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1. Introduction 

It is generally accepted that, as years go by, internet usage grows rapidly. Current 

research indicates that in 2005 there are almost 1 billion internet users worldwide [I1]. 

Also, an older (2001) report from the “Stanford Institute for the Quantitative Study of 

Society” of Stanford University, focused on the ways that internet is being used and 

deduced the results which are shown in Chart 1 [I2]. 

 

Chart 1 – What Internet users Do 

Activities such as banking, buying, trading stocks, business and email, demand privacy 

and confidentiality during internet connection. For this reason protocols have been 

designed that create secure connections and protect data transmission from other 

malicious internet users. Among others, a well known such protocol, is the Secure 

Sockets Layer (SSL) [I3], which has been designed by Netscape and uses cryptography 

to protect data. 

Cryptography comes from the Greek word “κρυπτογραφία” and means a way of altering 

a message with a secret key in a form that is almost impossible to recognise, but if the 

intended recipient has the appropriate secret key, then the original message can be 

retrieved. The process that a message is encrypted and decrypted using a specific key is 

called a cryptography algorithm or cipher. The first cipher in history was the “Caesar 

cipher” by Julius Caesar, which substitutes each letter in a message with the one that 
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corresponds to three places forward in the alphabet. An example is the word 

“SECRET”, which, after the letter substitution, becomes “VHFUHW”. Another very 

important historical example, based on the Caesar Cipher, is the “Enigma cipher” which 

was designed by Germans during the World War II [I4]. 

Today there are many ciphers and mostly are used to protect sensitive information 

during transmission on public communication networks. The entire process is consisted 

from two basic parts, the encryption and decryption of the message that is about to be 

transmitted (plaintext). During the encryption process the plaintext is transformed to 

another text (ciphertext) and the latter is transmitted. Once the transmission is over, the 

ciphertext is again transformed back to its original form, i.e. the plaintext, so the 

recipient is able to recognise it. 

Two forms of cryptography are commonly used in information systems today, which 

are shown in Figure 1: 

• Symmetric Key or Private Key ciphers. 

• Asymmetric Key or Public Key ciphers. 

 

Figure 1 - Public-key (up) and Symmetric-key (down) algorithms 

As it is shown from Figure 1, public key ciphers, use two types of keys, a public that is 

used to encrypt data, and a private that is used to decrypt the encrypted data. On the 

other hand, private key ciphers use only a private key for both data encryption and 

decryption. Another fact is that private key ciphers are much faster than public key 

Microprocessor and Hardware Laboratory – October 2005 7 



Electronics and Computer Engineering Department – Technical University of Crete 

ciphers [I5], so during a secure data exchange, at first a private key is shared between 

the users with a public key cipher and then all other data are being transmitted with a 

private key cipher, that uses the previous private key for encryption / decryption. 

More specifically, the entire process of a secure communication channel establishment 

is as follows: 

1. Person A sends his public key to person B through an unsecured communication 

channel. 

2. B encrypts its secret key with a public key cipher and sends it to A. 

3. A decrypts the encrypted secret key with his private key. 

4. From this moment all data are encrypted / decrypted with symmetric key 

ciphers. 

However, there still are various ways to decipher encrypted communications without 

knowing the proper keys. Examples are brute force attacks, where all possible keys are 

being tried, ciphertext-only attacks, where the attacker tries to guess the plaintext with 

theoretical methods such linear and differential cryptanalysis [12], and man-in-the-

middle attacks, where an adversary positions himself between A and B persons and 

intercepts each signal they send to each other [I5].  

In this thesis we focus on the research of encryption and decryption process in many 

symmetric key ciphers, in order to find common processing parts among them and be 

able to design an ISA (Instruction Set Architecture) that effectively supports them. 

These similarities were deeply analyzed and the result is a hardware VLIW (Very Long 

Instruction Word) [13] co-processor called CCproc (Cryptography CoProcessor), with 

its own symmetric cipher specific instruction set and an extended RISC (Reduced 

Instruction Set Computer) datapath structure [13], capable to support many of today’s 

symmetric key ciphers, functioning at very competitive speeds, plus also potential new 

ones. 

The rest of this text is organized as follows: In chapter 2 we analyze the properties of 

symmetric ciphers, which includes the kinds of structures and arithmetic operations, 

plus analyzes the enciphering and deciphering process. Chapter 3 focuses on previous 

related work that was found to be done in software and hardware level. Chapter 4 

describes the Instruction Set Architecture (ISA) and the datapath structure of CCproc. In 
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chapter 5 we show the verification process that was followed by running simulation 

tests. Also, we discuss the CCproc performance on Xilinx [I6] Virtex 4 Field 

Programmable Gate Arrays (FPGAs) devices [1] and compare it with other designs. 

Finally Chapter 6 offers conclusions of this thesis and shows which parts could be 

upgraded in possible future work. 

In summary our design has the following characteristics: 

• Efficient and flexible ISA capable to support many symmetric 128-bit ciphers 

• 4-wide VLIW processor using 128-bit instructions with (Reduced Instruction Set 

Computer) RISC datapath structure 

• Fits in small FPGAs, while multiple CCproc cores can be placed in larger ones 

to improve cipher performance 

• Supports all Advanced Encryption Standard (AES) round two finalists 

• Achieves an AES performance up to 616 Mbits/sec at 95 MHz in Interleaved 

Cipher Block Chaining (ICBC) mode using a 4-core CCproc implementation 

• A 1-core CCproc VLSI implementation estimated running at 500 MHz, yields 

an AES throughput of 800 Mbits/sec 

• Capable to saturate wide used protocols such as the 801.11g wireless and 802.3y 

100 Mbits/sec Ethernet 
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2. Private-Key Block Ciphers Properties 

In this chapter we analyze the properties of symmetric ciphers, which includes the kinds 

of arithmetic operations and analyzes the enciphering and deciphering process. Specific 

attention was paid to choose which algorithms to study, because many of them have 

weaknesses. So, in order to make our analysis as complete as possible, the following 

algorithms were chosen: Rijndael [2], MARS [3], Twofish [4], RC6 [5], Serpent [6], 

Blowfish [7], RC4 [I7], DES (Data Encryption Standard) [I8], RC5 [8], International 

Data Encryption Standard (IDEA) [9]. This group contains only the five AES 

(Advanced Encryption Standard) finalists of round 2 [I9], i.e. the strongest ones of the 

AES candidates. It also, has the previous standard encryption algorithm DES, plus 

Blowfish, IDEA, RC4, RC5 which are older and widely used. All these facts it is 

believed that led in a very realistic and representative choice of the best symmetric key 

ciphers ever designed, in order to proceed into further analysis. 

2.1 Plaintext Encryption / Ciphertext Decryption Process 

Every symmetric cipher has the following three important parameters: 

1. The number of bits in its secret key. 

2. The size of the data block that operates on (also in bits). 

3. The number of processing rounds. 

Depending on the size of data block, symmetric ciphers have two categories: 

• Block ciphers that operate on large data blocks. 

• Stream ciphers that operate usually on one bit. 

Table 1 shows all these attributes for the ciphers mentioned before. 

Figure 2 shows a generic schematic for the encryption / decryption process. Before 

message encryption starts, every symmetric cipher has an initialization phase, which is 

mainly the key expansion. More specifically, the secret key is processed in a certain 

way and the result is a number of other keys that some of them are used in different 

encipher / decipher rounds. In rare cases, also other required operations occur, such as 

in Blowfish, where its substitution boxes are being created. 
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Algorithm Type Key size 
(bits) 

Block size
(bits) 

Blowfish Block up to 448 64 
Twofish Block up to 256 128 

DES Block 64 64 
Rijndael Block up to 256 128 
MARS Block 128 to 400 128 
Serpent Block 256 128 
IDEA Block 128 64 
RC4 Stream up to 2048 8 
RC5 Block up to 2040 >0 
RC6 Block up to 2040 >0 

Table 1 – Symmetric ciphers categories 

After the entire initialization phase is completed, encryption process begins. The latter 

consists of a certain number of various types of arithmetic operations that are being 

applied on the plaintext for a specific number of rounds. Once the defined round 

number has been reached, encryption process is finished and ciphertext is ready to be 

transmitted. Decryption process in most cases, if it is not identical, then it is almost the 

same as the encryption process, where again various types of arithmetic operations are 

being performed on ciphertext for a specific number of rounds, in order the recipient to 

retrieve the original message. 

 

Figure 2 – Encryption / Decryption process 
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One final aspect of the symmetric key cipher is the operation mode [10], which 

describes how the entire message will be processed. The most commonly used modes 

are the ECB (Electronic Code Book), where each data block is encrypted separately and 

CBC (Cipher Block Chaining), where each data block is added modulo 2 (i.e. xor) to 

the previous encrypted data block. CBC offers much better security, but in ECB mode a 

message is encrypted in less time. 

2.2 Structures and Arithmetic Operations in Symmetric Ciphers 

Symmetric key ciphers are designed in such a way that it will as difficult to break as 

possible. In order to achieve the highest security level, designers have to consider, 

among others, the kind of arithmetic operations that will be used, the size of the data 

block and secret key, and the number of processing rounds.  

Data block and key size affect the hardware resources that will be needed, mostly the 

number of registers and memory allocation. Key size also heavily contributes to the 

cipher’s security level, because, when using brute force attack, the required computing 

power increases exponentially with it. Today an acceptable key size is at least 80-bit, 

while 128-bit will probably remain unbreakable by brute force attacks for the 

foreseeable future.  

The number of rounds also affects considerably a cipher’s security level, because, in 

each one of them, previous processed data get “scrambled” even more. It is on the 

designer’s decision of how many total rounds a cipher will consist of. Fewer rounds 

mean lesser security, but on the other hand, quicker data block processing. As a result, 

the appropriate round number depends on the round’s itself strength, i.e. the arithmetic 

operations that are applied to a data block in each one of them. 

When the above ciphers had been designed, processors were still 32-bit and, 

consequently, most of the arithmetic operations are chosen to take advantage of it. Also, 

it is imperative that these operations present rapid bit diffusion, in order to increase the 

cipher’s security. After deep analysis, it was concluded that the operations and 

structures most commonly used are: 

1. Unsigned addition and subtraction modulo 232 

2. Multiplication modulo 232 

3. Exclusive or (xor) between 32-bit data 
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4. Fixed shifts and rotations 

5. Data depended shifts and rotations 

6. Finite field polynomial multiplication in 28 modulo a prime polynomial 

7. Expansions and permutations (Xboxes) 

8. Substitution boxes (Sboxes) 

9. Feistel network structures[11] 

In 32-bit processors, operations from 1 to 6 are implemented very fast, except from the 

finite field polynomial multiplication (FFM) modulo a prime polynomial, for which 

there is no efficient hardware support. The essential difference between a regular 

multiplication and FFM is that the first summarizes the partial products, while the 

second makes a XOR operation between them. However, symmetric ciphers perform 

FFM modulo a prime polynomial, which requires an additional division of the 

multiplication result with the value that represents the prime polynomial. 

