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Abstract

The demand for wireless communications is growing at an explosive pace. Multi-carrier

modulation, Orthogonal Frequency Division Multiplexing (OFDM) particularly, has been

successfully applied to a wide variety of digital communications applications over the past

several years.

OFDM counteracts the intersymbol interference (ISI) introduced by frequency-selective

channels and provides high-speed data rate transmissions with low complexity. For this

reason, OFDM is widely adopted in many recently standardized broadband communication

systems.

Time and frequency synchronization is a crucial issue in an OFDM receiver design.

A number of time and frequency synchronization techniques have been proposed. In this

thesis, we examine and implement algorithms based on the correlation of two identical

parts of an OFDM pilot symbol.

A simple OFDM link has been implemented and tested on a software-defined-radio

(SDR) testbed using the Universal Software Radio Peripheral system (USRP). The idea

behind SDR is to do all the modulation and demodulation with software instead of using

dedicated circuitry. Thus, we can create radios that change on the fly.
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Notations

Matrices and vectors are denoted by boldface letters. We use E[·], ‖ · ‖, (·), (·)T and

(·)H for expectation, euclidean norm, complex conjugation, transposition and Hermitian

transposition, respectively. The notation arg(·) indicates the argument of a complex-valued

quantity and is defined as arg(x + jy) = arctan y
x
. We use ∗ and ⊗ for linear and cyclic

convolution, respectively.
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Chapter 1

Introduction to OFDM

1.1 Multicarrier Modulation

Digital bandpass modulation techniques can be broadly classified into two categories. The

first is single-carrier modulation, where data is transmitted by using a single radio fre-

quency (RF) carrier. The other is multicarrier modulation, where data is transmitted by

simultaneously modulating multiple RF carriers. Multicarrier modulation is the principle

of transmitting data by dividing the stream into several bit streams, each of which has a

much lower bit rate, and by using these substreams to modulate several carriers.

In the first examples of multicarrier modulation the signal bandwidth was divided into

several non-overlapping frequency subchannels, each modulated by a distinct stream of

data coming from a common source. On one hand, the absence of any spectral overlap be-

tween adjacent subchannels helped to eliminate interference among different data streams

(interchannel interference). On the other hand, it resulted into a very inefficient use of the

available spectrum. These systems involved high hardware complexity since parallel data

transmission was essentially implemented through a bank of oscillators, each tuned on a

specific subcarrier.
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OFDM is a multicarrier modulation technique where data symbols modulate a parallel

collection of regularly spaced subcarriers. The subcarriers have the minimum frequency

separation required to maintain orthogonality of their corresponding time domain wave-

forms, yet the signal spectra corresponding to the different subcarriers overlap in frequency.

The spectral overlap results in a waveform that uses the available bandwidth with a very

high bandwidth efficiency. The most important feature of OFDM is that, by choosing

the subcarrier spacing properly in relation to the channel coherence bandwidth, it con-

verts a frequency selective channel into a parallel collection of frequency flat subchannels.

Hence, OFDM is a signaling technique that is widely adopted in many recently standard-

ized broadband communication systems, due to its ability to cope with frequency selective

fading.
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Chapter 2

OFDM Structure

2.1 OFDM Transmitter

CP P/SIDFT D/A Channel

Figure 2.1: OFDM Transmitter.

2.1.1 Signal Representation and Orthogonality

The “orthogonal” part of the OFDM name indicates that there is a precise mathematical

relationship between the frequencies of the carriers in the system. As we have mentioned,

in a normal FDM system the carriers are spaced apart in such way that the signals can be

received using conventional filters and demodulators. In such receivers, guard bands have

to be introduced between the different carriers, and the introduction of these guard bands

in the frequency domain results in low spectral efficiency.

It is possible, however, to arrange the carriers in an OFDM signal so that the sidebands

of the individual carriers overlap but the signals can still be received without adjacent
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carrier interference. In order to do this, the carriers must be orthogonal. The receiver acts

as a bank of demodulators, translating each carrier down to DC, the resulting signal then

being integrated over a symbol period to recover the data.

The OFDM signal can be expressed as

s(t) =
N−1∑
k=0

ske
j2π(fo+k∆f)t, for 0 ≤ t ≤ Ts, (2.1)

where sk is the k-th transmitted symbol, ∆f is the subcarrier spacing, Ts the OFDM symbol

duration and N the number of symbols. Each symbol is tuned on a specific subcarrier and

is orthogonal to each other, as can be shown below

1

Ts

∫ Ts

0

ej2π(fo+k∆f)te−j2π(fo+l∆f)tdt (2.2)

=
1

Ts

∫ Ts

0

ej2π(k−l)∆ftdt

= δ[k − l],

where δ[k] is the delta function and Ts∆f = 1. Using this property, the OFDM signal can

be demodulated by

1

Ts

∫ Ts

0

s(t)e−j2π(fo+k∆f)tdt (2.3)

=
1

Ts

∫ Ts

0

(
N−1∑
l=0

sle
j2π(fo+l∆f)t

)
e−j2π(fo+k∆f)tdt

=
N−1∑
l=0

slδ[l − k]

= sk.

In order to avoid a large number of modulators and filters at the transmitter and comple-
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mentary filters and demodulators at the receiver, it is desirable to be able to use digital

signal processing techniques, such as Discrete Fourier Transform (DFT). The sinusoids of

the DFT form an orthogonal basis set, and a signal in the vector space of the DFT can be

represented as a linear combination of the orthogonal sinusoids. The OFDM transmitter

can be implemented using the IDFT and the receiver using DFT.

The OFDM signal can be expressed as

s(t) =
N−1∑
k=0

ske
j2π(fo+k∆f)t, for 0 ≤ t ≤ Ts. (2.4)

By modulating the original data onto N subcarriers, OFDM increases the symbol duration

by a factor of N , thereby making the transmitted signal more robust against frequency

selective fading. It is convenient to sample over the period of one data symbol, which is

T = Ts

N
. If the signal is sampled at t = nTs

N
, for n = 0, . . . , N − 1, then the resulting signal

is represented by

Sn = s

(
n

Ts

N

)
=

N−1∑
k=0

ske
j2π(fo+k∆f)n Ts

N (2.5)

and, without loss of generality, by letting fo = 0, the signal becomes

Sn = s

(
n

Ts

N

)
=

N−1∑
k=0

ske
j2πk∆fn Ts

N , (2.6)

where ∆f = 1
Ts

. If we now simplify

Sn = s

(
n

Ts

N

)
=

N−1∑
k=0

ske
j 2πkn

N . (2.7)
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Therefore, using IDFT, the signal can be expressed as

Sn =
N−1∑
k=0

ske
j 2πkn

N = IDFT(s)n, (2.8)

where s = [s0, . . . , sN−1]
T . A general N -to-N point linear transformation requires N2

multiplications and additions. This would be true for the DFT and IDFT. However, by

calculating the output using the Fast Fourier Transform (FFT), we reduce the number of

computations to the order of N log N . The ability to define the signal in the frequency

domain and to generate the signal using the Inverse Fast Fourier Transform is the key that

has permitted OFDM to be developed as far as it has.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2.2: Orthogonality of the subcarriers.

2.1.2 Cyclic Prefix

A major problem in most wireless systems is the presence of a frequency-selective channel.

The frequency selectivity destroys the orthogonality between the subcarriers. Furthermore,
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multiple delayed versions of the transmitted signal arrive at the receiver. As a result, the

multiple versions of the signal cause the received signal to be distorted. Data transmission

in OFDM systems is accomplished in a block-wise fashion, where each block conveys a

number N of data symbols. The received OFDM block is distorted by the previously

transmitted OFDM block. This phenomenon results into interblock interference (IBI).

As a consequence of the frequency selective channel, blocks may partially overlap in the

time domain. The common approach to mitigate IBI is to introduce a guard interval of

appropriate length among adjacent blocks. The insertion of a silent guard period between

successive OFDM blocks would avoid IBI, but it does not avoid the loss of the subcarrier

orthogonality. In practice, the guard interval is obtained by duplicating the last Ng samples

of each IDFT output and for this reason is referred to as cyclic prefix. The cyclic prefix is

appended in front of the corresponding IDFT output. This results to an extended block

of NT = N + Ng samples which can totally remove the IBI as long as Ng is greater than

the length of the channel impulse response. Assuming a time invariant frequency selective

channel with discrete time impulse response h = [h0, h1, . . . , hL−1]
T , the length of the cyclic

prefix Ng must be at least L.

