

 1

 2

This page was intentionally left blank.

This page was intentionally left blank.

 3

Scaled Test Bed for Automotive Experiments: Evaluation of Electronic

Stability Control Schemes

Master thesis of

Diomidis I. Katzourakis

diomidis@systems.tuc.gr, diomkatz@gmail.com

ECE, Technical University of Crete, Greece

Supervising Committee

Master’s Advisor

Dr. Yannis Papaefstathiou

ygp@mhl.tuc.gr

Assistant Professor, Microprocessor & Hardware Lab.

ECE, Technical University of Crete, Greece

Dr. Apostolos Dollas

dollas@mhl.tuc.gr

Professor, Microprocessor & Hardware Lab.

ECE, Technical University of Crete, Greece

Dr. Michail G. Lagoudakis

lagoudakis@intelligence.tuc.gr

Assistant Professor, Intelligence Systems Lab.

ECE, Technical University of Crete, Greece

mailto:diomidis@systems.tuc.gr
mailto:diomkatz@gmail.com
mailto:ygp@mhl.tuc.gr
mailto:dollas@mhl.tuc.gr
mailto:lagoudakis@intelligence.tuc.gr

 4

This page was intentionally left blank.

This page was intentionally left blank.

 5

Abstract

Evaluation and testing of electronic stability control systems in automotive vehicles, in the real

environment confronts with cost and safety concerns leading to an overdue prototyping of the

actual system. This master thesis, addressees the implementation of a scaled test bed for

automotive experiments, based on 1:5 scaled model car especially designed for rapid system

prototyping. A single gyroscope electronic stability control scheme has been formatted, post -

process simulated and evaluated on the test bed. The improvement on the vehicle’s stability is

noticeable.

The custom developed model car acting as experimental platform is fully equipped with sensors,

actuators, a controller to collect data and a Linux based computer system to process data. By using

a scaled model car we introduce realistic simulation dynamics and disturbances. The reference

model for stabilization is based upon the dynamics of the Bicycle Model. The Stability Control

System issues commands to individual vehicle’s brakes in order to reduce the error between the

actual and desired response of the car.

The thesis is organized into six sections:

I. Introduction

II. Vehicle Dynamics and Stabilization Algorithms

III. Similar work

i. Existing ESPs

ii. Published ESPs

iii. Comparison between published ESPs and our system

IV. System Implementation

i. Mechanical modifications

ii. Computing hardware

iii. Software

V. Real Environment Evaluation

VI. Conclusions and Future Work

VII. Appendix

i. Host codes

ii. Microcontroller Codes

iii. Matlab Codes

 6

The author would like to dedicate this document to his parents and to Elli Barla for their long

lasting patience and support.

 7

Υπό Κλίμακα Πλατφόρμα για Αυτοκινητιστικά Πειράματα: Αξιολόγηση

Συστημάτων Ηλεκτρονικού Ελέγχου Ευστάθειας

Μεταπτυχιακή Διατριβή του

Κατζουράκη Ι. Διομήδη
diomidis@systems.tuc.gr, diomkatz@gmail.com

ΗΜΜΥ, Πολυτεχνείο Κρήτης, Ελλάδα

Εξεταστική Επιτροπή

Επιβλέπων

Δρ. Παπαευσταθίου Γιάννης

ygp@mhl.tuc.gr

Επίκουρος Καθηγητής, Εργαστήριο Μικροπεξεργαστών & Υλικού

ΗΜΜΥ, Πολυτεχνείο Κρήτης, Ελλάδα

Δρ. Δόλλας Απόστολος

dollas@mhl.tuc.gr

Καθηγητής, Εργαστήριο Μικροπεξεργαστών & Υλικού

ΗΜΜΥ, Πολυτεχνείο Κρήτης, Ελλάδα

Δρ. Λαγουδάκης Γ. Μιχαήλ

lagoudakis@intelligence.tuc.gr

Επίκουρος Καθηγητής, Εργαστήριο Ευφυών Συστημάτων

ΗΜΜΥ, Πολυτεχνείο Κρήτης, Ελλάδα

mailto:diomidis@systems.tuc.gr
mailto:diomkatz@gmail.com
mailto:ygp@mhl.tuc.gr
mailto:dollas@mhl.tuc.gr
mailto:lagoudakis@intelligence.tuc.gr

 8

This page was intentionally left blank.

This page was intentionally left blank.