Additions, subtractions and XOR are the simplest operations, which are used to 

scramble data. Because they are very fast in software and hardware, they provide lesser 

security. However, they are used to isolate direct communication among other 

operations. Fixed rotations are mainly used in conjunction with software 

implementations to get specific data bits to places, from where they will be used by 

other operations. Data depended rotations can be performed quickly in software and 

hardware and if combined with arithmetic operations, such as addition, they are very 

effective against linear cryptanalysis. A problem is that rotation of a w-bit word 

depends on log2 w bits, a fact that may lead into differential weaknesses of a cipher. 

However it can be bypassed if such an operation is combined with multiplication. In the 

latter the main cryptographic strength is the high order bits of the product, because they 

are almost depended on all operands bits in a non-linear fashion [3]. 

Besides arithmetic operations, there are common structures among ciphers. Sboxes are 

usually non-linear structures that map an n-bit value to an m-bit value, essentially Look 

Up Tables (LUT). A symmetric cipher may have one or more different Sboxes, with 

each one of them having arbitrary dimensions, as shown in Figure 3. Also the Sbox may 

even be the only non-linear part of the cipher. 
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Carefully chosen Sboxes can provide good resistance against linear and differential 

attacks, as well as good data and key bits avalanche. A drawback when using them is 

their relative slow software implementation. Also their index consists of a few bits 

(otherwise they would be too large), so they must deliberately be placed in a cipher. 

S-box1

m bits

S-boxK

j bits

 

Figure 3 - Sboxes 

Permutation is the structure where bits change place among each other, while in 

expansion, bits are also mixed but some of them appear more than once. They are linear 

operations, and thus not sufficient to guarantee security. However, when used with good 

non-linear Sboxes, they are vital for the security because they propagate the non-

linearity uniformly over all bits.

Finally, Feistel network is the structure that most symmetric ciphers use, and combines 

all processing rounds with their inner operations [11]. As shown in Figure 4, plaintext is 

split into smaller blocks and one of them is passed through an F function with the 

combination of an expanded key Ki, where i, is the appropriate round number. After 

that, the result is xored with other blocks and, before next rounds initiates, a data block 

rotation occurs. The Feistel structure has the advantage that encryption and decryption 

operations are very similar, even identical in some cases, requiring only a reversal of the 

key schedule. Therefore the size of the code or circuitry required to implement such a 

cipher, is nearly halved. 
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Figure 4 – Feistel network structure 
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3. Related Work 

This chapter focuses on related work that has been done in software (assembly) and 

hardware level. As it is easily comprehended, there are vast implementations for all 

symmetric ciphers; however many older ones may be abandoned, because of their low 

security level. Also, the National Institute for Standards and Technology (NIST) 

exhaustively researched for three years for the five round two AES finalists among 

many AES candidates [I11]. These facts indicate that, from now on, these ciphers will 

be the most commonly used ones, a conclusion, which is confirmed from the fact that, 

most of the related work in symmetric algorithms, also focuses on these ciphers, as it is 

shown in the next sections. 

3.1 C and Assembly Implementations 

In this section we provide some of the best implementations for the five AES finalists 

reported so far in literacy, using assembly or the C software language, which can be 

found in [14], [22] and [I10]. Performance is measured in clock cycles, a metric which 

does not depend on processor’s operating frequency with the same ISA. Chart 2 shows 

implementations for the Intel’s Pentium Pro [16], Pentium II [17], Pentium III [18] 

families, plus Alpha 21164 [20] and Sun’s SPARC processors [19], while Chart 3 for 

Pentium Pro, Pentium II, Pentium III families, plus Digital Equipment’s Alpha 21164, 

Itanium 64 [15], and Precision Architecture (PA) RISC 8500 processors [21]. 

As it becomes clear from these charts, for every cipher on Pentium Pro, Pentium II, 

Pentium III families and Alpha 21164 processors, the relative assembly implementation 

is much faster than the C one. Exception is Serpent, where on Intel’s processors the C 

implementation (759 cc) is slightly faster than in assembly (771 cc). Also, once the 

Rijndael cipher is the new AES standard, it was considered necessary to examine some 

additional more recent assembly and C implementations. In Chart 4 they are shown for 

all previous processors, plus Intel’s Pentium 4 [23], Digital Equipment’s Alpha 21264 

[24], AMD’s (Advanced Micro Devices) Athlon [25] and PowerMac G4 processors 

[I12]. 
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Chart 2 – C implementations 

0

200

400

600

800

1000

C
lo

ck
 c

yc
le

s

MARS RC6 Rijndael Serpent Twofish

Assembly implementations

PentiumPro, PII, PIII Alpha 21164 Alpha 21264
I64 Pentium PA-RISC 8500

 

Chart 3 – Assembly implementations 
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Chart 4 – Rijndael assembly and C implementations 

3.2 Algorithm Specific Hardware Implementations 

Besides software implementations, there are also many hardware specific ones, based 

on FPGA devices or ASICs (Application Specific Intergraded Circuits). This 

implementation category provides ultra speed performance (much higher than in 

software) for each symmetric algorithm, because of the dedicated hardware processors. 

Few of the fastest AES implementations are the ones below, which are also summarized 

in Chart 5: 

• Alireza Hodjat et al in [26] use a VirtexII Pro FPGA [27] and achieve a 21.4 

Gbits/sec throughput with a latency of 31 cycles. 

• Maire McLoone et al in [28] utilize LUTs in a VirtexE FPGA [29] to implement 

the entire encryption process, achieving a 12 Gbits/sec throughput. 

• P. Chodowiec et al in [30] use a Virtex XCV1000 FPGA [31] and introduce the 

usage of pipeline stages inside of a cipher round, achieving a 12.1Gbits/sec 

throughput. 
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• Alireza Hodjat et al in [32] present a 0.18μm CMOS (Complementary Metal-

Oxide Semiconductor) technology AES crypto coprocessor that runs at 330 

MHz with a 3.84 Gbits/sec throughput. 

• Sumio Morioka et al in [33] describe a 0.13μm CMOS technology AES IP 

(Intellectual Property) core that runs at 880 MHz with a 10Gbits/sec throughput. 
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Chart 5 – AES hardware specific implementations 

Few of the fastest RC6 implementations are the ones below, which are also summarized 

in Chart 6: 

• Jean-Luc Beuchat et al in [34] use VirtexE and Virtex2 FPGAs, and achieve a 

maximum 15.2 Gbits/sec throughput. 

• Elbirt et al in [35] use Virtex FPGAs to implement all AES finalists except 

MARS and the maximum achieved throughput is 2.4 Gbits/sec. 

• Ichikawa et al in [36] use Mitsubishi’s 0.35 μm CMOS ASIC library and yield a 

throughput of 203.96 Mbits/sec. 
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Chart 6 – RC6 hardware specific implementations 

Few of the fastest Serpent implementations are the ones below, which are also 

summarized in Chart 7: 

• Elbirt et al in [37] use a Virtex 1000 FPGA and achieve a 4.86 Gbits/sec 

throughput. 

• Ichikawa et al in [36] use Mitsubishi’s 0.35 μm CMOS ASIC library and yield a 

throughput of 931.58 Mbits/sec. 

• Bora and Czajka in [38] use an Altera Flex 10K FPGA [39] and achieve a 

maximum throughput of 301 Mbits/sec. 

Few of the fastest Twofish implementations are the ones below, which are also 

summarized in Chart 8: 

• Elbirt et al in [37] use a Virtex 1000 FPGA and achieve a 1.58 Gbits/sec 

throughput. 

• Schneier et al in [42] give hardware sizes and speed estimates that function at 

150 MHz with a maximum 1.2 Gbits/sec throughput. 

• Ichikawa et al [36] use Mitsubishi’s 0.35 μm CMOS ASIC library and yield a 

throughput of 394.08 Mbits/sec. 
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Chart 7 – Serpent hardware specific implementations 

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

G
bi

ts
/s

ec

[37] Virtex [42] [36] 0,35 μm
CMOS

FPGA Hardware est. ASIC

 

Chart 8 – Twofish hardware specific implementations 

MARS has the smallest implementations number because of its complexity, large 

source utilization amount, slow processing speed and its Sboxes did not fulfill all NIST 

requirements [36], [37], [43]. Few of the fastest implementations are the ones below, 

which are also summarized in Chart 9: 
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• Ichikawa et al [36] use Mitsubishi’s 0.35 μm CMOS ASIC library and yield a 

throughput of 225.55 Mbits/sec. 

• Gaj and Chodowiec in [44] use a Virtex 1000 and achieve a 61 Mbits/sec 

throughput. 

• Dandalis et al in [45] use Virtex FPGAs and achieve a 203.77 Mbits/sec 

throughput. 
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Chart 9 – MARS hardware specific implementations 

From the various implementations that were mentioned above, it can be concluded that 

the Rijndael cipher performs the fastest processing speeds, while MARS the slowest 

ones. Indeed Rijndael offers very small implementation complexity, simple inner 

structure, high processing speed and security level, and low resource utilization, facts 

that deservingly made it the new AES [46]. 

3.3 Symmetric Ciphers ISA extensions and Hardware Co-Processors 

The last category in the related work that has been done, is somehow “in the middle” of 

the previous two ones and it focuses on symmetric ciphers specific hardware co-

processors. These designs may extend an existing processor’s architecture in order to 

support more efficiently symmetric ciphers, or even introduce new co-processors 

specifically for some of them. As it may be easily comprehended, this category can be 
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characterized as the hardest of all, because it requires deep parallel analysis of many 

symmetric ciphers and extra effort, in order to obtain a balanced between performance 

and flexibility design. 

3.3.1 Symmetric cipher accelerators and ISA extensions 

Burke et al in [47] are trying to improve the performance of symmetric ciphers for the 

Alpha 21264 processor by examining eight algorithms. After analysis of bottleneck in 

these ciphers, they conclude to an extended ISA that consists of hardware rotations, 

modulo multiplication, permutation and Sbox access instructions and may achieve up to 

a 74% speedup over the baseline machine. 

Murat Fiskiran et al in [54] study the effect of different addressing modes that can be 

used to calculate the effective address during Sbox access. More specifically they 

determinate how performance is affected on 1, 2, 4 and 8 wide EPIC (Explicitly Parallel 

Instruction Computer) processors depending on addressing mode of the architecture, 

issue width of the processor and number of memory ports. The results indicate that 

speedups exceeding 2x can be obtained when fast addressing modes are used. 

Another similar approach comes from [53], where the same authors describe a new 

hardware module called PTLU (Parallel Table Look Up). It consists of multiple LUTs 

that can be accessed in parallel and its purpose is again Sbox access acceleration. Their 

results show maximum speedups of 7.7x for AES and 5.4x for DES, all tested on a 

single-issue 64-bit RISC processor. 

