβολές αυτές, ερμηνεύονται με βάση τις διακυμάνσεις των δύο συνιστωσών του, της θερμοάλιος και της μετεωρολογικής. Ο διαχωρισμός μεταξύ των δύο αυτών συνιστωσών έγινε με βάση το μοντέλο πρόβλεψης της μετεωρολογικής στάθμης της θάλασσας HIPOCAS. Επιπλέον, οι διακυμάνσεις αυτές συνδέθηκαν με το κλίμα της ευρύτερης περιοχής. Αυτό έγινε αναζητώντας συσχετίσεις μεταξύ του πλάτους και της φάσης του εποχικού κύκλου (και των δύο συνιστωσών του) με τον δείκτη της ΔΒΑ.

Τα Κεφάλαια 5 και 6 πραγματεύονται δύο θέματα μείζονος σημασίας για τις μελέτες παράκτιας επικινδυνότητας, παράκτιας μηχανικής και της αλλαγής του κλίματος. Η προσέγγιση όμως που ακολουθείται είναι τέτοια ώστε να στηρίζεται ο δεύτερος σκοπός της διατριβής. Συγκεκριμένα στα κεφάλαια αυτά μελετώνται οι ακραίες θαλάσσιες καταιγίδες (extreme surges) και οι συστηματικές τάσεις στα δεδομένα θαλάσσιας στάθμης με τέτοιο τρόπο, ώστε να υπογραμμίζεται η ανάγκη του να λαμβάνεται υπόψιν η εποχικότητα των διακυμάνσεων της θαλάσσιας στάθμης.

Η ανάγκη για επιπλέον έρευνα για τις ακραίες τιμές της στάθμης της θάλασσας έχει τονιστεί πρόσφατα από τους Woodworth and Blackman, (2004) και τους Church et al., (2001). Ειδικότερα, για την περιοχή του Αιγαίου Πελάγους έχει γίνει μόνο μια σχετική εργασία (Tsimplis and Blackman, 1997). Η ανάλυση των ακραίων τιμών της θαλάσσιας στάθμης προσανατολίστηκε προς τρεις διαφορετικές κατευθύνσεις. Πρώτον αναζητήθηκαν συστηματικές τάσεις στις υψηλότερες καταγεγραμμένες στάθμες (θαλάσσιες καταιγίδες) κάθε έτους. Για τον σκοπό αυτό χρησιμοποιήθηκαν οι χρονοσειρές των ανώτερων εκατοστημορίων κάθε ημερολογιακού έτους. Δεύτερον, διερευνήθηκε ο ρόλος των διακυμάνσεων του κλίματος της Ευρώπης στις υπερετήσιες διακυμάνσεις της έντασης των ισχυρότερων θαλάσσιων καταιγίδων κάθε έτους. Αυτό υλοποιήθηκε αναζητώντας συσχετίσεις μεταξύ των προαναφερθέντων χρονοσειρών των ετήσιων εκατοστημορίων και του δείκτη της ΔΒΑ. Τρίτον, υπολογίστηκαν οι στάθμες επαναφοράς (return levels) καθώς και οι σχετικές περίοδοι επαναφοράς (return periods). Τέλος αναζητήθηκε το κατά πόσο τα παραπάνω αποτελέσματα είναι σταθερά στο χρόνο, επαναλαμβάνοντας την μελέτη για διαφορετικές χρονικές περιόδους.

Στις μελέτες ακραίων τιμών θαλάσσιας στάθμης, είθισται να αφαιρείται η μέση τιμή κάθε έτους από τα δεδομένα, ώστε τα αποτελέσματα να μην επηρεάζονται από τις αυξομειώσεις της ΜΣΘ (Woodworth and Blackman 2002; Woodworth and Blackman 2004). Επιπλέον, κάτι τέτοιο κρίνεται απαραίτητο δεδομένου ότι οι μηχανισμοί που δημιουργούν τις υπερετήσιες διακυμάνσεις της ΜΣΘ είναι διαφορετικοί από τους μηχανισμούς που δημιουργούν τις ακραίες θαλάσσιες καταιγίδες. Στην παρούσα διατριβή, προτείνεται ότι για τους ίδιους λόγους θα πρέπει να λαμβάνεται υπόψιν και ο εποχικός κύκλος της θαλάσσιας στάθμης, καθώς και οι διακυμάνσεις του. Στην βιβλιογραφία δεν υπάρχει έως σήμερα δημοσιευμένη μελέτη που να εξετάζει την επίδραση των διακυμάνσεων του εποχικού κύκλου με τις ακραίες τιμές της θαλάσσιας στάθμης.

Η μελέτη των ακραίων τιμών πραγματοποιείται με τα δεδομένα του παλιρροιογράφου της Σούδας, και με τις τιμές του μοντέλου HIPOCAS που περιγράφει την μετεωρολογική συνιστώσα της θαλάσσιας στάθμης. Η μελέτη επαναλήφθηκε διορθώνοντας τα δεδομένα σταδιακά για τις διακυμάνσεις της ΜΣΘ, τον εποχικό κύκλο και των διακυμάνσεων σε αυτόν. Έτσι, η σημαντικότητα του να λαμβάνονται υπόψιν οι διακυμάνσεις του εποχικού κύκλου σε μελέτες παράκτιας επικινδυνότητας στηρίχθηκε και με πραγματικές παρατηρήσεις αλλά και με μοντελοποιημένες.

Στο Κεφάλαιο 6 διερευνήθηκαν οι συστηματικές τάσεις της ΜΣΘ που παρατηρούνται στην λεκάνη της Μεσογείου. Τα τελευταία χρόνια έχουν γίνει αρκετές σχετικές μελέτες (Tsimplis *et al.*, 2006 για μία επισκόπηση στο αντικείμενο). Όλες όμως θεωρούν ότι οι συστηματικές τάσεις στη ΜΣΘ είναι σταθερές κατά τη διάρκεια του έτους, και ότι η ΜΣΘ είναι ένα αξιόπιστο μέγεθος όταν προσδιορίζεται η μελλοντική αύξηση της στάθμης της θάλασσας. Γνωρίζουμε όμως (π.χ. Tsimplis *et al.*, 2006) ότι οι συστηματικές τάσεις στη Μεσόγειο Θάλασσα συνδέονται σε μεγάλο βαθμό με την ΔΒΑ, καθώς επίσης και ότι η επίδραση της ΔΒΑ στο κλίμα της Ευρώπης είναι ισχυρότερη κατά τους χειμερινούς μήνες (π.χ. Hurrell 1996).

Στη διατριβή αυτή διαπιστώθηκε ότι οι συστηματικές τάσεις της ΜΣΘ δεν είναι ομοιόμορφες μέσα στο έτος αλλά εμφανίζουν φαινόμενα εποχικότητας και πιο συγκεκριμένα ότι συμβαίνουν κυρίως κατά τη διάρκεια του χειμώνα. Τα ακραία καιρικά φαινόμενα συμβαίνουν το χειμώνα, η παράκτια επικινδυνότητα θα είναι μεγαλύτερη εάν η άνοδος της στάθμης της θάλασσας περιγράφεται κυρίως κατά την διάρκεια του χειμώνα, αντί να είναι ομοιόμορφη κατά την διάρκεια όλου του έτους (Tsimplis *et al.*, 2006). Για το λόγο αυτό, υποστηρίζεται επίσης ότι στις μελέτες παράκτιας επικινδυνότητας και αποτίμησης της θάλασσας και όχι η ετήσια ΜΣΘ.

Εδώ πρέπει να τονιστεί ότι οι ανά έτος μεταβολές στην χειμερινή στάθμη της θάλασσας αντικατοπτρίζουν τις διακυμάνσεις του εποχικού κύκλου. Το γεγονός αυτό προκύπτει από την ανάλυση του τέταρτου Κεφαλαίου, όπου οι διακυμάνσεις του ετήσιου κύκλου συνδέθηκαν άμεσα με τις διακυμάνσεις της ΔΒΑ.

Για την υλοποίηση του στόχου αυτού, χρησιμοποιήθηκαν μετρήσεις από παλιρροιογράφους της Μεσογείου για την σύγκριση γραμμικών τάσεων υπολογισμένων για τους χειμερινούς μήνες (Δεκέμβριος-Μάρτιος), με τις γραμμικές τάσεις που εκτιμήθηκαν για το υπόλοιπο έτος (Απρίλιος-Νοέμβριος). Η διαδικασία πραγματοποιήθηκε και στα χειμερινά δεδομένα αφού είχαν αναχθεί για την επίδραση της ΔΒΑ. Με τον τρόπο αυτό, ποσοτικοποιήθηκε η επίδραση της ΔΒΑ στις παρατηρούμενες χειμερινές γραμμικές τάσεις.

Όπως προαναφέρθηκε, τα προηγούμενα δύο Κεφάλαια (5-6) υπογραμμίζουν τους λόγους για τους οποίους οι διαχρονικές μεταβολές του εποχικού κύκλου θα πρέπει να λαμβάνονται υπόψιν σε μελέτες θαλάσσιας στάθμης, και παράκτιας επικινδυνότητας λόγω της αλλαγής του κλίματος. Στο Κεφάλαιο 7 προτείνεται ότι οι μεταβολές του εποχιακού κύκλου μεταξύ ρηχών, παράκτιων υδάτων και ανοιχτής θάλασσας θα πρέπει και αυτές να λαμβάνονται υπόψιν. Συγκεκριμένα, στο Κεφάλαιο 4 βρέθηκαν διαφορές στον εποχικό κύκλο μεταξύ της τοποθεσίας όπου βρίσκονται οι παλιρροιογράφοι της Γαύδου και της ανοιχτής θάλασσας όπου λαμβάνει μετρήσεις το αλτίμετρο. Στο Κεφάλαιο 7 επαναπροσδιορίζεται το συστηματικό σφάλμα του αλτίμετρου του Jason-1 που αναφέρουν οι Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006), λαμβάνοντας υπόψιν τις διαφορές αυτές.

Παράλληλα, στο Κεφάλαιο 3 έγινε αντιληπτό ότι το μοντέλο GOT00.2 δεν δημιουργεί αξιόπιστες προβλέψεις της θαλάσσιας παλίρροιας στην περιοχή. Επομένως, στο Κεφάλαιο 7 ελέγχεται και το αν έχουν εισαχθεί σφάλματα στην βαθμονόμηση των Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006), λόγω της ανεπαρκούς μοντελοποίησης της παλίρροιας. Οι προβλέψεις του GOT00.2 ήταν διαθέσιμες μόνο για την τοποθεσία όπου βρίσκονται οι παλιρροιογράφοι του σταθμού βαθμονόμησης και όχι για την περιοχή νότια της Γαύδου όπου μετράει το αλτίμετρο. Έτσι η επαλήθευση αυτή έγινε έμμεσα χρησιμοποιώντας τις προβλέψεις του μοντέλου T95 (Tsimplis, 1992).

ΚΕΦΑΛΑΙΟ 2: ΤΑ ΔΕΔΟΜΕΝΑ ΤΗΣ ΘΑΛΑΣΣΙΑΣ ΣΤΑΘΜΗΣ

Στο Κεφάλαιο αυτό περιγράφονται τα δεδομένα θαλάσσιας στάθμης που χρησιμοποιήθηκαν στην διατριβή. Επίσης παρουσιάζονται οι έλεγχοι ποιότητας που εκτελέστηκαν επί των δεδομένων αυτών.

2.1 Ο παλιρροιογράφος στον κόλπο της Σούδας

Στην διατριβή αυτή χρησιμοποιήθηκαν ωριαία δεδομένα της θαλάσσιας στάθμης από τον παλιρροιογράφο της Σούδας (γεωγραφικό πλάτος: N 35° 30' και γεωγραφικό μήκος: E 24° 05'). Τα δεδομένα καλύπτουν την περίοδο 1982-2003. Η Σούδα βρίσκεται στο δυτικό μέρος της βόρειας ακτής της νήσου Κρήτης (Σχήμα 1.1). Η Υδρογραφική Υπηρεσία Πολεμικού Ναυτικού (ΥΥΠΝ) είναι υπεύθυνη για την συντήρηση, και την καλή λειτουργία του παλιρροιογράφου, καθώς επίσης και για την συλλογή και διανομή των δεδομένων.

Σχήμα 2. 1: Παράδειγμα της διαδικασίας διόρθωσης όπου τα αρχικά δεδομένα (τελείες) μετατέθηκαν προς τα εμπρός κατά τρεις ώρες ώστε να έρθουν σε φάση με το παλιρροϊκό μοντέλο (παύλες). Το παλιρροϊκό μοντέλο που χρησιμοποιήθηκε για το σκοπό αυτό κατασκευάστηκε χρησιμοποιώντας τα δεδομένα του παλιρροιογράφου Σούδας από 1982-2003.

Η ακρίβεια για ένα τυπικό παλιρροιογράφο με πλωτήρα, όπως αυτός της Σούδας, είναι περίπου 1-2 cm στον προσδιορισμό της θαλάσσιας στάθμης και μερικά λεπτά στον χρονισμό, ένεκα του πεπερασμένου πάχους του ίχνους της ακίδας καταγραφής (Pugh, 1987 και IOC, 1985). Οι ακρίβειες αυτές εξαρτώνται επίσης από την περιστροφική ταχύτητα του τυμπάνου καταγραφής, από μεταβολές στη διάσταση του χαρτιού καταγραφής εξ αιτίας της υγρασίας, και από σφάλματα κατά την διαδικασία ψηφιοποίησης (Pugh, 1987). Κατά την διάρκεια της δεκαετίας του 1980 και πιθανόν μέχρι τα μέσα της δεκαετίας του 1990, η ψηφιοποίηση στην ΥΥΠΝ γινόταν δειγματοληπτώντας τις καμπύλες καταγραφής στα ακρότατα τους πλησίον της ώρας, σαν να συνέβαιναν (τα ακρότατα αυτά) ακριβώς στην ώρα. Κατά συνέπεια καταγράφονταν οι ελάχιστες και μέγιστες τιμές που συνέβαιναν εντός της ημέρας. Η διαδικασία αυτή έχει ως αποτέλεσμα την εισαγωγή ενός χρονικού σφάλματος περίπου 15-30 min. Το σφάλμα αυτό προκαλούσε ένα περιορισμό στην ακρίβεια της μετρούμενης θαλάσσιας στάθμης κατά μερικά εκατοστά (Tsimplis and Blackman, 1997).

Σήμερα, η ψηφιοποίηση στην ΥΥΠΝ εκτελείται δειγματοληπτώντας το καταγραφικό χαρτί μία φορά κάθε ώρα, σε τακτά δηλαδή χρονικά διαστήματα. Επιπλέον, επειδή η Σούδα βρίσκεται κοντά σε αμφίδρομα παλιρροϊκά σημεία και εκτίθεται σε πολύ χαμηλές παλίρροιες (τάξεως 4-5cm), τα τελικά σφάλματα που εισάγονται από τη συγκεκριμένη μέθοδο ψηφιοποίησης είναι πολύ μικρότερα και είναι της τάξεως των ~2cm.

Στις μετρήσεις της Σούδας ανακαλύφθηκαν χρονικές μεταθέσεις για την περίοδο 1990-1994. Τέτοιες μεταθέσεις διαρκούσαν από μερικές ημέρες έως και μερικές εβδομάδες. Στα πλαίσια της διατριβής, τα σφάλματα αυτά διορθώθηκαν προσαρμόζοντας τις καταγραφές ως προς ένα παλιρροϊκό μοντέλο το οποίο δημιουργήθηκε χρησιμοποιώντας όλη την περίοδο παρατηρήσεων.

Ένα άλλο πρόβλημα που παρατηρήθηκε στα διαθέσιμα δεδομένα συνδέεται με φαινόμενα ολίσθησης (drifts) του ωρολογιακού μηχανισμού. Τέτοιες ολισθήσεις διαρκούσαν μερικές ημέρες και ενδέχεται να σχετίζονται και με σφάλματα στην ψηφιοποίηση. Ως παράδειγμα του πρώτου προβλήματος, το Σχήμα 2.1 απεικονίζει τις καταγραφές του παλιρροιογράφου της Σούδας, πριν και μετά την διαδικασία διόρθωσης, μαζί με το παλιρροϊκό μοντέλο. Το παράδειγμα αυτό αντιστοιχεί στα τέλη του Δεκεμβρίου του 1994. Στην περίπτωση αυτή η καταγραφή μετατέθηκε προς τα εμπρός στο χρόνο κατά 3 ώρες για να επιτευχθεί συμφωνία με το παλιρροϊκό μοντέλο. Περίπου 1% επί των συνολικών μετρήσεων μετατέθηκαν με παρόμοιο τρόπο.

Το να διορθωθεί ο χρονισμός μιας χρονοσειράς θαλάσσιας στάθμης χρησιμοποιώντας ένα παλιρροιακό μοντέλο που προέκυψε από την ίδια χρονοσειρά φαντάζει εκ πρώτης όψεως λανθασμένο. Στην περίπτωση όμως του παλιρροιογράφου της Σούδας το ποσοστό των μετρήσεων που τελικά διορθώθηκαν ήταν της τάξεως του 1%. Το ποσοστό αυτό είναι τόσο μικρό ώστε αν δημιουργηθούν δύο παλιρροιακά μοντέλα, ένα πρώτο με τα αρχικά δεδομένα και ένα δεύτερο με τα διορθωμένα, να μην υπάρχει καμία απολύτως διαφορά μεταξύ των μοντέλων. Το ερώτημα που δημιουργείται τώρα είναι το γιατί διορθώθηκε η χρονοσειρά αφού δεν αναμένονταν μεταβολές στις παλιρροϊκές αρμονικές που θα υπολογίζονταν.

Ένας από τους στόχους της διατριβής είναι να πραγματοποιηθεί μια ανάλυση ακραίων τιμών θαλάσσιας στάθμης από τα δεδομένα της Σούδας. Για την υλοποίηση του στόχου αυτού ήταν απαραίτητη η αφαίρεση της παλίρροιας από τα δεδομένα της θαλάσσιας στάθμης. Αν όμως αφαιρούνταν το παλιρροϊκό μοντέλο από τα δεδομένα θαλάσσιας στάθμης χωρίς να διορθώσουμε τα τυχόν σφάλματα στον χρονισμό τους, αυτό θα δημιουργούσε είτε υψηλότερες είτε χαμηλότερες τιμές στις περιόδους όπου εμφανίζονται τα φαινόμενα κύλισης. Παράλληλα, οι ακραίες τιμές που εμφανίζονται στα δεδομένα της Σούδας η δημιουργία τέτοιων εσφαλμένων υψηλότερων/χαμηλότερων τιμών μπορεί να σήμαινε σημαντική υπερεκτίμηση ή υποεκτίμηση κάποιου ακραίου φαινομένου εισαγάγωντας έτσι σφάλματα στην ανάλυση.

Παρά τα προαναφερθέντα προβλήματα, οι μετρήσεις παλιρροιογράφων έχουν αποδειχθεί ότι είναι αξιόπιστες (Tsimplis and Blackman, 1997, και αναφορές εκεί). Το ποσοστό πληρότητας των καταγραφών κάθε έτους υπήρξε πάντα μεγαλύτερο του 74%, με εξαίρεση των ετών 1995 και 1996. Τα μεγάλα κενά δεδομένων που υπάρχουν μεταξύ Αυγούστου και Νοεμβρίου του 1995, υπολογίζονται στο 28,5% των τιμών για το έτος αυτό. Επίσης, κατά την διάρκεια Ιανουαρίου και Φεβρουαρίου 1996, υπάρχουν μεγάλα κενά από μη καταγραφέντα δεδομένα. Η πληρότητα δεδομένων για το έτος αυτό πέφτει στο 71,1%.

2.2 Οι παλιρροιογράφοι της Γαύδου

Ο μόνιμος σταθμός βαθμονόμησης στη Γαύδο είναι εφοδιασμένος με δύο παλιρροιογράφους τοποθετημένους στο ίδιο σημείο με δέκτες GPS διπλής συχνότητας. Στην βαθμονόμηση του Jason-1 χρησιμοποιήθηκαν τα δεδομένα του πρωτεύοντος παλιρροιογράφου. Ο πρωτεύων παλιρροιογράφος είναι ακουστικός και καταγράφει 10 μετρήσεις την ώρα (μία παρατήρηση κάθε έξι λεπτά της ώρας).

Κάθε μία από τις τιμές των έξι λεπτών προκύπτει ως τη μέση τιμή των 181 δειγμάτων θαλάσσιας στάθμης διαστήματος ενός δευτερολέπτου συγκεντρωθέντα σε κάθε δέκατο της ώρας (δηλαδή, μετράει μόνο τα πρώτα τρία λεπτά από το διάστημα των έξι λεπτών). Αυτή η μέθοδος μέτρησης έχει προταθεί από τον Αμερικάνικο οργανισμό National Oceanic and Atmospheric Administration (NOAA) και χρησιμοποιείται από τα εθνικά δίκτυα παλιρροιογράφων των ΗΠΑ και της Αυστραλίας (IOC, 2000).

Οι καταγραφές του πρωτεύοντος παλιρροιογράφου που έχουν χρησιμοποιηθεί στην βαθμονόμηση καλύπτουν την περίοδο από 20 Νοεμβρίου 2003 έως 6 Οκτωβρίου 2004 (Σχήμα 2.2). Το σημείο αναφοράς του ακουστικού παλιρροιογράφου έχει συνδεθεί με ένα τοπικό δίκτυο υψομετρικών σημείων αναφοράς σύμφωνα με τις προδιαγραφές που αναφέρονται από τους Carter *et al.*, (1989) και Neilan *et al.*, (1998). Επιπλέον, το σημείο αναφοράς της κεραίας του δέκτη GPS έχει επίσης συνδεθεί με το ίδιο τοπικό δίκτυο, επιτρέποντας τη μετατροπή των μετρήσεων σχετικής θαλάσσιας στάθμης (relative sea levels) σε γεωμετρικά υψόμετρα θαλάσσιας επιφάνειας.

Η αναγωγή αυτή είναι απαραίτητη για την βαθμονόμηση των δορυφορικών αλτιμέτρων. Παρόλ' αυτά τέτοιου είδους διορθώσεις δεν ήταν απαραίτητες, μιας και στα πλαίσια της διατριβής αυτής το συστηματικό σφάλμα του Jason-1 επαναπροσδιορίζεται χρησιμοποιώντας τα αποτελέσματα των Pavlis *et al.*, (2006) και Pavlis *et al.*, (2004).

Συνοπτικά, η μετατροπή των μετρήσεων σε γεωμετρικά υψόμετρα έγινε με βάση το ελλειψοειδές αναφοράς της αποστολής Jason-1. Χρησιμοποιήθηκαν τα δεδομένα του σταθμού GPS που βρίσκεται στο ίδιο σημείο όπως και ο παλιρροιογράφος (Pavlis *et al.*, 2006). Ο δορυφορικός δέκτης GPS είναι ένας Ashtect Z-12 εξοπλισμένος με κεραία τύπου "choke ring" και λειτουργεί από τον Οκτώβριο του 2003.

Ο προσδιορισμός των συντεταγμένων του σημείου αναφοράς του παλιρροιογράφου από τα δεδομένα GPS έγινε με το πρόγραμμα GAMIT (King and Bock, 2000). Η μέθοδος που ακολουθήθηκε ήταν αυτή των διπλών διαφορών (Pavlis *et al.*, 2006). Ως σταθμοί αναφοράς χρησιμοποιήθηκαν 10 μόνιμοι σταθμοί του δικτύου της Διεθνούς Υπηρεσίας Δορυφορικής Πλοήγησης - IGS (International GNSS Service).

Ο σταθμός βαθμονόμησης στη Γαύδο είναι επίσης εφοδιασμένος με έναν παλιρροιογράφο πιέσεως (δευτερεύων παλιρροιογράφος) που είναι τοποθετημένος στην ίδια προβλήτα όπως ο ακουστικός στο λιμάνι του Καραβέ. Ο πιεσομετρικός παλιρροιογράφος καταγράφει μία μέτρηση κάθε 20min. Στα πλαίσια της διατριβής χρησιμοποιήθηκε κυρίως για τον προσδιορισμό του εποχιακού κύκλου και της παλίρροιας της θαλάσσιας στάθμης. Ο εποχιακός κύκλος προσδιορίστηκε από τα δεδομένα αυτού του δευτερεύοντα μετρητή επειδή ο πρωτεύων παρέχει μετρήσεις θαλάσσιας στάθμης μόνο για εννέα μήνες.

Τα δεδομένα του παλιρροιογράφου πιέσεως καλύπτουν το διάστημα 23 μηνών, από 23 Αυγούστου 2002 έως και 8 Αυγούστου 2004 (Σχήμα 2.2). Τα πρωτογενή δεδομένα υδροστατικής πίεσης που καταγράφονται από τον πιεσομετρικό παλιρροιογράφο μετατράπηκαν σε θαλάσσια στάθμη χρησιμοποιώντας την καταστατική εξίσωση UNESCO International Equation of State (Fofonoff, 1985) για να εκτιμηθεί η πυκνότητα του ύδατος, και την υδροστατική εξίσωση [2.1]:

$$P = \rho(S, T, 0) \times gh \qquad [2.1]$$

όπου P είναι η πίεση υδάτινης στήλης μετρούμενης από τον μετρητή, $\rho(S, T, 0)$ η πυκνότητα του ύδατος ως συνάρτηση της αλατότητας S, της θερμοκρασίας T, στην επιφάνεια της θάλασσας (h = 0), g η επιτάχυνση της βαρύτητας και h το ύψος της υδάτινης στήλης (δηλαδή η στάθμη της θάλασσας) πάνω από το σημείο αναφοράς του παλιρροιογράφου.

Σχήμα 2.2: Οι καταγραφές του ακουστικού και του πιεσομετρικού παλιρροιογράφου στον Καραβέ της Νήσου Γαύδου. Για λόγους παρουσίασης, τα δεδομένα του πιεσομετρικού παλιρροιογράφου έχουν μετατεθεί στον άξονα των "y" κατά 400 mm. Το μηδέν στον άξονα των "x" έχει αυθαίρετα τεθεί την χρονική στιγμή που ξεκινούν τα δεδομένα του ακουστικού παλιρροιογράφου.

Για την μετατροπή της καταγραφόμενης υδροστατικής πίεσης σε θαλάσσια στάθμη, είναι απαραίτητα δεδομένα για την θερμοκρασία και την αλατότητα του θαλάσσιου ύδατος. Στο σταθμό της Γαύδου, για όσο διήρκησαν οι μετρήσεις του πιεσομετρικού παλιρροιογράφου, λαμβάνονταν και ταυτόχρονες μετρήσεις για τη θερμοκρασία των νερών. Δεν λαμβάνονταν όμως μετρήσεις αλατότητας. Για τον λόγο αυτό χρησιμοποιήθηκαν μηνιαίοι χάρτες αλατότητας που είχαν δημιουργηθεί από τα τέσσερα ταξίδια που είχαν πραγματοποιηθεί στα πλαίσια του ερευνητικού προγράμματος GAVDOS (Banks and Drakopoulos, 2004). Αυτό το μοντέλο μηνιαίων τιμών προεκτάθηκε γραμμικά (linearly interpolated) για να εκτιμηθεί η τιμή της αλατότητας τη χρονική στιγμή ανάγνωσης του μετρητή πιέσεως.

Τα σφάλματα που εισάγονται χρησιμοποιώντας μόνο τέσσερις μετρήσεις μέσα στο έτος για να εκτιμηθούν οι μεταβολές αλατότητας είναι αμελητέα. Συγκεκριμένα, μεταξύ του Σεπτεμβρίου 2003 και του Οκτωβρίου 2004, η αλατότητα μεταβλήθηκε μεταξύ 38-39,5 psu (Banks and Drakopoulos, 2004).

Αυτές οι μεταβολές αλατότητας εισάγουν αλλαγές στην πυκνότητα του ύδατος οι οποίες είναι μικρότερες από 0,1% της πυκνότητας του ύδατος. Εάν δεν ληφθούν υπόψιν αλλαγές στην πυκνότητα του ύδατος τα σφάλματα στην εκτίμηση της θαλάσσιας στάθμης είναι επίσης μικρότερα από 0,1%. Το βάθος της υδάτινης στήλης όπου είναι τοποθετημένος ο παλιρροιογράφος πιέσεως είναι περίπου 0,5 m. Επιπλέον, τα εισαγόμενα σφάλματα κατά τον υπολογισμό της θαλάσσιας στάθμης ακόμα και αν δεν ληφθούν υπ' όψη οι μεταβολές στην αλατότητα είναι μικρότερα από 0,1% × 0,5 m. Έτσι, τα σφάλματα που εισάγονται στις μετρήσεις της θαλάσσιας στάθμης λόγω της ανεπαρκούς μοντελοποίησης της αλατότητας είναι κάτω του 1 mm και μπορούν να θεωρηθούν αμελητέα.

2.2.1 Ποιοτικός έλεγχος των δεδομένων των παλιρροιογράφων της Γαύδου

Κατά την διάρκεια ενός ακραίου καιρικού συμβάντος, ο βραχίονας που στήριζε τον δευτερεύοντα παλιρροιογράφο στην προβλήτα έσπασε. Τούτο έγινε αντιληπτό στις 5 Νοεμβρίου 2003 (Frantzis and Papadopoulos, 2003). Για τον ακριβή προσδιορισμό του χρόνου που έλαβε χώρα η αστοχία χρησιμοποιήθηκαν δύο μέθοδοι.

Πρώτον, κατασκευάστηκε μία χρονοσειρά των διαφορών των αναγνώσεων του παλιρροιογράφου (δηλαδή η μέτρηση n αφαιρέθηκε από την μέτρηση (n-1)). Αναμενόμενο είναι, ότι η στιγμή του συμβάντος να αντιστοιχεί σε μία οξεία αύξηση της διαφοράς αυτής τη στιγμή της βύθισης του αισθητήρα στον πυθμένα της θάλασσας. Έτσι το συμβάν φάνηκε σαν μία μεγάλη ασυνέχεια στην χρονοσειρά των διαφορών (Σχήμα 2.3).

Η δεύτερη μέθοδος, περιελάμβανε τη δημιουργία ενός παλιρροϊκού μοντέλου το οποίο αποτυπώθηκε στο ίδιο διάγραμμα με την καταγραφή της θαλάσσιας στάθμης. Είναι αναμενόμενο ότι το σήμα της θαλάσσιας στάθμης θα αρχίσει να είναι εκτός φάσης από το μοντέλο κατά την διάρκεια μιας θαλάσσιας καταιγίδας φουσκοθαλασσιάς (ίσως και πριν ακόμα σπάσει ο βραχίονας στήριξης). Έτσι απορρίπτοντας όλα τα καταγραφέντα δεδομένα από τη στιγμή που η καταγραφή παύει να βρίσκεται σε φάση με το παλιρροϊκό μοντέλο εξασφαλίστηκε ότι όλα τα εσφαλμένα δεδομένα έχουν απομακρυνθεί. Σύγκριση των καταγραφών των δύο παλιρροιογράφων αποκάλυψε ένα σφάλμα στην καταγραφή του πρωτεύοντα στις αρχές του Οκτωβρίου 2003 που η διάρκειά του ήταν περίπου μία ημέρα (Σχήμα 2.4α). Εσφαλμένα δεδομένα στην καταγραφή του ίδιου παλιρροιογράφου διάρκειας περίπου 10 ημερών έχουν επίσης ανακαλυφθεί τον Μάιο του 2004 (Σχήμα 2.4β).

Σχήμα 2. 3: Η χρονική στιγμή κατά την οποία αστόχησε ο βραχίονας συγκράτησης του πιεσομετρικού παλιρροιογράφου εμφανίζεται στο διάγραμμα ως απότομη αυξομείωση της θαλάσσιας στάθμης (διακεκομμένη γραμμή). Οι μετρήσεις που υποδεικνύονται από το οριζόντιο βέλος διαγράφηκαν.

Όλες οι εσφαλμένες καταγραφές απομακρύνθηκαν από δεδομένα. Επιπλέον, οι καταγραφές των δύο παλιρροιογράφων συγχωνεύθηκαν και κατασκευάστηκε μία «υβριδική» χρονοσειρά. Η υβριδική αυτή χρονοσειρά χρησιμοποιήθηκε στην εκτίμηση της παλίρροιας καθώς και του εποχικού κύκλου στην τοποθεσία Καραβές.

2.3 Η μετεωρολογική συνιστώσα της θαλάσσιας στάθμης

Στα πλαίσια του προγράμματος HIPOCAS (Hindcast of Dynamic Processes of the Ocean and Coastal Areas of Europe) (Guedes *et al.*, 2002), δημιουργήθηκαν μοντελοποιημένες τιμές της μετεωρολογικής συνιστώσας της θαλάσσιας στάθμης στη Μεσόγειο Θάλασσα για την περίοδο 1958-2001. Το μοντέλο αυτό χρησιμοποιήθηκε για τον διαχωρισμό της μετεωρολογικής συνιστώσας του εποχικού κύκλου στη Σούδα, καθώς επίσης στην ανάλυση των ακραίων τιμών της θαλάσσιας στάθμης. Οι τιμές του μοντέλου αυτού θα αναφέρονται ως «μοντέλο HIPOCAS». Οι προβλέψεις του μοντέλου HIPOCAS για την θέση όπου βρίσκεται ο παλιρροιογράφος της Σούδας είναι ωριαίες και καλύπτουν την περίοδο 1958-2001.

Σχήμα 2. 4: a) Σύγκριση των καταγραφών των δύο παλιρροιογράφων υπέδειζε εσφαλμένες μετρήσεις στα δεδομένα του ακουστικού παλιρροιογράφου με χρονικό διάστημα περίπου μίας ημέρας. β) Οπτική επιθεώρηση των καταγραφών του ακουστικού παλιρροιογράφου υπέδειζε την παρουσία προβλημάτων κατά την περίοδο που παρουσιάζεται μεταξύ των δύο κάθετων βελών (Μάιος 2003). Όλες οι μετρήσεις αμφίβολης ποιότητας διαγράφτηκαν.

Το ωκεανογραφικό μοντέλο που χρησιμοποιήθηκε στη δημιουργία του HIPOCAS, είναι μία βαροτροπική παραλλαγή του HAMburg Shelf Circulation Model HAMSOM, το οποίο διεγείρεται αποκλειστικά από την ατμοσφαιρική πίεση και τον άνεμο. Το μοντέλο χρησιμοποιείται στο Puertos del Estado ως μέρος του Ισπανικού συστήματος πρόγνωσης της θαλάσσιας στάθμης (Álvarez-Fanjul *et al.*, 1997; Alvarez-Fanjul *et al.*, 2001). Η καλυπτόμενη περιοχή είναι N30° έως N47° και από W12° έως E35°, με χωρική διακριτική ικανότητα $1/4^\circ \times 1/6^\circ$. Η ατμοσφαιρική πίεση

και τα πεδία ανέμου παρήχθησαν μέσω δυναμικής ελάττωσης της κλίμακας (downscaling) από τα δεδομένα του NCEP/NCAR χρησιμοποιώντας το ατμοσφαιρικό μοντέλο περιορισμένης έκτασης REMO (Sotillo *et al.*, 2005).

Η ικανότητα του μοντέλου να προβλέπει την μετεωρολογική συνιστώσα της θαλάσσιας στάθμης επιβεβαιώθηκε με την σύγκριση του με δεδομένα από 9 παλιρροιογράφους που βρισκόταν τόσο στην Μεσόγειο όσο και στον Ατλαντικό Ωκεανό (Sotillo *et al.*, 2005). Οι επιδράσεις της παλίρροιας αφαιρέθηκαν από τα δεδομένα των παλιρροιογράφων πριν τη σύγκρισή τους με το μοντέλο. Τα αποτελέσματα έδειξαν ότι ο συντελεστής συσχέτισης μεταξύ των in situ δεδομένων και του μοντέλου HIPOCAS σε όλες τις περιπτώσεις ήταν μεγαλύτερος του 0,70, ενώ σε έξι από τις εννέα συγκρίσεις ήταν μεγαλύτερος του 0,80 (Sotillo *et al.*, 2005). Αντιστοίχως αποτελέσματα από τη σύγκριση του HIPOCAS με τα δεδομένα του παλιρροιογράφου της Σούδας προκύπτουν και στην παρούσα διατριβή (Κεφάλαιο 5).

Η πολύ καλή συμφωνία μεταξύ του μοντέλου των δεδομένων των παλιρροιογράφων, είναι η μόνη ένδειξη ότι το μοντέλο είναι ικανό να δημιουργεί ρεαλιστικές προβλέψεις για την μετεωρολογική συνιστώσα της θαλάσσιας στάθμης. Ο λόγος είναι ότι η μετεωρολογική συνιστώσα της θαλάσσιας στάθμης δεν μπορεί να απομονωθεί χωρίς την βοήθεια ενός μοντέλου για την πρόβλεψη της. Έτσι ο μοναδικός και πιο αξιόπιστος τρόπος να εξεταστεί η ακρίβεια ενός μοντέλου πρόβλεψης όπως το HIPOCAS είναι ένα άλλο μοντέλο πρόβλεψης όπως π.χ. το mog2d (Carrere and Lyard, 2003). Δυστυχώς το μοντέλο αυτό δεν ήταν διαθέσιμο και γι' αυτό δεν χρησιμοποιήθηκε στην διατριβή. Επίσης στην βιβλιογραφία δεν υπάρχει καμία έρευνα που να συγκρίνει τα δύο αυτά μοντέλα.

2.4 Τα δεδομένα του δορυφορικού αλτιμέτρου του Jason-1

Τα δεδομένα του αλτίμετρου λήφθηκαν από την βάση δεδομένων Pathfinder (Koblinsky et al., 1999α. Koblinsky et al., 1999β). Η νήσος Γαύδος βρίσκεται κάτω από ένα σημείο διασταύρωσης της ανερχόμενης διέλευσης (pass) 109 και της κατερχόμενης 18 της τροχιάς του Jason-1. Οι καταγραφές του Jason-1 που χρησιμοποιήθηκαν στο πείραμα βαθμονόμησης περιλαμβάνει ανωμαλίες θαλάσσιας στάθμης (Sea Level Anomalies - SLA) για τις δύο αυτές διελεύσεις, μεταξύ δορυφορικών κύκλων (cycles) 23-90. Χρησιμοποιήθηκαν επίσης δεδομένα μεταξύ των κύκλων 23-90 διότι οι κύκλοι αυτοί αντιστοιχούν εντός της χρονικής περιόδου στην οποία υπάρχουν καταγραφές της στάθμης της θάλασσας από τους παλιρροιογράφους στη Γαύδο (είτε από τον πρωτεύοντα, είτε από τον δευτερεύοντα). Οι ανωμαλίες της θαλάσσιας επιφάνειας που χρησιμοποιήθηκαν, κατασκευάστηκαν αναγάγοντας την καταγραφή των δορυφορικών δεδομένων (Geophysical Data Record – GDR) σε κάνναβο. Όλες οι γεωφυσικές διορθώσεις που εμφανίζονται στα GDR είχαν ήδη εφαρμοστεί, με εξαίρεση την διόρθωση του ανάστροφου βαρόμετρου (Inverse Barometer - IB) (Koblinsky *et al.*, 1999α, Koblinsky, *et al.*, 1999β).

2.4.1 Η προετοιμασία των αλτιμετρικών δεδομένων

Το ραδιόμετρο μικροκυμάτων του Jason-1 δεν αποδίδει καλά πάνω από την ξηρά ή και κοντά σε αυτήν. Ως αποτέλεσμα, η καταγραφή του αλτίμετρο έχει θόρυβο στην περιοχή μεταξύ νήσου Γαύδου και Κρήτης (Pavlis *et al.*, 2006 και Banks *et al.*, 2004). Έτσι, μόνον δεδομένα στην περιοχή νότια της Γαύδου χρησιμοποιήθηκαν για τη βαθμονόμηση. Συγκεκριμένα, όλα τα δεδομένα βορειότερα των 34,6° N έχουν εξαιρεθεί από την ανάλυση (Σχήμα 2.5).

Σχήμα 2. 5: Τα δεδομένα του Jason-1 για τις διελεύσεις 18 και 109 μεταξύ των κύκλων 70-90. Οι μετρήσεις που συλλέχθηκαν βορειότερα από 34.6° αντιστοιχούν σε ρηχά νερά (< 200 m) ή στεριά και κρίθηκε ότι περιέχουν υψηλά επίπεδα θορύβου. Για το λόγο αυτό δε χρησιμοποιήθηκαν στην ανάλυση.

2.4.1.1 Επιφάνειες Αναφοράς

Οι ανωμαλίες της θαλάσσιας επιφάνειας του αλτίμετρου αντιστοιχούσαν σε υψόμετρα θαλάσσιας επιφάνειας από την επιφάνεια αναφοράς GSFC00.1. Η συγκεκριμένη επιφάνεια αναφοράς περιγράφει το γεωειδές και την Μέση Δυναμική Τοπογραφία - ΜΔΤ (Mean Dynamic Topography – MDT) της θαλάσσιας επιφάνειας σε παγκόσμια κλίμακα. Στα πλαίσια της διατριβής, χρησιμοποιήθηκε μια διαφορετική επιφάνεια αναφοράς που δημιουργήθηκε από ένα λεπτομερές μοντέλο για το τοπικό γεωειδές και ένα μοντέλο για την ΜΔΤ της θαλάσσιας επιφάνειας που είχε δημιουργηθεί συγκεκριμένα για την Μεσόγειο Θάλασσα.

Αναλυτικότερα, στα πλαίσια του προγράμματος GAVDOS δημιουργήθηκαν δύο υψηλής διακριτικής ικανότητας και ακριβείας μοντέλα γεωειδούς (Vergos *et al.*, 2005). Τα μοντέλα αυτά είχαν ανάλυση 1 arcmin. Το πρώτο από τα μοντέλα αυτά δημιουργήθηκε με τη μέθοδο συγκριτικής παράθεσης ελαχίστων τετραγώνων (Least Squares collocation – LSC). Για τη δημιουργία του δεύτερου μοντέλου ακολουθήθηκε η μέθοδος της Θεωρίας Συστημάτων Εισόδου - Εξόδου (Input Output System Theory – IOST) η οποία βασίζεται στον ταχύ μετασχηματισμό Fourier (Fast Fourier Transform - FFT).

Η ακρίβεια των μοντέλων αυτών επιβεβαιώθηκε μέσω συγκρίσεων με δεδομένα αλτιμετρίας του TOPEX/POSEIDON αλλά και του γεωειδούς που είχε κατασκευαστεί στο ερευνητικό πρόγραμμα GEOMED (GEOMED, 1993). Η σχετική ακρίβεια των μοντέλων αυτών είναι ±0,9 και ±3,3 cm για τις λύσεις που προέκυψαν από τις μεθόδους LSC και IOST αντιστοίχως. Επίσης, η διαφορά στο υψόμετρο του γεωειδούς στα μοντέλα αυτά, στο σημείο όπου βρίσκονται οι παλιρροιογράφοι της Γαύδου, είναι 3,2 cm.

Και τα δύο αυτά μοντέλα δημιουργήθηκαν συνδυάζοντας τρία διαφορετικά μοντέλα γεωειδούς. Τα δύο από αυτά είχαν δημιουργηθεί αποκλειστικά από αλτιμετρικά δεδομένα (των αποστολών ERS-1 και GEOSAT αντιστοίχως) και ένα του οποίου η δημιουργία βασίστηκε μόνον σε χερσαία και θαλάσσια δεδομένα βαρυτημετρίας. Η βασική διαφορά μεταξύ των μοντέλων γεωειδούς από αλτιμετρία και βαρυτημετρία είναι ότι τα πρώτα περιέχουν πληροφορίες και για την ΜΔΤ (εκτός εάν έχουν γίνει οι σχετικές αναγωγές.).

Έτσι, στα πλαίσια του προγράμματος GAVDOS δημιουργήθηκε και ένα μοντέλο για την ΜΔΤ της θαλάσσιας επιφάνειας στην περιοχή (GAVDOS, 2005). Αυτό έγινε αφαιρώντας το βαρυτημετρικό μοντέλο γεωειδούς από αυτό της αλτιμετρίας. Το μοντέλο που προέκυψε συγκρίθηκε με αυτό των Rio *et al.*, (2006) που στα πλαίσια της παρούσας διατριβής θα ονομάζεται «RIO06». Η σύγκριση έδειξε ότι τα μοντέλα αυτά εμφανίζουν διαφορές που κυμαίνονται μεταξύ -0,29 έως 0,48 m. Επίσης η μέση τιμή της διαφοράς τους είναι 0.00 m ενώ η τυπική απόκλιση της διαφοράς τους 9cm (GAVDOS, 2005). Το μοντέλο RIO06 έχει ανάλυση 1/8 arcmin και δημιουργήθηκε συνδυάζοντας θαλάσσιες επιτόπιες παρατηρήσεις, δεδομένα αλτιμετρίας καθώς και ένα μοντέλο για την θαλάσσια κυκλοφορία (Ocean General Circulation Model - OGCM).

Για λόγους συμβατότητας με τους Pavlis et al., (2006) και Pavlis et al., (2004) για την περιγραφή του γεωειδούς στην παρούσα διατριβή χρησιμοποιήθηκε το μοντέλο LSC, ενώ για την περιγραφή της ΜΔΤ χρησιμοποιήθηκε το RIO06. Ο κάνναβος των μοντέλων αυτών είναι διαφορετικός. Ο προσδιορισμός της τιμής στα σημεία όπου αντιστοιχούν οι αλτιμετρικές μετρήσεις των GDRs επιτεύχθηκε με τη μέθοδο της παρεμβολής.

Το μοντέλο γεωειδούς LSC καλύπτει μια περιοχή από N 34° έως N 37°. Έτσι, η περιοχή όπου τα δεδομένα του Jason-1 χρησιμοποιήθηκαν στην διατριβή, περιορίστηκε μεταξύ N 34° έως N 34,6°. Η περιοχή αυτή περιλαμβάνει 13 σημεία από τον κάνναβο των ανωμαλιών της θαλάσσιας στάθμης του Jason-1 για κάθε μία από τις διελεύσεις 109 και 18.

2.4.1.2 Ο έλεγχος ποιότητας των αλτιμετρικών δεδομένων

Στην κατερχόμενη διέλευση No. 18, ο Jason -1 περνάει πάνω από την Κρήτη πριν φτάσει στην Γαύδο. Το ραδιόμετρο μικροκυμάτων του Jason -1 χρειάζεται κάποιο χρόνο για να λειτουργήσει σωστά μετά από διάβασή του πάνω από ξηρά (π.χ. Fu and Cazenave, 2001). Ως αποτέλεσμα, η ποιότητα συλλογής αλτιμετρικών δεδομένων από τη διέλευση No. 18 είναι κατώτερη εκείνης της διέλευσης No. 109 (Pavlis *et al.*, 2004).

Έτσι, από τα αλτιμετρικά δεδομένα που ελήφθησαν από το Pathfinder, εντός των κύκλων 23-90, έχουν ήδη απαλειφθεί 10 από αυτά στην καταγραφή της διέλευσης Νο. 18. Από την άλλη πλευρά, μόνο δύο κύκλοι έφεραν προειδοποιητικά σχόλια όσον αφορά την ποιότητά τους (flags) στα δεδομένα της διέλευσης 109.

Στα πλαίσια της διατριβής, τα δεδομένα ελέγχθηκαν ξανά για την ποιότητά τους. Συγκεκριμένα η διαδικασία συμπεριλάμβανε την διαγραφή χονδροειδών σφαλμάτων αλλά και την διαγραφή ολόκληρων διελεύσεων. Αυτό έγινε συγκρίνοντας την τυπική απόκλιση, τη μέση τιμή αλλά και με οπτική διερεύνηση της καμπύλης των δεδομένων όπως καταγράφτηκαν σε διαδοχικές διελεύσεις ή κύκλους.

Για παράδειγμα, τα δεδομένα της διέλευσης Νο. 109 από τον κύκλο 75 αποκλείστηκαν από την ανάλυση διότι παρουσίαζαν σημαντικά υψηλότερη τυπική απόκλιση σε σχέση με τα δεδομένα από όλους τους άλλους κύκλους της ίδιας διέλευσης. Στο ΠΑΡΑΡΤΗΜΑ Ι υπάρχει λεπτομερής κατάλογος των τυπικών αποκλίσεων των αλτιμετρικών δεδομένων κάθε κύκλου πριν και μετά την διαδικασία της διόρθωσης.

Σχήμα 2. 6: Το σχήμα των δεδομένων του κύκλου 75 από την διέλευση Νο. 109 δε μοιάζει με αυτό των δεδομένων από τους κύκλους 74 και 76. Για το λόγο αυτό ο κύκλος 75 αποκλείστηκε από την ανάλυση.

Ένας άλλος λόγος για τον οποίο αποκλείστηκε ο κύκλος 75 από την ανάλυση προέκυψε συγκρίνοντας τις καταγραφές αυτού του κύκλου με τις καταγραφές του προηγούμενου και του επόμενου (Σχήμα 2.6). Στο Σχήμα 2.6 φαίνεται ότι τα δεδομένα του κύκλου 75 είναι τελείως διαφορετικά ως προς τη μορφή τους σε σχέση με αυτά των κύκλων 74 και 76. Παρομοίως, 14 μετρήσεις από την διέλευση Νο. 109 αποκλείστηκαν από την ανάλυση. Και οι 14 αυτές μετρήσεις πάρθηκαν είτε πριν είτε μετά από μετρήσεις που έφεραν προειδοποιητικά σχόλια για την ποιότητά τους από την ίδια τη βάση δεδομένων του Pathfinder.

Σχήμα 2. 7: α) Η γραφική παράσταση των δεδομένων του κύκλου 90 κατά την διέλευση Νο. 18 είναι τελείως διαφορετική από την αντίστοιχη των κύκλων 89 και 90 των διελεύσεων Νο. 109. β) Οι κύκλοι 70 και 71 και για τις δύο διελεύσεις. Η παρουσία έντονων συστηματικών τάσεων στα δεδομένα των διελεύσεων 18 είναι ορατή.

Η διαδικασία διόρθωσης των δεδομένων της διέλευσης Νο. 18 κατέληξε με τον αποκλεισμό οκτώ επιπλέον κύκλων από την ανάλυση. Συγκεκριμένα, οι κύκλοι 32, 44, 55, 66, 70, 71, 82 και 90 δεν χρησιμοποιήθηκαν στην βαθμονόμηση του αλτίμετρου. Ως παραδείγματα της διαδικασίας διόρθωσης, παραθέτονται οι λόγοι για τους οποίους διαγράφτηκαν οι κύκλοι 70-71 και 90. Συγκεκριμένα, στο Σχήμα 2.7α παρουσιάζεται ο κύκλος 90 της διέλευσης Νο. 18 μαζί με τα δεδομένα των κύκλων 89 και 90 της διέλευσης Νο. 109. Τα δεδομένα της διέλευσης Νο. 109 από τους δύο αυτούς κύκλους αντιστοιχούν σε καταγραφές που ελήφθησαν προ τριών και επτά ημερών αντιστοίχως από αυτές του κύκλου 90 της διέλευσης Νο.18.

Παρομοίως, το Σχήμα 2.7β, παρουσιάζει τα δεδομένα των κύκλων 70 – 71 και από τις δύο διελεύσεις. Και στα δύο παραδείγματα, τα δεδομένα της διέλευσης Νο. 18 εμφανίζουν μεγαλύτερη διασπορά από τα αντιστοίχως της διέλευσης Νο. 109. Επιπροσθέτως, κρίθηκαν ως χονδροειδή σφάλματα και διαγράφτηκαν, επιπλέον 16 μετρήσεις από τους κύκλους 66 και 72.

Σχήμα 2. 8: Οι καταγραφές του Jason-1 για τους κύκλους 23 έως 90. Οι μαύροι και κόκκινοι κύκλοι συμβολίζουν τα υψόμετρα θαλάσσιας επιφάνειας των διελεύσεων Νο. 18 και Νο. 109 αντιστοίχως.

Οι διορθωμένες αλτιμετρικές χρονοσειρές και από τις δύο διελεύσεις μεταξύ των κύκλων 23-90 παρουσιάζονται στο Σχήμα 2.8. Στο γράφημα αυτό φαίνεται

επίσης και ο κύκλος 55 της διέλευσης Νο. 18. Ο συγκεκριμένος κύκλος διαγράφτηκε διότι η μέση τιμή του ήταν 20cm περίπου μεγαλύτερη από τη μέση τιμή των κύκλων 54-56 στα δεδομένα της διέλευσης Νο. 109. Εδώ αξίζει να παρατηρηθεί ότι τα δεδομένα της διέλευσης 18 από τους κύκλους 54, 56, και 57 είχαν ήδη κριθεί ακατάλληλα προς ανάλυση από την βάση δεδομένων Pathfinder.
ΚΕΦΑΛΑΙΟ 3: Η ΘΑΛΑΣΣΙΑ ΠΑΛΙΡΡΟΙΑ ΣΤΗΝ ΠΕΡΙΟΧΗ

Στο Κεφάλαιο αυτό εξετάζεται η θαλάσσια παλίρροια στην περιοχή ενδιαφέροντος και έχει δύο σκοπούς. Πρώτον, την κατασκευή ενός παλιρροϊκού μοντέλου το οποίο θα χρησιμοποιηθεί στην μελέτη των ακραίων τιμών της θαλάσσιας στάθμης (Κεφάλαιο 5). Δεύτερον, να ελέγξει αν οι προβλέψεις του παλιρροϊκού μοντέλου GOT00.2 περιγράφουν ικανοποιητικά την παλίρροια στην περιοχή.

3.1 Εισαγωγή στην παλίρροια

Η θαλάσσια παλίρροια είναι περιοδικές μετακινήσεις θαλάσσιων μαζών νερού οι οποίες έχουν συναφές πλάτος και φάση με κάποιο περιοδικό γεωφυσικό φαινόμενο (Pugh, 1987). Αντίστοιχες περιοδικές μεταβολές υφίστανται τόσο στην ατμόσφαιρα, όσο και στον στερεό φλοιό της Γης αλλά αυτές δεν αποτελούν αντικείμενο της διατριβής και δεν θα εξεταστούν. Ο βασικότερος μηχανισμός που δημιουργεί τις παλίρροιες είναι οι περιοδικές μεταβολές στο βαρυτικό δυναμικό της Σελήνης και του Ηλίου στην επιφάνεια της Γης.

Λαμβάνοντας υπόψιν το συνδυασμένο αποτέλεσμα της γήινης βαρύτητας (και περιστροφής) καθώς και τις μεταβολές στο βαρυτικό δυναμικό που δημιουργεί την παλίρροια, μπορεί να υπολογιστεί μια θεωρητική απόκριση της θαλάσσιας στάθμης, γνωστή ως «Παλίρροια Ισορροπίας» (Equilibrium Tide) (Doodson 1921). Ο υπολογισμός αυτός γίνεται κάνοντας την παραδοχή ότι η θάλασσα καλύπτει ολόκληρη την επιφάνεια της Γης και ότι η απόκρισή της βρίσκεται πάντα σε ισορροπία με τη δύναμη που δημιουργεί την παλίρροια.

Το βαρυτικό δυναμικό που δημιουργεί την παλίρροια αναπτύχθηκε από τον Doodson (1921), και συμπεριλαμβάνει 390 παλιρροϊκές αρμονικές. Όλες οι παλιρροϊκές αρμονικές μπορούν να ταξινομηθούν σε τρεις κατηγορίες ανάλογα με την συχνότητά τους, συγκεκριμένα, τις ημερήσιες, τις ημι-ημερήσιες και τις μακροπερίοδες συνιστώσες.

Οι ημερήσιες και ημι-ημερήσιες παλίρροιες περιγράφουν περιοδικές κινήσεις του θαλάσσιου ύδατος με περίοδο περίπου 24 και 12 ώρες αντιστοίχως. Οι πιο σημαντικές ημερήσιες αρμονικές στο Ελληνικό Αρχιπέλαγος είναι οι Ο₁, K₁, και οι πιο σημαντικές ήμι-ημερήσιες οι M₂ και S₂ (Tsimplis 1992, Tsimplis 1994). Στο Νότιο Αιγαίο Πέλαγος το εύρος της παλίρροιας δεν ξεπερνά τα 4-5cm (Tsimplis 1992, Tsimplis 1994).

Εκτός από τις παλίρροιες ημερήσιου και ημι-ημερήσιου τύπου, υπάρχουν επιπλέον αρμονικές, με περιόδους 15 ημερών (π.χ. M_{sf} και M_f), 30 ημερών (π.χ. M_m

και M_{sm}), ή και μεγαλύτερες. Οι αρμονικές αυτές στις ελληνικές θάλασσες διεγείρονται κυρίως από διακυμάνσεις μετεωρολογικών φαινομένων, όπως ο άνεμος και η ατμοσφαιρική πίεση (Tsimplis, 1992). Στην ίδια συχνότητα με την M_{sf} υπάρχει και μία αρμονική αβαθών νερών (shallow water harmonic) η οποία δημιουργείται από τις M_2 και S_2 (Pugh 1987).

Οι αρμονικές αβαθών νερών είναι παλιρροϊκές συνιστώσες που δημιουργούνται κυρίως λόγω τριβών μεταξύ του θαλάσσιου ύδατος με τον πυθμένα καθώς το παλιρροϊκό κύμα προσεγγίζει σε αβαθή νερά (βάθος μικρότερο από μερικές εκατοντάδες μέτρα). Οι επιπρόσθετες αυτές αρμονικές δεν βρίσκονται σε βαθιά ύδατα όπου μετράνε τα αλτίμετρα, είναι όμως παρούσες σε παράκτια νερά όπου βρίσκονται οι παλιρροιογράφοι (Parker, 1991; Le Provost 1991).

Αλλη μία διαφορά μεταξύ του παλιρροϊκού σήματος στα βαθιά νερά και αυτού στην παράκτια, ρηχή ζώνη δημιουργείται λόγω της τροποποίησης του πλάτους και της φάσης των παλιρροϊκών συνιστωσών. Καθώς το βάθος της στήλης του νερού γίνεται συγκρίσιμο με το μήκος κύματος μιας αρμονικής η ταχύτητά της συγκεκριμένης αρμονικής μειώνεται, και το πλάτος της αυξάνει έτσι ώστε να διατηρείται η ενέργεια της (Le Provost, 2001). Η ενίσχυση του πλάτους της παλίρροιας στα ρηχά νερά δεν είναι τόσο μεγάλη όσο προβλέπεται από την αρχή διατήρησης της ενέργειας διότι μεγάλο μέρος της παλιρροϊκής ενέργειας καταναλώνεται σε εσωτερικές τριβές και σε τριβές με τον πυθμένα (Parker 1991, Le Provost 1991).

Εκτός από την μετεωρολογική συνεισφορά στις παλιρροϊκές αρμονικές με περιόδους 15 και 30 ημερών, η οποία δεν είναι περιοδική, υπάρχουν κάποιες αρμονικές οι οποίες δημιουργούνται κυρίως λόγω περιοδικής μετεωρολογικής διέγερσης (Pugh 1987, Pugh 2004). Οι αρμονικές αυτές αναφέρονται ως θερμική παλίρροια (radiation tide) και προκαλούνται από την επίδραση περιοδικής διέγερσης που οφείλεται τόσο σε αστρονομική όσο και μετεωρολογική διέγερση. Ο τελευταίος από αυτούς τους δύο παράγοντες είναι άμεσα συνδεδεμένος με την ενέργεια που λαμβάνει η Γη από τον Ήλιο. Οι πιο σημαντικές τέτοιες αρμονικές είναι η ημερήσια S₁ (Ray and Egbert, 2004), η ήμι-ημερήσια S₂ (Arbic, 2005), η ετήσια S_a και η εξαμηνιαία S_{sa} ηλιακές αρμονικές αντιστοίχως. Οι ηλιακές παλίρροιες με περιόδους 12 και 6 μηνών αντιστοίχως αποτελούν μέρος ενός φαινομένου γνωστού ως εποχικός κύκλος, που θα μελετηθεί στο Κεφάλαιο 4.

3.2 Σκοπός, κίνητρα και περιγραφή της μελέτης

Το παλιρροϊκό καθεστώς στην περιοχή μελέτης είναι σε γενικές γραμμές γνωστό και δεν παρουσιάζει ιδιαίτερο ερευνητικό ενδιαφέρον. Παρ' όλα αυτά θεωρήθηκε απαραίτητο να συμπεριληφθεί μια τέτοια μελέτη για διάφορους λόγους.

Πρώτον, στα πλαίσια της διατριβής πραγματοποιήθηκε ανάλυση των ακραίων τιμών της θαλάσσιας στάθμης. Στο Κεφάλαιο 5, θα εξηγηθούν εκτενέστερα οι λόγοι για τους οποίους τέτοιες μελέτες έχουν ως προϋπόθεση την *a priori* γνώση των παλιρροιών. Οι υπόλοιποι λόγοι σχετίζονται με το γεγονός ότι στη διαδικασία βαθμονόμησης των δορυφορικών αλτιμέτρων, τα δεδομένα θαλάσσιας στάθμης διορθώνονται για την επίδραση της ωκεάνιας παλίρροιας.

Συγκεκριμένα, για την βαθμονόμηση του Jason-1 στα πλαίσια GAVDOS, η παλίρροιες είχαν αφαιρεθεί και από τα αλτιμετρικά δεδομένα και από αυτά του παλιρροιογράφου με τη βοήθεια του μοντέλου GOT00.2 (Pavlis *et al.*, 2004 και Pavlis *et al.*, 2006).

Το μοντέλο GOT00.2 δημιουργήθηκε για να αντικαταστήσει το μοντέλο GOT99.2 (Schrama and Ray 1994, Ray 1999), ένα παγκόσμιο μοντέλο που δημιουργήθηκε αφομοιώνοντας δεδομένα 286 κύκλων του TOPEX/POSEIDON. Σε ρηχά, παράκτια νερά, όπως επίσης και σε υψηλά γεωγραφικά πλάτη (βορειότερα από 66,6°), τα δεδομένα του TOPEX/POSEIDON αντικαταστάθηκαν από 81 κύκλους των αποστολών ERS-1 και ERS-2.

Στη δημιουργία του GOT00.2, ενσωματώθηκε και ένα παγκόσμιο, υδροδυναμικό παλιρροϊκό μοντέλο, το FES94.1 (Le Provost *et al.*, 1994). Η δημιουργία της σειράς μοντέλων "Finite Element Solution" (FES), βασίζεται τόσο σε δεδομένα αλτιμετρίας όσο και σε δεδομένα παλιρροιογράφων από όλο τον κόσμο (Lefevre *et al.*, 2000; Lefevre *et al.*, 2002). Κάποιοι από τους παλιρροιογράφους αυτούς βρίσκονται τοποθετημένοι στην Δυτική Μεσόγειο Θάλασσα, κανένας όμως από αυτούς δεν βρίσκεται στην Ανατολική πλευρά της Λεκάνης της Μεσογείου. Αυτό συνεπάγεται ότι η ικανότητα του GOT00.2 να δημιουργεί ρεαλιστικές παλιρροϊκές προβλέψεις στην περιοχή, μπορεί να αμφισβητηθεί.

Επιπροσθέτως, το μοντέλο GOT00.2 προήλθε ως προϊόν αφομοίωσης αλτιμετρικών δεδομένων (Schrama and Ray, 1994). Αυτό έχει ως αποτέλεσμα να μην μπορεί να χρησιμοποιηθεί σε ρηχά παράκτια νερά όπου βρίσκονται οι παλιρροιογράφοι (Ray, 1999). Στα πλαίσια της διατριβής, η αξιολόγηση του GOT00.2 σε ρηχά νερά έγινε με την χρήση παλιρροιογράφων, ενώ σε βαθιά νερά έγινε με σύγκριση με το μοντέλο T95 (Tsimplis *et al.*, 1995).

Το μοντέλο T95 διεγείρεται από την παλίρροια ισορροπίας και το εισερχόμενο παλιρροϊκό κύμα από τον Ατλαντικό μέσω του πορθμού του Γιβραλτάρ (Tsimplis *et*

al., 1995). Επομένως, το T95 δεν περιγράφει την συνιστώσα της ωκεάνιας παλίρροιας που δημιουργείται από ατμοσφαιρική διέγερση. Μία από τις τέσσερις αρμονικές που λαμβάνονται υπόψιν στο T95 είναι η ημι-ημερήσια κύρια ηλιακή S₂. Η αρμονική αυτή δημιουργείται από μεταβολές του βαρυτικού δυναμικού (Doodson, 1921), αλλά και από ατμοσφαιρική φόρτιση λόγω πίεσης (pressure loading) της αντίστοιχης συνιστώσας της ατμοσφαιρικής παλίρροιας (π.χ., Pugh, 1987).

Σε παγκόσμια κλίμακα, το πλάτος της μετεωρολογικής συνιστώσας της συγκεκριμένης αρμονικής είναι της τάξης του 14,7% σε σχέση με το αντίστοιχο της βαρυτικής. Ενδέχεται επομένως, η μετεωρολογική συνιστώσα της S_2 να είναι αρκετά μεγάλη ώστε να επηρεάζει την σύγκριση του μοντέλου με τους παλιρροιογράφους.

Για να διαλευκανθεί αυτή η υποψία, εκτιμήθηκε το πλάτος και η φάση των παλιρροϊκών αρμονικών και από την χρονοσειρά του μοντέλου HIPOCAS. Εδώ πρέπει να σημειωθεί ότι και το μοντέλο GOT00.2 προβλέπει αρμονικές οι οποίες υπόκεινται σε διέγερση από την ατμόσφαιρα (συγκεκριμένα οι S₁ και S₂) (Arbic, 2005; Ray and Egbert, 2004). Ωστόσο, το μοντέλο GOT00.2 δημιουργήθηκε με αφομοίωση δεδομένων θαλάσσιας στάθμης, επομένως οι ατμοσφαιρικές επιδράσεις περιέχονται στις προβλέψεις του.

Πέρα από διαφορές που μπορεί να προκύψουν στην εκτίμηση συγκεκριμένων αρμονικών λόγω της επίδρασης της μετεωρολογίας (και τις μεταβολές σε αυτή), μεταβολές στην εκτίμηση ορισμένων συνιστωσών μπορούν να προκύψουν και λόγω της συντομίας των διαθέσιμων δεδομένων θαλάσσιας στάθμης.

Συγκεκριμένα, το πλάτος παλιρροϊκών αρμονικών που οφείλονται στην Σελήνη, μορφοποιείται καθ' όλη τη διάρκεια του κύκλου (nodal cycle). Έτσι εισάγονται συστηματικά σφάλματα στον προσδιορισμό τους, όταν αυτός γίνεται με βάση σύντομες χρονοσειρές όπως αυτές του σταθμού της Γαύδου (Pugh, 1987; Woodworth and Blackman, 2004). Τα μεγαλύτερα από τα σφάλματα αυτά είναι συνυφασμένα με τον προσδιορισμό της κύριας σεληνιακής αρμονικής, M₂ (Woodworth and Blackman, 2004).