 9

Περίληψη

Η αξιολόγηση και η δοκιμή συστημάτων ηλεκτρονικής ευστάθειας σε αυτοκινούμενα οχήματα στο

πραγματικό περιβάλλον έρχεται αντιμέτωπη με τα θέματα του υψηλού κόστους και την ανάγκη

για ασφάλεια, τα οποία οδηγούν στην καθυστερημένη προτυποποίηση του τελικού συστήματος. Η

μεταπτυχιακή αυτή διατριβή αποδίδει την υλοποίηση ενός υπό κλίμακα μοντέλου αυτοκινήτου για

αυτοκινητιστικά πειράματα, που βασίζεται σε ένα μοντέλο αυτοκινήτου κλίμακας 1:5, ειδικά σχεδιασμένο

για ταχεία προτυποποίηση. Έχει σχεδιαστεί, εξομοιωθεί και αξιολογηθεί στην πράξη ένα σύστημα

ηλεκτρονικής ευστάθειας που βασίζεται σε γυροσκόπιο. Η βελτίωση της οδικής συμπεριφοράς του

μοντέλου είναι αξιοπρόσεκτη.

Το ειδικά μετασκευασμένο μοντέλο, είναι πλήρως εξοπλισμένο με αισθητήρες, ενεργοποιητές, έναν

ελεγκτή για την συλλογή δεδομένων και ένα υπολογιστικό σύστημα βασισμένο στο λειτουργικό σύστημα

Linux για την επεξεργασία των δεδομένων. Χρησιμοποιώντας το μοντέλο, μπορούμε να εφαρμόσουμε -

εξομοιώσουμε ρεαλιστικά την δυναμική συμπεριφορά και τις διαταραχές που δέχεται ένα πραγματικό

σύστημα αυτοκινήτου. Το μοντέλο αναφοράς για την ευστάθεια του συστήματος, βασίζεται στο δυναμικό

μοντέλο του "ποδηλάτου". Το σύστημα ευστάθειας στέλνει εντολές σε κάθε φρένο του μοντέλου

ξεχωριστά για να μειώσει το σφάλμα μεταξύ της πραγματικής και της επιθυμητής απόκρισης.

Η μεταπτυχιακή αυτή διατριβή είναι οργανωμένη σε έξι ενότητες:

I. Εισαγωγή

II. Δυναμικό Μοντέλο Αυτοκινήτου και Αλγόριθμοι Ευστάθειας

III. Αντίστοιχη Εργασίες

iv. Υπάρχοντα ESPs

v. Δημοσιευμένα ESPs

vi. Σύγκριση μεταξύ δημοσιευμένων ESP και του συστήματος μας

IV. Υλοποίηση του Συστήματος

vii. Μηχανολογικές Μετατροπές

viii. Υπολογιστικό Υλικό

ix. Λογισμικό

V. Αξιολόγηση σε Πραγματικό Περιβάλλον

VI. Συμπεράσματα και Μελλοντική Εργασία

VII. Παράρτημα

x. Πηγαίος Κώδικας Υπολογιστή

xi. Πηγαίος Κώδικας Μικροελεγκτή

xii. Πηγαίος Κώδικας Matlab

 10

O συγγραφέας θα ήθελε να αφιερώσει αυτό το έγγραφο στους γονείς του και στην Μπάρλα Έλλη για την

αμέριστη στήριξη και την υπομονή που έδειξαν για την ολοκλήρωση αυτού του μεταπτυχιακού.