Finally, Jung et al in [49] are trying to accelerate multiplication in GF (2n) execution, an 

operation rather frequent in symmetric ciphers as stated in section 2.2. To be more 

specific, in this project they automate the design process for this kind of multipliers with 

VHDL (Very high speed intergraded circuit Hardware Description Language) and 

compare their results with other GF multipliers both on FPGA and ASIC 

implementations. 

3.3.2 Hardware co-processors 

Wu et al in [50] introduce the Cryptomaniac processor, a fast and flexible co-processor 

for cryptographic workloads. As it is mentioned on the paper, first they perform a cipher 

kernel bottleneck analysis on five symmetric ciphers and, in order to improve 

performance, a 4-wide 32-bit VLIW machine with no cache and a simple branch 
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predictor was designed. Its ISA consists of three instruction classes (tiny, short and 

long), giving a throughput of 512 Mbits/sec for AES. The design runs at 360 MHz in 

0.25μm process and consumes 606mW. Figure 5 shows a high level schematic of 

Cryptomaniac’s architecture, where BTB and FU stand for “Branch Target Buffer” and 

“Functional Unit” respectively. 

 

 

Figure 5 – Cryptomaniac’s high level schematic architecture 

Another similar approach comes from [52], where Oliva et al describe the Cryptonite, a 

programmable processor tailored to the needs of cryptography algorithms. The target 

frequency was 400 MHz in TSMC’s 0.13 μm process [I14]. It consists of a three-stage 

pipeline datapath with two clusters and uses 64-bit instructions. Figure 6 shows its 

architecture overview. Each cluster consists of 4 64-bit registers, which are used from 

the two ALUs (Arithmetic Logic Units) and can also be exchanged. In addition, it has 

an “Address Generation Unit”, which is being used from local data memory, in order to 

efficiently implement Sbox access operations. Results show a 68 Mbits/sec 3DES and a 

~700 Mbits/sec AES performance. 
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Figure 6 – Cryptonite architecture overview 

Elbirt et al in [51] describe a design named COBRA, a specialized reconfigurable 

architecture that is optimized for the implementation of block ciphers. In order to be 

developed, many ciphers were analyzed leading to an ISA that supports arithmetic 

operations, modulo multiplication, GF multiplication and Sbox access modes. Figure 7 

shows COBRA’s schematic architecture, where RCE stands for “Reconfigurable 

Cryptographic Element”. Each one of them performs a specific operation which can be 

selected from its 80-bit ISA. A notable characteristic of the COBRA design is that its 

reconfiguration capability affects function frequency; RC6, AES and Serpent are 

processed at 60.975 MHz, 102.41 MHz and 54.054 MHz respectively, achieving a 

maximum throughput of 3.9Gbits/sec, 1.451 Gbits/sec and 2.306 Gbits/sec respectively, 

while targeting a 0.35 micron Synopsys Design Compiler library [I17]. 
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Figure 7 – COBRA architecture and interconnection 

Dongara and Vijaykumar in [48] introduce another encryption mode called ICBC 

(Interleaved Cipher Block Chaining), which loosens the recurrence imposed by CBC 

and enables multiple encryption streams to be overlapped. ICBC evaluation is done with 

Wisconsin Wind Tunnel II [55] on SMP (Symmetric MultiProcessor). Various test for 

eight symmetric ciphers are performed on 2, 4, 8 and 16-processor schemes operating at 

speeds from 1 to 4 GHz. Results indicate a maximum speedup factor of 10x, achieving 

about 800 Mbits/sec for AES. 

A final project that has few similarities with CCproc, is [I13] from Princeton University, 

called PAX. Until now there are no publications or official performance results. 

However, as it is stated in its official web page, PAX is datapath-scalable, minimalist 

cryptographic processor architecture for mobile and wireless information appliances, 

based on a simple RISC ISA, extended with few low-cost instructions. As far as it is 

known this project, as CCproc, are the only ones that their ultimate goal is to provide 

efficient symmetric cipher hardware process acceleration, beyond any specific 

algorithm in mind. 
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4. CCproc Architecture 

In this chapter we focus on describing CCproc’s architecture. First, a few design 

considerations will be discussed about the goal of this project and how it differs from 

other designs. After that follows CCproc’s ISA and datapath structure in a detailed 

description along with documentation. 

4.1 CCproc Design Considerations 

As it can be concluded from related work that was presented in section 3.3 about 

symmetric ciphers hardware co-processors, each one of them utilizes its own unique 

architecture, targeted on a selected group of cryptographic algorithms. The only 

exception is the PAX project, which is not yet completed and, as stated before, is based 

on a simple RISC ISA. 

Our initial motivation of this project was a hardware design, flexible enough to support 

many of today’s popular symmetric ciphers, but also potential new ones. As years go 

by, previous symmetric ciphers that use keys smaller than 128-bit are likely to be 

abandoned, because they will be vulnerable to brute-force attacks. So, after we analyzed 

them carefully, we discovered that some of their functional principles were not adopted 

by the newest ones. 

• A first example is bit permutation or expansion, which is primary used from 

DES. Although in combination with carefully designed Sboxes, it offers strong 

security, none of the AES round two finalists used it. Only Serpent has an initial 

and final permutation, from which, as mentioned in its official submission, the 

bitslice version is much more efficient. In fact, these permutations have no 

security purpose, but they are only used to switch the cipher from regular to 

bitslice mode. Although there have been studied structures that offer arbitrary bit 

permutations, they require a considerable amount of hardware [56] and though it 

was decided not to be used.  

• Another example is arithmetic operations using data with other than 32-bit or 

multiples of it. Again DES is an example, which starts with a 64-bit key that is 

immediately reduced to a 56-bit data value and then is split into two 28-bit data 

values. In contrast, all of the AES round two finalists use only 32-bit multiples 
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data values, because 32-bit processors were their initial target. As a result, this 

observation led us to use 32-bit operations. 

• Complexity of the key expansion process is another aspect, which were not 

inherited to new 128-bit ciphers. Indeed there were cases where this part of a 

symmetric cipher was very slow, although it is not required during data 

exchange. However, this factor is prohibitive for such algorithms utilization in 

restricted devices (smartcards), where key changes every few milliseconds. A 

strong example is Blowfish where, in order to complete the key expansion 

process, Blowfish itself is required to run 1042 times. In contrast, all AES round 

two finalists consist of much simpler key expansion processes, with the 

exception of MARS. The latter in fact was negatively criticized, because, among 

others, of its complex and weird key expansion process. As a result, in order to 

explicitly support a cipher’s key expansion process, the only extra functional 

unit that we would add is a KRF (Key Register File) memory module in order to 

store all expanded keys, plus an ISA expansion to support operations between 

RF’s (Register File) data and KRF’s data. The latter is explicitly described in 

section 4.3.3. 

• Another characteristic that was not used by any of the AES round two finalists is 

variable Sboxes. In contrast, every one of them uses its own Sboxes, which 

remain constant during the key expansion and encryption / decryption process. 

Twofish is the only one that interleaves two 32-bit XOR operations between its 

three Sboxes structures, which simply alters the final Sbox output. Older 

algorithms, such as Blowfish and RC4, required their Sboxes first to be 

initialized before encryption commences. As a result we decided in CCproc to 

have few ROMs (Read Only Memory) as cipher specific Sboxes and small 

RAMs (Random Access Memory) for new Sboxes support, plus available data 

space during the key expansion process. However, [53] that was described in 

section 3.3 and published after CCproc’s first version design was completed, 

proposes flexible structures capable to implement various Sbox sizes. 

Integration of such structure might help to reduce CCproc’s second version 

design complexity somewhat and increase even more its functional frequency 

and flexibility. 
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Another consideration was to record in symmetric ciphers their instruction types, an 

aspect described in Chapter 2, and frequency occurrence. This research revealed a high 

frequency occurrence of two dependent, back-to-back instructions. Examples are double 

additions, subtractions and XOR, and addition or subtraction followed by a XOR. In 

order to save valuable computing clock cycles, we decided that this type of double-

instructions should be included in CCproc’s ISA. 

We also observed that all AES round two finalists treat 128-bit plaintext as four 32-bit 

words. Initial thoughts consisted of a single 32-bit RISC datapath structure extended to 

support an enhanced symmetric cipher ISA. After a few cipher implementations in such 

a design, it was quickly discovered that the latter was too narrow to achieve an adequate 

performance. Many times during processing, symmetric ciphers require 64-bit, 96-bit or 

even 128-bit data values at the same time in order to proceed, so with a narrower 

datapath, additional clock cycles are spent on fetching all appropriate data to the 

functional unit that will use them. This performance obstacle led to the decision to 

examine the level of parallelism that can be reached for each one of the AES round two 

finalists when breaking into four small threads and running in a hypothetical 5-stage 

pipelined datapath structure, which could be able to process up to four 32-bit operations 

in one clock cycle. Its abstract schematic overview is shown in Figure 8 where each 

cluster consists of a 4-stage pipelined datapath (decode, execution, data memory, write 

back), and the results are shown in Chart 10. 

This Chart shows utilization of the previously mentioned datapath for each one of the 

ciphers while taking advantage of the double-instructions mentioned before. In order to 

extract these results, first we wrote an assembly program for each cipher and then we 

optimized it as much as possible by taking advantage of the four clusters. More 

specifically, we analyzed each one of these programs and detected which of the 

instructions could be concurrently processed. The worst cases are when only one, or 

even none instructions can be processed during a clock cycle, because data have not 

been yet computed, while the best case is when each cluster processes an instruction, 

leading to maximum parallelism. In Chart 10, the higher a column is, the better the 

parallelism. For example AES and Serpent can benefit more from a wider datapath 

structure than the other ciphers. Having in mind a design that would achieve 

competitive performance, it was finally considered a VLIW processor that would 
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consist of four 32-bit clusters, capable to process four 32-bit instructions in one clock 

cycle. 

 

Figure 8 – CCproc’s abstract schematic overview 
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Chart 10 – AES round two finalists level of parallelism in a 128-bit datapath structure 
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Another conclusion that came up from the cipher analysis above was the small number 

of 32-bit registers utilization. In each cluster a maximum of four registers were used 

ending up to a total of sixteen 32-bit registers among the four clusters. However, it was 

decided an 8x32 RF in each cluster, in order to cover the case where a cipher, that was 

not tested, might need additional registers. 

Also, an important consideration was if all clusters would be identical to each other. 

First thoughts consisted of not to include all large functional units, such as modulo 

multipliers, in every cluster, for hardware reduction resources reasons. But after further 

analysis, it was discovered that this way certain cipher threads would need to be 

“locked” on running in specific clusters, in order to avoid additional data movement 

between them, leading to an increased number of processing clock cycles, plus a 

reduced datapath flexibility. Having in mind a future design being capable to process 

independent threads from different ciphers, resulting to a significantly increased 

throughput, it was decided to implement four almost identical clusters. 

