

TECHNICAL UNIVERSITY OF CRETE
Electronics and Computer Engineering

Department

Microprocessor and Hardware Laboratory

Master Thesis

“CCproc: A custom VLIW cryptography co-
processor for symmetric key ciphers”

Theodoropoulos Dimitris

Advisor

Associate Prof. Dionisis Pnevmatikatos
Examination Committee

Associate Prof. Dionisis Pnevmatikatos
Prof. George Stavrakakis

Assistant Prof. Matthias Bucher

Electronics and Computer Engineering Department – Technical University of Crete

Acknowledgeme

ank my advisor associate Prof. Dionisis Pnevmatikatos for

y friends with who, through these 7

s Loukas, Drougas Giannis, Kaklamanis Petros, Koidis Iosif, Konsolaki

, Katsoprinaki Stella, Kiratzi Irini,

nts

First of all, I would like to th

all his support and useful advices through this project’s elaboration, the other two

members of the examination committee, Prof. George Stavrakakis and assistant Prof.

Matthias Bucher, and also Mr. Markos Kimionis.

Also, from this point, I would like to thank all m

years in Chania, I have shared the best moments of my life so far:

Tikou Efi

Gikopoulo

Maria-Nektaria, Kontaksaki Rena, Mouziouras Panagiotis, Mproustis Giannis, Potirakis

Antonis, Sotiropoulos Stamatis and Strydis Christos.

Arhontaki Despina, Drakousi Aleksandra, Garbi Sofia

Ntegiannaki Maria, Papadimitriou Kiprianos, Sotiriadis Eyripidis and Voumvoulaki

Eva.

Microprocessor and Hardware Laboratory – October 2005 2

Electronics and Computer Engineering Department – Technical University of Crete

To my Family

Microprocessor and Hardware Laboratory – October 2005 3

Electronics and Computer Engineering Department – Technical University of Crete

1. Introduction.. 6

3. el

3.1

4.

3.1

4.4

5. er

2. Private-Key Block Ciphers Properties... 10

2.1 Plaintext Encryption / Ciphertext Decryption Process 10

2.2 Structures and Arithmetic Operations in Symmetric Ciphers 12

 R ated Work.. 16

3.1 C and Assembly Implementations... 16

3.2 Algorithm Specific Hardware Implementations.. 18

3.3 Symmetric Ciphers ISA extensions and Hardware Co-Processors 22

3. Symmetric cipher accelerators and ISA extensions 23

3.3.2 Hardware co-processors .. 23

CCproc Architecture ... 27

4.1 CCproc Design Considerations ... 27

4.2 CCproc Instruction Set Architecture ... 32

4.3 CCproc Datapath Structure.. 35

4. The Loop instruction controller circuit.. 35

4.3.2 Register File (RF) .. 37

4.3.3 Key Register File (KRF) ... 37

4.3.4 Arithmetic Logic Unit (ALU) ... 39

4.3.5 8-bit Galois Field (GF) Multiplier in GF(28)... 42

4.3.6 32-bit Multiplier Modulo 232 (MM) .. 44

4.3.7 Cipher Sboxes.. 45

4.3.8 Putting it all together: CCproc VLIW symmetric cipher co-processor ... 51

 Efficient Data Exchange Among Clusters... 56

 V ification and Performance Evaluation of CCproc 59

5.1 Verification Tests Using a Python Assembler... 59

5.2 Performance Evaluation on Xilinx Virtex 4 FPGA Devices........................... 62

Microprocessor and Hardware Laboratory – October 2005 4

Electronics and Computer Engineering Department – Technical University of Crete

5.3 Performance Comparison with Other Implementations 63

6. on C clusions and Future Work.. 68

7. References ... 71

Appendix A: CCproc Complete Instruction Set... 77

Appendix B: Setup and Usage of Assembler and CAD Tools 80

Microprocessor and Hardware Laboratory – October 2005 5

Electronics and Computer Engineering Department – Technical University of Crete

1. Introduction

It is generally accepted that, as years go by, internet usage grows rapidly. Current

research indicates that in 2005 there are almost 1 billion internet users worldwide [I1].

Also, an older (2001) report from the “Stanford Institute for the Quantitative Study of

Society” of Stanford University, focused on the ways that internet is being used and

deduced the results which are shown in Chart 1 [I2].

Chart 1 – What Internet users Do

Activities such as banking, buying, trading stocks, business and email, demand privacy

and confidentiality during internet connection. For this reason protocols have been

designed that create secure connections and protect data transmission from other

malicious internet users. Among others, a well known such protocol, is the Secure

Sockets Layer (SSL) [I3], which has been designed by Netscape and uses cryptography

to protect data.

Cryptography comes from the Greek word “κρυπτογραφία” and means a way of altering

a message with a secret key in a form that is almost impossible to recognise, but if the

intended recipient has the appropriate secret key, then the original message can be

retrieved. The process that a message is encrypted and decrypted using a specific key is

called a cryptography algorithm or cipher. The first cipher in history was the “Caesar

cipher” by Julius Caesar, which substitutes each letter in a message with the one that

Microprocessor and Hardware Laboratory – October 2005 6

Electronics and Computer Engineering Department – Technical University of Crete

corresponds to three places forward in the alphabet. An example is the word

“SECRET”, which, after the letter substitution, becomes “VHFUHW”. Another very

important historical example, based on the Caesar Cipher, is the “Enigma cipher” which

was designed by Germans during the World War II [I4].

Today there are many ciphers and mostly are used to protect sensitive information

during transmission on public communication networks. The entire process is consisted

from two basic parts, the encryption and decryption of the message that is about to be

transmitted (plaintext). During the encryption process the plaintext is transformed to

another text (ciphertext) and the latter is transmitted. Once the transmission is over, the

ciphertext is again transformed back to its original form, i.e. the plaintext, so the

recipient is able to recognise it.

Two forms of cryptography are commonly used in information systems today, which

are shown in Figure 1:

• Symmetric Key or Private Key ciphers.

• Asymmetric Key or Public Key ciphers.

Figure 1 - Public-key (up) and Symmetric-key (down) algorithms

As it is shown from Figure 1, public key ciphers, use two types of keys, a public that is

used to encrypt data, and a private that is used to decrypt the encrypted data. On the

other hand, private key ciphers use only a private key for both data encryption and

decryption. Another fact is that private key ciphers are much faster than public key

Microprocessor and Hardware Laboratory – October 2005 7

Electronics and Computer Engineering Department – Technical University of Crete

ciphers [I5], so during a secure data exchange, at first a private key is shared between

the users with a public key cipher and then all other data are being transmitted with a

private key cipher, that uses the previous private key for encryption / decryption.

More specifically, the entire process of a secure communication channel establishment

is as follows:

1. Person A sends his public key to person B through an unsecured communication

channel.

2. B encrypts its secret key with a public key cipher and sends it to A.

3. A decrypts the encrypted secret key with his private key.

4. From this moment all data are encrypted / decrypted with symmetric key

ciphers.

However, there still are various ways to decipher encrypted communications without

knowing the proper keys. Examples are brute force attacks, where all possible keys are

being tried, ciphertext-only attacks, where the attacker tries to guess the plaintext with

theoretical methods such linear and differential cryptanalysis [12], and man-in-the-

middle attacks, where an adversary positions himself between A and B persons and

intercepts each signal they send to each other [I5].

In this thesis we focus on the research of encryption and decryption process in many

symmetric key ciphers, in order to find common processing parts among them and be

able to design an ISA (Instruction Set Architecture) that effectively supports them.

These similarities were deeply analyzed and the result is a hardware VLIW (Very Long

Instruction Word) [13] co-processor called CCproc (Cryptography CoProcessor), with

its own symmetric cipher specific instruction set and an extended RISC (Reduced

Instruction Set Computer) datapath structure [13], capable to support many of today’s

symmetric key ciphers, functioning at very competitive speeds, plus also potential new

ones.

The rest of this text is organized as follows: In chapter 2 we analyze the properties of

symmetric ciphers, which includes the kinds of structures and arithmetic operations,

plus analyzes the enciphering and deciphering process. Chapter 3 focuses on previous

related work that was found to be done in software and hardware level. Chapter 4

describes the Instruction Set Architecture (ISA) and the datapath structure of CCproc. In

Microprocessor and Hardware Laboratory – October 2005 8

Electronics and Computer Engineering Department – Technical University of Crete

chapter 5 we show the verification process that was followed by running simulation

tests. Also, we discuss the CCproc performance on Xilinx [I6] Virtex 4 Field

Programmable Gate Arrays (FPGAs) devices [1] and compare it with other designs.

Finally Chapter 6 offers conclusions of this thesis and shows which parts could be

upgraded in possible future work.

In summary our design has the following characteristics:

• Efficient and flexible ISA capable to support many symmetric 128-bit ciphers

• 4-wide VLIW processor using 128-bit instructions with (Reduced Instruction Set

Computer) RISC datapath structure

• Fits in small FPGAs, while multiple CCproc cores can be placed in larger ones

to improve cipher performance

• Supports all Advanced Encryption Standard (AES) round two finalists

• Achieves an AES performance up to 616 Mbits/sec at 95 MHz in Interleaved

Cipher Block Chaining (ICBC) mode using a 4-core CCproc implementation

• A 1-core CCproc VLSI implementation estimated running at 500 MHz, yields

an AES throughput of 800 Mbits/sec

• Capable to saturate wide used protocols such as the 801.11g wireless and 802.3y

100 Mbits/sec Ethernet

Microprocessor and Hardware Laboratory – October 2005 9

Electronics and Computer Engineering Department – Technical University of Crete

2. Private-Key Block Ciphers Properties

In this chapter we analyze the properties of symmetric ciphers, which includes the kinds

of arithmetic operations and analyzes the enciphering and deciphering process. Specific

attention was paid to choose which algorithms to study, because many of them have

weaknesses. So, in order to make our analysis as complete as possible, the following

algorithms were chosen: Rijndael [2], MARS [3], Twofish [4], RC6 [5], Serpent [6],

Blowfish [7], RC4 [I7], DES (Data Encryption Standard) [I8], RC5 [8], International

Data Encryption Standard (IDEA) [9]. This group contains only the five AES

(Advanced Encryption Standard) finalists of round 2 [I9], i.e. the strongest ones of the

AES candidates. It also, has the previous standard encryption algorithm DES, plus

Blowfish, IDEA, RC4, RC5 which are older and widely used. All these facts it is

believed that led in a very realistic and representative choice of the best symmetric key

ciphers ever designed, in order to proceed into further analysis.

2.1 Plaintext Encryption / Ciphertext Decryption Process

Every symmetric cipher has the following three important parameters:

1. The number of bits in its secret key.

2. The size of the data block that operates on (also in bits).

3. The number of processing rounds.

Depending on the size of data block, symmetric ciphers have two categories:

• Block ciphers that operate on large data blocks.

• Stream ciphers that operate usually on one bit.

Table 1 shows all these attributes for the ciphers mentioned before.

Figure 2 shows a generic schematic for the encryption / decryption process. Before

message encryption starts, every symmetric cipher has an initialization phase, which is

mainly the key expansion. More specifically, the secret key is processed in a certain

way and the result is a number of other keys that some of them are used in different

encipher / decipher rounds. In rare cases, also other required operations occur, such as

in Blowfish, where its substitution boxes are being created.

Microprocessor and Hardware Laboratory – October 2005 10

Electronics and Computer Engineering Department – Technical University of Crete

Algorithm Type Key size
(bits)

Block size
(bits)

Blowfish Block up to 448 64
Twofish Block up to 256 128

DES Block 64 64
Rijndael Block up to 256 128
MARS Block 128 to 400 128
Serpent Block 256 128
IDEA Block 128 64
RC4 Stream up to 2048 8
RC5 Block up to 2040 >0
RC6 Block up to 2040 >0

Table 1 – Symmetric ciphers categories

After the entire initialization phase is completed, encryption process begins. The latter

consists of a certain number of various types of arithmetic operations that are being

applied on the plaintext for a specific number of rounds. Once the defined round

number has been reached, encryption process is finished and ciphertext is ready to be

transmitted. Decryption process in most cases, if it is not identical, then it is almost the

same as the encryption process, where again various types of arithmetic operations are

being performed on ciphertext for a specific number of rounds, in order the recipient to

retrieve the original message.

Figure 2 – Encryption / Decryption process

Microprocessor and Hardware Laboratory – October 2005 11

Electronics and Computer Engineering Department – Technical University of Crete

One final aspect of the symmetric key cipher is the operation mode [10], which

describes how the entire message will be processed. The most commonly used modes

are the ECB (Electronic Code Book), where each data block is encrypted separately and

CBC (Cipher Block Chaining), where each data block is added modulo 2 (i.e. xor) to

the previous encrypted data block. CBC offers much better security, but in ECB mode a

message is encrypted in less time.

2.2 Structures and Arithmetic Operations in Symmetric Ciphers

Symmetric key ciphers are designed in such a way that it will as difficult to break as

possible. In order to achieve the highest security level, designers have to consider,

among others, the kind of arithmetic operations that will be used, the size of the data

block and secret key, and the number of processing rounds.

Data block and key size affect the hardware resources that will be needed, mostly the

number of registers and memory allocation. Key size also heavily contributes to the

cipher’s security level, because, when using brute force attack, the required computing

power increases exponentially with it. Today an acceptable key size is at least 80-bit,

while 128-bit will probably remain unbreakable by brute force attacks for the

foreseeable future.

The number of rounds also affects considerably a cipher’s security level, because, in

each one of them, previous processed data get “scrambled” even more. It is on the

designer’s decision of how many total rounds a cipher will consist of. Fewer rounds

mean lesser security, but on the other hand, quicker data block processing. As a result,

the appropriate round number depends on the round’s itself strength, i.e. the arithmetic

operations that are applied to a data block in each one of them.

When the above ciphers had been designed, processors were still 32-bit and,

consequently, most of the arithmetic operations are chosen to take advantage of it. Also,

it is imperative that these operations present rapid bit diffusion, in order to increase the

cipher’s security. After deep analysis, it was concluded that the operations and

structures most commonly used are:

1. Unsigned addition and subtraction modulo 232

2. Multiplication modulo 232

3. Exclusive or (xor) between 32-bit data

Microprocessor and Hardware Laboratory – October 2005 12

Electronics and Computer Engineering Department – Technical University of Crete

4. Fixed shifts and rotations

5. Data depended shifts and rotations

6. Finite field polynomial multiplication in 28 modulo a prime polynomial

7. Expansions and permutations (Xboxes)

8. Substitution boxes (Sboxes)

9. Feistel network structures[11]

In 32-bit processors, operations from 1 to 6 are implemented very fast, except from the

finite field polynomial multiplication (FFM) modulo a prime polynomial, for which

there is no efficient hardware support. The essential difference between a regular

multiplication and FFM is that the first summarizes the partial products, while the

second makes a XOR operation between them. However, symmetric ciphers perform

FFM modulo a prime polynomial, which requires an additional division of the

multiplication result with the value that represents the prime polynomial.