 11

Table of Contents

1. Introduction ...15

2. Related work ..17

2.1 Existing ESPs ..17

2.1.1 Historical and Commercial background of the ESC… ..17

2.2 Published ESPs..20

2.3 Scaled Implementations...29

2.4 Comparison between published ESPs and our system..32

2.5 Attainment to Academic Community...33

3. Vehicle Dynamics and Stabilization Algorithm..34

3.1 Oversteer and Understeer ..34

3.1.1 Abstractional Behaviour...34

3.1.2 Counteracting Oversteer and Understeer ..37

3.2 Yaw rate control with individual wheel braking ..39

3.2.1 Vehicle dynamics ...39

3.2.2 Yaw rate stabilization algorithm ..42

Single gyroscope Electronic Stability Control Algorithm...43

Analytic presentation of the algorithm..47

3.3 Single Accelerometer Electronic Stability Control ...49

Single Accelerometer ESC algorithm ...50

3.3.1 Real Environment Evaluation for the Single Accelerometer ESC51

4. System’s Implementation...52

4.1 Mechanical modifications..52

4.2 Computing hardware ...57

4.2.1 Sensors ...58

Front and Rear Axle Accelerometers: ADXL311...58

ADXL311 ±2g interface with the microcontroller..60

Central Accelerometer: ADXL213 ...60

ADXL213 ±1.2g interface with the microcontroller...62

ADXL311 and ADXL213 bandwidth selection...65

Observations, problems and possible improvements on the interface between the

accelerometers and the microcontroller ...67

ADXL311..67

ADXL213..68

 12

Side by side comparison of ADXL311 and ADXL213 ..68

Steering Angle Estimation ..69

Wheel angular velocity...71

Yaw rate estimation ...77

Driver’s commands ..80

4.2.2 Actuators..82

4.2.3 Power Supply ...83

4.2.4 Microcontroller: Schematics, PCB and Development Tools..................................86

Schematics and PCB ...86

Central PCB for the microcontroller...87

Development Tools ...93

Development Board...93

Development Software ..94

Programming the device ..95

4.3 Software at SBC ..98

4.3.1 Single Board Computer; Ubuntu Linux..98

Third Party Software ...100

4.3.2 Custom developed source code..100

A Brief outline ...100

Daemon! ..103

Serial port initialization, reading and writing..110

Evaluation of the information from the binary data..112

Auto generated experiments function..117

4.3.3 Stabilization routines ...119

4.3.4 Scripts ..121

4.4 Firmware at the Microcontroller ...122

4.4.1 Main loop...123

4.4.2 Normal Routines..126

4.4.3 Interrupt Routines: ..129

4.5 How to operate the system ..135

5. Real Environment Evaluation ...136

Real Environment Experiments ..136

Bird-Eye-View...139

6. Conclusions and Future Work ..143

6.1 Conclusions..143

 13

6.2 Future work and potentials extensions ..145

7. Acknowledgements..146

8. References ..147

9. Appendix..155

9.1 Host code ...155

9.1.1 daemon...155

async.cpp ..155

headers.h ..169

init_serial.c ...170

time_etc.cpp...171

servos.h...172

stabilization_routine1.c..172

stabilization_routine2.c..174

stabilization_routine3.c..176

9.1.2 Scripts ..178

compile...178

9.1.3 index.html ..178

9.2 Microcontroller codes ..179

9.2.1 ESC_new.c ..179

9.2.2 adc_accelerometers.c ..183

9.2.3 interrupt_routines.c..186

9.2.4 servos.c ...192

9.2.5 header.h..192

9.3 MATALAB codes...194

9.3.1 plotdata ..194

9.3.2 gwnies...197

9.3.3 Bird’s eye view..197

9.4 Typical Log file output ..201

 14

This page was intentionally left blank.

This page was intentionally left blank.

 15

1. Introduction

Electronic Stability Control (ESC) is a closed loop computer based system which helps the

driver to maintain control of the vehicle and prevent skidding under highly demanding situations

by applying individual wheel braking and/or readjusting the engine delivered torque. The driver

can be modelled as a high gain system whom reactions are cursory and boorish and might worsen a

situation of instability. Even an experienced driver in a panic situation might try to counteract the

effect of oversteer (or understeer) in a rear wheel drive vehicle by applying the brakes, an action

that will increase the violence of the effect. The loss of handling in such a scenario is likely to

result to a fatal accident. Several studies since the wide mass introduction of ESC, in the year

1998, have showed the system’s effectiveness ([1]). At least 40% of fatal accidents are triggered by

skidding and the global installation of ESC could reduce skidding accidents by even 80% ([2]).

The undisputed benefits from ESC led the European Union to launch a campaign called “Choose

ESC” at the Bridgestone European Testing Ground, on 8th May 2007. The aim of this campaign

was to spark people’s awareness towards ESC and promote the active safety market in automotive

industry with the installation of ESC on all vehicles in European ground. It is prominent that in

year 2007, in Germany, Denmark, Austria, and Italy, as ESC system is standard fit for almost all

brands. The goal of the “Choose ESC” campaign is to halve the road fatalities by 2010.

Extensive research towards Stability and Yaw Control has been conducted by several authors and

different approaches have been proposed ([4], [5], [8]) with BOSCH GmbH being the pioneer

and thereinafter leader in ESC. The stabilization of the vehicle is accomplished by individual

wheel braking ([7]), active steering ([5], [6]) and hybrid methods ([9]) combing the precedents

along with dynamic engine’s torque distribution. Challenging position on modelling about

stability and desired path tracking on rally driving techniques has also been addressed by [10] and

[11], where manoeuvres commonly used for high speed cornering, like pendulum turn and trail

braking have been analyzed. Similar to previous systems ([10] and [11]) should be adapted by

automotive manufacturers for their fast fleet cars as an optional cachet in order to increase vehicle’s

fun to drive side.

 16

Fig. 1.1 Scaled Model Car.

ESC course along with fondness towards automobiles and high speed driving, challenged us to

develop a 1:5 scaled model car to be used as test bed for experiments in vehicle dynamics and

control (Fig. 1.1) ([58]). Similar work has been done by [3] and [13].