Another aspect regarding the efficient CCproc’s ISA expansion was the kind of control 

instructions that would be supported, such as branches or jumps. A fact that 

characterizes every symmetric cipher is the determined rounds number during the key 

expansion process plus encryption / decryption. As a result they can be written in a way 

that requires absolutely no branch tests. This observation led to the decision of not to 

support any kind of branch instruction that its direction could not be pre-evaluated, 

costing additional datapath stalls and hardware resources. In contrast, we decided, after 

detailed cipher analysis, to support only a “loop” instruction that would add no stalls, 

because the round number would have been a priori specified. As it was verified from 

later implementation tests, this scheme worked very well eliminating nearly all of the 

branch-related pipeline stalls. A more detailed hardware description is in section 4.3.1. 

A final consideration was cipher support. As we mentioned earlier in this section, every 

cipher that uses keys smaller than 128-bit are considered as non-secure. In addition, as 

Huffmire in [61] mentions, a cryptography co-processor should be able to support as 

many ciphers as possible, in order to provide a strong security level against various 

kinds of attacks. This fact lead us to the decision to design a co-processor capable to 

process today’s (2005) best ciphers, i.e. the AES round two finalists, plus to have an 

extended ISA efficient and general enough to cover future algorithms. 
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4.2 CCproc Instruction Set Architecture 

After evaluating all the above considerations, we designed the ISA of CCproc. 

Supported instructions are categorized to four primary formats, Register, Immediate, 

loop and cipher, which are shown in Table 2. Also Table 3 shows the field meaning. 

31-27 26-2221-19 18-16 15-13 12-10 9-8 7-4 3 2 1 0
R opcode func rdx rsa rsb rsc mx nu KRFWrEn nu KRFPInc nu
I opcode func rdx rsa Ix[15..0] 

loop opcode nu label[11..8] mx label[7..0] 
cipher opcode nu rdx rsa rsb nu opt 

Table 2 – MyDesgin’s ISA formats 

Each instruction format, as already stated, is 32-bit, while bits are numbered from 31 

down to 0, with 31 being the MSB (Most Significant Bit). First row shows the bits that 

each field uses, while the others show how fields have been split in each format. 

The “opcode” field is used by every format, in order to distinct from each other and for 

easier instruction decoding. It is a 5-bit field and is analyzed in Table 4. 

Field Explanation Description 
opcode operation code Determines instruction format 

func ALU function Function that ALU, GFM or MM will perform  
rdx RF destination register Register that will be written 
rsa RF source a register 1st register to be read 
rsb RF source b register 2nd register to be read 
rsc RF source c register 3rd register to be read 

mx move from cluster Specifies if a cluster will get data from another 
cluster 

label instruction label Beginning address of a loop 
Ix immediate Immediate data value 

KRFWrEn KRF write enable Enables KRF’s write enable 
KRFPInc KRF pointer increment Enables KRF’s pointer increment by 1 

opt cipher options Specifies various modes of cipher instructions 
nu not used These bits are not used 

Table 3 – Field explanations 

Bit Description 
4 Specifies if RF will be written 
3 Shows if it is an I format instruction or not 
2 Shows if it is a Cipher format instruction or not 

1-0 Select Sboxes 
Table 4 – “opcode” field analyzation 
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R and I formats use the “func” field, which, as mentioned in Table 2, specifies the 

ALU’s (Arithmetic Logic Unit), GF (Galois Field) multiplier or MM (Modulo 

Multiplier) operation. Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε. 

summarizes all supported instructions in R, I and loop formats. 

Format Operation Syntax Description 
add add rdx,rsa,rsb adds rsa with rsb and stores the result to rdx 

and and rdx.rsa,rsb logic and between rsa and rsb, and stores the 
result to rdx 

gfm gfm rdx,rsa 
galois field multiplication in GF(28) between 
rsa and GF operand x and the result is stored 
to rdx 

krfpaz krfpaz resets KRF's pointer to first address 

ldgfmr ldgfmr rsa 
loads 8-bit mr register with rsa's value, which 
holds modulo polynomial in Galois Field 
multiplication 

ldgfopx ldgfopx rsa loads Galois Field operand x with rsa's value 
ldlc ldlc #a loads 6-bit lc register with #a 

mmult mmult rdx,rsa,rsb modulo 232 multiplication between rsa and 
rsb and the result is stored to rdx 

or or rdx,rsa,rsb logic or between rsa and rsb, and stores the 
result to rdx 

r2c/c2r r2c / c2r rdx,rsa toggles between rows and columns in a 128-
bit data value 

rol rol rdx,rsa,rsb rotates left rsa by the amount specified from 
rsb's 5 LSBs and stores the result to rdx 

ror ror rdx,rsa,rsb rotates right rsa by the amount specified from 
rsb's 5 LSBs and stores the result to rdx 

shl shl rdx,rsa,rsb shifts left rsa by the amount specified from 
rsb's 5 LSBs and stores the result to rdx 

shr shr rdx,rsa,rsb shifts right rsa by the amount specified from 
rsb's 5 LSBs and stores the result to rdx 

sub sub rdx,rsa,rsb subtracts rsb from rsa and stores the result to 
rdx 

xor xor rdx,rsa,rsb logic xor between rsa and rsb, and stores the 
result to rdx 

addadd addadd rdx,rsa,rsb,rscadds rsa with rsb, adds the result to rsc and 
stores it to rdx 

addsub addsub rdx,rsa,rsb,rsc adds rsa with rsb, subtracts rsc from the result 
and stores it to rdx 

addxor addxor rdx,rsa,rsb,rsc adds rsa with rsb, logic xor between rsc and 
the result and stores it to rdx 

subadd subadd rdx,rsa,rsb,rsc subtracts rsb from rsa, adds the result to rsc 
and stores it to rdx 

R 

subsub subsub rdx,rsa,rsb,rsc subtracts rsb from rsa, subtracts rsc from the 
result and stores it to rdx 
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subxor subxor rdx,rsa,rsb,rsc subtracts rsa with rsb, logic xor between rsc 
and the result and stores it to rdx 

xoradd xoradd rdx,rsa,rsb,rsc logic xor between rsa and rsb, adds the result 
to rsc and stores it to rdx 

xorsub xorsub rdx,rsa,rsb,rsc logic xor between rsa and rsb, subtracts rsc 
from the result and stores it to rdx 

xorxor subxor rdx,rsa,rsb,rsc logic xor between rsa and rsb, logic xor 
between rsc and the result and stores it to rdx

addi addi rdx,rsa,#a adds rsa with #a and stores the result to rdx 

andi andi rdx.rsa,#a logic and between rsa and #a, and stores the 
result to rdx 

lui lui rdx,#a loads 16-bit value #a to rdx's 16 MSBs 

ori ori rdx,rsa,#a logic or between rsa and #a, and stores the 
result to rdx 

roli roli rdx,rsa,#a rotates left rsa by the amount specified from 
#a's 5 LSBs and stores the result to rdx 

rori rori rdx,rsa,#a rotates right rsa by the amount specified from 
#a's 5 LSBs and stores the result to rdx 

shli shli rdx,rsa,#a shifts left rsa by the amount specified from 
#a's 5 LSBs and stores the result to rdx 

shri shri rdx,rsa,#a shifts right rsa by the amount specified from 
#a's 5 LSBs and stores the result to rdx 

subi subi rdx,rsa,#a subtracts #a from rsa and stores the result to 
rdx 

I 

xori xori rdx,rsa,#a logic xor between rsa and #a, and stores the 
result to rdx 

loop loop loop label jumps to the beginning of a loop which starts 
at address “label” 

Table 5 – Supported operations in R, I and loop formats. Bold means double instructions and italic 

means custom instructions. 

We should note that these instructions are also used for operations between KRF’s and 

RF’s registers, plus for data movement between clusters. In section 5.1 there is a 

detailed description of CCproc’s Python [I15] assembler and cipher examples that show 

how this kind of operations is supported. 

Cipher instruction format is used from MyDesing’s first version design and its purpose 

is an efficient Sbox access, depending on the cipher that is processed. Note that should 

the cipher Sboxes are replaced with a more dynamic structure in a future version, this 

format will need to be updated. Table 6 shows all supported cipher instructions. 
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Instruction Syntax Description 

aesX aesX rdx,rsa Sbox access during AES encryption or decryption 
(X=E,D) with rsa and the result is stored to rdx 

marsX marsX rdx,rsa 
Sbox access during MARS forward mode, 
backward mode, or E function (X=F,B,E) with 
rsa and the result is stored to rdx 

serX serX rdx,rsa 
Sbox access during Serpent encryption or 
decryption (X=E,D) with rsa and the result is 
stored to rdx 

tX tsld rsa,rsb / tsbox rdx,rsa
during Twofish, loads to S0 and S1 rsa and rsb 
respectively / Sbox access with rsa and the result 
is stored to rdx 

Table 6 – Cipher format instructions 

4.3 CCproc Datapath Structure 

After presenting CCproc’s ISA, this section focuses on describing its datapath structure, 

having as target device a Virtex 4 FPGA. First it shows in detail how every functional 

unit works and finally there is sub-section 4.3.8, where everything is put together to 

assemble CCproc co-processor. 

4.3.1 The Loop instruction controller circuit 

As we mentioned in section 4.1, after closer analysis of various symmetric ciphers, we 

concluded that a “loop” instruction it was enough to handle all control hazards. As it 

can be seen from Figure 9, which shows the loop controller circuit, there is “lc” register, 

two multiplexers A and B, a ‘1’ constant subtraction unit and a comparator.  

When an instruction is being fetched from instruction cache, it is checked if an “ldlc” or 

“loop” occurred. If it is the first case, then multiplexer A gives to “lc” the rounds 

number that a loop will be repeated. The latter is complete when a “loop” instruction 

occurs, and if “lc” value is greater than 1, then its current value is reduced by 1 and 

“nPCsel” signal is asserted, in order to enable a new instructions loop commencement. 

If it is 1, it means that the appropriate rounds number has been completed, “nPCsel” is 

not asserted and program execution continues normally. 
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Figure 9 – Loop controller 

For example, when we have a loop in C language, we can write it in CCproc’s assembly 

as it shown in Figure 10. Suppose that a, b, c and d variables are stored in each cluster’s 

r1 register. In CCproc’s assembly we first initialize the loop counter (lc) to 10 (a in 

hexadecimal) and then we begin the for-loop. It should be noted that each quad is 

executed in every clock cycle, so this loop will take 10 clock cycles to complete, 

however it will not issue any pipeline stall at all. 

 
Figure 10 – A C and its equivalent CCproc assembly language loop 
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4.3.2 Register File (RF) 

As we mentioned in section 4.1, cipher processing required a total amount of four 32-bit 

registers per cluster for each of the AES round two finalists. As a result CCproc’s RFs 

through each cluster, as was also explained earlier, are 8x32, which means eight 32-bit 

registers. RF is fully synchronous, which means that reading from and writing to it 

occurs on the positive clock edge. 