Ng N − Ng Ng

Figure 2.3: Structure of an OFDM block with CP insertion.

The output of the IDFT operation is denoted by S = [S0, S1, . . . , SN−1]
T . The cyclically

extended block, which will be the input to the channel, is denoted by

x = [SN−L+1, SN−L+2, . . . , SN−1, S0, S1, . . . , SN−1]
T . (2.9)

10



2.2 OFDM Receiver

Channel A/D S/P Remove DFT
CP

Figure 2.4: OFDM Receiver.

For the sake of simplicity, ideal timing and frequency synchronization is considered

throughout this chapter. The receiver operations are essentially the reverse of those in the

transmitter. By removing the cyclic prefix, which now contains IBI, an N point sequence

is fed to the FFT unit for frequency domain transformation. The output of the FFT are

the symbols modulated on the N subcarriers, each multiplied by a complex channel gain.

As we have mentioned above, the transmitted symbols are

x = [SN−L+1, SN−L+2, . . . , SN−1, S0, S1, . . . , SN−1]
T . (2.10)

The transmitted baseband OFDM signal that will pass through the channel is

x(t) =
∑

k

xkg(t − kT ), (2.11)

where g(t) is the pulse shaping filter. We assume that the continuous time channel is

c(t) =
∑

l

clδ(t − τl). (2.12)
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The received signal can be expressed as

y(t) = x(t) ∗ c(t) (2.13)

= x(t) ∗
∑

l

clδ(t − τl)

=
∑

l

clx(t − τl)

=
∑

l

cl

∑
k

xkg(t − τl − kT )

=
∑

k

xk

∑
l

clg(t − τl − kT ).

If the signal is sampled at mT ,

ym = y(mT ) =
∑

k

xk

∑
l

clg(mT − τl − kT ). (2.14)

Setting i = m − k we get

ym = y(mT ) =
∑

i

xm−i

∑
l

clg(iT − τl). (2.15)

By defining hi =
∑

l clg(iT − τl), we get

ym =
∑

i

hixm−i. (2.16)

Thus, the discrete time baseband equivalent model with the additive white gaussian noise

is expressed as

ym =
L−1∑
l=0

hlxm−l + wm, m = 1, . . . , N + L − 1, (2.17)

where wm is the low-pass filtered noise at the sampling instant mT , which is a CN (0, σ2
w)

random variable. The IBI extends over the first L − 1 symbols and the receiver ignores it
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by considering only the output over the time interval m ∈ [L,N + L − 1]. Over this time

interval, denoting

y = [yL, . . . , yN+L−1]
T , (2.18)

and the channel by a vector of length N

h = [h0, h1, . . . , hL−1, 0, . . . , 0]T , (2.19)

the output can be written as

y = h ⊗ S + w, (2.20)

where ⊗ denotes the cyclic convolution. Thus, the linear convolution of a frequency selec-

tive multipath channel has been transformed to a circular convolution. Ignoring the noise

and taking the Discrete Fourier Transform, we get in the frequency domain

Yk = DFT(y)k = DFT(h ⊗ S)k = DFT(h)k · DFT(S)k = Hk · sk, (2.21)

where s is the Discrete Fourier Transform of S and

Hk =
L−1∑
l=0

hle
j 2πkl

N , for k = 0, . . . , N − 1, (2.22)

which is the frequency response of the channel at the kth subchannel. Thus, a frequency-

selective channel has been converted into N parallel frequency-flat channels, thereby sim-

plifying the receiver design. Each symbol is multiplied by a channel gain, the received signal

is similar to the original signal except that Hksk modulates the kth subcarrier instead of

sk.
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Chapter 3

Channel Estimation

In OFDM transmissions, the effect of channel distortion on each subcarrier is represented

by a single complex-valued coefficient that affects the amplitude and phase of the relevant

information symbol. Detection of the transmitted symbols can be performed only after

channel equalization and can be accomplished in the frequency domain if an estimate of

the channel response is available at the receiver. One common approach to recover channel

state information (CSI) is based on the periodic insertion of pilot symbols within the

transmitted signals.

The channel is assumed time invariant over each OFDM block, but can vary from block

to block. Under these assumptions, the output of the receive DFT unit is given by

Yk = Hksk + Wk, for k = 0, . . . , N − 1, (3.1)

where Hk is the channel frequency response over the kth subcarrier, sk is the relevant data

symbol and Wk represents the noise. One feature of OFDM is that channel equalization

can independently be performed over each subcarrier. In practice, the kth DFT output Yk

is weighted by a complex valued quantity 1

Ĥk
in an attempt to compensate for the channel

14



attenuation and phase rotation. The equalized sample Ŷk = Yk

Ĥk
is subsequently passed to

the detection unit, which delivers the final decisions ŝk on the transmitted data.

A popular approach for the estimation of the channel impulse response is Least Squares

Estimation. The received samples corresponding to the pilot symbols can be expressed as

Yn = Hnsn + Wn, n ∈ I, (3.2)

where I denotes the set of subcarriers on which pilot symbols are transmitted. The channel

impulse response of the frequency selective channel is denoted as

h = [h0, h1, . . . , hL−1]
T , (3.3)

where L denotes the number of taps. By defining the L × N matrix F, with (l, n)-th

element

[F]l,n := e
j2π(l−1)(n−1)

N , (3.4)

and let fn be the n-th column of F, then

Hn = fH
n h. (3.5)

Suppose that the set of pilot subcarriers is given by I = {n1, . . . , np}. Letting

H̃ :=
[
Hn1 , . . . , Hnp

]T
(3.6)

contain the channel frequency response on pilot subcarriers and defining

Fp :=
[
fn1 , . . . , fnp

]
, (3.7)
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we can express the channel frequency response on the pilot subcarriers as

H̃ = FH
p h. (3.8)

Let the p× 1 vector y =
[
yn1 , . . . , ynp

]T
consist of the received samples that correspond to

the pilot symbols s =
[
sn1 , . . . , snp

]T
. Then, y can be rewritten as

y = D(s)H̃ + w = D(s)FH
p h + w, (3.9)

where D(s) is a diagonal matrix with elements the pilot symbols.

From the above equation, we estimate the channel impulse response h. The LS channel

estimate is computed as

ĥ = arg min
h

∥∥y −D(s)FH
p h
∥∥2

. (3.10)

Thus, the channel estimate is given by

ĥ =
(
FpD(s)HD(s)FH

p

)−1 (
FpD(s)H

)
y, (3.11)

and the estimated channel frequency response on the n-th subcarrier is

Ĥn = fH
n ĥ. (3.12)
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Chapter 4

Synchronization in OFDM systems

Synchronization plays a major role in the design of a digital communication system. In

order to demodulate an OFDM signal, the OFDM receiver needs to perform two important

synchronization tasks. The first is to identify the start of each received OFDM block so as

to find the correct position of the DFT window. This is referred to as time synchronization.

The second is to align its local carrier frequency as closely as possible to the transmitter

carrier frequency. This is referred to as carrier frequency synchronization.

Symbol timing and Carrier Frequency Offset (CFO) estimation errors can significantly

degrade the performance of OFDM systems. The symbol timing synchronization error

may cause interblock interference (IBI). The frequency synchronization error is one of the

sources of intercarrier interference (ICI). Carrier Frequency Offset degrades the orthogo-

nality of the received signal, since the received samples of the DFT will contain interference

from the adjacent subcarriers.

Compared with single-carrier systems, OFDM can tolerate larger errors in estimating

the start of a symbol since the OFDM symbol structure accommodates a reasonable degree

of time synchronization error, because of the cyclic prefix. On the other hand, frequency

synchronization in OFDM must be tighter than that in single-carrier systems, due to the

17



narrowness of the OFDM subcarriers. The multicarrier signal is very sensitive to frequency

offsets because it needs to retain the orthogonality between the subcarriers.