Additions, subtractions and XOR are the simplest operations, which are used to

scramble data. Because they are very fast in software and hardware, they provide lesser

security. However, they are used to isolate direct communication among other

operations. Fixed rotations are mainly used in conjunction with software

implementations to get specific data bits to places, from where they will be used by

other operations. Data depended rotations can be performed quickly in software and

hardware and if combined with arithmetic operations, such as addition, they are very

effective against linear cryptanalysis. A problem is that rotation of a w-bit word

depends on log2 w bits, a fact that may lead into differential weaknesses of a cipher.

However it can be bypassed if such an operation is combined with multiplication. In the

latter the main cryptographic strength is the high order bits of the product, because they

are almost depended on all operands bits in a non-linear fashion [3].

Besides arithmetic operations, there are common structures among ciphers. Sboxes are

usually non-linear structures that map an n-bit value to an m-bit value, essentially Look

Up Tables (LUT). A symmetric cipher may have one or more different Sboxes, with

each one of them having arbitrary dimensions, as shown in Figure 3. Also the Sbox may

even be the only non-linear part of the cipher.

Microprocessor and Hardware Laboratory – October 2005 13

Electronics and Computer Engineering Department – Technical University of Crete

Carefully chosen Sboxes can provide good resistance against linear and differential

attacks, as well as good data and key bits avalanche. A drawback when using them is

their relative slow software implementation. Also their index consists of a few bits

(otherwise they would be too large), so they must deliberately be placed in a cipher.

S-box1

m bits

S-boxK

j bits

Figure 3 - Sboxes

Permutation is the structure where bits change place among each other, while in

expansion, bits are also mixed but some of them appear more than once. They are linear

operations, and thus not sufficient to guarantee security. However, when used with good

non-linear Sboxes, they are vital for the security because they propagate the non-

linearity uniformly over all bits.

Finally, Feistel network is the structure that most symmetric ciphers use, and combines

all processing rounds with their inner operations [11]. As shown in Figure 4, plaintext is

split into smaller blocks and one of them is passed through an F function with the

combination of an expanded key Ki, where i, is the appropriate round number. After

that, the result is xored with other blocks and, before next rounds initiates, a data block

rotation occurs. The Feistel structure has the advantage that encryption and decryption

operations are very similar, even identical in some cases, requiring only a reversal of the

key schedule. Therefore the size of the code or circuitry required to implement such a

cipher, is nearly halved.

Microprocessor and Hardware Laboratory – October 2005 14

Electronics and Computer Engineering Department – Technical University of Crete

Figure 4 – Feistel network structure

Microprocessor and Hardware Laboratory – October 2005 15

Electronics and Computer Engineering Department – Technical University of Crete

3. Related Work

This chapter focuses on related work that has been done in software (assembly) and

hardware level. As it is easily comprehended, there are vast implementations for all

symmetric ciphers; however many older ones may be abandoned, because of their low

security level. Also, the National Institute for Standards and Technology (NIST)

exhaustively researched for three years for the five round two AES finalists among

many AES candidates [I11]. These facts indicate that, from now on, these ciphers will

be the most commonly used ones, a conclusion, which is confirmed from the fact that,

most of the related work in symmetric algorithms, also focuses on these ciphers, as it is

shown in the next sections.

3.1 C and Assembly Implementations

In this section we provide some of the best implementations for the five AES finalists

reported so far in literacy, using assembly or the C software language, which can be

found in [14], [22] and [I10]. Performance is measured in clock cycles, a metric which

does not depend on processor’s operating frequency with the same ISA. Chart 2 shows

implementations for the Intel’s Pentium Pro [16], Pentium II [17], Pentium III [18]

families, plus Alpha 21164 [20] and Sun’s SPARC processors [19], while Chart 3 for

Pentium Pro, Pentium II, Pentium III families, plus Digital Equipment’s Alpha 21164,

Itanium 64 [15], and Precision Architecture (PA) RISC 8500 processors [21].

As it becomes clear from these charts, for every cipher on Pentium Pro, Pentium II,

Pentium III families and Alpha 21164 processors, the relative assembly implementation

is much faster than the C one. Exception is Serpent, where on Intel’s processors the C

implementation (759 cc) is slightly faster than in assembly (771 cc). Also, once the

Rijndael cipher is the new AES standard, it was considered necessary to examine some

additional more recent assembly and C implementations. In Chart 4 they are shown for

all previous processors, plus Intel’s Pentium 4 [23], Digital Equipment’s Alpha 21264

[24], AMD’s (Advanced Micro Devices) Athlon [25] and PowerMac G4 processors

[I12].

Microprocessor and Hardware Laboratory – October 2005 16

Electronics and Computer Engineering Department – Technical University of Crete

0
200
400
600
800

1000
1200
1400
1600

Cl
co

k
cy

cl
es

MARS RC6 Rijndael Serpent Twofish

C implementations

PentiumPro, PII, PIII (gcc) Alpha 21164 (gcc) SPARC (Sun C v6.0)

Chart 2 – C implementations

0

200

400

600

800

1000

C
lo

ck
 c

yc
le

s

MARS RC6 Rijndael Serpent Twofish

Assembly implementations

PentiumPro, PII, PIII Alpha 21164 Alpha 21264
I64 Pentium PA-RISC 8500

Chart 3 – Assembly implementations

Microprocessor and Hardware Laboratory – October 2005 17

Electronics and Computer Engineering Department – Technical University of Crete

0

100

200

300

400

500

600

700

C
lo

ck
 c

yc
le

s

P
4

P
P

ro
, P

II,
 P

III

A
lp

ha
 2

11
64

A
lp

ha
 2

12
64 I6
4

P
en

tiu
m

P
A

-R
IS

C
 8

50
0

A
th

lo
n

(g
cc

)

P
ow

er
m

ac
 G

4
(g

cc
)

A
lp

ha
 2

12
64

P
P

ro
, P

II,
 P

III
 (g

cc
)

A
lp

ha
 2

11
64

 (g
cc

)

S
P

A
R

C
 (S

un
 C

 v
6.

0)

Assembly C

Chart 4 – Rijndael assembly and C implementations

3.2 Algorithm Specific Hardware Implementations

Besides software implementations, there are also many hardware specific ones, based

on FPGA devices or ASICs (Application Specific Intergraded Circuits). This

implementation category provides ultra speed performance (much higher than in

software) for each symmetric algorithm, because of the dedicated hardware processors.

Few of the fastest AES implementations are the ones below, which are also summarized

in Chart 5:

• Alireza Hodjat et al in [26] use a VirtexII Pro FPGA [27] and achieve a 21.4

Gbits/sec throughput with a latency of 31 cycles.

• Maire McLoone et al in [28] utilize LUTs in a VirtexE FPGA [29] to implement

the entire encryption process, achieving a 12 Gbits/sec throughput.

• P. Chodowiec et al in [30] use a Virtex XCV1000 FPGA [31] and introduce the

usage of pipeline stages inside of a cipher round, achieving a 12.1Gbits/sec

throughput.

Microprocessor and Hardware Laboratory – October 2005 18

Electronics and Computer Engineering Department – Technical University of Crete

• Alireza Hodjat et al in [32] present a 0.18μm CMOS (Complementary Metal-

Oxide Semiconductor) technology AES crypto coprocessor that runs at 330

MHz with a 3.84 Gbits/sec throughput.

• Sumio Morioka et al in [33] describe a 0.13μm CMOS technology AES IP

(Intellectual Property) core that runs at 880 MHz with a 10Gbits/sec throughput.

0

5

10

15

20

25

G
bi

ts
/s

ec

[26]
VirtexII

Pro

[28]
VirtexE

[30]
Virtex

[32]
0,18μm
CMOS

[33]
0,13μm
CMOS

FPGA ASIC

Chart 5 – AES hardware specific implementations

Few of the fastest RC6 implementations are the ones below, which are also summarized

in Chart 6:

• Jean-Luc Beuchat et al in [34] use VirtexE and Virtex2 FPGAs, and achieve a

maximum 15.2 Gbits/sec throughput.

• Elbirt et al in [35] use Virtex FPGAs to implement all AES finalists except

MARS and the maximum achieved throughput is 2.4 Gbits/sec.

• Ichikawa et al in [36] use Mitsubishi’s 0.35 μm CMOS ASIC library and yield a

throughput of 203.96 Mbits/sec.

Microprocessor and Hardware Laboratory – October 2005 19

Electronics and Computer Engineering Department – Technical University of Crete

0
2
4
6
8

10
12
14
16

G
bi

ts
/s

ec

[34] VirtexII [35] Virtex [36] 0,35 μm
CMOS

FPGA ASIC

Chart 6 – RC6 hardware specific implementations

Few of the fastest Serpent implementations are the ones below, which are also

summarized in Chart 7:

• Elbirt et al in [37] use a Virtex 1000 FPGA and achieve a 4.86 Gbits/sec

throughput.

• Ichikawa et al in [36] use Mitsubishi’s 0.35 μm CMOS ASIC library and yield a

throughput of 931.58 Mbits/sec.

• Bora and Czajka in [38] use an Altera Flex 10K FPGA [39] and achieve a

maximum throughput of 301 Mbits/sec.

Few of the fastest Twofish implementations are the ones below, which are also

summarized in Chart 8:

• Elbirt et al in [37] use a Virtex 1000 FPGA and achieve a 1.58 Gbits/sec

throughput.

• Schneier et al in [42] give hardware sizes and speed estimates that function at

150 MHz with a maximum 1.2 Gbits/sec throughput.

• Ichikawa et al [36] use Mitsubishi’s 0.35 μm CMOS ASIC library and yield a

throughput of 394.08 Mbits/sec.

Microprocessor and Hardware Laboratory – October 2005 20

Electronics and Computer Engineering Department – Technical University of Crete

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

G
bi

ts
/s

ec

[37] Virtex [38] Flex 10K [36] 0,35 μm
CMOS

FPGA ASIC

Chart 7 – Serpent hardware specific implementations

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

G
bi

ts
/s

ec

[37] Virtex [42] [36] 0,35 μm
CMOS

FPGA Hardware est. ASIC

Chart 8 – Twofish hardware specific implementations

MARS has the smallest implementations number because of its complexity, large

source utilization amount, slow processing speed and its Sboxes did not fulfill all NIST

requirements [36], [37], [43]. Few of the fastest implementations are the ones below,

which are also summarized in Chart 9:

Microprocessor and Hardware Laboratory – October 2005 21

Electronics and Computer Engineering Department – Technical University of Crete

• Ichikawa et al [36] use Mitsubishi’s 0.35 μm CMOS ASIC library and yield a

throughput of 225.55 Mbits/sec.

• Gaj and Chodowiec in [44] use a Virtex 1000 and achieve a 61 Mbits/sec

throughput.

• Dandalis et al in [45] use Virtex FPGAs and achieve a 203.77 Mbits/sec

throughput.

0

50

100

150

200

250

M
bi

ts
/s

ec

[44] Virtex [45] Virtex [36] 0,35 μm
CMOS

FPGA ASIC

Chart 9 – MARS hardware specific implementations

From the various implementations that were mentioned above, it can be concluded that

the Rijndael cipher performs the fastest processing speeds, while MARS the slowest

ones. Indeed Rijndael offers very small implementation complexity, simple inner

structure, high processing speed and security level, and low resource utilization, facts

that deservingly made it the new AES [46].

3.3 Symmetric Ciphers ISA extensions and Hardware Co-Processors

The last category in the related work that has been done, is somehow “in the middle” of

the previous two ones and it focuses on symmetric ciphers specific hardware co-

processors. These designs may extend an existing processor’s architecture in order to

support more efficiently symmetric ciphers, or even introduce new co-processors

specifically for some of them. As it may be easily comprehended, this category can be

Microprocessor and Hardware Laboratory – October 2005 22

Electronics and Computer Engineering Department – Technical University of Crete

characterized as the hardest of all, because it requires deep parallel analysis of many

symmetric ciphers and extra effort, in order to obtain a balanced between performance

and flexibility design.

3.3.1 Symmetric cipher accelerators and ISA extensions

Burke et al in [47] are trying to improve the performance of symmetric ciphers for the

Alpha 21264 processor by examining eight algorithms. After analysis of bottleneck in

these ciphers, they conclude to an extended ISA that consists of hardware rotations,

modulo multiplication, permutation and Sbox access instructions and may achieve up to

a 74% speedup over the baseline machine.

Murat Fiskiran et al in [54] study the effect of different addressing modes that can be

used to calculate the effective address during Sbox access. More specifically they

determinate how performance is affected on 1, 2, 4 and 8 wide EPIC (Explicitly Parallel

Instruction Computer) processors depending on addressing mode of the architecture,

issue width of the processor and number of memory ports. The results indicate that

speedups exceeding 2x can be obtained when fast addressing modes are used.

Another similar approach comes from [53], where the same authors describe a new

hardware module called PTLU (Parallel Table Look Up). It consists of multiple LUTs

that can be accessed in parallel and its purpose is again Sbox access acceleration. Their

results show maximum speedups of 7.7x for AES and 5.4x for DES, all tested on a

single-issue 64-bit RISC processor.

Finally, Jung et al in [49] are trying to accelerate multiplication in GF (2n) execution, an

operation rather frequent in symmetric ciphers as stated in section 2.2. To be more

specific, in this project they automate the design process for this kind of multipliers with

VHDL (Very high speed intergraded circuit Hardware Description Language) and

compare their results with other GF multipliers both on FPGA and ASIC

implementations.

3.3.2 Hardware co-processors

Wu et al in [50] introduce the Cryptomaniac processor, a fast and flexible co-processor

for cryptographic workloads. As it is mentioned on the paper, first they perform a cipher

kernel bottleneck analysis on five symmetric ciphers and, in order to improve

performance, a 4-wide 32-bit VLIW machine with no cache and a simple branch

Microprocessor and Hardware Laboratory – October 2005 23

Electronics and Computer Engineering Department – Technical University of Crete

predictor was designed. Its ISA consists of three instruction classes (tiny, short and

long), giving a throughput of 512 Mbits/sec for AES. The design runs at 360 MHz in

0.25μm process and consumes 606mW. Figure 5 shows a high level schematic of

Cryptomaniac’s architecture, where BTB and FU stand for “Branch Target Buffer” and

“Functional Unit” respectively.