In order to be able to read up to three different registers in a single clock cycle, a three 

port RF was designed, as shown in Figure 11, having three copies of an 8x32 register 

set. During a read operation, each one of them can provide an independent 32-bit 

register, through each one of the “RdAddr1”, “RdAddr2” and “RdAddr3” address 

signals, resulting up to three 32-bit registers to “DataOut1”, “DataOut2” and 

“DataOut3” signals in single clock cycle. This is particularly useful when double-

instructions occur where three operands are needed at the same time. However, all 

copies must always be identical to each other, so there is only one “WrAddr”, “WrEn” 

and “DataIn” signal, writing every time the same data in each RF core. At this point we 

should note that a full-custom implementation of this RF would of course be much more 

efficient. 

When there is a case where one or more of the “RdAddr1”, “RdAddr2” and “RdAddr3” 

signals are equal to the “WrAddr” signal, i.e. a write and read operation occur on the 

same register, there is logic that passes immediately “DataIn” value to the appropriate 

“DataOutX” signal. In other words, this RF utilizes a Read-After-Write scheme. 

4.3.3 Key Register File (KRF) 

The KRF is a special RAM in each cluster’s decode stage, where a cipher’s expanded 

keys are stored. After analysis of AES round two finalists, these keys can be separated 

between CCproc’s KRFs in such a way that they would not need to be moved between 

clusters during a cipher’s encryption / decryption process. Every KRF is a 64x32 data 

space, meaning it has sixty four 32-bit registers. This size was chosen after observation 

of the expanded key’s data size and finding that it did not exceed a total of thirty three 

32-bit data values per cluster. 
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Figure 11 – CCproc’s main 8x32 RF 

Another fact is that every cipher uses its expanded keys serially forwards or backwards 

in some cases during decryption. As a result there is no need for a separate field in an 

instruction’s format to specify a KRF address, as it is being done during RF register 

read or write operations. In contrast, we decided to use only bit “KRFPInc”, which 

would enable a serial auto-increment KRF access. A similar KRF write scheme was 

also decided. More specifically, there is “KRFWrEn” bit, which when asserted, it 

enables serial data write to KRF with auto-incremented address generation. However if 

a cipher requires its expanded keys backwards, they should first be written in reverse 

order. 

Figure 12 shows the entire KRF circuit. As we can see, there is “KRFP” register, which 

is KRF’s pointer. Each time “KRFPinc” bit is asserted, multiplexer A will auto-

increment “KRFP” register by 1 in the next clock cycle, while the latter’s present value 

is used for KRF access. When an instruction uses KRF’s data during an operation, 

multiplexer B does not select RF’s “DataOut1” signal, but KRF’s “Dout” signal. During 

a KRF write operation, “KRFWrEn” bit is asserted, which directly connects to KRF’s 
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“WrEn” input and is also used for “KRFP” auto-increment, in order to point to the next 

address when another KRF write operation occurs. 
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Figure 12 – KRF circuit 

This functional unit supports continuous KRF write operations, i.e. an expanded key can 

be written every clock cycle. However, when the key expansion process has finished, 

“KRFP” must be reset to point again to KRF’s first position. Before this can be done, 

user must interleave a non KRF write operation between the last write operation and 

“krfpaz” operation, or else the final expanded key will not have enough time to be 

written. Also, in order to proceed to a KRF read operation there must be interleaved two 

clock cycles between the “krfpaz” operation and first read operation, in order to 

“KRFP” have enough time to be initialized. After these two clock cycles, again this 

circuit is capable to read an expanded key each clock cycle.  

4.3.4 Arithmetic Logic Unit (ALU) 

The ALU functional unit is the processor’s beating heart, because most of the 

instructions issued, use it. As we mentioned in section 4.2, there are many double-
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instructions that require three operands, which results to an ALU that has three 32-bit 

inputs and one 32-bit output. 

As it can be observed from Figure 13, there are three 32-bit ASUs (Addition / 

Subtraction Units), three 2-input 32-bit xors and three multiplexers. ASU A adds or 

subtracts inputs “In1” and In2”, while gate A makes a xor operation between them. If 

there is a double-instruction, results from ASU A and gate A, are passed, in 

combination with “In3”, through ASUs B and C, and gates B and C. Finally 

multiplexers A, B and C are used to select appropriate data depending on the value of 

“func” field while, in arrows before multiplexer C is shown operation allocation. ALU 

instructions have the below specific format: 

Result ← (In1 op1 In2) op2 In3 

where “In1”, “In2” and “In3” are the three “ALU core 1” inputs and op1, op2 are the 

two operations that may be performed. 

 

0         1
A

0         1
B

 

Figure 13 – CCproc’s “ALU core 1” 

In Table 7 we analyze “func” field and show how its value is assembled depending on 

operation that is about to be performed. As we mentioned in section 4.2, “func” is a 5-

bit field, with each one having its own meaning: 
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• Double indicates if there is a double-instruction or not. 

• Xor2 means that op2 = xor. 

• Xor1 means that op1 = xor. 

• Add2 means that op2 = add / sub. 

• Add1 means that op1 = add / sub. 

Besides the “ALU core 1” there is another functional unit, called “ALU core 2”, that is 

used for data rotations and shifts, and is shown in Figure 14. More specifically there are 

two SRUs (Shift / Rotate Units), which take as inputs 32-bit “DataIn” that will be 

shifted / rotated, a 5-bit “amount” that indicates the specific shift / rotation amount plus 

a “shift / rotate” signal that selects shift or rotation. Once the two SRU’s have finished, 

multiplexer A selects the appropriate direction, depending on instruction that were 

issued. 

Instruction double (bit 4) xor2 (bit 3) xor1 (bit 2) add2 (bit1) add1 (bit 0)
add 0 0 0 0 0 
sub 0 0 0 0 1 
xor 0 0 1 0 0 

addadd 1 0 0 0 0 
addsub 1 0 0 1 0 
addxor 1 1 0 0 0 
subadd 1 0 0 0 1 
subsub 1 0 0 1 1 
subxor 1 1 1 0 1 
xoradd 1 0 1 0 0 
xorsub 1 0 1 1 0 
xorxor 1 1 0 0 0 

Table 7 – “func” field analysis 
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Figure 14 – CCproc’s “ALU core 2” 

4.3.5 8-bit Galois Field (GF) Multiplier in GF(28) 

As we mentioned in section 4.2, the GF multiplier that is used in CCproc, performs 8-

bit multiplications modulo a prime polynomial over GF(28). From the AES round two 

finalists, AES and Twofish use this kind of operation, both utilizing static 4x4 matrices, 

where each cell contains a byte and modular polynomials. 

In order to design a small and rather fast GF multiplier, based on [49], it was decided 

first to design a PPG (Partial Product Generator) and then use it to implement the entire 

unit. Figure 15 shows PPG’s schematic, which takes as input a byte “In1” that first is 

shifted left one bit. The result is then xored with input byte “mp”, which is the modular 

polynomial that a cipher uses. Multiplexer A selects shifted data or xored data, 

dependeing on “In1” MSB and then multiplexer B selects as final output ‘0’ or 

multiplexer’s A output, according to bi. The latter bit is the ith bit of the second operand 

that is used in GFM, where i=0...7. As a result, a PPG has two outputs, “PPG (i+1)” that 

goes to the next PPG, and “pout” that is the ith’s PPG partial product. 
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Figure 15 – Partial product generator 

These partial generators now are cascaded in the way that is shown in Figure 16, 

assembling an 8x8 GF multiplier. However, while testing, its timing characteristics as a 

complete combinational circuit were not satisfactory, so we pipelined the multiplier. 

Instead of using adders to summarize complete product from the partial ones, we are 

using XOR gates, according to the specification of GF(28) multiplication that XOR 

intermediate results. 

The GF multiplier 8x8 unit can compute the product between two bytes in GF(28). 

However in AES and Twofish there were four 32-bit words (intermediate plaintext) and 

a 4x4 static matrix with each cell consisting of a byte, resulting to another four 32-bit 

words. As a result processing a cipher would require a total of sixteen 8x8 

multiplications, each having a 1 clock cycle latency. This fact leads to a tremendous 

cycle-consuming multiplier, which slows down significantly a cipher’s process. 
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Figure 16 – GFM 8x8 

In order to avoid such latency, we decided to increase the number of GFM’s 8x8 to 

sixteen, to take advantage of the fact that these multiplications can be computed entirely 

in parallel. Figure 17 shows a GF multiplier 16x8x8 schematic, where “a” is a 32-bit 
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input consisting of bytes [a3:a2:a1:a0], “op3”, “op2”, “op1” and “op0” are the four 

matrix columns ,”mr” is a register that holds the appropriate modular polynomial and 

“R” is GF multiplier’s result. 

 

Figure 17 – GFM 16x8x8 

For example, suppose that the following multiplication has to be performed: 
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There are sixteen internal GF(28) multiplications, whose intermediate results are xored. 

GF multiplier 16x8x8 can concurrently compute all of them in just 1 clock cycle. Note 

that circuit complexity has been increased, affecting slightly its maximum operating 

frequency, however computing clock cycles remain the same as in GF multiplier 8x8. 

4.3.6 32-bit Multiplier Modulo 232 (MM) 

Newest FPGAs, such as the Virtex 4, Spartan 3 [57] and Virtex 2 series, have embedded 

18x18 multipliers in order to maximize performance. In addition, Virtex 4 FPGAs have 

a new block called “XtremeDSP slice” that intergrades an 18x18 multiplier along with a 

48x48 adder. Reference [58] has an application note, which was used, on how to form a 
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32x32 multiplier from these smaller ones; however its 32 MSBs were omitted, in order 

to perform modulo 232 computations, as it is shown in Figure 18. 

+

+

+

 

Figure 18 – 32x32 multiplier modulo 232 

As it was mentioned, in each slice there is an 18x18 multiplier, resulting in the 

utilization of three such units along with their respective adders. Slices 1 and 3 are used 

to produce the final result’s bits, while slice 2 to compute an intermediate product. It 

should be also noted that every slice has, among others, a register between multiplier 

and adder called “M”, plus one before each output called “P” and have been used to 

increase its maximum operating frequency. These registers in combination with the 

external “R” one, lead to a cost of 2 computing clock cycles per modulo multiplication. 

4.3.7 Cipher Sboxes 

As we stated in section 4.1, in CCproc’s first version have been used specific cipher 

Sboxes, instead of a more general and flexible scheme. This section focuses on the 

description of these Sboxes separately for every cipher, and their integration to the 

entire design. All Sboxes have been placed to each cluster’s memory stage, with the 

exception of Twofish, where a small portion is also in execution stage for reasons 

explained below. It should be noted that there is no reference to RC6 cipher, because it 

does not utilize any Sboxes at all. 
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• AES cipher Sboxes 

Rijndael algorithm uses, one could say, the simplest structure for its Sboxes comparing 

to the other AES round two finalists. They consist only of two 256x8 Sboxes, one used 

for the encryption and one for the decryption process. 