Συγκεκριμένα, το πλάτος της M₂, κυμαίνεται κατά 3,7% κατά τη διάρκεια ενός nodal κύκλου (Doodson and Waburg, 1941). Στην περιοχή γύρω από την Κρήτη η M₂ είναι της τάξης του 1cm. Επομένως τα σφάλματα λόγω της συντομίας των διαθέσιμων δεδομένων του σταθμού της Γαύδου αναμένονται να είναι αμελητέα.

Ο σταθμός χρησιμοποιείται για την βαθμονόμηση αλτιμέτρων και η διαδικασία αυτή απαιτεί μετρήσεις ακριβείας. Για το λόγο αυτό, εξετάστηκε η επίδραση της συντομίας των δεδομένων στον προσδιορισμό της M₂. Αυτό έγινε έμμεσα εξετάζοντας τις διακυμάνσεις στην εκτίμηση της M₂ κάθε έτους δεδομένων του παλιρροιογράφου της Σούδας

3.3 Τα μοντέλα GOT00.2 και T95

Η παλιρροϊκή ανάλυση πραγματοποιήθηκε με όλα τα δεδομένα θαλάσσιας στάθμης από την Σούδα και την Γαύδο. Η επίδραση της ατμόσφαιράς στην παρατηρούμενη παλίρροια στην Σούδα εξετάστηκε μέσω της χρονοσειράς του μοντέλου HIPOCAS. Τα δεδομένα αυτά περιγράφονται στο Κεφάλαιο 2. Χρησιμοποιήθηκαν επίσης και δύο μοντέλα πρόβλεψης παλιρροιών, συγκεκριμένα το GOT00.2 και το T95.

Το μοντέλο GOT00.2 (Ray, 1999) παρέχει παλιρροϊκά υψόμετρα για οκτώ παλιρροϊκές αρμονικές, ονομαστικά τις: Q₁, O₁, P₁, K₁, N₂, M₂, S₂, και K₂. Επτά από τις αρμονικές αυτές υπολογίζονται απευθείας από δεδομένα ενώ η αρμονική P₁ προσδιορίζεται με επαγωγή, ως συνάρτηση δηλαδή άλλων γνωστών συνιστωσών. Το λογισμικό πρόβλεψης παρέχει επιπλέον λύσεις για 16 ακόμα μικρότερου πλάτους αρμονικές οι οποίες υπολογίζονται με επαγωγή από τις οκτώ προαναφερθείσες αρμονικές. Οι 16 αυτές αρμονικές είναι οι: 2Q₁, sigma₁, rho₁, M₁, chi₁, pi₁, phi₁, theta₁, J₁, OO₁, 2N₂, mu₂, nu₂, lambda₂, L₂, και T₂. Και οι 24 αυτές αρμονικές έχουν ήδη αφαιρεθεί από τα δεδομένα του Jason-1 που βρίσκονται στην βάση δεδομένων Pathfinder. Οι διαθέσιμες προβλέψεις του GOT00.2 είχαν βήμα δειγματοληψίας 10 λεπτά της ώρας και αφορούσαν την περιοχή του Καραβέ και της Σούδας για την περίοδο 2003-2005. Επιπροσθέτως, ωριαίες τιμές του μοντέλου για την περιοχή 0,5° Βόρεια της Σούδας ήταν διαθέσιμες προς ανάλυση για την περίοδο 1992-2005. Οι προβλέψεις του GOT00.2 διατέθηκαν από το JCET/UMBC και το λογισμικό από το Goddard Space Flight Center, Greenbelt MD των ΗΠΑ.

Το μοντέλο T95 είναι ένα 10'×10', δισδιάστατο, υδροδυναμικό μοντέλο πρόβλεψης παλιρροιών για τη Μεσόγειο Θάλασσα (Tsimplis *et al.*, 1995). Η πρόβλεψη της παλίρροιας υλοποιείται λαμβάνοντας υπόψιν την παλίρροια ισορροπίας καθώς και το εισερχόμενο παλιρροϊκό από το Γιβραλτάρ κύμα. Η αξιοπιστία του έχει επικυρωθεί με την χρήση 63 παλιρροιογράφων που βρίσκονται στη Μεσόγειο Θάλασσα. Εδώ αξίζει να σημειωθεί ότι εφόσον η παλίρροια προσεγγίζει την ακτή από την ανοικτή θάλασσα, και το μοντέλο αυτό είναι ικανό να περιγράψει την παλίρροια σε παράκτια νερά, συνεπάγεται ότι οι προβλέψεις του είναι ικανοποιητικές και στην ανοικτή θάλασσα.

Το μοντέλο T95 δημιουργεί προβλέψεις για τις τέσσερις σημαντικότερες παλιρροϊκές αρμονικές, ονομαστικά τις M₂, S₂, K₁, και O₁ (Σχήμα 3.1). Οι φάσεις στα διαγράμματα αντιπροσωπεύουν φάσεις Greenwich (Greenwich phases). Αυτό σημαίνει ότι η φάση τους έχει αναχθεί σε αυτή που θα είχε η παλίρροια ισορροπίας στο γεωγραφικό μήκος $\lambda = 0^\circ$. Η φάση Greenwich μιας αρμονικής μπορεί να ερμηνευτεί ως η φάση της αρμονικής αυτής ως προς τη χρονική στιγμή όπου η

παλιρροιογενής διέγερση είναι μέγιστη στον μεσημβρινό του Greenwich. Το μοντέλο T95 αποκτήθηκε από το Proudman Oceanographic Laboratory, Bidston, United Kingdom.

Σχήμα 3. 1: Το πλάτος σε cm (αριστερά) και η φάση σε deg (δεξιά) των τεσσάρων παλιρροϊκών αρμονικών που συμπεριλαμβάνονται στο μοντέλο T95. Από πάνω προς τα κάτω: O_1 , K_1 , M_2 και S_2 .

3.4 Παλιρροιακές συνιστώσες – Μεθοδολογία

Αρχικά, οι παλιρροϊκές αρμονικές υπολογίστηκαν από τις καταγραφές των παλιρροιογράφων. Καθώς τα δεδομένα των δύο παλιρροιογράφων της Γαύδου έχουν διάρκεια 9 και 24 μήνες αντιστοίχως, διαπιστώθηκε η ευστάθεια της εκτίμησης της παλίρροιας από τόσο σύντομες χρονοσειρές. Για να επιτευχθεί αυτό, εκτιμήθηκαν οι παλιρροϊκές παράμετροι για κάθε έτος από τα δεδομένα της Σούδας.

Η επίδραση των ατμοσφαιρικών παλιρροιών στην περιοχή ποσοτικοποιήθηκε υπολογίζοντας τις παλίρροιες από το μοντέλο HIPOCAS, καθώς και από την «υπολειπόμενη» χρονοσειρά, η οποία προέκυψε από την αφαίρεση του HIPOCAS από τα δεδομένα του παλιρροιογράφου.

Υπάρχουν δύο μέθοδοι για τον υπολογισμό της παλίρροιας, η ανάλυση απόκρισης (response analysis) και η αρμονική ανάλυση. Σχεδόν όλα τα λογισμικά πακέτα κάνουν χρήση της δεύτερης μεθόδου. Από τα πιο ευρέως χρησιμοποιούμενα λογισμικά για την ανάλυση παλιρροιών είναι ένα πακέτο γραμμένο σε FORTRAN που αναπτύχθηκε από τον Foreman στο Institute of Ocean Sciences (Καναδάς). Στην παρούσα διατριβή, χρησιμοποιήθηκε το πακέτο από ρουτίνες t_tide. Το λογισμικό αυτό, χρησιμοποιεί τον αλγόριθμο του Foreman αλλά έχει υλοποιηθεί σε περιβάλλον MATLAB και κάνει χρήση μιγαδικών αλγεβρικών πινάκων (Pawlowicz *et al.*, 2002).

Στην αρμονική ανάλυση, η ωκεάνια παλίρροια παραμετροποιείται ως το άθροισμα ημιτονοειδών παραγόντων πεπερασμένου πλήθους. Οι συχνότητες των ημιτονοειδών αυτών παραγόντων σχετίζονται άμεσα με τις αστρονομικές παραμέτρους που είναι γνωστές ως αριθμοί Doodson (Doodson numbers) (Pugh, 1987, Pugh 2004). Για να συμπεριληφθούν τα μη γραμμικά φαινόμενα που σχετίζονται με τα ρηχά νερά, επιπλέον όροι προστίθενται στο μοντέλο. Οι συχνότητες των αρμονικών των αβαθών υδάτων, προκύπτουν είτε ως αθροίσματα είτε ως διαφορές των συχνοτήτων των αστρονομικών συνιστωσών.

Εάν *n* είναι ο αριθμός των παρατηρήσεων *H*, και *k* ο αριθμός των παραμέτρων στην στατιστική παλινδρόμηση, η αρμονική ανάλυση μπορεί να διατυπωθεί ως:

$$H = X\beta + \varepsilon \qquad [3.1]$$

όπου **H** είναι το διάνυσμα των παρατηρήσεων της στάθμης της θάλασσας με διαστάσεις $n \times 1$, **X** είναι ένας $n \times k$ πίνακας του οποίου τα στοιχεία σχετίζονται με την παλίρροια ισορροπίας, **β** είναι ένα διάνυσμα διαστάσεων $k \times 1$ που περιέχει τους συντελεστές παλινδρόμησης (άγνωστοι), και **ε** είναι το $n \times 1$ διάνυσμα με τα σφάλματα. Επειδή n > k, το κριτήριο των ελαχίστων τετραγώνων χρησιμοποιείται για τον υπολογισμό του **β** από την εξίσωση [3.1]. Ο προσδιορισμός του πλάτους και της φάσης των παλιρροϊκών αρμονικών γίνεται απευθείας από το διάνυσμα **β**.

Τα βασικά πλεονεκτήματα της αρμονικής ανάλυσης συνοψίζονται παρακάτω (Pugh, 1987):

- Επιτρέπονται κενά στην χρονοσειρά των δεδομένων του παλιρροιογράφου,
- Αναλύονται χρονοσειρές οποιασδήποτε διάρκειας,
- Δεν γίνονται παραδοχές για τις στατιστικές ιδιότητες των δεδομένων εκτός της περιόδου μετρήσεως,
- Λαμβάνονται υπόψιν μόνο τα συναφή ως προς την παλίρροια ισορροπίας φαινόμενα,
- Παρόλο που συνήθως χρησιμοποιούνται ωριαίες καταγραφές παλιρροιογράφων, οποιοδήποτε διάστημα δειγματοληψίας είναι επιτρεπτό.

Τα κυριότερα μειονεκτήματα της αρμονικής ανάλυσης είναι (Pugh, 1987):

- Λόγω της κομβικής διαμόρφωσης ορισμένων αρμονικών χρειάζονται τουλάχιστον 18,6 έτη για να προσδιοριστεί το πραγματικό πλάτος και φάση τους,
- Όταν χρησιμοποιούνται σύντομες χρονοσειρές (της τάξης μερικών μηνών), η διαχωριστική ικανότητα της μεθόδου υποβαθμίζεται με αποτέλεσμα να καθίσταται αδύνατος διαχωρισμός ορισμένων συχνοτήτων. Αυτό υποδηλώνεται από το κριτήριο του Rayleigh σύμφωνα με το οποίο, για να διαχωριστούν δύο διαφορετικές αρμονικές, η διαφορά του πλήθους των μηκών κύματος κάθε αρμονικής που περιέχονται στα δεδομένα πρέπει να είναι μεγαλύτερη από τη μονάδα.
- Δεν υπάρχει τρόπος να προσδιοριστεί εάν εμπλέκονται συστηματικά σφάλματα στον υπολογισμό μιας αρμονικής λόγω μη παλιρροϊκών διακυμάνσεων της θαλάσσιας στάθμης.
- Η διαχωριστική ικανότητα της μεθόδου στις υψηλές συχνότητες περιορίζεται από την συχνότητα Nyquist. Σύμφωνα με το θεώρημα του Nyquist για να είναι δυνατός ο διαχωρισμός μιας συχνότητας, το διάστημα δειγματοληψίας πρέπει να είναι τέτοιο ώστε να υπάρχουν διαθέσιμες τουλάχιστον δύο μετρήσεις ανά κύκλο του φαινομένου.

Στην Αρμονική Ανάλυση συμπεριελήφθησαν οι 68 προεπιλεγμένες από το t_tide, συνιστώσες. Στις συνιστώσες αυτές συμπεριλαμβάνονται 45 αστρονομικές και 23 αρμονικές αβαθών υδάτων. Αναλυτικότερα, στην ανάλυση ενσωματώθηκαν δύο αρμονικές για την περιγραφή του εποχικού κύκλου, δύο μηνιαίες και δύο δεκαπενθήμερες αρμονικές, 21 ημερήσιες, 19 ημι-ημερήσιες συνιστώσες, καθώς και

23 αρμονικές τρίτης έως και όγδοης τάξης. Η αναζήτηση για συνιστώσες αβαθών υδάτων επεκτάθηκε με την εισαγωγή 78 επιπλέον παραγόντων για αβαθή ύδατα. Τα κριτήρια των Rayleigh και Nyquist διατηρήθηκαν και τα δύο.

Το λογισμικό t_tide προσφέρει τρεις διαφορετικούς τρόπους για τον υπολογισμό του σφάλματος στην φάση και το πλάτος κάθε παλιρροϊκής αρμονικής. Ο πρώτος χρησιμοποιεί την κλασσική προσέγγιση των ελαχίστων τετραγώνων, ενώ οι άλλοι δύο κάνουν χρήση της μη-παραμετρικής μέθοδος bootstrap (Pawlowich *et al.*, 2002). Όταν η μέθοδος bootstrap επιλέγεται, τα υπολειπόμενα σφάλματα μοντελοποιούνται είτε ως δισδιάστατες και κανονικά κατανεμημένες μεταβλητές, είτε ως δισδιάστατες και τυχαίες μεταβλητές που όμως δεν προέρχονται από κανονική κατανομή. Και οι τρεις μέθοδοι χρησιμοποιήθηκαν ώστε να διαπιστωθεί ποια είναι ο καταλληλότερη για τον προσδιορισμό των εμπλεκόμενων σφαλμάτων.

3.5 Τα αποτελέσματα της αρμονικής ανάλυσης

3.5.1 Αποτελέσματα στη Σούδα

Οι παλιρροϊκές παράμετροι που υπολογίστηκαν από ολόκληρη τη χρονοσειρά της Σούδας για την περίοδο 1982-2003 παρουσιάζονται στον Πίνακα 3.1. Στον ίδιο πίνακα αναφέρεται επίσης και ο λόγος του σήματος προς το θόρυβο (signal-to-noiseratio - snr) κάθε αρμονικής όπως προσδιορίστηκε με καθεμία από τις τρεις μεθόδους. Ο λόγος του σήματος προς το θόρυβο που προσδιορίζεται με τη μέθοδο των ελαχίστων τετραγώνων (βλέπε στήλη "linear" στον Πίνακα 3.1) είναι σε πολλές περιπτώσεις συγκριτικά μεγάλος για συνιστώσες που δε ξεπερνούν σε πλάτος το 1 mm. Για παράδειγμα, το εκτιμούμενο πλάτος των αρμονικών H₂ και M₄ είναι 2 και 0,2 mm αντιστοίχως. Όταν ο προσδιορισμός των σφαλμάτων γίνεται μέσω της μεθόδου των ελαχίστων τετραγώνων, ο λόγος του σήματος προς τον θόρυβο είναι snr = 3,8 και 32 για τις H₂ και M₄ αντιστοίχως.

Η κατάσταση είναι παρόμοια και όταν ο προσδιορισμός των σφαλμάτων γίνεται με τη μέθοδο bootstrap και τα υπολειπόμενα σφάλματα μοντελοποιούνται ως δισδιάστατες μεταβλητές που δεν ανήκουν σε κανονική κατανομή, (Pawlowich *et al.*, 2002) (βλέπε στήλη "cboot" στον Πίνακα 3.1). Όταν όμως ο προσδιορισμός των σφαλμάτων γίνεται με τη μέθοδο bootstrap και τα υπολειπόμενα σφάλματα μοντελοποιούνται ως δισδιάστατος λευκός θόρυβος (Pawlowich *et al.*, 2002) (βλέπε στήλη "wboot" στον Πίνακα 3.1), καθώς μικραίνουν τα πλάτη των παλιρροϊκών συνιστωσών, μικραίνει και ο λόγος του σήματος προς το θόρυβο. Παράλληλα, η εκτίμηση των εμπλεκομένων σφαλμάτων στις ημερήσιες ή υψηλότερες συχνότητες

	Amp	Error	Phase	Error	snr	snr	snr		Amp	Error	Phase	Error	snr	snr	snr
	(cm)	(cm)	(deg)	(deg)	(wboot)	(cboot)	(linear)		(cm)	(cm)	(deg)	(deg)	(wboot)	(cboot)	(linear)
*SA	7.0479	0.052	249.93	0.47	19000	96	210	*H1	0.1067	0.053	88.82	29.18	4	12	27
*SSA	1.3571	0.056	108.26	2.13	580	4	7.9	*M2	0.9054	0.058	2.77	3.28	240	800	1900
*MSM	0.5642	0.050	278.84	5.99	130	0.87	1.3	*H2	0.2448	0.057	269.28	14.09	19	66	140
*MM	0.7328	0.057	257.84	4.67	170	1.4	2.3	MKS2	0.0400	0.053	93.16	87.18	0.58	1.7	3.8
*MSF	0.1293	0.058	350.11	22.97	4.9	0.059	0.067	LDA2	0.0090	0.038	276.14	210.99	0.057	0.17	0.21
*MF	0.2329	0.052	356.15	13.86	20	0.24	0.23	L2	0.0484	0.051	340.76	71.52	0.9	3.1	5.6
ALP1	0.0061	0.043	116.56	208.37	0.02	0.065	0.085	T2	0.0904	0.053	259.69	37.21	2.9	7.8	19
2Q1	0.0179	0.039	302.47	153.93	0.21	0.49	0.64	*S2	0.7022	0.055	352.77	4.84	160	700	1200
SIG1	0.0238	0.042	105.19	134.63	0.32	0.67	1.1	*R2	0.1570	0.059	88.78	21.85	7.1	21	57
Q1	0.0085	0.037	275.53	203.66	0.053	0.11	0.14	*K2	0.2071	0.056	355.41	14.25	14	43	100
RHO1	0.0314	0.043	208.17	105.69	0.52	1.1	1.9	MSN2	0.0348	0.045	111.92	85.95	0.59	1.6	2.8
*01	0.6081	0.051	308.68	5.31	140	300	740	ETA2	0.0145	0.039	32.30	169.43	0.14	0.38	0.5
TAU1	0.0280	0.049	157.90	115.07	0.32	0.81	1.7	MO3	0.0121	0.037	255.12	205.76	0.11	2.1	4.6
BET1	0.0249	0.045	306.69	121.39	0.3	0.95	1.2	M3	0.0139	0.041	166.12	168.36	0.11	3.4	6.2
NO1	0.0591	0.055	331.45	50.95	1.2	3.9	6.8	SO3	0.0103	0.032	230.94	217.72	0.1	1.8	4
CHI1	0.0179	0.039	345.78	151.97	0.21	0.42	0.58	MK3	0.0128	0.038	275.63	169.27	0.11	3.1	5.9
PI1	0.0664	0.059	321.39	48.30	1.3	3.5	9.1	SK3	0.0070	0.039	225.78	216.82	0.033	0.94	1.5
*P1	0.5093	0.062	344.67	6.41	67	200	520	MN4	0.0060	0.034	223.54	236.68	0.031	0.92	1.9
*S1	0.1405	0.055	223.10	24.85	6.5	21	40	M4	0.0242	0.040	218.23	133.55	0.37	17	32
*K1	1.3578	0.058	351.31	2.53	550	5000	3700	SN4	0.0015	0.033	98.15	252.19	0.002	0.08	0.069
*PSI1	0.1360	0.054	248.41	25.72	6.5	18	37	MS4	0.0162	0.038	259.16	167.08	0.19	7.1	15
PHI1	0.0858	0.057	350.03	33.71	2.3	6.4	15	MK4	0.0044	0.041	281.69	228.51	0.012	0.73	0.97
THE1	0.0200	0.038	30.57	138.61	0.28	0.4	0.73	S4	0.0088	0.042	231.00	205.88	0.044	1.8	4.6
J1	0.0561	0.059	350.74	62.20	0.89	2.8	6.4	SK4	0.0066	0.040	200.66	242.38	0.027	1.2	2.8
SO1	0.0415	0.048	346.11	81.83	0.74	2	3.4	2MK5	0.0037	0.042	57.31	222.03	0.0081	0.69	1.4
001	0.0396	0.050	311.13	80.19	0.62	1.5	3.2	2SK5	0.0013	0.036	31.06	255.05	0.0013	0.11	0.2
UPS1	0.0227	0.039	332.54	134.57	0.33	0.65	1.1	2MN6	0.0021	0.038	215.71	264.17	0.0031	0.5	0.5
OQ2	0.0052	0.036	59.32	216.26	0.021	0.059	0.074	M6	0.0040	0.041	38.40	267.26	0.0094	1	2
EPS2	0.0123	0.038	357.25	162.52	0.11	0.24	0.32	2MS6	0.0029	0.043	11.25	254.77	0.0047	0.82	1.5
2N2	0.0374	0.048	37.99	81.56	0.61	1.8	3.3	2MK6	0.0008	0.041	45.70	281.53	0.0004	0.084	0.043
MU2	0.0291	0.045	14.44	113.56	0.42	0.97	2	2SM6	0.0040	0.039	95.24	242.61	0.01	1.1	2.4
*N2	0.2012	0.058	19.58	13.40	12	48	94	MSK6	0.0011	0.038	108.39	274.45	0.0009	0.18	0.21
NU2	0.0435	0.049	9.25	66.23	0.78	1.7	4.5	3MK7	0.0088	0.038	320.11	197.36	0.053	5.9	13
GAM2	0.0176	0.038	82.92	176.41	0.22	0.48	0.69	M8	0.0036	0.037	16.24	264.03	0.0093	1.8	2.8

Πίνακας 3. 1: Το πλάτος, το σφάλμα στο πλάτος (cm), η φάση, το σφάλμα στη φάση (deg), όλων των αρμονικών που προσδιορίστηκαν από τα δεδομένα της Σούδας. Τα σφάλματα προέκυψαν με τη μέθοδο "wboot". Παρουσιάζεται επίσης και ο λόγος snr όπως προσδιορίστηκε με τρεις διαφορετικές τις μεθόδους. είναι πιο συντηρητική σε σχέση με τις εκτιμήσεις που προέρχονται από τις άλλες δύο μεθόδους (Πίνακας 3.1).

Η επιλογή των παλιρροϊκών αρμονικών που θα συμπεριληφθούν σε ένα μοντέλο είναι γενικά μια υποκειμενική διαδικασία (Pugh, 1987). Εν συντομία, ο σκοπός είναι να διατηρηθεί το πλήθος των συνιστωσών που χρησιμοποιείται όσο το δυνατόν χαμηλότερος, χάνοντας όμως όσο το δυνατόν λιγότερη πληροφορία. Έτσι, μόνο οι συνιστώσες με πλάτος μεγαλύτερο από α = 1 mm θεωρήθηκαν ως σημαντικές διότι τα σφάλματα στο πλάτος των περισσοτέρων αρμονικών ημερήσιου και ημιημερήσιου τύπου ήταν της τάξης των 0,5 mm (Πίνακας 3.1).

Οι σημαντικές αρμονικές μπορούν να απομονωθούν θέτοντας μία κρίσιμη τιμή αποδοχής στο λόγο του σήματος προς το θόρυβο. Οι αρμονικές με πλάτος μεγαλύτερο του 1 mm, αντιστοιχούν σε τιμές του λόγου του σήματος προς θόρυβο μεγαλύτερες του τρία. Όταν ως όριο αποδοχής τεθεί το μηδέν, οι 62 ημερήσιες και ημι-ημερήσιες συνιστώσες θεωρούνται σημαντικές. Όταν το όριο αυτό γίνει τρία, τότε ο αριθμός των σημαντικών ημερήσιων και ημι-ημερήσιων συνιστωσών μειώνεται στο 12, ενώ το ποσοστό της διασποράς των δεδομένων που ερμηνεύεται από το μοντέλο μειώνεται μόνο κατά 0,1%. Όταν το όριο αποδοχής μεταβληθεί από μηδέν σε τρία, η μέγιστη διαφορά μεταξύ των δύο παλιρροϊκών λύσεων είναι μικρότερη από 6 mm.

Σχήμα 3. 2: Η παλίρροια στον κόλπο της Σούδας όπως προσδιορίστηκε από τα δεδομένα του παλιρροιογράφου (συνεχής γραμμή) μαζί με τα αντιστοίχως δεδομένα του παλιρροιογράφου (διακεκομμένη γραμμή). Για λόγους παρουσίασης το διάγραμμα περιορίζεται στον Ιούλιο 2001.

Τελικά, επτά ημι-ημερήσιες, πέντε ημερήσιες, δύο δεκαπενθήμερες, δύο μηνιαίες, μία εξαμηνιαία και μία ετήσια συνιστώσα ικανοποίησαν αυτό το κριτήριο αποδοχής. Οι αρμονικές αυτές υποδεικνύονται στον Πίνακα 3.1 με έναν αστερίσκο. Το παλιρροϊκό μοντέλο που δημιουργήθηκε με αυτές τις συνιστώσες, είχε εύρος ±10cm και ερμήνευε περίπου το 30% της διασποράς των καταγραφών του παλιρροιογράφου της Σούδας. Εάν ο εποχικός κύκλος (δηλαδή η ετήσια και εξαμηνιαία αρμονική) δεν ληφθούν υπόψιν, το παλιρροϊκό εύρος είναι μικρότερο από ±4.5cm. Ως παράδειγμα, το Σχήμα 3.2 παρουσιάζει την παλίρροια όπως υπολογίστηκε για τον Ιούλιο 2001. Στο Σχήμα φαίνονται και τα δεδομένα του παλιρροιογράφου. Δεν βρέθηκαν σημαντικές αρμονικές αβαθών νερών.

3.5.1.1 Ημερήσιες και ημι-ημερήσιες παλίρροιες

Τα μοντέλα T95 και GOT00.2 υπολογίζουν μόνο αρμονικές ημερήσιου και ημιημερήσιου τύπου. Το φάσμα ισχύος των δεδομένων του παλιρροιογράφου της Σούδας, εστιασμένο στις συχνότητες αυτές, παρουσιάζεται στο Σχήμα 3.3. Εκεί βλέπουμε ότι το μεγαλύτερο τμήμα της παλιρροϊκής ενέργειας στις ημερήσιες συχνότητες σχετίζεται με τις αρμονικές O₁, P₁ και K₁. Επιπροσθέτως, οι αρμονικές M₂ και S₂ κυριαρχούν στο ημι-ημερήσιο κομμάτι του φάσματος. Το πλάτος των αρμονικών αυτών κυμαίνεται μεταξύ 0,6 cm και 1,4 cm, ενώ η ακρίβεια στον προσδιορισμό της φάσης τους είναι καλύτερη από ±20 min.

Σχήμα 3. 3: Το φάσμα ισχύος των ωριαίων καταγραφών του παλιρροιογράφου της Σούδας στις ημερήσιες και ημι-ημερήσιες συχνότητες.

Οι παλιρροϊκές αρμονικές που υπολογίστηκαν για την περίοδο 1982-2001 από το μοντέλο HIPOCAS, τις καταγραφές του παλιρροιογράφου και την «Υπολειπόμενη» χρονοσειρά («Υπολειπόμενη» = παλιρροιογράφος – μοντέλο) περιέχονται στον Πίνακα 3.2¹. Οι παλιρροϊκές παράμετροι που υπολογίστηκαν από την Υπολειπόμενη χρονοσειρά αντιπροσωπεύουν την αστρονομική συνιστώσα των αρμονικών αυτών. Στον Πίνακα 3.2 παρουσιάζονται μόνο οι συνιστώσες με πλάτος μεγαλύτερο του 1 mm. Ένας λεπτομερής κατάλογος όλων των αρμονικών που υπολογίστηκαν καθώς και οι εκτιμήσεις για τα εμπλεκόμενα σφάλματα περιέχονται στο ΠΑΡΑΡΤΗΜΑ ΙΙ.

Το πλάτος των ημερήσιων αρμονικών (P₁, S₁, K₁) από το μοντέλο HIPOCAS είναι της τάξης των 1-2 mm. Η επίδραση της ατμόσφαιρας φαίνεται να είναι σημαντική (2 mm) μόνο στην συχνότητα της S₁. Το πλάτος των ημι-ημερήσιων αρμονικών όπως εκτιμήθηκαν από το HIPOCAS είναι μικρότερο από 1mm (ΠΑΡΑΡΤΗΜΑ ΙΙ). Συμπερασματικά η επίδραση της ατμόσφαιρας στην παρατηρούμενη παλίρροια σε συχνότητες ημερήσιες ή υψηλότερες μπορεί να θεωρηθεί αμελητέα.

	HIPO	CAS	Παλιρροι	ογράφος	Υπολειπόμενη			
	Πλάτος(mm)	Φάση(deg)	Πλάτος(mm)	Φάση(deg)	Πλάτος(mm)	Φάση(deg)		
Sa	25	161	69	250	73	270		
S _{sa}	5	223	13	110	16	99		
MS _m	5	257	7	285	2	311		
M _m	4	260	8	265	3	270		
MS_{f}	1	31	2	317	3	275		
M_{f}	2	11	3	5	1	10		
P ₁	1	349	5	345	4	344		
S_1	2	217	1	221	1	31		
\mathbf{K}_{1}	1	21	13	351	13	349		

Πίνακας 3.2: Το πλάτος και η φάση των στατιστικώς σημαντικών παλιρροϊκών συνιστωσών από το μοντέλο HIPOCAS, τα δεδομένα του παλιρροιογράφου και της «υπολειπόμενης» χρονοσειράς (παλιρροιογράφος – HIPOCAS).

Από την άλλη μεριά όμως, η επίδραση της ατμόσφαιρας στην θαλάσσια παλίρροια εκτιμήθηκε μέσω του HIPOCAS. Για τον προσδιορισμό της μετεωρολογικής συνιστώσας, το μοντέλο αυτό χρησιμοποιεί ως δεδομένα χρονοσειρές που προέρχονται από επανάληψη της ανάλυσης πρωτογενών δεδομένων (reanalysis) του "NCEP/NCAR".

Τα δεδομένα αυτά έχουν διάστημα δειγματοληψίας 6 ώρες (Kalnay et al., 1996). Το διάστημα αυτό αντιστοιχεί στην συχνότητα Nyquist των ημι-ημερήσιων αρμονικών. Αυτό έχει ως πιθανό αποτέλεσμα, να μην περιγράφονται ικανοποιητικώς οι παλίρροιες ημι-ημερήσιου τύπου από το μοντέλο (Ponte and Ray, 2002 και Van Der Dool et al., 1997). Επιπροσθέτως, τα παλιρροϊκά σήματα που περιέχονται σε τέτοιου είδους προϊόντα, που προέρχονται από επανάληψη της ανάλυσης πρωτογενών δεδομένων, ενδέχεται να είναι αναξιόπιστα εξαιτίας φαινομένων αναδίπλωσης των

¹ Ενδεχομένως κάποια από τα αποτελέσματα που παρουσιάζονται στον Πίνακα 3.2 να είναι διαφορετικά από αυτά του Πίνακα 3.1 διότι αντιστοιχούν σε διαφορετικές χρονικές περιόδους.

ημι-ημερήσιων παλιρροιών, ή άλλων σφαλμάτων στην μοντελοποίηση και τον χρονισμό τους (Ponte and Ray, 2002 και Van Der Dool *et al.*, 1997).

3.5.1.2 Μακροπερίοδοι παλιρροϊκές αρμονικές

Οι μακροπερίοδοι συνιστώσες που προσδιορίστηκαν για την περιοχή της Σούδας αποτελούνται από 2 δεκαπενθήμερες, δύο μηνιαίες αρμονικές καθώς και από τον εποχικό κύκλο. Ο εποχικός κύκλος θα μελετηθεί λεπτομερώς στο Κεφάλαιο 4.

Το πλάτος των μηνιαίων αρμονικών είναι μεγαλύτερο από αυτό των δεκαπενθήμερων. Ωστόσο το πλάτος και των τεσσάρων αυτών αρμονικών είναι μικρότερο από 1 cm (Πίνακας 3.1). Οι M_{sm} και M_m μηνιαίες αρμονικές εμφανίζουν πλάτη 6 και 7mm αντιστοίχως, ενώ το σφάλμα στον προσδιορισμό της φάσης τους είναι της τάξης των 12 ωρών. Οι M_{sf} και M_f δεκαπενθήμερες αρμονικές είναι μικρότερες με πλάτος 1 και 2 mm αντιστοίχως, ενώ το σφάλμα στη φάση του είναι 12 και 24 ώρες αντιστοίχως.

Η αρμονική ανάλυση στο μοντέλο HIPOCAS έδειξε ότι στις μηνιαίες συχνότητες η M_{sm} δημιουργείται κυρίως λόγω ατμοσφαιρικής διέγερσης (Πίνακας 3.2). Η επίδραση της ατμόσφαιρας στις άλλες τρεις μακροπερίοδους αρμονικές (M_m , M_{sf} , M_f) φαίνεται να είναι υπεύθυνη για την μισή περίπου διακύμανση της θαλάσσιας στάθμης. Παρ' όλα αυτά όμως πρέπει να τονιστεί ότι το πλάτος των σημάτων αυτών είναι στα όρια της διαχωριστικής ικανότητας της ανάλυσης.

3.5.1.3 Σύγκριση αποτελεσμάτων με τα μοντέλα T95 και GOT00.2

Τα αποτελέσματα της σύγκρισης μεταξύ των παλιρροϊκών συνιστωσών που συμπεριλαμβάνονται στα μοντέλα T95 και GOT00.2 καθώς και αυτών που υπολογίστηκαν από τα δεδομένα του παλιρροιογράφου της Σούδας συνοψίζονται στον Πίνακα 3.3. Οι προβλέψεις του μοντέλου GOT00.2 δεν είναι διαθέσιμες εντός του κόλπου όπου βρίσκεται ο παλιρροιογράφος της Σούδας. Έτσι, για να συγκριθεί το GOT00.2 με τις παλιρροϊκές αρμονικές που εκτιμήθηκαν από τον παλιρροιογράφο, χρησιμοποιήθηκαν οι προβλέψεις του T95 για δύο ξεχωριστά σημεία.

Συγκεκριμένα, χρησιμοποιήθηκαν οι παλιρροϊκές παράμετροι του T95 για το σημείο όπου βρίσκεται τοποθετημένος ο παλιρροιογράφος της Σούδας, καθώς και για το σημείο όπου ήταν διαθέσιμες οι προβλέψεις του GOT00.2 (30' βόρεια του παλιρροιογράφου). Στο δεύτερο από τα δύο αυτά σημεία, το βάθος της θάλασσας είναι της τάξης των 1000m. Οι διαφορές στις προβλέψεις του πλάτους και της φάσης και των τεσσάρων αρμονικών του T95 (O₁, K₁, M₂, S₂) στα δύο αυτά σημεία δε

ξεπερνά το 1mm και τις 20° αντιστοίχως. Επομένως, η σύγκριση μεταξύ του παλιρροιογράφου και του GOT00.2 είναι εφικτή.

Η διαφορά στο πλάτος των συνιστωσών στο T95 και αυτών που υπολογίστηκαν από τα δεδομένα του παλιρροιογράφου της Σούδας δε ξεπερνάνε τα 2mm (Πίνακας 3.3) Επιπροσθέτως, η διαφορά στη φάση δε ξεπερνά τις 10° (20min) για τις ημερήσιες αρμονικές. Οι ημι-ημερήσιες συνιστώσες που υπολογίστηκαν από τις καταγραφές του παλιρροιογράφου υστερούν χρονικά κατά 50°-60° μοίρες (2 ώρες) σε σχέση με αυτές του T95 (Πίνακας 3.3).

			Q1	01	P1	K1	N2	M2	S2	K2
	Πλάτος σε [mm]								
Βαθιά	T95	N 36,0-E 24,0		7,3		12,6		8,7	8,1	
ύδατα	GOT00.2	N 36,0-E 24,1	1,0	5,9	2,9	9,3	1,0	23,3	12,8	8,7
Ρηχά	T95	N 35,5-E 24,1		6,9		11,7		7,3	7,9	
ύδατα	Souda TG	N 35,5-E 24,0	0,1	6,1	5,1	13,6	2,0	9,1	7,0	2,1
	Φάση									
Βαθιά	T95	N 36,0-E24,0		312		344		336	309	
ύδατα	GOT00.2	N 36,0-E 24,1	298	266	355	1	259	7	344	339
Ρηχά	T95	N 35,5-E 24,1		306		340		316	293	
ύδατα	Souda TG	N 35,5-E 24,0	276	309	345	351	20	3	353	14

Πίνακας 3. 3: Το πλάτος (mm) και η φάση (deg) των οκτώ κύριων αρμονικών του μοντέλου GOT00.2 καθώς και οι αντίστοιχες παράμετροι από το μοντέλο T95 και τις καταγραφές του παλιρροιογράφου της Σούδας. Το GOT00.2 δεν είναι διαθέσιμο εντός του κόλπου της Σούδας. Για το λόγο αυτό δεν γίνεται απευθείας σύγκρισή του με το παλιρροϊκό μοντέλο που προέκυψε από τον παλιρροιογράφο. Η σύγκριση αυτή γίνεται εμμέσως χρησιμοποιώντας τις προβλέψεις του T95.

Η διαφορά στο πλάτος των αρμονικών που προβλέπονται από τα δύο μοντέλα είναι σημαντικώς μεγαλύτερη από τη διαφορές μεταξύ του T95 και των εκτιμήσεων του παλιρροιογράφου. Συγκεκριμένα, οι διαφορές στα πλάτη είναι της τάξης των 1, 4, 15 και 4 mm για τις συνιστώσες O₁, K₁, M₂ και S₂ αντιστοίχως. Η διαφορά στην φάση των αρμονικών αυτών κυμαίνεται μεταξύ 30°-45°.

Η κατάσταση είναι παρόμοια και όταν η σύγκριση γίνει μεταξύ του GOT00.2 και των αρμονικών που εκτιμήθηκαν από τον παλιρροιογράφο. Οι προβλέψεις του GOT00.2 για τις υπόλοιπες 16 δευτερεύουσες αρμονικές είναι πλάτους μικρότερου από την ακρίβεια της ανάλυσης (1mm) και επομένως δε θα εξεταστούν.

Συνολικά, οι διαφορές μεταξύ του παλιρροιογράφου και του T95 στο πλάτος της παλίρροιας είναι μικρότερες από 15 mm (Σχήμα 3.4α). Από την άλλη μεριά, οι διαφορές στο εύρος της παλίρροιας μεταξύ του GOT00.2 και του παλιρροιογράφου κυμαίνονται μεταξύ ±30 mm. Οι συγκρίσεις αυτές έγιναν λαμβάνοντας υπόψιν μόνο τις τέσσερις συνιστώσες που συμπεριλαμβάνονται στο μοντέλο T95. Όταν στην σύγκριση συμπεριλαμβάνονται και οι 23 αρμονικές που συμπεριλαμβάνονται στο GOT00.2, οι διαφορές στα εκτιμώμενα παλιρροϊκά πλάτη μεταξύ του GOT00.2 και του παλιρροιογράφου παραμένουν μεταξύ ±30 mm (Σχήμα 3.4β). Σε κάθε περίπτωση, το παλιρροϊκό σήμα που προβλέπεται από το T95 είναι πιο αντιπροσωπευτικό για την περιοχή σε σχέση με αυτό που προβλέπεται από το GOT00.2 (Σχήμα 3.4γ-δ).

Σχήμα 3. 4: Διαφορές μεταξύ της παλίρροιας που εκτιμήθηκε από: α, β) τα δεδομένα της Σούδας και της πρόβλεψης των μοντέλων T95 (κόκκινο) και GOT00.2 (μαύρο). γ, δ) του μοντέλου T95 και του GOT00.2 (μαύρο) και τον παλιρροιογράφο (κόκκινο). Για λόγους παρουσίασης τα διαγράμματα περιορίζονται στον Ιανουάριο του 2004. Στα διαγράμματα στα αριστερά έχουν χρησιμοποιηθεί μόνο οι τέσσερις αρμονικές που περιλαμβάνονται στο T95, ενώ στα δεξιά η σύγκριση συμπεριλαμβάνει και τις 23 αρμονικές του GOT00.2.

3.5.2 Η ανά έτος αρμονική ανάλυση

Οι παλιρροϊκές παράμετροι των πέντε σημαντικότερων ημερησίων και ημιημερησίων αρμονικών, όπως υπολογίστηκαν από τα δεδομένα του παλιρροιογράφου της Σούδας, για κάθε ημερολογιακό στην περίοδο 1982-2003, παρουσιάζονται στο Σχήμα 3.5. Τα πλάτη και των πέντε αυτών αρμονικών είναι σχετικά σταθερά καθ' όλη την περίοδο που καλύπτει η ανάλυση, και δε ξεπερνούν τα 2cm.

Η διαφορά μεταξύ του μέγιστου και του ελάχιστου εκτιμούμενου πλάτους δεν ξεπερνά τα 5mm για κάθε μια από τις πέντε αυτές συνιστώσες. Επιπροσθέτως, το σφάλμα στις εκτιμήσεις αυτές είναι της τάξης των 2mm σε όλες τις περιπτώσεις. Παρομοίως, η φάση των αρμονικών O_1 , P_1 , K_1 , M_2 και S_2 υπολογίστηκε ότι είναι 70°, 40°, 20°, 40°, και 30° αντιστοίχως (δηλαδή, 2,3, 1,3, 0,6, 3,8 και 2 ώρες αντιστοίχως)¹. Τα σφάλματα που εμπλέκονται στην εκτίμηση της φάσης είναι περίπου μία ώρα, με εξαίρεση την αρμονική K_1 για την οποία είναι περίπου 20 min.

Το πλάτος, η φάση των αρμονικών, και τα εμπλεκόμενα στην εκτίμησή τους σφάλματα για όλες τις 68 συνιστώσες που συμπεριελήφθησαν στην ανά έτος αρμονική ανάλυση των καταγραφών του παλιρροιογράφου της Σούδας περιέχονται στο ΠΑΡΑΡΤΗΜΑ ΙΙΙ. Το πλάτος όλων των αρμονικών αβαθών νερών βρέθηκε μικρότερο από 1mm. Επομένως η μορφοποίηση του παλιρροϊκού σήματος στα αβαθή ύδατα του κόλπου της Σούδας δεν είναι σημαντική.

Σχήμα 3. 5: Το πλάτος (αριστερά σε cm) και η φάση (δεξιά σε deg) των ημερησίων και ημιημερησίων παλιρροϊκών συνιστωσών όπως εκτιμήθηκαν για τα έτη 1982 – 2003 από τα δεδομένα του παλιρροιογράφου της Σούδας. Ξεκινώντας από πάνω: O₁, P₁, K₁, M₂, S₂.

Το πλάτος των μηνιαίων και δεκαπενθήμερων συνιστωσών, όπως εκτιμήθηκε για κάθε έτος δεδομένων του παλιρροιογράφου, κυμαίνεται μεταξύ 0,5-2,5cm (Σχήμα 3.6, συνεχής γραμμή). Επιπροσθέτως, το πλάτος των μηνιαίων αρμονικών M_{sm} και

¹ Στις συνιστώσες ημερήσιου τύπου 360° αντιστοιχούν σε 24 ώρες, ενώ στις ημι-ημερήσιου τύπου σε 12 ώρες

 M_m , είναι μεγαλύτερο από το πλάτος των δεκαπενθήμερων M_{sf} και M_f . Οι εκτιμήσεις για τη φάση σε αυτές τις τέσσερις αρμονικές παρουσιάζουν σημαντικές διακυμάνσεις από έτος σε έτος. Οι διαφορές αυτές είναι συναφείς με τις διακυμάνσεις που υπολογίζονται από το μοντέλο HIPOCAS. Αυτό συμβαίνει διότι οι αρμονικές αυτές διεγείρονται κυρίως μέσω της άμεσης επίδρασης της ατμόσφαιρας (Tsimplis 1992; Flemming and Woodworth, 1988). Παρ' όλα αυτά, αυτή είναι η πρώτη φορά που ποσοτικοποιείται η μετεωρολογική συνιστώσα των αρμονικών αυτών.

Σχήμα 3. 6: Το πλάτος (αριστερά σε cm) και η φάση (δεξια σε deg) των μακροπερίοδων συνιστωσών όπως εκτιμήθηκαν για κάθε ημερολογιακό έτος από τα δεδομένα του παλιρροιογράφου της Σούδας (έντονη γραμμή) καθώς και από το μοντέλο HIPOCAS (λεπτή γραμμή). Ξεκινώντας από πάνω: M_{sm} , M_m , M_{sf} και M_f .

3.5.3 Η παλίρροια στη Γαύδο και σύγκριση με τα μοντέλα T95 και GOT00.2

3.5.3.1 Ημερήσιες και ημι-ημερήσιες παλίρροιες

Η παλίρροια στον Καραβέ της Γαύδου είναι παρόμοια σε εύρος με αυτή στον κόλπο της Σούδας. Συγκεκριμένα, το πλάτος των κυριότερων ημερήσιων αρμονικών

(Q₁, O₁, K₁) κυμαίνονται στα ίδια επίπεδα με αυτά που παρατηρούνται στη Σούδα (Πίνακες 3.4 και Πίνακας 3.1). Το πλάτος των αρμονικών ημι-ημερήσιου τύπου (M₂, S₂, K₂) είναι μεγαλύτερο κατά 2-4 mm. Οι εκτιμήσεις των αρμονικών αυτών από τους δύο (πρωτεύοντα και δευτερεύοντα) παλιρροιογράφους είναι στατιστικώς όμοιες με αυτές που προκύπτουν από την υβριδική χρονοσειρά και γι' αυτό δεν περιέχονται στον Πίνακα 3.4. Ο πλήρης κατάλογος όλων των αρμονικών από τα δεδομένα των παλιρροιογράφων της Γαύδου περιέχονται στο ΠΑΡΑΡΤΗΜΑ ΙV.

		Q1	01	P1	K1	N2	M2	S2	K2
Πλάτος									
T95	34,87N- 24,08E		6,1		10,2		12,2	12,2	
GOT00.2	34,85N- 24,12E	1,1	3,9	1,87	6,5	3,3	14,0	13,4	12,0
Παλιρριογράφος	34,85N- 24,11E	0,5	5,9	5,3	11,8	2,2	12,9	11,1	3,9
Φάση σε	[degrees]								
T95	34,87N- 24,08E		305		342		297	292	
GOT00.2	34,85N- 24,12E	286	239	330	339	324	344	324	339
Παλιρριογράφος.	34,85N- 24,11E	78	278	305	329	315	288	287	298

Πίνακας 3. 4: Το πλάτος (mm) και η φάση (deg) των οκτώ κύριων αρμονικών του μοντέλου GOT00.2 καθώς και οι αντίστοιχες παράμετροι από το μοντέλο T95 και τις καταγραφές του παλιρροιογράφου στον Καραβέ της Γαύδου.

Οι διαφορές μεταξύ των παλιρροϊκών παραμέτρων που υπολογίστηκαν από τους παλιρροιογράφους και το T95 είναι μικρότερες από 2 mm και 25° για το πλάτος και τη φάση αντιστοίχως.Οι διαφορές στην εκτίμηση του πλάτους μεταξύ το GOT00.2 και των παλιρροιογράφων κυμαίνεται μεταξύ 1-5 mm και φτάνει τα 8mm στην περίπτωση της αρμονικής K₂. Οι αντίστοιχες διαφορές στη φάση είναι μεταξύ 10°-60°. Η αρμονική Q₁ όπου η διαφορά φάσης αγγίζει τις 150°, δεν είναι στατιστικώς σημαντική.

Συνολικά, το μοντέλο T95 προβλέπει πιο ρεαλιστικές παλίρροιες από το GOT00.2 στην περιοχή της Γαύδου. Η θέση αυτή ενισχύεται όταν συγκρίνουμε τις διαφορές στο παλιρροϊκό σήμα όπως υπολογίζονται από τους παλιρροιογράφους, με αυτό που προβλέπουν τα δύο μοντέλα (Σχήμα 3.7α-β).

Οι διαφορές μεταξύ της παλίρροιας του T95 με αυτή που εκτιμήθηκε από τους παλιρροιογράφους δεν ξεπερνούν τα 8mm όταν χρησιμοποιούνται μόνο οι τέσσερις αρμονικές του T95. Οι αντίστοιχες διαφορές των παλιρροιογράφων με το GOT00.2 αγγίζουν τα 30 mm. Η υπεροχή του T95 στην περιγραφή των παλιρροιών σε σχέση με το GOT00.2 είναι εμφανής ακόμα και όταν στην σύγκριση συμπεριληφθούν και οι 23 αρμονικές που είναι ενσωματωμένες στο GOT00.2.

Οι προβλέψεις του GOT00.2 για τις υπόλοιπες 16 δευτερεύουσες αρμονικές στην περιοχή του Καραβέ, είναι πλάτους μικρότερου από την ακρίβεια της ανάλυσης (1mm) και επομένως δεν θα εξεταστούν.

3.5.3.2 Μακροπερίοδοι παλιρροϊκές αρμονικές

Όπως προαναφέρθηκε, οι διακυμάνσεις της θαλάσσιας στάθμης σε μηνιαίες και δεκαπενθήμερες συχνότητες οφείλονται σε μεγάλο βαθμό στην ψευδο-περιοδική επίδραση της ατμόσφαιρας. Επιπροσθέτως, τα δεδομένα του ακουστικού και του πιεσομετρικού παλιρροιογράφου, καθώς και ο υβριδικές καταγραφές, καλύπτουν διαφορετικές χρονικές περιόδους.

Σχήμα 3. 7: α (πάνω): Διαφορές μεταξύ της παλίρροιας που υπολογίστηκε από τα δεδομένα της Γαύδου και της παλίρροιας που προβλέπεται από τα μοντέλα T95 (κόκκινο) και GOT00.2 (μαύρο). Σε αυτή τη σύγκριση μόνο οι τέσσερις αρμονικές που περιέχονται στο T95 έχουν χρησιμοποιηθεί. β (κάτω): Όπως στο (α) με τη διαφορά ότι σε αυτή στη σύγκριση έχουν χρησιμοποιηθεί και οι 23 αρμονικές που περιέχονται στο GOT00.2. Για λόγους ευκρίνειας, διαγράμματα περιορίζονται στον Ιανουάριο 2004.

Αυτό έχει ως αποτέλεσμα να υπάρχουν μεγάλες διαφορές στις εκτιμήσεις του πλάτους και της φάσης των αρμονικών αυτών. Το πλάτος των αρμονικών αυτών παραμένει κάτω των 20mm σε όλες τις περιπτώσεις. Ο εποχικός κύκλος της θαλάσσιας στάθμης στη Γαύδο θα μελετηθεί στο επόμενο Κεφάλαιο.

3.6 Συμπερασματικά σχόλια

Το εύρος της παλίρροιας στην περιοχή μελέτης δεν ξεπερνάει τα 5 cm. Σε ημερήσιες και ημι-ημερήσιες συχνότητες οι σημαντικότερες αρμονικές είναι οι O₁, K₁, P₁, M₂ και S₂. Η επίδραση της ατμόσφαιρας σε αυτές τις συχνότητες είναι αμελητέα. Αντιθέτως, το μεγαλύτερο ποσοστό των μακροπερίοδων συνιστωσών αποδίδεται στην επίδραση της ατμόσφαιρας. Δεν βρέθηκαν φαινόμενα αβαθών υδάτων στις τοποθεσίες όπου βρίσκονται οι παλιρροιογράφοι.

Το παλιρροϊκό μοντέλο GOT00.2 δεν δημιουργεί ρεαλιστικές παλιρροϊκές προβλέψεις. Αντιθέτως, οι προβλέψεις του μοντέλου T95 αντικατοπτρίζουν το πραγματικό παλιρροϊκό καθεστώς όπως αυτό προκύπτει από την αρμονική ανάλυση δεδομένων παλιρροιογράφου. Δεδομένου ότι το μοντέλο GOT00.2 χρησιμοποιήθηκε στην βαθμονόμηση του δορυφορικού αλτίμετρου θα πρέπει να αποτιμηθεί το κατά πόσο έχουν υπεισέλθει συστηματικά σφάλματα στη διαδικασία λόγω της ανεπαρκούς μοντελοποίησης της παλίρροιας.

Οι συνιστώσες της παλίρροιας με περίοδο έξι και δώδεκα μήνες αντίστοιχα αποτελούν τις δύο συνιστώσες του εποχικού κύκλου. Η μελέτη του εποχικού κύκλου είναι ο σκοπός του επόμενου Κεφαλαίου.

ΚΕΦΑΛΑΙΟ 4: Ο ΕΠΟΧΙΚΟΣ ΚΥΚΛΟΣ ΤΗΣ ΘΑΛΑΣΣΙΑΣ ΣΤΑΘΜΗΣ ΣΤΗΝ ΠΕΡΙΟΧΗ

Το Κεφάλαιο αυτό καταπιάνεται με τον εποχικό κύκλο στην περιοχή ενδιαφέροντος. Πρώτος σκοπός του Κεφαλαίου αυτού είναι η καταγραφή των μεταβολών στο πλάτος και τη φάση των δύο συνιστωσών του εποχικού κύκλου. Δεύτερος σκοπός του είναι η διερεύνηση της σχέσης των μεταβολών αυτός με το την Διακύμανση του Βορείου Ατλαντικού.

4.1 Εισαγωγή

Στη Μεσόγειο Θάλασσα ο εποχικός κύκλος απαρτίζεται από μια ετήσια και από μια μικρότερη αλλά σημαντική εξαμηνιαία συνιστώσα (Tsimplis και Spencer 1997). Ο εποχικός κύκλος εξαρτάται πρωτίστως από την θέρμανση και ψύξη των υδάτινων μαζών (Zerbini *et al.*, 1996). Επίσης, στον εποχικό κύκλο συμβάλουν και η ατμοσφαιρική διέγερση (Zerbini *et al.*, 1996), καθώς και οι μεταβολές στην θαλάσσια κυκλοφορία και στην ανταλλαγή νερού με τον Ατλαντικό Ωκεανό (García-Lafuente *et al.*, 2004 και Bouzinac *et al.*, 2003).

Συνήθως ο εποχικός κύκλος της θαλάσσιας στάθμης θεωρείται σταθερός. Η πρώτη μελέτη που σχετιζόταν με τις μεταβολές του εποχικού κύκλου ήταν των Ekman and Stigerbrandt (1990). Η περιοχή μελέτης τους ήταν η Βόρεια Θάλασσα. Στη Μεσόγειο Θάλασσα, οι διαχρονικές αλλαγές του εποχικού κύκλου είναι συναφείς σε ολόκληρη τη λεκάνη (Zerbini *et al.*, 1996).

Οι διακυμάνσεις αυτές του ετήσιου κύκλου είναι της τάξης του ±30% και ±35 ημερών στο πλάτος και τη φάση αντιστοίχως, ενώ στον εξαμηνιαίο κύκλο ±50% και ±22 ημέρες (Baker *et al.*, 1995). Τέτοιες μεταβολές στον εποχικό κύκλο οφείλονται σε κλιματικές διακυμάνσεις και επομένως θα πρέπει να λαμβάνονται υπόψιν στις μελέτες για την αλλαγής του κλίματος (Plag and Tsimplis, 1999).

Ο Tsimplis (1995) αναφέρει ότι οι διακυμάνσεις της θαλάσσιας στάθμης με περίοδο ενός έτους στην Δυτική Μεσόγειο Θάλασσα συσχετίζονται με τις διαφορές στην ατμοσφαιρική πίεση μεταξύ Ρώμης (Ιταλία) και Βιέννης (Αυστρία). Τέτοιες διαφορές στην ατμοσφαιρική πίεση με διεύθυνση Βορρά-Νότου καθορίζονται κυρίως από την ΔΒΑ (Hilmer and Jung, 2000). Επιπροσθέτως, η ΔΒΑ επηρεάζει τη θαλάσσια στάθμη στη Μεσόγειο Θάλασσα και μέσω μεταβολών στην ατμοσφαιρική πίεση στην επιφάνεια της θάλασσας (Sea Level Pressure - SLP) (Tsimplis and Josey, 2001). Μέχρι σήμερα, δεν υπάρχει βιβλιογραφία που να σχετίζει τις υπερ-ετήσιες διακυμάνσεις του εποχικού κύκλου της θαλάσσιας στάθμης στην Μεσόγειο Θάλασσα με την ΔΒΑ. Παρ' όλα αυτά, η επίδραση της ΔΒΑ στον ετήσιο κύκλο της ατμοσφαιρικής θερμοκρασίας στην επιφάνεια της θάλασσας στις περιοχές του Β. Ατλαντικού, της Ευρώπης και της Β. Αφρικής αποτέλεσε πρόσφατα αντικείμενο μελέτης από τους Tesouro *et al.*, (2005) και Paluŝ *et al*, (2005). Στο Κεφάλαιο αυτό καταγράφονται οι διακυμάνσεις του εποχικού κύκλου και αναζητάται η σχέση τους με την ΔΒΑ.

Στα πλαίσια του πειράματος βαθμονόμησης του Jason-1 στην Γαύδο, τα δεδομένα του αλτίμετρου που λαμβάνονται στην ανοιχτή θάλασσα νοτίως της Γαύδου συγκρίνονται με αυτά του παλιρροιογράφου του Καραβέ. Ο εποχικός κύκλος όμως της θαλάσσιας στάθμης ενδέχεται να μην είναι ίδιος με τον κύκλο σε ανοιχτά νερά.

Αν τέτοιες διαφορές υπάρχουν, ενδέχεται να έχουν επηρεάσει το συστηματικό σφάλμα που αναφέρεται από τους Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006). Παράλληλα, δεν υπάρχει δημοσιευμένη σύγκριση μεταξύ εκτιμήσεων του εποχικού κύκλου που προέκυψαν από παλιρροιογράφους με τις αντίστοιχες από αλτιμετρικά δεδομένα. Για τον λόγο αυτό, αναζητήθηκαν οι διαφορές στην εποχικότητα μεταξύ βαθιών και παράκτιων υδάτων στην περιοχή της Γαύδου.

4.2 Ο προσδιορισμός του εποχικού κύκλου

4.2.1 Μεθοδολογία και μαθηματικά μοντέλα

Ο προσδιορισμός του εποχικού κύκλου της θαλάσσιας στάθμης βασίστηκε τόσο σε δεδομένα παλιρροιογράφων, όσο και σε αλτιμετρικές καταγραφές του Jason-1. Η χρονοσειρά του παλιρροιογράφου της Σούδας χρησιμοποιήθηκε για τον προσδιορισμό του εποχικού κύκλου και των μεταβολών του στην περιοχή. Οι τιμές του μοντέλου ΗΙΡΟCAS προκύπτουν θεωρώντας ότι η θαλάσσια στάθμη διεγείρεται αποκλειστικά μέσω των μεταβολών της επιφανειακής ατμοσφαιρικής πίεσης και των ανέμων.

Επομένως, αφαιρώντας τις τιμές του μοντέλου από τις παρατηρήσεις του παλιρροιογράφου, τα αποτελέσματα της θερμοάλιος και βαροκλινούς (baroclinic) κυκλοφορίας απομονώθηκαν από τα αποτελέσματα που οφείλονται σε μετεωρολογική διέγερση. Σε αυτό το σημείο πρέπει να αναφερθεί, ότι η χρονοσειρά των υπολειπόμενων σφαλμάτων που προκύπτει από την αφαίρεση αυτή, στα πλαίσια αυτής της διατριβής ονομάζεται «υπολειπόμενη» χρονοσειρά.

Για τη μελέτη των μεταβολών του εποχικού κύκλου στην Σούδα υπολογίστηκαν οι εποχικές παράμετροι για κάθε έτος των δεδομένων του παλιρροιογράφου, του μοντέλου HIPOCAS και της «υπολειπόμενης» χρονοσειράς. Η σχέση των διακυμάνσεων του εποχικού κύκλου με την ΔΒΑ, έγινε αναζητώντας συσχετίσεις μεταξύ του πλάτους και της φάσης του εποχικού κύκλου με τον δείκτη της ΔΒΑ.

Η σύνδεση μεταξύ της ΔΒΑ και του κλίματος πάνω από την Ευρώπη έχει βρεθεί να είναι ισχυρότερη κατά τους χειμερινούς από ότι τους θερινούς μήνες (Hurrell, 1995; Tsimplis and Josey, 2001). Για τον λόγο αυτό ο μέσος χειμερινός δείκτης της ΔΒΑ μεταξύ των μηνών Δεκεμβρίου και έως Μαρτίου (Jones *et al.*, 1997) προτιμήθηκε από τον μέσο ετήσιο.

Για να εξηγηθούν οι όποιες στατιστικώς σημαντικές συσχετίσεις μεταξύ των εποχικών παραμέτρων (φάση και πλάτος) που υπολογίστηκαν και την ΔΒΑ, εκτιμήθηκαν επίσης και οι εποχικοί κύκλοι σε δεδομένα ανέμου και επιφανειακής ατμοσφαιρικής πίεσης για την περιοχή της Σούδας. Για τον σκοπό αυτό τα δεδομένα του NCEP/NCAR (reanalysis products) για την περίοδο 1958-2001 προμηθεύτηκαν από την NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA.

Στην περιοχή της Γαύδου, ο εποχικός κύκλος προσδιορίστηκε από τα δεδομένα του πιεσομετρικού παλιρροιογράφου καθώς και από τις καταγραφές του Jason-1 (Geophysical Data Records - GDR). Ο εποχικός κύκλος από τα αλτιμετρικά δεδομένα εκτιμήθηκε για την περιοχή νότια της Γαύδου, αλλά εντός της περιοχής που καλύπτεται από το ανάλυσης 1'×1' μοντέλο γεωειδούς Pavlis *et al.*, (2004) και Vergos *et al.*, (2005).

Η περιοχή αυτή επιλέχθηκε διότι είχε ήδη χρησιμοποιηθεί από τους (Pavlis *et al.*, 2004; Pavlis *et al.*, 2006) για την βαθμονόμηση του Jason-1¹. Συγκεκριμένα, η περιοχή αυτή ορίζεται μεταξύ των γεωγραφικών πλατών 34° to 34,6°. Τα δορυφορικά δεδομένα και από τις δύο διελεύσεις (No. 109 και No. 18) ενοποιήθηκαν με σκοπό τον προσδιορισμό του εποχικού κύκλου εντός της περιοχής αυτής.

Στην βιβλιογραφία, ο εποχικός κύκλος της θαλάσσιας στάθμης υπολογίζεται με δύο μεθόδους που βασίζονται στην πολλαπλή γραμμική παλινδρόμηση (π.χ., Woodworth, 1984; Tsimplis and Woodworth, 1994). Και στις δύο λαμβάνονται υπόψιν ένας συνημιτονοειδής παράγοντας για τον ετήσιο κύκλο και ένας για τον εξαμηνιαίο.

Η διαφορά μεταξύ τους είναι ότι η μία από αυτές δεν λαμβάνει υπόψιν τις γραμμικές συστηματικές τάσεις στα δεδομένα θαλάσσιας στάθμης κατά τη διαδικασία της παλινδρόμησης. Τα αποτελέσματα που προκύπτουν και από τις δύο μεθόδους είναι στατιστικώς όμοια ακόμα και σε περιοχές όπου οι συστηματικές γραμμικές τάσεις στα δεδομένα είναι της τάξης του 1cm/y (Woodworth, 1984).

¹ Ο εκτιμούμενος κύκλος εντός της περιοχής ενδιαφέροντος, χρησιμοποιείται στο Κεφάλαιο 7 για να επαναπροσδιοριστεί το συστηματικό σφάλμα του Jason-1 που αναφέρεται από τους Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006).

Στη διατριβή το μοντέλο παλινδρόμησης που χρησιμοποιήθηκε ήταν της μορφής:

$$H(t) = Z_0 + A_{Sa} \cos\left(\frac{2\pi}{T_{Sa}}t - P_{Sa}\right) + A_{Ssa} \cos\left(\frac{2\pi}{T_{Ssa}}t - P_{Ssa}\right) + \varepsilon \quad [4.1]$$

όπου H(t) είναι οι καταγραφές του παλιρροιογράφου συναρτήσει του χρόνου t, Z_0 η ΜΣΘ για την περίοδο που καλύπτεται από τα δεδομένα, A_{Sa} , A_{Ssa} , P_{Sa} , P_{Ssa} , το πλάτος και η φάση των ετήσιων και εξαμηνιαίων αρμονικών (12 και 6 μήνες αντιστοίχως).