Figure 5 – Cryptomaniac’s high level schematic architecture

Another similar approach comes from [52], where Oliva et al describe the Cryptonite, a

programmable processor tailored to the needs of cryptography algorithms. The target

frequency was 400 MHz in TSMC’s 0.13 μm process [I14]. It consists of a three-stage

pipeline datapath with two clusters and uses 64-bit instructions. Figure 6 shows its

architecture overview. Each cluster consists of 4 64-bit registers, which are used from

the two ALUs (Arithmetic Logic Units) and can also be exchanged. In addition, it has

an “Address Generation Unit”, which is being used from local data memory, in order to

efficiently implement Sbox access operations. Results show a 68 Mbits/sec 3DES and a

~700 Mbits/sec AES performance.

Microprocessor and Hardware Laboratory – October 2005 24

Electronics and Computer Engineering Department – Technical University of Crete

Figure 6 – Cryptonite architecture overview

Elbirt et al in [51] describe a design named COBRA, a specialized reconfigurable

architecture that is optimized for the implementation of block ciphers. In order to be

developed, many ciphers were analyzed leading to an ISA that supports arithmetic

operations, modulo multiplication, GF multiplication and Sbox access modes. Figure 7

shows COBRA’s schematic architecture, where RCE stands for “Reconfigurable

Cryptographic Element”. Each one of them performs a specific operation which can be

selected from its 80-bit ISA. A notable characteristic of the COBRA design is that its

reconfiguration capability affects function frequency; RC6, AES and Serpent are

processed at 60.975 MHz, 102.41 MHz and 54.054 MHz respectively, achieving a

maximum throughput of 3.9Gbits/sec, 1.451 Gbits/sec and 2.306 Gbits/sec respectively,

while targeting a 0.35 micron Synopsys Design Compiler library [I17].

Microprocessor and Hardware Laboratory – October 2005 25

Electronics and Computer Engineering Department – Technical University of Crete

Figure 7 – COBRA architecture and interconnection

Dongara and Vijaykumar in [48] introduce another encryption mode called ICBC

(Interleaved Cipher Block Chaining), which loosens the recurrence imposed by CBC

and enables multiple encryption streams to be overlapped. ICBC evaluation is done with

Wisconsin Wind Tunnel II [55] on SMP (Symmetric MultiProcessor). Various test for

eight symmetric ciphers are performed on 2, 4, 8 and 16-processor schemes operating at

speeds from 1 to 4 GHz. Results indicate a maximum speedup factor of 10x, achieving

about 800 Mbits/sec for AES.

A final project that has few similarities with CCproc, is [I13] from Princeton University,

called PAX. Until now there are no publications or official performance results.

However, as it is stated in its official web page, PAX is datapath-scalable, minimalist

cryptographic processor architecture for mobile and wireless information appliances,

based on a simple RISC ISA, extended with few low-cost instructions. As far as it is

known this project, as CCproc, are the only ones that their ultimate goal is to provide

efficient symmetric cipher hardware process acceleration, beyond any specific

algorithm in mind.

Microprocessor and Hardware Laboratory – October 2005 26

Electronics and Computer Engineering Department – Technical University of Crete

4. CCproc Architecture

In this chapter we focus on describing CCproc’s architecture. First, a few design

considerations will be discussed about the goal of this project and how it differs from

other designs. After that follows CCproc’s ISA and datapath structure in a detailed

description along with documentation.

4.1 CCproc Design Considerations

As it can be concluded from related work that was presented in section 3.3 about

symmetric ciphers hardware co-processors, each one of them utilizes its own unique

architecture, targeted on a selected group of cryptographic algorithms. The only

exception is the PAX project, which is not yet completed and, as stated before, is based

on a simple RISC ISA.

Our initial motivation of this project was a hardware design, flexible enough to support

many of today’s popular symmetric ciphers, but also potential new ones. As years go

by, previous symmetric ciphers that use keys smaller than 128-bit are likely to be

abandoned, because they will be vulnerable to brute-force attacks. So, after we analyzed

them carefully, we discovered that some of their functional principles were not adopted

by the newest ones.

• A first example is bit permutation or expansion, which is primary used from

DES. Although in combination with carefully designed Sboxes, it offers strong

security, none of the AES round two finalists used it. Only Serpent has an initial

and final permutation, from which, as mentioned in its official submission, the

bitslice version is much more efficient. In fact, these permutations have no

security purpose, but they are only used to switch the cipher from regular to

bitslice mode. Although there have been studied structures that offer arbitrary bit

permutations, they require a considerable amount of hardware [56] and though it

was decided not to be used.

• Another example is arithmetic operations using data with other than 32-bit or

multiples of it. Again DES is an example, which starts with a 64-bit key that is

immediately reduced to a 56-bit data value and then is split into two 28-bit data

values. In contrast, all of the AES round two finalists use only 32-bit multiples

Microprocessor and Hardware Laboratory – October 2005 27

Electronics and Computer Engineering Department – Technical University of Crete

data values, because 32-bit processors were their initial target. As a result, this

observation led us to use 32-bit operations.

• Complexity of the key expansion process is another aspect, which were not

inherited to new 128-bit ciphers. Indeed there were cases where this part of a

symmetric cipher was very slow, although it is not required during data

exchange. However, this factor is prohibitive for such algorithms utilization in

restricted devices (smartcards), where key changes every few milliseconds. A

strong example is Blowfish where, in order to complete the key expansion

process, Blowfish itself is required to run 1042 times. In contrast, all AES round

two finalists consist of much simpler key expansion processes, with the

exception of MARS. The latter in fact was negatively criticized, because, among

others, of its complex and weird key expansion process. As a result, in order to

explicitly support a cipher’s key expansion process, the only extra functional

unit that we would add is a KRF (Key Register File) memory module in order to

store all expanded keys, plus an ISA expansion to support operations between

RF’s (Register File) data and KRF’s data. The latter is explicitly described in

section 4.3.3.

• Another characteristic that was not used by any of the AES round two finalists is

variable Sboxes. In contrast, every one of them uses its own Sboxes, which

remain constant during the key expansion and encryption / decryption process.

Twofish is the only one that interleaves two 32-bit XOR operations between its

three Sboxes structures, which simply alters the final Sbox output. Older

algorithms, such as Blowfish and RC4, required their Sboxes first to be

initialized before encryption commences. As a result we decided in CCproc to

have few ROMs (Read Only Memory) as cipher specific Sboxes and small

RAMs (Random Access Memory) for new Sboxes support, plus available data

space during the key expansion process. However, [53] that was described in

section 3.3 and published after CCproc’s first version design was completed,

proposes flexible structures capable to implement various Sbox sizes.

Integration of such structure might help to reduce CCproc’s second version

design complexity somewhat and increase even more its functional frequency

and flexibility.

Microprocessor and Hardware Laboratory – October 2005 28

Electronics and Computer Engineering Department – Technical University of Crete

Another consideration was to record in symmetric ciphers their instruction types, an

aspect described in Chapter 2, and frequency occurrence. This research revealed a high

frequency occurrence of two dependent, back-to-back instructions. Examples are double

additions, subtractions and XOR, and addition or subtraction followed by a XOR. In

order to save valuable computing clock cycles, we decided that this type of double-

instructions should be included in CCproc’s ISA.

We also observed that all AES round two finalists treat 128-bit plaintext as four 32-bit

words. Initial thoughts consisted of a single 32-bit RISC datapath structure extended to

support an enhanced symmetric cipher ISA. After a few cipher implementations in such

a design, it was quickly discovered that the latter was too narrow to achieve an adequate

performance. Many times during processing, symmetric ciphers require 64-bit, 96-bit or

even 128-bit data values at the same time in order to proceed, so with a narrower

datapath, additional clock cycles are spent on fetching all appropriate data to the

functional unit that will use them. This performance obstacle led to the decision to

examine the level of parallelism that can be reached for each one of the AES round two

finalists when breaking into four small threads and running in a hypothetical 5-stage

pipelined datapath structure, which could be able to process up to four 32-bit operations

in one clock cycle. Its abstract schematic overview is shown in Figure 8 where each

cluster consists of a 4-stage pipelined datapath (decode, execution, data memory, write

back), and the results are shown in Chart 10.

This Chart shows utilization of the previously mentioned datapath for each one of the

ciphers while taking advantage of the double-instructions mentioned before. In order to

extract these results, first we wrote an assembly program for each cipher and then we

optimized it as much as possible by taking advantage of the four clusters. More

specifically, we analyzed each one of these programs and detected which of the

instructions could be concurrently processed. The worst cases are when only one, or

even none instructions can be processed during a clock cycle, because data have not

been yet computed, while the best case is when each cluster processes an instruction,

leading to maximum parallelism. In Chart 10, the higher a column is, the better the

parallelism. For example AES and Serpent can benefit more from a wider datapath

structure than the other ciphers. Having in mind a design that would achieve

competitive performance, it was finally considered a VLIW processor that would

Microprocessor and Hardware Laboratory – October 2005 29

Electronics and Computer Engineering Department – Technical University of Crete

consist of four 32-bit clusters, capable to process four 32-bit instructions in one clock

cycle.

Figure 8 – CCproc’s abstract schematic overview

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

%
 p

ip
el

in
e

ut
ili

za
tio

n

70,50

58,60
54,13

71,17

52,65

AES MARS RC6 SERPENT TWOFISH

Chart 10 – AES round two finalists level of parallelism in a 128-bit datapath structure

Microprocessor and Hardware Laboratory – October 2005 30

Electronics and Computer Engineering Department – Technical University of Crete

Another conclusion that came up from the cipher analysis above was the small number

of 32-bit registers utilization. In each cluster a maximum of four registers were used

ending up to a total of sixteen 32-bit registers among the four clusters. However, it was

decided an 8x32 RF in each cluster, in order to cover the case where a cipher, that was

not tested, might need additional registers.

Also, an important consideration was if all clusters would be identical to each other.

First thoughts consisted of not to include all large functional units, such as modulo

multipliers, in every cluster, for hardware reduction resources reasons. But after further

analysis, it was discovered that this way certain cipher threads would need to be

“locked” on running in specific clusters, in order to avoid additional data movement

between them, leading to an increased number of processing clock cycles, plus a

reduced datapath flexibility. Having in mind a future design being capable to process

independent threads from different ciphers, resulting to a significantly increased

throughput, it was decided to implement four almost identical clusters.

Another aspect regarding the efficient CCproc’s ISA expansion was the kind of control

instructions that would be supported, such as branches or jumps. A fact that

characterizes every symmetric cipher is the determined rounds number during the key

expansion process plus encryption / decryption. As a result they can be written in a way

that requires absolutely no branch tests. This observation led to the decision of not to

support any kind of branch instruction that its direction could not be pre-evaluated,

costing additional datapath stalls and hardware resources. In contrast, we decided, after

detailed cipher analysis, to support only a “loop” instruction that would add no stalls,

because the round number would have been a priori specified. As it was verified from

later implementation tests, this scheme worked very well eliminating nearly all of the

branch-related pipeline stalls. A more detailed hardware description is in section 4.3.1.

A final consideration was cipher support. As we mentioned earlier in this section, every

cipher that uses keys smaller than 128-bit are considered as non-secure. In addition, as

Huffmire in [61] mentions, a cryptography co-processor should be able to support as

many ciphers as possible, in order to provide a strong security level against various

kinds of attacks. This fact lead us to the decision to design a co-processor capable to

process today’s (2005) best ciphers, i.e. the AES round two finalists, plus to have an

extended ISA efficient and general enough to cover future algorithms.

Microprocessor and Hardware Laboratory – October 2005 31

Electronics and Computer Engineering Department – Technical University of Crete

4.2 CCproc Instruction Set Architecture

After evaluating all the above considerations, we designed the ISA of CCproc.

Supported instructions are categorized to four primary formats, Register, Immediate,

loop and cipher, which are shown in Table 2. Also Table 3 shows the field meaning.

31-27 26-2221-19 18-16 15-13 12-10 9-8 7-4 3 2 1 0
R opcode func rdx rsa rsb rsc mx nu KRFWrEn nu KRFPInc nu
I opcode func rdx rsa Ix[15..0]

loop opcode nu label[11..8] mx label[7..0]
cipher opcode nu rdx rsa rsb nu opt

Table 2 – MyDesgin’s ISA formats

Each instruction format, as already stated, is 32-bit, while bits are numbered from 31

down to 0, with 31 being the MSB (Most Significant Bit). First row shows the bits that

each field uses, while the others show how fields have been split in each format.

The “opcode” field is used by every format, in order to distinct from each other and for

easier instruction decoding. It is a 5-bit field and is analyzed in Table 4.

Field Explanation Description
opcode operation code Determines instruction format

func ALU function Function that ALU, GFM or MM will perform
rdx RF destination register Register that will be written
rsa RF source a register 1st register to be read
rsb RF source b register 2nd register to be read
rsc RF source c register 3rd register to be read

mx move from cluster Specifies if a cluster will get data from another
cluster

label instruction label Beginning address of a loop
Ix immediate Immediate data value

KRFWrEn KRF write enable Enables KRF’s write enable
KRFPInc KRF pointer increment Enables KRF’s pointer increment by 1

opt cipher options Specifies various modes of cipher instructions
nu not used These bits are not used

Table 3 – Field explanations

Bit Description
4 Specifies if RF will be written
3 Shows if it is an I format instruction or not
2 Shows if it is a Cipher format instruction or not

1-0 Select Sboxes
Table 4 – “opcode” field analyzation

Microprocessor and Hardware Laboratory – October 2005 32

Electronics and Computer Engineering Department – Technical University of Crete

R and I formats use the “func” field, which, as mentioned in Table 2, specifies the

ALU’s (Arithmetic Logic Unit), GF (Galois Field) multiplier or MM (Modulo

Multiplier) operation. Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε.

summarizes all supported instructions in R, I and loop formats.