If the correct position of the DFT window has not been found, then the timing window

will slide to the left or the right. As a consequence, a unique phase change will be introduced

to each of the subcarriers,

s(t − τ) ⇐⇒ e−jωτS(ω). (4.1)

However, if perfect synchronization is not maintained, it is still possible to tolerate a timing

offset of τ seconds without any degradation in performance, as long as

0 ≤ τ ≤ Th − Tg, (4.2)

where Tg is the cyclic prefix duration and Th is the maximum channel delay spread. As

long as 0 ≤ τ ≤ Th − Tg, the timing offset can be included by the channel estimator in the

complex gain estimate for each subchannel, and the appropriate phase shift can be applied

by the Frequency Domain Equalizer (FEQ).

In the frequency domain, if the carrier frequency synchronization is perfect, the re-

ceiver samples at the peak of each subcarrier, where the desired subcarrier amplitude is

maximized, and the intercarrier interference (ICI) is zero. Since the zero crossings of the

frequency domain sinc pulses all line up as seen in Figures 4.1 and 4.2, as long as the

frequency offset ε = 0, there is no interference between the subcarriers. One intuitive in-

terpretation for this is that since the FFT is essentially a frequency-sampling operation,

if the frequency offset is negligible, the receiver simply samples the received signal at the

peak points of the sinc functions, where the ICI is zero from all the neighboring subcarriers.
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Figure 4.1: Without Frequency Offset, ε = 0.
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Figure 4.2: Zoom in, one subcarrier.

However, in practice, the frequency offset is not zero. The major causes for this are

mismatched oscillators at the transmitter and the receiver and Doppler frequency shifts

due to mobility. If the carrier frequency is misaligned by some amount ε, some of the

desired energy is lost, and more significantly, intercarrier interference is introduced. In the

presence of frequency offset, the subcarriers overlap rather than having each subcarrier

spectrally isolated.
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Figure 4.3: With Frequency Offset, ε 6= 0.
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Figure 4.4: Zoom in.
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4.1 Time Synchronization

4.1.1 Blind Method

A number of time synchronization algorithms in the OFDM systems have been proposed.

Most of them are based on the correlation of identical parts of the OFDM symbol. The

correlation between the cyclic prefix and the corresponding end of the OFDM symbol,

or between two identical halves of the synchronization symbol. The transmitter inserts a

CP First Half Second Half

Figure 4.5: Structure of an OFDM synchronization symbol.

synchronization symbol at the beginning of a group of OFDM data symbols. Consider a

pilot symbol preceded by CP as shown in Figure 4.5. In this pilot symbol, the second half

is equal to the first half, excluding the cyclic prefix. This is equivalent to only using every

other tone in the OFDM symbol, see Figure 4.6. This means that at each even frequency a

symbol is transmitted. To ensure that the time-domain pilot signal has the same average

energy as the data symbols, the energy on each used subchannel is doubled. If the length

of CP is at least as large as that of the channel impulse response, then the two halves of

the symbol remain identical at the output of the channel, except for a phase difference

between them due to carrier frequency offset.

The two identical halves are placed at the start of the data symbols. The symbol timing

is found by searching for a symbol in which the first half is identical to the second half in

the time domain.

As we have mentioned in previous chapter, the output of the IDFT unit is denoted by
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Figure 4.6: Frequency characteristics of synchronization symbol.

S = [S0, S1, . . . , SN−1]
T , where

Sn =
1√
N

N−1∑
k=0

ske
j 2πkn

N , (4.3)

and the transmitted symbols are

x = [SN−L+1, SN−L+2, . . . , SN−1, S0, S1, . . . , SN−1]
T . (4.4)

The signal is transmitted through a frequency selective multipath channel. The normalized

carrier frequency offset can be written as ε = ∆F T , which causes a phase rotation of 2πεn
N

.

The received samples of the OFDM symbol are given by

yn = e
j2πεn

N

L−1∑
l=0

hlxn−l + wn. (4.5)

Denoting

rn =
L−1∑
l=0

hlxn−l, (4.6)

then, the received samples can be expressed as

yn = e
j2πεn

N rn + wn. (4.7)
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The transmitted training symbol is expressed as

x =

SN
2
−L+1, SN

2
−L+2, . . . , SN

2
−1︸ ︷︷ ︸

CP

, S0, S1, . . . , SN
2
−1︸ ︷︷ ︸

First Half

, S0, S1, . . . , SN
2
−1︸ ︷︷ ︸

Second Half


T

. (4.8)

At the receiver, we correlate the received signal yd+m+ N
2

with y∗
d+m and compute

P (d) =

N
2
−1∑

m=0

(
y∗

d+myd+m+N
2

)
, (4.9)

where d is a time index corresponding to the first sample in a window of N samples. This

window slides along in time as the receiver searches for the first training symbol. A symbol

estimator is defined as

d̂ = arg max
d

|P (d)|. (4.10)

In the sequel, we prove that the correlation timing metric is a random variable, with

constant mean value, when d is inside the cyclic prefix. When d is outside the cyclic prefix,

the mean value of the timing metric is approximately zero because there is no useful signal

and the correlation is between noise samples.

Assume an ideal noiseless channel. Then, the samples of the received training symbol

are

yn = e
j2πεn

N x(n−L)mod N
2
, for n = 0, . . . , N + L − 1. (4.11)

By multiplying the conjugate of one sample from first half with the corresponding sample

from the second half, the sum of products is
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P (d) =

N
2
−1∑

m=0

(
y∗

d+myd+m+N
2

)
(4.12)

=

N
2
−1∑

m=0

(
e

j2πε(d+m)
N x(d+m−L)mod N

2

)∗(
e

j2πε(d+m+ N
2 )

N x(d+m+ N
2
−L)mod N

2

)

=

N
2
−1∑

m=0

(
e−

j2πε(d+m)
N x∗

(d+m−L)mod N
2
e

j2πε(d+m+ N
2 )

N x(d+m+N
2
−L)modN

2

)

=

N
2
−1∑

m=0

(
ejπεx∗

(d+m−L)modN
2
x(d+m+N

2
−L)mod N

2

)

= ejπε

N
2
−1∑

m=0

(
x∗

(d+m−L)mod N
2
x(d+m+N

2
−L)modN

2

)
.

If d corresponds to a sample in the interval of the cyclic prefix, then

x(d+m−L)mod N
2

= x(d+m+ N
2
−L)mod N

2
, for m = 0, . . . ,

N

2
− 1. (4.13)

As a consequence

P (d) =

N
2
−1∑

m=0

(
y∗

d+myd+m+N
2

)
(4.14)

= ejπε

N
2
−1∑

m=0

(
x∗

(d+m−L)mod N
2
x(d+m+N

2
−L)mod N

2

)

= ejπε

N
2
−1∑

m=0

(∣∣∣x(d+m−L)mod N
2

∣∣∣2) .

It is important to note that the carrier frequency offset does not affect the timing metric

|P (d)| =

N
2
−1∑

m=0

(∣∣∣x(d+m−L)mod N
2

∣∣∣2) , for 0 ≤ d ≤ L. (4.15)
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Because of the structure of the training symbol, for L ≤ d ≤ L + N
2

{
x(d+m−L)mod N

2
= x(d+m+N

2
−L)mod N

2
, for m = 0, . . . , N

2
− d − 1

x(d+m−L)mod N
2
6= x(d+m+N

2
−L)mod N

2
, for m = N

2
− d, . . . , N

2
− 1.

Let d∗ is a sample in the interval of the cyclic prefix. Then, the following relation is satisfied

|P (d)| < |P (d∗)|, for d > L. (4.16)

For large N , the output of the IDFT unit can be treated as independent zero-mean complex

CP First Half Second Half

0 L L + N
2

L + N

Figure 4.7: Structure of an OFDM synchronization symbol.

gaussian random variables with variance σ2
x. We compute the mean value of |P (d)|

• For 0 ≤ d ≤ L,

E [|P (d)|] = E

N
2
−1∑

m=0

(∣∣∣x(d+m−L)mod N
2

∣∣∣2)
 (4.17)

=
N

2
E
[
|x|2
]

=
N

2
σ2

x.