Το μοντέλο που περιγράφεται από την [4.1] δεν είναι γραμμικό ως προς τις φάσεις P_{Sa} και P_{Ssa} . Με τη βοήθεια απλής τριγωνομετρίας, η εξίσωση [4.1] μπορεί να γραμμικοποιηθεί ως προς τις φάσεις P_{Sa} και P_{Ssa} ξαναγραφεί ως:

$$H(t) = Z_0 + A_1 \cos\left(\frac{2\pi}{T_{Sa}}t\right) + A_2 \sin\left(\frac{2\pi}{T_{Sa}}t\right) + A_3 \cos\left(\frac{2\pi}{T_{Ssa}}t\right) + A_4 \sin\left(\frac{2\pi}{T_{Ssa}}t\right) + \varepsilon \left[4.2\right]$$

Αποδεικνύεται ότι το πλάτος και η φάση των εποχικών αρμονικών προκύπτει από τις παραμέτρους παλινδρόμησης A_i (i = 1, 2, 3, και 4) από τις παρακάτω εξισώσεις:

$$A_{Sa} = \sqrt{A_1^2 + A_2^2}$$
, και $A_{Ssa} = \sqrt{A_3^2 + A_4^2}$,

Ενώ η φάση τους από τις σχέσεις:

$$P_{Sa} = \arctan\left(\frac{A_2}{A_1}\right), \text{ Kat } P_{Ssa} = \arctan\left(\frac{A_4}{A_3}\right)$$
 [4.3]

Τα σφάλματα Δ_i που σχετίζονται με τις εκτιμούμενες παραμέτρους, A_i (i = 1, 2, 3, 4) δίνεται από: $\Delta_i = \sqrt{c_{ii}} \sigma$, όπου c_{ii} είναι η διαγώνιος του πίνακα μεταβλητότηταςσυμμεταβλητότητας και $\sigma = std[H(t)]$ η τυπική απόκλιση των καταγραφών του παλιρροιογράφου. Τα σφάλματα $\Delta(A_{Sa})$, $\Delta(A_{Ssa})$, $\Delta(P_{Sa})$, $\Delta(P_{Ssa})$ στα πλάτη και τις φάσεις (το σφάλμα της φάσης σε μήνες) των εποχικών παραμέτρων προσδιορίζονται από (Woodworth, 1984):

$$\Delta(\mathbf{A}_{\mathrm{Sa}}) = \sqrt{\Delta_1^2 + \Delta_2^2} , \ \Delta(\mathbf{A}_{\mathrm{Ssa}}) = \sqrt{\Delta_3^2 + \Delta_4^2} \ \kappa \alpha \mathbf{i}$$
$$\Delta(P_{\mathrm{Sa}}) = \frac{\Delta(A_{\mathrm{Sa}})}{A_{\mathrm{Sa}}} \times \frac{12}{2\pi} , \ \Delta(P_{\mathrm{Ssa}}) = \frac{\Delta(A_{\mathrm{Ssa}})}{A_{\mathrm{Ssa}}} \times \frac{12}{2\pi}$$
(4.4]

Η φάση των εποχικών αρμονικών αναφέρεται σε σχέση με την αρχή του ημερολογιακού έτους. Με τον τρόπο αυτό η φάση των εποχικών αρμονικών αναπαριστά την χρονική στιγμή όπου κάθε εποχική συνιστώσα μεγιστοποιείται. Το κριτήριο που χρησιμοποιείται συνήθως για να επιβεβαιωθεί η ποιότητα ενός μοντέλου παλινδόμησης είναι το R^2 . Το μέγεθος αυτό ορίζεται ως το λόγο της διασποράς των τιμών του μοντέλου διά την διασπορά των αρχικών δεδομένων (π.χ. Draper and Smith, 1981). Τα δεδομένα όμως της θαλάσσιας στάθμης που χρησιμοποιήθηκαν ήταν ωριαία, και επομένως

Στο σημείο αυτό αξίζει να σημειωθεί ότι οι εποχικές παράμετροι και οι αβεβαιότητες σε αυτές, που υπολογίστηκαν με την εξίσωση [4.1] είναι στατιστικώς όμοιες με αυτές που υπολογίστηκαν στο προηγούμενο κεφάλαιο με την αρμονική ανάλυση που υλοποιήθηκε μέσω του λογισμικού t_tide.

4.2.1.1 Συντελεστές συσχέτισης

Οι συντελεστές συσχέτισης που παρουσιάζονται στο Κεφάλαιο αυτό (όπως επίσης και στα επόμενα Κεφάλαια) είναι συντελεστές κατά Pearson με επίπεδο εμπιστοσύνης 95%, εκτός και αν αναφέρεται διαφορετικά.

Ο συντελεστής συσχέτισης είναι αδύναμος ως στατιστικό μέτρο για την εξαγωγή ασφαλών συμπερασμάτων. Για το λόγο αυτό τις φορές που συντελεστές συσχέτισης χρησιμοποιούνται στην διατριβή συνοδεύονται τόσο από γραφικές παραστάσεις όσο και από τους φυσικούς μηχανισμούς που μπορούν να εξηγήσουν την συσχέτιση.

Φαινόμενα στατιστικής εξάρτησης στις χρονοσειρές, όπως η αυτοσυσχέτιση, παραβιάζουν τις υποθέσεις που διέπουν τους συμβατικούς ελέγχους υπόθεσης (hypothesis tests). Για τον λόγο αυτό, η σημαντικότητα των συντελεστών συσχέτισης εξετάστηκε χρησιμοποιώντας εξαναγκασμένως τυχαίες (randomized) παρατηρήσεις (Edgington 1980, Good 1994).

Συγκεκριμένα, για να διαπιστωθεί η σημαντικότητα ενός συντελεστή συσχέτισης μεταξύ δύο χρονοσειρών, X_k και Y_k , η μία από αυτές, (π.χ., η Y_k) αναδιατάχθηκε με τυχαίο τρόπο 1000 φορές. Με τον τρόπο αυτό δημιουργήθηκαν 1000 νέα τυχαίως κατανεμημένα ψευδο-δείγματα Y_k^* . Κατόπιν, ο συντελεστής συσχέτισης μεταξύ της μεταβλητής X_k και καθενός από τα τυχαία ψευδο-δείγματα Y_k^* υπολογίζονταν και στη συνέχεια συγκρίνονταν με τον συντελεστή συσχέτισης των αρχικών χρονοσειρών. Έτσι το επίπεδο σημαντικότητας εκτιμήθηκε ελέγχοντας πόσες φορές ο συντελεστής συσχέτισης μεταξύ των αρχικών δεδομένων ήταν μεγαλύτερος από αυτόν που προσδιορίζονταν με τις χρονοσειρές των ψευδο-δειγμάτων.

Η στατιστική συσχέτιση α μεταξύ της διαφοράς μεταξύ δυο συντελεστών συσχέτισης r_1 και r_2 προσδιορίζονταν με την ακόλουθη σχέση (Press *et al.*, 1992):

$$\alpha = \operatorname{erf}\left(\frac{|z_1 - z_2|}{\sqrt{\left(\frac{1}{N_1 - 3} + \frac{1}{N_2 - 3}\right)}}\right)$$
[4.5]

όπου erf(.) είναι η συνάρτηση σφάλματος (error function) της παράστασης εντός της παρένθεσης, N_i ο το πλήθος των παρατηρήσεων που χρησιμοποιήθηκαν στον προσδιορισμό του συντελεστή συσχέτισης r_i , και z_i (i = 1,2) η κανονικοποιημένη μεταβλητή των r_i που προκύπτει μετά από τον μετασχηματισμό zτου Fisher (Press *et al.*, 1992) και δίνεται από την σχέση:

$$z_{i} = \frac{1}{2} \ln \left(\frac{1 + r_{i}}{1 - r_{i}} \right)$$
 [4.6]

Στο σημείο αυτό πρέπει να σημειωθεί ότι αναδιατάσοντας και τις δύο χρονοσειρές X_k και Y_k (αντί μόνο τη μία), και επαναπροσδιορίζοντας την σημαντικότητα των συντελεστών συσχέτισης, τα αποτελέσματα που λήφθηκαν ήταν στατιστικώς ίδια.

4.2.2 Αποτελέσματα από τον σταθμό της Σούδας

Οι καταγραφές του παλιρροιογράφου, το μοντέλο HIPOCAS και η «υπολειπόμενη» χρονοσειρά μαζί με τους εποχικούς κύκλους που υπολογίστηκαν από ολόκληρες τις χρονοσειρές αλλά και από την ανά έτος ανάλυση, παρουσιάζονται στο Σχήμα 4.1. Οι εποχικές μεταβολές της θαλάσσιας στάθμης, όπως αυτές καταγράφονται από τον παλιρροιογράφο, δημιουργούνται πρωτίστως λόγω των μεταβολών της θερμοάλιας συνιστώσας της θαλάσσιας στάθμης (Σχήμα 4.2).

Στο υπόλοιπο της διατριβής, για λόγους συνοπτικής ομοιομορφίας, το πλάτος και η φάση του ετήσιου κύκλου στα σχήματα θα αναφέρονται ως «ASA» και «PSA» αντιστοίχως. Παρομοίως, το πλάτος και η φάση της εξαμηνιαίας αρμονικής θα εμφανίζονται ως «ASSA» και «PSSA» αντιστοίχως.

4.2.2.1 Ο μέσος εποχικός κύκλος

Το πλάτος του μέσου ετήσιου κύκλου που προσδιορίστηκε από τις καταγραφές του παλιρροιογράφου είναι ASA = 6,9 cm και εμφανίζει μέγιστες τιμές στα μέσα

Σεπτεμβρίου κάθε έτους (Σχήμα 4.3α). Ο ετήσιος κύκλος της μετεωρολογικής συνιστώσας της θαλάσσιας στάθμης όπως εκτιμήθηκε από τις τιμές του μοντέλου, εμφανίζει μικρότερο πλάτος (2,5 cm) και μεγιστοποιείται στα μέσα Ιουνίου.

Σχήμα 4. 1: α) Ο εποχικός κύκλος όπως υπολογίστηκε από τα δεδομένα του παλιρροιογράφου της Σούδας για την περίοδο 1982-2003 (συνεχής γραμμή) και για κάθε έτος ξεχωριστά (διακεκομμένη γραμμή). Η διάστικτη γραμμή αναπαριστά τα δεδομένα του παλιρροιογράφου. β) Όπως στο διάγραμμα (α) αλλά για τις τιμές του μοντέλου HIPOCAS. γ) Όπως και παραπάνω αλλά για την «υπολειπόμενη» χρονοσειρά. Για να είναι ευκρινές τα διάγραμματα απεικονίζεται μόνο η περίοδος 1992-2001.

Η ετήσια αρμονική της «υπολειπόμενης» χρονοσειράς αντιστοιχεί σε μεταβολές της θαλάσσιας στάθμης λόγω μεταβολών στην πυκνότητα των υδάτινων μαζών και της βαροκλινούς κυκλοφορίας. Η αρμονική αυτή μεγιστοποιείται στις αρχές του Οκτώβρη και έχει πλάτος 7,3 cm. Ο ετήσιος κύκλος της θαλάσσιας στάθμης έχει θερμοάλιο χαρακτήρα (π.χ. Zerbini *et al.*, 1996). Στα αποτελέσματα αυτά, καθώς και σε όσα παραθέτονται στην συνέχεια τα σφάλματα στην εκτίμηση του πλάτους και της φάση των ετήσιων αρμονικών είναι της τάξης των mm και των 1-2 ημερών αντιστοίχως.

Σχήμα 4. 2: Εποχικές τιμές του μοντέλου HIPOCAS, της «υπολειπόμενης» χρονοσειράς καθώς και των καταγραφών του παλιρροιογράφου.

Σχήμα 4. 3: α) Ο ετήσιος κύκλος της θαλάσσιας στάθμης ως άθροισμα των ετήσιων κύκλων του μοντέλου και της «υπολειπόμενης» χρονοσειράς (αριστερά) και παρομοίως για τον εξαμηνιαίο κύκλο. β) Οι ημερομηνίες στις παρενθέσεις υποδηλώνουν την ημερομηνία όπου η κάθε συνιστώσα μεγιστοποιείται. Στο αριστερό διάγραμμα 360° αντιστοιχούν σε 12 μήνες ενώ στο δεξιά σε 6 μήνες.

Ο μέσος εξαμηνιαίος κύκλος της θαλάσσιας στάθμης μεγιστοποιείται στα μέσα Μαΐου και έχει πλάτος 1,3 cm (Σχήμα 4.3β). Το πλάτος της εξαμηνιαίας αρμονικής στο μοντέλου HIPOCAS και στην "υπολειπόμενη" χρονοσειρά είναι 0,5cm και 1,6cm αντιστοίχως. Η μετεωρολογική συνιστώσα του εξαμηνιαίου κύκλου μεγιστοποιείται στις αρχές Ιανουαρίου, ενώ η συνιστώσα που υπολογίστηκε από την «υπολειπόμενη» χρονοσειρά στις αρχές Μάη. Τα σφάλματα στον προσδιορισμό της φάσης είναι της τάξης των 2-5 ημερών, ενώ το σφάλμα στην εκτίμηση του πλάτους των εξαμηνιαίων συνιστωσών είναι περίπου 1 mm. Όπως και στην περίπτωση του ετήσιου κύκλου, έτσι και ο εξαμηνιαίος εξαρτάται κυρίως από την θερμοάλιος συνιστώσα. Η επίδραση όμως της μετεωρολογικής συνιστώσας είναι και αυτή σημαντική.

4.2.2.2 Οι ανά έτος μεταβολές του εποχικού κύκλου

Το πλάτος και η φάση της ετήσιας αρμονικής όπως προσδιορίστηκαν από τα δεδομένα κάθε έτους του παλιρροιογράφου της Σούδας, και την «υπολειπόμενη» χρονοσειρά κυμαίνεται μεταξύ 4,9-12,5 cm και 3,6-10,7 cm αντιστοίχως (Σχήμα 4.4α). Τα πλάτη που εκτιμήθηκαν από την χρονοσειρά του HIPOCAS είναι μικρότερα και κυμαίνονταν μεταξύ 1,9-5,5 cm.

Σημαντικές μεταβολές στο πλάτος του ετήσιου κύκλου όπως υπολογίστηκε για κάθε έτος δεδομένων του παλιρροιογράφο, παρατηρούνται στις αρχές της δεκαετίας του 90. Μεταξύ 1982-1991, το μέσο πλάτος του ετήσιου κύκλου ήταν μικρότερο και με ηπιότερες διακυμάνσεις σε σχέση με τα πλάτη που προσδιορίστηκαν μεταξύ 1992-2003.

Συγκεκριμένα, το μέσο πλάτος του ετήσιου κύκλου πριν το 1992 ήταν 6±0,8 cm, ενώ μετά το 1992 αυξήθηκε στα 8,7±2,7 cm. Από τους 12 ετήσιους κύκλους που εκτιμήθηκαν μετά το 1991, οκτώ από αυτούς παρουσίαζαν μεγαλύτερο ή ίσο πλάτος με αυτούς που υπολογίστηκαν πριν το 1992. Επίσης, 10 από τα 12 πλάτη που υπολογίστηκαν στην περίοδο 1992-2003 ήταν μεγαλύτερα από το μέσο πλάτος της περιόδου 1982-1991.

Αξίζει να σημειωθεί ότι οι ετήσιοι κύκλοι μεγαλύτερου πλάτους στα δεδομένα του παλιρροιογράφου δεν συνοδεύονται από αντιστοίχως μεγαλύτερα πλάτη στους ετήσιους κύκλους στο HIPOCAS (Σχήμα 4.4α). Παρ' όλα αυτά, μεγαλύτερα από τα συνηθισμένα πλάτη στον ετήσιο κύκλο στο μοντέλο HIPOCAS παρατηρούνται μεταξύ 1989-1992, μια περίοδο που θεωρείται ότι καλύπτει την Μετάβαση της Ανατολικής Μεσογείου (Eastern Mediterranean Transient) (Tsimplis *et al.*, 2006).

Η φάση του ετήσιου κύκλου τόσο στα δεδομένα του παλιρροιογράφου όσο και στην «υπολειπόμενη» χρονοσειρά είναι σχετικά σταθερή (Σχήμα 4.4β). Οι ετήσιοι κύκλοι που προσδιορίστηκαν για κάθε έτος από τα δεδομένα του παλιρροιογράφου

μεγιστοποιούνται, από τα μέσα Αυγούστου έως και τα μέσα Σεπτέμβρη κάθε έτους, με εξαίρεση το 1996 όπου ο ετήσιος κύκλος μεγιστοποιείται στα μέσα Νοέμβρη.

Παρομοίως, η φάση της ετήσιας συνιστώσας που εκτιμήθηκε από την «υπολειπόμενη» χρονοσειρά κυμαίνεται μεταξύ της μέσης Σεπτεμβρίου έως και τα τέλη Οκτωβρίου. Οι φάσεις που προσδιορίστηκαν από τις τιμές του HIPOCAS υποδεικνύουν ότι η μετεωρολογική συνιστώσα του ετήσιου κύκλου είναι πιο ακανόνιστη. Το μέγιστό της κυμαίνεται μεταξύ του τέλους Απριλίου έως και τα τέλη Ιουλίου, με εξαίρεση το έτος 1996¹ όπου η μετεωρολογική συνιστώσα μεγιστοποιείται στα μέσα Φεβρουαρίου.

Οι υπερετήσιες μεταβολές στο πλάτος του εποχικού κύκλου της θαλάσσιας στάθμης μπορούν να μελετηθούν θεωρώντας το ετήσιο σήμα που προσδιορίστηκε από τον παλιρροιογράφο ως το διανυσματικό άθροισμα των ετήσιων σημάτων που προσδιορίστηκαν από το μοντέλο και την «υπολειπόμενη» χρονοσειρά. Το πλάτος του ετήσιου κύκλου από την «υπολειπόμενη» χρονοσειρά είναι μεγαλύτερο από αυτό του παλιρροιογράφου πριν το 1991 αλλά όχι αργότερα. Αυτό συμβαίνει εν μέρει λόγω των μεταβολών στην φάση των δύο συνιστωσών του ετήσιου κύκλου (Σχήμα 4.4γ).

Μέχρι το 1988, η διαφορά φάσης μεταξύ της μετεωρολογικής και της θερμοάλιος συνιστώσας του ετήσιου κύκλου είναι μεγαλύτερη από τρεις μήνες. Ωστόσο όμως, στο διάστημα 1989-1991, παρόλο που η προαναφερθείσα διαφορά στην φάση μειώνεται στους τρεις μήνες, το πλάτος του ετήσιου κύκλου της «υπολειπόμενης» χρονοσειράς ελαττώνεται και έτσι το άθροισμά τους μειώνεται και αυτό. Αυτό εξηγεί γιατί τα πλάτη του ετήσιου κύκλου της θαλάσσιας στάθμης που προσδιορίζονται πριν το 1991 είναι σχετικά μικρά.

Μετά το 1991, η μετεωρολογική και η θερμοάλιος συνιστώσες του ετήσιου κύκλου αλληλοεξουδετερώνονται μόνο στα έτη 1996, 1997 και 2001. Επίσης μετά το 1991, η θερμοάλιος συνιστώσα παρουσιάζεται ενισχυμένη. Αυτό έχει ως αποτέλεσμα και την αντίστοιχη αύξηση στο πλάτος του ετήσιου κύκλου της θαλάσσιας στάθμης.

Συνολικά, ο παρατηρούμενος εποχικός κύκλος όπως εκτιμήθηκε από κάθε έτος δεδομένων του παλιρροιογράφου δεν μπορεί να εξηγηθεί από το μοντέλο HIPOCAS, επομένως θα πρέπει να είναι κυρίως θερμοάλιος φύσεως.

Η θερμοάλιος συνιστώσα δεν εμφανίζεται σταθερή στο χρόνο και επηρεάζεται από την ατμόσφαιρα. Το πλάτος της ετήσιας συνιστώσας της θαλάσσιας στάθμης εμφανίζει παρόμοιες μεταβολές με αυτό που προσδιορίστηκε από την «υπολειπόμενη» χρονοσειρά (συντελεστής συσχέτισης 0,80). Η μέση διαφορά μεταξύ των ετήσιων αυτών πλατών είναι 1,1±0,8 cm. Την ίδια στιγμή, η μέση διαφορά

¹ Τα δεδομένα του έτους 1996 εμφανίζουν μεγάλα κενά μεταξύ Ιανουάριου και Φεβρουάριου.

μεταξύ του πλάτους των ετήσιων κύκλων από τα δεδομένα του παλιρροιογράφου και αυτών από το μοντέλο HIPOCAS είναι 4,3±2,4 cm.

Σχήμα 4. 4: α) Το πλάτος (cm) και β) η φάση (μήνες) του ετήσιου κύκλου όπως εκτιμήθηκε από τα δεδομένα του παλιρροιογράφου της Σούδας, το μοντέλο και την «υπολειπόμενη» χρονοσειρά. Παρουσιάζεται για λόγους σύγκρισης και ο δείκτης της ΔΒΑ. γ) Η διαφορά φάσης μεταξύ του ετήσιου κύκλου από την χρονοσειρά "RESIDUALS" και το μοντέλο HIPOCAS.

Παρομοίως, οι χρονοσειρές των φάσεων των ετήσιων κύκλων όπως προσδιορίστηκαν από τον παλιρροιογράφο και το μοντέλο είναι σημαντικώς συσχετισμένες με συντελεστή συσχέτισης -0,62. Η μέση διαφορά των φάσεων αυτών είναι $3,2 \pm 1,9$ μήνες. Οι φάσεις των ετήσιων κύκλων από τον παλιρροιογράφο και την «υπολειπόμενη» χρονοσειρά είναι και αυτές συσχετισμένες. Ο συντελεστής συσχέτισης μεταξύ τους είναι 0,58, ενώ η μέση διαφορά τους είναι 0,8±0,4 μήνες.

Το πλάτος της εξαμηνιαίας συνιστώσας που υπολογίστηκε από τα δεδομένα του παλιρροιογράφου, του HIPOCAS και από αυτά της «υπολειπόμενης» χρονοσειράς κυμαίνονται μεταξύ 0,9-7 cm, 0,4-4,3 cm και 0,3-3,9 cm, αντιστοίχως (Σχήμα 4.5α). Οι φάσεις της εξαμηνιαίας συνιστώσας που υπολογίστηκαν από τα δεδομένα του παλιρροιογράφου και από το μοντέλο HIPOCAS παρουσιάζουν μεγάλη αστάθεια (Σχήμα 4.5β). Οι τιμές στις φάσεις αυτές κυμαίνονται μεταξύ 0-6 μήνες. Τόσο μεγάλες διακυμάνσεις στη φάση υποδηλώνουν ότι ο προσδιορισμός του εξαμηνιαίου κύκλου είναι πολύ ευαίσθητος στην χρονική περίοδο μέσα στην οποία υλοποιείται.

Σχήμα 4. 5: α) Το πλάτος (cm) και β) η φάση (μήνες) του εξαμηνιαίου κύκλου όπως εκτιμήθηκε από τα δεδομένα του παλιρροιογράφου της Σούδας, το μοντέλο HIPOCAS και την «υπολειπόμενης» χρονοσειράς.

Επιπροσθέτως, κάθε ημερολογιακό έτος περιέχει δύο εξαμηνιαίους κύκλους. Τόσο μεγάλες διακυμάνσεις στη φάση, υποδεικνύουν ότι οι εξαμηνιαίοι κύκλοι που προσδιορίζονται από ένα έτος δεδομένων, πιθανότατα δεν είναι αντιπροσωπευτικοί του εξαμηνιαίου κύκλου που παρατηρείται π.χ. τους πρώτους έξη μήνες τους έτους. Σημειώνεται επίσης, ότι οι Tsimplis και Spencer (1997) θεωρούν πιθανό το ενδεχόμενο ένα μέρος του εξαμηνιαίου κύκλου στη Μεσόγειο να δημιουργείται λόγω διακυμάνσεων στη φάση του ετήσιου κύκλου από έτος σε έτος. Για τους λόγους αυτούς δεν θα συζητηθούν παραπάνω οι διακυμάνσεις της εξαμηνιαίας συνιστώσας του εποχιακού κύκλου.

4.2.2.3 Η επίδραση της ΔΒΑ στον ετήσιο κύκλο

Για να διερευνηθεί η επίδραση της ΔΒΑ στον εποχικό κύκλο, αρχικά αναζητήθηκαν συσχετίσεις μεταξύ του χειμερινού δείκτη της ΔΒΑ και του πλάτους των ετήσιων κύκλων που υπολογίστηκαν από κάθε έτος δεδομένων του παλιρροιογράφου, του μοντέλου και της «υπολειπόμενης» χρονοσειράς. Μεταξύ 1982-2001, οι συντελεστές συσχέτισης μεταξύ της ΔΒΑ και του πλάτους του ετήσιου κύκλου της θαλάσσιας στάθμης και της θερμοάλιος συνιστώσας της είναι χαμηλότεροι από 0,2 και επομένως δεν είναι σημαντικοί.

Στην ίδια περίοδο, το πλάτος της μετεωρολογικής συνιστώσας του ετήσιου κύκλου είναι συσχετισμένο με τον δείκτη της ΔΒΑ με συντελεστή συσχέτισης 0,46. Αν και η συσχέτιση αυτή είναι ασθενής, είναι στατιστικώς σημαντική με επίπεδο εμπιστοσύνης 95%. Παρ' όλα αυτά, η συσχέτιση αυτή δεν διατηρείται όταν εξετάζεται σε όλη την περίοδο που καλύπτεται από το μοντέλο HIPOCAS (1958-2001). Συγκεκριμένα, στην περίοδο αυτή ο συντελεστής συσχέτισης μεταξύ της ΔΒΑ και του πλάτους της μετεωρολογικής συνιστώσας του ετήσιου κύκλου είναι 0,2 και δεν είναι στατιστικά σημαντικός.

Από την άλλη μεριά, η ΔΒΑ επηρεάζει τη φάση του ετήσιου κύκλου της «υπολειπόμενης» χρονοσειράς τις χρονιές όπου ο δείκτης της ΔΒΑ παίρνει τιμές μικρότερες από 1,5 (Σχήμα 4.6α). Επιπλέον, ο συντελεστής συσχέτισης μεταξύ της ΔΒΑ και της φάσης της «υπολειπόμενης» χρονοσειράς δεν είναι σημαντικός όταν εξετάζεται ολόκληρη η περίοδος μεταξύ 1982-2001. Όταν όμως η συσχέτιση προσδιοριστεί λαμβάνοντας υπόψιν τα έτη όπου ο δείκτης της ΔΒΑ είναι μικρότερος από 1,5, τότε ο συντελεστής συσχέτισης γίνεται 0,80. Τα έτη κατά τα οποία ο δείκτης της ΔΒΑ λαμβάνει τιμές μεγαλύτερες του 1,5, η φάση είναι τυχαία κατανεμημένη ως προς την ΔΒΑ.

Η φάση του ετήσιου κύκλου από το HIPOCAS επηρεάζεται και αυτή από την ΔΒΑ. Κατά την περίοδο 1982-2001, η φάση αυτής της ετήσιας συνιστώσας είναι σημαντικά συσχετισμένη με τον δείκτη της ΔΒΑ με συντελεστή συσχέτισης 0,74 (Σχήμα 4.4β).Η συσχέτιση μεταξύ της μετεωρολογικής συνιστώσας του ετήσιου κύκλου και της ΔΒΑ είναι σχετικά πρόσφατη. Αυτό επιβεβαιώνεται από την πρόσφατη, στατιστικώς σημαντική, αύξηση στον συντελεστή συσχέτισης τους όπως εκτιμήθηκε εντός ενός μετακινούμενου παραθύρου διάρκειας 15 ετών (Σχήμα 4.6β).

Για να εξεταστεί το ενδεχόμενο το αποτέλεσμα αυτό να είναι πλασματικό και να οφείλεται στο μήκους του παράθυρου που χρησιμοποιήθηκε, οι συντελεστές συσχέτισης επαναπροσδιορίστηκαν εντός μετακινούμενων παραθύρων διάρκειας 10 και 20 ετών αντιστοίχως. Και στις δύο περιπτώσεις τα αποτελέσματα (δεν παρουσιάζονται) παρέμειναν ποιοτικώς τα ίδια όπως στην περίπτωση που το παράθυρο είχε μήκος 15 έτη. Συνολικά, κατά την περίοδο 1958-2001 η συσχέτιση αυτή είναι ασθενής αλλά στατιστικώς σημαντική (ρ=0,46).

Σχήμα 4.6: α) Η φάση του ετήσιου κύκλου όπως υπολογίστηκε για κάθε έτος της «υπολειπόμενης» χρονοσειράς σε συνάρτηση με τον δείκτη της ΔΒΑ. β) Συντελεστές συσχέτισης μεταξύ της φάσης του ετήσιου κύκλου του μοντέλου HIPOCAS και του δείκτη της ΔΒΑ εντός μετακινούμενου παραθύρου διάρκειας 15 ετών. Στατιστικώς σημαντικοί συντελεστές κατά Pearson (Spearman) φαίνονται με κόκκινους αστερίσκους (κύκλους). γ) Η φάση του ετήσιου κύκλου όπως υπολογίστηκε για κάθε έτος από το HIPOCAS σε συνάρτηση με τον δείκτη της ΔΒΑ.

Σχήμα 4. 7: a) Η φάση του ετήσιου κύκλου της επιφανειακής ατμοσφαιρικής πίεσης για της περίοδο 1858-2001 σε συνάρτηση με το δείκτη της ΔΒΑ. β) Όπως το διάγραμμα (a) αλλά για τη φάση του ετήσιου κύκλου της συνιστώσα του ανέμου με διεύθυνση Βορρά – Νότου.

Από την άλλη μεριά, η επίδραση της ΔΒΑ στην φάση της ετήσιας μετεωρολογικής συνιστώσας είναι σημαντική μόνο τις χρονιές όπου ο δείκτης της ΔΒΑ είναι (προσεγγιστικά) κατά απόλυτη τιμή μεγαλύτερος της μονάδας (Σχήμα 4.6γ). Για παράδειγμα, ο συντελεστής συσχέτισης μεταξύ της ΔΒΑ και της φάσης του

ετήσιου κύκλου που προσδιορίστηκε από το μοντέλο είναι 0,91 όταν η απόλυτη τιμή του δείκτη της ΔΒΑ είναι μεγαλύτερη της μονάδας. Όταν ο δείκτης παίρνει τιμές μικρότερες της μονάδας, κατά απόλυτη τιμή, η συσχέτιση αυτή παύει να είναι σημαντική.

Όπως προαναφέρθηκε, για την δημιουργία του μοντέλου HIPOCAS χρησιμοποιήθηκαν μόνο δεδομένα ανέμου και επιφανειακής ατμοσφαιρικής πίεσης. Επομένως, η συσχέτιση μεταξύ της φάσης της ετήσιας μετεωρολογικής συνιστώσας του εποχικού κύκλου και της ΔΒΑ θα πρέπει να συνδέεται με τις εποχικές διακυμάνσεις της ατμοσφαιρικής πίεσης και του ανέμου.

Τα έτη όπου ο δείκτης της ΔΒΑ είναι μεγαλύτερος της μονάδας ο συντελεστής συσχέτισης μεταξύ της φάσης του ετήσιου κύκλου της επιφανειακής ατμοσφαιρικής πίεσης και της ΔΒΑ είναι 0,60 (Σχήμα 4.7α). Αυτό εξηγείται ως εξής: κατά την διάρκεια των χειμερινών μηνών όταν ο δείκτης της ΔΒΑ είναι κατά απόλυτα τιμή μεγαλύτερος της μονάδας, η επιφανειακή ατμοσφαιρική πίεση παρουσιάζει μεγαλύτερες τιμές από τις συνηθισμένες. Αυτό αντιστοιχεί σε μεγαλύτερη μείωση της στάθμης της θάλασσας στην Ανατολική Μεσόγειο. Συνεπώς, όταν η ετήσια συνιστώσα της θαλάσσιας στάθμης υπολογίζεται για τέτοιες χρονιές, οι χαμηλότερες από τις συνηθισμένες του χειμώνα προκαλούν μετάθεση της φάσης του κύκλου προς τον Ιανουάριο.

Παρομοίως, αναζητήθηκαν συσχετίσεις μεταξύ του δείκτη της ΔΒΑ και της φάσης του ετήσιου κύκλου της ανεμογενούς τάσης (wind stress), και πιο συγκεκριμένα σε διευθύνσεις Βορρά-Νότου και Ανατολής-Δύσης. Με τον τρόπο αυτό υπολογίστηκε ο συντελεστής συσχέτισης 0,87 μεταξύ της φάσης του ετήσιου κύκλου του ανέμου με φορά Βοράς-Νότος και της ΔΒΑ, για τα έτη όπου ο δείκτης της ΔΒΑ παίρνει τιμές μικρότερες του -1 (Σχήμα 4.7β). Εδώ θα πρέπει να παρατηρηθεί ότι ο συγκεκριμένος συντελεστής συσχέτισης προσδιορίστηκε χρησιμοποιώντας μόνο πέντε τιμές (δεν υπάρχουν άλλες διαθέσιμες). Επομένως η αξιοπιστία του αποτελέσματος αυτού θα μπορούσε να αμφισβητηθεί.

Η επίδραση της ΔΒΑ είναι έκδηλη και στην φάση της ετήσιας αρμονικής της θαλάσσιας στάθμης από τα δεδομένα του παλιρροιογράφου ($\rho = -0,59$). Ο τρόπος με τον οποίο η ΔΒΑ επηρεάζει την μετεωρολογική και την θερμοάλιος συνιστώσα του ετήσιου κύκλου δεν είναι σταθερός. Ως αποτέλεσμα, η συσχέτιση αυτή δεν διατηρείται καθ' όλη την περίοδο 1982-2001. Επιπλέον, ο συντελεστής συσχέτισης μεταξύ της φάσης του ετήσιου κύκλου από τον παλιρροιογράφο και την ΔΒΑ δεν είναι σημαντικός στην περίοδο 1982-1991. Κατά την περίοδο 1992-2001 όμως ο συντελεστής αυτός γίνεται -0,75 και στατιστικώς σημαντικός.

Αυτή η στατιστικά σημαντική μεταβολή δεν θα πρέπει να θεωρηθεί ως μεταβολή στον τρόπο με τον οποίο η ΔΒΑ επηρεάζει τον ετήσιο κύκλο της θαλάσσιας στάθμης. Όπως προαναφέρθηκε, η φάση του ετήσιου κύκλου επηρεάζεται

κυρίως από τη φάση της θερμοάλιος συνιστώσας. Επομένως, η φάση του ετήσιου κύκλου της θαλάσσιας στάθμης περιμένουμε να είναι συσχετισμένη με την ΔΒΑ σε περιόδους όπου η ΔΒΑ επηρεάζει σημαντικά τον ετήσιο κύκλο της «υπολειπόμενης» χρονοσειράς (όταν δηλαδή ΔΒΑ<1,5). Πράγματι, τα συγκεκριμένα έτη, ο συντελεστής συσχέτισης μεταξύ της ΔΒΑ και της φάσης του ετήσιου κύκλου είναι p=-0.81 και στατιστικώς σημαντικός (Σχήμα 4.8).

Από την άλλη, και η ατμόσφαιρα έχει σημαντικό ρόλο στις διακυμάνσεις της φάσης του ετήσιου κύκλου της θαλάσσιας στάθμης. Τις χρονιές όπου η ΔΒΑ επηρεάζει την μετεωρολογική συνιστώσα του ετήσιου κύκλου αλλά όχι την θερμοάλιος (όταν δηλαδή ΔΒΑ > 1), ο ετήσιος κύκλος της θαλάσσιας στάθμης σχετίζεται με τη ΔΒΑ με τον ίδιο τρόπο, όπως η μετεωρολογική του συνιστώσα. Πράγματι, ο συντελεστής συσχέτισης μεταξύ της φάσης του ετήσιου κύκλου από τα δεδομένα του παλιρροιογράφου και του δείκτη της ΔΒΑ, κατά τις περιόδους όπου ο δείκτης της ΔΒΑ είναι μεγαλύτερος της μονάδος, είναι 0.81 (Σχήμα 4.8).

Πρέπει να σημειωθεί ότι στον υπολογισμό αυτού του συντελεστή συσχέτισης δεν χρησιμοποιήθηκαν δεδομένα από το 1989. Ο αποκλεισμός δικαιολογείται καθώς την χρονιά αυτή ο ετήσιος κύκλος της θαλάσσιας στάθμης. Επομένως η φάση του, οφείλεται κυρίως στην θερμοάλιο συνιστώσα της.

Σχήμα 4. 8: Η φάση του ετήσιου κύκλου της θαλάσσιας στάθμης σε συνάρτηση με την ΔΒΑ.

Σε προηγούμενη παράγραφο αναφέρθηκε ότι η σχέση της ΔΒΑ με το πλάτος των ετήσιων κύκλων δεν είναι γραμμική. Παρατηρήθηκε επίσης ότι το πλάτος της ετήσιας αρμονικής της θαλάσσιας στάθμης ρυθμίζεται ως ένα βαθμό από την διαφορά φάσης μεταξύ της μετεωρολογικής και της θερμοάλιας συνιστώσας της. Οι φάσεις όμως σχετίζονται με την ΔΒΑ. Παρομοίως, και η διαφορά τους συσχετίζεται με την ΔΒΑ, με συντελεστή συσχέτισης -0,69 (Σχήμα 4.9). Επομένως, η ΔΒΑ επιδρά έμμεσα στο πλάτος του ετήσιου κύκλου της θαλάσσια στάθμης.

Όταν η διαφορά φάσης μεταξύ του θερμόαλου και του μετεωρολογικού ετήσιου κύκλου πλησιάζει τους 6±1 μήνες, ο δείκτης της ΔΒΑ παίρνει τιμές μεταξύ -3 έως - 0,5. Αυτές τις χρονιές το πλάτος του ετήσιου κύκλου της θαλάσσιας στάθμης αναμένεται να είναι μικρότερο από τα πλάτη των δύο συνιστωσών του. Αυτή η παρατήρηση βρίσκεται σε συμφωνία (αλλά αυτός ο ισχυρισμός δεν αποτελεί απόδειξη), με τα αποτελέσματα των Zerbini *et al.* (1996). Εκεί αναφέρεται ότι η περίοδος 1960-1990 είναι συνυφασμένη με μικρότερα πλάτη στο εποχικό κύκλο στην Μεσόγειο σε σχέση με τα πλάτη που παρατηρήθηκαν μεταξύ 1900-1960. Πράγματι, μεταξύ 1900-1990, ο δείκτης της ΔΒΑ παίρνει τιμές μεταξύ -3 και -0,5 μόνο 18 φορές. Τα μισά από αυτά τα χρόνια βρίσκονται εντός των πρώτων 60 ετών του 20^{ου} αιώνα, ενώ τα άλλα μισά στα 30 επόμενα (1960-1990).

Σχήμα 4. 9: Η διαφορά φάσης μεταξύ της θερμοάλιος και μετεωρολογικής συνιστώσας του ετήσιου κύκλου σε συνάρτηση με την ΔΒΑ.

4.2.3 Αποτελέσματα από το σταθμό της Γαύδου

Το πλάτος και φάση του εποχικού κύκλου όπως προσδιορίστηκαν με τα δεδομένα του πιεσομετρικού παλιρροιογράφου της Γαύδου (Σχήμα 4.10α) και τις καταγραφές του Jason-1 (Σχήμα 4.10β) παρουσιάζονται στον Πίνακα 4.1. Τα αποτελέσματα αυτά βασίζονται σε δεδομένα που συλλέχθηκαν μεταξύ των κύκλων του Jason-1 23-90. Η επιλογή των κύκλων έγινε ώστε η χρονική περίοδος που καλύπτεται από τους κύκλους αυτούς, να συμπίπτει με την περίοδο που υπάρχουν διαθέσιμα δεδομένα από τον πιεσομετρικό παλιρροιογράφο. Ο υπολογισμός του εποχικού κύκλου από τα αλτιμετρικά δεδομένα, έγινε αφού συνενώθηκαν τα δεδομένα διελεύσεων No. 18 και No. 109.

Σχήμα 4. 10: α) Οι καταγραφές του παλιρροιογράφου της Γαύδου μαζί με τον εποχιακό κύκλο όπως αυτός υπολογίστηκε από δεδομένα διάρκειας ενός έτους (κύκλοι 54-90) και από δεδομένα διάρκειας δύο ετών (κύκλοι 23-90). β) Οι καταγραφές του Jason-1 μεταξύ των κύκλων 23-90 και ο εποχικός κύκλος που υπολογίστηκε από τις καταγραφές αυτές.

Όπως φαίνεται στον Πίνακα 4.1, και η ετήσια συνιστώσα του εποχικού κύκλου εμφανίζεται ενισχυμένη στα ανοιχτά νερά Νότια της Γαύδου σε σχέση με το λιμάνι του Καραβέ, περίπου κατά 2 cm. Συγκεκριμένα, το πλάτος του ετήσιου κύκλου από τον παλιρροιογράφο υπολογίστηκε ότι είναι περίπου 8 cm, ενώ από το αλτίμετρο 10,2 cm. Οι τιμές του πλάτους του εξαμηνιαίου κύκλου που προσδιορίστηκαν από τα δεδομένα του αλτίμετρου και τα δεδομένα του παλιρροιογράφου είναι 8,6 και 8,3 cm αντίστοιχα.

			КҮКЛОІ 23-90			
ΔΙΕΛΕΥΣΗ			ASA (mm)	PSA (deg)	ASSA (mm)	PSSA (deg)
Jason-1	109+18	(Lat 34,0-34,6)	101,9	8,63	37,6	4,58
Παλιρρι- ογράφος			79,8 (2,4)	8,24 (0,1)	29,4 (2,4)	5,55 (0,2)

Πίνακας 4. 1: Το πλάτος (mm) και η φάση (deg) των δύο συνιστωσών του εποχικού κύκλου όπως προσδιορίστηκαν από τα δεδομένα του Jason-1 και του πιεσομετρικού παλιρροιογράφου της Γαύδου. Τα νούμερα στις παρενθέσεις υποδηλώνουν το σφάλμα στους υπολογισμούς.

4.3 Δειγματοληψίας και προσδιορισμό του εποχικού κύκλου

Στην παράγραφο 4.2.3 αναφέρθηκε ότι υπάρχουν συστηματικές διαφορές στους εποχικούς κύκλους που υπολογίστηκαν από τον πιεσομετρικό παλιρροιογράφο και από τα δεδομένα του Jason-1. Οι διαφορές αυτές ενδεχομένως να υποδηλώνουν μια πραγματική μορφοποίηση του εποχικού κύκλου στην παράκτια ζώνη του Καραβέ, ή ενδέχεται να είναι δημιούργημα της αραιής δειγματοληψίας των αλτιμετρικών καταγραφών.

Για να για να απαντηθεί το παραπάνω ερώτημα χρησιμοποιήθηκαν τα δεδομένα του παλιρροιογράφου της Σούδας τα οποία σε αντίθεση με τα δεδομένα απότους παλιρροιογράφους της Γαύδου έχουν διάρκεια πολλών ετών. Συγκεκριμένα, πραγματοποιήθηκε δειγματοληψία στις ωριαίες καταγραφές του παλιρροιογράφου της Σούδας με ρυθμό μία μέτρηση κάθε 9,9 μέρες (συμβατός με τον ρυθμό δειγματοληψίας του Jason-1). Με τον συγκεκριμένο ρυθμό δειγματοληψίας, αντιστοιχούν 37 μετρήσεις ανά έτος.

Πριν την δειγματοληψία οι ημερήσιες και ημι-ημερήσιες παλίρροιες αφαιρέθηκαν από τα δεδομένα του παλιρροιογράφου. Η διαδικασία αυτή μειώνει ελαφρώς την διασπορά των δεδομένων και ενισχύει το εποχικό σήμα σε αυτά. Η ίδια αναγωγή για τις παλίρροιες είχε ήδη υλοποιηθεί στα αλτιμετρικά δεδομένα που χρησιμοποιούνται στα πλαίσια της παρούσας διατριβής. Επομένως η διαδικασία αυτή δεν εισαγάγει συστηματικά σφάλματα.

Σχήμα 4. 11: Το πλάτος και η φάση της ετήσιας και εξαμηνιαίας συνιστώσας του εποχικού κύκλου που υπολογίστηκε από κάθε έτος της χρονοσειράς της Σούδας πριν και μετά την διαδικασία δειγματοληψίας.

Το πλάτος και η φάση των δύο συνιστωσών του εποχικού κύκλου εκτιμήθηκαν για κάθε έτος δεδομένων από την χρονοσειρά της Σούδας που προέκυψε μετά την διαδικασία της δειγματοληψίας. Τα αποτελέσματα απεικονίζονται στο Σχήμα 4.11. Για λόγους σύγκρισης, στο σχήμα αυτό εμφανίζονται και οι αντίστοιχες εποχικές παράμετροι που υπολογίστηκαν από την αρχική χρονοσειρά του παλιρροιογράφου.

Τα σφάλματα που εμπλέκονται στον υπολογισμό του πλάτους και της φάσης των εποχικών αρμονικών από τις χρονοσειρές που προέκυψαν μετά την δειγματοληψία είναι της τάξης των 5cm και 4-5 μηνών αντιστοίχως (Σχήμα 4.11). Αυτό υποδεικνύει ότι ενδεχομένως δεν είναι δυνατό να εκτιμηθεί αξιόπιστα ο εποχικός κύκλος από ένα έτος αλτιμετρικών δεδομένων. Από την άλλη μεριά όμως οι διαφορές στις εποχικές παραμέτρους πριν και μετά την δειγματοληψία είναι αρκετά μικρότερες, υποδηλώνοντας ότι ο ακριβής προσδιορισμός του είναι δυνατός.

Οι τιμές που προσδιορίστηκαν για το πλάτος και της φάσης του εποχικού κύκλου είναι στατιστικά παρόμοιες πριν και μετά την δειγματοληψία. Συγκεκριμένα,

η μέση διαφορά στο πλάτους του ετήσιου κύκλου από τα δύο σετ δεδομένων είναι 0±0,9 cm. Η αντίστοιχη διαφορά στις φάσεις είναι 10±7 ημέρες. Παρομοίως, οι μέγιστες διαφορές μεταξύ του πλάτους και της φάσης είναι 1,5 cm και 20 ημέρες αντιστοίχως.

Οι τιμές που προσδιορίστηκαν για το πλάτος του εξαμηνιαίου κύκλου μετά την δειγματοληψία βρίσκονται σε συμφωνία με αυτές που προέκυψαν από τα αρχικά δεδομένα. Έτσι, η μέση διαφορά στην εκτίμηση του πλάτους από τα δύο σετ δεδομένων είναι 0,4±0,9 cm, ενώ η μέγιστη διαφορά είναι 2 cm. Παρομοίως, για τις φάσεις, η μέση διαφορά υπολογίστηκε 5±20 ημέρες, ενώ η μέγιστη φτάνει τον ένα μήνα. Εξαίρεση αποτελεί ο προσδιορισμός της φάσης της ετήσιας συνιστώσας το 1983, όπου η διαφορά είναι περίπου τρεις μήνες. Αυτό όμως δεν αποτελεί πρόβλημα καθώς και το πλάτος της εξαμηνιαίας αρμονικής εκείνη τη χρονιά είναι σχεδόν μηδενικό.

Πρέπει τέλος να σημειωθεί, ότι στην περίπτωση της Γαύδου ο εποχικός κύκλος της θαλάσσιας στάθμης υπολογίζεται χρησιμοποιώντας τα δεδομένα και από τις δύο διελεύσεις του Jason-1 (την No. 109 και την No. 18) πάνω από την περιοχή. Αυτό έχει ως αποτέλεσμα οι πραγματικές αλτιμετρικές καταγραφές που χρησιμοποιήθηκαν στην Παράγραφο 4.2.3 να περιέχουν δύο και όχι μία μετρήσεις κάθε 9,9 ημέρες. Επιπλέον ο εποχικός κύκλος στην προηγούμενη παράγραφο εκτιμήθηκε από 68 κύκλους και όχι 37. Επομένως, οι διαφορές στις εποχικές παραμέτρους που αναφέρθηκαν στην Παράγραφο 4.2.3 αναπαριστούν πραγματικές διαφορές μεταξύ των εποχικών κύκλων μεταξύ των ανοιχτών υδάτων Νότια της Γαύδου και του κόλπου του Καραβέ.

4.4 Έλεγχος της καταλληλότητας του μοντέλου παλινδρόμησης

Αρχικά η καταλληλότητα της δομής του μοντέλου της εξίσωσης [4.1] ελέγχθηκε από την σημαντικότητα των μεταβλητών που συμπεριελάμβανε. Συγκεκριμένα, επιβεβαιώθηκε ότι τα ανώτατα/ κατώτατα όρια εμπιστοσύνης των συντελεστών A_i (i = 1, 2, 3, και 4) της εξίσωσης [4.2] είχαν πάντοτε το ίδιο πρόσημο (Draper and Smith, 1981).

Ελέγχθηκε επίσης αν το πλάτος των δύο συνιστωσών που προσδιορίζονταν ικανοποιούσε τις παρακάτω συνθήκες (Draper and Smith, 1981):

ASA – errorASA > 0 ASSA – errorASSA > 0 Όπως φαίνεται και στα σχήματα 4.4α και 4.5α το πλάτος της ετήσιας και εξαμηνιαίας συνιστώσας του εποχικού κύκλου, αλλά και το κατώτατο όριο εμπιστοσύνης τους, παραμένει θετικό σε όλο το διάστημα 1982-2003.

Η καταλληλότητα του μοντέλου της εξίσωσης [4.1] ελέγχθηκε με βάση τρία κριτήρια ώστε να επαληθευτούν οι υποθέσεις που προϋποθέτει η διαδικασία της στατιστικής παλινδρόμησης (Draper and Smith, 1981). Τα σχήματα 4.12α-γ αφορούν τον προσδιορισμό του εποχικού κύκλου από τα δεδομένα της θαλάσσιας στάθμης της Σούδας για το έτος 1982. Οι ίδιοι έλεγχοι έγιναν όμως για όλα τα έτη των δεδομένων θαλάσσιας στάθμης καθώς και για τις τιμές του μοντέλου ΗΙΡΟCAS, με παρόμοια αποτελέσματα.

Πρώτον, η μέθοδος της παλινδόμησης προϋποθέτει ότι τα υπολειπόμενα σφάλματα δεν θα εμφανίζουν κάποια συστηματική σχέση με τις τιμές του εποχικού κύκλου που προσδιορίστηκε. Το κριτήριο αυτό επαληθεύεται όπως φαίνεται στο Σχήμα 4.12α. Εδώ αξίζει να σημειωθεί ότι η συνάρτηση ετεροσυσχέτισης μεταξύ των υπολειπομένων σφαλμάτων και των τιμών του μοντέλου για το έτος 1982 είναι κατά απόλυτη τιμή μικρότερες του 0,06. Επομένως μπορούν να θεωρηθούν σχεδόν μηδενικές.

Δεύτερον, τα υπολειπόμενα σφάλματα θα πρέπει να είναι ανεξάρτητα μεταξύ τους και να μην υπάχρουν συσχετίσεις ανάμεσά τους. Όπως φαίνεται στο Σχήμα 4.12β, η συνάρτηση αυτοσυσχέτισης των υπολειπόμενων σφαλμάτων για το έτος 1982 παρουσιάζει σημαντική αυτοσυσχέτιση μόνο για χρονικές υστερήσεις της τάξης των μερικών δεκάδων ωρών. Κάτι τέτοιο είναι αναμενόμενο λόγω της επίδρασης της ατμόσφαιρας στις διακυμάνσεις της θαλάσσιας στάθμης. Στο ίδιο Σχήμα όμως φαίνεται ότι δεν υπάρχει αυτοσυσχέτιση σε χρονικές υστερήσεις της τάξης των 6 και 12 μηνών που αντιστοιχούν στις περιόδους του ετήσιου και εξαμηνιαίου κύκλου.

Τρίτον, μια από τις παραδοχές της γραμμικής παλινδρόμησης είναι ότι τα υπολειπόμενα σφάλματα είναι κανονικά κατανεμημένα. Αυτό επαληθεύεται με το διάγραμμα της αθροιστικής τους κατανομής του σχήματος 4.12γ. Όπως φαίνεται εκεί, μόνο το ανώτερο/ κατώτερο 1-2% των τιμών των υπολειπόμενων σφαλμάτων παρεκκλίνουν της κανονικής κατανομής.

Στο σχήμα 4.12 παρουσιάζεται επίσης μια ασυνέχεια που αντιστοιχεί στην τιμή «μηδέν» στον άξονα των υπολειπόμενων σφαλμάτων. Αυτή η ασυνέχεια δημιουργείται από την ύπαρξη κενών στην χρονοσειρά της θαλάσσιας στάθμης.

Ένα από τα πιο συνηθισμένα κριτήρια που χρησιμοποιούνται για να επιβεβαιωθεί η ποιότητα ενός μοντέλου παλινδρόμησης είναι το R^2 . Το μέγεθος αυτό ορίζεται ως το λόγο της διασποράς των τιμών του μοντέλου προς την διασπορά των αρχικών δεδομένων (π.χ. Draper and Smith, 1981). Τα δεδομένα όμως της θαλάσσιας στάθμης που χρησιμοποιήθηκαν ήταν ωριαία, και επομένως περιέχουν ενέργεια σε όλο το φάσμα των συχνοτήτων. Αυτό σημαίνει ότι η μεταβλητότητά τους δεν

περιορίζεται στις ετήσιες και εξαμηνιαίες συχνότητες. Από την άλλη όμως σκοπός του Κεφαλαίου αυτού ήταν ο υπολογισμός του εποχικού κύκλου και όχι η δημιουργία ενός μοντέλου που θα περιγράφει με λεπτομέρεια τα δεδομένα της θαλάσσιας στάθμης. Για το λόγο αυτό to μέγεθος R^2 δεν είναι κατάλληλο για τον έλεγχο της ποιότητας της παλινδρόμησης. Για τον ίδιο λόγο δεν θα χρησιμοποιήσουμε ούτε και διαγράμματα των υπολλειπόμενων σφαλμάτων με τα αρχικά δεδομένα.

Σχήμα 4. 2: a) Διάγραμμα των υπολειπόμενων σφαλμάτων σε συνάρτηση με τις τιμές του εποχικού κύκλου. β) Η συνάρτηση αυτοσυσχέτισης των υπολειπόμενων σφαλμάτων. γ) Η αθροιστική κατανομή των υπολειπόμενων σφαλμάτων. Και τα τρία διαγράμματα προέκυψαν από τα δεδομένα του παλιρροιογράφου της Σούδας του έτους 1982.

Αξίζει τέλος να σημειωθεί ότι οι εποχικές παράμετροι και οι αβεβαιότητες σε αυτές, που υπολογίστηκαν με την εξίσωση [4.1] είναι στατιστικώς αμετάβλητες με αυτές που υπολογίστηκαν στο Κεφάλαιο 3 με την αρμονική ανάλυση που υλοποιήθηκε μέσω του λογισμικού t_tide.

4.5 Συμπερασματικά σχόλια

Εκτός από τη καταγεγραμμένη σχέση μεταξύ των διακυμάνσεων της MΣΘ στη Μεσόγειο και της ΔBA, (π.χ. Tsimplis and Josey, 2001 και Tsimplis *et al.*, 2005), στην παρούσα διατριβή προτείνει ότι οι διακυμάνσεις του ετήσιου κύκλου σχετίζονται και αυτές με τη ΔBA. Η σχέση αυτή αποδόθηκε στην επίδραση της ΔBA στη φάση τόσο της μετεωρολογικής όσο και της θερμοάλιος συνιστώσας του ετήσιου κύκλου.

Τα αποτελέσματα υπογραμμίζουν ότι η επίδραση της ΔΒΑ στον ετήσιο κύκλο της μετεωρολογικής συνιστώσας της θαλάσσιας στάθμης είναι εντονότερη κατά τα τελευταία 20 χρόνια περίπου. Η ΔΒΑ δεν επηρεάζει άμεσα το πλάτος του ετήσιου κύκλου της θαλάσσιας στάθμης. Επιδρά όμως έμμεσα ελέγχοντας τη φάση της μετεωρολογικής και της θερμοάλιος συνιστώσας. Κατά την δεκαετία του 1990, το πλάτος του ετήσιου κύκλου εμφανίζεται αυξημένο σε σχέση με τη δεκαετία του 80.

Οι διακυμάνσεις του εποχικού κύκλου εφόσον σχετίζονται με τις διακυμάνσεις της ΔΒΑ θα πρέπει να λαμβάνουν χώρα κατά τη διάρκεια των χειμερινών μηνών. Επομένως, οι μεταβολές στον εποχικό κύκλο θα πρέπει να λαμβάνονται υπόψιν στην αποτίμηση της κλιματικής αλλαγής (Tsimplis *et al.*, 2006). Αυτό προτείνεται διότι αν η αύξηση της ΜΣΘ δεν είναι ομοιόμορφη κατά τη διάρκεια του έτους αλλά εμφανίζει εποχικότητα, τότε η παράκτια επικινδυνότητα θα είναι μεγαλύτερη διότι οι ακραίες θαλάσσιες καταιγίδες (surges), συμβαίνουν κατά τη διάρκεια του χειμώνα.

Ένας από τους στόχους και καινοτομίες της διατριβής είναι να αναδείξει το ότι οι μεταβολές στον εποχικό κύκλο θα πρέπει να λαμβάνονται υπόψιν σε μελέτες που αφορούν το κλίμα. Αυτό υλοποιείται με δύο τρόπους στα Κεφάλαια 5 και 6. Στο επόμενο Κεφάλαιο αναλύονται οι ακραίες τιμές της θαλάσσιας στάθμης στην περιοχή ενδιαφέροντος. Η ανάλυση των ακραίων τιμών όμως γίνεται με τέτοιο τρόπο ώστε να τονιστεί η αναγκαιότητα του να μη θεωρούμε τον εποχικό κύκλο σταθερό.

ΚΕΦΑΛΑΙΟ 5: ΑΝΑΛΥΣΗ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΘΑΛΑΣΣΙΑΣ ΣΤΑΘΜΗΣ ΣΤΟ ΝΟΤΙΟ ΑΙΓΑΙΟ

Το Κεφάλαιο αυτό πραγματεύεται με τις ακραίες τιμές της θαλάσσιας στάθμης στην περιοχή ενδιαφέροντος και κινείται προς δύο κατευθύνσεις. Η πρώτη έχει σκοπό να αναδείξει ότι οι μεταβολές του εποχικού κύκλου θα πρέπει να λαμβάνονται υπόψιν στις μελέτες που αφορούν τις ακραίες τιμές της θαλάσσιας στάθμης.

Η δεύτερη κατεύθυνση σχετίζεται αποκλειστικά με τις ακραίες τιμές της θαλάσσιας στάθμης. Πρώτος σκοπός προς αυτή την κατεύθυνση είναι να ελεγχθεί το αν υπάρχει συστηματική αύξηση στην ένταση των θαλάσσιων καταιγίδων τα τελευταία χρόνια. Δεύτερος σκοπός είναι να αναζητηθεί η ύπαρξη σχέσης μεταξύ των ακραίων τιμών της θαλάσσιας στάθμης και της Διακύμανσης του Βορείου Ατλαντικού. Ο τρίτος σκοπός είναι να προσδιοριστούν οι στάθμες επαναφοράς και οι αντίστοιχες περίοδοι επιστροφής στην περιοχή. Τέλος, ο τέταρτος σκοπός είναι να ελέγξει αν το μοντέλο HIPOCAS προβλέπει ικανοποιητικά τις θαλάσσιες καταιγίδες.

5.1 Εισαγωγή

Οι γραμμικές συστηματικές τάσεις στην ΜΣΘ και οι ανά έτος μεταβολές της, μπορεί να επηρεάσουν τις μελέτες των ακραίων τιμών της θαλάσσιας στάθμης (Woodworth and Blackman 2002). Αυτό συμβαίνει διότι οι συστηματικές τάσεις στη ΜΘΣ είναι της τάξης των mm/y. Τέτοιες μεταβολές σε βάθος χρόνου μερικών δεκαετιών είναι ικανές να δημιουργήσουν μεταβολές στην ΜΘΣ συγκρίσιμες σε μέγεθος με τις τιμές που οφείλονται στις θαλάσσιες καταιγίδες (surges).

Στην Μεσόγειο, μεταξύ του 1960 και τις αρχές της δεκαετίας του 1990, η στάθμη της θάλασσας είτε μειώνονταν είτε παρέμεινε σταθερή (Tsimplis and Baker 2000, Tsimplis *et al.*, 2005 και Vigo *et al.*, 2005). Την δεκαετία του 1990, σε μερικές περιοχές της Ανατολικής Μεσογείου η ΜΣΘ αυξήθηκε με ρυθμό 5-10 mm/yr, ενώ δυτικά του Ιονίου Πελάγους η αύξηση αυτή ήταν μεγαλύτερη (Cazenave *et al.*, 2002, Fenoglio-Marc 2002, Tsimplis *et al.*, 2005).

Εκτός των αλλαγών της ΜΣΘ, στο Κεφάλαιο αυτό προτείνεται ότι οι διακυμάνσεις στον εποχικό κύκλο είναι και αυτές ικανές να επηρεάσουν τον υπολογισμό των ακραίων τιμών της θαλάσσιας στάθμης στην περιοχή. Αυτό στηρίζεται στο γεγονός ότι οι ανά έτος μεταβολές στο πλάτος του εποχικού κύκλου στην περιοχή είναι έως και 10 cm (βλέπε Κεφάλαιο 4), ενώ την ίδια στιγμή οι ισχυρότερες θαλάσσιες καταιγίδες είναι της τάξης των 30-35 cm. Οι ακραίες τιμές της στάθμης της θάλασσας είναι συνδεδεμένες με απώλεια ανθρώπινων ζωών, οικονομικό κόστος και αυξημένη παράκτια διάβρωση. Η μελέτη τους απαιτεί δεδομένα των σταθμών της θάλασσας που ελήφθησαν για μεγάλα χρονικά διαστήματα (π.χ. δεκαετίες), με μετρήσεις μεγάλης συχνότητας (π.χ. ωριαίες) και χρονικής ακρίβειας. Η έρευνα όμως των ακραίων τιμών της θαλάσσιας στάθμης έχει μείνει πίσω, όπως πρόσφατα παρατήρησαν οι Woodworth and Blackman (2004) και οι Church *et al.*, (2001). Συγκεκριμένα για τη Μεσόγειο, ελάχιστες τέτοιες μελέτες έχουν δημοσιευθεί και έχουν περιοριστεί στην Αδριατική. Για το Αιγαίο Πέλαγος υπάρχει μία μόνο μελέτη (Tsimplis *et al.*, 2006).

Στην Αδριατική ο Lionello (2005) έχει αναλύσει τις συστηματικές τάσεις των ακραίων θαλάσσιων καταιγίδων με βάση τα δεδομένα παλιρροιογράφων στην Βενετία (Ιταλία). Δεν αναφέρει καμία σημαντική συστηματική τάση μετά το 1940, εκτός από αυτήν που είναι αποτέλεσμα του συνδυασμού της ανόδου της στάθμης της θάλασσας και της τοπικής καταβύθισης της στεριάς. Επίσης, ο Raicich (2003) μελέτησε τις ακραίες τιμές στην Τεργέστη για τον χρονικό διάστημα 1939-2001. Εκεί οι θαλάσσιες καταιγίδες βρέθηκαν να μειώνονται, παρόλη την ταυτόχρονη επιδείνωση των νοτίων ανέμων που προκλήθηκε από την αύξηση της ατμοσφαιρικής πίεσης (Raicich, 2003, Pirazzoli and Tomasin, 2002, Trigo and Davies, 2002).

Οι Trigo και Davies (2002) μελέτησαν την επίδραση ατμόσφαιρας στην μετεωρολογική συνιστώσα της θαλάσσιας στάθμης, στην Βενετία. Παρατήρησαν ότι η συχνότητα εμφάνισης των θαλάσσιων καταιγίδων κατά τον 20° αιώνα αυξήθηκε. Η τάση αυτή είναι πιο έντονη τα τελευταία 40 χρόνια. Επίσης, παρατήρησαν ότι η χρονοσειρά των ανεξάρτητων θαλάσσιων καταιγίδων (δηλαδή μία τιμή ανά θαλάσσια καταιγίδα)έχει μείνει σχεδόν στατιστικώς στάσιμη (stationary) κατά την περίοδο αυτή, παρά την σχετική άνοδο της σχετικής στάθμης της θάλασσας.

Αυτό αποδόθηκε στην μείωση της έντασης και της διάρκειας των μετεωρολογικών συνθηκών που ευνοούν την παρουσία των θαλάσσιων καταιγίδων. Ειδικότερα, παρατήρησαν ότι οι τελευταίες 4 δεκαετίες έχουν συσχετιστεί με πτωτικές τάσεις στις ουρές των κατανομών της επιφανειακής ατμοσφαιρικής πίεσης πάνω από την Βενετία, της επιφανειακής ατμοσφαιρικής πίεσης, των διαφορών της κατά τη διεύθυνση Βορρά – Νότου (North-South gradient), καθώς και στους επιφανειακούς ανέμους πάνω από την Βόρεια Αδριατική.

Οι Woodworth και Blackman (2004) μελέτησαν τις ακραίες τιμές της στάθμης της θάλασσας χρησιμοποιώντας δεδομένα παλιρροιογράφων από όλη την υφήλιο. Ένας από τους παλιρροιογράφους που χρησιμοποιήθηκαν στην έρευνα αυτή βρίσκεται στην Αδριατική. Τα 99^α εκατοστημόρια (δηλ. οι ακραίες στάθμες της θάλασσας) των καταγραφών του παλιρροιογράφου αυτού έδειξαν να είναι αρνητικώς συσχετισμένα με τον δείκτη της Αρκτικής Διακύμανσης (Arctic Oscillation), αλλά ο συσχετισμός αυτός αποδίδεται στις μεταβολές της ΜΣΘ. Δεν παρατηρήθηκαν σημαντικές γραμμικές τάσεις στις ακραίες τιμές, ακόμη και όταν έγινε αναγωγή στα δεδομένα για την επίδραση της ΜΣΘ και των παλιρροϊκών διακυμάνσεων.

Οι επιδράσεις της αλλαγής του κλίματος της Γης που εκφράζονται με ακραίες τιμές στην μετεωρολογικής συνιστώσα της θαλάσσιας στάθμης (surge levels) στην Αδριατική μελετήθηκε από τους Lionello *et al.* (2003). Αυτοί εξέτασαν την επίπτωση του διπλασιασμού του ατμοσφαιρικού CO₂ στην συχνότητα εμφάνισης και την ένταση των θαλάσσιων καταιγίδων. Χρησιμοποίησαν ως μετεωρολογική διέγερση ένα μοντέλο παγκόσμιας ατμοσφαιρικής κυκλοφορίας και προσομοίωσαν την παγκόσμια ατμοσφαιρική κυκλοφορία για τα δύο διαφορετικά σενάρια, (δηλ. με το σημερινό και με διπλάσιο CO₂). Δεν βρήκαν κάποια σημαντική αλλαγή στα ακραία επίπεδα της μετεωρολογικής συνιστώσας της θαλάσσιας στάθμης για τα δύο κλιματικά σενάρια. Απ' την άλλη, είδαν ότι οι παρατηρούμενες εντάσεις των θαλάσσιων καταιγίδων είναι υποτιμημένες στις προβλέψεις των μοντέλων, γεγονός που μπορεί να έχει εμποδίσει την ταυτοποίηση πολύ ισχυρών καταιγίδων.

Στο Αιγαίο, οι Tsimplis και Blackman (1997) έχουν αναλύσει τις ακραίες τιμές της στάθμης της θάλασσας για ένα χρονικό διάστημα οκτώ ετών (1982-1989). Η χρονοσειρά, όμως, μιας μικρής χρονικής περιόδου δεν επέτρεψε τον καθορισμό συστηματικών τάσεων στις ακραίες τιμές. Εντούτοις, οι Tsimplis και Blackman (1997) υποδεικνύουν ότι, στις περισσότερες περιπτώσεις, οι παρατηρημένες ακραίες τιμές επιδεικνύουν κοινή συμπεριφορά σε ολόκληρη την Λεκάνη του Αιγαίου. Έδειξαν επίσης ότι ακραίες τιμές μπορούν να εκφραστούν ως γραμμικός συνδυασμός της επίδρασης των ακραίων τιμών της πίεσης και του ανέμου. Έτσι, για τον προσδιορισμό των αλλαγών στις ακραίες τιμές, τουλάχιστον στο Αιγαίο, η επίδραση της πίεσης και του ανέμου πρέπει να ληφθούν υπόψιν.