Figure 19 shows how Sboxes have been implemented in CCproc’s each cluster, where 

“E” stands for encryption and “D” stands for decryption mode. In order to maximize 

parallelism, every 32-bit data that come through the “In” signal, are separated to four 

bytes each utilizing a Sbox. After Sbox access, there have been produced four bytes 

from E-Sboxes and four from D-Sboxes, which are concatenated into two 32-bit words. 

Finally, depending on the cipher mode, multiplexer A, which is controlled from “mode” 

signal, passes the appropriate word to the exit. 
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256x8
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256x8
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Figure 19 – AES Sboxes in CCproc 

• Twofish Sboxes 
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Twofish uses a different Sbox structure from others ciphers, in a way that its final result 

depends on the secret key that is being used. Also Twofish uses the same Sbox structure 

for both encryption and decryption process. Figure 20 shows its Sbox structure, where 

“S0” and “S1” are two of the subkeys, “In” is the Sbox input, and “q0” and “q1” are 

8x8 Sboxes. 

In the beginning we planned to place the entire Twofish Sbox structure to the Sbox 

stage as a combinational circuit. After evaluating this implementation, we quickly 

discovered that there was a considerable negative impact to the Sbox stage’s operating 

frequency, so a next attempt was to split Figure 20 in two pieces by inserting a register 

in the second column. Although this alteration improved frequency, it also increased 

Sbox latency to 2 clock cycles, resulting to a significantly lower cipher performance. 

Finally we decided to keep the initial implementation (Figure 20), but to place first half 

in the execution stage and the second half in sbox stage, as shown in Figure 21. Note 

that the portion that belongs to execution stage, it did not insert any considerable 

negative consequences, because it was placed in parallel with the other functional units, 

as it is shown in Figure 22. 

 

Figure 20 – Twofish Sboxes 
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Figure 21 – Twofish Sboxes in CCproc 

 

Figure 22 – Implementation of Twofish Sboxes in datapath 
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• Serpent Sboxes 

Serpent is the only cipher that uses permutations in its beginning and end of processing, 

however these steps are omitted in bitslice mode to be more efficient, so CCproc uses 

this mode. Sbox access is somehow different than other ciphers and will be presented 

through the following example. 

Suppose that X0, X1, X2, X3 are the four 32-bit words of plaintext where X0 is the 

most significant one, and consider that each word’s the four MSBs in hexadecimal are: 

X0 = hex”6…”, X1 = hex ”a…”, X2 = hex “f…”, X3 = hex “8…” 

Table 8 shows these numbers also in binary while each column indicates the respective 

bit. Last column “weight” shows the value that emerges when computing each column’s 

in decimal. 

hex bit 31 bit 30 bit 29 bit 28 weight
6 0 1 1 0 20

a 1 0 1 0 21

f 1 1 1 1 22

8 1 0 0 0 23

Table 8 – Serpent Sbox access example 

For example, “bit31” = , which is the Sboxj’s access 

address, where j is the round number. If j = 0, then Sbox0 [14] = 9. Similarly the other 

columns emerge the following values for j = 0: 

1421212120 3210 =⋅+⋅+⋅+⋅

“bit30” = , Sbox0 [5] = 6 520212021 3210 =⋅+⋅+⋅+⋅

“bit29” = , Sbox0 [7] = 11 720212121 3210 =⋅+⋅+⋅+⋅

“bit28” = , Sbox0 [4] = 10 420212020 3210 =⋅+⋅+⋅+⋅

In Table 9, “bit” columns contain the above results, in binary according the “weight” 

column. Indeed “bit31” = 9, “bit30” = 6, “bit29” = 11 and “bit28” = 10. 

hex bit 31 bit 30 bit 29 bit 28 weight
a 1 0 1 0 20

7 0 1 1 1 21

4 0 1 0 0 22

b 1 0 1 1 23

Table 9 – Serpent Sbox results example 
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Finally, if the resulting lines are considered as binary values, with each cell in “bit31” 

column containing the MSB, column “hex” translates them to hexadecimal and these 

are the final replacements: 6↔a, a↔7, f↔4, and 8↔b. 

As we can see, Serpent requires all four 32-bit words at the same time, in case a 

simultaneous Sbox access is desired, leading to an implementation shown in Figure 23. 
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Figure 23 – Serpent Sboxes in CCproc 

The above design is the same for the other Sboxes as well. In order to finally select the 

appropriate one depending on process round, there has been implemented a small 

counter, which is enabled each time there is a Sbox access. It should be noted that again 

there is no need for an additional instruction argument for Sbox access, because it is 

always serial, so the previously mentioned simple 3-bit counter suffices. 

• MARS Sboxes 

MARS algorithm uses two Sboxes S0 and S1, 256x32 each, however it has the unique 

property that they are also used concatenated as one 512x32 Sbox. This is another case 

where all four 32-bit plaintext words are needed at the same time, each one accessing 

the same structure in its own way. As a result, we decided to implement all four of these 

access combinations to the four clusters, enabling a fully parallel utilization, as shown 

in Figure 24. 
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Figure 24 – MARS Sboxes in CCproc 

In MARS processing, in each cluster appears one 32-bit word that passes through these 

four structures, resulting in four simultaneous Sbox accesses in 1 clock cycle. Before 

Sbox access there are one or two multiplexers, which in combination with control 

signals “E”, “F” and “B”, pass the appropriate byte. Depending on cipher’s current 

processing mode, again a control signal “mode” selects the required 32-bit word.  

From the above Sbox analysis and implementation description, there are many possible 

structures that a cipher may utilize. As a result it was initially decided to design specific 

cipher Sbox structures, which of course may be replaced with more general and flexible 

ones in future CCproc’s versions. 

4.3.8 Putting it all together: CCproc VLIW symmetric cipher co-

processor 

After describing each functional unit and Sbox structure in detail, this section puts them 

all together to assemble CCproc VLIW cryptography co-processor. As it was mentioned 

in section 4.1, after deep cipher analysis, it was decided to build a VLIW co-processor 

with four clusters, as shown in Figure 25. 
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Figure 25 – CCproc’s schematic overview 

First of all, there is an instruction fetch unit, which takes on to fetch a 128-bit data value 

and pass it to the four clusters as four 32-bit instructions. Bits 127 down to 96 form 

cluster’s A instruction, bits 95 down to 64 form cluster’s B instruction, bits 63 down to 

32 form cluster’s C instruction and bits 31 down to 0 form cluster’s D instruction. As it 

can be seen from Figure 26, there is an instruction cache 256x128 size, where quads of 

32-bit instructions are stored. PC is the program counter register that holds the 

instruction cache’s access address. Multiplexer A selects with “nPCsel” between PC 

address and an address “label” generated from the “loop controller” unit, in case there is 

a loop instruction, as it was described in 4.3.1, while multiplexer B selects again with 

“nPCsel” between “label” and PC to pass into the adder for next instruction’s address 

effective calculation. 
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Figure 26 – CCproc’s instruction fetch unit 

After a 128-bit data value has been fetched, it is separated to four 32-bit instructions that 

are directly connected with each cluster’s decode stage, whose high level schematic is 

shown in Figure 27. 

 

Figure 27 – Decode unit 
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The main unit in this stage is the Decode controller, which decodes each 32-bit “Instr” 

instruction comes from the “instruction fetch” unit. It produces valid RF and KRF 

addresses, plus many other control signals that pass through the next stages via the R1 

pipeline register. “AluOutWB” contains every data that will be stored to RF or KRF. 

Finally there is an “Address Comparator” unit that compares “addresses” signals, which 

contain RF write addresses to next stages with current’s instruction target register in RF. 

Every control signal that this unit produces, pass through pipeline register R2. It should 

be noted that R1 and R2 pipeline registers have the same meaning with the R one 

between “decode” and “execution” stages in Figure 25. 

Next stage is the execution stage, where all logic and arithmetic operations are 

performed and is shown in Figure 28. The ALU, GF multiplier 16x8x8 and MM 

functional units are all placed here. RF outputs that have come from the previous 

pipeline stage are their inputs and depending on the operation that needs to be 

performed, multiplexer A selects the appropriate result. As it was shown in Figure 25, 

before the next pipeline register, there is a “MX” (X=A, B, C, D) 4-to-1 multiplexer that 

selects among the multiplexer’s A outputs of each cluster’s execution stage. These 

multiplexers are used in case data need to be switched between clusters, by using the 

appropriate “move” instruction, as described in section 5.1. Also in this stage there is 

Twofish’s Sboxes first portion, as was described in section 4.3.7. 
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Figure 28 – Execution stage 
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Figure 29 – Sbox stage 

4.4 Efficient Data Exchange Among Clusters 

In this section we focus on describing how data can be switched among clusters through 

some instruction examples. Some instructions may have an “mx” (x=a, b, c, d) prefix 

before them that indicates from which cluster data will be expected. An example is the 

following instruction quad: 

CA: mdrd r1,r1  --A<-D

CB: mard r1,r1  --B<-A

CC: mbrd r1,r1  --C<-B

CD: mcrd r1,r1  --D<-C

 

“CX” (X=A, B, C, D) indicates the cluster that the respective instruction will pass 

through. “Rd” is a pseudo-instruction that reads a register, while in fact performs an 
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“add r0, rsa, r0” instruction. In cluster’s A instruction, putting “md”, consequences to 

select data from cluster D to pass to sbox stage. The same also happens for the other 

three clusters as shown in Figure 30. This is a very efficient way to switch data among 

clusters, because it consumes only 1 clock cycle. We should note that also all other R 

format operations (except double-instructions) can be performed before data switch 

between clusters, whose entire list is shown in Appendix A.  
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Figure 30 – Data exchange among clusters 

Another case is when a cluster is needed to broadcast data to all other clusters. An 

example is the following instruction quad: 

 

 

CA: mdnop r2  --r2<-CD.r1

CB: mdnop r2  --r2<-CD.r1

CC: mdnop r2  --r2<-CD.r1

CD: rd r1 

 

In cluster D register r1 is read and all others will do a “nop” operation. But because 

there is an “md” prefix before “nop” multiplexers “MA, “MB” and “MC” will select 

cluster’s D r1 to pass to the respective Sbox stage, as shown in Figure 31. 
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Figure 31 – Data broadcasting 
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5. Verification and Performance Evaluation of CCproc 

After the detailed description of CCproc’s ISA and datapath structure, in this chapter we 

focus on verification tests that were made in order to confirm its functionality, 

evaluation of hardware results such as operating frequency and occupied area, and 

finally on a comparison with other similar hardware designs. Note that for synthesis and 

implementation we used the Xilinx’s ISE Foundation Series 7.1i [I6] and for simulation 

Mentor Graphics Modelsim SE 6.0a [I16]. 

A first prototype has been built based on Xilinx’s Virtex 4 VLX FPGAs resources. 