• For L < d ≤ L + N
2
, we have mentioned that

{
x(d+m−L)mod N

2
= x(d+m+N

2
−L)mod N

2
, for m = 0, . . . , N

2
− d − 1

x(d+m−L)mod N
2
6= x(d+m+N

2
−L)mod N

2
, for m = N

2
− d, . . . , N

2
− 1.
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Then,

E [|P (d)|] = E

N
2
−1∑

m=0

(
x∗

(d+m−L)mod N
2
x(d+m+ N

2
−L)mod N

2

) (4.18)

= E

[ N
2
−d−1∑

m=0

(
x∗

(d+m−L)mod N
2
x(d+m+N

2
−L)mod N

2

)

+

N
2
−1∑

m=N
2
−d

(
x∗

(d+m−L)mod N
2
x(d+m+N

2
−L)mod N

2

)]

=

 N
2
−1∑

m=N
2
−d

E
[
x∗

(d+m−L)mod N
2

]
E
[
x(d+m+N

2
−L)mod N

2

]+

(
N

2
− d

)
σ2

x

=

(
N

2
− d

)
σ2

x.

• For d > L + N
2
,

E [|P (d)|] = E

N
2
−1∑

m=0

(
x∗

(d+m−L)modN
2
x(d+m+N

2
−L)mod N

2

) (4.19)

=

N
2
−1∑

m=0

(
E
[
x∗

(d+m−L)mod N
2

]
E
[
x(d+m+N

2
−L)mod N

2

])
= 0.

Assuming that the transmission channel is flat fading, the timing metric reaches a plateau

(Figure 4.8) which has a length equal to the length of the guard interval, since there is

no ISI within this plateau to distort the signal. On the contrary, for frequency selective

channels (Figure 4.9), the length of the plateau will have a length equal to the length of

the guard interval minus the length of the channel impulse response since there will be ISI

which will distort the cyclic prefix.
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Figure 4.8: Timing Metric - Blind Method, Flat Channel.

A drawback of the above timing metric is the flat region (plateau), due to the cyclic

prefix. This estimator provides useful information about the start of the packet, but

not for the perfect symbol timing synchronization. The plateau causes some ambiguity

in determing the correct timing index. It is possible to start sampling anywhere in the

plateau.
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Figure 4.9: Timing Metric - Blind Method, Frequency Selective Channel.

4.1.2 Pilot Based Method

In order to avoid the plateau of the previous correlation timing metric, it will be presented

another timing metric which also exploits the structure of the training symbol, but in

a different way. The receiver has complete knowledge of the training symbol and uses

the first-half (or the second-half) of the training symbol. We have mentioned that the

transmitted training symbol is expressed as

x =
[
SN

2
−L+1, SN

2
−L+2, . . . , SN

2
−1, S0, S1, . . . , SN

2
−1, S0, S1, . . . , SN

2
−1

]T
. (4.20)

By defining

a =
[
S0, S1, . . . , SN

2
−1

]T
, (4.21)
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we get

x =
[
SN

2
−L+1, SN

2
−L+2, . . . , SN

2
−1, a

T , aT
]T

. (4.22)

At the receiver, not only a correlation is performed but also a multiplication with the

training sequence a =
[
S0, S1, . . . , SN

2
−1

]T
. As a consequence, the sum of the pairs of

products will be

P (d) =

N
2
−1∑

m=0

(
yd+mam

)∗ (
yd+m+N

2
am

)
. (4.23)

Assume an ideal channel with no noise and that the received samples of the training symbol

are

yn = e
j2πεn

N x(n−L)mod N
2
, for n = 0, . . . , N + L − 1. (4.24)

Then,

P (d) =

N
2
−1∑

m=0

(
yd+mam

)∗ (
yd+m+N

2
am

)
(4.25)

=

N
2
−1∑

m=0

(
e

j2πε(d+m)
N x(d+m−L)mod N

2
am

)∗(
e

j2πε(d+m+ N
2 )

N x(d+m+ N
2
−L)mod N

2
am

)

=

N
2
−1∑

m=0

(
e−

j2πε(d+m)
N x∗

(d+m−L)mod N
2
a∗me

j2πε(d+m+ N
2 )

N x(d+m+N
2
−L)modN

2
am

)

=

N
2
−1∑

m=0

(
ejπεx∗

(d+m−L)mod N
2
x(d+m+N

2
−L)mod N

2
|am|2

)

= ejπε

N
2
−1∑

m=0

(
x∗

(d+m−L)mod N
2
x(d+m+ N

2
−L)mod N

2
|am|2

)
.
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If d corresponds to a sample in the interval of the cyclic prefix, then

x(d+m−L)mod N
2

= x(d+m+ N
2
−L)mod N

2
, for m = 0, . . . ,

N

2
− 1, (4.26)

and also

x(d+m−L)mod N
2
6= am, for m = 0, . . . ,

N

2
− 1. (4.27)

Then,

P (d) =

N
2
−1∑

m=0

(
yd+mam

)∗ (
yd+m+N

2
am

)
(4.28)

= ejπε

N
2
−1∑

m=0

(
x∗

(d+m−L)mod N
2
x(d+m+ N

2
−L)mod N

2
|am|2

)

= ejπε

N
2
−1∑

m=0

(∣∣∣x(d+m−L)mod N
2

∣∣∣2 |am|2
)

.

Computing the magnitude of P (d), the carrier frequency offset does not affect the timing

metric

|P (d)| =

N
2
−1∑

m=0

(∣∣∣x(d+m−L)mod N
2

∣∣∣2 |am|2
)

, for 0 ≤ d ≤ L. (4.29)

The symbols at the output of the IDFT unit can be treated as zero-mean complex-valued

gaussian random variables. As a consequence, x and a are independent zero-mean complex

gaussian random variables with variance σ2
x and σ2

a respectively. We compute the mean

value of |P (d)|.
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• For 0 ≤ d < L,

E [|P (d)|] = E

N
2
−1∑

m=0

(∣∣∣x(d+m−L)mod N
2

∣∣∣2 |am|2
) (4.30)

=
N

2
E
[
|x|2|a|2

]
=

N

2
E
[
|x|2
]
E
[
|a|2
]

=
N

2
σ2

xσ
2
a.

• For L < d ≤ L + N
2
,

E [|P (d)|] = E

N
2
−1∑

m=0

(
x∗

(d+m−L)mod N
2
x(d+m+N

2
−L)modN

2
|am|2

) (4.31)

= E

[ N
2
−d−1∑

m=0

(
x∗

(d+m−L)mod N
2
x(d+m+ N

2
−L)mod N

2
|am|2

)

+

N
2
−1∑

m=N
2
−d

(
x∗

(d+m−L)mod N
2
x(d+m+N

2
−L)mod N

2
|am|2

)]

=

 N
2
−1∑

m= N
2
−d

E
[
x∗

(d+m−L)mod N
2

]
E
[
x(d+m+ N

2
−L)mod N

2

]
E
[
|am|2

]+

(
N

2
− d

)
σ2

xσ
2
a

=

(
N

2
− d

)
σ2

xσ
2
a.

• For d = d∗, which is the correct symbol timing, we note that

x(d+m−L)mod N
2

= x(d+m+ N
2
−L)modN

2
= am, for m = 0, . . . ,

N

2
− 1. (4.32)
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Thus,

|P (d)| =

N
2
−1∑

m=0

(∣∣∣x(d+m−L)mod N
2

∣∣∣2 |am|2
)

(4.33)

=

N
2
−1∑

m=0

|am|4.

In the mean, the timing metric at the correct symbol timing, d∗, will be 1

E [|P (d∗)|] = E

N
2
−1∑

m=0

|am|4
 =

N
2
−1∑

m=0

E
[
|am|4

]
(4.34)

=

N
2
−1∑

m=0

2σ4
a = Nσ4

a.

We have shown that

E [|P (d)|] =


N
2
σ2

xσ
2
a, for 0 ≤ d < L,

Nσ4
a, for d = d∗,(

N
2
− d
)
σ2

xσ
2
a, for L < d ≤ L + N

2
,

where σ2
x = σ2

a. a and x are independent random variables, having the same distribution,

CN (0, σ2
a). As a consequence,

E [|P (d)|]
N/2

=


σ4

a, for 0 ≤ d < L

2σ4
a, for d = d∗(

1 − 2d
N

)
σ4

a, for L < d ≤ L + N
2
.

1see Appendix 4A for the computation of the fourth order moment
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Figure 4.10: Timing Metric - Pilot Based Method.