Σε αυτό το Κεφάλαιο, ωριαίες τιμές από τις καταγραφές του παλιρροιογράφου της Σούδας και το μοντέλο HIPOCAS έχουν χρησιμοποιηθεί για τον υπολογισμό των ακραίων τιμών της στάθμης της θάλασσας της περιοχής για το χρονικό διάστημα 1982-2003. Για τον υπολογισμό αυτόν, πρέπει να ληφθούν υπόψιν οι αλλαγές της MΣΘ (Woodworth and Blackman 2002, Woodworth and Blackman 2004).

Στην διατριβή αυτή προτείνεται ότι πρέπει να λαμβάνονται υπόψιν και οι διακυμάνσεις στην εποχικότητα, και αυτό αποτελεί καινοτομία. Θα πρέπει δηλαδή, εκτός την αφαίρεση της ΜΣΘ από τα δεδομένα θαλάσσιας στάθμης, θα πρέπει να αφαιρείται και ο εποχικός κύκλος κάθε έτους προτού γίνει η ανάλυση των ακραίων τιμών. Αυτό αιτιολογείται από το γεγονός ότι για την ίδια άνοδο της ΜΣΘ, η αύξηση στην παράκτια επικινδυνότητα θα είναι μεγαλύτερη εάν η αύξηση της στάθμης της θάλασσας είναι εκφράζεται κυρίως τους χειμερινούς μήνες, από ότι αν ομοιόμορφη καθ' όλη την διάρκεια του έτους.

5.2 Δεδομένα και Μεθοδολογία

Στο Κεφάλαιο αυτό, χρησιμοποιήθηκαν οι ωριαίες παρατηρήσεις θαλάσσιας στάθμης από την Σούδα καθώς και οι προβλέψεις του μοντέλου HIPOCAS (βλέπε Κεφάλαιο 2). Οι παρατηρήσεις περιλαμβάνουν εποχικά και παλιρροϊκά σήματα. Το εποχικό μέρος μπορεί να μεταβάλλεται από έτος σε έτος. Εντούτοις, το παλιρροϊκό σήμα μπορεί να θεωρηθεί προκαθορισμένη συνιστώσα (π.χ. Tsimplis και Blackman, 1997). Το παλιρροϊκό μοντέλο που χρησιμοποιήθηκε σε αυτό το Κεφάλαιο είναι το ίδιο με αυτό που παρουσιάστηκε στην Παράγραφο 3.5.1 και έχει εύρος 10cm, ενώ όταν δεν λαμβάνεται υπόψιν ο εποχικός κύκλος, η παλίρροια το εύρος είναι 4,5cm.

Σχήμα 5. 1: (α-γ, ξεκινώντας από πάνω). Οι χρονοσειρές SURGE-I, SURGE-II και η διαφορά τους.

Για να μελετήσουμε την επιρροή των αλλαγών του εποχικού κύκλου στις ακραίες τιμές της μετεωρολογικής συνιστώσας της θαλάσσιας στάθμης, κατασκευάστηκαν τέσσερις χρονοσειρές. Η πρώτη χρονοσειρά δημιουργήθηκε αφαιρώντας από τα δεδομένα του παλιρροιογράφου τις παλίρροιες και τον μέσο εποχικό κύκλο και θα αναφέρεται στο εξής ως χρονοσειρά «SURGE-I».

Επομένως η χρονοσειρά SURGE-Ι συμπεριλαμβάνει εποχικά σήματα που εκφράζουν τη διαφορά του εποχικού κύκλου κάθε έτους από τον μέσο εποχικό κύκλο (seasonal anomalies). Ο μέσος εποχικός κύκλος (Κεφάλαιο 4) που αφαιρέθηκε από τις καταγραφές του παλιρροιογράφου, προσδιορίστηκε και από τα 22 έτη των διαθέσιμων δεδομένων (1982-2003).

Η δεύτερη χρονοσειρά, SURGE-II, κατασκευάστηκε αφαιρώντας από τις μετρήσεις της Σούδας τις παλίρροιες και τον εποχικό κύκλο αλλά για κάθε έτος ξεχωριστά. Οι χρονοσειρές SURGE-I και SURGE-II παρουσιάζονται στα Σχήμα 5.1α και 5.1β. Η διαφορά τους φαίνεται στο Σχήμα 5.1.γ.

Οι άλλες δύο χρονοσειρές που δημιουργήθηκαν για να μελετηθεί η επίδραση των εποχικών μεταβολών στις ακραίες τιμές της θαλάσσιας στάθμης αφορούν το μοντέλο HIPOCAS. Όπως είδαμε στο Κεφάλαιο 4, ο εποχικός κύκλος στα δεδομένα του μοντέλου HIPOCAS είναι διαφορετικός από αυτόν στα δεδομένα του παλιρροιογράφου. Γι' αυτόν το λόγο, κατά απόλυτη αντιστοιχία με τις χρονοσειρές SURGE-I και SURGE-II, κατασκευάστηκαν δύο επιπλέον. Η πρώτη από τις δύο χρονοσειρές (HIPOCAS-I) δημιουργήθηκε αφαιρώντας από το μοντέλο HIPOCAS τον μέσο εποχικό κύκλο του. Για τη δημιουργία της δεύτερης χρονοσειράς (HIPOCAS-II) αφαιρέθηκαν από το μοντέλο οι εποχικοί κύκλοι που υπολογίστηκαν από κάθε έτος δεδομένων του μοντέλου.

Η ανάλυση των ακραίων τιμών της θαλάσσιας στάθμης πραγματοποιήθηκε χρησιμοποιώντας έξι συνολικά χρονοσειρές. Συγκεκριμένα, οι χρονοσειρές αυτές είναι οι καταγραφές της στάθμης της θάλασσας, η SURGE-I, η SURGE-II, η χρονοσειρά του μοντέλου HIPOCAS, η HIPOCAS-I και η HIPOCAS-II.

Η διάμεσος τιμή (δηλ. το 50^{0στό} εκατοστημόριο) των δεδομένων που καλύπτουν κάθε ημερολογιακό έτος έχει αποδειχθεί ως αξιόπιστος, ευσταθής (robust) εκτιμητής της ετήσιας ΜΣΘ. Αυτή η ετήσια ΜΣΘ αφαιρέθηκε από τις έξι χρονοσειρές που χρησιμοποιούνται στην ανάλυση. Ανάγοντας τα δεδομένα παλιρροιογράφου και τις χρονοσειρές SURGE-I, SURGE-II, HIPOCAS, η HIPOCAS-I και η HIPOCAS-II για τις διακυμάνσεις της ετήσιας ΜΣΘ, κατασκευάστηκαν έξι νέες χρονοσειρές. Έτσι, οποιαδήποτε συστηματική τάση της ΜΣΘ που υπήρχε στις αρχικές χρονοσειρές, δεν θα επηρεάσει την επικείμενη ανάλυση των ακραίων τιμών, όταν χρησιμοποιηθούν οι ανηγμένες-στην-ΜΣΘ παρατηρήσεις. Επιπλέον, οποιεσδήποτε αργές, μη-ωκεάνιες επιδράσεις, όπως τυχόν κατακόρυφες κινήσεις της στεριάς στην περιοχή του

παλιρροιογράφου, εξαλείφονται από τις χρονοσειρές (Woodworth and Blackman, 2004).

Στην περίπτωση της ανάλυσης των δεδομένων του παλιρροιογράφου, η και των χρονοσειρών που προέκυψαν από αυτά, η ανάλυση έγινε για το χρονικό διάστημα 1982-2003. Καθώς το μοντέλο HIPOCAS δεν είναι διαθέσιμο μετά στο 2001, η ανάλυση διεξάχθηκε για τις περιόδους 1982-2001 (δηλ. για την περίοδο όπου υπήρχαν δεδομένα παλιρροιογράφου) και 1958-2001 (για ολόκληρο το χρονικό διάστημα όπου το HIPOCAS ήταν διαθέσιμο).

Οι διακυμάνσεις της ετήσιας ΜΣΘ από έτος σε έτος, όπως αυτές περιγράφονται από το μοντέλο HIPOCAS, είναι της τάξης μεγέθους του εκατοστού. Έτσι, ελέγχθηκε εάν οι μεταβολές της ΜΣΘ στα δεδομένα της Σούδας μπορεί να αποδοθούν σε μεταβολές της θερμοάλιος συνιστώσας της θαλάσσιας στάθμης. Για τον σκοπό αυτόν, χρησιμοποιήθηκαν ετήσιες διατομές (profiles) θερμοκρασίας και αλατότητας από το Αιγαίο, για τον υπολογισμό του ετήσιου θερμόαλου ύψους της στάθμης της θάλασσας στην περιοχή. Οι κατατομές δημιουργήθηκαν από τους Tsimplis και Rixen (2002) χρησιμοποιώντας το αρχείο δεδομένων Medar (Rixen, *et al.*, 2001) και αναφέρονται στο χρονικό διάστημα 1945-1998. Οι τελικές κατατομές θερμοκρασίας και αλατότητας έχουν εξομαλυνθεί χρησιμοποιώντας ένα μετακινούμενο φίλτρο Gauss διάρκειας τριών ετών. Ο υπολογισμός των θερμόαλων υψών από τις κατατομές αυτές έγινε σύμφωνα με τις διαδικασίες που περιγράφονται από τους Pond και Pickard (1993).

Ένα μέρος της εργασίας αφορά στην σχέση μεταξύ της ΔBA και της διακύμανσης του εποχικού κύκλου με τις διακυμάνσεις στις ακραίες τιμές της στάθμης της θάλασσας γι' αυτήν την περιοχή της Μεσογείου. Όπως και στο Κεφάλαιο 4, ο δείκτης για την ΔBA αντιστοιχεί στον χειμερινό δείκτη (Οκτώβριος-Μάρτιος) κατά Jones, *et al.*, (1997).

5.2.1. Σύγκριση μεταξύ μοντέλου και παρατηρήσεων

Τα δεδομένα του παλιρροιογράφου δείχνουν ότι υπάρχουν σημαντικές εποχικές μεταβολές, καθώς και μεταβολές της ΜΣΘ από έτος σε έτος. Αρχικά, μελετήθηκε το πώς αυτές οι μεταβολές ερμηνεύονται από το μοντέλο HIPOCAS. Αυτό έγινε υπολογίζοντας την διασπορά των υπολειπόμενων σφαλμάτων r μετά την αφαίρεση του μοντέλου HIPOCAS από τα δεδομένα του παλιρροιογράφου.

Η διαδικασία πραγματοποιήθηκε και για τις χρονοσειρές SURGE-I και SURGE-II. πριν και μετά την αναγωγή τους στη ΜΣΘ. Για την περιγραφή της ποιότητας της στατιστικής προσαρμογής (fitting) του μοντέλου HIPOCAS στα

δεδομένα Y της Σούδας, χρησιμοποιήθηκε ένας συντελεστής g, που ορίζεται στην εξίσωση:

$$g = \frac{Var\{data\} - Var(residuals)}{Var(data)} = \frac{\sigma_Y^2 - \sigma_r^2}{\sigma_Y^2}$$
[5.1]

Το κριτήριο ελέγχου στατιστικής προσαρμογής (goodness-of-fit measure) g, τείνει στο 1 όταν τα δεδομένα με το μοντέλο συμπίπτουν απολύτως. Ενώ το g τείνει στο 0 (ή παίρνει ακόμη και αρνητικές τιμές) όταν υπάρχει πλήρης ασυμφωνία μεταξύ δεδομένων και μοντέλου.

Πραγματοποιήθηκε και ένας επιπλέον έλεγχος για να ελεγχθεί η σταθερότητα του g κατά διάρκεια ενός έτους. Η απόδοση του μοντέλου HIPOCAS για κάθε ημερολογιακό μήνα εκτιμήθηκε υπολογίζοντας το g, για μηνιαία διαστήματα. Η μέση τιμή g_i του μήνα i (i = 1, 2...12) για το χρονικό διάστημα l ετών (l = 1, 2...20) ισούται με:

$$\overline{g}_{i} = \frac{\sum_{l=1}^{l=20} g_{i,l}}{20}$$
[5.2]

Τα κριτήρια ελέγχου στατιστικής προσαρμογής όπως περιγράφτηκαν παραπάνω, θα εφαρμοστούν στην ανάλυση που ακολουθεί, καθώς αντιπροσωπεύουν το ποσοστό (επί τοις εκατό) της διασποράς των δεδομένων του παλιρροιογράφου που ερμηνεύονται από το μοντέλο HIPOCAS.

5.2.2 Οι ακραίες τιμές στη στάθμη της θάλασσας

Τα 99^α και τα 99,9^α εκατοστημόρια καθώς και τα ετήσια μέγιστα για κάθε ημερολογιακό έτος παρατηρήσεων χρησιμοποιήθηκαν για να αντιπροσωπεύσουν τις ακραίες τιμές των θαλάσσιων καταιγίδων. Η επιλογή των συγκεριμένων εκατοστημορίων για την περιγραφή των ακραίων τιμών έγινε για λόγους συμβατότητας με παλαιότερες μελέτες (π.χ. Woodworth and Blackman 2004).

Έχει ήδη αναφερθεί ότι οι υπερετήσιες μεταβολές της ΜΣΘ και του εποχιακού κύκλου μπορεί να επηρεάσουν την ανάλυσή και τον προσδιορισμό των ακραίων τιμών. Έτσι, δημιουργήθηκαν χρονοσειρές εκατοστημορίων από τις καταγραφές της

στάθμης της θάλασσας, και τις χρονοσειρές SURGE-I, SURGE-II, HIPOCAS, HIPOCAS-I και HIPOCAS-II πριν και μετά την προσαρμογή τους στις μεταβολές της ΜΣΘ (12 χρονοσειρές συνολικά). Επίσης, ελέγχθηκε και η συμπεριφορά του 50^{ου} εκατοστημορίου (δηλ. η διάμεσος τιμή) κάθε ημερολογιακού έτους καταγραφών καθώς αντιπροσωπεύει τις μεταβολές της ΜΣΘ κατά τη διάρκεια των ετών.

Για την μελέτη της σχέσης μεταξύ της διακύμανσης του κλίματος και των ακραίων περιστατικών στα δεδομένα, προσδιορίστηκε ο συντελεστής συσχέτισης μεταξύ των εκατοστημόριων χρονοσειρών και του δείκτη της ΔBA.

Για την παρακολούθηση τυχόν συστηματικής αύξησης στην ένταση των ακραίων θαλασσίων καταιγίδων, υπολογίστηκαν οι γραμμικές τάσεις στις εκατοστημόριες χρονοσειρές. Οι γραμμικές τάσεις υπολογίστηκαν με την εφαρμογή ενός μοντέλου στατιστικής παλινδρόμησης ελαχίστων τετραγώνων. Ενώ τα σφάλματα στις συστηματικές τάσεις που αναφέρονται, αντιστοιχούν σε επίπεδο εμπιστοσύνης 95%. Μία γραμμική (συστηματική) τάση θα θεωρείται σημαντική όταν και το υψηλότερο και το χαμηλότερο επίπεδο εμπιστοσύνης, έχουν το ίδιο πρόσημο (Woodworth and Blackman 2004).

Η μελέτη των ακραίων τιμών της θαλάσσιας στάθμης στην περιοχή, η ανάλυση επαναλήφθηκε και για δύο χρονικές περιόδους, 1982-1991 και 1992-2003. Αντιστοίχως, η ανάλυση των εκατοστημόριων χρονοσειρών όπως βρέθηκαν από το μοντέλο HIPOCAS έγινε για τις χρονικές περιόδους 1982-1991 και 1992-2001. Αυτό έγινε για δύο λόγους.

Πρώτον, στην Μεσόγειο, πριν τη δεκαετία του 1990 οι συστηματικές τάσεις της θαλάσσιας στάθμης είναι πτωτικές, ενώ από τις αρχές της δεκαετίας του 1990 και μετά είναι ανοδικές (π.χ. Tsimplis *et al.*, 2005). Δεύτερον, στο Κεφάλαιο 4, αναφέρθηκε ότι ο εποχικός κύκλος της θαλάσσιας στάθμης στην περιοχή παρουσιάζει διαφορές σε σχέση με τον εποχικό κύκλο κατά την δεκαετία του 1980 τόσο ως προς το πλάτος, όσο και ως προς τη φάση. Η επανάληψη επομένως της ανάλυσης των ακραίων τιμών σε δύο διακριτές περιόδους πριν και μετά το 1991, θα αναδείξει τις διαφορές στις ακραίες τιμές.

5.2.3. Μοντελοποίηση των ακραίων τιμών

Ο υπολογισμός των σταθμών επαναφοράς (return levels) και των αντίστοιχων περιόδων επαναφοράς (return periods T) ακραίων περιστατικών, βασίστηκε στις παρατηρήσεις των πιο ακραίων τιμών της στάθμης της θάλασσας κάθε έτους. Η στάθμη επαναφοράς Z_T ορίζεται ως η μέγιστη στάθμη θάλασσας που αναμένεται να καταγραφεί μέσα στα επόμενα T έτη. Για την μελέτη της ασυμπτωτικής συμπεριφοράς των ακραίων τιμών της θαλάσσιας στάθμης έχουν προταθεί διάφορες προσεγγίσεις (μια πιο λεπτομερής ανασκόπηση δημοσιεύθηκε από τους Dixon και Tawn (1994)).

Η πιο απλή από αυτές είναι η μέθοδος των Ετήσιων Μεγίστων (Annual Maxima method) (Gumbel, 1958), που χρησιμοποιεί το καταγεγραμμένο μέγιστο της στάθμης της θάλασσας για κάθε έτος. Η μέθοδος αυτή μπορεί να εφαρμοστεί όταν υπάρχουν δεδομένα διάρκειας μερικών δεκαετιών, καθώς χρησιμοποιείται μόνο μία μέτρηση ανά έτος. Για να παρακαμφθεί αυτό το μειονέκτημα έχουν αναπτυχθεί άλλες μέθοδοι, όπως η μέθοδος των *r*-μεγίστων τιμών (r-largest method) (Smith, 1986, Tawn, 1988) και μέθοδος "exceedances over threshold" (Davison and Smith, 1990). Οι μέθοδοι αυτές είναι ισοδύναμες αρκεί οι χρονοσειρές των ακραίων τιμών να είναι στατιστικώς στάσιμες.

Από τους Dixon και Tawn (1994) έχει υποστηριχθεί το ότι εάν δεν υπήρχε παλιρροιακό σήμα στα δεδομένα των παλιρροιογράφων τότε θα ίσχυε η υπόθεση της στατιστικής στασιμότητας, ενώ εάν δεν υπήρχαν θαλάσσιες καταιγίδες στα δεδομένα, η υπόθεση της στασιμότητας θα ήταν εντελώς ακατάλληλη.

Σε τοποθεσίες όπου το παλιρροιακό σήμα είναι σχετικά μεγάλο σε σχέση με το σήμα των θαλάσσιων καταιγίδων, έχουν αναπτυχθεί άλλες, έμμεσες μέθοδοι για τον προσδιορισμό των περιόδων επαναφοράς. Αυτές είναι: η μέθοδος "Joint Distribution" (Pugh και Vassie, 1979; Pugh και Vassie, 1980), η μέθοδος "Revised Joint Distribution" (Tawn και Vassie, 1991; Tawn 1992) και η μέθοδος "Exceedance Probability" (Middleton και Thompson, 1986).

Οι μέθοδοι αυτές χωρίζουν τις χρονοσειρές των σταθμών της θάλασσας στην μετεωρολογική συνιστώσα της θαλάσσιας στάθμης, που θεωρείται στοχαστική και σε ένα παλιρροιακό σήμα το οποίο θεωρείται συστηματικό. Έτσι, η ασυμπτωτική συμπεριφορά των ακραίων τιμών στην συνιστώσα της μετεωρολογικής συνιστώσας μπορεί να μοντελοποιηθεί και οι περίοδοι επαναφοράς υπολογίζονται σε συνδυασμό με την κατανομή της παλιρροϊκής συνιστώσας. Η κατανομή της παλιρροϊκής συνιστώσας υνιστώσας δηλαδή προσδιορίζεται πριν από ανάλυση των ακραίων τιμών.

Σε τοποθεσίες όπου το παλιρροϊκό εύρος είναι μικρό σε σχέση με το πλάτος των θαλάσσιων καταιγίδων, η καταγραφή μιας ακραίας τιμής στην στάθμης της θάλασσας, εξαρτάται κυρίως από την μετεωρολογική συνιστώσα της στάθμης. Στις περιπτώσεις αυτές η μέθοδος των *r*-μεγίστων τιμών δίδει τα ίδια αποτελέσματα για τις περιόδους επαναφοράς με τις έμμεσες μεθόδους (Dixon and Tawn, 1994).

Στην εργασία αυτή έχει χρησιμοποιηθεί η μέθοδος *r*-μεγίστων τιμών. Η επιλογή αυτή αιτιολογείται από το γεγονός ότι το παλιρροϊκό εύρος στον Κόλπο της Σούδας είναι μόνο μερικά εκατοστά και έχει ήδη δειχθεί ότι οι υπολογισμοί των περιόδων επαναφοράς όπως προκύπτουν από αυτή την μέθοδο και από την μέθοδο "Revised Joint Distribution" βρίσκονται σε συμφωνία (Tsimplis και Blackman, 1997). Στην

επόμενη παράγραφο ακολουθεί μια σύντομη περιγραφή της μεθόδου των *r*-μεγίστων τιμών πριν την εφαρμογή της.

5.2.4. Η μέθοδος *r*-μεγίστων τιμών

Η μέθοδος των *r*-μεγίστων τιμών αποτελεί επέκταση της μεθόδου των Ετησίων Μεγίστων. Η μέθοδος των Ετησίων Μεγίστων θεωρεί ότι η μέγιστη στάθμη της θάλασσας, $Z_{(1)n}$, για κάθε έτος n (n = 1, 2, ..., N) είναι ανεξάρτητες και πανομοιότυπα κατανεμημένες (iid) μεταβλητές. Ο δείκτης (1) στη μεταβλητή $Z_{(1)n}$ αναφέρεται στη μέγιστη καταγραφή κάθε έτους. Επίσης, οι μεταβλητές $Z_{(1)n}$ ακολουθούν την ίδια Γενικευμένη Κατανομή Ακραίων Τιμών (GEV- Generalized Extreme Value distribution) με αθροιστική συνάρτηση κατανομής (Gumbel, 1958):

$$F(z;\mu,\sigma,k) = \Pr\{Z_n \le z;\mu,\sigma,k\} = \begin{cases} \exp[-\{1-k(Z_{(1),n}-\mu)/\sigma\}^{1/k} & k \ne 0 \\ \exp[-\exp\{-(Z_{(1),n}-\mu)/\sigma\}] & k = 0 \end{cases}$$
[5.3]

όπου z είναι οι ωριαίες στάθμες της θάλασσας, και τα μ , σ , k είναι οι παράμετροι για την μέση τιμή, την απόκλιση και το σχήμα της κατανομής $F(z; \mu, \sigma, k)$. Οι παράμετροι μ , σ , k είναι τέτοιοι ώστε σ , $\mu > 0$ και $k(z - \mu) < \sigma$.

Στην μέθοδο των r-μεγίστων τιμών, αντί να χρησιμοποιηθεί μόνο η μέγιστη καταγεγραμμένη, ετήσια στάθμη της θάλασσας $Z_{(1),n}$, θεωρείται ότι οι r-μέγιστες στάθμες ($Z_{(1)n}$, $Z_{(2)n}$, ..., $Z_{(r)n}$) κάθε έτους n (με 1 < n < N) ακολουθούν την ίδια κατανομή. Επίσης, το γινόμενο της «από κοινού συνάρτησης πυκνότητας πιθανότητας» (joint densities) είναι η κατανομή όλων των παρατηρήσεων που περιγράφεται από τη σχέση (Smith, 1986, Tawn, 1988):

$$F(Z) = \begin{cases} \sigma^{-\sum_{n=1}^{N} r(n)} \exp\left[-\sum_{n=1}^{N} \left\{1 - k \left[\frac{Z_{(r(n))n} - \mu}{\sigma}\right]\right\}^{1/k} + \left(\frac{1}{k} - 1\right) \sum_{j=1}^{r(n)} \log\left[1 - k \left(\frac{Z_{(j)n} - \mu}{\sigma}\right)\right]\right)\right] & k \neq 0 \end{cases}$$

$$\sigma^{-Nr} \exp\left[-\sum_{n=1}^{N} \left[\exp\left(-\frac{Z_{(r)n} - \mu}{\sigma}\right) + \sum_{j=1}^{r} \frac{Z_{(j)n} - \mu}{\sigma}\right]\right\} & k = 0 \end{cases}$$

$$(5.4)$$

Για k < 0, η κατανομή είναι γνωστή ως Fréchet ή κατανομή τύπου-2 και παρουσιάζει μακριά ουρά (long tail) (π.χ., Embrechts *et al.*, 1997). Για k > 0, η κατανομή είναι γνωστή ως Weibull ή τύπου-3. Τέλος, για k = 0 η προκύπτουσα κατανομή ονομάζεται Gumbel ή τύπου-1.

Στις περιπτώσεις όπου η παράμετρος k της κλίμακας της κατανομής πλησιάζει το μηδέν, οι στάθμες επαναφοράς που υπολογίζονται για k = 0 και $k \neq 0$ συγκλίνουν. Έτσι, στην παρούσα μελέτη έχει θεωρηθεί ότι $k \neq 0$. Οι παράμετροι, μ , σ και k μπορούν να υπολογιστούν μεγιστοποιώντας τον λογάριθμό των [5.3] ή [5.4] (ή μέσω μιας παλινδρόμησης ελαχίστων τετραγώνων). Με τον τρόπο αυτό, οι στάθμες z_p υπολογίζονται από την κάτωθι εξίσωση (π.χ. Tawn, 1988):

$$z_{p} = \mu + \frac{\sigma}{k} \left[1 - \{ -\log(1-p) \}^{k} \right]$$
[5.5]

όπου p είναι η πιθανότητα να καταγραφεί μία τουλάχιστον τιμή μεγέθους z_p ή και μεγαλύτερη σε ένα έτος. Όταν το k αλλάζει πρόσμο από αρνητικό σε θετικό, η ουρά της κατανομής των ακραίων τιμών της στάθμης της θάλασσας αλλάζει από μακριά (long) σε κοντή (short), και το z_p συγκλίνει προς ένα ανώτερο όριο. Χρησιμοποιώντας την άμεση σχέση μεταξύ της πιθανότητας p και της περιόδου επαναφοράς T, οι στάθμες επαναφοράς z_T , υπολογίζονται από την σχέση (π.χ., Tsimplis και Blackman 1997):

$$z_T = \mu + \frac{\sigma}{k} \left[1 - \left\{ -\log\left(\frac{1}{T}\right) \right\}^k \right]$$
[5.6]

Η Hessian του αρνητικού λογάριθμου της πιθανοφάνειας από την [5.4] που υπολογίζεται στο μέγιστο της πιθανοφάνειας, ονομάζεται «πίνακας πληροφορίας των παρατηρήσεων» ('observed' information matrix) (Smith, 1986). Η διαγώνιος του πίνακα αυτού αποτελούν τα σφάλματα των παραμέτρων μ , σ , και k (Smith, 1986). Στα πλαίσια της διατριβής αυτής, η μεγιστοποίηση της πιθανοφάνειας έγινε χρησιμοποιώντας τον αλγόριθμο 'Nelder-Mead Simplex Method' (Lagarias, *et al.*, 1998).

Τα σφάλματα στο z_T υπολογίστηκαν λαμβάνοντας υπόψιν ότι το z αυξάνει καθώς αυξάνουν τα μ , και σ , αλλά ελαττώνεται καθώς αυξάνει το k. Έτσι τα ανώτερα επίπεδα εμπιστοσύνης των z_T εκτιμήθηκαν από την [5.6] για:

 $\mu_{high} = \text{estimated}(\mu) + \text{error}(\mu) = \hat{\mu} + \varepsilon_{\mu},$

$$\sigma_{high} = \text{estimated}(\sigma) + \text{error}(\sigma) = \hat{\sigma} + \varepsilon_{\sigma},$$

$$k_{high} = \text{estimated}(k) - \text{error}(k) = \hat{k} - \varepsilon_k$$
.

Παρομοίως, τα κάτω όρια εμπιστοσύνης που παρουσιάζονται είναι οι τιμές της z_T από την [5.6] για:

 $\mu_{low} = \text{estimated}(\mu) - \text{error}(\mu) = \hat{\mu} - \varepsilon_{\mu},$ $\sigma_{low} = \text{estimated}(\sigma) - \text{error}(\sigma) = \hat{\sigma} - \varepsilon_{\sigma},$ $k_{low} = \text{estimated}(k) + \text{error}(k) = \hat{k} + \varepsilon_{k}.$

Όπως αναφέρθηκε και στην αρχή της παραγράφου, η μέθοδος των *r*-μεγίστων τιμών υποθέτει ότι τα δεδομένα που χρησιμοποιήθηκαν στην ανάλυση είναι ανεξάρτητες και ομοίως κατανεμημένες μεταβλητές (independent and identically distributed-(iid)). Όταν οι ακραίες τιμές των περιστατικών συλλέγονται από την ίδια καταιγίδα, η υπόθεση της iid παραβιάζεται (Tawn, 1988; Dixon και Tawn, 1994). Αυτό συμβαίνει διότι στην περίπτωση αυτή οι ακραίες τιμές δημιουργήθηκαν από την ίδια καταιγίδα και επομένως παύουν να είναι ανεξάρτητες.

Έτσι πρέπει να εξασφαλιστεί ότι οι *r*-μέγιστες-τιμές της στάθμης της θάλασσας, όπως αυτές επιλέγονται από τα δεδομένα του παλιρροιογράφου, προέρχονται από διαφορετικές καταιγίδες. Αυτό επιτυγχάνεται θεωρώντας ότι η μέση διάρκεια μίας καταιγίδας είναι τ ώρες. Έτσι οι *r*-μέγιστες τιμές για την στάθμη της θάλασσας που έχουν επιλεγεί απέχουν χρονικά τουλάχιστον τ ώρες.

Η επιλογή της κατάλληλης διάρκειας τ της μέσης καταιγίδας μπορεί να επηρεάσει τους υπολογισμούς της στάθμης επαναφοράς. Εάν η διάρκεια της καταιγίδας είναι μικρότερη από την πρέπουσα, τα ακραία r περιστατικά του κάθε έτους μπορεί να μην είναι ανεξάρτητα. Αντιθέτως, εάν η διάρκεια της καταιγίδας είναι μεγαλύτερη από την πρέπουσα, μπορεί να χαθούν κάποιες ανεξάρτητες τιμές, προκαλώντας υποεκτίμηση των σταθμών επαναφοράς. Ένα άλλο ζήτημα που εξετάζεται είναι ο αριθμός των ακραίων τιμών που θα πρέπει να χρησιμοποιηθούν στην ανάλυση. Οι τυπικές τιμές του r που χρησιμοποιήθηκαν είναι μεταξύ επτά και δέκα (r = 7, 10).

5.3 Αποτελέσματα

5.3.1 Σύγκριση Μοντέλου-Παρατηρήσεων

Ο συντελεστής συσχέτισης μεταξύ των ωριαίων προβλέψεων του HIPOCAS για τις διακυμάνσεις της θαλάσσιας στάθμης στην Σούδα, και της χρονοσειράς του παλιρροιογράφου είναι 0,62 και είναι στατιστικά σημαντικός. Μετά την αφαίρεση του μέσου εποχικού κύκλου από τα δεδομένα και την διόρθωσή τους για τις μεταβολές της ΜΣΘ, ο μεταξύ τους συντελεστής αυξάνει σε 0,72 και 0,76 αντιστοίχως.

Επιπλέον, όπως υπολογίστηκε από την εξίσωση [5.1], οι ωριαίες τιμές του μοντέλου HIPOCAS ερμηνεύουν περίπου το 38% (δηλ. g = 0,38) της διασποράς των δεδομένων των παλιρροιογράφων. Μετά την αφαίρεση του μέσου εποχικού κύκλου και από το μοντέλο HIPOCAS και από τα δεδομένα του παλιρροιογράφου, το κριτήριο ελέγχου της στατιστικής προσαρμογής αυξάνεται στο g = 0,56. Επίσης, όταν και από τις δύο χρονοσειρές αφαιρεθεί ο εποχικός κύκλος κάθε έτους, το g φτάνει το g = 0,57. Για αυτήν την σύγκριση, δεν αφαιρέθηκαν από καμία χρονοσειρά οι γραμμικές τάσεις, αφού ήταν κάτω από 1mm/yr για όλες τις περιπτώσεις.

Μετά την αναγωγή των χρονοσειρών στη ΜΣΘ, οι τιμές του g αυξάνονται κατά 1-4% σε σχέση με αυτά που υπολογίστηκαν πριν την αφαίρεση της ενδιαμέσου τιμής από τις χρονοσειρές. Αυτό δείχνει ότι η υπερετήσια διακύμανση της ΜΣΘ οφείλεται κατά μεγάλο μέρος από τις αλλαγές στην πυκνότητα της στήλης του νερού και/ ή από την βαροκλινή κυκλοφορία. Οι αλλαγές στην ΜΣΘ θα συζητηθούν με λεπτομέρεια στην επόμενη παράγραφο, όπου μελετώνται οι χρονοσειρές των ετήσιων $50^{ών}$ εκατοστημορίων.

Εξετάστηκε επίσης η σταθερότητα στην απόδοση του μοντέλου HIPOCAS με πάροδο των ετών. Για να γίνει αυτό, εφαρμόστηκε η εξίσωση [5.1] για κάθε ημερολογιακό έτος ξεχωριστά. Εάν εξαιρεθεί το έτος 1995, οι τιμές του gκυμαίνονται μεταξύ g = 0,43-0,67. Το έτος 1995 η τιμή του g είναι περίπου g = -0,6. Η τόσο χαμηλή τιμή την χρονιά αυτή, οφείλεται σε μια πολύ έντονη θετική συστηματική τάση που είναι παρούσα στα υπολειπόμενα σφάλματα αυτού του έτους (11,5±0,5cm/y).

Εάν αυτή η γραμμική τάση αφαιρεθεί από τα υπολειπόμενα σφάλματα, η διασπορά των δεδομένων που εξηγείται από το HIPOCAS φτάνει το 67%. (δηλαδή g = 0,67). Όταν από το HIPOCAS και από τα δεδομένα παλιρροιογράφων αφαιρεθεί ο μέσος εποχικός κύκλος (υπολογισμένος για το χρονικό διάσημα 1982-2001), το μέτρο του g υπολογίζεται για κάθε ημερολογιακό έτος κυμαίνεται μεταξύ g = 0,44-0,73.

Η μέση διασπορά που ερμηνεύεται από το μοντέλο HIPOCAS για κάθε ημερολογιακό μήνα, υπολογίστηκε από την εξίσωση [5.2] στην χρονοσειρά SURGE-

Ι. Κατά την διάρκεια των χειμερινών μηνών το μοντέλο περιγράφει μεγαλύτερο ποσοστό της διασποράς των δεδομένων του παλιρροιογράφου από ό,τι στους θερινούς μήνες. Αυτή η ιδιαιτερότητα είναι αναμενόμενη αφού τον χειμώνα οι αλλαγές στην ατμόσφαιρα είναι εντονότερες. Συγκεκριμένα, οι τιμή του g που προσδιορίστηκαν για τους μήνες μεταξύ Απριλίου και Σεπτεμβρίου παραμένει μεταξύ g = 0,33-0,48, ενώ μεταξύ Οκτωβρίου και Μαρτίου είναι μεταξύ g = 0,50-0,73.

5.3.2 Ανάλυση εκατοστημορίων

Αρχικά, αναζητήθηκαν σημαντικές γραμμικές τάσεις στις εκατοστημόριες χρονοσειρές που δημιουργήθηκαν από τα δεδομένα του παλιρροιογράφου, τις χρονοσειρές SURGE-I, SURGE-II, HIPOCAS, HIPOCAS-I και HIPOCAS-II, πριν και μετά την αναγωγή τους για τις υπερετήσιες διακυμάνσεις της ΜΣΘ.

Οι γραμμικές τάσεις στα 50^α εκατοστημόρια όλων των χρονοσειρών (δηλ. οι διάμεσες τιμές κάθε έτους) για το χρονικό διάστημα 1992-2003¹, παραμένουν χαμηλότερες από 1mm/yr και δεν είναι στατιστικώς σημαντικές (Σχήμα 5.2). Για την περίοδο 1982-1991, οι υπολογισμένες γραμμικές τάσεις του 50^{ου} εκατοστημορίου των δεδομένων του παλιρροιογράφου, καθώς και των χρονοσειρών SURGE-I και SURGE-II είναι έντονα αρνητικές (μεταξύ -5 και -6mm/y) αλλά δεν είναι στατιστικώς σημαντικές.

Για την περίοδο 1992-2003, οι υπολογισμένες γραμμικές τάσεις για τις ίδιες χρονοσειρές γίνονται θετικές και στατιστικά σημαντικές, και κυμαίνονται μεταξύ 7,2 ± 4,4 και 7,6 ± 6,3 mm/yr. Αυτές οι συστηματικές τάσεις πιθανότατα συνδέονται με μεταβολές της θερμοάλιος συνιστώσας της στάθμης της θάλασσας στο Αιγαίο Πέλαγος (Σχήμα 5.3α). Στο ίδιο Σχήμα βλέπουμε και την μείωση της θερμοάλιας συνιστώσας της θαλάσσιας στάθμης στις αρχές της δεκαετίας του '90 που συνδέεται με την ΕΜΤ.

Οι γραμμικές τάσεις που υπολογίστηκαν χρησιμοποιώντας τα 50^α εκατοστημόρια του μοντέλου HIPOCAS για τα χρονικά διαστήματα 1982-1991 και 1992-2001 έχουν το ίδιο πρόσημο με τις χρονοσειρές που δημιουργήθηκαν από τα δεδομένα παλιρροιογράφων (Πίνακας 5.1). Ωστόσο, δεν είναι στατιστικώς σημαντικά και είναι πολύ κοντά στο μηδέν. Κατά την περίοδο 1958-2001, η χρονοσειρά των 50^{ών} εκατοστημορίων επιδεικνύει αδύναμες αλλά στατιστικώς σημαντικές αρνητικές συστηματικές τάσεις της τάξης του -0,6 mm/yr (Πίνακας 5.2).

 $^{^1}$ Μέχρι το 2001 είναι για την περίπτωση του μοντέλου HIPOCAS.

Σχήμα 5. 2: Οι χρονοσειρές των εκατοστημορίων που δημιουργήθηκαν από (από πάνω προς τα κάτω, αριστερή στήλη) τις καταγραφές του παλιρροιογράφου, την SURGE-I, την SURGE-II και το μοντέλο HIPOCAS. Παρομοίως, (από πάνω προς τα κάτω, δεξιά στήλη), οι χρονοσειρές των εκατοστημορίων που δημιουργήθηκαν από τις ίδιες χρονοσειρές μετά που ανήχθηκαν για τις διακυμάνσεις της ετήσιας ΜΣΘ. Σε καθένα από τα διαγράμματα, οι γραμμές αντιπροσωπεύουν (από πάνω προς τα κάτω, προς τα κάτω) τα ετήσια μέγιστα, τα 99,9^a, τα 99^a, και τα 50^a, εκατοστημόρια κάθε χρονοσειράς. Οι συνεχείς γραμμές υποδηλώνουν ότι κατά την συγκεκριμένη περίοδο οι συστηματικές τάσεις (mm/y) ήταν στατιστικώς σημαντικές. Στις περιπτώσεις αυτές, η υπολογιζόμενες τάσεις αναγράφονται δεξιά από την αντίστοιχη γραμμή. Οι αριθμοί στις παρενθέσεις είναι τα σφάλματα με διάστημα εμπιστοσύνης 95%.

Οι συστηματικές τάσεις στις χρονοσειρές των ανώτερων εκατοστημορίων (δηλ. των 99^{ών}, 99,9^{ών} και στα ετήσια μέγιστα) που υπολογίστηκαν από τα δεδομένα παλιρροιογράφων, και τις χρονοσειρές SURGE-I και SURGE-II βρέθηκαν να είναι αρνητικές για την περίοδο 1982-1991. Αντιθέτως, είναι θετικά για τις περιόδους 1982-2003 και 1992-2003, τόσο πριν, και μετά την αναγωγή των σταθμών της θάλασσας για τις μεταβολές της ΜΣΘ (Πίνακας 5.1).

Στα τρία αυτά χρονικά διαστήματα, οι ανώτερες εκατοστημόριες χρονοσειρές που δημιουργήθηκαν από το μοντέλο HIPOCAS, και τις χρονοσειρές HIPOCAS-I και ΗIPOCAS-II, έχουν θετικές αλλά στατιστικώς μη σημαντικές γραμμικές τάσεις.

Μετά την αναγωγή για τις διακυμάνσεις της ΜΣΘ, τα 99,9^α εκατοστημόρια των δεδομένων του παλιρροιογράφου, της χρονοσειράς HIPOCAS-II, καθώς και τα ετήσια μέγιστα της χρονοσειράς SURGE-II επιδεικνύουν σημαντικές γραμμικές τάσεις (3,9, 4,2 και 3,4mm/y αντιστοίχως) κατά την περίοδο 1982-2003.

	Εκατοστημόριο	1982-1991	1992-2003	1982-2003
	Ετήσιο μέγιστο	-5.5 (9.2)	2.8 (14.7)	3.4 (4.1)
Παλιρροιογράφος	99, 9 ⁰	-2.2 (8.3)	3.2 (12.7)	3.9 (3.5)
	99	-0.6 (6.6)	1.3 (5.9)	1.6 (2.0)
	Ετήσιο μέγιστο	-5.4 (8.1)	6.4 (17.6)	3.0 (4.5)
SURGE-I	99,9°	-6.3 (6.4)	2.9 (16.1)	1.4 (4.0)
	99°	-1.6 (5.5)	0.4 (11.2)	0.4 (2.7)
	Ετήσιο μέγιστο	-4.7 (7.2)	5.1 (11.7)	3.4 (3.3)
SURGE-II	99,9°	-3.5 (6.1)	1.6 (10.9)	2.2 (2.9)
	<i>99</i> °	-0.6 (5.9)	0.5 (6.7)	0.4 (1.9)
	Ετήσιο μέγιστο	3.7 (12.7)	10.6 (17.4)	3.6 (4.8)
HIPOCAS	99,9°	2.9 (11.1)	9.1 (16.4)	3.5 (4.4)
	<i>99</i> °	2.0 (5.7)	2.6 (9.9)	1.3 (2.5)
	Ετήσιο μέγιστο	0.8 (5.3)	11.7 (17.5)	3.8 (4.8)
HIPOCAS-I	99,9°	3.0 (10.7)	10.5 (16.2)	3.8 (4.3)
	99°	0.8 (5.3)	1.5 (10.2)	0.9 (2.5)
	Ετήσιο μέγιστο	5.7 (12.4)	10.2 (16.5)	4.2 (4.6)
HIPOCAS-II	99,9°	5.6 (11.4)	9.7 (14.8)	4.2 (4.1)
	99°	4.6 (6.7)	0.5 (9.0)	1.6 (2.5)

Πίνακας 5. 1: Οι γραμμικές τάσεις (mm/y) από τις χρονοσειρές των ετήσιων εκατοστημορίων μετά την αναγωγή τους για τις διακυμάνσεις της ΜΣΘ. Οι αριθμοί στις παρενθέσεις αντιστοιχούν στο διάστημα εμπιστοσύνης 95%. Οι στατιστικώς σημαντικές μη-μηδενικές γραμμικές τάσεις παρουσιάζονται με πιο έντονη γραμματοσειρά. Σε αντίθεση με τα δεδομένα του παλιρροιογράφου, το μοντέλο εκτείνεται μέχρι το 2001 και όχι το 2003.

Φαίνεται ότι η παρουσία εποχικών ανωμαλιών στις χρονοσειρές SURGE-I και HIPOCAS-I, αποκρύπτει τις γραμμικές τάσεις στα ανώτερα εκατοστημόριά τους, ακόμα και όταν διορθώθηκαν για τις μεταβολές της ΜΣΘ. Αυτό εξηγείται καθώς οι πιο ακραίες θαλάσσιες καταιγίδες συμβαίνουν κατά την διάρκεια του χειμώνα, όταν δηλαδή ο εποχικός κύκλος λαμβάνει τις χαμηλότερες τιμές του. Επιπλέον, η αύξηση της έντασης του ετησίου κύκλου μετά το 1991 μειώνει το πραγματικό πλάτος της μετεωρολογικής συνιστώσας της θαλάσσιας στάθμης όταν παρουσιάζονται εποχικές ανωμαλίες στις χρονοσειρές. Επομένως, για τον υπολογισμό των γραμμικών τάσεων στα ανώτερα εκατοστημόρια οι διακυμάνσεις του εποχικού κύκλου πρέπει να λαμβάνονται υπόψιν.

Τα ανώτερα εκατοστημόρια που βρέθηκαν από το μοντέλο HIPOCAS και την χρονοσειρά HIPOCAS-I, δεν δείχνουν καμία συστηματική τάση για την περίοδο 1958-2001, ακόμα και μετά τον συνυπολογισμό των μεταβολών της ΜΣΘ (Πίνακας 5.2).

	Εκατοστημόριο	Συστηματική τάση	Συσχέτιση με ΔΒΑ
	Ετήσιο μέγιστο	-0.4 (1.3)	-0.09
	99,9°	-0.3 (1.3)	-0.07
nirocas	99°	-0.3 (0.8)	-0.11
	50°	-0.6 (0.2)	-0.68
	Ετήσιο μέγιστο	-0.4 (1.3)	-0.09
HIPOCASI	99,9°	-0.2 (1.2)	-0.06
HIFUCAS-I	99°	-0.3 (0.8)	-0.11
	50°	-0.5 (0.2)	-0.66
	Ετήσιο μέγιστο	0.1 (1.4)	0.03
HIDOCAS II	99,9°	0.2 (1.0)	0.06
IIII OCA5-II	99°	-0.0 (0.6)	-0.01
	50°	-0.7 (0.2)	-0.66
	Ανηγ	uένα στη ΜΣΘ	
	Ετήσιο μέγιστο	0.2 (1.3)	0.04
HIPOCAS	99,9°	0.3 (1.2)	0.08
	99°	0.3 (0.7)	0.11
	Ετήσιο μέγιστο	0.2 (1.3)	0.04
HIPOCAS-I	99,9°	0.3 (1.2)	0.08
	99°	0.3 (0.7)	0.10
	Ετήσιο μέγιστο	0.8 (1.1)	0.21
HIPOCAS-II	99,9°	0.9 (1.0)	0.26
	99°	0.65 (0.64)	0.30

Πίνακας 5. 2: Συντελεστές συσχέτισης με την ΔΒΑ και γραμμικές τάσεις (mm/y) για τα ετήσια εκατοστημόρια του HIPOCAS, πριν (άνω τμήμα πίνακα) και μετά (κάτω τμήμα) τις διορθώσεις για την διακύμανση της ετήσιας ΜΣΘ. Οι αριθμοί στις παρενθέσεις αντιστοιχούν στο διάστημα εμπιστοσύνης 95%. Οι στατιστικώς σημαντικές μη-μηδενικές γραμμικές τάσεις παρουσιάζονται με πιο έντονη γραμματοσειρά. Τα αποτελέσματα που παρουσιάζονται στον πίνακα αντιστοιχούν στην χρονική περίοδο 1958-2001.

Ωστόσο, βρέθηκαν σημαντικές θετικές συστηματικές τάσεις (0,65mm/yr) στα 99,9^α εκατοστημόρια της χρονοσειράς HIPOCAS-I, που είχαν διορθωθεί για μεταβολές της ΜΣΘ (Πίνακας 5.2). Επίσης, οι συστηματικές τάσεις στα 99.9^α εκατοστημόρια και στα ετησία μέγιστα της χρονοσειράς είναι στατιστικώς σημαντικές όταν το επίπεδο εμπιστοσύνης μειωθεί στο 90%. Επομένως, όπως και στα εκατοστημόρια των χρονοσειρών που προήλθαν από τα δεδομένα του παλιρροιογράφου, μεταβολές στην ΜΣΘ καθώς και εποχικές διακυμάνσεις είναι δυνατό να αποκρύπτουν τις αυξητικές τάσεις στις ακραίες τιμές της θαλάσσιας στάθμης.

Στατιστικώς σημαντική αρνητική συσχέτιση βρέθηκε για το χρονικό διάστημα 1982-2003 μεταξύ των διαμέσων τιμών των χρονοσειρών του κάθε έτους και του δείκτη της ΔΒΑ (Πίνακας 5.3, Σχήμα 5.3β). Οι διάμεσες τιμές που υπολογίστηκαν από τα δεδομένα του παλιρροιογράφου και τις χρονοσειρές SURGE-I και SURGE-II είναι σχεδόν ταυτόσημες. Για το λόγο αυτό, θα γίνει αναφορά μόνο στις μεταβολές της ΜΣΘ όπως αυτή προσδιορίστηκε από τα δεδομένα του παλιρροιογράφου.

	Εκατοστημόριο	1982-1991	1992-2003	1982-2003
	Ετήσιο μέγιστο -0.08		-0.80	-0.52
Παλιοροιονοάφος	99,9°	0.02	-0.84	-0.51
πανιμοιολμαφος	99°	0.04	-0.68	-0.38
	50°	-0.39	-0.46	-0.43
	Ετήσιο μέγιστο	-0.34	-0.74	-0.60
SUDCE I	99,9°	-0.29	-0.79	-0.63
SUNGE-I	99°	-0.05	-0.71	-0.49
	50°	-0.47	-0.30	-0.37
	Ετήσιο μέγιστο	-0.34	-0.58	-0.49
SUDCE II	99,9°	-0.24	-0.61	-0.47
SUNGE-II	<i>99</i> °	-0.07	-0.45	-0.26
	50°	-0.48	-0.50	-0.49
	Ετήσιο μέγιστο	-0.02	-0.65	-0.43
HIPOCAS	99,9°	-0.02	-0.67	-0.44
IIII OCAS	99°	-0.32	-0.57	-0.48
	50°	-0.68	-0.74	-0.69
	Ετήσιο μέγιστο	-0.11	-0.63	-0.44
HIPOCASI	99,9°	-0.09	-0.64	-0.45
IIII OCAS I	99°	-0.49	-0.57	-0.53
	50°	-0.76	-0.75	-0.73
	Ετήσιο μέγιστο	-0.24	-0.47	-0.22
HIPOCAS II	99,9°	-0.24	-0.49	-0.23
IIII OCAS II	99°	0.17	-0.27	-0.10
	50°	-0.86	-0.76	-0.80
	Ανηγ	μένα στη ΜΣΘ		
	Ετήσιο μέγιστο	0.12	-0.71	-0.39
Παλιρροιογράφος	99,9°	0.29	-0.73	-0.34
	99°	0.40	-0.47	-0.07
	Ετήσιο μέγιστο	-0.11	-0.71	-0.51
SURGE-I	99,9°	-0.02	-0.72	-0.51
	99°	-0.43	-0.62	-0.32
	Ετήσιο μέγιστο	-0.10	-0.45	-0.31
SURGE-II	99,9°	0.12	-0.38	-0.21
	99°	-0.58	-0.08	0.19
	Ετήσιο μέγιστο	-0.06	-0.60	-0.36
HIPOCAS	99,9°	0.07	-0.61	-0.37
	99°	-0.18	-0.42	-0.34
	Ετήσιο μέγιστο	-0.01	-0.57	-0.37
HIPOCAS I	99,9°	0.03	-0.58	-0.37
	99°	-0.31	-0.42	-0.38
	Ετήσιο μέγιστο	0.39	-0.37	-0.09
HIPOCAS II	99,9°	0.40	-0.39	-0.09
	99°	0.44	-0.01	-0.17

Πίνακας 5. 3: Συντελεστές συσχέτισης κατά Pearson μεταξύ του χειμερινού δείκτη ΔΒΑ και των χρονοσειρών των ετήσιων εκατοστημορίων. Οι στατιστικώς σημαντικοί συντελεστές παρουσιάζονται με πιο έντονη γραμματοσειρά. Σε αντίθεση με τα δεδομένα του παλιρροιογράφου, το μοντέλο εκτείνεται μέχρι το 2001 και όχι το 2003. Στο κατώτερο τμήμα το πίνακα οι χρονοσειρές των εκατοστημορίων έχουν ρυθμιστεί για της μεταβολές της ετήσιας ΜΣΘ.

Σχήμα 5. 3: α) Σύγκριση μεταξύ της θερμοάλιος συνιστώσας της θαλάσσιας στάθμης για το Αιγαίο Πέλαγος και των ετήσιων 50^{ων} εκατοστημορίων των δεδομένων της Σούδας. β) Σύγκριση μεταξύ του χειμερινού δείκτη της ΔΒΑ και τις χρονοσειρές των 50^{ων} εκατοστημορίων του μοντέλου HIPOCAS και των δεδομένων του παλιρροιογράφου. γ) Συντελεστές συσχέτισης μεταξύ 50^{ων} ετήσιων εκατοστημορίων του μοντέλου και των χειμερινών τιμών της ΔΒΑ. Οι συντελεστές συσχέτισης υπολογίστηκαν εντός μετακινούμενου παραθύρου μήκους 15 ετών. Στατιστικώς σημαντικοί συντελεστές κατά Pearson (Spearman) εμφανίζονται με κόκκινους κύκλους (αστερίσκους).

Η συσχέτιση των διαμέσων τιμών με τον δείκτη της ΔΒΑ για το χρονικό διάστημα 1982-1991 είναι στατιστικώς μη σημαντική, αλλά γίνεται σημαντική κατά το χρονικό διάστημα 1992-2003.

Παρομοίως, η επίδραση της ΔΒΑ στις μεταβολές των διαμέσων τιμών του μοντέλου HIPOCAS δεν είναι σταθερή κατά τη διάρκεια των ετών. Ο συντελεστής συσχέτισης μεταξύ της χρονοσειράς των διαμέσων τιμών του μοντέλου HIPOCAS και του δείκτη της ΔΒΑ εντός ενός κινούμενου παραθύρου μήκους 15 ετών, δείχνει σημαντικές αλλαγές στο διάστημα 1958-2001 (Σχήμα 5.3γ). Μετά την δεκαετία του 1960, η συσχέτιση γίνεται από σημαντική, μή-σημαντική, και όταν φτάνουμε στα μέσα της δεκαετίας του 80 και μετά η συσχέτιση ξαναγίνεται στατιστικώς σημαντική και εντόνως αρνητική.

Η διαδικασία επαναλήφθηκε χρησιμοποιώντας και παράθυρα με διαφορετικά μήκη (10 και 20 έτη αντιστοίχως). Αυτό έγινε για να επιβεβαιωθεί ότι τα αποτελέσματα δεν οφείλονται στο μέγεθος του παραθύρου. Τα αποτελέσματα από την επανάληψη αυτή παρέμειναν ποιοτικώς όμοια με αυτά που προέκυψαν από τη χρήση του παραθύρου των 15 ετών. Για τον λόγο αυτό δεν παρουσιάζονται.

Κατά το χρονικό διάστημα 1958-2001, οι συντελεστές συσχέτισης μεταξύ των 50^{ων} εκατοστημορίων που υπολογίστηκαν από τις χρονοσειρές HIPOCAS, HIPOCAS-I, HIPOCAS-II και τον δείκτη της ΔΒΑ, είναι -0,68, -0,66 και -0,66 αντιστοίχως.

Κατά την περίοδο 1982-2003 παρατηρήθηκε έντονα αρνητική συσχέτιση μεταξύ των ανώτερων εκατοστημορίων χρονοσειρών και του δείκτη της ΔΒΑ (Πίνακας 5.3). Η σχέση αυτή δεν ισχύει για την περίοδο 1982-1991 ακόμη και μετά την αναγωγή στην διάμεσο τιμή. Ο συσχετισμός μεταξύ των ανώτερων εκατοστημορίων του SURGE-II και του δείκτη ΔΒΑ εξαφανίζεται όταν τα δεδομένα διορθώνονται για τις διακυμάνσεις της ΜΣΘ.

Ομοίως, δεν βρέθηκε στατιστικώς σημαντική συσχέτιση μεταξύ του ανώτερου εκατοστημορίου του HIPOCAS-II και του δείκτη ΔΒΑ. Αυτό δείχνει ότι ο συσχετισμός των εκατοστημορίων που βρέθηκαν από τα δεδομένα παλιρροιογράφων με την χρονοσειρά SURGE-I μπορεί να αποδοθεί στις διακυμάνσεις της ΜΣΘ και του εποχικού κύκλου.

Μελετήθηκε επίσης και ο τρόπος με τον οποίο η αύξηση στο πλάτος του ετησίου κύκλου μετά το 1991 (Κεφάλαιο 4) μπορεί να επηρεάσει την ένταση στις παρατηρούμενες ακραίες τιμές. Αυτό έγινε αναζητώντας συσχετίσεις μεταξύ του πλάτους του ετήσιου κύκλου και των εκατοστημορίων από τις δύο χρονοσειρές SURGE μετά που διορθώθηκαν για τις διακυμάνσεις της ΜΣΘ. Το χρονικό διάστημα 1992-2003 παρατηρήθηκαν ισχυρές, αρνητικές συσχετίσεις μεταξύ των ανώτερων εκατοστημορίων της χρονοσειράς SURGE-1 και της έντασης του ετήσιου κύκλου της θαλάσσιας στάθμης κάθε έτους (Πίνακας 5.4). Η συσχέτιση αυτή οφείλεται στο ότι κατά τους χειμερινούς μήνες, που αναμένονται οι περισσότερες ακραίες τιμές στην μετεωρολογική συνιστώσα της θαλάσσιας στάθμης, ο ετήσιος κύκλος παρουσιάζει τις χαμηλότερες τιμές του. Έτσι, εάν η μετεωρολογική συνιστώσα παραμένει σταθερή όταν αυξάνεται η ένταση του ετήσιου κύκλου, στα δεδομένα θα παρουσιαστεί μειωμένη. Αυτό υποστηρίζεται και από το γεγονός ότι τα ανώτερα εκατοστημόρια της χρονοσειράς SURGE-II (που δεν περιέχουν εποχικές ανωμαλίες) δεν συσχετίζονται με το πλάτος του ετήσιου κύκλου (Πίνακας 5.4). Επομένως η ύπαρξη εποχικών ανωμαλιών στις χρονοσειρές των ακραίων τιμών ενδέχεται να εισάγει συστηματικά σφάλματα στην αναζήτηση συσχετίσεων με κλιματικούς δείκτες.

	Εκατοστημόριο	1982-1991	1992-2003	1982-2003
	Ετήσιο μέγιστο	0.07	-0.72	-0.31
SURGE-I	99,9°	0.28	-0.63	-0.33
	99°	0.19	-0.59	-0.36
	Ετήσιο μέγιστο	0.11	-0.48	-0.02
SURGE-II	99,9°	-0.02	-0.30	0.04
	99°	0.06	-0.30	-0.12

Πίνακας 5. 4: Συντελεστές συσχέτισης μεταξύ της φάσης του ετήσιου κύκλου της θαλάσσιας στάθμης και των εκατοστημορίων των δύο "SURGE" χρονοσειρών μετά που διορθώθηκαν για της διακυμάνσεις της ΜΣΘ. Οι στατιστικώς σημαντικοί συντελεστές παρουσιάζονται με πιο έντονη γραμματοσειρά.

Καθ' όλη την διάρκεια της εργασίας αυτής, τα 50^α ετήσια εκατοστημόρια χρησιμοποιήθηκαν στην αναγωγή των χρονοσειρών της θαλάσσιας στάθμης για την επίπτωση των διακυμάνσεων της ΜΣΘ. Ωστόσο, η επιρροή της ΔΒΑ στο κλίμα της Ευρώπης είναι ισχυρότερη κατά τους χειμερινούς μήνες, όταν δηλαδή οι θαλάσσιες καταιγίδες τείνουν να είναι ισχυρότερες. Έτσι, όταν για την αναγωγή της χρονοσειράς χρησιμοποιούνται τα 50^α ετήσια εκατοστημόρια, η επιρροή της ΔΒΑ δεν εξαλείφεται ολοκληρωτικά από τα δεδομένα. Ως αποτέλεσμα, ακόμα και μετά την διόρθωση για τις μεταβολές της ΜΣΘ, τα ανώτερα εκατοστημόρια των παλιρροιακών δεδομένων, και των χρονοσειρών SURGE-I, HIPOCAS και HIPOCAS-I, είναι συσχετισμένα με τον δείκτη της ΔΒΑ. Αφαιρώντας τις εποχικές ανωμαλίες από τις χρονοσειρές της στάθμης της θάλασσας, εξαλείφεται και η επίδραση της ΔΒΑ από τα ανώτερα εκατοστημόρια.

Εναλλακτικά, η ανάλυση των εκατοστημορίων θα μπορούσε να περιοριστεί μόνο για τους χειμερινούς μήνες. Με τον τρόπο αυτό η επιρροή του ΔΒΑ στα ανώτερα εκατοστημόρια θα μπορούσε να περιοριστεί, αφαιρώντας την εκατοστημόρια χρονοσειρά χρησιμοποιώντας το 50° εκατοστημόριο των χειμερινών δεδομένων κάθε έτους.

5.3.3 Στάθμες επαναφοράς και οι σχετικές περιόδοι επαναφοράς

Το Σχήμα 5.4α δείχνει πώς μεταβάλλεται ο προσδιορισμός της στάθμης επαναφοράς 100 ετών (100-year return level), Z_{100} , ως συνάρτηση της διάρκειας της μέσης καταιγίδας τ. Το σχήμα 5.4α προέκυψε από τα ωριαία δεδομένα της Σούδας. Η διάρκεια της μέσης καταιγίδας στο σχήμα, κυμαίνεται από 5 ώρες (δηλ. πολύ πιο σύντομη από μία μέση θύελλα) σε 150 ώρες (δηλαδή πολύ μακρύτερη από μία μέση καταιγίδα).

Όπως φαίνεται στο Σχήμα, η στάθμη επαναφοράς 100 ετών μεγιστοποιείται για διάρκεια καταιγίδας περίπου 50 ώρες, και μετά μειώνεται αργά. Ωστόσο, οι μεταβολές στην υπολογιζόμενη στάθμη επαναφοράς δεν είναι σημαντικές (περίπου 3cm), υποδηλώνοντας ότι η επιλογή της διάρκειας για την μέση καταιγίδα είναι δευτερεύουσας σημασίας στην ανάλυση. Στην παρούσα μελέτη, η διάρκεια των καταιγίδων ορίστηκε στις 60 ώρες, για να βρίσκεται σε συμφωνία με τους Tsimplis και Blackman (1997).

Σχήμα 5. 4: α) Οι στάθμες επιστροφής 100 ετών συναρτήσει της διάρκειας της καταιγίδας (αριστερά) και β) του πλήθους των r μεγαλύτερων καταιγίδων κάθε έτους (δεξιά).

Το Σχήμα 5.4β δείχνει τις στάθμες επαναφοράς 100 ετών όπως υπολογίστηκαν από τα δεδομένα της Σούδας συναρτήσει του αριθμού των ακραίων τιμών r που χρησιμοποιήθηκαν για κάθε έτος. Όπως φαίνεται στο Σχήμα, η στάθμη επαναφοράς 100 ετών παραμένει μεταξύ 49 και 44 cm. Επομένως η επιλογή του r δεν επηρεάζει σημαντικά τον υπολογισμό της στάθμης επαναφοράς. Η μεγαλύτερη επίδραση παρατηρείται στον υπολογισμό των επιπέδων εμπιστοσύνης όπου για τιμές του rμικρότερες του τρία, το όρια εμπιστοσύνης φτάνουν ακόμα και τα 20 cm. Στην παρούσα μελέτη, επιλέχθηκε r = 8, για λόγους συνέπειας με τους Tsimplis και Blackman (1997). Το μέγεθος των πιο ακραίων θαλάσσιων καταιγίδων κάθε έτους επηρεάζεται τόσο από τον εποχικό κύκλο όσο και από τις εποχικές ανωμαλίες στα δεδομένα. Το Σχήμα 5.5 απεικονίζει τη χρονική στιγμή της εμφάνισης των 8 μεγαλύτερων ανεξάρτητων ακραίων περιστατικών στα δεδομένα του παλιρροιογράφου, στις χρονοσειρές SURGE-I και SURGE-II και στις χρονοσειρές του μοντέλου το 1999.

Στο Σχήμα 5.5 φαίνεται ότι ενώ το πλάτος των ακραίων τιμών στα δεδομένα του παλιρροιογράφου και στις χρονοσειρές SURGE-I και SURGE-II είναι παρόμοια, η στιγμή εμφάνισης είναι πολύ διαφορετική. Αυτό συμβαίνει λόγω της επίδρασης του εποχικού κύκλου. Επίσης, σε μερικές περιπτώσεις οι υψηλότερες στάθμες που καταγράφτηκαν μέσα στο έτος στα δεδομένα του παλιρροιογράφου, και την χρονοσειρά SURGE-I, δεν συνέβησαν κατά την διάρκεια των χειμερινών μηνών. Ο χρόνος της εμφάνισης των πιο ακραίων τιμών στο μοντέλο βρίσκεται σε συμφωνία ανάμεσα στις χρονοσειρές SURGE-I και SURGE-II.

Σχήμα 5. 5: Οι οκτώ μεγαλύτερες και ανεξάρτητες θαλάσσιες στάθμες για το έτος 1999 όπως λήφθηκαν από τα δεδομένα του α) παλιρροιογράφου, β) την χρονοσειρά SURGE-I, γ) την SURGE-II και δ) το μοντέλο HIPOCAS.

Το πλάτος στις στάθμες επαναφοράς που υπολογίστηκαν από τα δεδομένα του παλιρροιογράφου και τις χρονοσειρές SURGE-I και SURGE-II, για την χρονική περίοδο 1982-2003, κυμαίνεται μεταξύ 43-45cm (Πίνακας 5.5). Φαίνεται επομένως, ότι στην περιοχή αυτή και όταν η διάρκεια των δεδομένων είναι αρκετά μεγάλη, η παρουσία παλιρροϊκών και εποχικών σημάτων στις χρονοσειρές δεν επηρεάζει τους υπολογισμούς της στάθμης επαναφοράς.