Format Operation Syntax Description
add add rdx,rsa,rsb adds rsa with rsb and stores the result to rdx

and and rdx.rsa,rsb logic and between rsa and rsb, and stores the
result to rdx

gfm gfm rdx,rsa
galois field multiplication in GF(28) between
rsa and GF operand x and the result is stored
to rdx

krfpaz krfpaz resets KRF's pointer to first address

ldgfmr ldgfmr rsa
loads 8-bit mr register with rsa's value, which
holds modulo polynomial in Galois Field
multiplication

ldgfopx ldgfopx rsa loads Galois Field operand x with rsa's value
ldlc ldlc #a loads 6-bit lc register with #a

mmult mmult rdx,rsa,rsb modulo 232 multiplication between rsa and
rsb and the result is stored to rdx

or or rdx,rsa,rsb logic or between rsa and rsb, and stores the
result to rdx

r2c/c2r r2c / c2r rdx,rsa toggles between rows and columns in a 128-
bit data value

rol rol rdx,rsa,rsb rotates left rsa by the amount specified from
rsb's 5 LSBs and stores the result to rdx

ror ror rdx,rsa,rsb rotates right rsa by the amount specified from
rsb's 5 LSBs and stores the result to rdx

shl shl rdx,rsa,rsb shifts left rsa by the amount specified from
rsb's 5 LSBs and stores the result to rdx

shr shr rdx,rsa,rsb shifts right rsa by the amount specified from
rsb's 5 LSBs and stores the result to rdx

sub sub rdx,rsa,rsb subtracts rsb from rsa and stores the result to
rdx

xor xor rdx,rsa,rsb logic xor between rsa and rsb, and stores the
result to rdx

addadd addadd rdx,rsa,rsb,rscadds rsa with rsb, adds the result to rsc and
stores it to rdx

addsub addsub rdx,rsa,rsb,rsc adds rsa with rsb, subtracts rsc from the result
and stores it to rdx

addxor addxor rdx,rsa,rsb,rsc adds rsa with rsb, logic xor between rsc and
the result and stores it to rdx

subadd subadd rdx,rsa,rsb,rsc subtracts rsb from rsa, adds the result to rsc
and stores it to rdx

R

subsub subsub rdx,rsa,rsb,rsc subtracts rsb from rsa, subtracts rsc from the
result and stores it to rdx

Microprocessor and Hardware Laboratory – October 2005 33

Electronics and Computer Engineering Department – Technical University of Crete

subxor subxor rdx,rsa,rsb,rsc subtracts rsa with rsb, logic xor between rsc
and the result and stores it to rdx

xoradd xoradd rdx,rsa,rsb,rsc logic xor between rsa and rsb, adds the result
to rsc and stores it to rdx

xorsub xorsub rdx,rsa,rsb,rsc logic xor between rsa and rsb, subtracts rsc
from the result and stores it to rdx

xorxor subxor rdx,rsa,rsb,rsc logic xor between rsa and rsb, logic xor
between rsc and the result and stores it to rdx

addi addi rdx,rsa,#a adds rsa with #a and stores the result to rdx

andi andi rdx.rsa,#a logic and between rsa and #a, and stores the
result to rdx

lui lui rdx,#a loads 16-bit value #a to rdx's 16 MSBs

ori ori rdx,rsa,#a logic or between rsa and #a, and stores the
result to rdx

roli roli rdx,rsa,#a rotates left rsa by the amount specified from
#a's 5 LSBs and stores the result to rdx

rori rori rdx,rsa,#a rotates right rsa by the amount specified from
#a's 5 LSBs and stores the result to rdx

shli shli rdx,rsa,#a shifts left rsa by the amount specified from
#a's 5 LSBs and stores the result to rdx

shri shri rdx,rsa,#a shifts right rsa by the amount specified from
#a's 5 LSBs and stores the result to rdx

subi subi rdx,rsa,#a subtracts #a from rsa and stores the result to
rdx

I

xori xori rdx,rsa,#a logic xor between rsa and #a, and stores the
result to rdx

loop loop loop label jumps to the beginning of a loop which starts
at address “label”

Table 5 – Supported operations in R, I and loop formats. Bold means double instructions and italic

means custom instructions.

We should note that these instructions are also used for operations between KRF’s and

RF’s registers, plus for data movement between clusters. In section 5.1 there is a

detailed description of CCproc’s Python [I15] assembler and cipher examples that show

how this kind of operations is supported.

Cipher instruction format is used from MyDesing’s first version design and its purpose

is an efficient Sbox access, depending on the cipher that is processed. Note that should

the cipher Sboxes are replaced with a more dynamic structure in a future version, this

format will need to be updated. Table 6 shows all supported cipher instructions.

Microprocessor and Hardware Laboratory – October 2005 34

Electronics and Computer Engineering Department – Technical University of Crete

Instruction Syntax Description

aesX aesX rdx,rsa Sbox access during AES encryption or decryption
(X=E,D) with rsa and the result is stored to rdx

marsX marsX rdx,rsa
Sbox access during MARS forward mode,
backward mode, or E function (X=F,B,E) with
rsa and the result is stored to rdx

serX serX rdx,rsa
Sbox access during Serpent encryption or
decryption (X=E,D) with rsa and the result is
stored to rdx

tX tsld rsa,rsb / tsbox rdx,rsa
during Twofish, loads to S0 and S1 rsa and rsb
respectively / Sbox access with rsa and the result
is stored to rdx

Table 6 – Cipher format instructions

4.3 CCproc Datapath Structure

After presenting CCproc’s ISA, this section focuses on describing its datapath structure,

having as target device a Virtex 4 FPGA. First it shows in detail how every functional

unit works and finally there is sub-section 4.3.8, where everything is put together to

assemble CCproc co-processor.

4.3.1 The Loop instruction controller circuit

As we mentioned in section 4.1, after closer analysis of various symmetric ciphers, we

concluded that a “loop” instruction it was enough to handle all control hazards. As it

can be seen from Figure 9, which shows the loop controller circuit, there is “lc” register,

two multiplexers A and B, a ‘1’ constant subtraction unit and a comparator.

When an instruction is being fetched from instruction cache, it is checked if an “ldlc” or

“loop” occurred. If it is the first case, then multiplexer A gives to “lc” the rounds

number that a loop will be repeated. The latter is complete when a “loop” instruction

occurs, and if “lc” value is greater than 1, then its current value is reduced by 1 and

“nPCsel” signal is asserted, in order to enable a new instructions loop commencement.

If it is 1, it means that the appropriate rounds number has been completed, “nPCsel” is

not asserted and program execution continues normally.

Microprocessor and Hardware Laboratory – October 2005 35

Electronics and Computer Engineering Department – Technical University of Crete

lc

ldlc
instruction ?

Rounds
number -

1

>=1?

loop
instruction ?

nPCsel

Figure 9 – Loop controller

For example, when we have a loop in C language, we can write it in CCproc’s assembly

as it shown in Figure 10. Suppose that a, b, c and d variables are stored in each cluster’s

r1 register. In CCproc’s assembly we first initialize the loop counter (lc) to 10 (a in

hexadecimal) and then we begin the for-loop. It should be noted that each quad is

executed in every clock cycle, so this loop will take 10 clock cycles to complete,

however it will not issue any pipeline stall at all.

Figure 10 – A C and its equivalent CCproc assembly language loop

Microprocessor and Hardware Laboratory – October 2005 36

Electronics and Computer Engineering Department – Technical University of Crete

4.3.2 Register File (RF)

As we mentioned in section 4.1, cipher processing required a total amount of four 32-bit

registers per cluster for each of the AES round two finalists. As a result CCproc’s RFs

through each cluster, as was also explained earlier, are 8x32, which means eight 32-bit

registers. RF is fully synchronous, which means that reading from and writing to it

occurs on the positive clock edge.

In order to be able to read up to three different registers in a single clock cycle, a three

port RF was designed, as shown in Figure 11, having three copies of an 8x32 register

set. During a read operation, each one of them can provide an independent 32-bit

register, through each one of the “RdAddr1”, “RdAddr2” and “RdAddr3” address

signals, resulting up to three 32-bit registers to “DataOut1”, “DataOut2” and

“DataOut3” signals in single clock cycle. This is particularly useful when double-

instructions occur where three operands are needed at the same time. However, all

copies must always be identical to each other, so there is only one “WrAddr”, “WrEn”

and “DataIn” signal, writing every time the same data in each RF core. At this point we

should note that a full-custom implementation of this RF would of course be much more

efficient.

When there is a case where one or more of the “RdAddr1”, “RdAddr2” and “RdAddr3”

signals are equal to the “WrAddr” signal, i.e. a write and read operation occur on the

same register, there is logic that passes immediately “DataIn” value to the appropriate

“DataOutX” signal. In other words, this RF utilizes a Read-After-Write scheme.

4.3.3 Key Register File (KRF)

The KRF is a special RAM in each cluster’s decode stage, where a cipher’s expanded

keys are stored. After analysis of AES round two finalists, these keys can be separated

between CCproc’s KRFs in such a way that they would not need to be moved between

clusters during a cipher’s encryption / decryption process. Every KRF is a 64x32 data

space, meaning it has sixty four 32-bit registers. This size was chosen after observation

of the expanded key’s data size and finding that it did not exceed a total of thirty three

32-bit data values per cluster.

Microprocessor and Hardware Laboratory – October 2005 37

Electronics and Computer Engineering Department – Technical University of Crete

Figure 11 – CCproc’s main 8x32 RF

Another fact is that every cipher uses its expanded keys serially forwards or backwards

in some cases during decryption. As a result there is no need for a separate field in an

instruction’s format to specify a KRF address, as it is being done during RF register

read or write operations. In contrast, we decided to use only bit “KRFPInc”, which

would enable a serial auto-increment KRF access. A similar KRF write scheme was

also decided. More specifically, there is “KRFWrEn” bit, which when asserted, it

enables serial data write to KRF with auto-incremented address generation. However if

a cipher requires its expanded keys backwards, they should first be written in reverse

order.

Figure 12 shows the entire KRF circuit. As we can see, there is “KRFP” register, which

is KRF’s pointer. Each time “KRFPinc” bit is asserted, multiplexer A will auto-

increment “KRFP” register by 1 in the next clock cycle, while the latter’s present value

is used for KRF access. When an instruction uses KRF’s data during an operation,

multiplexer B does not select RF’s “DataOut1” signal, but KRF’s “Dout” signal. During

a KRF write operation, “KRFWrEn” bit is asserted, which directly connects to KRF’s

Microprocessor and Hardware Laboratory – October 2005 38

Electronics and Computer Engineering Department – Technical University of Crete

“WrEn” input and is also used for “KRFP” auto-increment, in order to point to the next

address when another KRF write operation occurs.

KRF

RF

DataOut1

KRFP

+

1

0 1
A

Addr

WrEn
R

KRFPInc

WrEn

KRFWrEn

KRFPinc
R

Dout

0 1
B

DinDin

Figure 12 – KRF circuit

This functional unit supports continuous KRF write operations, i.e. an expanded key can

be written every clock cycle. However, when the key expansion process has finished,

“KRFP” must be reset to point again to KRF’s first position. Before this can be done,

user must interleave a non KRF write operation between the last write operation and

“krfpaz” operation, or else the final expanded key will not have enough time to be

written. Also, in order to proceed to a KRF read operation there must be interleaved two

clock cycles between the “krfpaz” operation and first read operation, in order to

“KRFP” have enough time to be initialized. After these two clock cycles, again this

circuit is capable to read an expanded key each clock cycle.

4.3.4 Arithmetic Logic Unit (ALU)

The ALU functional unit is the processor’s beating heart, because most of the

instructions issued, use it. As we mentioned in section 4.2, there are many double-

Microprocessor and Hardware Laboratory – October 2005 39

Electronics and Computer Engineering Department – Technical University of Crete

instructions that require three operands, which results to an ALU that has three 32-bit

inputs and one 32-bit output.

As it can be observed from Figure 13, there are three 32-bit ASUs (Addition /

Subtraction Units), three 2-input 32-bit xors and three multiplexers. ASU A adds or

subtracts inputs “In1” and In2”, while gate A makes a xor operation between them. If

there is a double-instruction, results from ASU A and gate A, are passed, in

combination with “In3”, through ASUs B and C, and gates B and C. Finally

multiplexers A, B and C are used to select appropriate data depending on the value of

“func” field while, in arrows before multiplexer C is shown operation allocation. ALU

instructions have the below specific format:

Result ← (In1 op1 In2) op2 In3

where “In1”, “In2” and “In3” are the three “ALU core 1” inputs and op1, op2 are the

two operations that may be performed.

0 1
A

0 1
B

Figure 13 – CCproc’s “ALU core 1”

In Table 7 we analyze “func” field and show how its value is assembled depending on

operation that is about to be performed. As we mentioned in section 4.2, “func” is a 5-

bit field, with each one having its own meaning:

Microprocessor and Hardware Laboratory – October 2005 40

Electronics and Computer Engineering Department – Technical University of Crete

• Double indicates if there is a double-instruction or not.

• Xor2 means that op2 = xor.

• Xor1 means that op1 = xor.

• Add2 means that op2 = add / sub.

• Add1 means that op1 = add / sub.

Besides the “ALU core 1” there is another functional unit, called “ALU core 2”, that is

used for data rotations and shifts, and is shown in Figure 14. More specifically there are

two SRUs (Shift / Rotate Units), which take as inputs 32-bit “DataIn” that will be

shifted / rotated, a 5-bit “amount” that indicates the specific shift / rotation amount plus

a “shift / rotate” signal that selects shift or rotation. Once the two SRU’s have finished,

multiplexer A selects the appropriate direction, depending on instruction that were

issued.

Instruction double (bit 4) xor2 (bit 3) xor1 (bit 2) add2 (bit1) add1 (bit 0)
add 0 0 0 0 0
sub 0 0 0 0 1
xor 0 0 1 0 0

addadd 1 0 0 0 0
addsub 1 0 0 1 0
addxor 1 1 0 0 0
subadd 1 0 0 0 1
subsub 1 0 0 1 1
subxor 1 1 1 0 1
xoradd 1 0 1 0 0
xorsub 1 0 1 1 0
xorxor 1 1 0 0 0

Table 7 – “func” field analysis

Microprocessor and Hardware Laboratory – October 2005 41

Electronics and Computer Engineering Department – Technical University of Crete

Shift / Rotate
Left

DataIn

amount

Shift / Rotate
Right

DataIn

amount

DataOut

DataOut

left /right

S / R

S / R

In1

In2

shift /
rotate

Figure 14 – CCproc’s “ALU core 2”

4.3.5 8-bit Galois Field (GF) Multiplier in GF(28)

As we mentioned in section 4.2, the GF multiplier that is used in CCproc, performs 8-

bit multiplications modulo a prime polynomial over GF(28). From the AES round two

finalists, AES and Twofish use this kind of operation, both utilizing static 4x4 matrices,

where each cell contains a byte and modular polynomials.

In order to design a small and rather fast GF multiplier, based on [49], it was decided

first to design a PPG (Partial Product Generator) and then use it to implement the entire

unit. Figure 15 shows PPG’s schematic, which takes as input a byte “In1” that first is

shifted left one bit. The result is then xored with input byte “mp”, which is the modular

polynomial that a cipher uses. Multiplexer A selects shifted data or xored data,

dependeing on “In1” MSB and then multiplexer B selects as final output ‘0’ or

multiplexer’s A output, according to bi. The latter bit is the ith bit of the second operand

that is used in GFM, where i=0...7. As a result, a PPG has two outputs, “PPG (i+1)” that

goes to the next PPG, and “pout” that is the ith’s PPG partial product.