Instruction cache, KRF, GPS and MARS Sboxes, have been mapped to single port 

block memory modules [59], while all other Sboxes have been mapped to distributed 

memory modules [60]. Also, in order to maximize performance as possible, many other 

IP cores have been used, such as adders, subtraction units, multipliers and comparators, 

all generated from Xilinx’s Core Generator. 

5.1 Verification Tests Using a Python Assembler 

In order to perform as many verification tests as possible in a considerable amount of 

time, it was decided to build an assembler. Among other software languages, we 

selected Python, because of its ease of usage and remarkable speed. Python has very 

high level dynamic data types and dynamic typing, plus its software implementations 

are portable, running on various versions of UNIX, Windows and many other platforms. 

Figure 32 shows an abstract schematic of Python assembler. Every time there is a new 

line, the instruction’s format is firstly recognized. Once it is confirmed as a correct 

CCproc instruction, its arguments are counted, i.e. how many registers, or plain 

numbers have been used, and then validated for syntax errors. In case an instruction is 

correct, its arguments are converted to the appropriate binary value. If a new line 

consists of a label that marks the start point of a loop, its location in the program is 

stored, until a “loop” instruction uses it as argument. Finally, if a new line consists only 

of comments (starting with “--“), they are discarded. It should be noted though that 

comments can be anywhere, except between an instruction text. 
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Figure 32 – Python assembler flowchart 

In order to verify that every instruction works ok and the correct results are being 

produced, various tests were written (they are available on the thesis’s CD. By using 

Modelsim and performing simulation tests, both in functional and post-place and route 

levels, we discovered (and fixed) several implementation problems (bugs). 

Once this first verification phase was completed, we wrote five programs that 

implement the five AES round two finalists. Figure 33 shows an example of RC6’s 

encryption kernel loop and how instructions are written. First it begins with label 

“encrypt” that indicates a loop’s start point and then there are instruction quads, each 

having on its left “CX” (X=A, B, C, D) indicating the cluster that will pass through.  

encrypt: 

 CA: shli r2,r1,1  --r2<-r1*2 

 CB: nop 

 CC: shli r2,r1,1  --r2<-r1*2 

 CD: nop 

 

 CA: addi r2,r2,1  --r2<-r2+1=r1*2+1 
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 CB: nop 

 CC: addi r2,r2,1  --r2<-r2+1=r1*2+1 

 CD: nop 

 

 CA: mmult r3,r1,r2  --r3<-r1*r2=r1*(r1+1) 

 CB: nop 

 CC: mmult r3,r1,r2  --r3<-r1*r2=r1*(r1+1) 

 CD: nop 

 

 CA: roli r3,r3,5  --r3<-<<<5(r3)=<<<5(r1*(r1+1)) (u) 

 CB: nop 

 CC: roli r3,r3,5  --r3<-<<<5(r3)=<<<5(r1*(r1+1)) (t) 

 CD: nop 

 

 CA: rd r3 

 CB: manop r2  --r2<-CA.r3=u 

 CC: rd r3 

 CD: mcnop r2  --r2<-CC.r3=t 

 

 CA: nop 

 CB: xor r1,r1,r2  --r1<-r1 xor u=C xor u 

 CC: nop 

 CD: xor r1,r1,r2  --r1<-r1 xor t=A xor t 

 

 CA: rd r3 

 CB: mcnop r2  --r2<-CC.r3=t 

 CC: rd r3 

 CD: manop r2  --r2<-CA.r3=u 

 

 CA: nop 

 CB: rol r1,r1,r2  --r1<-<<<r2(r1)=<<<t(r1) 

 CC: nop 

 CD: rol r1,r1,r2  --r1<-<<<r2(r1)=<<<u(r1) 

 

 CA: nop 

 CB: add r1,krfpa,r1  --r1<-r1+S[2*i] 

 CC: nop 

 CD: add r1,krfpa,r1  --r1<-r1+S[2*i+1] 

 

 CA: mdrd r1,r1  --D<-A 
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 CB: mard r1,r1  --C<-D 

 CC: mbrd r1,r1  --B<-C 

 CD: mcrd r1,r1  --A<-B 

 

 CA: loop encrypt 

 CB: nop 

 CC: nop 

 CD: nop 

Figure 33 – RC6 encryption kernel loop 

5.2 Performance Evaluation on Xilinx Virtex 4 FPGA Devices 

This section focuses on evaluating CCproc’s performance while processing the AES 

round two finalists. Until now there is only a first prototype built on Virtex 4 FPGAs, 

which has been successfully verified in post-place and route simulation level. In order 

to evaluate its performance, first the total number of processing clock cycles needed for 

each cipher was measured and the results are shown in Chart 11. 
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Chart 11 – CCproc’s performance in clock cycles for the AES round two finalists 

Xilinx XST (Xilinx Synthesis Tool) and ISE 7.1i reported the results shown in Table 

10. The XC4VLX40 FPGA is the third smallest in the Virtex 4 series, a fact showing 

that CCproc is a compact design (275452 gates), capable to fit into today’s smaller 

Virtex 4 FPGAs. The complete set consists of 1, 3 and 4-core implementations mapped 
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on XC4VLX40, XC4VLX100, XC4VLX160 and XC4VLX 200 FPGAs. It should be 

noted that devices with speed grade equal to -12, create the fastest implementations. 

FPGA Speed  
Grade 

CCproc 
Cores 

Freq 
(MHz) Utilization Memory 

Blocks 
Xtreme 

DSP 
XC4VLX40 -12 1 95% 18 12 
XC4VLX100 -12 1 36% 18 12 
XC4VLX160 -12 3 

108 

77% 54 36 
XC4VLX60 -11 1 19.6% 18 12 
XC4VLX200 -11 4 

95 
78.6% 72 48 

Table 10 – CCproc’s performance statistics 

Based on the above performance results, Chart 12 shows the achieved throughput for all 

AES round two finalists in ECB mode, in each multi-core CCproc implementation. The 

formula that is used to extract results for 1-core implementations is the one below, 

where F is the design’s operating frequency and cc are the processing clock cycles: 
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Chart 12 –CCproc Multi-core throughputs in ECB mode 

5.3 Performance Comparison with Other Implementations 

After presenting CCproc’s performance results, this section focuses on making a small 

comparison between CCproc and the other designs mentioned in section 3.3. However 
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none of these designs was mapped on an FPGA device, but implemented as ASICs. 

Consequently CCproc yields a lower operating frequency than them, except from the 

COBRA design, as shown in Table 11. 

Type Design Max. Freq. (MHz) 
Cryptomaniac 4W [50] 360 

Cryptonite [52] 400 
16-SMP [48] 1000 

ASIC 

COBRA [51] 102 
FPGA CCproc 108 

Table 11 – Maximum frequencies 

As it is confirmed from [61], probably there is no other related design so far (2005), 

which is not concluded in this comparison. As the authors report and also can be 

confirmed from Chart 13, Cryptomaniac is the most flexible design, because it supports 

most of the current ciphers compared to the other designs and has the most aggressive 

parallelization. 

Cryptonite is capable to support one-way hash functions, such as MD5 [63] and SHA-1 

[62]. Also in its paper are reported results regarding only AES from 128-bit ciphers, 

making the least flexible design of all. However there has been developed a specific 

assembly language, which is demonstrated in its paper, unfortunately only for AES. 

COBRA is a design that yields the best results for AES, RC6 and Serpent. However 

they are valid only when the used COBRA atomic-units are equal to a cipher’s rounds 

and also placed in parallel. For example, when there is one COBRA atomic-unit 

specifically reconfigured for RC6, it requires 145 clock cycles to complete, but with 20 

such atomic-units, clock cycles are reduced to 2 and throughput is increased to 3.9 

Gbits/sec. It should be noted that this throughput is valid for ECB mode, i.e. assuming 

20 atomic-units working in parallel.  

SMP is an approach orthogonal to the above ones, because it demonstrates how many 

crypto processors can be used to increase cipher processing throughput, by using the 

ICBC mode. As it can be easily comprehended, this approach can be combined with 

every other technique that has been presented for the inner cipher specific architecture, 

resulting to an even better final throughput. 
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Chart 13 – Performance comparison between CCproc and other designs. This chart shows the best 

cases for each design. 

As it can be seen from Chart 13, CCproc is the only one that supports so far all AES 

round two finalists. Cryptomaniac is the design that has many similarities with CCproc, 

so it is natural to make an immediate comparison between them. CCproc yields a better 

performance for AES cipher comparing to Cryptomaniac, while comparing to other 

ciphers, where applicable, it achieves a slightly decreased throughput, yet more than 

capable to saturate any up to 130 Mbits/sec connections, such as the wide used IEEE 

802.11g wireless protocol and IEEE 802.3y 100 Mbits/sec Ethernet protocol. Cryptonite 

yields better results than CCproc and Cryptomaniac where applicable, however it lacks 

of flexibility. Also it should be reminded that CCproc is the only one mapped on FPGA 

devices, while all other have been implemented as ASICs. In addition, throughput is by 

far not the only characteristic that can evaluate a cryptography processor’s value, 

because there many cases where there is no need for increased throughput, but for 

flexibility or power consumption. CCproc is believed to be a very flexible architecture, 

because of its efficiently designed assembly, as it was demonstrated in section 5.1. In 

addition, as Huffmire in [61] mentions, today’s cryptography co-processors, among 

others should have the ability to process a cipher rapidly, support multiple ciphers and 

have the capability to be reconfigured and upgraded in case a cipher is broken. These 

aspects are the most important ones, and CCproc is superiorly offering them. 
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So far we have completed CCproc’s first version mapped on various FPGA devices. It 

would be very useful to estimate its performance as an implemented ASIC in 0.25 μm 

process. First of all we located CCproc’s critical path and found that it passes through 

the ALU core 1. We then used Synopsys Design Compiler (DC) [I17] to implement it as 

an ASIC and found that its latency is 3 ns, meaning a maximum frequency at 333 MHz. 

This fact leads us to the conclusion that a carefully designed VLSI CCproc 

implementation could achieve an even higher frequency. Chart 14 shows its 

performance when running at frequencies up to 500 MHz. 
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Chart 14 – CCproc’s estimated throughput when implemented as VLSI 

Chart 15 compares CCproc with other design when there is no parallel cipher 

processing available, i.e. CBC mode. As we can see, implementations that run at 

frequencies of 400 MHz and above achieve better throughputs in most cases comparing 

to other designs. However once again we note that, if a cryptography co-processor 

reaches a throughput level that enables its usage from a protocol, the next important fact 

is its flexibility, in order to provide higher security levels. CCproc’s first version is 

already a very flexible cryptography co-processor, which, once a VLSI implementation 

is built, it can also provide almost the best throughputs. 
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Chart 15 – CCproc performance comparison with other designs without parallel process. This 

chart shows performance of the current CCProc and the estimated VLSI implementations. 
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6. Conclusions and Future Work 

As we mentioned in the beginning of this thesis report, internet is growing larger over 

the years that pass. Also various embedded processors are more and more used in many 

wireless communication devices, such as cell phones, palmtops, PDAs (Personal Digital 

Assistants), televisions and automobile navigation systems. Consequently, secure 

communication and confidentiality are crucial, in order to avoid virus infection, privacy 

loss, and stop digital crime activities from malicious users. 