Οι στάθμες επαναφοράς που προσδιορίστηκαν από τις χρονοσειρές αυτές, δείχνουν μια συνεχή αύξηση περίπου 10 cm στο πλάτος τους όταν η ανάλυση γίνεται σε συγκεκριμένα χρονικά διαστήματα (δηλ. 1982-1989, 1990-1996, 1997-2003). Η αύξηση αυτή είναι στατιστικώς σημαντική. Τα υψηλότερα επίπεδα εμπιστοσύνης που σχετίζονται με τον υπολογισμό του Z_{100} για την περίοδο 1982-1989, είναι χαμηλότερα σε σχέση με το χαμηλότερο επίπεδο εμπιστοσύνης του Z_{100} που υπολογίστηκε για την περίοδο 1997-2003.

Η αύξηση αυτή των σταθμών επαναφοράς όταν κινείται κανείς από τις αρχές του '80 προς το 2000, είναι συνδεδεμένη με αύξηση στην παράμετρο σ και μείωση στην παράμετρο κ. Παρόλο που η διάρκεια των δεδομένων είναι μόλις 7-8 έτη, οι υπολογισμοί των σταθμών επαναφοράς διαφέρουν μόνο μερικά εκατοστά μεταξύ τους (Πίνακας 5.5).

		Z_{100}	Z_{50}	μ	σ	k
	1982-2003	45 (42-49)	44 (41-47)	29.5 (0.8)	4.99 (0.38)	0.18 (0.047)
ολοι	1982-1989	38 (34-42)	37 (34-41)	27.4 (1.1)	3.80 (0.45)	0.24 (0.086)
oddr	1990-1996	48 (41-56)	46 (40-52)	29.2 (1.5)	5.18 (0.73)	0.11 (0.079)
Παλ	1997-2003	51 (41-66)	48 (40-60)	29.8 (1.6)	5.46 (1.07)	0.07 (0.13)
	1982-2003	45 (42-48)	43 (40-46)	28.9 (0.9)	5.34 (0.37)	0.21 (0.04)
GE-I	1982-1989	36 (32-40)	35 (32-39)	27.3 (1.0)	3.50 (0.47)	0.33 (0.11)
URG	1990-1996	46 (39-55)	44 (38-51)	27.1 (1.6)	5.41 (0.76)	0.12 (0.08)
	1997-2003	55 (42-74)	51 (40-66)	28.4 (1.8)	6.01 (1.24)	0.02 (0.14)
SURGE-II	1982-2003	43 (40-46)	44 (41-46)	27.1 (0.8)	5.03 (0.35)	0.18 (0.04)
	1982-1989	34 (30-38)	33 (30-37)	25.7 (0.96)	3.39 (0.45)	0.33 (0.11)
	1990-1996	38 (32-45)	36 (32-42)	24.5 (1.3)	4.18 (0.65)	0.17 (0.10)
	1997-2003	50 (40-65)	47 (38-59)	27.4 (1.7)	5.67 (1.08)	0.06 (0.12)

Πίνακας 5. 5: Στάθμες επιστροφής όπως υπολογίστηκαν από τα δεδομένα του παλιρροιογράφου, και τις χρονοσειρές SURGE-I και SURGE-II.

Οι εκτιμήσεις της εκατονταετούς στάθμης επαναφοράς για την περίοδο 1982-2003, από τα δεδομένα παλιρροιογράφων και τις χρονοσειρές SURGE-I και SURGE-ΙΙ μετά την αφαίρεση της διαμέσου τιμής κάθε έτους από τις χρονοσειρές, είναι 45-49cm. Όλες δείχνουν μία μεγαλύτερη και σημαντική αύξηση από το 1980 μέχρι
σήμερα (Πίνακας 5.6). Η αύξηση αυτή είναι μικρότερη στις εκτιμήσεις που έγιναν από τα δεδομένα παλιρροιογράφων και την χρονοσειρά SURGE-I (25-26cm) και πιο έντονη από την χρονοσειρά SURGE-II (50cm).

Η αύξηση της παραμέτρου σ είναι παρόμοια με αυτή που φαίνεται στον Πίνακα 5.5, αλλά είναι εντονότερη η αύξηση του k. Οι εκτιμήσεις για το k αλλάζουν πρόσημο είτε στο διάστημα 1990-1996, είτε στο 1997-2003, και γίνονται αρνητικές. Στις περιπτώσεις που το k αλλάζει πρόσημο εντός του επιπέδου εμπιστοσύνης, το σφάλμα στην στάθμη επαναφοράς αυξάνεται κατά μία τάξη μεγέθους, αλλά η αντίστοιχη αύξηση στην εκτίμηση της στάθμης επαναφοράς είναι κι αυτή της τάξης μεγέθους δεκατόμετρων και είναι φανερή σε όλες τις χρονοσειρές. Φαίνεται λοιπόν ότι οι υπερετήσιες διακυμάνσεις της ΜΣΘ παίζουν πιο σημαντικό ρόλο από τις παλιρροϊκές και εποχικές μεταβολές στον υπολογισμό της στάθμης επαναφοράς.

		Z_{100}	Z_{50}	μ	σ	k
·p.	1982-2003	49 (43-56)	46 (41-52)	27.8 (0.8)	4.80 (0.53)	0.02 (0.07)
loioc	1982-1989	36 (32-41)	35 (32-40)	26.7 (1.0)	3.49 (0.49)	0.24 (0.11)
τλιρι	1990-1996	51 (39-68)	47 (37-61)	27.5 (1.5)	4.82 (1.05)	-0.01 (0.14)
Ш	1997-2003	59 (44-82)	54 (42-71)	29.1 (1.7)	5.72 (1.26)	-0.05 (0.13)
	1982-2003	47 (42-53)	44 (40-49)	27.2 (0.9)	5.05 (0.49)	0.08 (0.06)
GE-I	1982-1989	37 (34-41)	36 (33-40)	27.2 (1.01)	3.72 (0.41)	0.28 (0.08)
SUR	1990-1996	47 (38-60)	44 (36-54)	25.6 (1.5)	4.97 (0.91)	0.03 (0.12)
•1	1997-2003	63 (44-95)	57 (42-80)	28.0 (1.9)	6.32 (1.52)	-0.08 (0.16)
	1982-2003	45 (40-52)	42 (38-48)	25.4 (0.8)	4.75 (0.53)	0.04 (0.07)
GE-I	1982-1989	35 (32-39)	34 (31-38)	25.6 (1.0)	3.59 (0.41)	0.28 (0.09)
URC	1990-1996	39 (31-51)	37 (30-47)	23.5 (1.2)	4.04 (0.85)	0.08 (0.15)
Ś	1997-2003	82 (47-159)	69 (44-119)	26.3 (2.1)	6.73 (2.05)	-0.23 (0.20)

Πίνακας 5. 6: Στάθμες επιστροφής όπως υπολογίστηκαν από τα δεδομένα του παλιρροιογράφου, και τις χρονοσειρές SURGE-I και SURGE-II μετά την διόρθωσή τους για τις διακυμάνσεις της ετήσιας ΜΣΘ.

Οι εκατονταετής στάθμες επαναφοράς, που υπολογίστηκαν από το μοντέλο HIPOCAS είναι 42cm (Πίνακας 5.7) για την περίοδο 1982-2001, 1-7cm δηλαδή χαμηλότερες από τα αποτελέσματα που βρίσκουμε εάν χρησιμοποιηθούν οι 6 χρονοσειρές που δημιουργήθηκαν από τα πραγματικά δεδομένα της Σούδας.

Είδαμε σε αυτήν την παράγραφο ότι οι υπερετήσιες μεταβολές της ΜΣΘ οφείλονται σε μεταβολές της πυκνότητας του νερού (Σχήμα 5.3α). Έτσι, οι στάθμες επαναφοράς που βρέθηκαν από το μοντέλο HIPOCAS είναι συγκρίσιμες με τα

αποτελέσματα που παίρνουμε από τις ανηγμένες στη διάμεσο τιμή χρονοσειρές. Οι υπολογισμοί για τις στάθμες επαναφοράς 100 ετών μετά την κατάτμηση των χρονοσειρών, είναι μεταξύ 39-41cm, με αξιοσημείωτες εξαιρέσεις για την περίοδο 1973-1982 (31cm) και την περίοδο 1990-1996 (48cm).

Η σύγκριση μεταξύ των εκτιμήσεων της στάθμης επαναφοράς από δεδομένα διάρκειας 7-8 ετών που βρέθηκαν από το μοντέλο HIPOCAS (Πίνακας 5.7) και από τα δεδομένα παλιρροιογράφων της Σούδας (Πίνακας 5.6) πρέπει να γίνει με προσοχή γιατί τα αντίστοιχα στατιστικά σφάλματα είναι σχετικά μεγάλα. Τα Z_{100} που υπολογίστηκαν χρησιμοποιώντας το μοντέλο HIPOCAS και τα δεδομένα παλιρροιογράφων είναι στατιστικώς ίδια, και κυμαίνονται μεταξύ 35-39cm και 39-51cm για τις αντίστοιχες περιόδους 1982-1989 και 1990-1996. Από την άλλη, το μοντέλο δεν μπορεί να απεικονίσει την μεγάλη αύξηση στο Z_{100} όπως υπολογίστηκε από τα δεδομένα παλιρροιογράφων για την περίοδο 1997-2003.

Για να επαληθευθεί εάν αυτό οφείλεται στο ότι μοντέλο εκτείνεται μέχρι το 2001, οι ανηγμένες στη διάμεσο τιμή χρονοσειρές περιορίστηκαν στο χρονικό διάστημα 1997-2001, και υπολογίστηκαν εκ νέου οι εκατονταετείς στάθμες επαναφοράς. Το Z_{100} όπως υπολογίστηκε από τα δεδομένα του παλιρροιογράφου και τις χρονοσειρές SURGE-I και SURGE-II βρέθηκε 69cm, 96cm και 73cm, αντιστοίχως. Το σχετικό επίπεδο εμπιστοσύνης ήταν περίπου 45cm, δηλ. υψηλότερο από το Z_{100} που υπολογίστηκε από το μοντέλο για το ίδιο χρονικό διάστημα.

	Z_{100}	Z_{50}	μ	σ	k
1958-2001	40 (37-43)	38 (35-40)	23.1 (0.5)	4.30 (0.28)	0.08 (00.4)
1958-1981	38 (34-42)	36 (33-39)	23.2 (0.7)	4.12 (0.35)	0.12 (0.05)
1982-2001	42 (37-49)	39 (35-45)	22.7 (0.8)	4.44 (0.49)	-0.01 (0.07)
1958-1965	40 (32-53)	37 (31-47)	21.6 (1.2)	4.12 (0.79)	0.01 (0.12)
1966-1972	41 (35-50)	39 (33-46)	24.1 (1.3)	4.58 (0.71)	0.09 (0.09)
1973-1981	31 (28-35)	31 (28-34)	23.5 (0.9)	3.22 (0.42)	0.31 (0.10)
1982-1989	39 (32-50)	37 (31-45)	22.5 (1.1)	4.00 (0.74)	0.05 (0.12)
1990-1996	48 (36-65)	43 (34-57)	22.6 (1.5)	4.89 (1.01)	-0.05 (0.12)
1997-2001	41 (33-54)	39 (31-49)	22.7 (1.6)	4.43 (0.89)	0.04 (0.12)

Πίνακας 5. 7: Στάθμες επιστροφής όπως υπολογίστηκαν από το μοντέλο HIPOCAS.

Οι χρονοσειρές που δημιουργήθηκαν από τα δεδομένα του παλιρροιογράφου περιέχουν κενά, έτσι ενδέχεται να μην έχουν καταγραφεί μερικά από τα ακραία περιστατικά. Για την αντιμετώπιση αυτού του γεγονότος, επιλέχτηκαν από το μοντέλο οι 8 μεγαλύτερες καταιγίδες κάθε έτους. Ο έλεγχος, έγινε για να εξακριβωθεί εάν κάθε μία από αυτές τις θαλάσσιες καταιγίδες καταγράφθηκε ταυτόχρονα από τον παλιρροιογράφο. Σύμφωνα με το μοντέλο, κατά τις περιόδους 1982-1989, 1990-1996

και 1997-2001, τρεις, εννιά και δώδεκα από τις πιο ακραίες θαλάσσιες καταιγίδες (δηλ. 5%, 15% και 30% επί του συνολικού πλήθους των καταιγίδων) δεν περιελήφθησαν στα δεδομένα των παλιρροιογράφων, άρα ούτε στον υπολογισμό των σταθμών επαναφοράς.

Έτσι, υπολογίστηκαν εκ νέου οι εκατονταετείς στάθμες επαναφοράς, εξαιρώντας τις τιμές του μοντέλου HIPOCAS που αντιστοιχούν στα κενά των δεδομένων των παλιρροιογράφων. Με τον τρόπο αυτόν, μπορέσαμε να κάνουμε άμεση συγκρίση μεταξύ του μοντέλου HIPOCAS και των μετρήσεων των παλιρροιογράφων. Έτσι, οι εκατονταετείς στάθμες επαναφοράς για τις περιόδους 1982-2001, 1982-1989, 1990-1996 και 1997-2003 βρέθηκαν να είναι 39cm (34-45), 38cm (31-48), 37cm (34-42) και 42cm (33-57) αντιστοίχως. Οι αριθμοί μέσα στις παρενθέσεις αντιστοιχούν στο 95% των επιπέδων εμπιστοσύνης σε εκατοστά.

Οι υπολογισμοί για τις στάθμες επαναφοράς 100 ετών για το χρονικό διάστημα 1990-1996, που βρέθηκαν από το μοντέλο HIPOCAS βρίσκονται περίπου 10cm χαμηλότερα από τους υπολογισμούς πριν εισάγουμε τα κενά. Αυτό σημαίνει ότι κατά το χρονικό αυτό διάστημα, οι στάθμες επαναφοράς που βρέθηκαν από τα δεδομένα του παλιρροιογράφου και τις χρονοσειρές SURGE μπορεί να είναι υποτιμημένες.

Για να εξετάσουμε την ικανότητα του μοντέλου να προβλέπει τα ακραία περιστατικά (δηλ. εάν ένα ακραίο περιστατικό, το οποίο παρουσιάζεται στα δεδομένα των παλιρροιογράφων, έχει προβλεφθεί ως ακραίο γεγονός και από το μοντέλο), έγινε ο παρακάτω έλεγχος.

Για το χρονικό διάστημα 1982-2001, επιλέχθηκαν από την χρονοσειρά SURGE-Ι οι χρονικές στιγμές εμφάνισης των οκτώ μεγαλύτερων θαλάσσιων καταιγίδων κάθε έτους, ενώ τα πλάτη των σταθμών επαναφοράς εκτιμήθηκαν από το μοντέλο. Οι υπολογισμοί για τις στάθμες επαναφοράς ήταν χαμηλότεροι κατά 10 cm περίπου από τις τιμές που δίνονται στον Πίνακα 5.7. Το μοντέλο όμως μπορεί να είναι ανακριβές στον ακριβή χρονικό προσδιορισμό της ακραίας τιμής κατά την διάρκεια μιας θύελλας. Έτσι, η διαδικασία επαναλήφθηκε.

Αυτή την φορά, η δειγματοληψία έγινε βρίσκοντας την μέγιστη τιμή του μοντέλου εντός ενός παραθύρου 48 ωρών, με κέντρο τον ακριβή χρόνο εμφάνισης της ακραίας τιμής (η εμφάνιση των ακραίων τιμών προσδιορίστηκε πάλι από την SURGE-I). Τα αποτελέσματα παρουσιάζονται στον Πίνακα 5.8. Συγκρίνοντας τους Πίνακες 5.7 και 5.8 γίνεται φανερό ότι το μοντέλο δεν μπορεί να προβλέψει τον ακριβή χρόνο εμφάνισης των πιο ακραίων τιμών της μετεωρολογικής συνιστώσας της θαλάσσιας στάθμης. Ειδικά στο διάστημα 1990 – 1996, η εκατονταετής στάθμη επιστροφή στον Πίνακα 5.8 είναι κατά 18 cm μικρότερη από την αντίστοιχη τιμή του Πίνακα 5.7.

Σχήμα 5. 6: α) Διαφορές κατά αύξουσα σειρά μεταξύ των ακραίων τιμών της SURGE-I και του μοντέλου. Η συνεχής γραμμή αναπαριστά τις διαφορές όταν οι ακραίες τιμές και τις δύο χρονοσειρές αντιστοιχούν στην ίδια χρονική στιγμή. Στις διαφορές που αποτυπώνονται με διακεκομμένη γραμμή, οι ακραίες τιμές από το HIPOCAS αντιστοιχούν στη μέγιστη τιμή του, εντός ενός παραθύρου διάρκειας 48 ωρών. Ως κέντρο του παράθυρου επιλέγονταν η στιγμή όπου η ακραία στάθμη καταγράφονταν στην SURGE-I. β) Διάγραμμα διασποράς των διαφορόν που απεικονίζονται στο διάγραμμα "α" μετά την εισαγωγή του παραθύρου, σε συνάρτηση με το μέγεθος των ακραίων συμβάντων. Το μέγεθος των συμβάντων στον άξονα "x" προσδιορίστηκε από την χρονοσειρά SURGE-I. γ) Διαφορές μεταξύ των ταξινομημένων κατά μέγεθος ακραίων τιμών της SURGE-I μείον τις αντίστοιχες ταξινομημένες τιμές του ΗΙΡΟCAS. Σε όλες τις περιπτώσεις οι ακραίες τιμές αντιστοιχούν στις οκτώ μεγαλύτερες ανά έτος.

Επιπλέον, το Σχήμα 5.6α δείχνει τις ταξινομημένες κατά αύξουσα σειρά διαφορές μεταξύ των ακραίων τιμών που βρέθηκαν από την χρονοσειρά SURGE-I και αυτών που προβλέφθηκαν από το μοντέλο πριν (διακεκομμένη γραμμή) και μετά (διάστικτη γραμμή) την εφαρμογή του παραθύρου των 48 ωρών. Πριν την εφαρμογή του

	Z_{100}	Z_{50}	μ	σ	k
1982-2001	37 (34-39)	36 (34-38)	23.5 (1.1)	6.15 (0.29)	0.39 (0.04)
1982-1989	31 (28-34)	31 (28-34)	24.1 (1.3)	4.46 (0.59)	0.62 (0.12)
1990-1996	30 (26-33)	29 (26-33)	22.1 (1.5)	4.85 (0.58)	0.62 (0.10)
1997-2001	42 (33-56)	40 (32-52)	22.4 (2.3)	6.44 (1.16)	0.18 (0.13)

παραθύρου, μόνο 10 από τα 160 περιστατικά που προβλέφθηκαν από το μοντέλο ήταν υψηλότερα από τις αντίστοιχες τιμές της SURGE-I..

Πίνακας 5. 8: Στάθμες επιστροφής που υπολογίστηκαν από το μοντέλο όταν οι χρονικές στιγμές που συνέβησαν οι ακραίες καταιγίδες προσδιορίστηκαν από την χρονοσειρά SURGE-I. Οι στάθμες που επιλέχθηκαν αντιστοιχούν στην μέγιστη τιμή του HIPOCAS, εντός ενός παραθύρου διάρκειας 48 ωρών το οποίο είχε ως κέντρο την στιγμή όπου η ακραία στάθμη καταγράφονταν στην SURGE-I.

Μετά την εισαγωγή του παραθύρου, η κατάσταση είναι παρόμοια. Ο αριθμός των περιστατικών που εμφανίζονται υψηλότερα στο μοντέλο από ότι στην SURGE-I αυξάνεται περίπου στο 20. Τα αποτελέσματα αυτά δείχνουν ότι το μοντέλο υποεκτιμά τις πραγματικές ακραίες τιμές, και δεν υπολογίζει τον ακριβή χρόνο εμφάνισης τους.

Επιπλέον, το διάγραμμα διασποράς του Σχήματος 5.6β απεικονίζει στον άξονα των "y" τη διαφορά μεταξύ των οκτώ μεγαλύτερων παρατηρήσεων ανά έτος, από την χρονοσειρά SURGE-I, και των σταθμών που προβλέφθηκαν από το μοντέλο μετά την εφαρμογή του 48ωρου παράθυρου. Ο άξονας των "x" αναπαριστά τις οκτώ υψηλότερες στάθμες ανά έτος από την χρονοσειρά SURGE-I. Όπως φαίνεται από το Σχήμα, δεν φαίνεται να υπάρχει κάποια σχέση μεταξύ του μεγέθους των ακραίων τιμών και του ποσού που το μοντέλο τις υποεκτιμά.

Γενικά, η ένταση των πιο ακραίων θαλάσσιων καταιγίδων που εμφανίζονται στην χρονοσειρά SURGE-I και στην χρονοσειρά του μοντέλου, συγκρίθηκε και με τον κάτωθι τρόπο. Τα οκτώ μεγαλύτερα περιστατικά κάθε έτους επιλέχτηκαν και από τις δύο χρονοσειρές. Διατάχθηκαν κατά αύξουσα σειρά και υπολογίστηκαν οι διαφορές τους (Σχήμα 5.6γ). Με τον τρόπο αυτόν η πιο έντονη καταιγίδα στην χρονοσειρά SURGE-I συγκρίνεται με την μεγαλύτερη τιμή που προβλέπεται από το μοντέλο, το 2° μεγαλύτερο της χρονοσειράς SURGE-I συγκρίνεται με το 2° μεγαλύτερο του μοντέλου κτλ. Με τον τρόπο αυτόν η σύγκριση δεν γίνεται κατ' ανάγκη μεταξύ ίδιων περιστατικών. Μια τέτοια σύγκριση αποκαλύπτει ότι οι θαλάσσιες καταιγίδες που χρησιμοποιούνται για τον υπολογισμό των σταθμών επαναφοράς από την χρονοσειρά SURGE-I είναι συνεχώς υψηλότερες από αυτές του μοντέλου, ακόμη και αν μερικές από τις πιο ακραίες θύελλες δεν μετρήθηκαν από τον παλιρροιογράφο.

5.4 Συμπερασματικά σχόλια

Οι διακυμάνσεις του εποχιακού κύκλου είναι ικανές να εισαγάγουν συστηματικά σφάλματα στον προσδιορισμό των συστηματικών γραμμικών τάσεων που προκύπτουν από τα δεδομένα θαλάσσιας στάθμης (Plag και Tsimplis 1995; Zerbini *et al.*, 1996). Στο Κεφάλαιο αυτό επιβεβαιώθηκε ότι και οι μελέτες για τις ακραίες τιμές της στάθμης της θάλασσας μπορούν επίσης να επηρεαστούν από μεταβολές στην εποχικότητα.

Έτσι, όταν δεν λαμβάνονται υπόψιν οι μεταβολές στον εποχικό κύκλο της θαλάσσιας στάθμης υπεισέρχονται συστηματικά σφάλματα σε τριών ειδών μελέτες που αφορούν τις ακραίες τιμές. Πρώτον, στην εκτίμηση των γραμμικών τάσεων, που υπολογίζονται από τα υψηλότερα εκατοστημόρια. Δεύτερον, στην συσχέτιση μεταξύ των μεγαλύτερων εκατοτημορίων και τους κλιματικούς δείκτες. Και τρίτον, ενδέχεται να επηρεαστεί ο υπολογισμός των σταθμών επαναφοράς.

Η συσχέτιση μεταξύ της ΔΒΑ και των υψηλότερων εκατοστημορίων από τα δεδομένα του παλιρροιογράφου είναι στατιστικώς μη σημαντική όταν τα δεδομένα θαλάσσιας στάθμης διορθώνονται για τις διακυμάνσεις της ΜΣΘ και του εποχικού κύκλου. Επομένως, το μέγεθος των θαλάσσιων καταιγίδων δεν συσχετίζεται με τη ΔΒΑ.

Μετά την αναγωγή των ακραίων τιμών για την επίδραση των διακυμάνσεων της ΜΣΘ, βρέθηκαν σημαντικές συστηματικές ανοδικές τάσεις στα 99,9^α εκατοστημόρια του παλιρροιογράφου και στα ετήσια μέγιστα της SURGE-II, για την περίοδο 1982-2003. Επίσης, στατιστικά σημαντικές ανοδικές τάσεις βρέθηκαν στις ακραίες τιμές του μοντέλου HIPOCAS μετά που λήφθησαν υπόψιν οι διακυμάνσεις της ΜΣΘ και του εποχικού κύκλου.

Οι στάθμες επαναφοράς από τα 22 έτη δεδομένων της Σούδας και τις χρονοσειρές SURGE-I και SURGE-II βρίσκονται σε συμφωνία και πριν και μετά την διόρθωση τους για τις μεταβολές της ΜΣΘ. Η ένταση των ακραίων τιμών θαλάσσιας στάθμης που καταγράφτηκαν από τον παλιρροιογράφο της Σούδας στις αρχές της δεκαετίας του 1990, εμφανίζεται μειωμένη. Αυτό οφείλεται στην ελάττωση της ΜΣΘ, που είναι συνδεδεμένη με την ΕΜΤ.

Όταν η ανάλυση γίνεται για χρονικά διαστήματα μικρότερης διάρκειας (7- 10 έτη), οι μεταβολές της ΜΣΘ επηρεάζει σε μεγαλύτερο βαθμό τον υπολογισμό των περιόδων επαναφοράς. Ωστόσο, και οι 6 χρονοσειρές που κατασκευάστηκαν από τα δεδομένα παλιρροιογράφων στης Σούδας έδειξαν ότι όταν χρησιμοποιηθούν πιο πρόσφατα δεδομένα, υπάρχει μία αύξηση στις εκτιμούμενες στάθμες επαναφοράς. Η αύξηση αυτή είναι πιο έντονη όταν οι χρονοσειρές έχουν αναχθεί στην ετήσια ΜΣΘ και των διακυμάνσεων του εποχικού κύκλου.

Η εργασία αυτή βασίστηκε σε έναν μόνο παλιρροιογράφο που βρίσκεται στο Αιγαίο Πέλαγος. Στην περιοχή του Αιγαίου, οι πιο έντονες θαλάσσιες καταιγίδες είναι μικρότερες συγκριτικά με αυτές που εμφανίζονται σε άλλες περιοχές της Μεσογείου. Αυτό υπογραμμίζει την αναγκαιότητα να κατανοηθεί η σχέση μεταξύ του εποχικού κύκλου της στάθμης της θάλασσας και των εταβολών του κλίματος σε ολόκληρη την λεκάνη της Μεσογείου.

Στο μοντέλο HIPOCAS, η ένταση των ακραίων θαλάσσιων τιμών εμφανίζεται μειωμένη σε σχέση με τις παρατηρήσεις του παλιρροιογράφου. Αυτό συμβαίνει διότι το μοντέλο δημιουργήθηκε από μετεωρολογικά δεδομένα 6ωρης δειγματοληψίας. Έτσι οι τιμές του εμφανίζονται ελαττωμένες όταν συγκρίνονται με τις αντίστοιχες ωριαίες καταγραφές του παλιρροιογράφου.

Επίσης, οι στάθμες επαναφοράς που υπολογίζονται από αυτό είναι αρκετά χαμηλότερες από αυτές που υπολογίζονται από τα δεδομένα παλιρροιογράφων και τις χρονοσειρές SURGE. Η ασυμφωνία αυτή μεταξύ των προβλέψεων του μοντέλου και των παρατηρήσεων των παλιρροιογράφων εμφανίζεται ως τυχαίο σφάλμα και δεν φαίνεται να συνδέεται με την ένταση των ακραίων περιστατικών.

Όπως αναφέρθηκε σε προηγούμενα Κεφάλαια, η αναγκαιότητα του να λαμβάνονται υπόψιν οι μεταβολές του εποχικού κύκλου σε μελέτες που αφορούν τις μεταβολές του κλίματος θα αναδειχθεί στα πλαίσια της διατριβής με δύο τρόπους. Στο Κεφάλαιο αυτό περιγράφτηκε το πως επηρεάζουν οι μεταβολές του εποχικού κύκλου την μελέτη των ακραίων τιμών. Αντίστοιχα, στο επόμενο Κεφάλαιο, αναζητάται η εποχικότητα των συστηματικών γραμμικών τάσεων της θαλάσσιας στάθμης.

ΚΕΦΑΛΑΙΟ 6: ΕΠΟΧΙΚΟΤΗΤΑ ΣΤΙΣ ΣΥΣΤΗΜΑΤΙΚΕΣ ΤΑΣΕΙΣ ΤΗΣ ΘΑΛΑΣΣΙΑΣ ΣΤΑΘΜΗΣ ΣΤΗ ΜΕΣΟΓΕΙΟ

6.1 Εισαγωγή

Τα τελευταία χρόνια έχουν γίνει πολλές μελέτες για τις συστηματικές τάσεις της θαλάσσιας στάθμης που παρατηρούνται στην Λεκάνη της Μεσογείου (βλέπε για μία επισκόπηση Tsimplis et al., 2006). Μεταξύ των αρχών της δεκαετίας του 1960 και του 1990, η στάθμη της θάλασσας στη Λεκάνη της Μεσογείου μειωνόταν με ρυθμούς έως και -1,2mm/yr (Tsimplis et al., 2005). Η μείωση αυτή της ΜΣΘ οφείλεται κυρίως στην επίδραση της ΔΒΑ στην ατμοσφαιρική πίεση Tsimplis and Josey, 2001; Tsimplis et al., 2005) και τη πυκνότητα των επιφανειακών και των υδάτων ενδιάμεσου βάθους (intermediate waters) (Tsimplis and Rixen, 2002). Η ΔΒΑ επηρεάζει το κλίμα της Ευρώπης κυρίως μεταξύ Δεκεμβρίου και Μαρτίου (Hurrell, 1996). Αυτό συνεπάγεται ότι αυτές οι συστηματικές τάσεις είναι συσχετισμένες με αλλαγές στην στάθμη της θάλασσας που συνέβησαν κατά την διάρκεια της χειμερινής περιόδου.

Στις αρχές του 1990, η στάθμη της θάλασσας στην περιοχή αυξήθηκε αλματωδώς λόγω του συνδυασμένου αποτελέσματος πολλών μηχανισμών συμπεριλαμβανομένου και της ανόδου της θερμοκρασίας της επιφάνειας της θάλασσας (Cazenave *et al.*, 2002). Στο Δυτικό μέρος της λεκάνης, οι συστηματικές τάσεις δημιουργούνται από αλλαγές στη εισροή υδάτων από τον πορθμό του Γιβραλτάρ (Ross *et al.*, 2000). Στην Ανατολική Μεσόγειο, οι συστηματικές τάσεις στην στάθμη της θάλασσας στο Αιγαίο και την Αδριατική επηρεάζονται από μεταβολές της θερμοάλιος συνιστώσας (Tsimplis and Rixen, 2002) και στην πρόσκαιρη αντικανονική θαλάσσια μεταβολή της Ανατολικής Μεσογείου (Tsimplis *et al.*, 2005).

Οι εκτιμήσεις των γραμμικών τάσεων για την δεκαετία του 1990 είναι ευαίσθητες όσον αφορά την συγκεκριμένη περίοδο που μελετάται και την τοποθεσία των παλιρροιογράφων που χρησιμοποιούνται. Για παράδειγμα, από το 1993 έως το 1999, οι εκτιμήσεις της παράκτιας στάθμης της θάλασσας υποδεικνύουν ότι στις περισσότερες περιοχές της Ανατολικής Μεσογείου αυξανόταν με ρυθμούς 6 έως 44 mm/yr (Vigo *et al.*, 2005). Σε άλλη μελέτη για την Ανατολική Μεσόγειο (Tsimplis *et al.*, 2005) οι συστηματικές τάσεις που υπολογίστηκαν για την περίοδο 1993-2001 είναι χαμηλότερες και κυμαίνονται από 5 έως 10 mm/yr. Η ασυμφωνία αυτή μεταξύ των 2 μελετών δικαιολογείται αφού μετά το 1999 έχει τεκμηριωθεί μια αιφνίδια

μείωση στις συστηματικές τάσεις της στάθμης της θάλασσας (Vigo *et al.*, 2005; Fegnolio-Mark, 2002).

Οι προαναφερθείσες εκτιμήσεις των συστηματικών τάσεων υπολογίστηκαν χρησιμοποιώντας ολόκληρες τις χρονοσειρές της στάθμης της θάλασσας. Όμως, στο προηγούμενο κεφάλαιο είδαμε ότι, οι διακυμάνσεις στη χειμερινή στάθμη της θάλασσας πρέπει να λαμβάνονται υπόψιν στις μελέτες αποτίμησης της αλλαγής του κλίματος. Ειδικότερα, αφού τα ακραία καιρικά φαινόμενα συμβαίνουν το χειμώνα, η παράκτια επικινδυνότητα θα είναι μεγαλύτερη εάν η άνοδος της στάθμης της θάλασσας περιγράφεται κυρίως κατά την διάρκεια του χειμώνα, αντί να είναι ομοιόμορφη κατά την διάρκεια όλου του έτους (Tsimplis *et al.*, 2006).

Το παρόν κεφάλαιο μελετά εάν οι αλλαγές στη ΜΣΘ είναι ομοιόμορφες κατά την διάρκεια του έτους ή εκδηλώνονται κυρίως κατά τη χειμερινή περίοδο. Χρησιμοποιήθηκαν μετρήσεις από παλιρροιογράφους της Μεσογείου για την σύγκριση γραμμικών τάσεων υπολογισμένων για τους χειμερινούς μήνες (Δεκέμβριος-Μάρτιος), με τις γραμμικές τάσεις που εκτιμήθηκαν για το υπόλοιπο έτος (Απρίλιος-Νοέμβριος). Επίσης, ποσοτικοποιείται η επίδραση της ΔΒΑ στις παρατηρούμενες χειμερινές γραμμικές τάσεις.

6.2 Μετρήσεις και μεθοδολογία

Για τον προσδιορισμό του κατά πόσο οι διακυμάνσεις της ΜΣΘ στη Μεσόγειο εκφράζονται ως σταθερές μεταβολές στην στάθμη της θάλασσας κατά την διάρκεια του έτους, χρησιμοποιήθηκαν μηνιαία δεδομένα παλιρροιογράφων. Οι παρατηρήσεις για την στάθμη της θάλασσας ελήφθησαν από τη βάση δεδομένων του Permanent Service for Mean Sea Level (PSMSL) (Woodworth and Player, 2003). Αρχικά τα δεδομένα χωρίστηκαν σε 2 χρονικά διαστήματα, συγκεκριμένα 1960-1992 και 1992-1999. Αυτό έγινε διότι η περίοδος μετά το 1960 και μέχρι τις αρχές του 1990 είναι συνυφασμένη με μείωση της στάθμης της Μεσογείου, ενώ την περίοδο μεταξύ 1992-1999 η στάθμη της θάλασσας στην περιοχή είχε ανοδικές τάσεις (π.χ. Vigo *et al.*, 2005).

Στην ανάλυση συμπεριελήφθησαν μόνο δεδομένα παλιρροιογράφων που εκπλήρωναν τα παρακάτω δύο κριτήρια. Πρώτον, τα δεδομένα έπρεπε να είναι διορθωμένα για τυχόν αλλαγές στα υψόμετρα αναφοράς τους (datum changes). Έπρεπε δηλαδή να ανήκουν στη βάση δεδομένων "revised level reference" (rlr) του PSMSL. Έπειτα, οι παλιρροιογράφοι που είναι τοποθετημένοι σε περιοχές όπου οι εκτιμήσεις των γραμμικών τάσεων μπορεί να περιέχουν συστηματικά σφάλματα λόγω κατακόρυφων μετακινήσεων της στεριάς, όπως η Βενετία (Woodworth, 2003), εξαιρέθηκαν από την ανάλυση.

Τα παραπάνω κριτήρια τα πληρούσαν οκτώ παλιρροιογράφοι (Σχήμα 6.1). Το επί τοις εκατό της πληρότητας των παρατηρήσεων, μεταξύ 1960-1999, ήταν μεγαλύτερο από 77% για όλα τα δεδομένα (Πίνακας 6.1). Τα δεδομένα από αυτούς τους παλιρροιογράφους χωρίστηκαν σε 2 ομάδες, χειμερινά και θερινά. Το υποσύνολο των «χειμερινών» καταγραφών περιέχει δεδομένα από τον Δεκέμβριο μέχρι τον Μάρτιο, καθώς κατά την διάρκεια της περιόδου αυτής η επίδραση της ΔΒΑ στο κλίμα της περιοχής είναι εντονότερη (π.χ. Hurrell 1996). Ομοίως, οι παρατηρήσεις που έγιναν μεταξύ Απριλίου και Νοεμβρίου αποτέλεσαν το «θερινό» (ή «μη-χειμερινό») υποσύνολο δεδομένων.

Παλιρροιογράφος	Πληρότητα	Χρονοσειρά	1960-1992	1992-1999
		συνολική	-0,9±0,5	8,3±4,6
ALIKANTE II	91%	χειμερινή	-2,0±1,1	15,7±10,4
		μη - χειμερινή	-0,4±0,5	4,3±4,3
		συνολική	-0,9±0,6	6,3±5,5
MARSEILLE	92%	χειμερινή	$-2,2\pm1,3$	11,4±12,1
		μη - χειμερινή	$-0,2\pm0,6$	2,9±4,9
		συνολική	-0,3±0,6	7,6±5,0
GENOVA	77%	χειμερινή	$-1,8\pm1,2$	12,6±10,1
		μη - χειμερινή	$0,4{\pm}0,6$	4,4±5,2
		συνολική	-0,5±0,8	12,2±6,6
TRIESTE	100%	χειμερινή	$-1,8\pm1,6$	17,7±13,6
		μη - χειμερινή	$0,1\pm0,8$	8,5±6,7
		συνολική	$-1,2\pm0,7$	12,7±6,3
ROVINJ	97%	χειμερινή	$-2,6\pm1,6$	19,0±13,6
		μη - χειμερινή	$-0,6\pm0,8$	8,8±5,9
		συνολική	-1,0±0,8	16,6±7,0
BAKAR	98%	χειμερινή	-2,4±1,7	23,9±15,0
		μη - χειμερινή	$-0,3\pm0,8$	11,9±6,6
		συνολική	-1,4±0,7	14,0±6,3
SPLIT HARBOUR	100%	συνολική -0,3±0,6 7,6±5, χειμερινή -1,8±1,2 12,6±10 μη - χειμερινή 0,4±0,6 4,4±5, συνολική -0,5±0,8 12,2±6 χειμερινή -1,8±1,6 17,7±13 μη - χειμερινή 0,1±0,8 8,5±6, συνολική -1,2±0,7 12,7±6 χειμερινή -2,6±1,6 19,0±13 μη - χειμερινή -0,6±0,8 8,8±5, συνολική -1,0±0,8 16,6±7 χειμερινή -2,4±1,7 23,9±13 μη - χειμερινή -0,3±0,8 11,9±6 συνολική -1,4±0,7 14,0±6 μη - χειμερινή -3,0±1,6 21,9±14 μη - χειμερινή -3,0±1,6 21,9±14	21,9±14,1	
		μη - χειμερινή	$-0,6\pm0,7$	9,2±5,6
		συνολική	-1,0±0,7	15,4±5,8
DUBROVNIK	99%	χειμερινή	$-2,5\pm1,5$	22,7±12,6
		μη - χειμερινή	-0,3±0,7	10,9±5,2

Πίνακας 6. 1: Οι συστηματικές τάσεις που υπολογίστηκαν από ολόκληρες τις χρονοσειρές, τα «χειμερινά» και τα «μη-χειμερινά» δεδομένα κάθε παλιρροιογράφου. Στην δεύτερη στήλη περιέχεται το ποσοστό πληρότητας των μηνιαίων χρονοσειρών.

Οι γραμμικές τάσεις για κάθε χρονοσειρά, υπολογίστηκαν χρησιμοποιώντας γραμμική παλινδρόμηση. Για την σύγκριση των «χειμερινών» και «μη χειμερινών»

γραμμικών τάσεων με τις μέσες ετήσιες γραμμικές τάσεις, υπολογίστηκαν γραμμικές τάσεις από τη χρονοσειρά των ετήσιων διάμεσων τιμών κάθε παλιρροιογράφου.

Σχήμα 6. 1: Η τοποθεσία των 8 παλιρροιογράφων που χρησιμοποιήθηκαν στην ανάλυση.

Επίσης, ποσοτικοποιήθηκε η επίδραση τη ΔΒΑ στις γραμμικές τάσεις της στάθμης της θάλασσας. Για τον σκοπό αυτό χρησιμοποιήθηκαν μηνιαίες τιμές του δείκτη της ΔΒΑ για την περίοδο Δεκεμβρίου-Μαρτίου όπως δίνεται από τους Jones *et al.*, (1997). Αρχικά, στην «χειμερινή» χρονοσειρά της στάθμης της θάλασσας παλινδρομήθηκαν (were regressed) οι τιμές της ΔΒΑ. Μετά, η χρονοσειρά που προέκυψε αφαιρέθηκε από την «χειμερινή» χρονοσειρά και υπολογίστηκαν οι γραμμικές τάσεις στη χρονοσειρά των υπολειπόμενων σφαλμάτων. Η χρονοσειρά αυτών των υπολειπόμενων σφαλμάτων, θα ονομαστεί «χειμερινή-ανηγμένη» χρονοσειρά και περιγράφει τη χειμερινή χρονοσειρά αφού προσαρμόστηκε για τις επιδράσεις της ΔΒΑ.

6.3 Αποτελέσματα

Κατά την περίοδο 1960-1992, οι εκτιμήσεις των γραμμικών συστηματικών τάσεων από την ετήσια διάμεσο τιμή των δεδομένων του παλιρροιογράφου κυμαίνονται από -0,3 έως -1,4 mm/yr (Πίνακας 6.1 και Σχήμα 6.2α). Οι συστηματικές τάσεις στην Γένοβα και την Τεργέστη είναι -0,3±0,6 mm/yr και -0,5±0,8mm/yr αντιστοίχως. Εκεί, τα εμπλεκόμενα σφάλματα είναι μεγαλύτερα από την τιμή των γραμμικών τάσεων. Τα σφάλματα που αναφέρονται σε όλη την παρούσα ενότητα αντιστοιχούν στο επίπεδο εμπιστοσύνης 95%, που προσδιορίστηκε με τη μέθοδο ελαχίστων τετραγώνων. Σε όλους τους άλλους σταθμούς οι εκτιμήσεις των γραμμικών τάσεων είναι της τάξης του -1mm/yr ή μεγαλύτερες (κατά απόλυτη τιμή), ενώ τα αντιστοίχως σφάλματα κυμαίνονται μεταξύ ±0,5 και ±0,8 mm/yr. Συνεπώς, μεταξύ 1960 και 1990 η ΜΣΘ στην Μεσόγειο είτε μειώνονταν ή παρέμενε σταθερή (π.χ. Tsimplis and Baker, 2000).

Σχήμα 6. 2: Ξεκινώντας από πάνω προς τα κάτω. Τα δεδομένα των παλιρροιογράφων (α), οι «μηχειμερινές» (β), οι «χειμερινές» (γ), και οι «χειμερινές-ανηγμένες» (δ) χρονοσειρές. Από τις τελευταίες έχει αφαιρεθεί η επίδραση της ΔΒΑ. Παρουσιάζονται επίσης και οι συστηματικές τάσεις που υπολογίστηκαν από κάθε χρονοσειρά για τις περιόδους 1962-1992 και 1992-1999. Για λόγους παρουσίασης, οι χρονοσειρές είναι αυθαίρετα μετατοπισμένες κατά τον άξονα των «y».

Κατά την διάρκεια της ίδιας περιόδου, οι γραμμικές τάσεις της στάθμης της θάλασσας που εκτιμήθηκαν από τις "θερινές" χρονοσειρές είναι της τάξης του ±0.5mm/yr και σε όλες τις περιπτώσεις τα σχετικά σφάλματα είναι μεγαλύτερα από τις αντίστοιχες εκτιμήσεις της συστηματικής τάσης (Πίνακας 6.1 και Σχήμα 6.2β). Με άλλα λόγια, τα "θερινά" δεδομένα θαλάσσιας στάθμης δεν παρουσιάζουν σημαντικές καθοδικές τάσεις για την περίοδο 1960-1992.

Οι συστηματικές τάσεις της στάθμης της θάλασσας στις «χειμερινές» χρονοσειρές κυμαίνονται μεταξύ -1,8 και -3,0 mm/yr (Πίνακας 6.1 και Σχήμα. 6.2γ). Τα σφάλματα που σχετίζονται με αυτές τις γραμμικές τάσεις είναι πάντα μικρότερα από τις αντίστοιχες εκτιμήσεις και κυμαίνονται μεταξύ ±1,1-1,7mm/yr. Σε όλες τις περιπτώσεις, οι συστηματικές τάσεις κατά τους χειμερινούς μήνες είναι μεγαλύτερες από αυτές που υπολογίστηκαν από τις χρονοσειρές για ην ΜΣΘ και τις "θερινές" χρονοσειρές. Αυτό επιβεβαιώνει ότι η μείωση της ΜΣΘ μεταξύ 1960-1992 πρέπει να συνέβη κατά τους χειμερινούς μήνες. Αυτό το αποτέλεσμα ήταν αναμενόμενο αφού η πτώση της ΜΣΘ για την περίοδο αυτή δημιουργήθηκε κυρίως από την επίδραση της ΔBA (Tsimplis και Josey, 2001; Tsimplis και Rixen 2002).

Μεταξύ 1992 και 1999, οι γραμμικές συστηματικές τάσεις των διαμέσων τιμών των χρονοσειρών αλλάζει πρόσημο και γίνεται θετικό (Πίνακας 6.1 και Σχήμα 6.2α). Οι συστηματικές τάσεις αυτές και τα αντιστοίχως σφάλματα για την λεκάνη της Δυτικής Μεσογείου κυμαίνονται από 6,3±8,3 έως 4,6±5,5 mm/yr. Στην Ανατολική Μεσόγειο οι συστηματικές τάσεις που υπολογίστηκαν για την ίδια περίοδο, είναι μεγαλύτερες από τις αντίστοιχες τις Δυτικής Μεσογείου, και κυμαίνονται μεταξύ 12,2 και 16,6 mm/yr. Τα σφάλματα που υπολογίστηκαν για την Δυτική Μεσόγειο, και κυμαίνονται μεταξύ ±5,8 και ±7,0 mm/yr. Το αποτέλεσμα αυτό συμφωνεί με τους Tsimplis *et al.*, (2005) οι οποίοι υπολόγισαν τις συστηματικές τάσεις για την περίοδο Ανατολικό τμήμα της Λεκάνης.

Οι γραμμικές τάσεις της στάθμης της θάλασσας που υπολογίστηκαν από τις «μη χειμερινές» χρονοσειρές για την περίοδο 1992-1999 είναι θετικές και είναι μικρότερες στην Δυτική από ότι στην Ανατολική Μεσόγειο (Πίνακας 6.1 και Σχήμα 6.2β). Στην Δυτική Μεσόγειο, κυμαίνονται μεταξύ 2,9 και 4,4 mm/yr και τα αντιστοίχως σφάλματα είναι ίσα ή μεγαλύτερα από τις τιμές αυτές. Στην Ανατολική Μεσόγειο ο ρυθμός της αύξησης της στάθμης της θάλασσας κυμαίνεται μεταξύ 8,5 και 10,9 mm/yr με τάση να αυξάνονται προς τον Νότο. Τα αντιστοίχως σφάλματα παραμένουν μικρότερα από τις αντίστοιχες εκτιμήσεις και βρίσκονται μεταξύ ±5,2 και ±6,6 mm/y. Κατά το χρονικό διάστημα 1992 με 1999 και κατά τους χειμερινούς μήνες οι συστηματικές τάσεις των «χειμερινών» χρονοσειρών (Πίνακας 6.1 και Σχήμα 6.2γ) κυμαίνονται μεταξύ 11,4 και 15,7 mm/yr για την Δυτική Μεσόγειο και μεταξύ 17,7 και 23,9 mm/yr για την Ανατολική Μεσόγειο. Τα σφάλματα της εκτίμησης αυτής είναι μεταξύ ±10 και 15 mm/y και είναι πάντα μικρότερα από τις αντίστοιχες συστηματικές τάσεις. Παρόλες τις υψηλές τιμές των σφαλμάτων αυτών, οι εκτιμήσεις των «χειμερινών» γραμμικών τάσεων είναι δύο με τρεις φορές μεγαλύτερες από αυτές των «μη-χειμερινών» γραμμικών τάσεων. Έτσι, φαίνεται ότι αν και κατά τους θερινούς μήνες λαμβάνουν χώρα ανοδικές τάσεις, η μεγάλη αύξηση στην θαλάσσια στάθμη την δεκαετία του 90 εκφράζεται κυρίων μεταξύ Δεκεμβρίου και Μαρτίου (π.χ. Tsimplis *et al.*, 2005; Vigo *et al.*, 2005).

Οι συστηματικές τάσεις που υπολογίστηκαν από την χρονοσειρά που προέκυψε μετά την αναγωγή των «χειμερινών» χρονοσειρών για την επίδραση της ΔΒΑ (Πίνακας 6.2, Σχήμα 6.2δ), για την περίοδο 1960-1992 κυμαίνονται μεταξύ -0,6 και - 1,2 mm/yr. Τα σχετικά σφάλματα είναι ίσα ή μεγαλύτερα από τις αντίστοιχες συστηματικές τάσεις, εξαιρουμένης της χρονοσειράς που προέρχεται από το Split Harbour (-1,6 ±1,3 mm/yr). Οι εκτιμήσεις αυτών των συστηματικών τάσεων είναι δύο με τρεις φορές μικρότερες από αυτές που υπολογίστηκαν από τις πρωτότυπες «χειμερινές» χρονοσειρές (Πίνακας 6.1). Έτσι, η μείωση της ΜΣΘ κατά την περίοδο 1960-1992 αποδίδεται κυρίως στην επιρροή της ΔΒΑ στην στάθμη της θάλασσας (Tsimplis και Iosey, 2001; Tsimplis και Rixen 2002).

Χειμερινή χρονοσειρά	Συσχέτιση με ΔΒΑ		Συστηματική Τάση (mm/	
	1960-1992	1992-1999	1960-1992	1992-1999
ALICANTE II	-0,66	-0,86	-0,7±0,7	11,4±5,6
MARSEILLE	-0,73	-0,80	-0,9±1,0	6,8±7,2
GENOVA	-0,66	-0,71	$-0,7\pm1,0$	9,5±8,0
TRIESTE	-0,66	-0,59	-0,6±1,3	13,9±11,2
ROVINJ	-0,69	-0,58	-1,2±1,3	15,1±11,2
BAKAR	-0,66	-0,56	- 1,0±1,4	19,7±12,7
SPLIT HARBOUR	-0,70	-0,61	-1,6±1,3	17,5±11,1
DUBROVNIK	-0,67	-0,61	-1,2±1,3	18,7±9,9

Πίνακας 6. 2: Οι συντελεστές συσχέτισης μεταξύ του χειμερινού δείκτη της ΔΒΑ και των χειμερινών χρονοσειρών για τη στάθμη της θάλασσας. Επίσης αναφέρονται και οι γραμμικές τάσεις που υπολογίστηκαν από τις χειμερινές χρονοσειρές μετά που αφαιρέθηκε η επίδραση της ΔΒΑ.

Μετά το 1992, οι συστηματικές τάσεις των "ανηγμένων χειμερινών" χρονοσειρών γίνονται θετικές (Πίνακας 6.2, Σχήμα 6.2δ). Οι εκτιμήσεις αυτές των συστηματικών τάσεων κυμαίνονται μεταξύ 6,8 και 11,4 mm/yr στην Δυτική μεριά της λεκάνης της Μεσογείου και μεταξύ 13,9 και 19,7 mm/yr στην Ανατολική μεριά της λεκάνης. Σε όλες τις περιπτώσεις τα σφάλματα είναι μικρότερα από τα σφάλματα των εκτιμήσεων των αρχικών "χειμερινών" χρονοσειρών. Πρέπει να τονιστεί ότι οι γραμμικές τάσεις στις "ανηγμένες χειμερινές" χρονοσειρές παραμένουν 1,5-2,5 φορές μεγαλύτερες από αυτές στις "θερινές" χρονοσειρές. Επιπλέον, οι εκτιμήσεις των γραμμικών τάσεων από των «ανηγμένων χειμερινών» χρονοσειρών είναι περίπου 4 mm/yr μικρότερες από τις αντίστοιχες των πρωτότυπων «χειμερινών» χρονοσειρών. Τα παραπάνω υποδηλώνουν ότι την δεκαετία του 90 ένα σημαντικό μέρος των υπερετήσιων μεταβολών της ΜΣΘ στην περιοχή αποδίδεται στη ΔΒΑ (βλέπε συντελεστές συσχέτισης μεταξύ της αρχικής "χειμερινής" χρονοσειράς και του δείκτη της ΔΒΑ στον Πίνακα 6.2), αλλά μόνο ένα μικρό κλάσμα των παρατηρούμενων συστηματικών τάσεων μπορεί να αποδοθεί στην ΔΒΑ.

6.4 Συμπερασματικά σχόλια

Κατά την διάρκεια της περιόδου 1960-1992, οι ανοδικές και καθοδικές τάσεις της ΜΣΘ μπορούν να αποδοθούν μόνο στις αλλαγές της θαλάσσιας στάθμης, οι οποίες συμβαίνουν κατά την διάρκεια του χειμώνα. Επιπλέον, αυτές οι γραμμικές τάσεις μπορούν να αποδοθούν στην ΔΒΑ. Μετά το 1992, κατά την διάρκεια των θερινών μηνών υπάρχουν σημαντικές ανοδικές συστηματικές τάσεις στην στάθμη της θάλασσας, αλλά τον χειμώνα οι τάσεις αυτές είναι 2 με 3 φορές μεγαλύτερες. Φαίνεται ότι η ΔΒΑ ευθύνεται για λιγότερο από το ένα τρίτο των παρατηρούμενων χειμερινών συστηματικών τάσεων.

Συνολικά, οι γραμμικές τάσεις της στάθμης της θάλασσας στην λεκάνη της Μεσογείου, παρουσιάζονται κυρίως κατά της διάρκεια του χειμώνα, μεταξύ Δεκεμβρίου και Μαρτίου. Επιπλέον, η μέση ετήσια αύξηση της ΜΣΘ είναι μικρότερη από την αύξηση που παρουσιάζεται κάθε χειμώνα. Παράλληλα, οι πιο ακραίες θαλάσσιες καταιγίδες συμβαίνουν κατά την χειμερινή περίοδο. Συνεπώς, στον προσδιορισμό της παράκτιας επικινδυνότητας, οι πραγματικές διαστάσεις της επίδρασης της θαλάσσιας στάθμης υποεκτιμούνται εάν η επίδραση της αύξησης της θαλάσσιας στάθμης υπολογίζεται με βάση τις εκτιμήσεις των γραμμικών τάσεων της ΜΣΘ.

ΚΕΦΑΛΑΙΟ 7: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΣΥΣΤΗΜΑΤΙΚΟΥ ΣΦΑΛΜΑΤΟΣ ΤΟΥ JASON-1

7.1 Σκοπός, κίνητρα και περιγραφή εργασιών

Για την βαθμονόμηση του Jason-1 από τους Pavlis et al., (2004) και Pavlis et al., (2006), χρησιμοποιήθηκαν αλτιμετρικές μετρήσεις από την περιοχή Νότια της Γαύδου. Παράλληλα, οι αντίστοιχες μετρήσεις από τους παλιρροιογράφους λαμβάνονται στην παράκτια ζώνη στο λιμάνι του Καραβέ. Στο Κεφάλαιο 4 όμως είδαμε ότι υπάρχουν συστηματικές διαφορές στον εποχικό κύκλο ανάμεσα στις δύο αυτές περιοχές.

Πρωτεύον σκοπός της ενότητας αυτής είναι να αποτιμήσει το σφάλμα που υπεισέρχεται στον υπολογισμό του συστηματικού σφάλματος του Jason-1, όπως αυτό αναφέρεται από τους Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006), λόγω των προαναφερθέντων διαφορών στον εποχικό κύκλο.

Τα αλτιμετρικά δεδομένα που χρησιμοποιήθηκαν στην βαθμονόμηση του Jason-1 από στα πλαίσια του προγράμματος GAVDOS (Pavlis *et al.*, (2004); Pavlis *et al.*, (2006)) ήταν *a priori* διορθωμένα για την επίδραση της θαλάσσιας παλίρροιας με το μοντέλο GOT00.2. Για την βαθμονόμηση του αλτιμέτρου επομένως, η παλίρροια αφαιρέθηκε από τα δεδομένα του ακουστικού παλιρροιογράφου του Καραβέ κάνοντας χρήση του ίδιου μοντέλου.

Στο Κεφάλαιο 3 όμως αναφέρθηκε ότι το μοντέλο GOT00.2 δεν είναι ικανό να προβλέψει ρεαλιστικά παλιρροϊκά υψόμετρα στην περιοχή ενδιαφέροντος. Ο δεύτερος σκοπός της ενότητας αυτής είναι να αποτιμήσει τα σφάλματα που τυχόν έχουν υπεισέλθει στον προσδιορισμό του συστηματικού σφάλματος του αλτιμέτρου λόγω της ανεπαρκούς μοντελοποίησης της παλίρροιας.

7.2 Η απόλυτη βαθμονόμηση της δορυφορικής αποστολής αλτιμετρίας του Jason-1

Η απόλυτη βαθμονόμηση δίνει την δυνατότητα εκτίμησης του συστηματικού σφάλματος των δορυφορικών αλτιμέτρων και χρησιμοποιήθηκε για την βαθμονόμησης του Jason-1 στα πλαίσια του πειράματος του GAVDOS. Μέρος των δραστηριοτήτων βαθμονόμησης (Cal/Val) όλων των δορυφορικών αποστολών αλτιμετρίας είναι η *in situ* σύγκριση των καταγραφομένων υψομέτρων θαλάσσιας επιφάνειας (sea surface heights - ssh) με παρατηρήσεις παλιρροιογράφων (Chelton *et*

al., 2001). Τέτοιες συγκρίσεις γίνονται είτε κατά την διάρκεια δορυφορικών διελεύσεων πάνω από ειδικά σχεδιασμένων, μόνιμων σταθμών, είτε χρησιμοποιώντας ένα δίκτυο παλιρροιογράφων κατανεμημένο σε ολόκληρη την υφήλιο.

Η πρώτη τεχνική είναι γνωστή ως «σημειακή βαθμονόμηση» (Point calibration) ή «απόλυτη βαθμονόμηση» (absolute calibration), ενώ η δεύτερη αναφέρεται ως «κατανεμημένη βαθμονόμηση» (distributed calibration) ή «σχετική βαθμονόμηση» (relative calibration) (Chelton *et al.*, 2001). Η σχετική βαθμονόμηση είναι πολύ αποτελεσματική σε εκτιμήσεις παρεκκλίσεων στις αλτιμετρικές μετρήσεις (Mitchum, (1994), Mitchum, (1998), Mitchum, (2000) και Chambers *et al.*, (1998). Εκτεταμένες περιγραφές της μεθόδου απόλυτης βαθμονόμησης μπορεί να βρεθούν για παράδειγμα στους Christensen *et al.*, (1994); Menard *et al.*, (1994) και Chelton *et al.*, (2001).

Δύο επίσημα καθιερωμένοι σταθμοί απόλυτης βαθμονόμησης έχουν εγκατασταθεί από την CNES και την NASA. Οι σταθμοί αυτοί, είναι εγκατεστημένοι στη νήσο Κορσική (Μεσόγειος Θάλασσα) (Bonnefond *et al.*, 2003, Bonnefond *et al.*, 2003β και Jan *et al.*, 2004) και πάνω σε μια πλατφόρμα άντλησης πετρελαίου στο Harvest, California (USA) (Haines *et al.*, 2003), αντιστοίχως.

Σχήμα 7. 1: Ο υπολογισμός του συστηματικού σφάλματος του δορυφορικού αλτιμέτρου.

Άλλοι καθιερωμένοι σταθμοί βαθμονόμησης περιλαμβάνουν τον μόνιμο σταθμό βαθμονόμησης στη νήσο Γαύδο (Mertikas *et al.*, 2003 και Pavlis *et al.*, 2004), τον σταθμό στην Ibiza (Ισπανία) (Martinez-Benjamin *et al.*, 2004), και τον σταθμό στο Bass Strait στην Αυστραλία (Watson *et al.*, 2003, Watson *et al.*, 2004). Το δίκτυο παλιρροιογράφων του Ηνωμένο Βασίλειο έχει επίσης χρησιμοποιηθεί για την απόλυτη βαθμονόμηση του αλτίμετρου Jason-1 (Woodworth *et al.*, 2004).

Στην απόλυτη βαθμονόμηση γίνεται τη σύγκριση μεταξύ των υψομέτρων της θαλάσσιας επιφάνειας που μετράει ο δορυφόρος με αυτά που καταγράφει ο παλιρροιογράφος, την χρονική στιγμή όταν ο δορυφόρος είναι σε εγγύτατη απόσταση από τον παλιρροιογράφο (χρόνος της εγγύτατης προσέγγισης – Time of Closest Approach, TCA), όπως εικονίζεται στο Σχήμα 7.1. Συγκεκριμένα, στον σταθμό της Γαύδου (παρόμοια διαδικασία ακολουθείται και στους άλλους σταθμούς), το συστηματικό σφάλμα του αλτίμετρου *BIAS_{ALT}* υπολογίστηκε χρησιμοποιώντας τη σχέση [7.1] (Pavlis *et al.*, 2004):

$$BIAS_{ALT} = SLA_{ALT} - SLA_{TG}$$

$$[7.1]$$

όπου SLA_{ALT} (Sea Level Anomalies) οι ανωμαλίες της θαλάσσιας στάθμης και SLA_{TG} είναι τα υψόμετρα της θαλάσσιας επιφάνειας υπεράνω μιας κοινής επιφάνειας αναφοράς όπως μετρήθηκε από τον αλτίμετρο και τον παλιρροιογράφο κατά την TCA. Η χρησιμοποιούμενη επιφάνεια αναφοράς είναι μια πρότυπη μέση θαλάσσια επιφάνεια (Mean Sea Surface, MSS) που αναπαριστάνει το γεωειδές και τη μέση δυναμική τοπογραφία της θαλάσσιας επιφάνειας. Ο παλιρροιογράφος τοποθετείται μαζί με έναν δέκτη GPS και η διαφορά μεταξύ των σημείων αναφοράς της κεραίας GPS και του παλιρροιογράφου προσδιορίζεται με συμβατικές χωροσταθμήσεις ακριβείας. Με τον τρόπο αυτόν οι μετρήσεις της σχετικής θαλάσσιας επιφάνειας υπεράνω ενός ελλειψοειδούς αναφοράς SSH_{TG} . To SLA_{TG} υπολογίζεται από τη σχέση:

$$SLA_{TG} = SSH_{TG} - MSS_{TG}$$

$$[7.2]$$

Ομοίως, το SLA_{ALT} προκύπτει από τη ακόλουθη έκφραση:

$$SLA_{ALT} = H_{ALT} - MSS_{ALT} - \rho_{GDR}$$
 [7.3]

όπου, H_{ALT} είναι η απόσταση του αλτίμετρου από το ελλειψοειδές, H_{MSS_ALT} είναι το υψόμετρο της MSS στις θέσεις όπου μετράει το αλτίμετρο, και ρ_{GDR} είναι η διορθωμένη απόσταση που μετράει το αλτίμετρο:

$$\rho_{GDR} = \Delta R_{MEASURED} - \Delta R_{WET} - \Delta R_{DRY} - \Delta R_{ION} - \Delta R_{SEA STATE}$$
[7.4]

όπου $R_{MEASURED}$ είναι η μετρούμενη απόσταση από το αλτίμετρο (range). Οι παράμετροι ΔR_{WET} , ΔR_{DRY} , και ΔR_{ION} , είναι διορθώσεις σχετιζόμενες με καθυστερήσεις λόγω της τροπόσφαιρας, και την ιονόσφαιρα (wet tropospheric correction, dry tropospheric correction, ionospheric correction αντιστοίχως). Η παράμετρος ΔR_{SEA_STATE} σχετίζεται με ένα συστηματικό σφάλμα που υπεισέρχεται από την κατάσταση της θαλάσσιας επιφάνειας (sea state bias). Όλη η αναγκαία πληροφορία για την εκτίμηση της παραμέτρου SLA_{ALT} της [1.3] είναι διαθέσιμη στο Αρχείο Γεωφυσικών Δεδομένων (Geophysical Data Record - GDR) του δορυφόρου (Jason-1 Project, 2003).

Σχήμα 7. 2: Το υψηλής ανάλυσης μοντέλο για το τοπικό γεωειδές. Στο σχήμα φαίνονται επίσης και τα ίχνη των διελεύσεων 18 και 109.

Όπως αναφέρθηκε παραπάνω οι μετρήσεις παλιρροιογράφου πρέπει να αναφέρονται σε μια κοινή επιφάνεια αναφοράς πριν αυτές συγκριθούν με τις αλτιμετρικές καταγραφές (περισσότερες λεπτομέρειες στην παράγραφο 2.4.1). Για τον σκοπό αυτό, εντός των πλαισίων του πειράματος βαθμονόμησης στο GAVDOS, κατασκευάστηκε μια τοπική επιφάνεια αναφοράς (Pavlis *et al.*, 2004). Η επιφάνεια αυτή αναπαριστά το γεωειδές και την ΜΔΤ στην περιοχή γύρω από την νήσο Γαύδο. Το γεωειδές περιγράφεται από ένα μοντέλο γεωειδούς υψηλής διακριτικής ικανότητας 1'× 1' που δημιούργησαν οι Vergos *et al.*, (2005) (Σχήμα 7.2). Επιπλέον, η ΜΔΤ αναπαριστάται από το μοντέλο που δημιουργήθηκε από τους Rio *et al.*, (2006). Η αναφορά των μετρήσεων του παλιρροιογράφου στην τοπική επιφάνεια αναφοράς επιτεύχθηκε αφαιρώντας το γεωμετρικό υψόμετρο του παλιρροιογράφου από το γεωμετρικό υψόμετρο της επιφάνειας αναφοράς (16,13m) (Pavlis *et al.*, 2004).

Τα τελευταία αποτελέσματα¹ από τις δραστηριότητες για την βαθμονόμηση του Jason -1 έχουν παρουσιαστεί στη συνάντηση Ocean Surface Topography Science Team που έλαβε χώρα στην Βενετία, Ιταλία, 17 Μαρτίου 2006, και περίληψη αυτών έχει δοθεί από τους Bonnefond *et al.*, (2006). Οι πιο πρόσφατοι υπολογισμοί του συστηματικού σφάλματος του Jason-1 παρουσιάζονται στον Πίνακα 7.1 (Bonnefond *et al.*, 2006). Ο Πίνακας 7.1 περιλαμβάνει τα συστηματικά σφάλματα του Jason-1 που προέκυψαν από αμφότερες τις εκδοχές των GDR, την πρώτη (GDR-A) και την πιο πρόσφατη GDR-B (Ablain *et al.*, 2006)².