Microprocessor and Hardware Laboratory – October 2005 42

Electronics and Computer Engineering Department – Technical University of Crete

0 1
A 1 0

B

Figure 15 – Partial product generator

These partial generators now are cascaded in the way that is shown in Figure 16,

assembling an 8x8 GF multiplier. However, while testing, its timing characteristics as a

complete combinational circuit were not satisfactory, so we pipelined the multiplier.

Instead of using adders to summarize complete product from the partial ones, we are

using XOR gates, according to the specification of GF(28) multiplication that XOR

intermediate results.

The GF multiplier 8x8 unit can compute the product between two bytes in GF(28).

However in AES and Twofish there were four 32-bit words (intermediate plaintext) and

a 4x4 static matrix with each cell consisting of a byte, resulting to another four 32-bit

words. As a result processing a cipher would require a total of sixteen 8x8

multiplications, each having a 1 clock cycle latency. This fact leads to a tremendous

cycle-consuming multiplier, which slows down significantly a cipher’s process.

PPG0
In1
mp

bi

PPG(i+1)
pout

PPG1
In1
mp

bi

PPG(i+1)
pout

PPG2
In1
mp

bi

PPG(i+1)
pout

PPG3
In1
mp

bi

PPG(i+1)
pout

R

PPG4
In1
mp

bi

PPG(i+1)
pout

PPG5
In1
mp

bi

PPG(i+1)
pout

PPG6
In1
mp

bi

PPG(i+1)
pout

PPG7
In1
mp

bi

PPG(i+1)
pout

a
p

c

b b(0) b(1) b(2) b(3)

b(4)

b(5) b(6) b(7)

Figure 16 – GFM 8x8

In order to avoid such latency, we decided to increase the number of GFM’s 8x8 to

sixteen, to take advantage of the fact that these multiplications can be computed entirely

in parallel. Figure 17 shows a GF multiplier 16x8x8 schematic, where “a” is a 32-bit

Microprocessor and Hardware Laboratory – October 2005 43

Electronics and Computer Engineering Department – Technical University of Crete

input consisting of bytes [a3:a2:a1:a0], “op3”, “op2”, “op1” and “op0” are the four

matrix columns ,”mr” is a register that holds the appropriate modular polynomial and

“R” is GF multiplier’s result.

Figure 17 – GFM 16x8x8

For example, suppose that the following multiplication has to be performed:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⊕⋅⊕⋅⊕⋅
⋅⊕⋅⊕⋅⊕⋅
⋅⊕⋅⊕⋅⊕⋅
⋅⊕⋅⊕⋅⊕⋅

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

•

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

00102030
01112131
02122232
03132333

000101202303
010111212313
020121222323
030131232333

0
1
2
3

00010203
10111213
20212223
30313233

cccc
cccc
cccc
cccc

aopaopaopaop
aopaopaopaop
aopaopaopaop
aopaopaopaop

a
a
a
a

opopopop
opopopop
opopopop
opopopop

There are sixteen internal GF(28) multiplications, whose intermediate results are xored.

GF multiplier 16x8x8 can concurrently compute all of them in just 1 clock cycle. Note

that circuit complexity has been increased, affecting slightly its maximum operating

frequency, however computing clock cycles remain the same as in GF multiplier 8x8.

4.3.6 32-bit Multiplier Modulo 232 (MM)

Newest FPGAs, such as the Virtex 4, Spartan 3 [57] and Virtex 2 series, have embedded

18x18 multipliers in order to maximize performance. In addition, Virtex 4 FPGAs have

a new block called “XtremeDSP slice” that intergrades an 18x18 multiplier along with a

48x48 adder. Reference [58] has an application note, which was used, on how to form a

Microprocessor and Hardware Laboratory – October 2005 44

Electronics and Computer Engineering Department – Technical University of Crete

32x32 multiplier from these smaller ones; however its 32 MSBs were omitted, in order

to perform modulo 232 computations, as it is shown in Figure 18.

+

+

+

Figure 18 – 32x32 multiplier modulo 232

As it was mentioned, in each slice there is an 18x18 multiplier, resulting in the

utilization of three such units along with their respective adders. Slices 1 and 3 are used

to produce the final result’s bits, while slice 2 to compute an intermediate product. It

should be also noted that every slice has, among others, a register between multiplier

and adder called “M”, plus one before each output called “P” and have been used to

increase its maximum operating frequency. These registers in combination with the

external “R” one, lead to a cost of 2 computing clock cycles per modulo multiplication.

4.3.7 Cipher Sboxes

As we stated in section 4.1, in CCproc’s first version have been used specific cipher

Sboxes, instead of a more general and flexible scheme. This section focuses on the

description of these Sboxes separately for every cipher, and their integration to the

entire design. All Sboxes have been placed to each cluster’s memory stage, with the

exception of Twofish, where a small portion is also in execution stage for reasons

explained below. It should be noted that there is no reference to RC6 cipher, because it

does not utilize any Sboxes at all.

Microprocessor and Hardware Laboratory – October 2005 45

Electronics and Computer Engineering Department – Technical University of Crete

• AES cipher Sboxes

Rijndael algorithm uses, one could say, the simplest structure for its Sboxes comparing

to the other AES round two finalists. They consist only of two 256x8 Sboxes, one used

for the encryption and one for the decryption process.

Figure 19 shows how Sboxes have been implemented in CCproc’s each cluster, where

“E” stands for encryption and “D” stands for decryption mode. In order to maximize

parallelism, every 32-bit data that come through the “In” signal, are separated to four

bytes each utilizing a Sbox. After Sbox access, there have been produced four bytes

from E-Sboxes and four from D-Sboxes, which are concatenated into two 32-bit words.

Finally, depending on the cipher mode, multiplexer A, which is controlled from “mode”

signal, passes the appropriate word to the exit.

256x8
E

256x8
E

256x8
E

256x8
E

256x8
D

256x8
D

256x8
D

256x8
D

0 1
A

mode

In

Figure 19 – AES Sboxes in CCproc

• Twofish Sboxes

Microprocessor and Hardware Laboratory – October 2005 46

Electronics and Computer Engineering Department – Technical University of Crete

Twofish uses a different Sbox structure from others ciphers, in a way that its final result

depends on the secret key that is being used. Also Twofish uses the same Sbox structure

for both encryption and decryption process. Figure 20 shows its Sbox structure, where

“S0” and “S1” are two of the subkeys, “In” is the Sbox input, and “q0” and “q1” are

8x8 Sboxes.

In the beginning we planned to place the entire Twofish Sbox structure to the Sbox

stage as a combinational circuit. After evaluating this implementation, we quickly

discovered that there was a considerable negative impact to the Sbox stage’s operating

frequency, so a next attempt was to split Figure 20 in two pieces by inserting a register

in the second column. Although this alteration improved frequency, it also increased

Sbox latency to 2 clock cycles, resulting to a significantly lower cipher performance.

Finally we decided to keep the initial implementation (Figure 20), but to place first half

in the execution stage and the second half in sbox stage, as shown in Figure 21. Note

that the portion that belongs to execution stage, it did not insert any considerable

negative consequences, because it was placed in parallel with the other functional units,

as it is shown in Figure 22.

Figure 20 – Twofish Sboxes

Microprocessor and Hardware Laboratory – October 2005 47

Electronics and Computer Engineering Department – Technical University of Crete

q0

q1

q0

q1

q0

q0

q1

q1

q1

q0

q1

q0

In

Sbox0

Sbox1

Sbox2

Sbox3

S1S0

Execution
stage

Sbox
stage

Figure 21 – Twofish Sboxes in CCproc

Figure 22 – Implementation of Twofish Sboxes in datapath

Microprocessor and Hardware Laboratory – October 2005 48

Electronics and Computer Engineering Department – Technical University of Crete

• Serpent Sboxes

Serpent is the only cipher that uses permutations in its beginning and end of processing,

however these steps are omitted in bitslice mode to be more efficient, so CCproc uses

this mode. Sbox access is somehow different than other ciphers and will be presented

through the following example.

Suppose that X0, X1, X2, X3 are the four 32-bit words of plaintext where X0 is the

most significant one, and consider that each word’s the four MSBs in hexadecimal are:

X0 = hex”6…”, X1 = hex ”a…”, X2 = hex “f…”, X3 = hex “8…”

Table 8 shows these numbers also in binary while each column indicates the respective

bit. Last column “weight” shows the value that emerges when computing each column’s

in decimal.

hex bit 31 bit 30 bit 29 bit 28 weight
6 0 1 1 0 20

a 1 0 1 0 21

f 1 1 1 1 22

8 1 0 0 0 23

Table 8 – Serpent Sbox access example

For example, “bit31” = , which is the Sboxj’s access

address, where j is the round number. If j = 0, then Sbox0 [14] = 9. Similarly the other

columns emerge the following values for j = 0:

1421212120 3210 =⋅+⋅+⋅+⋅

“bit30” = , Sbox0 [5] = 6 520212021 3210 =⋅+⋅+⋅+⋅

“bit29” = , Sbox0 [7] = 11 720212121 3210 =⋅+⋅+⋅+⋅

“bit28” = , Sbox0 [4] = 10 420212020 3210 =⋅+⋅+⋅+⋅

In Table 9, “bit” columns contain the above results, in binary according the “weight”

column. Indeed “bit31” = 9, “bit30” = 6, “bit29” = 11 and “bit28” = 10.

hex bit 31 bit 30 bit 29 bit 28 weight
a 1 0 1 0 20

7 0 1 1 1 21

4 0 1 0 0 22

b 1 0 1 1 23

Table 9 – Serpent Sbox results example

Microprocessor and Hardware Laboratory – October 2005 49

Electronics and Computer Engineering Department – Technical University of Crete

Finally, if the resulting lines are considered as binary values, with each cell in “bit31”

column containing the MSB, column “hex” translates them to hexadecimal and these

are the final replacements: 6↔a, a↔7, f↔4, and 8↔b.

As we can see, Serpent requires all four 32-bit words at the same time, in case a

simultaneous Sbox access is desired, leading to an implementation shown in Figure 23.

S0
X0

X1

X2

X3

MSB

MSB

MSB

MSB

MSB

MSB

MSB

MSB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.S0

LSB

LSB

LSB

LSB

LSB

LSB

LSB

LSB

30 times

Figure 23 – Serpent Sboxes in CCproc

The above design is the same for the other Sboxes as well. In order to finally select the

appropriate one depending on process round, there has been implemented a small

counter, which is enabled each time there is a Sbox access. It should be noted that again

there is no need for an additional instruction argument for Sbox access, because it is

always serial, so the previously mentioned simple 3-bit counter suffices.

• MARS Sboxes

MARS algorithm uses two Sboxes S0 and S1, 256x32 each, however it has the unique

property that they are also used concatenated as one 512x32 Sbox. This is another case

where all four 32-bit plaintext words are needed at the same time, each one accessing

the same structure in its own way. As a result, we decided to implement all four of these

access combinations to the four clusters, enabling a fully parallel utilization, as shown

in Figure 24.

Microprocessor and Hardware Laboratory – October 2005 50

Electronics and Computer Engineering Department – Technical University of Crete

0 1
A

0 1
B

S0

S1

In

byte 4

byte 3

byte 2

byte 1

0 1
C

mode

Cluster A

S0

S1

E

Cluster B

0 1
A 0 1

B

In

byte 4

byte 3

byte 2

byte 1

F/B
E

0 1
C

mode

S0

S1

Cluster C

1 0
B

mode

0 1
A

byte 4

byte 3

byte 2

byte 1

In

B or E

S0

S1

Cluster D

0 1
B

mode

In

byte 4

byte 3

byte 2

byte 1

0 1
A

E

Figure 24 – MARS Sboxes in CCproc

In MARS processing, in each cluster appears one 32-bit word that passes through these

four structures, resulting in four simultaneous Sbox accesses in 1 clock cycle. Before

Sbox access there are one or two multiplexers, which in combination with control

signals “E”, “F” and “B”, pass the appropriate byte. Depending on cipher’s current

processing mode, again a control signal “mode” selects the required 32-bit word.

From the above Sbox analysis and implementation description, there are many possible

structures that a cipher may utilize. As a result it was initially decided to design specific

cipher Sbox structures, which of course may be replaced with more general and flexible

ones in future CCproc’s versions.

4.3.8 Putting it all together: CCproc VLIW symmetric cipher co-

processor

After describing each functional unit and Sbox structure in detail, this section puts them

all together to assemble CCproc VLIW cryptography co-processor. As it was mentioned

in section 4.1, after deep cipher analysis, it was decided to build a VLIW co-processor

with four clusters, as shown in Figure 25.

Microprocessor and Hardware Laboratory – October 2005 51

Electronics and Computer Engineering Department – Technical University of Crete

C
lu

st
er

 A
C

lu
st

er
 B

C
lu

st
er

 C
C

lu
st

er
 D

Figure 25 – CCproc’s schematic overview

First of all, there is an instruction fetch unit, which takes on to fetch a 128-bit data value

and pass it to the four clusters as four 32-bit instructions. Bits 127 down to 96 form

cluster’s A instruction, bits 95 down to 64 form cluster’s B instruction, bits 63 down to

32 form cluster’s C instruction and bits 31 down to 0 form cluster’s D instruction. As it

can be seen from Figure 26, there is an instruction cache 256x128 size, where quads of

32-bit instructions are stored. PC is the program counter register that holds the

instruction cache’s access address. Multiplexer A selects with “nPCsel” between PC

address and an address “label” generated from the “loop controller” unit, in case there is

a loop instruction, as it was described in 4.3.1, while multiplexer B selects again with

“nPCsel” between “label” and PC to pass into the adder for next instruction’s address

effective calculation.

Microprocessor and Hardware Laboratory – October 2005 52

Electronics and Computer Engineering Department – Technical University of Crete

Instruction
cache

256x128

PC

0 1
A

0 1
B

addr dout

Loop
controller

+

16

nPCsel
label

Figure 26 – CCproc’s instruction fetch unit

After a 128-bit data value has been fetched, it is separated to four 32-bit instructions that

are directly connected with each cluster’s decode stage, whose high level schematic is

shown in Figure 27.

Figure 27 – Decode unit

Microprocessor and Hardware Laboratory – October 2005 53

Electronics and Computer Engineering Department – Technical University of Crete

The main unit in this stage is the Decode controller, which decodes each 32-bit “Instr”

instruction comes from the “instruction fetch” unit. It produces valid RF and KRF

addresses, plus many other control signals that pass through the next stages via the R1

pipeline register. “AluOutWB” contains every data that will be stored to RF or KRF.