Figure 4.10 verifies the above results for the pilot based timing metric. The peak of the

normalized timing metric shows the correct symbol timing. For 0 ≤ d < L, the value of

the timing metric is approximately the half of the value of the peak and for L < d ≤ L+ N
2

is continuously decreased.
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Figures 4.11 and 4.12 show the histogram of the pilot based method, for SNR = 0dB

and SNR=10dB respectively. The correct timing index d is d∗ = 201.
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Figure 4.11: Histogram of d∗, 10000 itarations , SNR = 0dB.
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Figure 4.12: Histogram of d∗, 10000 iterations, SNR = 10dB.
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4.1.3 First and second order statistics of the pilot based metric

In the previous chapters, we had assumed an ideal noiseless channel. In order to analyze

the pilot based metric, we have to deal with the received signal

yn = sn + wn, for n = 0, . . . , N + L − 1, (4.35)

where wn is white complex gaussian noise, wn ∼ CN (0, σ2
w). The pilot based timing metric

scaled by M = N
2

can be expressed as

T (d) =
1

M

M−1∑
m=0

(
yd+mam

)∗(
yd+m+Mam

)
(4.36)

=
1

M

M−1∑
m=0

(
(sd+m + wd+m)am

)∗(
(sd+m+M + wd+m+M)am

)
=

1

M

M−1∑
m=0

(
sd+mam + wd+mam

)∗(
sd+m+Mam + wd+m+Mam

)
=

1

M

M−1∑
m=0

(
s∗d+ma∗m + w∗

d+ma∗m

)(
sd+m+Mam + wd+m+Mam

)
=

1

M

M−1∑
m=0

(
s∗d+msd+m+M |am|2 + s∗d+mwd+m+M |am|2

+ w∗
d+msd+m+M |am|2 + w∗

d+mwd+m+M |am|2
)
.

If d corresponds to a sample in the interval of the cyclic prefix, 0 ≤ d < L, then

sd+m = sd+m+M , for m = 0, . . . , M − 1. (4.37)

By defining

rm := sd+m, w1,m := wd+m, w2,m := wd+m+M , (4.38)
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where rm ∼ CN (0, σ2
r), w1,m ∼ CN (0, σ2

w) and w2,m ∼ CN (0, σ2
w), we get

T (d) =
1

M

M−1∑
m=0

(
yd+mam

)∗(
yd+m+Mam

)
(4.39)

=
1

M

M−1∑
m=0

(
|rm|2|am|2 + rmw∗

2,m|am|2 + r∗mw1,m|am|2 + w1,mw∗
2,m|am|2

)
.

From the central limit theorem, the random variable T has an asymptotic complex gaussian

distribution. The mean value of T , for 0 ≤ d < L , is given by 2

E[T (d)] = σ4
a (4.40)

and the variance

var(T ) = E

[∣∣∣T − E(T )
∣∣∣2] (4.41)

=
1

M

(
5σ8

a + 4σ6
aσ

2
w + 2σ4

aσ
4
w

)
.

Having computed the mean value and the variance of the complex gaussian random vari-

able, we conclude that 3 T (d) ∼ CN
(
σ4

a,
1
M

(5σ8
a + 4σ6

aσ
2
w + 2σ4

aσ
4
w)
)
, for 0 ≤ d < L.

2See Appendix 4B for the analytical computation of the mean and the variance.
3The real and imaginary part of T is Gaussian distributed with the half variance of T (Appendix 4C).
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Figure 4.13: Variance of T .

Now, we analyze the case that d corresponds to the correct timing d∗. Then,

am = sd∗+m = sd∗+m+M , (4.42)

and for simplicity, by defining

w1,m := wd∗+m, w2,m := wd∗+m+M , (4.43)

we get

T (d∗) =
1

M

M−1∑
m=0

(
yd∗+mam

)∗(
yd∗+m+Mam

)
(4.44)

=
1

M

M−1∑
m=0

(
|am|4 + amw∗

2,m|am|2 + a∗mw1,m|am|2 + w1,mw∗
2,m|am|2

)
.
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The mean value of the complex gaussian random variable T , for d = d∗ , is given by 4

E[T (d∗)] = 2σ4
a (4.45)

and the variance

var(T (d∗)) = E

[∣∣∣T − E(T )
∣∣∣2] (4.46)

=
1

M

(
20σ8

a + 12σ6
aσ

2
w + 2σ4

aσ
4
w

)
.

Having computed the mean value and the variance of the complex gaussian random vari-

able, at the correct timing d∗, we conclude that T (d∗) ∼ CN
(
2σ4

a,
1
M

(20σ8
a + 12σ6

aσ
2
w + 2σ4

aσ
4
w)
)
.
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Figure 4.14: Variance of T (d∗).

4See Appendix 4B for the analytical computation of the mean and the variance.
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4.1.4 Probability of correct symbol timing synchronization

In this section we assume that the receiver has detected a correct packet for processing. In

order to evaluate the probability of the correct symbol timing synchronization, we will deal

with the real part of the random variable T (d). In the previous section, we have computed

that

T (d) ∼ CN
(

σ4
a,

1

M

(
5σ8

a + 4σ6
aσ

2
w + 2σ4

aσ
4
w

))
, for 0 ≤ d < L

and

T (d∗) ∼ CN
(

2σ4
a,

1

M

(
20σ8

a + 12σ6
aσ

2
w + 2σ4

aσ
4
w

))
, for d = d∗.

The real part of the complex gaussian random variable T (d) is gaussian distributed

with the same mean value but with the half variance5 of the variable T (d). Thus,

R{T (d)} ∼ N
(

σ4
a,

1

2M

(
5σ8

a + 4σ6
aσ

2
w + 2σ4

aσ
4
w

))
, for 0 ≤ d < L

and

R{T (d∗)} ∼ N
(

2σ4
a,

1

2M

(
20σ8

a + 12σ6
aσ

2
w + 2σ4

aσ
4
w

))
, for d = d∗.

We view the problem of the correct symbol timing synchronization as an attempt to

distinguish if the value of R{T (d∗)} exceeds a threshold and also is greater than all the

other values of R{T (d)}, for 0 ≤ d < L. If this is satisfied, we declare the detection

as correct symbol timing. If R{T (d∗)} is less than the value of the threshold or less

than at least one value of R{T (d)} for d 6= d∗, we declare an incorrect symbol timing

synchronization.

Thus, the probability of finding the correct time index is defined as

5See Appendix 4D.
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Pc(τ) =P
(
R{T (d = d∗)} > R{T (d = 0)} ∩ R{T (d = d∗)} > R{T (d = 1)} ∩ · · · (4.47)

∩R{T (d = d∗)} > R{T (d = L − 1)} ∩ R{T (d = d∗)} > τ
)
,

where τ is the threshold. For different values of the time index d, the values of the random

variable R{T (d)} are asymptotically, for large M , independent 6. Consequently,

Pc(τ) =

∫ ∞

τ

fR{T (d∗)}(x)P
(
x > R{T (d = 0)} ∩ · · · ∩ x > R{T (d = L − 1)}

∣∣∣R{T (d∗)} = x
)
dx

=

∫ ∞

τ

fR{T (d∗)}(x)

[
L−1∏
i=0

P (R{T (d = i)} < x)

]
dx

=

∫ ∞

τ

fR{T (d∗)}(x)

[
L−1∏
i=0

(
1 − Q

(
x − µ1

σ1

))]
dx

=

∫ ∞

τ

fR{T (d∗)}(x)

[(
1 − Q

(
x − µ1

σ1

))L−1
]

dx, (4.48)

where µ1 and σ2
1 is the mean value and the variance of R{T (d)}, for 0 ≤ d < L.

We computed the probabilities of correct detections for different values of the threshold

using the equation 4.48 and we verified the results with simulation experiments. The

results are shown in Figure 4.15 and we observe that the simulation results are the same

with those predicted by theory. The modulation used in the experiments was 4-QAM.

This means that E(R{T (d)}) = σ4
x = 4, for 0 ≤ d < L and E(R{T (d∗)}) = 2σ4

x = 8 for

d = d∗. If the threshold is set too high, we observe that the probability of correct detection

is decreased. This happens for τ > 7 because the maximum value of R{T (d)} may not

exceed this threshold, which results to an incorrect detection.