	GDR-A (mm)	GDR-B (mm)	Κύκλοι	Αναφορές
Harvest	$+141.8 \pm 6.3$	$+97.4 \pm 7.4$	108 / 29	Haines et al., 2006
Corsica	$+107.9 \pm 6.7$	$+86.3 \pm 8.6$	84 / 21	Bonnefond et al., 2006a
Bass Strait	$+152.3 \pm 7.7$	$+105.0 \pm 8.3$	18 / 18	Watson et al., 2006
Gavdos	$+131.0 \pm 15$	NA	21 / NA	Pavlis et al., 2006
Ibiza	$+120.5 \pm 4.4$	NA	33 / NA	Martínez-Benjamín et al., 2006
Regional	$+100.0 \pm 1.0$	91.0 ± 8.0	21 / 21	Jan et al., 2006

Πίνακας 7. 1: Το συστηματικό σφάλμα του αλτιμέτρου του Jason-1, όπως προσδιορίστηκε από τους ανά τον κόσμο σταθμούς βαθμονόμησης.

Υπάρχουν τρεις διαφορές μεταξύ των GDR-A και GDR-B (Ablain et al., 2006). Πρώτον, στο GDR-B χρησιμοποιήθηκε ένας νέος αλγόριθμος ανάκλησης (retracking) που αναπτύχθηκε από τους Amarouche et al., 2004. Δεύτερον, οι τροχιές υπολογίζονται χρησιμοποιώντας ένα δορυφορικό βαρυτιμετρικό μοντέλο που προέκυψε από την δορυφορική αποστολή GRACE (Tapley et al., 2004). Τρίτον, εφαρμόστηκαν επίσης μοντέλα, ώστε νέες γεωφυσικές διορθώσεις να ληφθούν υπόψιν για τις παλίρροιες (GOT00.2 and FES2004), για μη παλιρροϊκές υψηλής συχνότητας μεταβολές (mog2d), και για παλίρροιες μακράς περιόδου (MSS CL501).

Οι τιμές του συστηματικού σφάλματος του Jason-1 όταν χρησιμοποιούνται τα δεδομένα GDR-A, ποικίλουν μεταξύ +107,9 έως 141,8 mm. Όταν χρησιμοποιούνται

¹ Αφορά την περίοδο στην οποία διεξήχθησαν οι εργασίες που περιγράφονται στο Κεφάλαιο αυτό (άνοιξη 2006). Τα πιο πρόσφατα αποτελέσματα που συζητήθηκαν στο τελευταίο OSTST meeting (Nice Νοέμβριος 2008) περιγράφονται στην Παράγραφο 7.5.

² Το Ιούλιο του 2008 διατέθηκε η τελευταία έκδοση των GDR, τα GDR-C.

τα πιο πρόσφατα GDR-B, οι εκτιμήσεις συστηματικού σφάλματος ποικίλουν μεταξύ 86,3 έως 105,0 mm. Τα εκτιμούμενα συστηματικά σφάλματα που προσδιορίστηκαν με τα GDR-B είναι μικρότερα κατά 10-50 mm από αυτά που προέκυψαν από τα GDR-A. Παράλληλα, η ακρίβεια στην εκτίμηση του συστηματικού σφάλματος του Jason -1 σε όλους τους σταθμούς είτε έχει παραμείνει η ίδια είτε βελτιώθηκε (Πίνακας 7.1).

Οι διαφορές στον προσδιορισμό του συστηματικού σφάλματος του Jason-1 μεταξύ των διαφορετικών σταθμών βαθμονόμησης δημιουργούνται από δύο λόγους. Ο πρώτος και λόγος είναι η κακή λειτουργία του οργάνου που φέρει ο Jason -1 για να προσδιορίζει την συνολική ποσότητα υδρατμών που βρίσκονται μεταξύ αυτού και της επιφάνειας της θάλασσας (Jason Microwave Radiometer – JMR).

Ο δεύτερος λόγος αφορά την παρουσία των γεωγραφικώς συσχετισμένων σφαλμάτων (geographically correlated errors) στα GDR. Αυτά είναι συστηματικά σφάλματα έχουν σχέση με την ακρίβεια της τροχιάς του δορυφόρου και αντιπροσωπεύουν ακτινικές δορυφορικές διαφορές, όταν δεδομένα από ανερχόμενες και κατερχόμενες τροχιές παρεμβληθούν σε κάνναβο και ληφθούν υπόψιν οι μέσοι όροι τους για διαφορετικές περιοχές (Haines *et al.*, 2004).

Επομένως, η σύγκλιση των υπολογισμένων συστηματικών σφαλμάτων προς μία χαμηλότερη τιμή δείχνει ότι τα γεωγραφικώς σχετιζόμενα σφάλματα είναι μικρότερα στα GDR-B. Πράγματι, οι διαφορές στα υψόμετρα της θαλάσσιας επιφάνειας στα σημεία τομής των δορυφορικών τροχιών (crossover differences) ελαττώνονται κατά 35% όταν εφαρμόζονται τα GDR-B αντί των GDR-A (Albain *et al.*, 2006).

Εκτιμήσεις του συστηματικού σφάλματος του αλτίμετρου βασισμένες στα GDR-B δεν έχουν επιδειχθεί ακόμη από τους καθιερωμένους σταθμούς της Γαύδου και της Ibiza¹. Έτσι, τα αποτελέσματα από τον σταθμό της Γαύδου θα πρέπει να συγκρίνονται με τις εκτιμήσεις συστηματικού σφάλματος από άλλους σταθμούς βαθμονόμησης, όταν έχει χρησιμοποιηθεί το GDR-A.

Είναι φανερό ότι ο προσδιορισμός του συστηματικού σφάλματος που αναφέρεται από τον καθιερωμένο σταθμό της Γαύδου (Pavlis *et al.*, 2006) είναι +131 mm, δηλαδή, 11 και 23 mm υψηλότερα από τις εκτιμήσεις που αναφέρονται από τους σταθμούς Corsica (Bonnefond *et al.*, 2006β) και Ibiza (Martinez-Benjamin *et al.*, 2006). Και οι τρεις αυτοί σταθμοί βρίσκονται στη Μεσόγειο Θάλασσα και γι' αυτό είναι υποκείμενοι σε ίδια γεωγραφικώς συσχετιζόμενα σφάλματα. Επιπλέον, η ακρίβεια εκτίμησης της Γαύδου είναι ±15mm, δηλαδή, τουλάχιστον δύο φορές χειρότερη από την ακρίβεια που αναφέρεται από άλλους καθιερωμένους σταθμούς.

Η χαμηλή ακρίβεια στην εκτίμηση του συστηματικού σφάλματος του Jason-1 από τον σταθμό της Γαύδου οφείλεται κυρίως στο ότι η ανάλυση περιορίζεται σε

¹ Αφορά την περίοδο όπου γράφτηκε το συγκεκριμένο Κεφάλαιο. Τα νεώτερα αποτελέσματα από το σταθμό της Γαύδου θα συζητηθούν στην Παράγραφο 7.5

πολύ μικρό αριθμό δορυφορικών διελεύσεων (21 κύκλοι) σε σχέση με τις αναλύσεις από άλλους σταθμούς (Pavlis *et al.*, 2004).

Επίσης, στο σταθμό Γαύδος, η σύγκριση των υψομέτρων της θαλάσσιας επιφάνειας μεταξύ του Jason-1 και του παλιρροιογράφου γίνεται χωρίς να λαμβάνονται υπόψιν τυχόν διαφορές στην στιγμιαία δυναμική τοπογραφία της θαλάσσιας επιφάνειας μεταξύ των θέσεων όπου τα δύο συστήματα λαμβάνουν μετρήσεις. Το γεγονός αυτό, αποτελεί έναν ακόμα πιθανό λόγο, που δρα αθροιστικά με τον προαναφερθέντα, για τον οποίο το συστηματικό σφάλμα του αλτίμετρου που αναφέρεται από τον σταθμό της Γαύδου είναι υψηλότερο από αυτό των άλλων καθιερωμένων σταθμών.

Ειδικότερα, ο σταθμός Harvest είναι τοποθετημένος εντός του ίχνους του αλτίμετρου στον ανοικτό ωκεανό μακριά από τη στεριά. Ως αποτέλεσμα, αμφότερα τα συστήματα μέτρησης δειγματοληπτούν τη θαλάσσια επιφάνεια του ωκεανού στην ίδια θέση και έτσι δεν είναι αναγκαίες περαιτέρω ρυθμίσεις στις καταγραφές του παλιρροιογράφου.

Στον σταθμό της Κορσικής, η επιφάνεια της θάλασσας στην περιοχή της βαθμονόμησης σταθμίστηκε με τη βοήθεια τακτικών επισκέψεων με σκάφος τύπου «καταμαράν» εξοπλισμένου με δέκτες GPS (Bonnefond *et al.*, 2003β). Στην Κορσική, εισήγαγαν επίσης στη βαθμονόμηση το βαροτροπικό μοντέλο mog2d (Carrere and Lyard, 2003) το οποίο συνυπολογίζει για τις μεταβολές της θαλάσσιας στάθμης που οφείλονται σε απ' ευθείας ατμοσφαιρική διέγερση αλλά και για τις αστρονομικές παλίρροιες (Jan *et al.*, 2004).

Το ίδιο μοντέλο χρησιμοποιήθηκε επίσης στον σταθμό Ibiza για τη ρύθμιση των καταγραφών του ύψους της θαλάσσιας επιφάνειας (Martinez-Benjamin *et al.*, 2004). Στο σταθμό Bass Straight, τα δεδομένα παλιρροιογράφου παρεμβάλλονται στην τοποθεσία όπου γίνεται η σύγκριση με τον Jason-1. Αυτό επιτυγχάνεται χρησιμοποιώντας ένα δέκτη GPS τοποθετημένο σε μια αγκυροβολημένη σημαδούρα η οποία βρίσκεται κάτω από το ίχνος της δορυφορικής τροχιάς.

7.2 Ο εποχικός κύκλος στη βαθμονόμηση του Jason-1 στη Γαύδο

Στα πλαίσια της διατριβής αυτής, το σφάλμα του Jason-1 $BIAS_{ALT}$ όπως υπολογίζεται από την εξίσωση [7.1] επαναπροσδιορίζεται χρησιμοποιώντας την [7.5] ώστε να ληφθούν υπόψιν οι συστηματικές διαφορές στον εποχικό κύκλο μεταξύ της περιοχής που μετράει το αλτίμετρο και του Καραβέ.

$$Bias_revised = [SL_{ALT} - SC_{ALTI}] - [SLA_{TG} - SC_{TG}] \Rightarrow$$

$$Bias_revised = [SLA_{ALT} - SLA_{TG}] - [SC_{ALT} - SC_{TG}] \Rightarrow$$

$$Bias_revised = BiasP - [SC_{ALT} - SC_{TG}]$$

$$[7.5]$$

όπου, BiasP είναι η εκτίμηση του συστηματικού σφάλματος του Jason-1 όπως αναφέρεται από τους Pavlis et al., (2004); και Pavlis et al., (2006). Επιπλέον, SC_{ALT} και SC_{TG} είναι οι εποχικοί κύκλοι που υπολογίστηκαν από τα αλτιμετρικά και τα επίγεια δεδομένα αντιστοίχως την στιγμή της TCA.

Το συστηματικό σφάλμα του Jason-1 επαναπροσδιορίστηκε αντικαθιστώντας τα στιγμιαία πλάτη του εποχικού κύκλου στην [7.5] με τα στιγμιαία πλάτη του ετήσιου κύκλου. Η λογική σε αυτό, είναι ότι στο Κεφάλαιο 4 συζητήθηκε ότι ο προσδιορισμός της εξαμηνιαίας συνιστώσας του εποχικού κύκλου είναι ιδιαίτερα ευαίσθητος στην περίοδο κατά την οποία γίνεται ο προσδιορισμός.

Αναφέρθηκε επίσης ότι ο εξαμηνιαίος κύκλος που υπολογίζεται από σύντομες χρονοσειρές είναι ενδεχομένως δημιούργημα των ελαχίστων τετραγώνων και των διαταραχών στη φάση του ετήσιου κύκλου. Για το λόγο αυτό πιστεύεται ότι το συστηματικό σφάλμα του αλτιμέτρου που υπολογίστηκε από την [7.5] είναι πιο αξιόπιστο όταν χρησιμοποιείται μόνον η ετήσια συνιστώσα.

Οι Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006) ανακοίνωσαν εκτιμήσεις για το συστηματικό σφάλμα του Jason-1 από τον σταθμό της Γαύδου μεταξύ των κύκλων 70-90. Κατά την περίοδο αυτή, η μέση διαφορά μεταξύ του στιγμιαίου πλάτους του εποχικού κύκλου στα ανοιχτά ύδατα νοτίως της Γαύδου, και αυτού στον κόλπο του Καραβέ, (κατά τις προσεγγίσεις του αλτιμέτρου) είναι 6,7 και 6,0mm για τις διελεύσεις 109 και 18 αντιστοίχως (Σχήμα 7.3, Πίνακας 7.2). Το σφάλμα στις διαφορές αυτές είναι περίπου 15mm (Πίνακας 7.3).

Σχήμα 7. 3: (ξεκινώντας από πάνω) α: Ο εποχικός κύκλος κατά την στιγμή της TCA όπως υπολογίστηκε από τα δεδομένα του παλιρροιογράφου της Γαύδου και του Jason-1. Οι κόκκινοι κύκλοι αναπαριστούν τη διαφορά μεταξύ των δύο εποχικών κύκλων. β: Το ίδιο αλλά μόνο για την ετήσια συνιστώσα.

Οι εκτιμήσεις του συστηματικού σφάλματος του αλτίμετρου από τους Pavlis *et al.*, (2004) ήταν 156±15mm και 134±15 mm για τις διελεύσεις 109 και 18

αντιστοίχως. Η μέση τιμή του σφάλματος και για τις δύο διελεύσεις ήταν 144.7±15mm. Επιπλέον, οι Pavlis *et al.*, (2006) αναθεώρησαν το γεωμετρικό υψόμετρο του παλιρροιογράφου του σταθμού βαθμονόμησης. Αυτό είχε ως αποτέλεσμα το συστηματικό σφάλμα του Jason-1 να μειωθεί κατά 13,7 mm. Οι τιμές του σφάλματος του Jason-1 που επαναπροσδιορίστηκαν στο Κεφάλαιο αυτό σύμφωνα με την εξίσωση [7.5], παρουσιάζονται στον Πίνακα 7.3. Οι τιμές αυτές του σφάλματος είναι 6-8mm χαμηλότερες από αυτές που παρουσιάζονται από τους Pavlis *et al.*, (2006).

Διέλευση		Ετήσιος κύκλος (mm)	Εποχικός κύκλος (mm)
No 10	Μέση τιμή	7.9	6.0
INO. 10	Τυπ. απόκλιση	23.4	19.6
No. 100	Μέση τιμή	8.1	6.7
<i>NO.</i> 109	Τυπ. απόκλιση	22.5	19.4

Πίνακας 7. 2: Οι μέσες διαφορές στον ετήσιο και εποχικό (ετήσιο + εξαμηνιαίο) κύκλο μεταξύ του αλτιμέτρου και του παλιρροιογράφου κατά την TCA.

Αξίζει να σημειωθεί ότι όταν ο εξαμηνιαίος κύκλος δεν συμπεριλαμβάνεται στην διαδικασία, η εκτίμηση για το συστηματικό σφάλμα του δορυφόρου είναι στατιστικώς η ίδια (η διαφορά είναι μικρότερη από 2 mm) με την εκτίμηση που προκύπτει όταν λαμβάνονται υπόψιν και οι δύο αρμονικές του εποχικού κύκλου. Επομένως η εισαγωγή της εξαμηνιαίας αρμονικής στην εξίσωση [7.5] δεν είναι απαραίτητη.

Διέλευση	Pavlis et al.,	Pavlis et al.,	Διατ	ριβή
	(2004)	(2006)	ετήσιος	εποχικός
No. 18	134±15mm	120.3±15mm	112.3mm	114.3mm
No. 109	156±15mm	142.3±15mm	134.3mm	135.7mm
Μέση τιμή	144±15mm	131±15mm	123mm	125mm

Πίνακας 7. 3: Το συστηματικό σφάλμα του Jason-1 από το σταθμό της Γαύδου, όπως υπολογίστηκε στην παρούσα και σε προηγούμενες εργασίες. Στην παρούσα διατριβή, προσδιορίστηκαν δύο τιμές για το συστηματικό σφάλμα του Jason-1. Η πρώτη λαμβάνοντας υπόψιν τη διαφορά στον ετήσιο κύκλο ανάμεσα στα δεδομένα του παλιρροιογράφου και σε αυτά του αλτιμέτρου. Η δεύτερη τιμή υπολογίστηκε με τον ίδιο τρόπο αλλά με χρήση του εποχικού αντί του ετήσιου κύκλου.

Ο υπολογισμός στις αβεβαιότητες που εμπλέκονται με τον προσδιορισμό της νέας τιμής του συστηματικού σφάλματος του αλτίμετρου, προϋποθέτει την επανάληψη της διαδικασίας της βαθμονόμησης όπως περιγράφεται από τους Pavlis *et al.*, (2004). Η διαδικασία αυτή δεν επαναλήφθηκε στα πλαίσια της διατριβής. Παρ' όλα αυτά, οι διαφορές μεταξύ των καταγραφών του παλιρροιογράφου και του αλτιμέτρου μειώθηκαν μετά την αφαίρεση του ετήσιου / εποχικού κύκλου. Επομένως, η αβεβαιότητα στο σφάλμα του Jason-1 θα είναι ίση ή μικρότερη από αυτή που αναφέρουν οι Pavlis *et al.*, (2004) and Pavlis *et al.*, (2006) (δηλαδή $< \pm 15$ mm).

Οι εποχικοί/ ετήσιοι κύκλοι που αφαιρέθηκαν από τα δεδομένα είχαν υπολογιστεί με βάση παρατηρήσεων δύο περίπου ετών. Η λογική του να μη προτιμηθούν εποχικά/ ετήσια σήματα από ένα μόνο έτος δεδομένων (δηλαδή μεταξύ των κύκλων 54-70) αναλύεται παρακάτω:

Για τους σκοπούς του Κεφαλαίου αυτού απαιτούνταν ο προσδιορισμός των εποχιακών/ ετήσιων σημάτων για την περίοδο που καλύπτεται από τους κύκλους 70-90. Ας υποθέσουμε ότι υπήρχε τρόπος να υπολογιστεί ο εποχικός/ ετήσιος κύκλος για τα δεδομένα του παλιρροιογράφου για την περίοδο μεταξύ των κύκλων 70-106 (δηλαδή ένα έτος από την αρχή των καταγραφών του ακουστικού παλιρροιογράφου). Στην περίπτωση αυτή, θα μπορούσαμε για να προσδιορίσουμε τον εποχικό κύκλο μεταξύ των κύκλων 70-90 να χρησιμοποιήσουμε τα δεδομένα μεταξύ των κύκλων 54-90 είτε μεταξύ των κύκλων 70-106.

Επιπλέον, η ανά έτος ανάλυση στη Σούδα (Κεφάλαιο 4) έδειξε ότι οι ανά έτος διακυμάνσεις στο πλάτος του εποχικού κύκλου είναι της τάξης των μερικών εκατοστόμετρων. Αυτό σημαίνει ότι ο εποχικός/ ετήσιος κύκλος για την περίοδο μεταξύ των κύκλων 70-106 θα ήταν διαφορετικός από τον αυτόν μεταξύ των κύκλων 54-90. Επομένως, αποφασίστηκε να χρησιμοποιηθεί στην εξίσωση [7.5] ένας μέσος ετήσιος/ εποχικός κύκλος που θα προέκυπτε από όλα τα διαθέσιμα δεδομένα του παλιρροιογράφου.

Στο σημείο αυτό θα πρέπει να αναφερθεί ότι η διαφορά στην τιμή του συστηματικού σφάλματος του Jason-1 που αναφέρεται από τους Pavlis *et al.*, (2006) από αυτήν που βρέθηκε στη διατριβή, είναι 8mm. Οι διαφορά αυτή αν και βρίσκεται στα όρια αβεβαιότητας τόσο του προσδιορισμού της δυναμικής τοπογραφίας της θαλάσσιας επιφάνειας όσο και των μετρήσεων της θαλάσσιας στάθμης.

Παρ' όλα αυτά, είδαμε στο Κεφάλαιο 4 ότι η διαφορά στο πλάτος του ετήσιου κύκλου στα ανοιχτά νερά όπου λαμβάνει μετρήσεις το αλτίμετρο, με το αντίστοιχο πλάτος στο σημείο όπου βρίσκεται ο παλιρροιογράφος είναι 2 cm. Υποστηρίχτηκε επίσης ότι η διαφορά αυτή δεν είναι πλασματική, αλλά αντικατοπτρίζει πραγματικές διαφορές στην δυναμική τοπογραφία μεταξύ βαθιών και ρηχών υδάτων. Αυτό σημαίνει ότι σε καμία περίπτωση η τιμή του σφάλματος του Jason-1 που αναφέρουν οι Pavlis *et al.*, (2006) δε θα μπορούσε να μειωθεί περισσότερο από 2 cm.

Επιπροσθέτως, αν η βαθμονόμηση των Pavlis *et al.*, (2006) βασίζονταν σε ένα έτος παρατηρήσεων της θαλάσσιας στάθμης, η μείωση του συστηματικού σφάλματος του Jason-1 με τη μέθοδο που περιγράφτηκε σε αυτό το Κεφάλαιο αυτό, θα ήταν μηδενική. Αυτό εξηγείται διότι ο μέσος όρος ενός ημιτονοειδούς σήμάτος είναι μηδέν όταν η διάρκεια παρατήρησης ισούται με την περίοδο του. Επομένως, η μείωση του συστηματικού σφάλματος του Jason-1 που αναφέρουν οι Pavlis *et al.*, (2006) κατά 8mm, είναι ένα αναμενόμενο αποτέλεσμα.

7.3 Η παλίρροια στην βαθμονόμηση του Jason-1 στην Γαύδο

Σε αυτή την ενότητα, οι διαφορές στην παλίρροια μεταξύ του Καραβέ και της περιοχής νοτίως της Γαύδου όπου μετράει ο Jason-1 εκτιμήθηκαν χρησιμοποιώντας το μοντέλο T95 (Tsimplis, 1995). Έτσι, υπολογίστηκε η επίδραση της παλίρροιας στα πειράματα βαθμονόμησης που παρουσιάζονται από τους Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006).

Ο υπολογισμός του συστηματικού σφάλματος του αλτίμετρου δεν αναμένεται να είναι πολύ ευαίσθητος στην ικανότητα του μοντέλου να προβλέπει την παλίρροια. Αυτό συμβαίνει διότι η παλίρροια αφαιρείται από τα δεδομένα και των δύο συστημάτων μέτρησης. Επομένως, η εκτίμηση του σφάλματος του Jason-1 που αναφέρεται από τους Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006), δεν αναμένεται να περιέχει σημαντικά συστηματικά σφάλματα λόγω της μεθόδου με την οποία τα δεδομένα θαλάσσιας στάθμης διορθώθηκαν για τις παλίρροιες.

Ο συλλογισμός αυτός βασίζεται στο ότι οι παλιρροϊκές μεταβολές γύρω από την Γαύδο δεν υπερβαίνουν τα 4-5cm. Επίσης, η απόσταση μεταξύ των παλιρροιογράφων στο Καραβέ και στη περιοχή όπου το αλτίμετρο λαμβάνει μετρήσεις είναι μόνο μερικά χιλιόμετρα. Επομένως, οι διαφορές στα παλιρροϊκά υψόμετρα μεταξύ των δύο αυτών περιοχών είναι πιθανότατα πολύ μικρές.

Επιπλέον, τα πειράματα βαθμονόμησης στην Γαύδο έγιναν για 21 κύκλους (δηλ. 42 δορυφορικές διελεύσεις), ενώ η περίοδος των παλιρροϊκών αρμονικών είναι 24 ώρες για τις ημερήσιες και 12 ώρες για τις ημι-ημερήσιες. Συνεπώς, η παλίρροια έχει δειγματιστεί αρκετές φορές για να εξαλειφθούν οι διαφορές στα δεδομένα, λόγω της ανεπαρκούς μοντελοποίησης. Έτσι, είναι απίθανο η μεταχείριση των παλιρροιών να έχει εισάγει σφάλματα στον υπολογισμό των αλτιμετρικών συστηματικών σφαλμάτων στους Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006).

Είναι πάντως προτιμητέο να διορθωθούν και τα δύο σύνολα δεδομένων χρησιμοποιώντας ένα μοντέλο που προβλέπει ρεαλιστικά παλιρροϊκά υψόμετρα. Με τον τρόπο αυτόν, όλα τα δεδομένα θαλάσσιας στάθμης προσαρμόζονται για τις διαφορές μεταξύ των παλιρροϊκών υψών κοντά στην ακτή (παλιρροιογράφος) και σε υπεράκτιες περιοχές (αλτίμετρο). Πάντως, τέτοιες διαφορές αναμένονται να είναι σχετικά μικρές, αφού το παλιρροϊκό εύρος στην περιοχή είναι μόλις 4-5cm (Tsimplis, 1992 και Tsimplis 1994). Συνεπώς, η διαφορά στα παλιρροϊκά υψόμετρα μεταξύ των δύο τοποθεσιών θα είναι μικρή εκτός εάν υπάρχουν φαινόμενα αβαθών υδάτων.

Για τον προσδιορισμό της επίδρασης της χρήσης του μοντέλου GOT00.2 στην βαθμονόμηση, οι παλίρροιες πάνω από τα βαθιά ύδατα νοτίως της Γαύδου και οι παλίρροιες στο Καραβέ θα έπρεπε να συγκριθούν χρησιμοποιώντας τις προβλέψεις του μοντέλου GOT00.2. Παρ' όλα αυτά, μία τέτοια σύγκριση δεν είναι εφικτή καθώς οι προβλέψεις του GOT00.2 δεν ήταν διαθέσιμες για τα βαθιά ύδατα νοτίως της Γαύδου. Έτσι, οι διαφορές στα παλιρροϊκά υψόμετρα μεταξύ των βαθιών υδάτων και του Καραβέ στο χρόνο της TCA προσδιορίστηκε έμμεσα με το μοντέλο T95.

Ειδικότερα, οι προβλέψεις του T95 στα κομβικά σημεία του καννάβου των αλτιμετρικών δεδομένων συγκρίθηκαν με τις παλιρροϊκές προβλέψεις του T95 στον Καραβέ, για κάθε πτήση του Jason-1 για τους κύκλους 70-90. Παραδείγματος χάριν, οι προβλέψεις του T95 για τη διέλευση 109 μεταξύ των κύκλων 70-90 πάνω από την περιοχή όπου μετράει ο Jason-1 αλλά και αυτές για το Καραβέ, απεικονίζονται στο Σχήμα 7.4. Κατά την διάρκεια των 21 προσεγγίσεων, μεταξύ των κύκλων αυτών, το παλιρροϊκό εύρος αυξάνεται καθώς αυξάνεται το γεωγραφικό πλάτος (δηλ. καθώς ο Jason-1 πλησιάζει τη Νήσο Γαύδο).

Σχήμα 7. 4: Η παλίρροια κατά την TCA όπως προβλέπεται από το T95 στους κύκλους 70-90 για την διέλευση 109. Οι κύκλοι υποδηλώνουν την παλίρροια στην τοποθεσία όπου βρίσκεται ο παλιρροιογράφος του Καραβέ.

Κατά την διάρκεια κάθε πτήσης, οι διαφορές μεταξύ της παλίρροιας στο Καραβέ και της παλίρροιας Νοτίου της Γαύδου δεν υπερβαίνουν τα ±6mm (Σχήμα 7.5). Επιπλέον, η μέση διαφορά μεταξύ των δύο παλιρροιών είναι 0.0±3mm. Συνεπώς, εάν οι παλίρροιες δεν λαμβάνουν μέρος στα πειράματα βαθμονόμησης, το σφάλμα που εισάγεται στο σφάλμα του αλτιμέτρου καθώς και η ακρίβειά του, θα είναι αμελητέο.

Σχήμα 7. 5: Η διαφορά στο ύψος της παλίρροιας τη χρονική στιγμή της TCA μεταξύ της περιοχής όπου οι μετρήσεις του Jason-1 χρησιμοποιούνται στην βαθμονόμησή του, και της περιοχής του Καραβέ. Οι διαφορές αυτές αντιστοιχούν στους κύκλους 70-90 για την διέλευση 109.

7.4 Συμπερασματικά σχόλια

Στην βαθμονόμηση της Γαύδου χρησιμοποιήθηκε το μοντέλο παλιρροιών GOT00.2 για την διόρθωση των μετρήσεων και των δύο συστημάτων καταγραφής. Η παρούσα ανάλυση έδειξε ότι οι εκτιμήσεις του συστηματικού σφάλματος του Jason-1 που αναφέρονται από τους Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006) δεν έχουν επηρεαστεί από την χαμηλή αξιοπιστία του GOT00.2 στη περιοχή βαθμονόμησης.

Σε μελλοντικές προσπάθειες βαθμονόμησης δορυφορικών αλτιμέτρων στον σταθμό της Γαύδου, προτείνεται να μη χρησιμοποιηθεί το GOT00.2 για την αφαίρεση των παλιρροιών από τα δεδομένα. Συγκεκριμένα, είναι προτιμότερο είτε να χρησιμοποιηθεί ένα αξιόπιστο μοντέλο όπως το T95, είτε να μη γίνουν καθόλου διορθώσεις για την παλίρροια.

Οι συστηματικές μεταβολές στον εποχικό κύκλο της περιοχής που μετράει το αλτίμετρο και στον εποχικό κύκλο στο σημείο όπου βρίσκεται ο παλιρροιογράφος της Γαύδου πρέπει να λαμβάνονται υπόψιν στην βαθμονόμηση. Όταν οι διαφορές αυτές ελήφθησαν υπόψιν, το συστηματικό σφάλμα μεταξύ των κύκλων 70-90 εκτιμήθηκε στα 112,3mm και 134,3mm για τις διελεύσεις 18 και 109 αντιστοίχως. Η μέση τιμή του συστηματικού σφάλματος του Jason-1 βρέθηκε να είναι 123mm, ενώ το σφάλμα που σχετίζεται με την εκτίμηση αυτή είναι μικρότερο από ±15mm.

Το συστηματικό σφάλμα του Jason-1 όπως εκτιμήθηκε στο Κεφάλαιο αυτό είναι κατά 8mm μικρότερο από αυτό που αναφέρεται από τους Pavlis *et al.*, (2006). Οι αντίστοιχες αναφορές από τους σταθμούς της Corsica και της Ibiza είναι 107,9±6,7mm και 120,5±4,4mm αντιστοίχως (Bonnefond *et al.*, 2006 και Martínez-Benjamín *et al.*, 2006). Επομένως, η νέα αυτή εκτίμηση του συστηματικού σφάλματος του Jason-1 είναι πιο κοντά στις εκτιμήσεις που δίνονται από τους άλλους δύο σταθμούς βαθμονόμησης που βρίσκονται στην Μεσόγειο.

7.5 Πρόσφατες εξελίξεις στην βαθμονόμηση των αποστολών Jason.

Στις αρχές του Ιουλίου του 2008 η δορυφορική αποστολή αλτιμετρίας Jason-2 ξεκίνησε να παρέχει τις πρώτες καταγραφές της. Η αποστολή αυτή έχει ως σκοπό την συνέχιση της αποστολής Jason-1. Οι προδιαγραφές για την ποιότητα της παροχής ποιοτικών δεδομένων για το υψόμετρο της θαλάσσιας επιφάνειας είναι ίδιες με αυτές του Jason-1. Από το ξεκίνημα της αποστολής Jason-2 μέχρι και τον Ιανουάριο του 2009, οι δύο αυτοί δορυφόροι ακολουθούσαν την ίδια τροχιά. Έτσι, οι δύο δορυφόροι πετούσαν ο ένας πίσω από τον άλλον με διαφορά μερικών λεπτών (tandem mission).

	Jason-1 (mm)	Jason-2 (mm)	Αναφορές
Harvest	+110 ±9	$+200 \pm 10$	Haines et al., 2008
Corsica	$+147 \pm 15$	$+220 \pm 11$	Bonnefond et al., 2008b
Bass Strait	$+89 \pm 9$	$+166 \pm 10$	Watson et al., 2008
Gavdos	$+108 \pm 8$	$+235 \pm 16$	Pavlis et al., 2008
Gavdos	$+116 \pm 13$	$+205 \pm 6$	Mertikas et al., 2008

Πίνακας 7.4: Το συστηματικό σφάλμα των δορυφορικών αποστολών Jason-1 και Jason-2.

Αυτή η από κοινού λήψη μετρήσεων αποσκοπούσε στο να προσδιοριστούν τα συστηματικά σφάλματα των αλτιμέτρων από τους ίδιους επίγειους σταθμούς, κάτω από τις ίδιες συνθήκες. Με τον τρόπο αυτό καθίσταται δυνατή η συνένωση των δεδομένων από τις δύο δορυφορικές αποστολές. Η συνένωση αυτή, διασφαλίζει τη συνέχεια των δεδομένων αλτιμετρίας, που είναι απαραίτητη για την μελέτη των μεταβολών του κλίματος.

Σχήμα 7. 6: Το συστηματικό σφάλμα των δορυφορικών αποστολών Jason-1 και Jason-2 για τους 11 πρώτους κύκλους της από κοινούς πτήσης τους.

Μετά από τους πέντε πρώτους μήνες λειτουργίας του Jason-2, διοργανώθηκε η πιο πρόσφατη συνάντηση της ομάδας του OSTST στην Νίκαια της Γαλλίας (Bonnefond *et.al.*, 2008a). Στο συνέδριο αυτό παρουσιάστηκαν τα τελευταία αποτελέσματα από τους σταθμούς βαθμονόμησης δορυφορικών αλτιμέτρων. Τα αποτελέσματα αυτά συνοψίζονται στον Πίνακα 7.4 (Bonnefond *et. al.*, 2008a).

Τα αποτελέσματα που περιέχονται στον Πίνακα 7.4 υπολογίστηκαν με βάση την πιο πρόσφατη γενιά αλτιμετρικών δεδομένων, τα GDR-C. Η βασική διαφορά των GDR-C από τα προγενέστερα GDR-B, είναι στον τρόπο που υπολογίζονται οι καθυστερήσεις που οφείλονται στην υγρασία της τροπόσφαιρας (Bonnefond *et. al.*, 2008a).

Για τον προσδιορισμό του συστηματικού σφάλματος των δορυφορικών αλτιμέτρων από τον σταθμό της Γαύδου, δημιουργήθηκε μια νέα μεθοδολογία (Mertikas *et. al.*, 2008). Η μεθοδολογία αυτή περιγράφεται αναλυτικά στο (Mertikas *et. al.*, 2009).

Συνοπτικά, τα αποτελέσματα που προκύπτουν από τον σταθμό της Γαύδου, (Πίνακας 7.4) είναι σε συμφωνία με αυτά που αναφέρονται από τους υπόλοιπους σταθμούς βαθμονόμησης. Το συστηματικό σφάλμα των Jason-1 και Jason-2, για τους 11 πρώτους κύκλους της κοινής περιόδου πτήσης τους απεικονίζονται στο Σχήμα 7.6.

ΚΕΦΑΛΑΙΟ 8: ΣΥΜΠΕΡΑΣΜΑΤΑ

Στα πλαίσια της διατριβής αυτής πραγματοποιήθηκε ανάλυση της μεταβλητότητας της θαλάσσιας στάθμης στην περιοχή της Δυτικής Κρήτης (Κεφάλαια 3-6). Το συστηματικό σφάλμα του αλτίμετρου της δορυφορικής αποστολής Jason-1 που αναφέρεται από τους Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006) επαναπροσδιορίστηκε στο Κεφάλαιο 7.

Το εύρος της παλίρροιας στην περιοχή ενδιαφέροντος δεν ξεπερνά σε πλάτος τα 5 cm. Οι σημαντικότερες αρμονικές ημερήσιου και ημι-ημερήσιου τύπου είναι οι O₁, K₁, P₁, M₂ και S₂. Η επίδραση της ατμόσφαιρας στις συχνότητες αυτές είναι αμελητέα. Αντιθέτως, το μεγαλύτερο ποσοστό των μακροπερίοδων συνιστωσών αποδίδεται στην άμεση επίδραση της ατμόσφαιρας. Δεν βρέθηκαν φαινόμενα αβαθών υδάτων στις τοποθεσίες όπου βρίσκονται οι παλιρροιογράφοι. Τα παραπάνω ήταν σε γενικές γραμμές γνωστά από προηγούμενες μελέτες (Tsimplis, 1995). Στην παρούσα διδακτορική διατριβή όμως για πρώτη φορά ποσοτικοποιήθηκε η συνεισφορά της ατμοσφαιρικής διέγερσης στην παρατηρούμενη παλίρροια.

Ο πρώτος στόχος της διατριβής αφορούσε στην καταγραφή και την κατανόηση των διακυμάνσεων του εποχικού κύκλου στην περιοχή ενδιαφέροντος. Ο εποχικός κύκλος της θαλάσσιας στάθμης είναι κυρίως θερμοάλιου χαρακτήρα αν και επηρεάζεται ως ένα βαθμό και από την άμεση ατμοσφαιρική διέγερση. Κατά την δεκαετία του 1990, το πλάτος του ετήσιου κύκλου εμφανίζεται αυξημένο, και με μεγαλύτερες διακυμάνσεις σε σχέση με τη δεκαετία του 80.

Στην παρούσα διατριβή βρέθηκε ότι οι διακυμάνσεις του ετήσιου κύκλου σχετίζονται με τη ΔΒΑ. Η σχέση αυτή αποδόθηκε στην επίδραση της ΔΒΑ στη φάση τόσο της μετεωρολογικής όσο και της θερμοάλιος συνιστώσας του ετήσιου κύκλου. Τα αποτελέσματα υπογραμμίζουν ότι η επίδραση της ΔΒΑ στον ετήσιο κύκλο της μετεωρολογικής συνιστώσας της θαλάσσιας στάθμης είναι εντονότερη κατά τα τελευταία 20 χρόνια περίπου. Η ΔΒΑ δεν επηρεάζει άμεσα το πλάτος του ετήσιου κύκλου. Κύκλου. Επιδρά όμως έμμεσα ελέγχοντας τη φάση της μετεωρολογικής, της θερμοάλιος συνιστώσας και της διαφοράς τους.

Παρατηρήθηκαν συστηματικές διαφορές στον εποχικό κύκλο μεταξύ της ανοιχτής θάλασσας νοτίως της Γαύδου και του λιμένα του Καραβέ. Οι διαφορές

αυτές και σχετίζονται κυρίως με διαφορές στο πλάτος του κύκλου και είναι της τάξης των 2 cm.

Δεύτερος στόχος της διατριβής ήταν να αναδείξει την σημαντικότητα των διακυμάνσεων αυτών σε αναλύσεις που σχετίζονται με την θαλάσσια στάθμη. Ο σκοπός αυτός επιτεύχθηκε ολοκληρώνοντας τρεις εργασίες, δύο εκ των οποίων αφορούσαν μελέτες παράκτιας επικινδυνότητας, παράκτιας μηχανικής, και αλλαγής του κλίματος. Συγκεκριμένα η πρώτη αφορούσε στη μελέτη των ακραίων τιμών και η δεύτερη τις γραμμικές συστηματικές τάσεις της θαλάσσιας στάθμης. Η τρίτη αφορούσε την βαθμονόμηση του δορυφορικού αλτίμετρου Jason-1.

Στην μελέτη των ακραίων τιμών της θαλάσσιας στάθμης, τα δεδομένα είθισται να διορθώνονται για τις διακυμάνσεις της ΜΣΘ. Από την παρούσα μελέτη προκύπτει ότι θα πρέπει να λαμβάνονται υπόψιν και οι διακυμάνσεις του εποχικού κύκλου. Συγκεκριμένα:

 Βρέθηκαν ανοδικές συστηματικές τάσεις στις πιο ακραίες θαλάσσιες καταιγίδες. Οι συστηματικές αυτές τάσεις όμως αποκρύπτονται στα δεδομένα που εμφανίζουν εποχικότητα (είτε υπό μορφή εποχικού κύκλου, είτε ως εποχικές ανωμαλίες). Το αποτέλεσμα αυτό επιβεβαιώθηκε και από το μοντέλο HIPOCAS.

2) Βρέθηκε, ότι οι πιο ακραίες τιμές της θαλάσσιας στάθμης κάθε έτους δεν σχετίζονται με την ΔΒΑ. Όταν Παρ' όλα αυτά, δεν είχε αφαιρεθεί η εποχικότητα από τα δεδομένα της θαλάσσιας στάθμης τότε η ένταση των ισχυρότερων θαλάσσιων καταιγίδων κάθε έτους συσχετίζονταν με την ΔΒΑ. Το αποτέλεσμα αυτό επιβεβαιώθηκε και από το μοντέλο HIPOCAS.

3) Παρατηρήθηκε στατιστικώς σημαντική αύξηση στις εκτιμήσεις της εκατονταετούς στάθμης επαναφοράς που παρατηρείται όταν χρησιμοποιούνται δεδομένα από την δεκαετία του '90 στην ανάλυση σε σχέση με τις εκτιμήσεις όταν τα δεδομένα προέρχονται από την δεκαετία του '80. Η αύξηση όμως αυτή ήταν μικρότερη στα δεδομένα που εμφάνιζαν εποχικότητα. Δεν προκύπτει αντίστοιχη αύξηση από τα δεδομένα του μοντέλου HIPOCAS.

Αυτό πιθανότατα οφείλεται στο ότι το μέγεθος των ακραίων σταθμών της θαλάσσιας στάθμης που προβλέπει το HIPOCAS είναι μικρότερο από το πραγματικό. Επίσης το HIPOCAS δεν είναι ικανό να προβλέψει την χρονική στιγμή της εμφάνισής των ακραίων θαλάσσιων καταιγίδων με ακρίβεια.

Οι διακυμάνσεις στην εποχικότητα μπορεί να λαμβάνονται υπόψιν όπως στην παρούσα διατριβή, αφαιρώντας δηλαδή από κάθε έτος δεδομένων θαλάσσιας στάθμης τον αντίστοιχο εποχικό κύκλο. Εναλλακτικά, η ανάλυση μπορεί να περιορίζεται σε δεδομένα που συλλέχθηκαν κατά τους χειμερινούς μήνες, την περίοδο δηλαδή που λαβαίνουν χώρα οι ισχυρότερες θαλάσσιες καταιγίδες. Με τον τρόπο αυτό

αφαιρώντας την χειμερινή ΜΣΘ από τα δεδομένα θα απαλείφεται και η εποχικότητα από αυτά.

Οι μεταβολές της ΜΣΘ εμφανίζουν και αυτές εποχικότητα και πιο συγκεκριμένα συμβαίνουν κυρίως κατά τη διάρκεια των χειμερινών μηνών. Αυτό συνεπάγεται ότι η μέση ετήσια άνοδος της ΜΣΘ είναι μικρότερη από την αντίστοιχη χειμερινή αύξηση. Επομένως, όταν οι συστηματικές τάσεις της ΜΣΘ χρησιμοποιούνται για να προβλεφθεί η μελλοντική άνοδος της, η παράκτια επικινδυνότητα που υπολογίζεται θα είναι μειωμένη σε σχέση με την πραγματική. Μεταξύ 1960-1992 η ΔΒΑ ευθύνεται για τις συστηματικές τάσεις της θαλάσσιας στάθμης που παρατηρήθηκαν στην περιοχή. Μεταξύ 1992-2003, η ΔΒΑ ευθύνεται για λιγότερο από το ένα τρίτο των παρατηρούμενων χειμερινών συστηματικών τάσεων. Επομένως το αίτιο της συστηματικής αύξησης της θαλάσσιας στάθμης για την περίοδο 1992-2003 θα πρέπει να αναζητηθεί σε άλλους κλιματικούς μηχανισμούς όπως π.χ. η Διακύμανση NCP.

Από τις εργασίες για την βαθμονόμηση του δορυφόρου Jason-1 στο Κεφάλαιο 7 της διατριβής, προέκυψαν τα παρακάτω δύο συμπεράσματα:

1) Λαμβάνοντας υπόψιν τις διαφορές στον ετήσιο κύκλο ανάμεσα στις περιοχές που μετράει το αλτίμετρο και ο παλιρροιογράφος, στην βαθμονόμηση της αποστολή Jason-1, το συστηματικό σφάλμα του αλτίμετρου μεταξύ των κύκλων 70-90 επαναπροσδιορίστηκε, και βρέθηκε να είναι 112,3±15 και 134,3±15 mm για τις διελεύσεις 18 και 109 αντιστοίχως. Έτσι η νέα εκτίμηση του συστηματικού σφάλματος που προέκυψε από την παρούσα μελέτη είναι 123±15 mm. Η συγκεκριμένη εκτίμηση του συστηματικού σφάλματος του αλτίμετρου από τον σταθμό της Γαύδου είναι κατά 8 mm μικρότερη από την προηγούμενη (Pavlis *et al.*, 2006). Έτσι επιτεύχθηκε καλύτερη συμφωνία με τις εκτιμήσεις του σφάλματος που αναφέρονται από τους άλλους δύο σταθμούς που βρίσκονται στην Μεσόγειο Θάλασσα.

2) Το παλιρροϊκό μοντέλο GOT00.2, δεν είναι ικανό να αναπαραγάγει ρεαλιστικές παλιρροϊκές προβλέψεις. Παρ' όλα αυτά η ανεπαρκής μοντελοποίηση της παλίρροιας, δεν έχει εισαγάγει σφάλματα στην εκτίμηση του σφάλματος του Jason-1 που αναφέρεται από τους Pavlis *et al.*, (2004) και Pavlis *et al.*, (2006). Προτείνεται όμως, ότι σε μελλοντικές προσπάθειες βαθμονόμησης, θα πρέπει να υιοθετηθεί διαφορετική προσέγγιση στον χειρισμό των παλιρροϊκές διακυμάνσεις, θα πρέπει είτε να αποφεύγεται, είτε να γίνεται με κάποιο μοντέλο που να περιγράφει ικανοποιητικά τις παλίρροιες, όπως για παράδειγμα το T95.

Λαμβάνοντας υπόψιν τα συμπεράσματα που προέκυψαν από την παρούσα διατριβή, τις μεθόδους που χρησιμοποιήθηκαν καθώς και τα διαθέσιμα δεδομένα, προτείνεται η διενέργηση μελλοντικών ερευνών στις παρακάτω κατευθύνσεις:

 Οι προβλέψεις του μοντέλου HIPOCAS για τις διακυμάνσεις της θαλάσσιας στάθμης στη Μεσόγειο μπορούν να συγκριθούν με αυτές του μοντέλου mog2d. Στην σύγκριση μπορούν να συμπεριληφθούν τόσο δεδομένα αλτιμετρίας όσο και δεδομένα παλιρροιογράφων.

2) Στην παράκτια επικινδυνότητα σημαντικό ρόλο κατέχει η συμπεριφορά όχι μόνο των ακραίών τιμών της ωριαίας θαλάσσιας στάθμης αλλά και αυτή των ακραίων τιμών της στιγμιαίας. Η ανάλυση των ακραίων τιμών μπορεί να επαναληφθεί χρησιμοποιώντας και δεδομένα ύψους κυμάτων. Επίσης, μιας και οι ακραίας έντασης θαλάσσιες καταιγίδες είναι συνυφασμένες με ακραίας έντασης ανέμους και βαρομετρικά χαμηλά, θα ήταν ενδιαφέρον να γίνουν αντίστοιχες αναλύσεις και για τις ακραίες τιμές των δύο αυτών μεγεθών.

3) Πρόσφατα οι Gündüz and Özsoy (2005) ανακάλυψαν ισχυρές συσχετίσεις μεταξύ του κλιματικού φαινομένου «Διακύμανση της Βόρειας Κασπίας» (North Caspian Pattern – NCP) και διαφόρων θαλάσσιων και ατμοσφαιρικών φαινομένων στο Αιγαίο Πέλαγος. Οι συσχετίσεις αυτές μάλιστα ήταν σε πολλές περιπτώσεις πιο ισχυρές από τις αντίστοιχες με την ΔΒΑ. Επιπλέον, το φαινόμενο NCP ενδέχεται να σχετίζεται και με την δημιουργία του ΕΜΤ. Από τα παραπάνω προκύπτει ότι η διερεύνηση της σχέσης μεταξύ των διακυμάνσεων της θαλάσσιας στάθμης στο Αιγαίο και του φαινομένου του NCP αξίζει να μελετηθεί.

4) Η ανάλυση σχετικά με την εποχικότητα στις συστηματικές γραμμικές τάσεις της θαλάσσιας στάθμης θα πρέπει να επαναληφθεί σε παγκόσμια κλίμακα και να συμπεριλάβει και άλλα κλιματικά φαινόμενα εκτός της ΔBA, όπως την διακύμανση του El Niño Southern Oscillation (ENSO) κ.α.

5) Η βαθμονόμηση των δορυφορικών αποστολών Jason-1 και Jason-2 θα πρέπει να πραγματοποιηθεί για όλους τους κύκλους για τους οποίους υπάρχουν διαθέσιμα δεδομένα από το σταθμό.
ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΑΝΑΦΟΡΕΣ

Ablain M, Dorandeu J, Faugere Y, Picot N, Lambin J. 2006.Global Statistical Quality Assessment of Jason-1 data and Jason-1 / TOPEX/Poseidon Cross-calibration. Presented at the Ocean Surface Topography Science Team meeting, Venice (Italy), 13-17 March 2006.

Álvarez-Fanjul E, Pérez B, Rodríguez I. 1997. A description of the tides in the Eastern North Atlantic. *Progress in Oceanography* **40**: 217-244.

Álvarez-Fanjul E, Pérez B, Rodríguez I. 2001. NIVMAR: A storm-surge forecasting system for Spanish waters. *Scientia Marina* **60**: 145-154.

Amarouche L, Thibaut P, Zanifé O-Z, Dumont J-P, Vincent P, Steunou N. 2004. Improving the Jason-1 Ground Retracking to Better Account for Attitude Effects, *Marine Geodesy* **27(1-2)**: 171-198.

Arbic BK. 2005. Atmospheric forcing of the oceanic semidiurnal tide. *Geophysical Research Letters* **32**: L02610, DOI:10.1029/2004GL021668.

Baker T, Cerutti G., Corrado G, Kahle H-G, Marson I, Müller MV, Paradissis D, Pezzoli L, Plag HP, Pomrehn W, Richter B., Romagnoli C, Spencer N, Tomasi P, Tsimplis MN, Veis G, Verrone G, Wilson P, Zerbini S. 1995. Sea Level fluctuations: Geophysical Interpretation and environmental impact (SELF). In: I. Troen (ed.), *Proceedings. Symposium on Global Change: Climate change and impacts.* Copenhagen. European Commission Scientific Research Development.

Banks A. Drakopoulos P. 2004. Hellenic Centre for Marine Research (HCMR) Final Year Management, Scientific and Technical Report for E.U. Project GAVDOS (Contract No. EVR1-CT-2001-40019).

Banks AC, Drakopoulos, P. Tsimplis MN. 2004. Investigation of Sea Level Around the Island of Gavdos from Ten Years of Topex-Poseidon Satellite Altimetry Data. *Mediterranean Marine Science* **5**: 5-17.

Bonnefond P, Exertier P, Laurain P, Ménard Y, Orsoni A, Jan G, Jeansou E. 2003a. Absolute Calibration of Jason-1 and TOPEX/Poseidon Altimeters in Corsica, *Marine Geodesy* **26(3–4)**: 261–284.

Bonnefond P, Exertier P, Laurain O, Ménard Y, Jeansou E, Orsoni A, Haines BJ, Kubitschek DG, Born G. 2003b. Levelling sea surface using a GPS-Catamaran. *Marine Geodesy* **26(3-4)**: 319-334.

Bonnefond P, Desai S, Haines B, Nerem S, Picot N. 2006a. *CAL/VAL and Data Consistency Splinter Report*, Ocean Surface Topography Science Team meeting, Venice (Italy), 13-17 March.

Bonnefond P, Exertier P, Laurain O, Menard Y, Boldo F, Jan G. 2006b. Absolute Calibration of Jason-1 and TOPEX/Poseidon Altimeters in Corsica. Presented at the Ocean Surface Topography Science Team meeting, Venice (Italy), 13-17 March.

Bouzinac C, Font J, Johannessen J. 2003. Annual cycles of sea level and sea surface temperature in the western Mediterranean Sea. *Journal of Geophysical Research* **108(C3)**: 3059. DOI:10.1029/2002JC001365.

Carrére L, Lyard F. 2003. Modelling the barotropic response of the global ocean to atmospheric wind and pressure forcing-comparisons with observations. *Geophysical Research Letters* **30(6)**:1275.

Carter WE, Aubrey DG, Baker T, Boucher C, Le Provost C, Pugh D, Peltier W, Zumberge M, Rapp R, Schutz B, Emery K, Enfield D. 1989. Geodetic fixing of tide gauge bench marks, in *Woods Hole Oceanographic Institution Technical Report WHOI-89-31*.

Cazenave A, Dominh K, Gennero MC, Ferret B. 1998. Global mean sea level changes observed by Topex-Poseidon and ERS-1. *Physical Chemical Earth* **23**: 1069-75.

Cazenave A, Dominh K, Soudrarin L, Ponchaut F, Le Provost C. 1999. Sea level changes from TOPEX-POSEIDON altimetry and tide gauges and vertical crustal motions from DORIS. *Geophysical Research Letters* **26**: 2077-2080.

Cazenave A, Bonnefond P, Dominh K, Mercier F. 2002. Sea level changes in the Mediterranéan and Black seas from satellite altimetry. *Global and Planetary Change* **34**: 59-86.

Chambers D, Ries J, Shum C, Tapley B. 1998. On the use of tide gauges to determine altimeter drift. *Journal of Geophysical Research* **103** (C6): 12885-12890.

Christensen EJ, Haines BJ, Keihm SJ, Morris CS, Norman RS, Purcell GH, Williams BG, Wilson BC, Born GH, Parker ME, Gill SK, Shum CK, Tapley BD, Kolenkiewicz R, Nerem RS. 1994. Calibration of Topex/Poseidon at Platform Harvest, *Journal of Geophysical Research* **99** (C 12): 24465-24486.

Chelton DB, Ries JC, Haines BJ, Fu LL, Callahan PS. 2001: Satellite Altimetry, In *Satellite Altimetry and the Earth Sciences: A Handbook of Techniques and Applications*, Fu, L.-L. and Cazenave A. (Eds.), Academic Press, San Diego CA, 1-131.

Church. JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL. 2001. Changes in sea level. Chapter 11 of the *Intergovernmental Panel on Climate Change Third Assessment Report*. Cambridge University Press: Cambridge.

Davison AC, Smith RL. 1990. Methods for exceedances over high thresholds (with discussion). *Journal Royal Statistics society B* **52**: 393-442.

Doodson, A.T. 1921. The harmonic development of the tide generating potential. *Proc. Royal Soc. London* A 100: 306–328.

Dixon MJ, Tawn JA. 1994. Extreme sea-levels at the U.K. A-class sites: Site-by-site analysis. *Proudman Oceanographic Laboratory Internal Document* **65**: 228 pp.

Doodson AT, Warburg HD. 1941. *Admiralty Manual of Tides*. Hydrographic Department Admiralty, United Kingdom, 270 pp.

Douglas BC. 1991. Global sea level rise. *Journal of Geophysical Research* **96**: 6981-6992.

Douglas BC. 1992. Global sea level acceleration. *Journal of Geophysical Research* **97**: 12699-12706.

Douglas BC. 1995. Global sea level change: determination and interpretation. Reviews of Geophysics, Supplement, 1425-1432. in U.S. National Report to the International Union of Geodesy and Geophysics 1991-1994.

Douglas BC. 1997. Global sea rise: a redetermination. *Surveys in Geophysics* **18**: 279-292.

Edgington E. 1980. RandomizationTests. Marcel Dekker: New York.

Ekman, M., Stigebrandt, A., 1990. Secular change of the seasonal variation in sea level and of the Pole Tide in the Baltic Sea. *Journal of Geophysical Research* **95** (C4): 5379–5383.

Embrechts P, Kluppelberg C, Mikosch T. 1997. *Modelling Extremal Events*. Springer-Verlag: Berlin.

Fenoglio-Marc. 2002. Long term sea level change in the Mediterranean Sea from multi-satellite altimetry and tide gauges. *Physics and Chemistry of the Earth* **27**: 1419-1431.

Flemming NC. Woodworth PL. 1988. Monthly mean sea levels in Greece during 1969-1983 compared to relative vertical land movements measured over different timescales. *Tectonophysics* **148**: 59-72.

Fofonoff NP. 1985. Physical properties of seawater: A new salinity scale and equation of state for seawater. *Journal of Geophysical Research* **90:** 3322–3342.

Frantzis X and Papadopoulos A. 2003. GAVDOS field report, 12.

García-Lafuente J, Río JD, Alvarez Fanjul E, Gomis D, Delgado J. 2004. Some aspects of the seasonal sea level variations around Spain. *Journal of Geophysical Research* **109**(C09008). DOI:10.1029/2003JC002070.

GAVDOS. 2005. 36-month periodic report.

GEOMED. 1993. *Mare Nostrum - GEOMED*. Arabelos D, Tziavos IN (eds), Rep No. 4, Department of Geodesy and Surveying, Aristotle University of Thessaloniki, Thessaloniki, Greece.

Good P. 1994. *Permutation Tests: A Practical Guide for Testing Hypotheses*. Springer-Verlag: New York.

Guedes Soares C, Carretero Albiach JC, Weisse R, Alvarez-Fanjul E. 2002. A 40 years hindcast of wind, sea level and waves in European waters. *Proceedings of the OMAE2002*, Oslo.

Gumbel EJ. 1958. Statistics of Extremes. Columbia University Press: New York.

Gündüz, M., and E. Özsoy. 2005. Effects of the North Sea Caspian pattern on surface fluxes of Euro-Asian-Mediterranean seas, *Geophysical Research Letters*, **32**, L21701, doi:10.1029/2005GL024315.

Haines BJ, Dong D, Born GH, Gill SK. 2003. The Harvest Experiment: Monitoring Jason-1 and TOPED/Poseidon from a California offshore platform. *Marine Geodesy* **26(3–4)**: 239 259.

Haines B, Bar-Sever Y, Bertiger W, Desai S Willis P. 2004. One-Centimeter Orbit Determination for Jason-1: New GPS-based Strategies, *Marine Geodesy* **27(1-2)**: 299-318.

Haines B, Born G, Desai S, Gill S. 2006. Monitoring Jason-1 and TOPEX/POSEIDON from an Offshore Platform: Latest Results from the Harvest Experiment. Presented at the Ocean Surface Topography Science Team meeting, Venice (Italy), 13- 17 March 2006.

Hilmer M, Jung T. 2000. Evidence for a recent change in the link between the North Atlantic oscillation and Arctic sea ice export. *Geophysical Research Letters* **27**: 989-992.

Hurrell JW. 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. *Science* **269**: 676-679.

Hurrell JW. 1996. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophysical Research Letters **23(6)**: 665-668.

IOC. 1985. Manual on sea-level measurement and interpretation. *Volume 1 - Basic procedures*. Intergovernmental Oceanographic Commission Manuals and Guides. No. 14. IOC: Paris.

IOC 2000. Manual on sea-level measurement and interpretation. *Volume 3 – Reappraisals and Recommendations*. Intergovernmental Oceanographic Commission Manuals and Guides. **No. 14**. IOC: Paris.

Jason-1 Project, April 2003, "AVISO and POCAAC User Handbook IGDR and GDR Jason Products," Edition 2.0, JPL D-21352 (PODAAC)

Jan G, Menard Y, Faillot M, Lyard F, Jeansou E, Bonnefond P.2004. Offshore Absolute Calibration of Space-Borne Radar Altimeters. *Marine Geodesy* **27(3-4)**: 615–629.

Jan G, Menard Y, Bonnefond P, Laurain O, Roblou L. 2006. Jason-1 sea-surface height bias with Corsica tide gauges network. Presented at the Ocean Surface Topography Science Team meeting, Venice (Italy), 13-17 March 2006.

Jones PD, Jonsson T, Wheeler D. 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. *International Journal of Climatology* **17**: 1433-1450.

Kalnay E, Kanamitsu M, Kistler R., Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Roy J, Dennis J. 1996. The NCEP/NCAR 40-Year Reanalysis Project. *Bulletin of the American Meteorological Society* **77**: 437-471.

Koblinsky CJ, Ray RD, Beckley BD, Wang Y-M, Tsaoussi LS, Brenner A, Williamson R. 1999a. NASA ocean altimeter Pathfinder project report 1: Data processing handbook. *NASA Technical Memorandum* **1998-208605**, NASA, Goddard Space Flight Center, Greenbelt, Maryland.

Koblinsky CJ, Ray RD, Beckley BD, Brenner A, Tsaoussi LS, Wang Y-M. 1999b. NASA ocean altimeter pathfinder project report 2: data set validation. *NASA Technical Memorandum* **1999-209230**, NASA, Goddard Space Flight Center, Greenbelt, Maryland. Lagarias JC, Reeds JA, Wright MH, Wright PE. 1998. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. *SIAM Journal of Optimization* **9**:112-147.

Le Provost C. 1991. Generation of overtides and compound tides (Review). In: Parker BB (ed) *Tidal hydrodynamics*. John Wiley & Son: New York.

Le Provost C, Genco ML, Lyard F, Vincent P, Canceil P. 1994. Spectroscopy of the world ocean tides from a finite element hydrodynamic model, *Journal of Geophysical Research* **99**: 24,777-24,797.

Le Provost. 2001. Satellite Altimetry, In *Satellite Altimetry and the Earth Sciences: A Handbook of Techniques and Applications*, Fu, L.-L. and Cazenave A. (Eds.), Academic Press, San Diego CA, 1-131.

Lefèvre F, Lyard FH, Le Provost C. 2000. FES98 : a new global tide finite element solution independent of altimetry, *Geophysical Research Letters* **27** (17): 2717-2720.

Lefèvre F, Lyard FH, Le Provost C, Schrama EJ. 2002. FES99 : a tide finite element solution assimilating tide gauge and altimetric information, *Journal of Atmospheric and Oceanic Technology* **19(9)**: 1345-1356

Lionello P. 2005. *Extreme surges in the Gulf of Venice. Present and Future Climate, in: Venice and its lagoon, state of knowledge*. Cambridge University Press: Cambridge.

Lionello P, Nizzero A, Elvini E. 2003. Ocean waves and storm surges in the Adriatic Sea: intercomparison between the present and doubled CO2 climate scenarios. *Climate Research* **23**: 217-231.

Martinez-benjamin JJ, Martinez-Garcia M, Gonzalez Lopez S, Nunez Andres A, Buil Pozuelo F, Espino Infantes M, Lopez-Marco J, Martin Davila J, Garate Pasquin J, Garcia Silva C, Bonnefond P, Laurain O, Baron Isanta AM, Ortiz Castellon MA, Talaya Lopez J, Perez Gomez B, Alvarez Fanjul E, Rodriguez Velasco G, Gomis D, Marcos M, Ménard Y, Jan G, Jeansou E, Lyard F, Roblou L. 2004. Ibiza absolute calibration experiment: survey and preliminary results, *Marine Geodesy* **27**: 657-681. Martinez-Benjamin J, Martinez-Garcia M, Ortiz-Castellon M, Talaya J, Baron A, Rodriguez-Velasco G, Martin Davila J, Garate J, Bonnefond P, Garcia C, and the IBIZA2003 Team. 2006. Experiences on Altimeter Calibration at Ibiza Island and Cape of Begur (Spain). Presented at the Ocean Surface Topography Science Team meeting, Venice (Italy), 13- 17 March 2006.

Ménard Y, Jeansou E, Vincent P. 1994. Calibration of the TOPEX/POSEIDON altimeters at Lampedusa: Additional results at Harvest, *Journal of Geophysical Research* **99**: 24.487-24.504.

Ménard Y, Fu L-L, Escudier P, Haines B, Kuntsmann G, Parisot F, Perbos J, Vincent P. 2003. The Jason-1 Mission. *Marine Geodesy* **26(3–4)**: 147–157.

Mertikas SP, Pavlis EC, Drakopoulos P. 2003.GAVDOS: A satellite radar altimeter calibration and sea-level monitoring site on the island of Gavdos, Crete. Pp. 258–268. In Building the European Capacity in Operational Oceanography, H. Dahliin, N. C. Flemming, K. Nittis, and S. E. Petersson, (eds). *Proceedings of the 3rd EuroGOOS Conference*, 3–6 December 2002, Athens, Greece. Elsevier Oceanography Series 69.

Middleton JF, Thompson KR. 1986. Return periods of extreme sea levels from short records. *Journal of Geophysical Research* **91**: 11707–11716.

Mitchum GT. 1994. Comparison of TOPEX sea-surface heights and tide gauge sea levels. *Journal of Geophysical Research* **99**: 24,541-24,553.

Mitchum GT. 1998. Monitoring the stability of satellite altimeters with tide gauges. *Journal of Atmospheric and Oceanic Technology* **15**: 721-730.

Mitchum GT, 2000. An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion. *Marine Geodesy* **23**: 145-166.

Neilan R, Van Scoy PA, Woodworth PL. (eds.). (1998). *Proceedings of the Workshop on methods for monitoring sea level: GPS and tide gauge benchmark monitoring*, GPS altimeter calibration Workshop organised by the IGS and PSMSL, jet Propulsion Laboratory, 17-18 March 1997. 202pp.

Osborn TJ, Briffa KR, Tett SFB, Jones, PD, Trigo RM. 1999. Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model, Climate Dynamics **15**: 685-702.

Paluš M, Novotná D, Tichavský P. 2005. Shifts of seasons at the European midlatitudes: Natural fluctuations correlated with the North Atlantic Oscillation. *Geophysical Research Letters* **32**. L12805. DOI:10.1029/2005GL022838.

Parker BB. 1991. The relative importance of the various non-linear mechanisms in a wide range of tidal interactions. In: Parker BB (ed) *Tidal hydrodynamics*. John Wiley & Son: New York.

Pavlis EC, Mertikas SP, and the GAVDOS TEAM. 2004. "The GAVDOS Mean Sea Level and Altimeter Calibration Facility: Results for Jason1", 3rd Jason special issue, *Marine Geodesy* **27(3-4)**: 631-655.

Pavlis EC, Mertikas S, The GAVDOS TEAM. 2006. Eastern Mediterranean Dynamics and JASON-1 Altimeter Calibration Results from the GAVDOS Project. Presented at the Ocean Surface Topography Science Team meeting, Venice (Italy), 13-17 March.

Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. *Computers and Geosciences* **28**: 929-937.

Pirazzoli PA, Tomasin A. 2002. Recent evolution of surge-related events in the Northern Adriatic area. *Journal of Coastal Research* **18(3)**: 537-554.