Finally there is an “Address Comparator” unit that compares “addresses” signals, which

contain RF write addresses to next stages with current’s instruction target register in RF.

Every control signal that this unit produces, pass through pipeline register R2. It should

be noted that R1 and R2 pipeline registers have the same meaning with the R one

between “decode” and “execution” stages in Figure 25.

Next stage is the execution stage, where all logic and arithmetic operations are

performed and is shown in Figure 28. The ALU, GF multiplier 16x8x8 and MM

functional units are all placed here. RF outputs that have come from the previous

pipeline stage are their inputs and depending on the operation that needs to be

performed, multiplexer A selects the appropriate result. As it was shown in Figure 25,

before the next pipeline register, there is a “MX” (X=A, B, C, D) 4-to-1 multiplexer that

selects among the multiplexer’s A outputs of each cluster’s execution stage. These

multiplexers are used in case data need to be switched between clusters, by using the

appropriate “move” instruction, as described in section 5.1. Also in this stage there is

Twofish’s Sboxes first portion, as was described in section 4.3.7.

Microprocessor and Hardware Laboratory – October 2005 54

Electronics and Computer Engineering Department – Technical University of Crete

ALU

GFM
16x8x8

MM
32x32

A

Twofish
SboxEx

func

In1

In2

In3

Figure 28 – Execution stage

Microprocessor and Hardware Laboratory – October 2005 55

Electronics and Computer Engineering Department – Technical University of Crete

Twofish
SboxMem

AES
Sboxes

Serpent
Sboxes

MARS
Sboxes

CX

GPS
512x32

Data

A

RSelect

Figure 29 – Sbox stage

4.4 Efficient Data Exchange Among Clusters

In this section we focus on describing how data can be switched among clusters through

some instruction examples. Some instructions may have an “mx” (x=a, b, c, d) prefix

before them that indicates from which cluster data will be expected. An example is the

following instruction quad:

CA: mdrd r1,r1 --A<-D

CB: mard r1,r1 --B<-A

CC: mbrd r1,r1 --C<-B

CD: mcrd r1,r1 --D<-C

“CX” (X=A, B, C, D) indicates the cluster that the respective instruction will pass

through. “Rd” is a pseudo-instruction that reads a register, while in fact performs an

Microprocessor and Hardware Laboratory – October 2005 56

Electronics and Computer Engineering Department – Technical University of Crete

“add r0, rsa, r0” instruction. In cluster’s A instruction, putting “md”, consequences to

select data from cluster D to pass to sbox stage. The same also happens for the other

three clusters as shown in Figure 30. This is a very efficient way to switch data among

clusters, because it consumes only 1 clock cycle. We should note that also all other R

format operations (except double-instructions) can be performed before data switch

between clusters, whose entire list is shown in Appendix A.

32

32

32

32

decode

decode

execute Sboxes write
back

decode

decode

C
lu

st
er

 A
C

lu
st

er
 B

C
lu

st
er

 C
C

lu
st

er
 D

R R RM
A

execute Sboxes write
backR R RM

B

execute Sboxes write
backR R RM

C

execute Sboxes write
backR R RM

D

128

Figure 30 – Data exchange among clusters

Another case is when a cluster is needed to broadcast data to all other clusters. An

example is the following instruction quad:

CA: mdnop r2 --r2<-CD.r1

CB: mdnop r2 --r2<-CD.r1

CC: mdnop r2 --r2<-CD.r1

CD: rd r1

In cluster D register r1 is read and all others will do a “nop” operation. But because

there is an “md” prefix before “nop” multiplexers “MA, “MB” and “MC” will select

cluster’s D r1 to pass to the respective Sbox stage, as shown in Figure 31.

Microprocessor and Hardware Laboratory – October 2005 57

Electronics and Computer Engineering Department – Technical University of Crete

32

32

32

32

decode

decode

execute Sboxes write
back

decode

decode

C
lu

st
er

 A
C

lu
st

er
 B

C
lu

st
er

 C
C

lu
st

er
 D

R R RM
A

execute Sboxes write
backR R RM

B

execute Sboxes write
backR R RM

C

execute Sboxes write
backR R RM

D

128

Figure 31 – Data broadcasting

Microprocessor and Hardware Laboratory – October 2005 58

Electronics and Computer Engineering Department – Technical University of Crete

5. Verification and Performance Evaluation of CCproc

After the detailed description of CCproc’s ISA and datapath structure, in this chapter we

focus on verification tests that were made in order to confirm its functionality,

evaluation of hardware results such as operating frequency and occupied area, and

finally on a comparison with other similar hardware designs. Note that for synthesis and

implementation we used the Xilinx’s ISE Foundation Series 7.1i [I6] and for simulation

Mentor Graphics Modelsim SE 6.0a [I16].

A first prototype has been built based on Xilinx’s Virtex 4 VLX FPGAs resources.

Instruction cache, KRF, GPS and MARS Sboxes, have been mapped to single port

block memory modules [59], while all other Sboxes have been mapped to distributed

memory modules [60]. Also, in order to maximize performance as possible, many other

IP cores have been used, such as adders, subtraction units, multipliers and comparators,

all generated from Xilinx’s Core Generator.

5.1 Verification Tests Using a Python Assembler

In order to perform as many verification tests as possible in a considerable amount of

time, it was decided to build an assembler. Among other software languages, we

selected Python, because of its ease of usage and remarkable speed. Python has very

high level dynamic data types and dynamic typing, plus its software implementations

are portable, running on various versions of UNIX, Windows and many other platforms.

Figure 32 shows an abstract schematic of Python assembler. Every time there is a new

line, the instruction’s format is firstly recognized. Once it is confirmed as a correct

CCproc instruction, its arguments are counted, i.e. how many registers, or plain

numbers have been used, and then validated for syntax errors. In case an instruction is

correct, its arguments are converted to the appropriate binary value. If a new line

consists of a label that marks the start point of a loop, its location in the program is

stored, until a “loop” instruction uses it as argument. Finally, if a new line consists only

of comments (starting with “--“), they are discarded. It should be noted though that

comments can be anywhere, except between an instruction text.

Microprocessor and Hardware Laboratory – October 2005 59

Electronics and Computer Engineering Department – Technical University of Crete

R format I format Loop
format

Cipher
format

4 args1 arg 2 args 3 args 2 args 3 args0 args

Convert to binary

Program
finished?

Finished assembling

New Line

YES

NO

Store value

instrlabel comments

Figure 32 – Python assembler flowchart

In order to verify that every instruction works ok and the correct results are being

produced, various tests were written (they are available on the thesis’s CD. By using

Modelsim and performing simulation tests, both in functional and post-place and route

levels, we discovered (and fixed) several implementation problems (bugs).

Once this first verification phase was completed, we wrote five programs that

implement the five AES round two finalists. Figure 33 shows an example of RC6’s

encryption kernel loop and how instructions are written. First it begins with label

“encrypt” that indicates a loop’s start point and then there are instruction quads, each

having on its left “CX” (X=A, B, C, D) indicating the cluster that will pass through.

encrypt:

 CA: shli r2,r1,1 --r2<-r1*2

 CB: nop

 CC: shli r2,r1,1 --r2<-r1*2

 CD: nop

 CA: addi r2,r2,1 --r2<-r2+1=r1*2+1

Microprocessor and Hardware Laboratory – October 2005 60

Electronics and Computer Engineering Department – Technical University of Crete

 CB: nop

 CC: addi r2,r2,1 --r2<-r2+1=r1*2+1

 CD: nop

 CA: mmult r3,r1,r2 --r3<-r1*r2=r1*(r1+1)

 CB: nop

 CC: mmult r3,r1,r2 --r3<-r1*r2=r1*(r1+1)

 CD: nop

 CA: roli r3,r3,5 --r3<-<<<5(r3)=<<<5(r1*(r1+1)) (u)

 CB: nop

 CC: roli r3,r3,5 --r3<-<<<5(r3)=<<<5(r1*(r1+1)) (t)

 CD: nop

 CA: rd r3

 CB: manop r2 --r2<-CA.r3=u

 CC: rd r3

 CD: mcnop r2 --r2<-CC.r3=t

 CA: nop

 CB: xor r1,r1,r2 --r1<-r1 xor u=C xor u

 CC: nop

 CD: xor r1,r1,r2 --r1<-r1 xor t=A xor t

 CA: rd r3

 CB: mcnop r2 --r2<-CC.r3=t

 CC: rd r3

 CD: manop r2 --r2<-CA.r3=u

 CA: nop

 CB: rol r1,r1,r2 --r1<-<<<r2(r1)=<<<t(r1)

 CC: nop

 CD: rol r1,r1,r2 --r1<-<<<r2(r1)=<<<u(r1)

 CA: nop

 CB: add r1,krfpa,r1 --r1<-r1+S[2*i]

 CC: nop

 CD: add r1,krfpa,r1 --r1<-r1+S[2*i+1]

 CA: mdrd r1,r1 --D<-A

Microprocessor and Hardware Laboratory – October 2005 61

Electronics and Computer Engineering Department – Technical University of Crete

 CB: mard r1,r1 --C<-D

 CC: mbrd r1,r1 --B<-C

 CD: mcrd r1,r1 --A<-B

 CA: loop encrypt

 CB: nop

 CC: nop

 CD: nop

Figure 33 – RC6 encryption kernel loop

5.2 Performance Evaluation on Xilinx Virtex 4 FPGA Devices

This section focuses on evaluating CCproc’s performance while processing the AES

round two finalists. Until now there is only a first prototype built on Virtex 4 FPGAs,

which has been successfully verified in post-place and route simulation level. In order

to evaluate its performance, first the total number of processing clock cycles needed for

each cipher was measured and the results are shown in Chart 11.

79

338

242

375

178

0

50

100

150

200

250

300

350

400

Cl
oc

k
Cy

cl
es

AES MARS RC6 SERPENT TWOFISH

Chart 11 – CCproc’s performance in clock cycles for the AES round two finalists

Xilinx XST (Xilinx Synthesis Tool) and ISE 7.1i reported the results shown in Table

10. The XC4VLX40 FPGA is the third smallest in the Virtex 4 series, a fact showing

that CCproc is a compact design (275452 gates), capable to fit into today’s smaller

Virtex 4 FPGAs. The complete set consists of 1, 3 and 4-core implementations mapped

Microprocessor and Hardware Laboratory – October 2005 62

Electronics and Computer Engineering Department – Technical University of Crete

on XC4VLX40, XC4VLX100, XC4VLX160 and XC4VLX 200 FPGAs. It should be

noted that devices with speed grade equal to -12, create the fastest implementations.

FPGA Speed
Grade

CCproc
Cores

Freq
(MHz) Utilization Memory

Blocks
Xtreme

DSP
XC4VLX40 -12 1 95% 18 12
XC4VLX100 -12 1 36% 18 12
XC4VLX160 -12 3

108

77% 54 36
XC4VLX60 -11 1 19.6% 18 12
XC4VLX200 -11 4

95
78.6% 72 48

Table 10 – CCproc’s performance statistics

Based on the above performance results, Chart 12 shows the achieved throughput for all

AES round two finalists in ECB mode, in each multi-core CCproc implementation. The

formula that is used to extract results for 1-core implementations is the one below,

where F is the design’s operating frequency and cc are the processing clock cycles:

sec/)(128 Mbits
cc

MhzFThroughput ⋅
=

0

100

200

300

400

500

600

700

M
bi

ts
/s

ec

AES MARS RC6 SERPENT TWOFISH

1C @ 108 MHz 2C @ 108 MHz 3C @ 108 MHz 4C @ 95 MHz

Chart 12 –CCproc Multi-core throughputs in ECB mode

5.3 Performance Comparison with Other Implementations

After presenting CCproc’s performance results, this section focuses on making a small

comparison between CCproc and the other designs mentioned in section 3.3. However

Microprocessor and Hardware Laboratory – October 2005 63

Electronics and Computer Engineering Department – Technical University of Crete

none of these designs was mapped on an FPGA device, but implemented as ASICs.

Consequently CCproc yields a lower operating frequency than them, except from the

COBRA design, as shown in Table 11.

Type Design Max. Freq. (MHz)
Cryptomaniac 4W [50] 360

Cryptonite [52] 400
16-SMP [48] 1000

ASIC

COBRA [51] 102
FPGA CCproc 108

Table 11 – Maximum frequencies

As it is confirmed from [61], probably there is no other related design so far (2005),

which is not concluded in this comparison. As the authors report and also can be

confirmed from Chart 13, Cryptomaniac is the most flexible design, because it supports

most of the current ciphers compared to the other designs and has the most aggressive

parallelization.

Cryptonite is capable to support one-way hash functions, such as MD5 [63] and SHA-1

[62]. Also in its paper are reported results regarding only AES from 128-bit ciphers,

making the least flexible design of all. However there has been developed a specific

assembly language, which is demonstrated in its paper, unfortunately only for AES.

COBRA is a design that yields the best results for AES, RC6 and Serpent. However

they are valid only when the used COBRA atomic-units are equal to a cipher’s rounds

and also placed in parallel. For example, when there is one COBRA atomic-unit

specifically reconfigured for RC6, it requires 145 clock cycles to complete, but with 20

such atomic-units, clock cycles are reduced to 2 and throughput is increased to 3.9

Gbits/sec. It should be noted that this throughput is valid for ECB mode, i.e. assuming

20 atomic-units working in parallel.

SMP is an approach orthogonal to the above ones, because it demonstrates how many

crypto processors can be used to increase cipher processing throughput, by using the

ICBC mode. As it can be easily comprehended, this approach can be combined with

every other technique that has been presented for the inner cipher specific architecture,

resulting to an even better final throughput.

Microprocessor and Hardware Laboratory – October 2005 64

Electronics and Computer Engineering Department – Technical University of Crete

1451
3900

2306

0
100
200
300
400
500
600
700
800
900

1000

M
bi

ts
/s

ec

C
ry

pt
om

an
ia

c
@

 3
60

M
H

z
[5

0]
 (0

.2
5μ

m
)

C
ry

pt
on

ite
 @

40
0

M
H

z
[5

2]
(0

,1
3μ

m
)

C
O

B
R

A
 [5

1]
(0

,3
5μ

m
)

C
C

pr
oc

 4
C

@
 9

5
M

H
z

(0
,0

9μ
m

)

ASIC FPGA

AES
MARS
RC6
Serpent
Twofish

Chart 13 – Performance comparison between CCproc and other designs. This chart shows the best

cases for each design.