For τ < 7 the detection is correct with very high probability because the value of

R{T (d)} at the correct time index almost always exceeds the threshold and is greater than

6See Appendix 4D for the proof.
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Figure 4.15: Probability of correct symbol timing, SNR = 10db.

all the other values of R{T (d)}. This happens because we have assumed that we processed

a correct packet. In the case of a false packet detection, we could not use a low threshold

(τ < 7) because this will lead us to an incorrect symbol timing synchronization. Thus, it is

desirable to use a threshold close to the mean value of R{T (d∗)}, in order to avoid errors

from the packet detection processing.

In Figure 4.16, we fixed the value of the threshold and we compute the probability of

correct symbol timing for different values of SNR. For τ = 7 and SNR > 0, we observe that

the symbol timing synchronization is almost always correct. If we increase the threshold

(τ = 7.5) the probability of correct symbol timing is decreased because there are cases

where the timing metric does not exceed the threshold.
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Figure 4.16: Probability of correct symbol timing vs SNR

4.2 Carrier Frequency Offset Synchronization

In OFDM, the uncertainty in carrier frequency, which is due to a difference in the frequen-

cies of the local oscillators in the transmitter and receiver, causes a shift in the frequency

domain. This shift is also referred to as carrier frequency offset. The demodulation of a

signal with an offset in the carrier frequency can cause large bit error rate. It is therefore

important to estimate the carrier frequency offset and eliminate its impact.

The carrier frequency offset is estimated after time synchronization. Assuming that

time synchronization has already been achieved, so the receiver has identified the start

of the received OFDM block, the received signal due to carrier frequency offset can be

expressed as

yn = e
j2πεn

N

L−1∑
l=0

hlxn−l + wn. (4.49)
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Denoting

rn =
L−1∑
l=0

hlxn−l, (4.50)

then, the received samples can be expressed as

yn = e
j2πεn

N rn + wn. (4.51)

In order to estimate the carrier frequency offset, the receiver exploits the special structure

of the OFDM synchronization symbol, which was also used for time synchronization. As

we have mentioned, in this pilot symbol, the second half is equal to the first half. It is

important to note that the main difference between the two halves of the pilot symbol will

be a phase shift. If the received samples corresponding to the first half are given by

yn = e
j2πεn

N rn + wn, (4.52)

then the samples in the second half take the form

yn+ N
2

= e
j2πε(n+ N

2 )
N rn+N

2
+ wn+N

2
(4.53)

= e
j2πε(n+ N

2 )
N rn + wn+N

2
, (4.54)

where has been used that rn and rn+N
2

are identical.

Consequently,

y∗
nyn+N

2
=

(
e

j2πεn
N rn + wn

)∗(
e

j2πε(n+ N
2 )

N rn + wn+N
2

)
(4.55)

= e−
j2πεn

N r∗ne
j2πε(n+ N

2 )
N rn + e−

j2πεn
N r∗nwn+N

2
+ w∗

ne
j2πε(n+ N

2 )
N rn + w∗

nwn+N
2

= ejπε|rn|2 + w̃n,
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where

w̃n = e−
j2πεn

N r∗nwn+ N
2

+ w∗
ne

j2πε(n+ N
2 )

N rn + w∗
nwn+N

2
. (4.56)

Ignoring the noise part, if we take the argument of y∗
nyn+N

2
, then an estimate of ε can

be derived. Using all the samples of the pilot symbol, the carrier frequency offset can be

estimated by

ε̂ =
1

π
arg

N
2
−1∑

n=0

y∗
nyn+N

2

 , (4.57)

because

arg

N
2
−1∑

n=0

yny∗
n+ N

2

 = arg

ejπε

N
2
−1∑

n=0

|rn|2
 = πε.
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Appendix 4A: Moments of a zero-mean complex scalar-

valued random variable

For the computation of the moments of a zero-mean complex scalar-valued random variable,

we have used the moments of a Gaussian random variable.

If x ∼ N (0, σ2) then E [xn] =

{
1 · 3 · 5 · · · (n − 1)σn, n even

0, n odd.

The fourth-order moment of a zero-mean complex scalar-valued random variable a, is

given by

E
[
|a|4
]

= E
[
|aR + jaI |4

]
= E

[
|aR + jaI |2|aR + jaI |2

]
(4.58)

= E [(aR + jaI) (aR + jaI)
∗(aR + jaI)(aR + jaI)

∗]

= E [(aR + jaI)(aR − jaI)(aR + jaI)(aR − jaI)]

= E
[(

a2
R − jaRaI + jaRaI + a2

I

) (
a2

R + a2
I

)]
= E

[
a4

R + 2a2
Ra2

I + a4
I

]
= E

[
a4

R

]
+ 2E

[
a2

R

]
E
[
a2

I

]
+ E

[
a4

I

]
= 3

(
σ2

a

2

)2

+ 2
σ2

a

2

σ2
a

2
+ 3

(
σ2

a

2

)2

= 2σ4
a.

where aR and aI is the real and imaginary part of the complex random variable a, re-

spectively. aR and aI are independent zero-mean gaussian random variables with variance

σ2
a

2
.

The sixth-order moment of a zero-mean complex scalar-valued random variable a,
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is given by

E
[
|a|6
]

= E
[
|aR + jaI |6

]
= E

[
|aR + jaI |2|aR + jaI |2|aR + jaI |2

]
(4.59)

= E
[
(a2

R + a2
I)(a

2
R + a2

I)(a
2
R + a2

I)
]

= E
[
(a4

R + 2a2
Ra2

I + a4
I)(a

2
R + a2

I)
]

= E
[
a6

R + 3a4
Ra2

I + 3a4
Ia

2
R + a6

I

]
= 2E

[
a6

R

]
+ 3E

[
a4

Ra2
I

]
+ 3E

[
a4

Ia
2
R

]
= 2 · 3 · 5

(
σ2

a

2

)3

+ 2 · 3 · 3
(

σ2
a

2

)2
σ2

a

2
= 6σ6

a,

The eigth-order moment of a zero-mean complex scalar-valued random variable a,

is given by

E
[
|a|8
]

= E
[
|aR + jaI |8

]
(4.60)

= E
[
|aR + jaI |2|aR + jaI |2|aR + jaI |2|aR + jaI |2

]
= E

[
(a2

R + a2
I)(a

2
R + a2

I)(a
2
R + a2

I)(a
2
R + a2

I)
]

= 2E
[
a8

R

]
+ 4E

[
a6

Ra2
I

]
+ 6E

[
a4

Ra4
I

]
+ 4E

[
a2

Ra6
I

]
= 24σ8

a.

Appendix 4B: Computation of the mean and variance

of the pilot based metric

Assuming that d corresponds to a sample in the interval of the cyclic prefix, 0 ≤ d < L

,we compute the mean value of the metric

E[T (d)] =
1

M

M−1∑
m=0

E
[
|rm|2|am|2

]
+

1

M

M−1∑
m=0

E
[
rmw∗

2,m|am|2 + r∗mw1,m|am|2 + w1,mw∗
2,m|am|2

]
︸ ︷︷ ︸

A1

(4.61)

r,a ind.
=

1

M

M−1∑
m=0

E
[
|rm|2

]
E
[
|am|2

]
+ A1 = σ2

rσ
2
a + A1,
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where

A1 =
1

M

M−1∑
m=0

E
[
rmw∗

2,m|am|2 + r∗mw1,m|am|2 + w1,mw∗
2,m|am|2

]
(4.62)

=
1

M

M−1∑
m=0

{
E
[
rm

]
E
[
w∗

2,m

]
E
[
|am|2

]
+ E

[
r∗m

]
E
[
w1,m

]
E
[
|am|2

]
+ E

[
w1,m

]
E
[
w∗

2,m

]
E
[
|am|2

]}

= 0.