Plag H.-P, Tsimplis MN. 1999. Temporal variability of the seasonal sea-level cycle in the North Sea and the Baltic Sea in relation to climate variability. *Global and Planetary Change* **20**: 173-203.

Pond S, Pickard GL. 1993. *Introduction to Dynamical Oceanography*. Butterworth Heinemann: Oxford.

Ponte RM, Ray RD. 2002. Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides, *Geophysical Research Letters* 29: doi:10.1029/2002GL016340.

Press WH, Flannery BP, Teukolosky SA, Vetterling WT. 1992. *Numerical Recipes in Fortran 77: The art of scientific computing*. Cambridge University Press: Cambridge.

Pugh DT, Vassie JM. 1979. Extreme sea-levels from tide and surge probability. Proceedings 16th Coastal Engineering Conference, 1978, Hamburg. *American Society of Civil Engineers*, New York, 1, 911-930.

Pugh DT, Vassie JM. 1980. Applications of the joint probability method for extreme sea level computations. *Proceedings of the Institute of Civil Engineering* **69**: 959–975.

Pugh DT. 1987. *Tides, surges and mean sea-level: a handbook for engineers and scientists.* Wiley: Chichester.

Pugh DT. 2004. Changing sea levels. Effects of tides, weather and climate. Cambridge University Press, 280pp.

Raicich F. 2003. Recent evolution of sea-level extremes at Trieste (Northern Adriatic). *Continental Shelf Research* **23**: 225-235.

Ray RD. 1999.A global ocean tide model from Topex/Poseidon altimetry: GOT99.2, NASA Tech Memo 209478, 58 pp., Goddard Space Flight Center.

Ray RD, Egbert GD. 2004. The global S₁ tide. *Journal of Physical Oceanography* **34**: 1922-1935.

Rio MH, Poulin P-M, Pascal A, Mauri E, Larnicol G, Santoleri R. 2006. A mean dynamic topography of the Mediterranean Sea computer from altimeter data, in situ measurements and a general circulation. *Journal of Marine Systems (in press)*.

Rixen M, Beckers JM, Brankart JM, Brasseur P. 2001. A numerically efficient data analysis method with error map generation. *Ocean Modelling* **2(1-2)**: 45-60.

Ross T., C. Garrett and P.Y. Le Traon. 2000. Western Mediterranean sea-level rise: changing exchange flow through the Strait of Gibraltar. *Geophysical Research Letters*. **27** (18): 2949–2952.

Schrama EJO, Ray RD. 1994. A preliminary tidal analysis of TOPEX/POSEIDON altimetry. *Journal of Geophysical Research* **99**: 24,799–24,808.

Smith RL. 1986. Extreme value theory based on the r largest annual events. *Journal of Hydrology*, **86**: 27–43.

Sotillo MG, Ratsimandresy AW, Carretero JC, Bentamy A, Valero F, Gonzalez-Rouco F. 2005. A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: Contribution to the regional improvement of global reanalysis. *Climate Dynamics* **25(2-3)**: 219-236. DOI:10.1007/s00382-005-0030-7.

Tapley, BD, Bettadpur S, Watkins M, Reigber C. 2004. The gravity recovery and climate experiment: Mission overview and early results, *Geophysical Research Letters* **31**: L09607, doi:10.1029/2004GL019920.

Tawn JA. 1988. An extreme value theory model for dependent observations. *Journal* of Hydrology **101**: 227-250.

Tawn JA, Vassie JM. 1991. Recent improvements in the joint probability method for estimating extreme sea-levels. In: *Tidal Hydrodynamics*. Wiley: New York.

Tawn JA. 1992. Estimating probabilities of extreme sea-levels. *Applied Statistics* **41**: 77-93.

Tesouro M, Gimeno L, Nieto R, Torre L, Ribera P, Gallego D, García-Herrera R, Hernández E. 2005. Interannual Variability of the Annual Cycle of Temperature over Northern Africa. *Studia Geophysica et Geodaetica* **49(1)**: 141:151.

Trigo IF, Davies TD. 2002. Meteorological conditions associated with sea surges in Venice: A 40 year climatology. *International Journal of Climatology* **22**: 787-803.

Tsimplis MN. 1992. Tidal harmonic analysis at Greek ports. Oceanographic Study **No 17**. Hellenic Navy Hydrographic Service. (in Greek).

Tsimplis MN. 1994. Tidal oscillations in the Aegean and Ionian Seas. *Estuarine Coastal and Shelf Sciences* **39**: 201-208.

Tsimplis MN, Woodworth PL. 1994. The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. *Journal of Coastal Research* **99(C8)**: 16,031 – 16,039.

Tsimplis, M.N., R. Proctor and R.A. Flather 1995. A two dimentional tidal model for the Mediterranean Sea, *Journal of Geophysical Research* **100**: 16,223-16,239.

Tsimplis MN, Blackman DL. 1997. Extreme sea level distribution and return periods in the Aegean and Ionian Seas. *Estuarine Coastal and Shelf Science* **44**: 79-89.

Tsimplis MN, Spencer NE. 1997. Collection and Analysis of Monthly Mean Sea Level Data in the Mediterranean and the Black Sea. *Journal of Coastal Research* **13(2)**: 534 – 544.

Tsimplis MN, Baker TF. 2000. Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes?. *Geophysical Research Letters* **27(12)**: 1731-1734.

Tsimplis MN, Josey SA. 2001. Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. *Geophysical Research Letters* **28(5)**: 803–806.

Tsimplis MN, Rixen M. 2002. Sea level in the Mediterranean Sea: The contribution of temperature and salinity changes. *Geophysical Research Letters* **29(3)**: DOI: 2002GL015870.

Tsimplis MN, Woolf DK, Osborn T, Wakelin S, Woodworth P, Wolf J, Flather R, Blackman D, Shaw AGP, Pert F, Challenor P, Yan Z. 2005. Towards a vulnerability assessment of the UK and northern European coasts: the role of regional climate variability. *Philosophical Transactions: Mathematical, Physical & Engineering Sciences* **363**: 1329-1358. doi:10.1098/rsta.2005.1571.

Tsimplis MN, Álvarez-Fanjul E, Gomis D, Fenoglio-Marc L, Pérez B. 2005. Mediterranean Sea level trends: Atmospheric pressure and wind contribution, *Geophysical Research Letters* **32**: L20602, DOI:10.1029/2005GL023867.

Tsimplis M.N, H.-P. Plag, D. Rosen, B. Lilja Bye and A. Papadopoulos. 2006. Developments in sea level research and observation in the Mediterranean Sea. *CLIVAR exchanges*, **11(2)**: 8-9.

Van Den Dool, Saha H, Schemm S, Huang, J. 1997. A temporal interpolation method to obtain hourly atmospheric surface pressure tides in Reanalysis 1979–1995, *Journal of Geophysical Research* **102**: 22013–22024.

Vergos GS, Tziavos I, Andritsanos VD. 2005. On the Determination of Marine Geoid Models by Least-Squares Collocation and Spectral Methods Using Heterogeneous

Data. *International Association of Geodesy Symposia* **128** F. Sansó (ed.), A Window on the Future of Geodesy, Springer – Verlag: Berlin.

Vigo I, Garcia D, Chao BF. 2005. Change of the sea level trend in the Mediterranean and Black seas. *Journal of Marine Research* **63**: 1085-1100.

Watson C, Coleman R, White N, Church J, Govind R. 2003. Absolute calibration of TOPEX/Poseidon and Jason-1 using GPS buoys in Bass Strait, Australia, *Marine Geodesy* **26(3–4)**:285–384.

Watson C, Coleman R, White N, Church J, Morgan P, Govind R. 2004. TOPEX/Poseidon and Jason-1: Absolute calibration in Bass Strait, Australia. *Marine Geodesy* **27(1–2)**:107–131.

Watson C, Coleman R, White N, Church J. 2006. Jason-1 absolute calibration: Update from Bass Strait, Australia. Presented at the Ocean Surface Topography Science Team meeting, Venice (Italy), 13- 17 March.

Woodworth PL. 1984. The worldwide distribution of the seasonal cycle of mean sea level. Institute of Oceanographic Sciences, Report **190**.

Woodworth PL, Tsimplis MN, Flather RA, Shennan I. 1999. A Review of the Trends Observed in British Isles Mean Sea Level Data measured by Tide Gauges. *Geophysical Journal International* **136**: 651-670.

Woodworth PL, Blackman DL. 2002. Changes in extreme high waters at Liverpool since 1768. *International Journal of Climatology* **22(6)**: 697-714.

Woodworth, P.L. and Player, R. 2003. The Permanent Service for Mean Sea Level: an update to the 21st century. *Journal of Coastal Research*, **19**: 287-295.

Woodworth PL, Blackman DL. 2004. Evidence for systematic changes in extreme high waters since the mid-1970's. *Journal of Climate* **17(6)**: 1190-1197.

Woodworth P, Moore P, Dong X, Bingley R. 2004. Absolute calibration of the Jason-1 altimeter using UK tide gauges. *Marine Geodesy* **27(1–2)**:95–106.

Zerbini S, Plag H, Baker T, Becker M, Billiris H, Bürki B, Kahle H, Marson I, Pezzoli L, Richter B, Romagnoli C, Sztobryn M, Tomasi P, Tsimplis M, Veis G,

Verrone G. 1996. Sea Level in the Mediterranean: A First Step Towards Separating Crustal Movements and Absolute Sea-level Variations. *Global and Planetary Change* **14**: 1-48.

ΠΑΡΑΡΤΗΜΑΤΑ

ΠΑΡΑΡΤΗΜΑ Ι

Οι επόμενοι δύο πίνακες περιέχουν την τυπική απόκλιση σε cm (std), των αλτιμετρικών δεδομένων μεταξύ των κύκλων 23-90 για τις διελεύσεις 109 και 18 αντιστοίχως. Περιέχονται οι τυπικές αποκλίσεις πριν και μετά την διαδικασία διόρθωσης. Οι κύκλοι που διορθώθηκαν ή διαγράφτηκαν (flagged) παρουσιάζονται με **έντονη** γραμματοσειρά.

PASS 109											
Cycle	std initial	std edited	Cycle	std initial	std edited						
23	26.6046	26.6046	57	63.5148	63.5148						
24	35.1034	35.1034	58	58.8527	58.8527						
25	35.0753	35.0753	59	72.7263	72.7263						
26	36.2821	36.2821	60	67.788	67.788						
27	27.7369	27.7369	61	74.7234	74.7234						
28	31.1608	31.1608	62	55.4009	55.4009						
29	55.8708	55.8708	63	57.2412	57.2412						
30	478.0227	40.3883	64	61.3157	61.3157						
31	45.1698	45.1698	65	54.3141	54.3141						
32	44.3391	44.3391	66	55.7334	55.7334						
33	92.8793	62.8805	67	64.8061	64.8061						
34	65.9971	50.793	68	59.4993	59.4993						
35	30.7032	30.7032	69	FLAGGED	FLAGGED						
36	36.4144	36.4144	70	67.6426	67.6426						
37	52.1217	52.1217	71	57.026	57.026						
38	787.0605	61.4628	72	61.5812	61.5812						
39	47.8191	47.8191	73	61.4354	61.4354						
40	62.0066	62.0066	74	67.6946	67.6946						
41	64.5028	64.5028	75	77.3898	FLAGGED						
42	43.2295	43.2295	76	67.7691	67.7691						
43	33.5616	33.5616	77	58.8153	58.8153						
44	35.7837	35.7837	78	57.3643	57.3643						
45	FLAGGED	FLAGGED	79	44.5348	44.5348						
46	33.7433	33.7433	80	48.8372	48.8372						
47	47.2632	47.2632	81	46.108	46.108						
48	61.9847	61.9847	82	44.9547	44.9547						
49	59.25	59.25	83	39.8538	39.8538						
50	48.2483	48.2483	84	61.6793	61.6793						
51	69.5343	69.5343	85	61.1198	61.1198						
52	54.928	54.928	86	61.2276	61.2276						
53	44.8539	44.8539	87	52.1838	52.1838						
54	49.6422	49.6422	88	42.2179	42.2179						
55	52.5387	52.5387	89	45.022	45.022						
56	31.9019	31.9019	90	40.6779	40.6779						

PASS 18											
Cycle	std initial	std edited	Cycle	std initial	std edited						
23	32.5352	32.5352	57	FLAGGED	FLAGGED						
24	45.82	45.82	58	84.0613	84.0613						
25	44.418	44.418	59	46.5981	46.5981						
26	38.316	38.316	60	64.2174	64.2174						
27	36.317	36.317	61	44.9208	44.9208						
28	38.3276	38.3276	62	40.5987	40.5987						
29	45.0554	45.0554	63	44.7177	44.7177						
30	45.7587	45.7587	64	67.0572	67.0572						
31	58.4298	58.4298	65	48.455	48.455						
32	637.3294	FLAGGED	66	86.6316	47.7385						
33	37.7385	37.7385	67	65.3907	65.3907						
34	FLAGGED	FLAGGED	68	71.7533	71.7533						
35	29.8296	29.8296	69	FLAGGED	FLAGGED						
36	46.6246	46.6246	70	113.3847	FLAGGED						
37	34.6775	34.6775	71	78.8747	FLAGGED						
38	48.078	48.078	72	710.7411	46.2478						
39	39.8042	39.8042	73	35.2312	35.2312						
40	46.3727	46.3727	74	34.2475	34.2475						
41	FLAGGED	FLAGGED	75	29.6572	29.6572						
42	52.29	52.29	76	FLAGGED	FLAGGED						
43	FLAGGED	FLAGGED	77	61.506	61.506						
44	74.9544	FLAGGED	78	FLAGGED	FLAGGED						
45	FLAGGED	FLAGGED	79	110.0503	110.0503						
46	62.6445	62.6445	80	111.3288	111.3288						
47	59.1268	59.1268	81	74.1728	74.1728						
48	43.3016	43.3016	82	179.396	FLAGGED						
49	27.5079	27.5079	83	40.5317	40.5317						
50	24.4071	24.4071	84	27.443	27.443						
51	35.3307	35.3307	85	41.9971	41.9971						
52	32.944	32.944	86	61.834	61.834						
53	41.1851	41.1851	87	43.5502	43.5502						
54	FLAGGED	FLAGGED	88	52.1505	52.1505						
55	49.7741	FLAGGED	89	65.6647	65.6647						
56	FLAGGED	FLAGGED	90	113.1493	FLAGGED						

ПАРАРТНМА ІІ

	HIPOCAS					ΠΑΛΙΡΡΟΙΟΓΡΑΦΟΣ				ΗΙΡΟCAS – ΠΑΛΙΡΡΟΙΟΓΡΑΦΟΣ					
	Πλάτος	σφάλμα	Φάση	σφάλμα	snr	Πλάτος	σφάλμα	Φάση	σφάλμα	snr	Πλάτος	σφάλμα	Φάση	σφάλμα	snr
SA	24.912	0.045	161.02	0.95	3100	68.950	0.059	249.66	0.50	14000	72.724	0.035	270.28	0.30	42000
SSA	0.4952	0.042	222.59	5.42	140	13.310	0.060	109.92	2.40	490	15.786	0.040	98.72	1.31	1600
MSM	0.4905	0.044	256.88	4.96	120	0.6622	0.055	284.56	5.56	140	0.2160	0.037	311.22	10.92	35
ММ	0.3614	0.048	259.67	7.01	57	0.7807	0.060	264.59	4.03	170	0.3191	0.040	270.08	6.51	65
MSF	0.1416	0.041	30.67	18.15	12	0.1549	0.060	317.04	22.95	6.7	0.2571	0.040	275.07	8.14	42
MF	0.1811	0.047	11.22	13.53	15	0.2677	0.057	5.38	11.84	22	0.1249	0.039	10.19	16.17	10
ALP1	0.0052	0.032	30.45	212.47	0.027	0.0113	0.046	85.48	187.48	0.061	0.0259	0.033	166.25	74.67	0.61
2Q1	0.0068	0.033	348.09	227.67	0.043	0.0240	0.048	288.35	122.06	0.25	0.0207	0.030	303.47	103.20	0.46
SIG1	0.0119	0.032	88.37	174.67	0.14	0.0202	0.045	96.68	154.17	0.2	0.0066	0.025	0.66	192.64	0.072
Q1	0.0181	0.031	213.58	132.61	0.35	0.0101	0.042	258.17	201.93	0.057	0.0077	0.027	323.47	180.23	0.084
RHO1	0.0164	0.032	260.57	145.42	0.26	0.0287	0.048	198.68	112.00	0.36	0.0272	0.035	147.41	78.14	0.62
01	0.0114	0.033	110.50	179.03	0.12	0.5983	0.056	309.52	5.70	110	0.6147	0.034	309.68	3.48	340
TAU1	0.0084	0.032	10.32	188.33	0.069	0.0231	0.044	169.03	138.01	0.27	0.0215	0.031	164.37	105.38	0.48
BET1	0.0149	0.030	125.95	158.26	0.24	0.0169	0.042	308.59	172.17	0.16	0.0301	0.033	308.16	76.93	0.82
NO1	0.0157	0.034	11.50	130.01	0.21	0.0596	0.052	320.67	53.88	1.3	0.0480	0.033	305.37	45.46	2.2
CHI1	0.0032	0.030	36.55	231.41	0.012	0.0214	0.042	7.44	144.54	0.26	0.0180	0.030	324.12	109.19	0.36
PI1	0.0213	0.035	341.55	126.01	0.36	0.0624	0.054	323.14	57.29	1.4	0.0463	0.035	304.09	46.80	1.7
P1	0.0960	0.045	348.83	31.59	4.6	0.5050	0.056	344.53	7.17	80	0.4176	0.038	343.64	5.82	120
S1	0.1902	0.048	216.52	13.50	16	0.1290	0.055	221.49	23.67	5.4	0.0688	0.041	31.26	32.84	2.9
К1	0.1042	0.050	21.47	26.05	4.3	13.451	0.056	350.98	2.61	570	12.581	0.041	348.80	1.82	950
PSI1	0.0196	0.034	351.58	117.95	0.32	0.1266	0.059	250.94	26.53	4.6	0.1338	0.040	239.82	15.99	11
PHI1	0.0236	0.039	76.22	103.95	0.37	0.0856	0.055	351.89	42.66	2.4	0.0718	0.035	338.29	32.42	4.2
THE1	0.0276	0.038	72.88	92.03	0.54	0.0279	0.043	18.36	122.83	0.42	0.0277	0.034	299.88	79.99	0.68
J1	0.0112	0.033	130.91	187.53	0.12	0.0504	0.057	350.62	66.39	0.78	0.0494	0.040	334.96	42.90	1.5
SO1	0.0021	0.030	316.01	260.95	0.005	0.0383	0.049	331.87	105.67	0.61	0.0353	0.035	354.02	65.92	1
001	0.0074	0.030	137.59	228.72	0.062	0.0444	0.052	308.75	81.31	0.74	0.0422	0.037	309.99	54.19	1.3
UPS1	0.0058	0.034	74.20	229.08	0.029	0.0157	0.039	323.40	156.42	0.16	0.0215	0.032	320.16	109.98	0.46
OQ2	0.0035	0.027	7.22	210.84	0.017	0.0034	0.041	41.98	223.89	0.0068	0.0029	0.024	84.23	228.35	0.015
EPS2	0.0044	0.033	235.29	235.29	0.018	0.0088	0.046	344.80	215.16	0.037	0.0148	0.029	353.11	124.09	0.25
2N2	0.0006	0.027	7.36	266.27	0.00041	0.0371	0.051	41.77	95.03	0.54	0.0345	0.034	31.85	65.48	1.1
MU2	0.0006	0.032	267.53	276.17	0.00034	0.0343	0.050	11.28	102.06	0.47	0.0308	0.035	19.95	79.57	0.79
N2	0.0014	0.028	335.56	261.47	0.0023	0.1944	0.059	20.24	18.89	11	0.1905	0.037	20.26	10.09	27

Τα πλάτη (mm), οι φάσεις (deg), τα εμπλεκόμενα σφάλματα και ο λόγος του σήματος προς το θόρυβο (snr) κάθε παλιρροϊκής συνιστώσας.όπως υπολογίστηκαν από το μοντέλο HIPOCAS model, τον παλιρροιογράφο της Σούδας και την υπολλειπόμενη χρονοσειρά (tide gauge-HIPOCAS).

NU2	0.0024	0.032	5.34	256.53	0.0057	0.0439	0.050	11.92	83.98	0.78	0.0418	0.034	9.48	55.86	1.5
GAM2	0.0009	0.033	215.16	266.35	0.00073	0.0243	0.041	88.57	126.04	0.35	0.0220	0.030	79.78	111.83	0.52
H1	0.0013	0.030	209.37	264.84	0.0018	0.1098	0.060	84.43	27.90	3.4	0.1095	0.035	86.94	19.08	9.6
M2	0.0013	0.031	321.30	268.05	0.0018	0.8867	0.062	2.69	4.14	210	0.8872	0.034	2.85	2.47	690
H2	0.0023	0.029	304.58	243.99	0.0061	0.2386	0.060	269.04	13.62	16	0.2346	0.040	268.81	9.47	35
MKS2	0.0015	0.029	159.40	279.24	0.0024	0.0364	0.048	92.60	100.67	0.57	0.0327	0.035	92.52	67.34	0.86
LDA2	0.0012	0.034	54.84	245.88	0.0014	0.0144	0.038	282.13	183.39	0.15	0.0159	0.030	267.26	129.64	0.28
L2	0.0003	0.028	263.68	259.45	0.00013	0.0492	0.049	338.73	66.10	1	0.0458	0.033	341.83	53.32	1.9
T2	0.0011	0.030	191.51	267.40	0.0012	0.0818	0.054	258.39	44.47	2.3	0.0864	0.036	257.21	25.62	5.7
S2	0.0234	0.038	204.40	107.97	0.38	0.6897	0.064	353.36	5.11	120	0.7073	0.037	353.97	3.19	370
R2	0.0037	0.033	105.29	243.71	0.013	0.1528	0.065	91.63	23.97	5.6	0.1515	0.039	90.60	13.85	15
K2	0.0050	0.033	247.12	204.20	0.023	0.2038	0.058	354.33	17.72	12	0.2013	0.037	356.15	9.95	30
MSN2	0.0010	0.028	144.16	273.34	0.0014	0.0334	0.045	116.04	88.82	0.54	0.0312	0.033	108.93	69.61	0.91
ETA2	0.0008	0.031	41.93	240.66	0.00059	0.0133	0.042	43.33	179.63	0.1	0.0091	0.027	49.02	156.48	0.11
MO3	0.0013	0.028	273.82	249.44	0.0021	0.0099	0.044	252.77	187.84	0.052	0.0112	0.029	235.94	162.27	0.15
М3	0.0011	0.032	144.10	280.08	0.0011	0.0144	0.042	167.89	179.33	0.12	0.0128	0.032	153.62	140.16	0.16
SO3	0.0007	0.029	341.39	247.13	0.00058	0.0092	0.040	252.40	194.81	0.054	0.0072	0.023	259.69	202.20	0.1
MK3	0.0002	0.031	358.95	240.91	5.2e-005	0.0115	0.039	276.88	205.94	0.089	0.0093	0.025	292.44	167.36	0.13
SK3	0.0054	0.029	82.08	224.50	0.034	0.0085	0.037	226.50	197.37	0.055	0.0136	0.027	255.70	122.30	0.25
MN4	0.0005	0.028	225.25	269.58	0.00027	0.0067	0.042	229.29	230.86	0.026	0.0065	0.023	219.11	197.13	0.079
M4	0.0002	0.029	198.72	265.92	7,00E-05	0.0242	0.046	224.91	134.89	0.27	0.0215	0.033	227.67	102.03	0.43
SN4	0.0003	0.027	58.73	298.44	0.0001	0.0018	0.042	106.64	265.83	0.0019	0.0026	0.022	144.16	236.78	0.015
MS4	0.0001	0.033	291.59	267.06	1.6e-005	0.0159	0.045	255.19	190.31	0.12	0.0160	0.029	261.55	111.95	0.31
MK4	0.0001	0.033	65.58	288.35	5.8e-006	0.0040	0.036	256.36	216.97	0.012	0.0053	0.029	253.90	209.07	0.033
S4	0.0002	0.034	65.03	266.22	5,00E-05	0.0094	0.040	239.07	221.54	0.055	0.0094	0.026	245.83	152.52	0.13
SK4	0.0002	0.030	235.37	296.93	3.4e-005	0.0055	0.044	187.80	239.66	0.016	0.0045	0.027	172.91	220.23	0.028
2MK5	0.0008	0.033	304.09	255.20	0.00064	0.0052	0.040	55.79	247.21	0.017	0.0041	0.027	86.13	219.06	0.023
2SK5	0.0052	0.030	245.18	244.78	0.03	0.0024	0.043	48.38	273.96	0.0031	0.0078	0.026	46.37	172.13	0.087
2MN6	0.0002	0.030	299.63	302.55	3.1e-005	0.0017	0.038	220.86	255.95	0.0019	0.0024	0.027	165.41	222.28	0.0085
M6	0.0010	0.032	40.01	261.33	0.001	0.0041	0.041	51.73	247.61	0.01	0.0023	0.027	46.03	239.12	0.0076
2MS6	0.0008	0.032	178.24	252.65	0.00068	0.0044	0.038	356.00	229.92	0.014	0.0044	0.028	13.64	223.61	0.025
2MK6	0.0005	0.033	116.23	276.39	0.00026	0.0009	0.036	218.84	262.06	0.00068	0.0013	0.029	231.27	247.68	0.0019
2SM6	0.0005	0.032	111.83	286.71	0.00021	0.0044	0.034	84.14	229.99	0.017	0.0029	0.029	74.80	251.18	0.0097
MSK6	0.0008	0.031	316.60	251.18	0.00068	0.0010	0.041	107.76	267.19	0.00064	0.0028	0.025	147.42	255.13	0.012
3MK7	0.0003	0.028	308.55	284.83	9.8e-005	0.0089	0.042	321.48	207.52	0.045	0.0046	0.026	327.49	243.54	0.032
M8	0.0001	0.029	340.61	300.10	6.6e-006	0.0029	0.041	26.03	248.11	0.005	0.0034	0.024	17.79	245.47	0.019

ПАРАРТНМА III

Καθένας από τους παρακάτω πίνακες περιέχει εκτιμήσεις για το πλάτος (cm) τη φάση (degrees), τα σφάλματα και τους λόγους του σήματος προς θόρυβο από τα δεδομένα του παλιρροιογράφους της Σούδας για την περίοδο1982-2003.

1982	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	6.0965	0.218	270.37	2.35	7.8e+002	*M2	0.9787	0.222	349.32	15.91	19
*SSA	2.0915	0.273	246.79	6.55	59	H2	0.2282	0.251	261.80	54.25	0.83
*MSM	1.4319	0.237	250.14	9.46	37	MKS2	0.0481	0.180	30.22	179.28	0.072
*MM	1.7254	0.273	315.17	7.80	40	LDA2	0.0544	0.158	316.52	161.58	0.12
*MSF	0.8552	0.237	175.33	16.64	13	L2	0.1011	0.176	331.91	145.46	0.33
*MF	0.6498	0.241	251.51	23.97	7.3	T2	0.0921	0.187	259.73	141.79	0.24
ALP1	0.0771	0.161	268.45	145.18	0.23	*S2	0.6720	0.220	336.90	21.27	9.4
2Q1	0.0414	0.157	158.41	210.91	0.07	R2	0.1402	0.220	71.44	106.26	0.41
SIG1	0.0198	0.157	262.00	230.06	0.016	*K2	0.2750	0.222	337.12	52.03	1.5
Q1	0.0024	0.165	145.86	261.27	0.00022	MSN2	0.0355	0.144	161.27	197.01	0.061
RHO1	0.0271	0.162	40.91	230.09	0.028	ETA2	0.0160	0.172	0.02	254.83	0.0086
*01	0.6036	0.250	295.34	22.17	5.8	MO3	0.0234	0.173	124.49	253.93	0.018
TAU1	0.0179	0.149	146.37	235.61	0.014	M3	0.0113	0.161	141.44	262.00	0.0049
BET1	0.0168	0.148	262.19	242.20	0.013	SO3	0.0260	0.165	314.13	222.52	0.025
NO1	0.1197	0.164	238.42	113.58	0.53	MK3	0.0411	0.188	314.70	217.33	0.048
CHI1	0.0302	0.168	174.64	222.18	0.032	SK3	0.0130	0.159	143.07	244.86	0.0067
PI1	0.0566	0.167	113.10	206.64	0.12	MN4	0.0234	0.175	202.01	246.23	0.018
*P1	0.5690	0.256	350.92	23.74	4.9	M4	0.0308	0.151	207.63	222.39	0.042
S1	0.1947	0.224	204.24	76.78	0.76	SN4	0.0042	0.167	40.85	279.43	0.00064
*K1	1.3623	0.246	354.95	9.50	31	MS4	0.0154	0.172	239.24	240.60	0.008
PSI1	0.0883	0.198	237.45	142.05	0.2	MK4	0.0419	0.173	221.28	185.22	0.059
PHI1	0.0440	0.163	306.59	202.93	0.073	S4	0.0142	0.165	122.47	241.54	0.0074
THE1	0.1673	0.215	30.54	76.17	0.61	SK4	0.0133	0.170	85.93	242.08	0.0061
J1	0.0868	0.161	330.67	133.31	0.29	2MK5	0.0104	0.163	152.76	260.01	0.0041
SO1	0.0592	0.170	295.48	158.03	0.12	2SK5	0.0070	0.157	240.48	282.05	0.002
001	0.1222	0.205	303.52	112.46	0.36	2MN6	0.0044	0.155	23.91	246.61	0.00082
UPS1	0.0152	0.169	134.01	278.57	0.0081	M6	0.0163	0.161	317.83	231.92	0.01
OQ2	0.0278	0.160	175.81	245.04	0.03	2MS6	0.0145	0.149	299.43	250.86	0.0095
EPS2	0.0599	0.165	343.11	192.52	0.13	2MK6	0.0129	0.172	56.99	264.66	0.0057
2N2	0.0421	0.176	326.68	197.41	0.057	2SM6	0.0050	0.173	87.97	261.29	0.00082
MU2	0.0725	0.164	285.67	141.46	0.2	MSK6	0.0126	0.156	76.89	260.37	0.0065
*N2	0.2102	0.203	359.88	69.02	1.1	3MK7	0.0121	0.164	328.96	267.19	0.0054
NU2	0.0237	0.147	50.57	215.26	0.026	M8	0.0184	0.163	350.83	237.74	0.013
H1	0.1030	0.197	134.32	114.22	0.27						

1983	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	5.5685	0.181	249.73	2.17	9.4e+002	*M2	0.8984	0.192	354.63	12.82	22
*SSA	1.1973	0.225	121.48	9.05	28	*H2	0.2034	0.199	249.25	61.00	1
*MSM	0.4453	0.195	178.34	25.16	5.2	MKS2	0.0704	0.146	103.16	134.81	0.23
*MM	0.7397	0.220	209.31	16.55	11	LDA2	0.0428	0.129	309.41	179.50	0.11
*MSF	1.7000	0.189	120.01	7.83	81	L2	0.0585	0.142	354.90	141.53	0.17
*MF	1.7156	0.211	15.83	7.36	66	T2	0.0460	0.131	230.13	188.51	0.12
ALP1	0.0941	0.168	151.42	124.36	0.32	*S2	0.7542	0.203	338.25	16.10	14
2Q1	0.0415	0.135	0.58	183.34	0.094	R2	0.1543	0.207	65.93	73.38	0.56
SIG1	0.0616	0.142	344.97	152.00	0.19	*K2	0.2269	0.195	353.16	48.51	1.4
Q1	0.0103	0.147	77.07	248.28	0.0049	MSN2	0.0144	0.132	65.67	228.04	0.012
RHO1	0.1464	0.190	229.99	82.69	0.59	ETA2	0.0291	0.140	9.49	213.88	0.043
*01	0.7770	0.222	297.66	15.35	12	MO3	0.0070	0.130	302.07	271.29	0.0029
TAU1	0.1291	0.210	11.17	84.06	0.38	M3	0.0269	0.151	99.29	238.56	0.032
BET1	0.1281	0.179	196.41	79.64	0.51	SO3	0.0232	0.139	302.79	221.86	0.028
NO1	0.0729	0.152	237.13	141.13	0.23	MK3	0.0100	0.143	214.45	222.55	0.0049
CHI1	0.0546	0.141	31.94	168.32	0.15	SK3	0.0189	0.128	218.74	229.99	0.022
PI1	0.1696	0.202	321.45	61.19	0.7	MN4	0.0039	0.130	337.74	265.46	0.0009
*P1	0.5577	0.165	338.74	20.57	11	M4	0.0298	0.151	193.12	197.75	0.039
*S1	0.2555	0.196	208.67	46.87	1.7	SN4	0.0056	0.128	65.07	263.62	0.0019
*K1	1.4497	0.202	352.50	8.11	51	MS4	0.0266	0.131	233.61	201.30	0.041
PSI1	0.1503	0.196	252.35	81.60	0.59	MK4	0.0149	0.139	291.15	237.19	0.011
PHI1	0.1192	0.181	353.57	92.13	0.43	S4	0.0263	0.144	147.17	212.75	0.034
THE1	0.0110	0.122	21.28	249.12	0.008	SK4	0.0085	0.130	166.44	257.51	0.0043
J1	0.0774	0.156	291.18	140.71	0.25	2MK5	0.0192	0.114	1.57	245.39	0.029
SO1	0.1002	0.165	346.62	105.23	0.37	2SK5	0.0081	0.133	290.84	256.09	0.0037
001	0.0146	0.156	296.20	239.89	0.0087	2MN6	0.0036	0.137	85.72	263.82	0.00068
UPS1	0.0377	0.138	322.47	212.54	0.075	M6	0.0129	0.138	97.22	236.75	0.0088
OQ2	0.0203	0.155	49.11	241.92	0.017	2MS6	0.0060	0.130	6.00	280.18	0.0022
EPS2	0.0284	0.151	269.46	212.07	0.036	2MK6	0.0041	0.146	0.76	258.05	0.00079
2N2	0.0929	0.161	80.40	128.29	0.33	2SM6	0.0166	0.122	73.73	253.22	0.019
MU2	0.0634	0.141	5.70	160.86	0.2	MSK6	0.0077	0.127	142.04	248.47	0.0036
*N2	0.1976	0.192	6.05	56.48	1.1	3MK7	0.0189	0.138	16.05	227.56	0.019
NU2	0.0288	0.129	41.70	192.89	0.049	M8	0.0094	0.130	107.68	260.33	0.0053
H1	0.1033	0.167	92.35	106.79	0.38						

1984	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	5.9231	0.188	232.15	1.85	1,00E+03	*M2	1.0589	0.228	341.81	11.22	22
*SSA	5.2110	0.207	38.35	2.45	6.3e+002	*H2	0.3068	0.207	234.58	40.53	2.2
*MSM	1.9197	0.207	295.84	6.09	86	MKS2	0.0484	0.124	75.98	178.21	0.15
*MM	1.1352	0.215	283.93	11.03	28	LDA2	0.0216	0.149	286.90	242.10	0.021
MSF	0.1692	0.171	198.86	72.59	0.98	L2	0.0423	0.150	23.86	215.76	0.08
*MF	1.4340	0.206	35.27	8.51	49	T2	0.1588	0.180	254.91	76.73	0.78
ALP1	0.0560	0.148	339.48	154.55	0.14	*S2	0.7917	0.196	332.40	16.07	16
2Q1	0.0290	0.147	340.17	190.58	0.039	*R2	0.2110	0.179	37.39	60.74	1.4
SIG1	0.0674	0.165	217.52	150.10	0.17	*K2	0.2535	0.200	349.62	51.42	1.6
Q1	0.0741	0.156	33.65	147.93	0.23	MSN2	0.0141	0.149	208.82	219.47	0.009
RHO1	0.0172	0.138	134.44	231.17	0.015	ETA2	0.0175	0.139	315.46	234.77	0.016
*01	0.7047	0.204	291.01	18.16	12	MO3	0.0123	0.127	298.33	254.82	0.0094
TAU1	0.0513	0.151	104.53	188.95	0.12	M3	0.0306	0.153	142.49	213.15	0.04
BET1	0.1005	0.148	0.91	113.01	0.46	SO3	0.0126	0.130	182.67	240.69	0.0095
NO1	0.1158	0.174	297.44	82.18	0.44	MK3	0.0117	0.132	57.31	241.59	0.0079
CHI1	0.0283	0.141	321.42	206.41	0.04	SK3	0.0195	0.143	24.74	237.80	0.019
PI1	0.1020	0.162	263.54	108.26	0.4	MN4	0.0138	0.141	187.94	249.65	0.0096
*P1	0.6238	0.219	330.16	20.12	8.1	M4	0.0398	0.143	181.30	192.38	0.077
S1	0.1094	0.170	228.29	111.45	0.41	SN4	0.0051	0.139	0.94	261.21	0.0014
*K1	1.5900	0.211	343.08	7.11	57	MS4	0.0272	0.128	210.57	198.22	0.045
PSI1	0.1165	0.181	234.54	96.99	0.41	MK4	0.0066	0.145	205.26	254.34	0.0021
PHI1	0.1094	0.168	46.15	101.66	0.42	S4	0.0130	0.128	163.92	232.54	0.01
THE1	0.0204	0.146	51.66	243.44	0.02	SK4	0.0106	0.132	143.36	272.53	0.0064
J1	0.0645	0.151	314.43	162.58	0.18	2MK5	0.0066	0.150	65.88	266.93	0.0019
SO1	0.0409	0.139	316.10	224.55	0.086	2SK5	0.0055	0.140	242.30	277.06	0.0016
001	0.0770	0.146	294.82	135.27	0.28	2MN6	0.0120	0.132	270.56	237.97	0.0082
UPS1	0.0228	0.143	358.59	228.80	0.025	M6	0.0070	0.131	144.75	274.84	0.0028
OQ2	0.0252	0.146	358.74	231.53	0.03	2MS6	0.0070	0.129	38.86	226.55	0.0029
EPS2	0.0286	0.136	268.07	188.59	0.044	2MK6	0.0107	0.161	305.66	262.84	0.0044
2N2	0.0491	0.137	340.68	189.17	0.13	2SM6	0.0057	0.140	280.01	259.10	0.0017
MU2	0.0694	0.150	343.26	156.12	0.21	MSK6	0.0082	0.132	227.63	274.06	0.0039
*N2	0.2430	0.166	3.58	52.46	2.1	3MK7	0.0115	0.142	12.14	244.93	0.0066
NU2	0.0813	0.162	335.32	143.69	0.25	M8	0.0049	0.131	169.95	274.69	0.0014
H1	0.1961	0.208	90.70	55.34	0.89						

1985	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	5.3657	0.228	256.31	2.98	5.5e+002	*M2	0.8722	0.237	327.30	14.08	13
*SSA	2.3821	0.229	171.98	5.35	1.1e+002	*H2	0.2551	0.246	247.15	51.28	1.1
*MSM	2.2623	0.223	250.43	6.05	1,00E+02	MKS2	0.0062	0.153	37.33	249.16	0.0016
*MM	1.0251	0.250	211.16	13.32	17	LDA2	0.0867	0.173	289.31	162.51	0.25
*MSF	0.8951	0.257	306.87	15.17	12	L2	0.0376	0.171	12.63	236.74	0.048
*MF	0.8764	0.254	264.21	14.96	12	T2	0.1266	0.183	277.33	91.60	0.48
ALP1	0.0417	0.163	69.38	194.80	0.065	*S2	0.7620	0.228	338.65	17.13	11
2Q1	0.1333	0.180	147.51	110.53	0.55	R2	0.1563	0.207	100.03	84.47	0.57
SIG1	0.0702	0.166	225.16	164.01	0.18	*K2	0.2958	0.247	352.95	47.72	1.4
Q1	0.1543	0.236	218.05	87.52	0.43	MSN2	0.0159	0.165	94.94	237.43	0.0092
RHO1	0.0870	0.183	36.90	152.97	0.23	ETA2	0.0494	0.168	30.05	209.78	0.086
*01	0.6336	0.249	285.09	21.49	6.5	MO3	0.0390	0.169	20.54	209.34	0.053
TAU1	0.1005	0.194	117.02	115.43	0.27	M3	0.0549	0.170	98.08	163.75	0.1
BET1	0.0765	0.195	252.86	169.24	0.15	SO3	0.0061	0.161	216.54	264.61	0.0014
NO1	0.1238	0.211	10.51	113.01	0.34	MK3	0.0160	0.176	256.89	266.08	0.0083
CHI1	0.1402	0.186	187.21	94.99	0.57	SK3	0.0217	0.178	163.66	244.43	0.015
PI1	0.0162	0.161	326.09	215.40	0.01	MN4	0.0239	0.170	111.95	209.50	0.02
*P1	0.4722	0.212	339.21	29.74	5	M4	0.0282	0.151	166.31	233.87	0.035
*S1	0.2186	0.203	233.97	64.82	1.2	SN4	0.0178	0.160	143.17	217.76	0.012
*K1	1.5612	0.281	347.97	9.28	31	MS4	0.0160	0.152	202.86	264.54	0.011
PSI1	0.1369	0.212	275.25	99.69	0.42	MK4	0.0143	0.171	74.73	264.44	0.007
PHI1	0.1241	0.202	327.48	100.64	0.38	S4	0.0170	0.151	235.94	206.99	0.013
THE1	0.0279	0.181	10.79	238.21	0.024	SK4	0.0314	0.155	241.88	207.68	0.041
J1	0.0704	0.176	328.87	173.25	0.16	2MK5	0.0080	0.164	41.64	251.21	0.0024
SO1	0.0727	0.164	59.26	162.37	0.2	2SK5	0.0230	0.154	32.20	203.03	0.022
001	0.1448	0.217	357.69	99.97	0.45	2MN6	0.0113	0.180	123.82	226.75	0.004
UPS1	0.0787	0.173	265.14	147.80	0.21	M6	0.0165	0.162	261.06	237.21	0.01
OQ2	0.0210	0.174	112.25	237.42	0.015	2MS6	0.0020	0.148	183.92	302.63	0.00019
EPS2	0.0479	0.173	116.66	193.92	0.077	2MK6	0.0088	0.164	230.52	242.37	0.0029
2N2	0.0119	0.183	68.90	255.93	0.0042	2SM6	0.0023	0.150	0.76	283.53	0.00023
MU2	0.0633	0.169	13.89	181.53	0.14	MSK6	0.0113	0.179	32.84	253.12	0.004
*N2	0.2359	0.223	338.66	64.16	1.1	3MK7	0.0206	0.139	284.33	243.39	0.022
NU2	0.1092	0.176	245.94	136.26	0.39	M8	0.0128	0.176	22.36	266.99	0.0052
H1	0.0935	0.192	30.99	132.09	0.24						

1986	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	7.7875	0.243	273.84	2.04	1,00E+03	*M2	0.9636	0.237	354.52	13.96	16
*SSA	3.0923	0.242	233.03	4.64	1.6e+002	*H2	0.2948	0.241	247.44	50.79	1.5
*MSM	2.5940	0.273	304.35	5.03	90	MKS2	0.0865	0.190	264.51	124.93	0.21
MM	0.1808	0.210	301.60	66.67	0.74	LDA2	0.0591	0.176	111.26	177.58	0.11
*MSF	0.8694	0.243	70.84	14.97	13	L2	0.0541	0.184	5.14	160.20	0.086
*MF	1.4016	0.240	267.77	9.58	34	T2	0.1603	0.203	277.74	87.91	0.62
ALP1	0.0754	0.183	74.19	167.18	0.17	*S2	0.8376	0.274	343.35	15.03	9.3
2Q1	0.1453	0.211	43.35	95.70	0.48	R2	0.2187	0.225	65.20	70.08	0.94
SIG1	0.0967	0.181	121.96	138.55	0.29	*K2	0.3248	0.258	339.36	48.11	1.6
Q1	0.0681	0.173	87.81	158.90	0.15	MSN2	0.0523	0.176	179.03	190.20	0.088
RHO1	0.1006	0.207	125.64	136.70	0.24	ETA2	0.0147	0.167	300.83	271.96	0.0077
*01	0.8545	0.248	306.36	16.79	12	MO3	0.0211	0.156	273.35	252.79	0.018
TAU1	0.0919	0.177	71.43	136.54	0.27	M3	0.0162	0.171	173.29	228.29	0.009
BET1	0.1567	0.211	344.58	96.91	0.55	SO3	0.0116	0.150	15.25	265.01	0.006
NO1	0.1699	0.207	345.58	83.33	0.67	MK3	0.0386	0.158	271.74	208.67	0.06
CHI1	0.0975	0.195	98.42	137.38	0.25	SK3	0.0215	0.160	50.55	259.67	0.018
PI1	0.0779	0.184	359.46	151.59	0.18	MN4	0.0165	0.156	78.03	241.94	0.011
*P1	0.4965	0.239	345.92	28.64	4.3	M4	0.0192	0.163	130.42	237.19	0.014
S1	0.1511	0.227	269.79	77.19	0.44	SN4	0.0354	0.165	120.18	212.78	0.046
*K1	1.4525	0.262	350.77	10.62	31	MS4	0.0166	0.172	250.80	229.58	0.0093
PSI1	0.1855	0.258	242.68	82.64	0.52	MK4	0.0101	0.172	272.09	234.92	0.0034
PHI1	0.1972	0.240	297.66	67.41	0.68	S4	0.0144	0.183	323.91	233.25	0.0062
THE1	0.0488	0.183	99.11	200.59	0.071	SK4	0.0169	0.169	178.23	235.74	0.01
J1	0.1047	0.187	26.86	108.79	0.31	2MK5	0.0332	0.172	60.61	217.52	0.037
SO1	0.1370	0.196	340.96	104.98	0.49	2SK5	0.0066	0.150	248.85	265.06	0.0019
001	0.1251	0.200	356.61	98.05	0.39	2MN6	0.0098	0.152	192.17	253.37	0.0041
UPS1	0.0287	0.159	126.05	208.88	0.033	M6	0.0200	0.178	350.10	247.29	0.013
OQ2	0.0619	0.154	226.94	176.37	0.16	2MS6	0.0236	0.166	354.53	234.45	0.02
EPS2	0.0333	0.172	261.38	225.01	0.038	2MK6	0.0185	0.155	89.89	261.64	0.014
2N2	0.0932	0.168	346.18	129.90	0.31	2SM6	0.0283	0.174	322.86	239.67	0.026
MU2	0.0238	0.177	38.01	204.28	0.018	MSK6	0.0138	0.169	220.40	269.44	0.0067
N2	0.1974	0.226	9.16	77.23	0.76	3MK7	0.0191	0.175	43.97	229.82	0.012
NU2	0.0257	0.177	74.67	245.20	0.021	M8	0.0166	0.173	281.08	237.27	0.0092
H1	0.1342	0.203	102.57	90.51	0.44						

1987	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	6.2040	0.227	256.19	2.00	7.5e+002	*M2	0.9246	0.249	349.50	13.11	14
*SSA	0.9369	0.214	251.64	12.80	19	*H2	0.2560	0.198	286.27	48.94	1.7
*MSM	0.5661	0.231	313.57	21.33	6	MKS2	0.0094	0.145	224.66	210.15	0.0042
*MM	2.6709	0.199	249.77	4.78	1.8e+002	LDA2	0.0875	0.174	301.45	123.08	0.25
*MSF	0.7482	0.185	96.20	16.88	16	L2	0.0240	0.139	341.93	239.95	0.03
*MF	0.4569	0.205	301.53	28.91	4.9	T2	0.0926	0.175	210.65	139.62	0.28
ALP1	0.0828	0.167	251.22	122.76	0.25	*S2	0.6942	0.202	338.14	17.13	12
2Q1	0.0097	0.126	66.23	277.36	0.0059	R2	0.1361	0.189	126.85	83.70	0.52
SIG1	0.0726	0.167	31.95	181.18	0.19	*K2	0.2714	0.214	324.91	44.06	1.6
Q1	0.0646	0.151	197.53	157.77	0.18	MSN2	0.0095	0.136	64.61	262.77	0.0049
RHO1	0.0400	0.151	248.53	199.25	0.07	ETA2	0.0492	0.136	308.42	176.26	0.13
*01	0.8205	0.206	300.79	16.38	16	MO3	0.0136	0.153	271.40	224.18	0.0079
TAU1	0.0836	0.166	6.04	150.37	0.25	M3	0.0217	0.149	126.65	225.77	0.021
BET1	0.0754	0.176	287.72	166.77	0.18	SO3	0.0228	0.152	190.82	234.41	0.023
NO1	0.0306	0.146	236.23	209.76	0.044	MK3	0.0107	0.149	79.76	242.50	0.0051
CHI1	0.0596	0.154	30.37	149.65	0.15	SK3	0.0051	0.151	28.73	277.19	0.0012
PI1	0.0177	0.150	331.36	223.01	0.014	MN4	0.0101	0.148	158.54	253.40	0.0047
*P1	0.5120	0.208	341.31	22.84	6	M4	0.0347	0.147	211.77	228.36	0.055
S1	0.1808	0.211	196.42	75.31	0.74	SN4	0.0154	0.159	145.93	249.05	0.0094
*K1	1.5342	0.220	345.39	7.87	49	MS4	0.0284	0.147	195.65	240.73	0.037
PSI1	0.0925	0.173	290.14	129.14	0.29	MK4	0.0141	0.155	207.70	244.96	0.0082
PHI1	0.1038	0.173	326.87	116.70	0.36	S4	0.0105	0.141	160.82	252.97	0.0055
THE1	0.0750	0.165	48.67	130.14	0.21	SK4	0.0091	0.140	210.42	237.86	0.0043
J1	0.0670	0.161	357.35	156.61	0.17	2MK5	0.0134	0.139	14.50	228.08	0.0093
SO1	0.1284	0.177	89.56	91.08	0.53	2SK5	0.0086	0.146	125.28	241.45	0.0035
001	0.0653	0.158	274.48	161.32	0.17	2MN6	0.0135	0.153	25.39	228.38	0.0077
UPS1	0.0804	0.162	205.84	141.88	0.25	M6	0.0125	0.145	102.90	256.87	0.0074
OQ2	0.0423	0.156	77.02	195.90	0.074	2MS6	0.0091	0.130	333.78	288.54	0.0049
EPS2	0.0560	0.156	40.86	166.68	0.13	2MK6	0.0137	0.145	219.22	273.04	0.009
2N2	0.0217	0.132	138.47	217.55	0.027	2SM6	0.0026	0.153	57.99	299.61	0.0003
MU2	0.0454	0.150	63.69	190.77	0.092	MSK6	0.0052	0.139	58.82	267.20	0.0014
N2	0.1659	0.214	9.35	72.56	0.6	3MK7	0.0010	0.141	309.18	267.56	5.2e-05
NU2	0.0674	0.168	57.36	152.02	0.16	M8	0.0041	0.140	70.27	248.67	0.00086
H1	0.0938	0.189	17.36	122.54	0.25						

1988	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	5.0636	0.172	246.36	1.88	8.7e+002	*M2	0.9820	0.199	350.44	10.13	24
*SSA	2.3966	0.188	211.79	3.86	1.6e+002	H2	0.1103	0.151	228.35	92.78	0.53
*MSM	1.3799	0.188	221.61	7.72	54	MKS2	0.1610	0.172	215.23	65.87	0.87
*MM	0.2962	0.186	69.02	37.37	2.5	LDA2	0.0385	0.132	213.15	174.86	0.085
*MSF	11.237	0.183	268.09	8.12	38	L2	0.0760	0.145	324.06	109.28	0.27
*MF	0.6510	0.189	143.28	17.02	12	T2	0.1126	0.142	284.02	90.07	0.62
ALP1	0.1053	0.156	39.10	85.57	0.46	*S2	0.7814	0.180	338.73	13.09	19
2Q1	0.1111	0.147	49.12	90.17	0.57	R2	0.1004	0.161	68.80	107.63	0.39
SIG1	0.0555	0.135	173.82	163.12	0.17	K2	0.1833	0.192	331.34	54.35	0.91
Q1	0.0536	0.149	213.37	150.00	0.13	MSN2	0.0207	0.136	42.00	220.36	0.023
RHO1	0.0746	0.148	149.89	124.27	0.25	ETA2	0.0268	0.137	244.44	215.20	0.038
*01	0.7521	0.160	300.58	14.71	22	MO3	0.0244	0.135	209.20	218.52	0.033
TAU1	0.0658	0.137	269.31	140.52	0.23	M3	0.0223	0.124	205.76	231.32	0.032
BET1	0.0839	0.139	132.19	129.62	0.36	SO3	0.0147	0.120	68.34	227.62	0.015
*NO1	0.1617	0.156	326.19	61.98	1.1	MK3	0.0086	0.126	251.13	239.69	0.0047
CHI1	0.0464	0.153	232.80	167.00	0.092	SK3	0.0108	0.124	215.19	248.49	0.0075
PI1	0.0707	0.134	320.05	128.93	0.28	MN4	0.0256	0.127	169.54	187.57	0.041
*P1	0.5019	0.196	355.61	20.95	6.6	M4	0.0322	0.115	187.02	196.31	0.078
S1	0.0817	0.147	192.11	133.98	0.31	SN4	0.0198	0.130	296.54	207.41	0.023
*K1	1.5433	0.169	344.58	6.31	83	MS4	0.0259	0.123	239.92	196.90	0.044
PSI1	0.0430	0.131	123.60	192.13	0.11	MK4	0.0196	0.133	87.08	225.02	0.022
PHI1	0.1097	0.160	275.50	97.50	0.47	S4	0.0235	0.141	199.60	195.53	0.028
THE1	0.0862	0.165	281.25	113.60	0.27	SK4	0.0059	0.121	350.05	278.46	0.0024
J1	0.0915	0.157	322.61	98.61	0.34	2MK5	0.0198	0.119	215.02	238.54	0.028
SO1	0.0297	0.124	286.34	198.68	0.057	2SK5	0.0100	0.120	59.34	242.36	0.007
001	0.1001	0.141	341.59	105.61	0.5	2MN6	0.0122	0.123	94.51	265.50	0.0097
UPS1	0.0461	0.134	194.73	185.75	0.12	M6	0.0129	0.132	164.88	198.71	0.0096
OQ2	0.0633	0.157	78.66	140.38	0.16	2MS6	0.0026	0.115	3.75	260.65	0.00053
EPS2	0.0413	0.130	64.90	183.83	0.1	2MK6	0.0082	0.112	131.17	275.89	0.0053
2N2	0.0536	0.131	94.90	157.00	0.17	2SM6	0.0161	0.121	112.75	209.13	0.018
MU2	0.0440	0.124	12.35	173.62	0.13	MSK6	0.0177	0.121	293.37	239.96	0.022
N2	0.1707	0.186	9.27	55.74	0.84	3MK7	0.0211	0.132	299.36	216.65	0.026
NU2	0.0209	0.120	314.37	220.78	0.03	M8	0.0025	0.122	264.97	247.24	0.00043
H1	0.0568	0.130	61.73	155.62	0.19						

1989	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	5.9198	0.233	219.60	2.40	6.4e+002	*M2	0.8108	0.239	336.55	18.24	11
*SSA	5.5967	0.244	76.73	2.33	5.2e+002	*H2	0.2686	0.241	223.58	58.65	1.2
*MSM	1.0824	0.226	9.81	14.37	23	MKS2	0.0464	0.155	231.35	190.99	0.089
*MM	2.0.155	0.249	233.57	7.33	66	LDA2	0.0846	0.168	222.06	130.63	0.25
*MSF	1.9429	0.231	326.80	6.93	71	L2	0.0696	0.170	259.89	185.28	0.17
*MF	0.6312	0.243	96.27	21.24	6.8	T2	0.1376	0.229	263.93	106.96	0.36
ALP1	0.0596	0.165	49.66	167.67	0.13	*S2	0.6944	0.274	347.25	20.23	6.4
2Q1	0.1251	0.219	332.71	116.67	0.33	R2	0.2064	0.219	74.42	70.45	0.89
SIG1	0.0352	0.170	4.55	227.27	0.043	*K2	0.2566	0.239	336.52	55.72	1.2
Q1	0.0492	0.166	285.27	201.70	0.087	MSN2	0.0569	0.173	136.17	162.30	0.11
RHO1	0.0742	0.184	151.07	164.17	0.16	ETA2	0.0743	0.190	63.32	167.34	0.15
*01	0.6837	0.256	291.57	17.69	7.1	MO3	0.0231	0.167	134.09	228.90	0.019
TAU1	0.0171	0.152	358.48	247.81	0.013	M3	0.0241	0.161	320.95	215.96	0.022
BET1	0.1322	0.213	195.05	96.32	0.39	SO3	0.0357	0.165	217.92	207.70	0.047
NO1	0.1081	0.176	335.44	121.02	0.38	MK3	0.0346	0.179	197.08	203.07	0.037
CHI1	0.0588	0.183	253.37	173.13	0.1	SK3	0.0142	0.178	326.99	280.88	0.0064
PI1	0.1889	0.250	327.50	81.37	0.57	MN4	0.0114	0.174	131.60	246.38	0.0043
*P1	0.6358	0.243	345.39	21.85	6.9	M4	0.0434	0.173	213.48	216.81	0.063
S1	0.2242	0.258	229.96	69.05	0.76	SN4	0.0126	0.185	20.43	261.48	0.0047
*K1	1.4768	0.230	349.56	7.91	41	MS4	0.0379	0.168	224.89	211.20	0.051
PSI1	0.1174	0.203	237.69	90.30	0.33	MK4	0.0227	0.145	140.23	241.79	0.025
PHI1	0.2057	0.217	342.23	66.15	0.9	S4	0.0107	0.160	266.60	247.62	0.0045
THE1	0.1379	0.199	255.96	100.15	0.48	SK4	0.0102	0.167	149.25	236.30	0.0038
J1	0.0765	0.162	14.85	150.85	0.22	2MK5	0.0124	0.164	40.88	249.13	0.0057
SO1	0.1526	0.222	19.88	88.96	0.47	2SK5	0.0067	0.153	75.67	286.21	0.0019
001	0.0636	0.170	36.77	174.10	0.14	2MN6	0.0207	0.154	75.08	235.09	0.018
UPS1	0.1699	0.214	28.89	75.74	0.63	M6	0.0066	0.169	70.51	254.29	0.0015
OQ2	0.0239	0.177	245.98	228.56	0.018	2MS6	0.0100	0.183	100.54	276.66	0.003
EPS2	0.0862	0.184	12.08	146.39	0.22	2MK6	0.0046	0.165	186.58	278.41	0.00077
2N2	0.0790	0.186	28.27	162.66	0.18	2SM6	0.0094	0.159	75.12	247.24	0.0035
MU2	0.1009	0.175	328.63	131.33	0.33	MSK6	0.0132	0.177	67.02	245.34	0.0055
N2	0.1967	0.227	3.56	76.39	0.75	3MK7	0.0233	0.169	209.38	239.19	0.019
NU2	0.0680	0.151	334.91	172.55	0.2	M8	0.0065	0.173	320.18	253.66	0.0014
H1	0.2057	0.228	58.12	68.11	0.82						

1990	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	6.7948	0.247	260.21	2.10	7.6e+002	*M2	0.6807	0.253	10.15	22.81	7.2
*SSA	2.8632	0.247	93.10	4.72	1.3e+002	H2	0.1582	0.226	263.48	92.25	0.49
*MSM	1.0685	0.281	327.93	11.74	14	MKS2	0.0152	0.175	305.03	225.04	0.0075
*MM	0.7502	0.248	210.31	18.03	9.1	LDA2	0.0498	0.167	30.44	188.81	0.089
*MSF	1.4.860	0.266	78.67	10.18	31	L2	0.1065	0.214	249.73	129.89	0.25
*MF	2.1514	0.280	91.87	7.60	59	T2	0.0549	0.182	284.72	185.17	0.091
ALP1	0.0318	0.171	72.44	206.20	0.035	*S2	0.5594	0.250	5.65	25.35	5
*2Q1	0.2345	0.213	24.35	66.96	1.2	R2	0.0990	0.196	80.71	142.62	0.26
SIG1	0.0201	0.193	28.39	224.29	0.011	*K2	0.2710	0.244	354.92	51.60	1.2
Q1	0.0291	0.156	209.22	237.87	0.035	MSN2	0.0842	0.196	59.00	149.26	0.18
RHO1	0.0542	0.172	139.86	165.83	0.1	ETA2	0.0335	0.169	161.90	220.16	0.039
*01	0.5205	0.251	325.87	23.71	4.3	MO3	0.0292	0.177	219.60	230.42	0.027
TAU1	0.1249	0.222	182.06	123.90	0.32	M3	0.0328	0.167	292.72	220.77	0.039
BET1	0.1064	0.198	299.74	138.47	0.29	SO3	0.0291	0.178	34.52	230.86	0.027
NO1	0.1682	0.250	318.52	80.24	0.45	MK3	0.0361	0.192	350.26	224.65	0.035
CHI1	0.1053	0.212	35.89	124.75	0.25	SK3	0.0249	0.163	257.11	256.69	0.023
PI1	0.0760	0.189	357.07	163.80	0.16	MN4	0.0262	0.171	357.45	202.73	0.024
*P1	0.4514	0.205	347.86	33.93	4.8	M4	0.0286	0.180	302.25	234.70	0.025
S1	0.0518	0.167	94.15	198.63	0.096	SN4	0.0058	0.176	85.00	262.86	0.0011
*K1	1.2387	0.264	349.73	12.06	22	MS4	0.0149	0.180	32.92	214.92	0.0069
*PSI1	0.2268	0.209	249.26	78.46	1.2	MK4	0.0222	0.166	65.50	234.93	0.018
PHI1	0.1926	0.223	315.82	83.55	0.75	S4	0.0188	0.175	318.44	246.06	0.012
THE1	0.0959	0.207	73.82	137.18	0.21	SK4	0.0169	0.165	148.98	255.35	0.01
J1	0.1070	0.206	327.91	126.42	0.27	2MK5	0.0200	0.184	165.05	251.47	0.012
SO1	0.0801	0.209	278.28	176.77	0.15	2SK5	0.0036	0.189	157.07	262.62	0.00036
001	0.0598	0.168	42.83	175.80	0.13	2MN6	0.0108	0.166	162.73	261.11	0.0042
UPS1	0.0951	0.213	171.34	142.62	0.2	M6	0.0158	0.186	29.03	223.60	0.0072
OQ2	0.0638	0.169	85.00	175.33	0.14	2MS6	0.0103	0.173	263.14	259.37	0.0035
EPS2	0.0596	0.171	182.46	171.01	0.12	2MK6	0.0110	0.162	44.69	252.82	0.0046
2N2	0.1169	0.217	52.38	121.37	0.29	2SM6	0.0081	0.156	276.87	300.94	0.0027
MU2	0.0636	0.182	124.14	180.69	0.12	MSK6	0.0107	0.171	131.04	259.32	0.0039
N2	0.1507	0.234	7.21	94.63	0.42	3MK7	0.0104	0.163	221.36	254.72	0.0041
NU2	0.1114	0.226	26.95	114.02	0.24	M8	0.0099	0.179	74.98	251.58	0.003
H1	0.0871	0.177	108.33	158.51	0.24						

1991	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	5.0996	0.171	222.92	2.14	8.9e+002	*M2	0.5466	0.193	40.77	17.98	8.1
*SSA	1.8702	0.180	141.22	5.75	1.1e+002	*H2	0.2744	0.172	308.20	41.92	2.6
*MSM	1.6445	0.172	134.54	7.45	91	MKS2	0.0827	0.135	68.32	118.89	0.37
*MM	2.0760	0.180	276.58	5.15	1.3e+002	LDA2	0.1547	0.168	137.31	62.84	0.85
*MSF	0.3586	0.177	115.35	26.34	4.1	L2	0.0782	0.150	38.97	112.13	0.27
*MF	1.2.961	0.190	298.82	9.00	46	T2	0.0672	0.127	216.59	134.28	0.28
ALP1	0.0659	0.126	76.36	138.35	0.28	*S2	0.4197	0.199	31.72	22.95	4.5
2Q1	0.1328	0.168	286.82	81.12	0.62	*R2	0.2101	0.168	125.41	46.05	1.6
SIG1	0.0845	0.151	43.44	121.34	0.31	*K2	0.1929	0.181	22.05	51.91	1.1
Q1	0.0495	0.115	184.06	172.23	0.19	MSN2	0.0472	0.128	96.58	167.32	0.14
RHO1	0.0969	0.151	250.36	100.27	0.41	ETA2	0.0367	0.133	248.82	193.93	0.076
*01	0.3901	0.187	330.03	26.06	4.4	MO3	0.0608	0.145	202.87	143.31	0.18
TAU1	0.0858	0.145	174.55	113.60	0.35	M3	0.0302	0.126	188.80	218.72	0.057
BET1	0.0164	0.116	196.24	233.05	0.02	SO3	0.0044	0.128	223.89	274.54	0.0012
NO1	0.0564	0.125	222.90	142.77	0.2	MK3	0.0255	0.123	299.58	198.16	0.043
CHI1	0.0642	0.130	144.90	132.65	0.24	SK3	0.0336	0.123	187.55	218.56	0.074
PI1	0.0628	0.145	101.28	131.98	0.19	MN4	0.0370	0.133	200.16	179.32	0.077
*P1	0.4992	0.182	347.33	21.45	7.5	M4	0.0129	0.112	257.87	236.82	0.013
S1	0.0324	0.141	63.49	184.09	0.053	SN4	0.0044	0.127	259.11	274.13	0.0012
*K1	1.0604	0.194	0.39	9.24	30	MS4	0.0257	0.132	31.23	224.54	0.038
*PSI1	0.1779	0.169	246.64	56.21	1.1	MK4	0.0145	0.118	31.45	245.87	0.015
*PHI1	0.1943	0.173	18.36	60.82	1.3	S4	0.0143	0.123	131.78	239.67	0.013
THE1	0.0723	0.137	308.53	134.49	0.28	SK4	0.0157	0.135	224.89	249.52	0.014
J1	0.0061	0.116	152.22	253.71	0.0028	2MK5	0.0154	0.126	148.30	240.55	0.015
SO1	0.1143	0.148	331.88	90.07	0.6	2SK5	0.0029	0.113	154.53	288.37	0.00065
001	0.0916	0.147	162.14	88.00	0.39	2MN6	0.0070	0.120	347.82	253.48	0.0034
UPS1	0.0955	0.154	301.45	116.32	0.38	M6	0.0010	0.137	332.43	279.18	5e-005
OQ2	0.0246	0.122	229.86	221.72	0.041	2MS6	0.0090	0.123	239.96	251.50	0.0054
EPS2	0.0832	0.139	207.47	119.51	0.36	2MK6	0.0254	0.126	188.96	206.04	0.041
2N2	0.0955	0.176	288.49	109.39	0.3	2SM6	0.0106	0.118	122.97	242.60	0.008
MU2	0.0344	0.122	229.07	198.17	0.08	MSK6	0.0175	0.125	93.74	233.95	0.02
N2	0.1709	0.183	20.48	62.77	0.87	3MK7	0.0066	0.129	251.53	257.79	0.0027
NU2	0.0276	0.119	170.14	190.61	0.054	M8	0.0071	0.118	53.13	262.40	0.0036
H1	0.0469	0.142	69.96	182.98	0.11						