As it can be seen from Chart 13, CCproc is the only one that supports so far all AES

round two finalists. Cryptomaniac is the design that has many similarities with CCproc,

so it is natural to make an immediate comparison between them. CCproc yields a better

performance for AES cipher comparing to Cryptomaniac, while comparing to other

ciphers, where applicable, it achieves a slightly decreased throughput, yet more than

capable to saturate any up to 130 Mbits/sec connections, such as the wide used IEEE

802.11g wireless protocol and IEEE 802.3y 100 Mbits/sec Ethernet protocol. Cryptonite

yields better results than CCproc and Cryptomaniac where applicable, however it lacks

of flexibility. Also it should be reminded that CCproc is the only one mapped on FPGA

devices, while all other have been implemented as ASICs. In addition, throughput is by

far not the only characteristic that can evaluate a cryptography processor’s value,

because there many cases where there is no need for increased throughput, but for

flexibility or power consumption. CCproc is believed to be a very flexible architecture,

because of its efficiently designed assembly, as it was demonstrated in section 5.1. In

addition, as Huffmire in [61] mentions, today’s cryptography co-processors, among

others should have the ability to process a cipher rapidly, support multiple ciphers and

have the capability to be reconfigured and upgraded in case a cipher is broken. These

aspects are the most important ones, and CCproc is superiorly offering them.

Microprocessor and Hardware Laboratory – October 2005 65

Electronics and Computer Engineering Department – Technical University of Crete

So far we have completed CCproc’s first version mapped on various FPGA devices. It

would be very useful to estimate its performance as an implemented ASIC in 0.25 μm

process. First of all we located CCproc’s critical path and found that it passes through

the ALU core 1. We then used Synopsys Design Compiler (DC) [I17] to implement it as

an ASIC and found that its latency is 3 ns, meaning a maximum frequency at 333 MHz.

This fact leads us to the conclusion that a carefully designed VLSI CCproc

implementation could achieve an even higher frequency. Chart 14 shows its

performance when running at frequencies up to 500 MHz.

0

100
200
300
400

500
600
700
800

900

M
bi

ts
/s

ec

AES MARS RC6 SERPENT TWOFISH

108 MHz 300 MHz 400 MHz 500 MHz

Chart 14 – CCproc’s estimated throughput when implemented as VLSI

Chart 15 compares CCproc with other design when there is no parallel cipher

processing available, i.e. CBC mode. As we can see, implementations that run at

frequencies of 400 MHz and above achieve better throughputs in most cases comparing

to other designs. However once again we note that, if a cryptography co-processor

reaches a throughput level that enables its usage from a protocol, the next important fact

is its flexibility, in order to provide higher security levels. CCproc’s first version is

already a very flexible cryptography co-processor, which, once a VLSI implementation

is built, it can also provide almost the best throughputs.

Microprocessor and Hardware Laboratory – October 2005 66

Electronics and Computer Engineering Department – Technical University of Crete

0
100
200
300
400
500
600
700
800
900

M
bi

ts
/s

ec

A
E

S

M
A

R
S

R
C

6

S
E

R
P

E
N

T

TW
O

FI
S

H

Cryptomaniac @
360MHz [50] (0.25μm)
Cryptonite @ 400 MHz
[52] (0,13μm)
COBRA [51] (0,35μm)

CCproc @ 300 MHz
(0,25 μm)
CCproc @ 400 MHz
(0,25μm)
CCproc @ 500 MHz
(0,25μm)
CCproc-FPGA @ 108
MHz (0,09 μm)

Chart 15 – CCproc performance comparison with other designs without parallel process. This

chart shows performance of the current CCProc and the estimated VLSI implementations.

Microprocessor and Hardware Laboratory – October 2005 67

Electronics and Computer Engineering Department – Technical University of Crete

6. Conclusions and Future Work

As we mentioned in the beginning of this thesis report, internet is growing larger over

the years that pass. Also various embedded processors are more and more used in many

wireless communication devices, such as cell phones, palmtops, PDAs (Personal Digital

Assistants), televisions and automobile navigation systems. Consequently, secure

communication and confidentiality are crucial, in order to avoid virus infection, privacy

loss, and stop digital crime activities from malicious users.

Cryptography is a major issue, which all computer architects should take account when

designing new processors that will be used for communication and data exchange. This

project was focused on analyzing many cryptographic symmetric ciphers and designing

from scratch a VLIW RISC co-processor, in order to efficiently support them in a

hardware process level in very competitive speeds. In summary our design has the

following characteristics:

• Efficient and flexible ISA capable to support many symmetric 128-bit ciphers

• 4-wide VLIW processor using 128-bit instructions with RISC datapath structure

• Fits in small FPGAs, while multiple CCproc cores can be placed in larger ones

to improve cipher performance

• Supports all AES round two finalists

• Achieves an AES performance up to 616 Mbits/sec at 95 MHz in ICBC mode

using a 4-core CCproc implementation

• A 1-core CCproc VLSI implementation estimated running at 500 MHz, yields

an AES throughput of 800 Mbits/sec

• Capable to saturate wide used protocols such as the 801.11g wireless and 802.3y

100 Mbits/sec Ethernet

This task was pretty difficult, because it demanded to combine many very different

algorithms in one common design and also to try and foresee potential needs from

future algorithms.

CCproc’s first version results are very competitive in comparison with others, as it has

been seen from section 5.3. Note also that, once a cryptography co-processor’s

throughput meets the level that we need, flexibility plays a very significant role to the

Microprocessor and Hardware Laboratory – October 2005 68

Electronics and Computer Engineering Department – Technical University of Crete

security level it provides. CCproc achieves very good cipher speeds, while its ISA

offers a high level of flexibility. Also, a very important aspect is that all other designs

have been implemented as ASICs, while CCproc mapped on a FPGA device.. In

addition, as in every first version, there are a few potential improvements that can be

made:

• More flexible Sboxes structure. As it was mentioned in previous sections, static

specific cipher Sboxes could be replaced by a more flexible and equally fast

structure. This improvement may reduce CCproc’s hardware utilization,

resulting even in an increased operating frequency.

• Increased throughput with parallel thread support. Although there are four

clusters, which are available for cipher process, as it has been shown in Chart

10, most of the ciphers do not take full advantage of it, resulting in many

“nops”. These “empty slots” could be used efficiently by the same or another

cipher to encrypt a different data block, increasing significantly total throughput

more closely to 1-core’s theoretical that can be achieved (128 bits/clock cycle).

The left portion of Figure 34 shows CCproc’s utilization while processing a data

block with Twofish. Blue (bright) rectangles indicate a useful instruction, while

the red (dark) ones show “nops”. With an addition of extra hardware resources

and slight modification in current ISA, CCproc may process simultaneously two

different data blocks, from the same or different users, by using the same or

completely different symmetric ciphers. In Figure 34, in its right portion the blue

(bright) rectangles are instructions that process one block, while the green ones

(striped) process another block. This is a feature that none from the previously

mentioned related works currently supports.

Microprocessor and Hardware Laboratory – October 2005 69

Electronics and Computer Engineering Department – Technical University of Crete

Figure 34 – Increasing total throughput

• CCproc’s ASIC implementation. So far CCproc prototype has been tested, as

mentioned in section 5.2, only in Virtex 4 FPGA devices. It would be very

useful if an ASIC implementation were built using Synopsys DC, in order to

obtain additional performance and throughput information.

In summary, Cryptography, as it was mentioned in chapter 1, had been used from

ancient years to hide important information. Until today, many algorithms have been

developed, and always will be, while concurrently many ways are being discovered to

unlock even the securest ones. Consequently there are many cases where people have

lost or charged a large amount of digital money, while confidential information has

been intercepted. That is why computer architects and engineers should always try to

protect people from malicious users, by developing new designs resistant against as

many as possible types of digital attack.

Microprocessor and Hardware Laboratory – October 2005 70

Electronics and Computer Engineering Department – Technical University of Crete

7. References

[1] Xilinx Corporation, “Virtex 4 User Guide”, April 11, 2005

[2] Joan Daemen, Vincent Rijmen, “AES Proposal: Rijndael”, Document Version 2,

March 9, 1999

[3] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla, S.

M. Matyas Jr., L. O’Connor, M. Peyravian, D. Safford, N. Zunic, “MARS - a

candidate cipher for AES”, IBM Corporation, 1999.

[4] Bruce Scheier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, Niels

Ferguson, “Twofish: A 128-bit Block Cipher”, 15 June 1998, Counterpane

Systems.

[5] Ronald L. Rivest, M.J.B. Robshaw, R. Sidney, Y.L. Yin, “The RC6 Block

Cipher”, August 20, 1998.

[6] Ross Anderson, Eli Biham, Lars Knudsen, “Serpent: A Proposal for the

Advanced Encryption Standard”, 5th workshop on Fast Software Encryption,

1998.

[7] B. Schneier, “Description of a new variable-length key, 64-bit block cipher

(Blowfish)”, Fast Software Encryption, Cambridge Security Workshop

Proceedings (December 1993), Springer-Verlag, 1994.

[8] Ronald L. Rivest, “The RC5 Algorithm”, October 1996

[9] MediaCrypt, “International Data Encryption Algorithm”, Technical Description

[10] B. Preneel, “Modes of Operation of a Block Cipher”, K.U. Leuven, Belgium

[11] J. L. Smith, "The design of Lucifer: A cryptographic device for data

communications, " Technical report, IBM T.J. Watson Research Center,

Yorktown Heights, N.Y., 10598, U.S.A., 1971.

[12] Howard M. Heys, “A tutorial on linear and differential cryptanalysis”, Memorial

University of Newfounland, 2002

[13] David A. Patterson, John L. Hennessy, “Computer Architecture: A quantitative

approach: Second edition”, Morgan Kaufman Publishers, Inc, 1996

Microprocessor and Hardware Laboratory – October 2005 71

Electronics and Computer Engineering Department – Technical University of Crete

[14] John Worley, Bill Worley, Tom Christian, and Christopher Worley, “AES

Finalists on PA-RISC and IA-64: Implementations & Performance”, AES

Candidate Conference, 2000, New York, USA

[15] Intel Corporation, “Intel Itanium Processor”, August 2001

[16] Intel Corporation, “Intel Pentium Pro family”, 1996

[17] Intel Corporation, “Intel Pentium II processor at 350MHz, 400Mhz, 450 MHz”,

August 1998

[18] Intel Corporation, “Intel Pentium III processor based on 0,13 micron process up

to 1.33 GHz”, December 2001

[19] David L. Weaver, Tom Germond, “The SPARC architecture manual, version 9”,

Prentice Hall Inc., 1994

[20] Compaq Computer Corporation, “21164 Alpha Microprocessor”, December

1998

[21] Hewlett Packard Corporation, “The Hewlett Packard PA-RISC 8500 processor”,

October 1998

[22] R. Weiss, N. Binkert, “A comparison of AES candidates on the Alpha 21264”,

Third Advanced Encryption Standard Candidate Conference, April 2000

[23] Intel Corporation, “Intel Pentium 4 processor with 512-KB L2 cache on 0.13

micron process”, February 2004

[24] R.E. Kessler, E.J. McLellan, D.A. Webb, “The Alpha 21264 microprocessor

architecture”, Compaq Computer Corporation, January 1999

[25] AMD Corporation, “AMD Athlon processor model 4 datasheet”, November 2001

[26] Alireza Hodjat, Ingrid Verbauwhede, “A 21.54 Gbits/s Fully Pipelined AES

Processor on FPGA”, IEEE Symposium on Field-Programmable Custom

Computing Machines, April 2004

[27] Xilinx Corporation, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs”, March

2005

[28] Maire McLoone, John McCanny, “Rijndael FPGA Implementations Utilizing

Look-up tables”, Journal of VLSI signal processing 34, 261-275, 2003.

[29] Xilinx Corporation, “Virtex-E 1.8V Field programmable gate arrays”, July 2002

[30] P. Chodowiec, P. Khuon, and K. Gaj. “Fast Implementations of Secret-Key Block

Ciphers Using Mixed Inner- and Outer-Round Pipelining”, In Symposium on

Microprocessor and Hardware Laboratory – October 2005 72

Electronics and Computer Engineering Department – Technical University of Crete

Field Programmable Gate Arrays – FPGA 2001, pages 94–102. ACM Press,

2001.

[31] Xilinx Corporation, “Virtex 2.5V Field programmable gate arrays”, April 2001

[32] Alireza Hodjat, David D. Hwang, Bocheng Lai, Kris Tiri, Ingrid Verbauwhede,

“A 3.84 gbits/s AES crypto coprocessor with modes of operation in a 0.18-μm

CMOS technology”, Proceedings of the 15th ACM Great Lakes symposium on

VLSI, April 17-19, 2005, Chicago, Illinois, USA

[33] Sumio Morioka, Akashi Satoh, “A 10-Gbps full-AES crypto design with a twisted

BDD S-box architecture”, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, v.12 n.7, p.686-691, July 2004

[34] Jean-Luc Beuchat, “FPGA Implementations of the RC6 Block Cipher”, In P.Y.