The variables rm and am have the same distribution, CN (0, σ2
a), thus,

E[T (d)] = σ4
a, for 0 ≤ d < L. (4.63)

Without loss of generality, dropping the time index d, the variance of the random variable

T is

var(T ) = E

[∣∣∣T − E(T )
∣∣∣2] . (4.64)

If we define

Bm = |rm|2|am|2 + rmw∗
2,m|am|2 + r∗mw1,m|am|2 + w1,mw∗

2,m|am|2, (4.65)

and drop the subscript m, we obtain

E[B] = E
[
|r|2|a|2 + rw∗

2|a|2 + r∗w1|a|2 + w1w
∗
2|a|2

]
(4.66)

= σ2
rσ

2
a = σ4

a,
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and

E[BB∗] = E
[(

|r|2|a|2 + rw∗
2|a|2 + r∗w1|a|2 + w1w

∗
2|a|2

)
(4.67)(

|r|2|a|2 + r∗w2|a|2 + rw∗
1|a|2 + w∗

1w2|a|2
)]

= E
[
|r|4|a|4

]
+ E

[
|r|2|w2|2|a|4

]
+ E

[
|r|2|w1|2|a|4

]
+ E

[
|w1|2|w2|2|a|4

]
= 4σ8

a + 4σ6
aσ

2
w + 2σ4

wσ4
a.

Using equations (4.66) and (4.67), we get

var(T ) = E
[
|T − E(T )|2

]
= E

∣∣∣∣∣
(

1

M

M−1∑
m=0

Bm

)
− σ4

a

∣∣∣∣∣
2
 (4.68)

= E

∣∣∣∣∣ 1

M

M−1∑
m=0

(
Bm − σ4

a

)∣∣∣∣∣
2
 =

1

M2

M−1∑
m=0

M−1∑
k=0

E
[(
Bm − σ4

a

) (
Bk − σ4

a

)∗]
=

1

M2

M−1∑
m=0

E
[∣∣Bm − σ4

a

∣∣2]
︸ ︷︷ ︸

C1

+
1

M2

M−1∑
m=0

M−1∑
k=0
k 6=m

E
[(
Bm − σ4

a

) (
Bk − σ4

a

)∗]
,

︸ ︷︷ ︸
D1

(4.69)

where

C1 =
1

M2

M−1∑
m=0

E
[∣∣Bm − σ4

a

∣∣2] =
1

M
E
[∣∣B − σ4

a

∣∣2]
=

1

M
E
[(
B − σ4

a

) (
B − σ4

a

)∗]
=

1

M
E
[
BB∗ − Bσ4

a − B∗σ4
a + σ8

a

]
=

1

M

(
E
[
BB∗

]
− 2σ4

aE
[
B
]

+ σ8
a

)
σ2

r=σ2
a=

1

M

(
3σ8

a + 4σ6
aσ

2
w + 2σ4

aσ
4
w

)
, (4.70)
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and

D1 =
1

M2

M−1∑
m=0

M−1∑
k=0
k 6=m

E
[(
Bm − σ4

a

) (
Bk − σ4

a

)∗]
(4.71)

=
1

M2

{(
M2 − M − 2M

)
E
[
2|rm|2|am|2|rk|2|ak|2 − 2|rm|2|am|2σ4

a

]
+ 2M

(
E
[
|rm|4|am|2|ak|2 − |rm|2|am|2σ4

a

])}

=
2

M
σ8

a. (4.72)

Thus, substituting equations (4.70) and (4.72) in (4.69), we get

var(T ) = C1 + D1 (4.73)

=
1

M

(
5σ8

a + 4σ6
aσ

2
w + 2σ4

aσ
4
w

)
.

We conclude that

T (d) ∼ CN
(

σ4
a,

1

M

(
5σ8

a + 4σ6
aσ

2
w + 2σ4

aσ
4
w

))
, for 0 ≤ d < L. (4.74)

Now, we analyze the case where d corresponds to the correct timing d∗. Computing the

mean value

E[T (d∗)] =
1

M

M−1∑
m=0

E
[
|am|4

]
+

1

M

M−1∑
m=0

E
[
amw∗

2,m|am|2 + a∗mw1,m|am|2 + w1,mw∗
2,m|am|2

]
︸ ︷︷ ︸

A2

(4.75)

A2=0
=

1

M

M−1∑
m=0

E
[
|am|4

]
= E

[
|a|4
]

(4.58)
= 2σ4

a.
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Dropping the time index d∗, the variance of the random variable T is

var(T ) = E
[
|T − E(T )|2

]
. (4.76)

We define

Rm = |am|4 + amw∗
2,m|am|2 + a∗mw1,m|am|2 + w1,mw∗

2,m|am|2, (4.77)

Using the following results

E[R] = E
[
|a|4 + aw∗

2|a|2 + a∗w1|a|2 + w1w
∗
2|a|2

]
(4.58)
= 2σ4

a, (4.78)

and

E[RR∗] = E
[(
|a|4 + aw∗

2|a|2 + a∗w1|a|2 + w1w
∗
2|a|2

) (
|a|4 + a∗w2|a|2 + aw∗

1|a|2 + w∗
1w2|a|2

)]
= E

[
|a|8
]

+ E
[
|w2|2|a|6

]
+ E

[
|w1|2|a|6

]
+ E

[
|w1|2|w2|2|a|4

]
(4.59),(4.60)

= 24σ8
a + 12σ6

aσ
2
w + 2σ4

wσ4
a,

we get

var(T ) = E

[∣∣∣T − E(T )
∣∣∣2] = E

∣∣∣∣∣
(

1

M

M−1∑
m=0

Rm

)
− 2σ4

a

∣∣∣∣∣
2


= E

∣∣∣∣∣ 1

M

M−1∑
m=0

(
Rm − 2σ4

a

)∣∣∣∣∣
2
 =

1

M2

M−1∑
m=0

M−1∑
k=0

E
[(
Rm − 2σ4

a

) (
Rk − 2σ2

a

)∗]
=

1

M2

M−1∑
m=0

E
[∣∣Rm − 2σ4

a

∣∣2]
︸ ︷︷ ︸

C2

+
1

M2

M−1∑
m=0

M−1∑
k=0
k 6=m

E
[(
Rm − 2σ4

a

) (
Rk − 2σ4

a

)∗]
,

︸ ︷︷ ︸
D2

(4.79)
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where

C2 =
1

M2

M−1∑
m=0

E
[∣∣Rm − 2σ4

a

∣∣2] =
1

M
E
[∣∣R− 2σ4

a

∣∣2] (4.80)

=
1

M
E
[(
R− 2σ4

a

) (
R− 2σ4

a

)∗]
=

1

M
E
[
RR∗ −R2σ4

a −R∗2σ4
a + 4σ8

a

]
=

1

M

(
E
[
RR∗

]
− 4σ4

aE
[
R
]

+ σ8
a

)
=

1

M

(
20σ8

a + 12σ6
aσ

2
w + 2σ4

aσ
4
w

)
,

and

D2 =
1

M2

M−1∑
m=0

M−1∑
k=0
k 6=m

E
[
Rm − 2σ4

a

][
Rk − 2σ4

a

]∗
(4.81)

=
1

M2

(
M2 − M

)
E
[
|am|4|ak|4 − 4|am|4σ4

a + 4σ4
aσ

4
a

]
= 0.

Thus, substitutng equations (4.80) and (4.81) in (4.79) we get

var(T ) = C2 + D2 (4.82)

=
1

M

(
20σ8

a + 12σ6
aσ

2
w + 2σ4

aσ
4
w

)
.

We conclude that

T (d∗) ∼ CN
(

2σ4
a,

1

M

(
20σ8

a + 12σ6
aσ

2
w + 2σ4

aσ
4
w

))
. (4.83)

50



Appendix 4C: Variance equality of the real and imag-

inary part of the pilot based metric

We will prove that the real part of the complex gaussian random variable T has the same

distribution with the imaginary part of T with variance the half of the variable T . The

random variable T is defined as

T =
1

M

M−1∑
m=0

(
|rm|2|am|2 + rmw∗

2,m|am|2 + r∗mw1,m|am|2 + w1,mw∗
2,m|am|2

)
.