Cryptography is a major issue, which all computer architects should take account when 

designing new processors that will be used for communication and data exchange. This 

project was focused on analyzing many cryptographic symmetric ciphers and designing 

from scratch a VLIW RISC co-processor, in order to efficiently support them in a 

hardware process level in very competitive speeds. In summary our design has the 

following characteristics: 

• Efficient and flexible ISA capable to support many symmetric 128-bit ciphers 

• 4-wide VLIW processor using 128-bit instructions with RISC datapath structure 

• Fits in small FPGAs, while multiple CCproc cores can be placed in larger ones 

to improve cipher performance 

• Supports all AES round two finalists 

• Achieves an AES performance up to 616 Mbits/sec at 95 MHz in ICBC mode 

using a 4-core CCproc implementation 

• A 1-core CCproc VLSI implementation estimated running at 500 MHz, yields 

an AES throughput of 800 Mbits/sec 

• Capable to saturate wide used protocols such as the 801.11g wireless and 802.3y 

100 Mbits/sec Ethernet 

This task was pretty difficult, because it demanded to combine many very different 

algorithms in one common design and also to try and foresee potential needs from 

future algorithms. 

CCproc’s first version results are very competitive in comparison with others, as it has 

been seen from section 5.3. Note also that, once a cryptography co-processor’s 

throughput meets the level that we need, flexibility plays a very significant role to the 
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security level it provides. CCproc achieves very good cipher speeds, while its ISA 

offers a high level of flexibility. Also, a very important aspect is that all other designs 

have been implemented as ASICs, while CCproc mapped on a FPGA device.. In 

addition, as in every first version, there are a few potential improvements that can be 

made: 

• More flexible Sboxes structure. As it was mentioned in previous sections, static 

specific cipher Sboxes could be replaced by a more flexible and equally fast 

structure. This improvement may reduce CCproc’s hardware utilization, 

resulting even in an increased operating frequency. 

•  Increased throughput with parallel thread support. Although there are four 

clusters, which are available for cipher process, as it has been shown in Chart 

10, most of the ciphers do not take full advantage of it, resulting in many 

“nops”. These “empty slots” could be used efficiently by the same or another 

cipher to encrypt a different data block, increasing significantly total throughput 

more closely to 1-core’s theoretical that can be achieved (128 bits/clock cycle). 

The left portion of Figure 34 shows CCproc’s utilization while processing a data 

block with Twofish. Blue (bright) rectangles indicate a useful instruction, while 

the red (dark) ones show “nops”. With an addition of extra hardware resources 

and slight modification in current ISA, CCproc may process simultaneously two 

different data blocks, from the same or different users, by using the same or 

completely different symmetric ciphers. In Figure 34, in its right portion the blue 

(bright) rectangles are instructions that process one block, while the green ones 

(striped) process another block. This is a feature that none from the previously 

mentioned related works currently supports. 
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Figure 34 – Increasing total throughput 

• CCproc’s ASIC implementation. So far CCproc prototype has been tested, as 

mentioned in section 5.2, only in Virtex 4 FPGA devices. It would be very 

useful if an ASIC implementation were built using Synopsys DC, in order to 

obtain additional performance and throughput information. 

In summary, Cryptography, as it was mentioned in chapter 1, had been used from 

ancient years to hide important information. Until today, many algorithms have been 

developed, and always will be, while concurrently many ways are being discovered to 

unlock even the securest ones. Consequently there are many cases where people have 

lost or charged a large amount of digital money, while confidential information has 

been intercepted. That is why computer architects and engineers should always try to 

protect people from malicious users, by developing new designs resistant against as 

many as possible types of digital attack. 
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Appendix A: CCproc Complete Instruction Set  

Format Operation Syntax Description 
add add rdx,rsa,rsb adds rsa with rsb and stores the result to rdx 

sub sub rdx,rsa,rsb subtracts rsb from rsa and stores the result to 
rdx 

shr shr rdx,rsa,rsb shifts right rsa by the amount specified from 
rsb's 5 LSBs and stores the result to rdx 

shl shl rdx,rsa,rsb shifts left rsa by the amount specified from 
rsb's 5 LSBs and stores the result to rdx 

xor xor rdx,rsa,rsb logic xor between rsa and rsb, and stores the 
result to rdx 

rol rol rdx,rsa,rsb rotates left rsa by the amount specified from 
rsb's 5 LSBs and stores the result to rdx 

and and rdx.rsa,rsb logic and between rsa and rsb, and stores the 
result to rdx 

ror ror rdx,rsa,rsb rotates right rsa by the amount specified 
from rsb's 5 LSBs and stores the result to rdx

or or rdx,rsa,rsb logic or between rsa and rsb, and stores the 
result to rdx 

gfm gfm rdx,rsa 
galois field multiplication in GF(28) between 
rsa and GF operand x and the result is stored 
to rdx 

mmult mmult rdx,rsa,rsb modulo 232 multiplication between rsa and 
rsb and the result is stored to rdx 

ldgfopx ldgfopx rsa loads Galois Field operand x with rsa's value

addadd addadd 
rdx,rsa,rsb,rsc 

adds rsa with rsb, adds the result to rsc and 
stores it to rdx 

subadd subadd 
rdx,rsa,rsb,rsc 

subtracts rsb from rsa, adds the result to rsc 
and stores it to rdx 

addsub addsub 
rdx,rsa,rsb,rsc 

adds rsa with rsb, subtracts rsc from the 
result and stores it to rdx 

subsub subsub 
rdx,rsa,rsb,rsc 

subtracts rsb from rsa, subtracts rsc from the 
result and stores it to rdx 

xoradd xoradd 
rdx,rsa,rsb,rsc 

logic xor between rsa and rsb, adds the result 
to rsc and stores it to rdx 

r2c/c2r r2c / c2r rdx,rsa toggles between rows and columns in a 128-
bit data value 

xorsub xorsub 
rdx,rsa,rsb,rsc 

logic xor between rsa and rsb, subtracts rsc 
from the result and stores it to rdx 

addxor addxor 
rdx,rsa,rsb,rsc 

adds rsa with rsb, logic xor between rsc and 
the result and stores it to rdx 

subxor subxor 
rdx,rsa,rsb,rsc 

subtracts rsa with rsb, logic xor between rsc 
and the result and stores it to rdx 

ldgfmr ldgfmr rsa 
loads 8-bit mr register with rsa's value, 
which holds modulo polynomial in Galois 
Field multiplication 

R 

xorxor subxor logic xor between rsa and rsb, logic xor 
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rdx,rsa,rsb,rsc between rsc and the result and stores it to rdx
krfpaz krfpaz resets KRF's pointer to first address 
addi addi rdx,rsa,#a adds rsa with #a and stores the result to rdx 

subi subi rdx,rsa,#a subtracts #a from rsa and stores the result to 
rdx 

shri shri rdx,rsa,#a shifts right rsa by the amount specified from 
#a's 5 LSBs and stores the result to rdx 

shli shli rdx,rsa,#a shifts left rsa by the amount specified from 
#a's 5 LSBs and stores the result to rdx 

xori xori rdx,rsa,#a logic xor between rsa and #a, and stores the 
result to rdx 

roli roli rdx,rsa,#a rotates left rsa by the amount specified from 
#a's 5 LSBs and stores the result to rdx 

andi andi rdx.rsa,#a logic and between rsa and #a, and stores the 
result to rdx 

rori rori rdx,rsa,#a rotates right rsa by the amount specified 
from #a's 5 LSBs and stores the result to rdx

ori ori rdx,rsa,#a logic or between rsa and #a, and stores the 
result to rdx 

ld ld rdx,#a(rsa) loads from data memory address rsa+#a to 
rdx 

st st rsb,#a(rsa) stores to data memory address rsa+#a 
register rsb 

lui lui rdx,#a loads 16-bit value #a to rdx's 16 MSBs 

I 

ldlc ldlc #a loads 6-bit lc register with #a 

loop loop loop label jumps to the beginning of a loop which starts 
at address “label” 

rd rd rsa reads  rsa, i.e. adds rsa with r0, but does not 
store any result pseudo-

instructions 
nop nop no operation, i.e. adds r0 with r0, but does 

not stores any result 

move mx mx<instr> 
rdx,rsa,rsb,rsc 

current cluster passes data to sbox stage 
from x cluster (x=a, b, c, d). <instr> will be 
performed between rsa, rsb and rsc, but 
result will not be stored in rdx. Instead it can 
be used from other cluster as well. <instr> 
may have the following values:  

add 
sub 
shr 
shl 
or 
rol 
and 
ror 
xor 

addadd 
addsub 
addxor 
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subadd 
subsub 
subxor 
xoradd 
xorsub 
xorxor 

aesX aesX rdx,rsa 
Sbox access during AES encryption or 
decryption (X=E,D) with rsa and the result is 
stored to rdx 

marsX marsX rdx,rsa 
Sbox access during MARS forward mode, 
backward mode, or E function (X=F,B,E) 
with rsa and the result is stored to rdx 

serX serX rdx,rsa 
Sbox access during Serpent encryption or 
decryption (X=E,D) with rsa and the result is 
stored to rdx 

cipher 

tX tsld rsa,rsb / 
tsbox rdx,rsa 

during Twofish, loads to S0 and S1 rsa and 
rsb respectively / Sbox access with rsa and 
the result is stored to rdx 
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Appendix B: Setup and Usage of Assembler and CAD Tools 

This appendix focuses on numbering the appropriate steps that should be taken, in order 

the user to perform a CCproc’s simulation. As it was mentioned in chapter 5, the CAD 

(Computer Aided Design) tools that were used, are Xilinx’s ISE Foundation Series 7.1i 

with service pack 3, plus Core Generator for IP core generation. Additionally, XST was 

used for synthesis and Modelsim SE 6.0a for simulation. Finally Python 2.4.1 was 

installed in order to develop CCproc’s assembler. 

The suggested steps that should be made are the following: 

1. Launch Core Generator and create the “*.xco” files as there are in this project’s 

CD. 

2. Create a valid “imem256x128.caf” file consisting of a cipher written in 

CCproc’s assembly language. Once this is done, use IDLE Python to create an 

“imem256x128.coe” file consisting of respective 0s and 1s. 

3. Through Core Generator initialize instruction cache “imem256x128” with the 

above “imem256x128.coe” file. 

4. Create a testbench for the top-level file “cryptium2.vhd” and inside ISE run 

Modelsim. 

It should be noted that if the Python assembler raises an error, possibly there is a wrong 

syntax somewhere in “imem256x128.caf”. User may check the respective message that 

IDLE created in order to find its location inside the text.  
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