K. Cheung, G.A. Constantinides, and J.T. de Sousa, editors, Field-Programmable

Logic and Applications, number 2778 in Lecture Notes in Computer Science,

pages 101-110. Springer, 2003

[35] Elbirt et al, “An FPGA-based performance evaluation of the AES block cipher

candidate algorithm finalists”, IEEE Trans. of VLSI Systems, 9.4, pp.545-557,

August 2001

[36] Ichikawa T., Kasuya, T., Matsui, M., “Hardware Evaluation of the AES

Finalists”, Proc. 3rd Advanced Encryption Standard (AES) Candidate

Conference, New York, April 13-14, 2000

[37] J. Elbirt , C. Paar, “An FPGA implementation and performance evaluation of the

Serpent block cipher”, Proceedings of the 2000 ACM/SIGDA eighth

international symposium on Field programmable gate arrays, p.33-40, February

10-11, 2000, Monterey, California, United States

[38] Bora, P. and Czajka, T., “Implementation of the Serpent Algorithm Using Altera

FPGA Devices”, 1999

[39] Altera Corporation, “Flex 10K embedded programmable logic device family”,

January 2003

[40] Pawel Chodowiec, Kris Gaj, “Implementation of the Twofish Cipher Using

FPGA Devices”, ECE, George Mason University, July 1999

Microprocessor and Hardware Laboratory – October 2005 73

Electronics and Computer Engineering Department – Technical University of Crete

[41] Xilinx Corporation, “XC4000E and XC4000X series field programmable gate

arrays”, May 1999

[42] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, “New

Results on the Twofish Encryption Algorithm”, Second AES Candiate

Conference, April 1999

[43] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson,

“Performance Comparison of the AES Submissions”, Proc. Second AES

Candidate Conference, NIST, March 1999, pp. 15-34

[44] K. Gaj and P. Chodowiec, “Fast implementation and fair comparison of the final

candidates for Advanced Encryption Standard using Field Programmable Gate

Array” Proc. RSA Security Conf. - Cryptographer's Track, San Francisco, CA,

April 8-12, 2001, pp. 84-99

[45] Dandalis, V. K. Prasanna, J. D. Rolim, “A Comparative Study of Performance of

AES Final Candidates Using FPGAs”, Proc. Cryptographic Hardware and

Embedded Systems Workshop, CHES 2000, Worcester, MA, Aug 17-18, 2000

[46] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris

Dworkin, James Foti, Edward Roback, “Report on the Development of the

Advanced Encryption Standard (AES)”, National Institute of Standards and

Technology, October 2, 2000

[47] J. Burke, J. McDonald, T. Austin, “Architectural Support for Fast Symmetric-

Key Cryptography”, ASPLOS 2000

[48] Praveen Dongara and T. N. Vijaykumar, “Accelerating Private-Key

Cryptography via Multithreading on Symmetric Multiprocessors”, In

Proceedings of the IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), March 2003

[49] M. Jung, F. Madlener, M. Ernst and S. A. Huss, “A Reconfigurable Coprocessor

for Finite Field Multiplication in GF(28)”, Darmstadt University of Technology,

Germany, IEEE Workshop on Heterogeneous reconfigurable Systems on Chip,

Hamburg, April 2002

[50] Lisa Wu, Chris Weaver, and Todd Austin, “Cryptomaniac: A Fast Flexible

Architecture for Secure Communication”, ISCA 2001, June 2001

Microprocessor and Hardware Laboratory – October 2005 74

Electronics and Computer Engineering Department – Technical University of Crete

[51] A. J. Elbirt, C. Paar, “An Instruction-Level Distributed Processor for Symmetric-

Key Cryptography”, IEEE Transactions on Parallel and Distributed Systems,

16(5), pp. 468-480, May 2005

[52] D. Oliva, R. Buchty, and N. Heintze, “AES and the Cryptonite Crypto

Processor”, Proc. Int. Conf. Compiler, Architectures and Synthesis for

Embedded Systems, pp. 198-209, Oct. 2003

[53] A. Murat Fiskiran and Ruby B. Lee, “On-Chip Lookup Tables for Fast

Symmetric-Key Encryption”, Proceedings of the IEEE 16th International

Conference on Application-Specific Systems, Architectures and Processors

(ASAP), pp. 356-363, July 23-25, 2005

[54] A. Murat Fiskiran and Ruby B. Lee, “Performance Impact of Addressing Modes

on Encryption Algorithms”, Proceedings of the International Conference on

Computer Design (ICCD 2001), pp. 542-545, September 2001

[55] S. S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkow, S. Huss-Lederman, M.

D. Hill, J. R. Larus, and D. A. Wood. “Fast and portable parallel architecture

simulators: Wisconsin Wind Tunnel II”, IEEE Concurrency, 2000

[56] Yedidya Hilewitz, Zhijie Jerry Shi, and Ruby B. Lee, “Comparing Fast

Implementations of Bit Permutation Instructions”, Proceedings of the 38th

Annual Asilomar Conference on Signals, Systems, and Computers, November

2004

[57] Xilinx Corporation, “Spartan 3 FPGA family: complete datasheet”, January

2005

[58] Xilinx Corporation, “Xtreme DSP design considerations user guide”, February

2005

[59] Xilinx Corporation, “Single port block memory core v6.2”, April 2005

[60] Xilinx Corporation, “Distributed memory v7.1”, January 2005

[61] T. Huffmire, “Application of cryptographic primitives to computer architecture”,

University of California, Santa Barbara, March 2005

[62] R. H. Brown, A. Prabhakar, “FIPS180-1: Secure Hash Standard (SHA)”, Federal

Information Processing Standards Publication (FIPS), May 1993

Microprocessor and Hardware Laboratory – October 2005 75

Electronics and Computer Engineering Department – Technical University of Crete

[63] R. Rivest. “RFC1312: The MD5 Message-Digest Algorithm”, April 1992

Internet Links:

[I1] http://www.internetworldstats.com

[I2] http://www.stanford.edu/group/siqss/Press_Release/press_detail.html

[I3] http://wp.netscape.com/eng/ssl3/draft302.txt

[I4] http://www.codesandciphers.org.uk/enigma/

[I5] http://www.ssh.fi/support/cryptography/introduction/

[I6] http://www.xilinx.com/

[I7] www.fact-index.com/r/rc/rc4_cipher.html

[I8] www.aci.net/kalliste/des.htm

[I9] http://csrc.nist.gov/CryptoToolkit/aes/round1/round1.htm#algorithms

[I10] http://www.cs.ut.ee/~helger/aes/

[I11] http://csrc.nist.gov/CryptoToolkit/aes/round1/round1.htm#algorithms

[I12] http://www.apple.com

[I13] http://palms.ee.princeton.edu/PAX/

[I14] http://www.tsmc.com/

[I15] http://www.python.org

[I16] http://www.model.com

[I17] http://www.synopsys.com

Microprocessor and Hardware Laboratory – October 2005 76

http://www.internetworldstats.com/
http://www.stanford.edu/group/siqss/Press_Release/press_detail.html
http://wp.netscape.com/eng/ssl3/draft302.txt
http://www.codesandciphers.org.uk/enigma/
http://www.ssh.fi/support/cryptography/introduction/
http://www.xilinx.com/
http://www.aci.net/kalliste/des.htm
http://csrc.nist.gov/CryptoToolkit/aes/round1/round1.htm#algorithms
http://www.cs.ut.ee/%7Ehelger/aes/
http://csrc.nist.gov/CryptoToolkit/aes/round1/round1.htm#algorithms
http://www.apple.com/
http://palms.ee.princeton.edu/PAX/
http://www.tsmc.com/
http://www.python.org/
http://www.model.com/
http://www.synopsys.com/

Electronics and Computer Engineering Department – Technical University of Crete

Appendix A: CCproc Complete Instruction Set

Format Operation Syntax Description
add add rdx,rsa,rsb adds rsa with rsb and stores the result to rdx

sub sub rdx,rsa,rsb subtracts rsb from rsa and stores the result to
rdx

shr shr rdx,rsa,rsb shifts right rsa by the amount specified from
rsb's 5 LSBs and stores the result to rdx

shl shl rdx,rsa,rsb shifts left rsa by the amount specified from
rsb's 5 LSBs and stores the result to rdx

xor xor rdx,rsa,rsb logic xor between rsa and rsb, and stores the
result to rdx

rol rol rdx,rsa,rsb rotates left rsa by the amount specified from
rsb's 5 LSBs and stores the result to rdx

and and rdx.rsa,rsb logic and between rsa and rsb, and stores the
result to rdx

ror ror rdx,rsa,rsb rotates right rsa by the amount specified
from rsb's 5 LSBs and stores the result to rdx

or or rdx,rsa,rsb logic or between rsa and rsb, and stores the
result to rdx

gfm gfm rdx,rsa
galois field multiplication in GF(28) between
rsa and GF operand x and the result is stored
to rdx

mmult mmult rdx,rsa,rsb modulo 232 multiplication between rsa and
rsb and the result is stored to rdx

ldgfopx ldgfopx rsa loads Galois Field operand x with rsa's value

addadd addadd
rdx,rsa,rsb,rsc

adds rsa with rsb, adds the result to rsc and
stores it to rdx

subadd subadd
rdx,rsa,rsb,rsc

subtracts rsb from rsa, adds the result to rsc
and stores it to rdx

addsub addsub
rdx,rsa,rsb,rsc

adds rsa with rsb, subtracts rsc from the
result and stores it to rdx

subsub subsub
rdx,rsa,rsb,rsc

subtracts rsb from rsa, subtracts rsc from the
result and stores it to rdx

xoradd xoradd
rdx,rsa,rsb,rsc

logic xor between rsa and rsb, adds the result
to rsc and stores it to rdx

r2c/c2r r2c / c2r rdx,rsa toggles between rows and columns in a 128-
bit data value

xorsub xorsub
rdx,rsa,rsb,rsc

logic xor between rsa and rsb, subtracts rsc
from the result and stores it to rdx

addxor addxor
rdx,rsa,rsb,rsc

adds rsa with rsb, logic xor between rsc and
the result and stores it to rdx

subxor subxor
rdx,rsa,rsb,rsc

subtracts rsa with rsb, logic xor between rsc
and the result and stores it to rdx

ldgfmr ldgfmr rsa
loads 8-bit mr register with rsa's value,
which holds modulo polynomial in Galois
Field multiplication

R

xorxor subxor logic xor between rsa and rsb, logic xor

Microprocessor and Hardware Laboratory – October 2005 77

Electronics and Computer Engineering Department – Technical University of Crete

rdx,rsa,rsb,rsc between rsc and the result and stores it to rdx
krfpaz krfpaz resets KRF's pointer to first address
addi addi rdx,rsa,#a adds rsa with #a and stores the result to rdx

subi subi rdx,rsa,#a subtracts #a from rsa and stores the result to
rdx

shri shri rdx,rsa,#a shifts right rsa by the amount specified from
#a's 5 LSBs and stores the result to rdx

shli shli rdx,rsa,#a shifts left rsa by the amount specified from
#a's 5 LSBs and stores the result to rdx

xori xori rdx,rsa,#a logic xor between rsa and #a, and stores the
result to rdx

roli roli rdx,rsa,#a rotates left rsa by the amount specified from
#a's 5 LSBs and stores the result to rdx

andi andi rdx.rsa,#a logic and between rsa and #a, and stores the
result to rdx

rori rori rdx,rsa,#a rotates right rsa by the amount specified
from #a's 5 LSBs and stores the result to rdx

ori ori rdx,rsa,#a logic or between rsa and #a, and stores the
result to rdx

ld ld rdx,#a(rsa) loads from data memory address rsa+#a to
rdx

st st rsb,#a(rsa) stores to data memory address rsa+#a
register rsb

lui lui rdx,#a loads 16-bit value #a to rdx's 16 MSBs

I

ldlc ldlc #a loads 6-bit lc register with #a

loop loop loop label jumps to the beginning of a loop which starts
at address “label”

rd rd rsa reads rsa, i.e. adds rsa with r0, but does not
store any result pseudo-

instructions
nop nop no operation, i.e. adds r0 with r0, but does

not stores any result

move mx mx<instr>
rdx,rsa,rsb,rsc

current cluster passes data to sbox stage
from x cluster (x=a, b, c, d). <instr> will be
performed between rsa, rsb and rsc, but
result will not be stored in rdx. Instead it can
be used from other cluster as well. <instr>
may have the following values:

add
sub
shr
shl
or
rol
and
ror
xor

addadd
addsub
addxor

Microprocessor and Hardware Laboratory – October 2005 78

Electronics and Computer Engineering Department – Technical University of Crete

subadd
subsub
subxor
xoradd
xorsub
xorxor

aesX aesX rdx,rsa
Sbox access during AES encryption or
decryption (X=E,D) with rsa and the result is
stored to rdx

marsX marsX rdx,rsa
Sbox access during MARS forward mode,
backward mode, or E function (X=F,B,E)
with rsa and the result is stored to rdx

serX serX rdx,rsa
Sbox access during Serpent encryption or
decryption (X=E,D) with rsa and the result is
stored to rdx

cipher

tX tsld rsa,rsb /
tsbox rdx,rsa

during Twofish, loads to S0 and S1 rsa and
rsb respectively / Sbox access with rsa and
the result is stored to rdx

Microprocessor and Hardware Laboratory – October 2005 79

Electronics and Computer Engineering Department – Technical University of Crete

Appendix B: Setup and Usage of Assembler and CAD Tools

This appendix focuses on numbering the appropriate steps that should be taken, in order

the user to perform a CCproc’s simulation. As it was mentioned in chapter 5, the CAD

(Computer Aided Design) tools that were used, are Xilinx’s ISE Foundation Series 7.1i

with service pack 3, plus Core Generator for IP core generation. Additionally, XST was

used for synthesis and Modelsim SE 6.0a for simulation. Finally Python 2.4.1 was

installed in order to develop CCproc’s assembler.

The suggested steps that should be made are the following:

1. Launch Core Generator and create the “*.xco” files as there are in this project’s

CD.

2. Create a valid “imem256x128.caf” file consisting of a cipher written in

CCproc’s assembly language. Once this is done, use IDLE Python to create an

“imem256x128.coe” file consisting of respective 0s and 1s.

3. Through Core Generator initialize instruction cache “imem256x128” with the

above “imem256x128.coe” file.

4. Create a testbench for the top-level file “cryptium2.vhd” and inside ISE run

Modelsim.

It should be noted that if the Python assembler raises an error, possibly there is a wrong

syntax somewhere in “imem256x128.caf”. User may check the respective message that

IDLE created in order to find its location inside the text.

Microprocessor and Hardware Laboratory – October 2005 80

	1. Introduction
	2. Private-Key Block Ciphers Properties
	2.1 Plaintext Encryption / Ciphertext Decryption Process
	2.2 Structures and Arithmetic Operations in Symmetric Ciphers

	3. Related Work
	3.1 C and Assembly Implementations
	3.2 Algorithm Specific Hardware Implementations
	3.3 Symmetric Ciphers ISA extensions and Hardware Co-Processors
	3.3.1 Symmetric cipher accelerators and ISA extensions
	3.3.2 Hardware co-processors

	4. CCproc Architecture
	4.1 CCproc Design Considerations
	4.2 CCproc Instruction Set Architecture
	4.3 CCproc Datapath Structure
	4.3.1 The Loop instruction controller circuit
	4.3.2 Register File (RF)
	4.3.3 Key Register File (KRF)
	4.3.4 Arithmetic Logic Unit (ALU)
	4.3.5 8-bit Galois Field (GF) Multiplier in GF(28)
	4.3.6 32-bit Multiplier Modulo 232 (MM)
	4.3.7 Cipher Sboxes
	4.3.8 Putting it all together: CCproc VLIW symmetric cipher co-processor

	4.4 Efficient Data Exchange Among Clusters

	5. Verification and Performance Evaluation of CCproc
	5.1 Verification Tests Using a Python Assembler
	5.2 Performance Evaluation on Xilinx Virtex 4 FPGA Devices
	5.3 Performance Comparison with Other Implementations

	6. Conclusions and Future Work
	7. References
	Appendix A: CCproc Complete Instruction Set
	Appendix B: Setup and Usage of Assembler and CAD Tools