We drop the subscript m and define the complex gaussian random variable

D = rw∗
2 + r∗w1 + w1w

∗
2. (4.84)

We compute the mean value

E [D] = E [rw∗
2 + r∗w1 + w1w

∗
2] = E [rw∗

2] + E [r∗w1] + E [w1w
∗
2] = 0 (4.85)

and the variance

E [DD∗] = E [(rw∗
2 + r∗w1 + w1w

∗
2) (rw∗

2 + r∗w1 + w1w
∗
2)

∗] (4.86)

= E [(rw∗
2 + r∗w1 + w1w

∗
2) (r∗w2 + rw∗

1 + w∗
1w2)]

= E
[
|r|2|w2|2

]
+ E

[
|r|2|w1|2

]
+ E

[
|w1|2|w2|2

]
= 2

(
σ2

rσ
2
w

)
+ σ4

w.
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The complex gaussian random variable D can also be written as

D = rw∗
2 + r∗w1 + w1w

∗
2

= (rR + rIj) (w2R + w2Ij)
∗ + (rR + rIj)

∗ (w1R + w1Ij) + (w1R + w1Ij) (w2R + w2Ij)
∗

= (rR + rIj) (w2R − w2Ij) + (rR − rIj) (w1R + w1Ij) + (w1R + w1Ij) (w2R − w2Ij)

= (rRw2R + rIw2I + rRw1R + rIw1I + w1Rw2R + w1Iw2I)︸ ︷︷ ︸
DR

+ (−rRw2I + rIw2R + rRw1I − rIw1R − w1Rw2I + w1Iw2R)︸ ︷︷ ︸
DI

j.

The mean value of the real part (DR) and imaginary part (DI) is zero because of the

independence of the random variables r, w1 and w2. The variance of the real part of D is

E
[
D2

R

]
= E

[
(rRw2R + rIw2I + rRw1R + rIw1I + w1Rw2R + w1Iw2I)

2] (4.87)

7

= E
[
r2
Rw2

2R + r2
Iw

2
2I + r2

Rw2
1R + r2

Iw
2
1I + w2

1Rw2
2R + w2

1Iw
2
2I

]
=

σ2
r

2

σ2
w

2
+

σ2
r

2

σ2
w

2
+

σ2
r

2

σ2
w

2
+

σ2
r

2

σ2
w

2
+

σ2
w

2

σ2
w

2
+

σ2
w

2

σ2
w

2

= σ2
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and the variance of the imaginary part is

E
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]
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7The mean value of the products E [rRw2RrIw2I ] , · · · , E [w1Rw2Rw1Iw2I ] is zero.
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Thus, from equations 4.86, 4.87 and 4.88 we conclude that

E
[
D2

R

]
= E

[
D2

I

]
=

E [DD∗]

2
. (4.89)

The same proof, but with different variances, holds for the random variable T because T

is a function of D and the other terms (|rm|2 and |am|2) are real numbers.

T =
1

M

M−1∑
m=0

[(
|rm|2 + D

)
|am|2

]
.

Appendix 4D: Asymptotic independence of the pilot

based metric for different time indices

We will prove that the pilot based metric for different values of the time index 0 ≤ d < L

is independent. The random variable T is defined as

T (d) =
1

M

M−1∑
m=0

(
|rd+m|2|am|2 + rd+mw∗

2,d+m|am|2 (4.90)

+ r∗d+mw1,d+m|am|2 + w1,d+mw∗
2,d+m|am|2

)
.

For different values of d the mean value of T (d) is 8

E [T (d)] = σ4
a. (4.91)

Thus, for time indices d1 and d2

E [T (d1)] = E [T (d2)] = σ4
a. (4.92)

8see Appendix 4B
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In order to compute the quantity E [T (d1)T (d2)], we keep only the term |rd+m|2|am|2 of

equation 4.90, because the mean value of all the other products is zero (independence).

Thus, by defining

Rd,m = |rd+m|2|am|2, (4.93)

we compute

E [T (d1)T (d2)] = E

[
1

M

M−1∑
m=0

(
Rd1,m

) 1

M

M−1∑
k=0

(
Rd2,k

)]

=
1

M2

M−1∑
m=0

M−1∑
k=0

E [Rd1,mRd2,k]

=
1

M2

M−1∑
m=0

E
[
|rd1+m|2|rd2+m|2|am|4

]
+

1

M2

M−1∑
m=0

M−1∑
k=0
k 6=m

E
[
|rd1+m|2|am|2|rd2+k|2|ak|2

]
=

1

M
(σ2

r σ
2
r 2σ

4
a) +

1

M2

(
M2 − M

)
σ2

r σ
2
r σ

2
aσ

2
a

σ2
r =σ2

a=
1

M
(2σ8

a) + σ8
a −

1

M
(σ8

a) = σ8
a +

1

M
σ8

a. (4.94)

As we have mentioned in previous chapters, the random variable T is assymptotically

complex gaussian. Thus, the second term of equation 4.94 goes to zero for large M and

we get

E [T (d1)T (d2)] ' σ8
a. (4.95)

As a consequence,

E [T (d1)T (d2)] ' E [T (d1)] E [T (d2)] (4.96)

which proves the independence of the variables T (d1) and T (d2).
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Chapter 5

Software-Defined Radio using USRP

5.1 Software-Defined Radio (SDR)

SDR is a rapidly evolving technology that is receiving enormous attention and generating

widespread interest in the telecommunication industry. SDR is a revolution in radio design

due to its ability to create radios that change on the fly, creating new choices for users.

An SDR system is a radio communication system which can tune to different frequency

bands and use different modulations, by means of a programmable hardware which is

controlled by software. The idea behind SDR is to do all the modulation and demodulation

with software instead of using dedicated circuitry. Instead of having to build extra circuitry

to handle different types of radio signals, we can just load an appropriate program. Based

on the same hardware, different transmitter/receiver algorithms, which usually describe

transmission standards, are implemented in software. By modifying or replacing software

programs, we can completely change its functionality. This allows easy upgrade to new

modes and improved performance without the need to replace hardware.
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Figure 5.1: Software radio block diagram.

5.2 The Universal Software Radio Peripheral System

(USRP)

The USRP can be used to design and implement powerful, flexible software radios. USRP

is designed especially to be used with GNU Radio, which is a complete open source signal

processing package, for building SDRs. The software structure of GNU Radio contains two

levels. All the signal processing blocks are written in C++ and Python is used to create a

network or graph and glue these blocks together.

In the USRP, high sample-rate processing takes place in the field programmable gate

array (FPGA), while lower sample-rate processing happens in the host computer. FPGA

takes care of decimating and interpolating of high bit rate signals in order to be transferred

over the relatively slow USB link. There are 4 high-speed 12-bit A/D converters, with

sampling rate 64MS/s. At the transmit path, there are also 4 high-speed 14-bit D/A

converters, with sampling rate 128MS/s. On the motherboard there are four slots, where

we can plug in up to 2 RX daughterboards and 2 TX daughterboards. The daughterboards

mounted on the USRP provide flexible, fully integrated RF front-ends.
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5.3 Implementation of SDR for OFDM system - Sim-

ulations
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Figure 5.3: OFDM diagram.

The implementation of the OFDM system, which has been described in previous chap-

ters, was developed and tested using USRP and GNU Radio. The modulation techniques

applied were BPSK and 4-QAM. In all tests, the center frequency of the carrier wave
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was adjusted to 2.5GHz. The transmission power was controlled by an amplitude gain

parameter, which takes values up to 32767 and, experimentally, can be translated to dBm.

The sampling frequency of the A/D converter is 64MHz and the decimation factor sets

how much decimation is done in the FPGA. Thus, the bandwidth of the signal and the bit

rate is calculated by these parameters. The maximum rate can be 8MS/s, which translates

to an effective bandwidth of 8MHz wide.

In our experiments, we selected the decimation factor to be 16, which means 4MHz

bandwidth. Data packets consisting of random symbols with packet size of 128 symbols

were sent from the transmitter to the receiver.

A packet example that receiver processes is shown in Figure 5.4. In addition, in Figure

5.5 we depict only the real part of the received signal to clearly illustrate the two successive

identical pilot symbols of the preamble used for time synchronization.
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Figure 5.4: Received Signal.

58



1.74 1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9 1.92

x 10
4

−1500

−1000

−500

0

500

1000

1500

Time

A
m

pl
itu

de
Received Signal − Real Part

Figure 5.5: Real part of the received signal.

The experiments were conducted in an indoor environment, where the wireless channel

between two USRP boards is most likely a flat fading channel. At last, we calculated the

bit error rate versus SNR. The performance of the OFDM system is shown in Figure 5.6.

The two curves are not exactly the same because in the real environment (using USRPs),

it is difficult to measure the exact value of SNR.
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