1992	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	10.9790	0.208	243.12	1.27	2.8e+003	*M2	0.6774	0.215	10.52	18.47	9.9
*SSA	3.9322	0.208	119.37	3.57	3.6e+002	H2	0.1690	0.195	286.04	72.65	0.75
*MSM	1.7689	0.224	36.39	7.43	62	MKS2	0.0680	0.189	347.74	154.74	0.13
*MM	1.5036	0.229	316.82	8.77	43	LDA2	0.0848	0.178	106.22	135.38	0.23
*MSF	0.8935	0.202	309.98	14.16	20	L2	0.1308	0.209	2.55	93.39	0.39
*MF	0.6400	0.213	274.08	20.32	9.1	T2	0.1593	0.213	202.38	90.46	0.56
ALP1	0.0874	0.177	21.31	125.58	0.24	*S2	0.5376	0.242	0.80	24.45	5
2Q1	0.0875	0.156	209.96	137.40	0.32	R2	0.1728	0.190	99.72	68.43	0.83
SIG1	0.0990	0.171	235.05	132.01	0.34	*K2	0.1902	0.189	22.66	69.13	1
Q1	0.1463	0.182	253.15	90.45	0.65	MSN2	0.0584	0.152	182.79	178.99	0.15
RHO1	0.1103	0.184	339.43	111.76	0.36	ETA2	0.0361	0.147	279.67	212.35	0.06
*01	0.3277	0.202	341.05	37.28	2.6	MO3	0.0145	0.164	32.24	247.45	0.0079
TAU1	0.0483	0.157	32.01	180.79	0.095	M3	0.0089	0.132	77.25	280.15	0.0046
BET1	0.1327	0.182	72.07	86.47	0.53	SO3	0.0151	0.148	94.80	235.85	0.01
NO1	0.0340	0.164	131.96	205.66	0.043	MK3	0.0159	0.154	337.52	239.66	0.011
CHI1	0.0529	0.157	15.98	184.71	0.11	SK3	0.0213	0.131	238.14	223.59	0.027
PI1	0.0742	0.184	114.51	145.74	0.16	MN4	0.0198	0.147	333.01	267.26	0.018
*P1	0.2939	0.203	315.78	45.79	2.1	M4	0.0287	0.142	226.45	227.99	0.041
S1	0.1354	0.172	229.28	98.20	0.62	SN4	0.0291	0.155	10.80	192.48	0.035
*K1	1.1476	0.234	344.33	10.87	24	MS4	0.0168	0.145	279.30	232.71	0.013
*PSI1	0.2248	0.218	226.93	47.67	1.1	MK4	0.0298	0.148	212.30	194.14	0.041
*PHI1	0.2422	0.202	98.64	54.43	1.4	S4	0.0356	0.161	297.41	219.30	0.049
THE1	0.0440	0.152	269.52	194.22	0.084	SK4	0.0239	0.137	133.77	201.14	0.03
J1	0.0911	0.188	243.70	120.70	0.24	2MK5	0.0129	0.144	61.17	254.10	0.0081
SO1	0.0755	0.155	290.21	146.79	0.24	2SK5	0.0183	0.142	115.15	264.70	0.017
001	0.0415	0.149	212.86	183.43	0.077	2MN6	0.0013	0.153	206.13	253.07	7.6e-005
UPS1	0.0994	0.165	134.34	124.09	0.36	M6	0.0044	0.159	63.15	242.71	0.00078
OQ2	0.0548	0.142	224.26	169.23	0.15	2MS6	0.0186	0.156	221.49	226.84	0.014
EPS2	0.1045	0.172	1.51	112.45	0.37	2MK6	0.0129	0.143	63.23	250.45	0.0081
2N2	0.0742	0.142	92.56	159.94	0.27	2SM6	0.0075	0.117	81.02	263.90	0.0041
MU2	0.0194	0.134	340.77	218.09	0.021	MSK6	0.0109	0.154	146.50	260.58	0.005
*N2	0.2278	0.203	48.49	57.74	1.3	3MK7	0.0108	0.126	293.08	259.72	0.0073
NU2	0.1258	0.199	50.13	97.67	0.4						
*H1	0.2442	0.229	40.89	48.20	1.1						

1993	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	11.5800	0.193	236.99	0.98	3.6e+003	*M2	0.6462	0.203	336.34	17.82	10
*SSA	3.6307	0.167	56.63	3.30	4.7e+002	*H2	0.3041	0.172	212.70	36.78	3.1
*MSM	1.7427	0.195	336.51	6.33	80	*MKS2	0.1948	0.171	23.24	56.90	1.3
*MM	1.0293	0.202	307.49	12.12	26	LDA2	0.0975	0.162	262.35	105.63	0.36
*MSF	0.4482	0.192	319.40	26.07	5.5	*L2	0.1896	0.186	270.44	58.22	1
*MF	1.6.008	0.220	26.33	7.12	53	T2	0.1548	0.193	268.17	82.29	0.65
ALP1	0.0612	0.166	159.57	156.04	0.14	*S2	0.4989	0.184	4.88	23.64	7.4
*2Q1	0.2374	0.180	221.99	45.92	1.7	*R2	0.1911	0.181	58.90	61.48	1.1
SIG1	0.0556	0.125	156.01	152.39	0.2	*K2	0.2609	0.207	3.27	41.80	1.6
Q1	0.0068	0.122	197.39	280.78	0.0031	MSN2	0.1173	0.165	106.06	94.20	0.5
RHO1	0.0566	0.131	35.70	172.74	0.19	ETA2	0.1054	0.149	56.79	99.80	0.5
*01	0.5430	0.217	304.31	20.95	6.3	MO3	0.0280	0.133	138.47	194.01	0.044
TAU1	0.1415	0.178	200.01	78.45	0.63	M3	0.0271	0.148	180.63	210.76	0.034
BET1	0.0809	0.153	42.47	126.63	0.28	SO3	0.0281	0.124	223.52	220.49	0.051
NO1	0.0731	0.160	298.25	117.05	0.21	MK3	0.0364	0.134	216.72	212.37	0.074
CHI1	0.0193	0.134	298.26	222.53	0.021	SK3	0.0149	0.115	312.63	247.74	0.017
PI1	0.1638	0.164	252.74	64.87	1	MN4	0.0193	0.133	204.27	248.08	0.021
*P1	0.4867	0.175	328.53	22.83	7.8	M4	0.0271	0.120	185.38	234.43	0.051
S1	0.1752	0.185	258.18	65.72	0.9	SN4	0.0221	0.150	350.26	250.63	0.022
*K1	1.0739	0.180	341.91	10.21	36	MS4	0.0314	0.129	218.62	210.98	0.06
*PSI1	0.2462	0.184	225.64	41.87	1.8	MK4	0.0316	0.140	331.04	219.69	0.051
*PHI1	0.2300	0.195	21.74	52.87	1.4	S4	0.0259	0.147	261.71	220.65	0.031
THE1	0.0565	0.150	168.26	169.16	0.14	SK4	0.0292	0.158	20.43	214.05	0.034
J1	0.0511	0.134	137.57	188.63	0.15	2MK5	0.0104	0.139	196.92	238.07	0.0056
SO1	0.0382	0.139	39.18	200.78	0.076	2SK5	0.0118	0.137	164.85	256.72	0.0074
001	0.1016	0.153	316.30	109.60	0.44	2MN6	0.0049	0.120	237.27	263.31	0.0016
UPS1	0.0718	0.147	268.88	133.14	0.24	M6	0.0056	0.120	332.70	243.70	0.0022
OQ2	0.0416	0.149	183.08	188.18	0.078	2MS6	0.0144	0.131	22.19	261.06	0.012
EPS2	0.0869	0.148	261.13	128.64	0.35	2MK6	0.0060	0.133	288.21	259.24	0.002
2N2	0.0701	0.145	136.59	134.01	0.24	2SM6	0.0097	0.132	147.26	235.24	0.0055
MU2	0.0544	0.130	272.07	170.98	0.18	MSK6	0.0049	0.128	87.01	292.24	0.0014
*N2	0.1814	0.162	35.10	58.00	1.2	3MK7	0.0020	0.142	38.21	244.35	0.00019
NU2	0.1233	0.165	33.20	94.27	0.56	M8	0.0085	0.127	314.10	252.37	0.0045
*H1	0.3094	0.194	53.00	36.77	2.5						

1994	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	7.6660	0.178	255.70	1.65	1.9e+003	*M2	0.7199	0.177	5.55	16.08	17
*SSA	2.4877	0.218	177.45	4.50	1.3e+002	*H2	0.4146	0.211	268.61	25.80	3.9
*MSM	2.3991	0.209	233.70	4.49	1.3e+002	*MKS2	0.2168	0.206	75.15	52.58	1.1
*MM	1.8140	0.199	188.62	6.62	83	LDA2	0.0833	0.161	98.50	125.59	0.27
*MSF	1.1124	0.194	12.91	10.75	33	*L2	0.2863	0.182	23.20	36.13	2.5
*MF	1.3082	0.182	299.09	8.40	52	T2	0.1031	0.165	220.28	113.54	0.39
ALP1	0.1458	0.185	130.02	77.48	0.62	*S2	0.6410	0.198	5.87	18.58	10
2Q1	0.0697	0.145	247.92	142.56	0.23	*R2	0.2209	0.207	90.09	52.95	1.1
SIG1	0.0615	0.142	59.46	184.27	0.19	K2	0.2096	0.213	353.48	54.20	0.97
Q1	0.1227	0.170	198.92	91.76	0.52	MSN2	0.1157	0.162	173.73	91.36	0.51
RHO1	0.1225	0.167	197.12	98.60	0.54	ETA2	0.1194	0.149	146.74	93.96	0.64
*01	0.6440	0.187	326.09	16.36	12	MO3	0.0462	0.128	314.94	179.39	0.13
*TAU1	0.2357	0.190	225.82	52.02	1.5	M3	0.0579	0.161	213.08	158.90	0.13
BET1	0.1144	0.159	331.14	96.39	0.52	SO3	0.0331	0.145	317.14	213.22	0.052
NO1	0.1159	0.181	145.61	104.79	0.41	MK3	0.0104	0.135	237.56	244.91	0.0059
CHI1	0.1349	0.175	223.05	89.37	0.6	SK3	0.0125	0.132	241.45	243.75	0.009
PI1	0.1628	0.178	346.65	65.76	0.83	MN4	0.0081	0.143	234.95	262.36	0.0032
*P1	0.4456	0.190	340.95	23.71	5.5	M4	0.0170	0.121	203.35	240.60	0.02
*S1	0.2793	0.186	261.51	44.14	2.2	SN4	0.0033	0.148	133.98	265.79	0.00049
*K1	1.3234	0.239	347.08	7.45	31	MS4	0.0285	0.154	309.70	194.90	0.034
PSI1	0.0638	0.139	284.40	151.03	0.21	MK4	0.0247	0.126	347.19	243.22	0.038
*PHI1	0.1991	0.184	25.40	60.57	1.2	S4	0.0031	0.132	301.48	280.08	0.00057
THE1	0.0411	0.143	355.88	187.31	0.083	SK4	0.0230	0.142	341.98	229.89	0.026
J1	0.0297	0.132	225.12	225.17	0.05	2MK5	0.0170	0.125	283.61	231.12	0.018
SO1	0.0349	0.150	309.78	195.17	0.054	2SK5	0.0024	0.132	93.37	256.35	0.00035
001	0.0990	0.164	222.11	115.72	0.36	2MN6	0.0144	0.121	47.66	238.53	0.014
UPS1	0.0941	0.152	115.87	109.64	0.38	M6	0.0139	0.126	30.27	274.24	0.012
OQ2	0.0344	0.126	175.41	220.48	0.075	2MS6	0.0249	0.130	122.87	219.80	0.036
EPS2	0.0777	0.141	317.16	133.24	0.3	2MK6	0.0073	0.139	359.53	253.07	0.0027
2N2	0.0831	0.152	279.19	133.44	0.3	2SM6	0.0143	0.136	144.00	221.49	0.011
MU2	0.0765	0.147	298.41	132.51	0.27	MSK6	0.0094	0.124	128.60	235.67	0.0057
N2	0.1708	0.196	341.30	69.25	0.76	3MK7	0.0115	0.131	109.15	257.52	0.0077
NU2	0.1449	0.194	294.83	84.93	0.56	M8	0.0030	0.131	228.79	263.97	0.00052
*H1	0.1718	0.166	61.25	59.07	1.1						

1995	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	9.6079	0.184	257.96	1.00	2.7e+003	*M2	0.8925	0.190	3.23	10.29	22
*SSA	3.1109	0.167	119.08	3.57	3.5e+002	*H2	0.5067	0.164	280.04	22.52	9.5
*MSM	1.4062	0.196	59.53	7.86	51	*MKS2	0.2644	0.174	73.06	41.95	2.3
*MM	0.6274	0.174	77.95	14.36	13	*LDA2	0.1957	0.149	183.33	50.68	1.7
*MSF	1.7216	0.176	318.83	5.57	96	*L2	0.1870	0.166	278.47	55.65	1.3
*MF	1.5.061	0.174	66.70	6.57	75	T2	0.0127	0.111	45.46	255.59	0.013
*ALP1	0.1687	0.150	237.74	66.80	1.3	*S2	0.7290	0.182	355.62	14.04	16
2Q1	0.1241	0.157	185.25	90.37	0.62	*R2	0.3749	0.180	92.68	26.23	4.3
SIG1	0.1613	0.165	53.45	66.17	0.96	K2	0.0873	0.159	12.42	109.24	0.3
Q1	0.0757	0.142	4.53	121.43	0.28	MSN2	0.1771	0.182	148.45	56.94	0.95
RHO1	0.1092	0.155	236.25	94.13	0.49	*ETA2	0.1642	0.162	85.92	70.05	1
*01	0.4784	0.182	309.76	22.29	6.9	MO3	0.0478	0.128	257.48	161.64	0.14
TAU1	0.1257	0.151	199.17	82.49	0.7	M3	0.0259	0.131	139.29	234.16	0.039
BET1	0.0572	0.146	198.00	146.66	0.15	SO3	0.0420	0.118	219.19	156.64	0.13
*NO1	0.2661	0.179	11.13	40.65	2.2	MK3	0.0354	0.121	194.69	181.69	0.085
CHI1	0.0700	0.125	282.02	131.40	0.31	SK3	0.0308	0.120	254.51	202.24	0.066
PI1	0.1664	0.168	52.49	62.05	0.98	MN4	0.0416	0.117	321.61	197.86	0.13
*P1	0.5593	0.197	355.40	18.89	8	M4	0.0277	0.137	208.13	192.70	0.041
*S1	0.2240	0.179	247.82	45.61	1.6	SN4	0.0493	0.144	252.49	174.03	0.12
*K1	1.1724	0.166	347.41	8.78	50	MS4	0.0242	0.129	340.60	211.01	0.035
*PSI1	0.3257	0.176	221.83	30.36	3.4	MK4	0.0142	0.114	332.12	264.86	0.015
PHI1	0.1656	0.191	338.76	58.28	0.75	S4	0.0135	0.121	51.96	258.32	0.013
THE1	0.0742	0.138	286.68	134.45	0.29	SK4	0.0329	0.136	159.08	189.59	0.058
J1	0.1417	0.151	165.00	81.11	0.88	2MK5	0.0297	0.130	333.37	224.72	0.052
SO1	0.0777	0.137	121.52	126.90	0.32	2SK5	0.0218	0.138	339.07	217.10	0.025
001	0.0969	0.154	195.13	103.58	0.4	2MN6	0.0119	0.112	279.79	246.98	0.011
UPS1	0.0271	0.126	95.44	240.11	0.046	M6	0.0170	0.125	64.94	237.23	0.019
OQ2	0.1334	0.145	143.95	82.06	0.84	2MS6	0.0278	0.131	14.78	205.80	0.045
EPS2	0.0393	0.119	235.98	179.83	0.11	2MK6	0.0075	0.125	120.34	276.37	0.0036
*2N2	0.2353	0.178	49.91	41.34	1.7	2SM6	0.0157	0.127	335.74	253.64	0.015
MU2	0.0368	0.125	83.16	187.31	0.087	MSK6	0.0102	0.117	331.52	255.07	0.0076
*N2	0.3403	0.170	62.65	33.36	4	3MK7	0.0226	0.117	311.07	195.15	0.037
NU2	0.1106	0.156	13.97	77.71	0.5	M8	0.0100	0.132	96.44	237.60	0.0057
*H1	0.1682	0.167	253.01	62.86	1						

1996	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	7.6423	0.257	314.16	1.68	8.8e+002	*M2	1.1237	0.251	358.95	11.55	20
*SSA	2.3369	0.272	194.63	6.15	74	*H2	0.5119	0.262	265.54	26.85	3.8
*MSM	2.7542	0.219	276.34	4.74	1.6e+002	MKS2	0.0312	0.156	28.02	218.21	0.04
*MM	0.6261	0.244	124.72	21.63	6.6	LDA2	0.1677	0.202	17.27	80.20	0.69
*MSF	1.5126	0.231	353.88	9.01	43	L2	0.0757	0.178	134.64	147.26	0.18
*MF	1.2205	0.236	6.31	10.30	27	T2	0.0161	0.165	20.75	258.68	0.0094
ALP1	0.0314	0.186	181.89	213.90	0.029	*S2	0.5939	0.212	350.23	23.33	7.8
2Q1	0.0373	0.165	327.51	197.70	0.051	*R2	0.2626	0.221	61.76	54.40	1.4
SIG1	0.0634	0.167	155.89	178.61	0.14	K2	0.2093	0.210	15.61	63.60	0.99
*Q1	0.2375	0.224	115.42	62.69	1.1	MSN2	0.1373	0.179	338.58	88.75	0.59
RHO1	0.0940	0.198	62.65	142.74	0.23	ETA2	0.0651	0.169	118.50	171.93	0.15
*01	0.3954	0.226	322.64	34.53	3.1	MO3	0.0467	0.160	330.02	199.33	0.086
TAU1	0.1210	0.206	72.47	102.31	0.35	M3	0.0168	0.157	75.45	224.01	0.011
BET1	0.1021	0.191	108.14	140.51	0.29	SO3	0.0415	0.174	297.23	196.45	0.057
NO1	0.0411	0.159	331.10	226.11	0.066	MK3	0.0376	0.161	284.44	220.28	0.055
CHI1	0.0561	0.162	34.28	172.28	0.12	SK3	0.0255	0.161	358.10	236.52	0.025
*PI1	0.3025	0.270	290.83	40.99	1.3	MN4	0.0400	0.171	342.26	194.63	0.055
*P1	0.6331	0.226	335.10	20.28	7.9	M4	0.0363	0.165	187.23	224.09	0.048
S1	0.1662	0.209	334.63	86.06	0.63	SN4	0.0231	0.172	84.32	242.60	0.018
*K1	1.4495	0.248	349.09	9.18	34	MS4	0.0177	0.170	23.11	221.07	0.011
*PSI1	0.2464	0.239	267.27	56.58	1.1	MK4	0.0403	0.156	253.79	219.61	0.066
PHI1	0.0467	0.153	323.54	201.37	0.093	S4	0.0085	0.151	258.98	270.31	0.0032
THE1	0.0505	0.166	321.60	224.94	0.093	SK4	0.0173	0.173	273.89	262.16	0.0099
J1	0.0110	0.151	313.26	248.06	0.0053	2MK5	0.0091	0.154	6.47	281.33	0.0035
SO1	0.0267	0.170	262.24	198.24	0.025	2SK5	0.0193	0.158	214.83	272.62	0.015
001	0.0875	0.168	169.12	133.49	0.27	2MN6	0.0140	0.176	287.84	226.59	0.0063
UPS1	0.0668	0.166	299.39	158.36	0.16	M6	0.0035	0.157	312.77	273.43	0.00051
OQ2	0.1116	0.213	87.01	118.35	0.27	2MS6	0.0137	0.158	86.15	240.55	0.0075
EPS2	0.0843	0.193	113.00	134.22	0.19	2MK6	0.0069	0.157	336.49	265.27	0.002
2N2	0.0532	0.163	156.84	177.15	0.11	2SM6	0.0108	0.167	347.13	252.42	0.0042
MU2	0.0903	0.175	325.20	129.45	0.27	MSK6	0.0150	0.161	140.36	258.05	0.0087
N2	0.1907	0.199	8.28	76.04	0.92	3MK7	0.0133	0.161	288.83	267.46	0.0068
NU2	0.1358	0.200	357.71	123.63	0.46	M8	0.0094	0.150	23.14	267.04	0.0039
H1	0.1706	0.208	150.64	75.62	0.67						
1997	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
------	--------	--------	--------	--------	----------	------	--------	--------	--------	--------	--------
*SA	6.3619	0.182	255.32	1.79	1.2e+003	*M2	1.0580	0.191	333.25	11.72	31
*SSA	7.1602	0.215	163.54	1.64	1.1e+003	*H2	0.2698	0.175	236.46	36.51	2.4
*MSM	1.1149	0.170	154.00	10.68	43	MKS2	0.0896	0.140	354.88	117.48	0.41
ММ	0.1336	0.176	295.12	88.08	0.57	LDA2	0.0898	0.153	137.73	124.46	0.35
*MSF	0.5509	0.196	306.49	21.00	7.9	L2	0.0937	0.161	111.56	117.92	0.34
*MF	0.5247	0.196	284.47	22.08	7.2	T2	0.0649	0.151	271.59	129.85	0.19
ALP1	0.0995	0.173	73.19	97.35	0.33	*S2	0.7558	0.191	338.15	14.91	16
2Q1	0.0293	0.144	107.76	212.66	0.041	R2	0.0531	0.147	92.84	157.57	0.13
SIG1	0.0965	0.153	316.03	123.35	0.4	*K2	0.2061	0.189	327.15	54.77	1.2
Q1	0.1619	0.181	211.20	70.77	0.8	MSN2	0.0506	0.141	41.39	176.68	0.13
RHO1	0.1337	0.167	135.61	86.03	0.64	ETA2	0.0645	0.144	275.78	151.97	0.2
*01	0.4494	0.192	270.60	26.79	5.5	MO3	0.0203	0.134	36.36	238.91	0.023
TAU1	0.1795	0.185	89.75	77.69	0.94	M3	0.0342	0.136	209.96	202.82	0.063
BET1	0.0577	0.135	321.71	157.76	0.18	SO3	0.0353	0.141	39.01	189.43	0.063
NO1	0.1566	0.187	340.65	75.28	0.7	MK3	0.0319	0.142	17.24	197.33	0.05
CHI1	0.0651	0.147	36.24	157.93	0.2	SK3	0.0138	0.137	312.22	246.49	0.01
PI1	0.0654	0.160	243.09	137.99	0.17	MN4	0.0249	0.123	360.00	222.55	0.041
*P1	0.4689	0.184	325.60	24.38	6.5	M4	0.0480	0.138	174.62	167.71	0.12
S1	0.0807	0.171	177.35	131.22	0.22	SN4	0.0386	0.135	172.51	167.07	0.082
*K1	1.2640	0.187	339.63	9.66	45	MS4	0.0319	0.139	145.04	199.08	0.052
PSI1	0.0147	0.130	33.65	246.36	0.013	MK4	0.0246	0.135	228.52	209.21	0.033
PHI1	0.1357	0.165	262.40	93.61	0.67	S4	0.0359	0.158	286.12	202.88	0.051
THE1	0.0349	0.141	93.56	204.67	0.061	SK4	0.0173	0.143	119.94	230.70	0.015
J1	0.0318	0.138	52.75	195.46	0.053	2MK5	0.0309	0.154	91.84	201.59	0.04
SO1	0.0920	0.167	354.82	123.89	0.3	2SK5	0.0201	0.131	76.74	222.04	0.024
*001	0.1922	0.188	307.51	62.95	1	2MN6	0.0118	0.135	252.85	241.18	0.0077
UPS1	0.1068	0.174	25.61	100.79	0.38	M6	0.0134	0.136	342.70	232.40	0.0098
*OQ2	0.2056	0.189	274.33	48.34	1.2	2MS6	0.0130	0.141	244.97	242.59	0.0085
EPS2	0.0864	0.174	122.76	105.95	0.25	2MK6	0.0136	0.150	124.37	205.60	0.0082
2N2	0.0913	0.166	327.43	122.64	0.3	2SM6	0.0065	0.120	63.56	247.13	0.003
MU2	0.0566	0.161	358.39	166.08	0.12	MSK6	0.0135	0.154	328.39	216.46	0.0077
*N2	0.3279	0.179	289.72	34.18	3.4	3MK7	0.0113	0.135	324.23	230.29	0.007
NU2	0.1528	0.171	209.84	73.71	0.8	M8	0.0058	0.122	303.76	264.22	0.0023
H1	0.1798	0.195	54.39	57.41	0.85						

1998	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	12.5481	0.254	239.19	1.15	2.4e+003	*M2	0.9941	0.219	15.82	14.18	21
*SSA	3.4797	0.227	78.74	3.78	2.3e+002	*H2	0.2585	0.223	314.56	52.81	1.3
*MSM	1.7190	0.262	117.41	7.70	43	MKS2	0.1836	0.201	133.36	80.28	0.83
*MM	0.8363	0.241	237.33	17.70	12	LDA2	0.0720	0.167	313.96	158.38	0.19
*MSF	1.4441	0.228	228.65	9.09	40	L2	0.1084	0.161	10.48	129.00	0.45
*MF	1.6186	0.254	276.55	8.36	41	T2	0.1785	0.203	281.44	78.15	0.77
ALP1	0.0553	0.168	5.68	170.54	0.11	*S2	0.8052	0.238	6.75	16.61	11
2Q1	0.0370	0.158	124.15	222.74	0.055	*R2	0.2528	0.216	121.50	47.90	1.4
SIG1	0.1424	0.194	93.69	100.70	0.54	K2	0.1050	0.166	11.24	105.80	0.4
Q1	0.0752	0.168	318.95	158.52	0.2	MSN2	0.1273	0.165	149.85	104.62	0.59
RHO1	0.0996	0.179	165.37	137.32	0.31	ETA2	0.0439	0.149	214.39	189.98	0.087
*01	0.6206	0.243	318.68	22.75	6.5	MO3	0.0147	0.167	218.35	250.43	0.0078
TAU1	0.0589	0.157	254.80	187.21	0.14	M3	0.0337	0.163	174.46	188.21	0.043
BET1	0.1615	0.229	19.64	80.52	0.5	SO3	0.0354	0.165	216.37	216.23	0.046
NO1	0.0726	0.169	94.48	161.53	0.18	MK3	0.0402	0.161	318.20	188.35	0.062
CHI1	0.0579	0.178	63.09	157.90	0.11	SK3	0.0352	0.161	108.00	215.77	0.047
PI1	0.0444	0.176	101.76	205.47	0.064	MN4	0.0160	0.154	150.95	249.40	0.011
*P1	0.3971	0.242	327.18	34.52	2.7	M4	0.0303	0.173	247.76	235.79	0.031
S1	0.1470	0.223	181.29	92.94	0.43	SN4	0.0121	0.154	206.98	276.51	0.0062
*K1	1.1984	0.255	357.00	12.09	22	MS4	0.0179	0.159	309.16	228.82	0.013
*PSI1	0.2404	0.218	314.69	53.19	1.2	MK4	0.0228	0.181	344.29	216.50	0.016
PHI1	0.1146	0.207	147.27	120.64	0.31	S4	0.0104	0.159	242.48	235.57	0.0043
THE1	0.1722	0.204	30.38	77.62	0.72	SK4	0.0100	0.175	98.57	260.89	0.0033
J1	0.0928	0.184	238.48	134.87	0.26	2MK5	0.0088	0.151	62.12	236.96	0.0034
SO1	0.0338	0.138	181.72	218.02	0.06	2SK5	0.0229	0.173	292.92	224.66	0.018
001	0.1271	0.208	3.01	117.19	0.37	2MN6	0.0071	0.166	163.57	284.97	0.0018
UPS1	0.0824	0.162	37.25	139.52	0.26	M6	0.0253	0.199	185.97	244.21	0.016
OQ2	0.0559	0.196	212.89	183.84	0.081	2MS6	0.0139	0.162	122.93	267.44	0.0073
EPS2	0.0950	0.162	316.97	119.57	0.35	2MK6	0.0096	0.161	294.91	250.39	0.0036
2N2	0.0997	0.181	233.57	143.03	0.3	2SM6	0.0104	0.145	182.07	240.28	0.0052
MU2	0.0714	0.158	347.55	150.74	0.2	MSK6	0.0051	0.156	244.93	280.16	0.0011
N2	0.1238	0.192	32.35	107.09	0.41	3MK7	0.0183	0.152	328.91	247.53	0.015
NU2	0.1569	0.211	16.75	85.50	0.55	M8	0.0065	0.149	281.61	284.90	0.0019
H1	0.0629	0.184	126.10	149.56	0.12						

1999	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	10.3426	0.192	245.17	1.01	2.9e+003	*M2	1.1673	0.170	20.46	9.75	47
*SSA	3.3787	0.193	12.70	3.21	3.1e+002	*H2	0.2861	0.184	309.33	37.14	2.4
*MSM	2.1296	0.198	24.31	5.38	1.2e+002	MKS2	0.0910	0.159	271.23	110.35	0.33
*MM	0.9151	0.198	326.11	12.98	21	LDA2	0.1212	0.182	256.99	103.38	0.44
*MSF	1.1.758	0.211	347.95	9.07	31	L2	0.0555	0.147	245.67	156.20	0.14
*MF	1.1.227	0.186	186.80	10.49	36	T2	0.1655	0.176	226.51	65.79	0.88
ALP1	0.1092	0.176	356.72	100.17	0.38	*S2	0.9232	0.183	13.62	11.75	25
2Q1	0.1704	0.202	301.64	54.72	0.71	*R2	0.1837	0.172	128.61	62.26	1.1
SIG1	0.0599	0.171	46.14	161.35	0.12	*K2	0.2512	0.214	19.36	47.06	1.4
Q1	0.0693	0.153	324.95	118.70	0.21	MSN2	0.0597	0.148	127.88	155.17	0.16
RHO1	0.0349	0.139	350.89	227.47	0.063	ETA2	0.0456	0.165	23.06	188.28	0.076
*01	0.5399	0.175	313.59	21.62	9.5	MO3	0.0391	0.148	258.38	206.30	0.07
TAU1	0.0643	0.134	27.30	154.11	0.23	M3	0.0220	0.141	152.81	215.39	0.024
BET1	0.1002	0.149	227.11	105.56	0.45	SO3	0.0141	0.138	238.92	235.75	0.01
*NO1	0.2208	0.178	11.17	47.19	1.5	MK3	0.0049	0.137	302.15	243.65	0.0013
CHI1	0.1385	0.177	15.37	90.86	0.61	SK3	0.0389	0.146	236.60	203.44	0.071
PI1	0.1230	0.150	326.01	97.47	0.67	MN4	0.0063	0.133	305.03	270.94	0.0023
*P1	0.6211	0.204	7.80	17.76	9.3	M4	0.0273	0.144	267.13	212.60	0.036
*S1	0.2615	0.189	214.58	42.44	1.9	SN4	0.0172	0.150	77.21	230.60	0.013
*K1	1.3241	0.197	2.79	8.62	45	MS4	0.0547	0.138	295.97	164.10	0.16
PSI1	0.1643	0.192	318.08	70.09	0.74	MK4	0.0084	0.139	176.67	256.34	0.0037
PHI1	0.0688	0.146	297.13	140.66	0.22	S4	0.0215	0.141	280.69	237.07	0.023
THE1	0.0485	0.141	55.42	178.31	0.12	SK4	0.0122	0.128	342.50	225.28	0.0091
J1	0.1634	0.187	46.86	72.57	0.76	2MK5	0.0168	0.131	96.16	254.67	0.016
SO1	0.0386	0.133	32.36	174.51	0.084	2SK5	0.0042	0.127	0.77	249.66	0.0011
001	0.0742	0.157	311.74	145.82	0.22	2MN6	0.0119	0.123	225.60	258.37	0.0093
UPS1	0.0907	0.165	10.80	121.56	0.3	M6	0.0286	0.128	64.01	219.78	0.05
OQ2	0.0185	0.133	201.97	231.52	0.019	2MS6	0.0123	0.135	300.62	218.16	0.0083
EPS2	0.0376	0.145	111.11	184.67	0.067	2MK6	0.0017	0.143	36.01	286.04	0.00015
2N2	0.0817	0.159	42.98	117.00	0.27	2SM6	0.0117	0.122	12.31	261.15	0.0092
MU2	0.0413	0.140	1.61	166.31	0.087	MSK6	0.0061	0.145	237.77	287.62	0.0018
*N2	0.3230	0.186	51.81	40.41	3	3MK7	0.0143	0.124	341.93	222.68	0.013
NU2	0.0458	0.144	74.84	162.50	0.1	M8	0.0069	0.127	120.46	241.15	0.003
*H1	0.1935	0.177	82.03	62.26	1.2						

2000	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	4.8065	0.218	241.49	2.83	4.9e+002	*M2	1.1163	0.230	19.15	11.34	24
*SSA	2.2750	0.223	98.98	5.51	1,00E+02	H2	0.0580	0.141	265.15	162.62	0.17
*MSM	1.0689	0.253	276.24	12.21	18	MKS2	0.1001	0.211	119.80	132.33	0.23
*MM	0.3787	0.234	90.14	37.46	2.6	LDA2	0.0317	0.142	125.97	201.26	0.05
*MSF	0.7271	0.236	323.95	17.63	9.5	L2	0.0360	0.159	112.60	186.11	0.052
*MF	1.4112	0.239	176.33	10.29	35	T2	0.0861	0.186	296.52	133.79	0.21
ALP1	0.0453	0.134	44.28	179.70	0.11	*S2	0.8630	0.236	7.51	15.89	13
2Q1	0.0519	0.146	43.11	178.92	0.13	R2	0.1540	0.240	99.43	81.88	0.41
SIG1	0.0418	0.159	38.25	185.37	0.069	K2	0.1741	0.220	15.03	70.78	0.63
Q1	0.0964	0.187	322.64	137.39	0.27	MSN2	0.0718	0.158	82.40	164.48	0.21
RHO1	0.1171	0.172	262.35	107.66	0.47	ETA2	0.0341	0.163	278.18	209.95	0.044
*01	0.5349	0.216	314.53	21.28	6.1	MO3	0.0197	0.152	319.07	223.90	0.017
TAU1	0.1260	0.186	152.65	95.55	0.46	M3	0.0220	0.174	182.39	214.78	0.016
BET1	0.1154	0.208	228.65	108.34	0.31	SO3	0.0424	0.152	295.53	184.23	0.078
NO1	0.1500	0.197	196.90	91.46	0.58	MK3	0.0050	0.161	89.65	276.13	0.00097
CHI1	0.0756	0.168	335.91	155.71	0.2	SK3	0.0104	0.154	227.93	250.34	0.0045
PI1	0.1264	0.191	316.73	104.24	0.44	MN4	0.0260	0.131	245.83	231.89	0.039
*P1	0.4957	0.215	359.18	26.52	5.3	M4	0.0452	0.151	247.28	174.14	0.089
S1	0.1711	0.202	187.91	77.32	0.72	SN4	0.0039	0.173	214.43	274.31	0.00051
*K1	1.4687	0.233	11.23	8.77	40	MS4	0.0383	0.167	220.21	200.18	0.053
PSI1	0.0598	0.148	263.98	177.53	0.16	MK4	0.0131	0.134	230.25	234.18	0.0096
PHI1	0.0826	0.162	8.10	144.50	0.26	S4	0.0287	0.135	204.72	241.81	0.045
THE1	0.1201	0.187	102.69	110.71	0.41	SK4	0.0276	0.158	238.36	205.77	0.031
J1	0.1015	0.170	42.61	122.53	0.36	2MK5	0.0155	0.165	8.98	239.40	0.0088
SO1	0.0331	0.168	88.18	199.94	0.039	2SK5	0.0287	0.147	27.36	239.83	0.038
001	0.0683	0.159	357.92	159.03	0.19	2MN6	0.0180	0.156	162.45	231.61	0.013
UPS1	0.0294	0.143	341.38	223.61	0.042	M6	0.0091	0.143	15.09	248.33	0.0041
OQ2	0.0230	0.161	264.50	238.99	0.02	2MS6	0.0162	0.158	23.87	232.95	0.01
EPS2	0.0402	0.162	187.55	190.93	0.062	2MK6	0.0091	0.157	323.24	249.86	0.0034
2N2	0.0561	0.178	77.18	185.97	0.099	2SM6	0.0133	0.169	53.52	217.05	0.0062
MU2	0.0720	0.159	71.85	141.16	0.21	MSK6	0.0214	0.161	314.60	222.56	0.018
*N2	0.2176	0.209	20.31	64.65	1.1	3MK7	0.0095	0.152	262.55	279.58	0.0039
NU2	0.0706	0.140	326.83	170.91	0.25	M8	0.0147	0.160	336.33	224.81	0.0085
H1	0.0675	0.177	86.17	167.25	0.15						

2001	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	4.7858	0.181	251.87	2.39	7,00E+02	*M2	1.1697	0.195	353.14	9.19	36
*SSA	1.3703	0.201	334.31	9.32	47	*H2	0.2013	0.194	247.11	66.30	1.1
*MSM	1.6798	0.193	315.77	6.56	75	MKS2	0.0976	0.177	122.88	125.09	0.31
*MM	2.7247	0.214	307.43	4.51	1.6e+002	LDA2	0.0236	0.119	352.06	247.57	0.04
*MSF	0.7111	0.227	163.08	16.34	9.8	L2	0.0836	0.147	307.32	124.47	0.32
*MF	1.5120	0.210	129.20	6.30	52	T2	0.0903	0.175	330.66	127.58	0.26
ALP1	0.0517	0.153	265.76	161.60	0.11	*S2	0.8779	0.186	10.07	13.10	22
2Q1	0.0427	0.154	142.10	175.35	0.077	R2	0.1099	0.175	148.79	98.03	0.4
SIG1	0.0343	0.133	97.14	236.64	0.066	K2	0.2369	0.239	43.29	46.99	0.99
Q1	0.1567	0.176	28.02	69.93	0.79	MSN2	0.0131	0.140	253.21	252.24	0.0088
RHO1	0.0827	0.169	248.94	143.74	0.24	ETA2	0.0391	0.145	17.24	164.25	0.073
*01	0.7215	0.177	282.49	17.25	17	MO3	0.0230	0.136	173.38	229.10	0.028
TAU1	0.0742	0.158	247.47	132.16	0.22	M3	0.0319	0.144	162.05	211.13	0.049
BET1	0.0990	0.173	6.50	120.94	0.33	SO3	0.0466	0.144	170.85	194.43	0.1
NO1	0.1052	0.168	258.35	89.01	0.39	MK3	0.0407	0.140	222.89	191.53	0.084
CHI1	0.0200	0.139	176.78	233.34	0.021	SK3	0.0479	0.149	237.50	189.55	0.1
PI1	0.1060	0.174	342.77	111.28	0.37	MN4	0.0150	0.129	134.85	245.69	0.014
*P1	0.6348	0.205	352.03	18.51	9.6	M4	0.0394	0.150	222.53	203.61	0.069
S1	0.1423	0.179	233.09	90.02	0.63	SN4	0.0079	0.124	198.77	268.27	0.0041
*K1	1.4454	0.228	4.59	8.08	40	MS4	0.0338	0.146	235.39	194.02	0.054
PSI1	0.0859	0.158	225.28	126.90	0.3	MK4	0.0246	0.138	20.55	208.84	0.032
PHI1	0.0677	0.152	140.77	172.58	0.2	S4	0.0160	0.134	255.93	226.93	0.014
THE1	0.0207	0.136	270.10	238.78	0.023	SK4	0.0158	0.138	199.59	253.64	0.013
J1	0.1282	0.155	16.07	95.08	0.69	2MK5	0.0158	0.143	354.33	249.06	0.012
SO1	0.0471	0.138	254.09	186.58	0.12	2SK5	0.0153	0.139	2.57	228.91	0.012
001	0.0781	0.162	3.20	147.60	0.23	2MN6	0.0137	0.141	291.34	235.85	0.0093
UPS1	0.1112	0.183	50.16	105.55	0.37	M6	0.0102	0.124	250.44	236.73	0.0068
OQ2	0.0097	0.162	136.57	256.06	0.0036	2MS6	0.0114	0.131	338.74	285.22	0.0075
EPS2	0.0538	0.131	339.96	176.42	0.17	2MK6	0.0152	0.139	188.28	260.37	0.012
2N2	0.1072	0.157	331.13	108.29	0.47	2SM6	0.0219	0.121	132.70	241.96	0.033
MU2	0.0547	0.139	126.99	166.39	0.16	MSK6	0.0109	0.130	335.28	240.87	0.007
*N2	0.2713	0.203	340.50	41.44	1.8	3MK7	0.0257	0.138	223.87	234.28	0.035
NU2	0.0723	0.172	43.93	141.79	0.18	M8	0.0145	0.115	211.15	234.85	0.016
H1	0.0986	0.159	95.13	104.15	0.38						

2002	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	7.3694	0.207	239.74	1.45	1.3e+003	*M2	1.0960	0.180	5.49	10.25	37
*SSA	3.9627	0.187	58.90	2.89	4.5e+002	*H2	0.3418	0.201	266.78	37.34	2.9
*MSM	1.2835	0.201	171.73	8.09	41	MKS2	0.1260	0.194	64.75	84.55	0.42
*MM	1.8363	0.185	268.43	6.64	99	LDA2	0.0129	0.148	232.26	263.36	0.0076
*MSF	0.6521	0.208	306.49	17.49	9.9	L2	0.1029	0.170	223.07	113.06	0.36
*MF	1.8258	0.194	205.88	6.25	89	T2	0.1802	0.186	268.39	67.47	0.94
ALP1	0.0892	0.149	246.02	125.52	0.36	*S2	0.9074	0.190	351.05	12.03	23
2Q1	0.0702	0.139	39.61	138.57	0.26	R2	0.1533	0.185	90.13	77.02	0.69
SIG1	0.0341	0.135	205.79	202.22	0.064	*K2	0.2599	0.207	352.78	45.96	1.6
Q1	0.1360	0.164	87.85	83.42	0.69	MSN2	0.0902	0.159	66.53	112.93	0.32
RHO1	0.0687	0.165	264.43	146.33	0.17	ETA2	0.0640	0.158	349.65	153.66	0.16
*01	0.6784	0.198	297.59	16.85	12	MO3	0.0461	0.139	245.90	181.61	0.11
TAU1	0.1493	0.202	132.53	77.96	0.55	M3	0.0313	0.124	76.26	237.55	0.063
BET1	0.0717	0.135	300.99	143.67	0.28	SO3	0.0582	0.135	165.37	143.25	0.19
NO1	0.0627	0.148	33.30	148.32	0.18	MK3	0.0195	0.131	263.88	239.70	0.022
CHI1	0.0737	0.137	258.65	133.12	0.29	SK3	0.0101	0.121	194.33	231.04	0.0069
PI1	0.1122	0.170	3.37	94.03	0.43	MN4	0.0208	0.139	164.33	223.99	0.023
*P1	0.6346	0.206	349.10	17.97	9.5	M4	0.0390	0.127	180.37	206.67	0.095
S1	0.1115	0.159	234.33	113.17	0.49	SN4	0.0103	0.133	301.84	240.52	0.006
*K1	1.5167	0.193	356.73	6.39	62	MS4	0.0040	0.134	329.77	283.88	0.00091
PSI1	0.0786	0.136	252.90	137.53	0.33	MK4	0.0309	0.138	291.50	193.18	0.05
PHI1	0.1368	0.169	305.42	80.37	0.65	S4	0.0320	0.137	43.22	199.64	0.055
THE1	0.0779	0.151	121.26	141.48	0.27	SK4	0.0307	0.161	210.66	225.05	0.036
J1	0.0840	0.150	18.85	142.51	0.31	2MK5	0.0040	0.135	208.31	242.77	0.00086
SO1	0.1880	0.192	1.17	56.89	0.95	2SK5	0.0222	0.150	234.86	203.14	0.022
001	0.0597	0.141	359.20	149.36	0.18	2MN6	0.0192	0.137	201.70	227.71	0.02
UPS1	0.1010	0.150	288.03	111.03	0.46	M6	0.0168	0.135	346.26	218.87	0.015
OQ2	0.0581	0.145	119.26	164.54	0.16	2MS6	0.0040	0.132	67.45	272.03	0.0009
EPS2	0.0844	0.158	94.93	114.10	0.28	2MK6	0.0236	0.145	50.08	222.37	0.027
2N2	0.0832	0.148	353.10	130.24	0.32	2SM6	0.0111	0.129	192.75	220.88	0.0075
MU2	0.0705	0.155	183.72	133.62	0.21	MSK6	0.0148	0.128	113.23	231.33	0.013
*N2	0.2770	0.179	40.20	41.82	2.4	3MK7	0.0110	0.142	3.61	252.21	0.006
*NU2	0.1988	0.192	0.79	54.13	1.1	M8	0.0161	0.145	11.64	227.12	0.012
H1	0.1397	0.180	154.15	98.28	0.6						

2003	Πλάτος	σφάλμα	Φάση	σφάλμα	snr		Πλάτος	σφάλμα	Φάση	σφάλμα	snr
*SA	10.2517	0.208	258.91	1.23	2.4e+003	*M2	1.1078	0.208	1.24	11.19	28
*SSA	2.2598	0.207	163.29	5.34	1.2e+002	*H2	0.2777	0.225	268.43	44.47	1.5
*MSM	0.7288	0.209	110.96	15.19	12	MKS2	0.0819	0.153	145.19	124.73	0.29
*MM	1.6550	0.214	147.48	7.57	60	LDA2	0.0991	0.174	100.69	106.62	0.32
*MSF	1.7494	0.215	90.59	6.58	66	L2	0.1447	0.184	32.82	88.19	0.62
*MF	1.6772	0.211	11.96	6.96	63	T2	0.1591	0.182	272.28	75.55	0.76
ALP1	0.0729	0.150	266.83	131.40	0.24	*S2	0.7807	0.188	343.11	15.74	17
2Q1	0.0757	0.136	33.14	127.44	0.31	*R2	0.2757	0.207	59.64	41.99	1.8
SIG1	0.0819	0.173	125.04	142.63	0.23	*K2	0.2287	0.191	20.31	52.88	1.4
Q1	0.0554	0.158	324.73	171.97	0.12	MSN2	0.0481	0.138	148.07	179.15	0.12
RHO1	0.1421	0.176	219.58	81.75	0.65	ETA2	0.0313	0.144	341.23	218.79	0.047
*01	0.7024	0.191	305.08	16.55	13	MO3	0.0375	0.140	254.40	191.49	0.072
TAU1	0.0327	0.146	117.66	207.54	0.05	M3	0.0251	0.151	223.34	216.78	0.028
BET1	0.1281	0.179	292.93	87.15	0.51	SO3	0.0400	0.139	215.42	181.67	0.082
NO1	0.1527	0.184	19.89	81.24	0.69	MK3	0.0243	0.148	293.57	237.48	0.027
CHI1	0.0866	0.168	250.06	114.13	0.27	SK3	0.0135	0.133	26.12	256.74	0.01
PI1	0.1687	0.179	282.02	71.40	0.89	MN4	0.0154	0.145	24.32	232.72	0.011
*P1	0.4528	0.206	343.32	26.50	4.8	M4	0.0396	0.154	173.39	210.57	0.066
*S1	0.3760	0.208	228.14	32.51	3.3	SN4	0.0115	0.141	340.44	253.77	0.0066
*K1	1.4871	0.211	352.20	7.61	50	MS4	0.0491	0.138	273.94	212.67	0.13
*PSI1	0.3870	0.198	231.41	31.14	3.8	MK4	0.0229	0.152	331.11	233.25	0.023
PHI1	0.0815	0.158	12.19	145.28	0.27	S4	0.0419	0.155	196.74	194.91	0.073
THE1	0.1087	0.182	178.31	100.44	0.36	SK4	0.0132	0.138	281.23	253.81	0.0092
J1	0.1619	0.186	315.72	77.13	0.76	2MK5	0.0051	0.134	295.01	248.90	0.0014
SO1	0.1230	0.181	76.92	103.12	0.46	2SK5	0.0131	0.151	349.30	260.30	0.0076
001	0.0769	0.159	138.22	120.46	0.23	2MN6	0.0016	0.149	352.96	265.28	0.00011
UPS1	0.1645	0.181	28.61	66.30	0.83	M6	0.0079	0.138	208.28	250.88	0.0033
OQ2	0.0405	0.135	7.32	206.68	0.09	2MS6	0.0203	0.141	155.40	253.97	0.021
EPS2	0.0917	0.154	339.38	127.56	0.35	2MK6	0.0092	0.140	28.28	260.18	0.0043
2N2	0.0835	0.168	32.71	130.02	0.25	2SM6	0.0105	0.124	187.98	283.80	0.0071
MU2	0.0740	0.157	66.64	132.83	0.22	MSK6	0.0088	0.139	287.54	256.16	0.004
*N2	0.3055	0.188	351.73	43.41	2.7	3MK7	0.0068	0.128	269.71	279.46	0.0028
NU2	0.0857	0.179	203.18	139.98	0.23	M8	0.0010	0.132	283.78	277.93	6,0E-05
H1	0.1399	0.173	115.16	77.17	0.65						

ΠΑΡΑΡΤΗΜΑ IV

Το πλάτος (mm) η φάση (degrees), τα σφάλματα και οι αντίστοιχοι λόγοι σήματος προς θόρυβο από τα δεδομένα των παλιρροιογράφους της Γαύδου.

		ΑΚΟΥΣΤΙΚΟΣ					ΠΙΕ	ΣΟΜΕΤΡΙΚ	ΟΣ		ΥΒΡΙΔΙΚΌΣ					
	Πλάτος	σφάλμα	Φάση	σφάλμα	snr	Πλάτος	σφάλμα	Φάση	σφάλμα	snr	Πλάτος	σφάλμα	Φάση	σφάλμα	snr	
SA						79.1187	1.36	260.13	1.15 3	400	81.4884	1.378	261.18	1.12 3	500	
SSA	26.9203	3.14	210.07	5.42	74	26.926	1.562	198.9	3.03	300	25.2219	1.601	201.6	3.55 2	50	
MSM	17.3584	3.277	80.28	9.4	28	5.5869	1.664	40.64	15.6	11	3.4394	1.426	51.04	28.97	5.8	
ММ	16.8881	2.761	196.8	11	37	11.3778	1.631	184.85	7.93	49	10.2252	1.406	178.66	9.19	53	
MSF	17.4119	3.236	197.63	9.65	29	7.2236	1.533	169.12	11.47	22	7.822	1.393	172.67	10.99	32	
MF	13.3745	2.944	226.97	13.8	21	2.6744	1.672	164.89	32.85	2.6	3.312	1.452	175.72	27.91	5.2	
ALP1	1.1346	2.478	101.11	135.64	0.21	0.184	1.022	59.13	249.34	0.032	0.3069	1.124	51.74	189.53	0.075	
2Q1	1.3587	2.44	20.03	130.88	0.31	0.4769	1.144	23.65	158.18	0.17	0.5296	1.182	27.05	150.48	0.2	
SIG1	1.9797	2.545	50.7	91.98	0.61	0.211	0.976	356.94	191.34	0.047	0.1697	1.059	16.51	215.95	0.026	
Q1	2.2759	2.771	85.45	81.79	0.67	0.4463	1.104	70.69	160.31	0.16	0.495	1.148	78.21	145.5	0.19	
RHO1	1.7205	2.387	260.36	100.72	0.52	0.4185	1.113	129.29	160.83	0.14	0.4498	1.215	128.09	157.04	0.14	
01	6.7201	2.986	272.96	28.07	5.1	5.987	1.458	277.98	14.97	17	5.8831	1.518	277.54	13.32	15	
TAU1	0.6834	2.349	107.4	197.47	0.085	0.6254	1.302	80.6	143.56	0.23	0.4584	1.111	75.84	145.31	0.17	
BET1	1.8823	2.758	7.13	101.15	0.47	0.4941	1.21	326.6	149.25	0.17	0.4752	1.208	342.69	140	0.15	
NO1	2.4431	2.651	61.35	71.97	0.85	0.4772	1.124	328.59	151.13	0.18	0.4491	1.146	333.13	151.13	0.15	
CHI1	1.8283	2.529	333.17	95.96	0.52	0.4251	1.138	35.4	170.11	0.14	0.4297	0.989	33.1	147.72	0.19	
PI1						0.8765	1.267	242.07	96.92	0.48	0.9638	1.313	243.11	83.77	0.54	
P1	5.2039	3.312	309.31	34.24	2.5	5.5481	1.693	305.26	16.74	11	5.3451	1.51	304.95	15.43	13	
S1						0.2466	0.986	139.06	208.37	0.063	0.5232	1.191	7.47	139.13	0.19	
K1	11.9107	3.061	315.72	16.15	15	11.8843	1.753	330.52	8.07	46	11.8179	1.504	328.89	7.2	62	
PSI1						0.4644	1.096	26.62	163.47	0.18	0.6103	1.106	38.8	120.79	0.3	
PHI1	1.0971	2.224	66.96	167.72	0.24	0.5993	1.13	332.51	133.93	0.28	0.4062	0.99	321.17	174.01	0.17	
THE1	0.6766	2.065	198.74	191.46	0.11	0.6611	1.192	289.35	127.6	0.31	0.6503	1.201	291.27	135.64	0.29	
J1	0.5479	1.932	43.37	191.92	0.08	0.2337	1.075	244.21	213.75	0.047	0.2222	1.077	249.48	210.79	0.043	
SO1	1.5691	2.499	51.4	96.59	0.39	0.3646	1.109	60.46	188.44	0.11	0.3045	1.126	57.54	173.58	0.073	
001	0.5371	1.89	331.51	202.82	0.081	0.5435	1.195	346.65	155.69	0.21	0.6401	1.061	344.36	100.18	0.36	
UPS1	0.8973	2.229	229.59	163.88	0.16	0.625	1.152	336.73	126.74	0.29	0.6628	1.233	316.29	129.09	0.29	
OQ2	0.2129	2.169	102.41	234.86	0.0096	0.1758	0.946	189.72	190.47	0.035	0.2294	1.016	206.99	211.82	0.051	
EPS2	0.0721	2.05	141.99	263.23	0.0012	0.1858	1.099	34.45	243.88	0.029	0.2313	1.03	43.48	204.86	0.05	
2N2	1.0786	2.325	295.55	144.52	0.22	0.6006	1.114	312.14	148.32	0.29	0.6478	1.161	303.57	129.62	0.31	
MU2	0.803	2.232	346.67	161.25	0.13	0.5263	1.309	316.38	143.71	0.16	0.4652	1.061	320.69	135.52	0.19	

N2	2.8288	3.109	299.67	76.2	0.83	2.2279	1.527	314.05	34.19	2.1	2.2474	1.413	314.5	38.97	2.5
NU2	0.5323	2.234	114.59	192.9	0.057	0.5969	1.269	296.19	132.38	0.22	0.5021	1.137	299.09	141.23	0.19
GAM2						0.3365	1.153	296.27	194.02	0.085	0.3962	1.134	259.46	187.42	0.12
H1						0.8236	1.227	328.42	106.85	0.45	0.6653	1.212	324.11	114.74	0.3
M2	12.2503	3.105	281.65	14.45	16	13.0184	1.641	289.7	6.96	63	12.9536	1.434	287.9	7.28	82
H2						0.5482	1.233	317.49	163.67	0.2	0.6715	1.215	326.52	122.17	0.31
MKS2	0.5036	2.144	66.12	232.36	0.055	0.6054	1.337	81.11	136.12	0.21	0.7605	1.438	93.21	111.81	0.28
LDA2	0.6769	2.133	272.71	185.59	0.1	0.1566	1.005	324.72	234.55	0.024	0.1325	0.976	318.27	229.69	0.018
L2	1.2953	2.556	247.49	125.36	0.26	0.8284	1.312	297.34	96.08	0.4	0.7892	1.266	287.94	98.48	0.39
T2						0.4682	1.186	198.3	149.19	0.16	0.2692	0.986	216.19	182.94	0.075
S2	12.0284	2.821	278.83	17.05	18	11.0785	1.534	289.51	8.33	52	11.0751	1.37	286.53	6.85	65
R2						0.4786	1.316	90.73	143.3	0.13	0.1855	0.902	73.9	232.53	0.042
K2	5.0415	2.905	292.16	34.04	3	3.9713	1.49	302.86	22.2	7.1	3.9208	1.419	298.19	23.06	7.6
MSN2	0.8221	2.245	63.38	158.21	0.13	0.3849	1.135	238.19	178.34	0.12	0.376	1.107	259.42	176.14	0.12
ETA2	0.4087	1.823	253.83	208.8	0.05	0.3258	1.09	257.5	193.18	0.089	0.4194	1.029	282.23	148.68	0.17
MO3	0.1875	2.133	126.15	251.39	0.0077	0.1928	0.99	248.74	231.34	0.038	0.1432	1.004	229.35	255.23	0.02
M3	0.2677	2.223	196.68	221.08	0.015	0.3627	1.174	143.9	171.42	0.095	0.3338	1.075	145.87	161.94	0.096
SO3	0.1463	1.908	33.61	248.74	0.0059	0.1025	0.993	244.77	268.65	0.011	0.1187	0.987	242.37	249.46	0.014
MK3	0.6101	2.229	51.18	184.05	0.075	0.1451	1.162	221.27	267.18	0.016	0.1119	1.106	218.91	273.4	0.01
SK3	0.6121	2.112	161.83	179.52	0.084	0.1153	1.083	180.47	234.79	0.011	0.1396	0.949	196.32	241.55	0.022
MN4	0.4577	2.277	75.54	205.45	0.04	0.2285	1.026	125.42	206.41	0.05	0.2259	1.003	115.32	221.71	0.051
M4	0.3515	2.146	146.55	211.87	0.027	0.3059	1.145	98	191.83	0.071	0.2907	1.058	100.14	183.79	0.076
SN4	0.4205	2.17	75.92	226.48	0.038	0.1226	0.95	102.32	259.01	0.017	0.1553	0.98	93.12	236.13	0.025
MS4	0.4062	2.126	102.91	189.43	0.037	0.2896	1.201	194.95	177.32	0.058	0.2652	1.033	185.43	203.44	0.066
MK4	0.5483	2.096	106.18	203.34	0.068	0.1092	1.193	173.71	232.85	0.0084	0.1256	0.971	154.03	250.09	0.017
S4	0.5018	2.39	291.46	194.93	0.044	0.0771	1.122	240.07	249.68	0.0047	0.1106	0.996	267.93	268.86	0.012
SK4	0.0998	1.89	322.4	282.78	0.0028	0.159	1.129	170.24	214.32	0.02	0.1537	0.915	169.94	219.89	0.028
2MK5	0.3573	2.183	346.96	204.05	0.027	0.0618	1.167	225.38	217	0.0028	0.0406	0.993	189.02	288.07	0.0017
2SK5	0.1476	2.178	229.94	265.25	0.0046	0.141	1.011	56.16	243.01	0.019	0.1539	0.987	54.5	228.1	0.024
2MN6	0.3848	2.073	85.23	234.05	0.034	0.0467	1.001	311.11	234.86	0.0022	0.0369	1.091	338.49	263.58	0.0011
M6	0.1765	2.014	141.17	260.48	0.0077	0.0502	1.094	3.1	229.06	0.0021	0.0704	1.021	38.14	217.72	0.0048
2MS6	0.3278	1.839	29.27	214.74	0.032	0.1012	1.2	74.59	259.85	0.0071	0.092	0.98	72.73	271.69	0.0088
2MK6	0.1122	2.358	13.99	258.82	0.0023	0.0655	1.156	12.72	237.96	0.0032	0.0666	0.994	339.71	248.33	0.0045
2SM6	0.1439	2.331	112.9	252.42	0.0038	0.06	1.147	42.9	265.16	0.0027	0.0545	0.957	66.48	256.6	0.0032
MSK6	0.1046	2.288	12.45	262.12	0.0021	0.0529	1.102	38.16	246.45	0.0023	0.0721	1.069	33.5	266.38	0.0046
3MK7	0.2604	2.249	264.48	218.33	0.013	0.0704	0.998	296.15	270.2	0.005	0.0762	0.922	277.45	247.05	0.0068
M8	0.1848	2.183	49.34	277.02	0.0072	0.0448	0.981	357.47	244.95	0.0021	0.0685	0.999	357.64	275.85	0.0047

Short Resume

Name: Athanasios Papadopoulos

Address:	Sifnou 23 Agia Paraskevi 153 43 Athens Greece
Telephone:	+30 2106080597 (home) +30 9677714096 (mobile)
Email:	tpapadop@mred.tuc.gr thanasispds@yahoo.gr

Education

2000-2006 **Ph.D.,** Technical University of Crete Dissertation title: "The impact of the seasonal cycle of sea level on the GAVDOS Cal/Val experiment" Supervisor: Prof. S. P. Mertikas

1998-1999 **M.Sc. Oceanography**, University of Southampton Thesis title: Seasonal, intreannual variability and trends from tide gauge mean sea level data Supervisor: Dr. M. Tsimplis

1995-1998B.Sc Hons Physics with Environmental Science, University ofSussexProject title: Fabrication of high critical-temperature superconductorsSupervisor: Dr A. Thomson

1994-1995 Physics Preliminary Year, University of Sussex

Work experience

January 2002-December 2005: "Researcher in the EU EVR1-CT-2001 40019 project GAVDOS.

September 2002- September 2004: Laboratory assistant in "Remote sensing and digital image analysis", Technological, Educational Institute of Crete, Greece. September 2002- September 2003: Laboratory assistant in "Geographical Information Systems-GIS", Technological, Educational Institute of Crete, Greece.

Publications in Journals

Papadopoulos A., S. Mertikas, and M.N. Tsimplis (2006). Variations in extreme sea levels and the seasonal sea level cycle in the Southern Aegean Sea. (Submitted to Journal of coastal research – Oceans).

Papadopoulos A., S. Mertikas, and M.N. Tsimplis (2006). Sea level trends in the Mediterranean Sea. Are they uniform or not? (*Submitted to Geophysical Research Letters*).

Papadopoulos A., and M.N. Tsimplis (2006). Coherent coastal sea level variability at inter-decadal and inter-annual scales from tide gauges. *Journal of coastal research*, **22(3)**: 625-639.

Tsimplis M.N, H.-P. Plag, D. Rosen, B. Lilja Bye and A. Papadopoulos. (2006). Developments in sea level research and observation in the Mediterranean Sea. *CLIVAR* exchanges, **11(2):** 8-9.

Pavlis C. E, S. P. Mertikas, and the GAVDOS Team (2004). The GAVDOS Mean Sea Level and Altimeter Calibration Facility: Results for Jason1, *Marine Geodesy*, **27(3-4)**: 631-655.

Publications in Conferences (selection)

Papadopoulos A., Mertikas, S., and Tsimplis, M. (2006). Extreme Sea Levels in the Southern Aegean Sea from a Tide Gauge Record and a Surge Model. EGU06-A-06907, Vienna, Austria, 2-7 April, 2006.

Papadopoulos A., S. Mertikas, and E. Pavlis. (2006). The effects of seasonal and atmospherically induced sea level variability in satellite altimeter calibration: Results from the GAVDOS Cal/Val experiment. 15 years of progress in radar altimetry symposium. Venice, Italy, 13-18 March 2006.

Papadopoulos A., and M.N. Tsimplis (2002). Construction of regional indices for the investigation of sea level records. European Geophysical Society XXVII General Assembly, Nice, France, 21-26 April, 2002.

Tsimplis, M; Gomis, D; Alvarez Fanjul, E; Fenoglio-Marc, L; Perez, B; Shaw, A; Mangiarotti, S; Martinez, B; Papadopoulos, A. (2006). Progress in understanding sea level processes in the Mediterranean Sea. EGU06-A-02705. , Vienna, Austria, 2-7 April, 2006).

Pavlis E., S.P. Mertikas, and the GAVDOS team. (2006). Eastern Mediterranean Dynamics and JASON-1 Altimeter Calibration Results from the GAVDOS Project. Ocean Surface Topography Science Team meeting, Venice, Italy, 13-18 March 2006.

Mertikas S. P., E. C. Pavlis, I. N. Tziavos, E. Koutroulis, K. Palamartchoul, A. Papadopoulos and G. S. Vergos (2004). Permanent facility for calibration/Validation of satellite altimetry: GAVDOS, Proceedings of SPIE, The International Society for Optical Engineering, Remote Sensing of the Ocean and Sea Ice 2004, Edited by Charles R. Bostater, Jr., and Rosalia Santoreli, Vol. 5569, pp. 14-25.

Mertikas, S. P. and the GAVDOS Team (2004). A Permanent Facility for Calibration/Validation of Satellite Altimetry: GAVDOS, European Geophysical Union, 1st General Assembly, Poster Presentation, EGU04-A-2441 April 2004, Nice, France.

Mertikas, S. P. and / for the GAVDOS TEAM (2002).GAVDOS: A European radar altimeter calibration and sea-level monitoring site for Jason-1 and Envisat. European Geophysical Society XXVII General Assembly, Nice, France, 21-26 April, 2002.

Mertikas, S. P. and / for the GAVDOS TEAM (2002). Procedures for Establishing an Altimetry Calibration and Sea-Level Monitoring Facility on the isle of Gavdos, Crete, Greece. Jason-1 Science Working Team Meeting, 10-12 June 2002, Biarritz, France.

Mertikas, S. P. and / for the GAVDOS TEAM (2002). Procedures for Establishing an Altimetry Calibration and Sea-Level Monitoring Facility on the isle of Gavdos, Crete, Greece. 11th WEGENER Assembly, Athens, Greece, 12-14 June 2002.

Mertikas, S. P. and / for the GAVDOS TEAM (2002). "Recent Developments in the Calibration-Validation Site of Gavdos, Greece.", Jason-1/TOPEX/Poseidon, Science Working Team (SWT) Meeting, New Orleans, Louisiana, USA, 21-23 October 2002.

Mertikas, S, E. Pavlis, A. Papadopoulos, X. Frantzis (2001). Preparatory Steps for the establishment of a European radar altimeter calibration and sea-level monitoring site for Jason, Envisat and Euro-GLOSS, International Association of Geodesy, 2001 Scientific Assembly, 2-7 September, Budapest, Hungary.