 17

2. Related work

The benefits and solicitude of Electronic Stability Control towards safety and dynamics –

control correspondingly and of course the wide commercial acceptance among vehicular

manufactures has triggered an ESC research trend. The proposed approaches for control are

many, regardless of the fact that the state and inputs for every vehicular system are similar. Yet the

goal is always the same; stabilize the vehicle, even in situations where the driver worsens the

instability due to his stampede reactions and driving errors (exaggerated steering). According to

[65] a normal driver is not capable of estimating safe critical information, such as grip reserves on

the tires or the friction coefficient.

Inputs for an ESC system are the driver commands (steering and throttle or brake command),

velocity, engine delivered torque, brake torque on each wheel etc. In most cases the state of the

system is the angular velocity (yaw rate) around the Z axis, the slip angle of the vehicle and in

some cases the longitudinal or lateral acceleration at the center of gravity of the vehicle. An ESC

system has to deal with unknown parameters and disturbances (the travelling vehicle itself and the

environment affecting the vehicle) like the friction coefficient, road bank angle, side winds,

unbalanced loading etc.

This chapter is dedicated to related work concerning ESC systems available for studying in the

academic community. The different approaches proposed are divided into three main categories:

those where the proposed stabilization schemes have never been implemented on a real vehicle,

but are mainly simulated; the fortunate Research Institutes in close collaboration with the

industry, for whom their research is based primarily on experimenting on real vehicles; and the

smallest category of all, those whose research is based on scaled vehicles, which is the category we

belong to. We shall outline all three categories and present some key stabilization schemes. We

must clarify that certain sentences inside “quotes in italic fonts” couldn’t be paraphrased and

are collocated with small changes from the following cited publication.

2.1 Existing ESPs

2.1.1 Historical and Commercial background of the ESC…

The first vehicle with installed ESC is the trailblazing pioneer of its times, Mercedes-Benz S-

Class sedan in 1995. The installed ESC system was supplied by Bosch ([65]). The Mercedes-Benz

S-Class also was the first vehicle that would introduce airbags as a Supplemental Restraint

Systems (SRS) ([66]), ABS, Adaptive Cruise Control and many more innovations. Since 1995,

 18

Bosch has produced tenth’s of million systems worldwide, marketed as ESP - Electronic Stability

Program. The main commercial ESP manufactures nowadays (May 2008) include ([67]):

 Robert Bosch GmbH ([68])

 TRW ([69])

 Continental Automotive Systems ([70])

 Delphi, USA ([71])

 Aisin Advics ([72])

 Nissin Kogyo ([73])

 Hitachi, Japan ([74])

 Mando Corporation ([75])

 Bendix Corporation ([76])

 WABCO ([77])

The market is governed by American, Japanese and German brands. The most famous of the

above manufacturer is BOSCH which has the lion’s share in ESC market, for both European and

USA vehicles. Today, BOSCH ESC is installed in many cars like BMW X5, BMW X3, Cadillac

Escalade, Chrysler Pacifica, Chevy Silverado, Dodge Durango, GMC Acadia and Toyota Camry

([78]) etc.

As manifested by a BOSCH report ([65]), the maximum side slip angles (the angle between the

longitudinal axis of the vehicle and the actual direction of the vehicle; see Fig. 3.1 where acg

denotes the slip angle for the bicycle model) where the vehicle is still steer able, are dependent on

the road friction coefficient. As proclaimed by BOSCH ([65]) the slip angle on dry asphalt has

typical peak values of about ±12° (Fig. 2.1), whereas on polished ice it is in the range of ±2°. In all

day traffic situations “side slip angle values of typically not more than ±2° ” ([65]).

Fig. 2.1 Influence of side slip angle on yaw moment for different steering angles at high tire-road friction. Plot

taken from [65].

 19

The proposed ESP from BOSCH ([65]) is based on controlling the value of the slip at each

wheel (towards the longitudinal axle of the wheel). They have used the “bicycle” model to build

the desired behaviour of the vehicle (coming from the driver), where the model uses a linear

relationship between the slip and the lateral forces on the tires and a state observer for the missing

state variables. The “bicycle” model is used in cases where the car’s velocity is constant and the slip

angle is small, whereas in full braking situation they use the observer to estimate the slip angle of

the vehicle. The observer is a high complexity system which uses dynamic equations from the full

vehicle (four wheel model), which was “rearranged and discretized” for becoming the model for a

Kalman filter ([65]). The outputs of their controller are the nominal slip values for each tire.

The author of [65] declares that the vehicle slip angle is not accurate enough. Thereupon the

vehicle’s dynamic controller also uses a linear estimation for the nominal yaw rate (ψΝΟΜ) of the

vehicle. Therefore, after the determination of the nominal values for the slip angle and the yaw

rate, when the controller detects a deviation between the nominal and actual values above a dead

zone, intervenes to generate the correct yaw moment to compensate the effect using the

preinstalled electro hydraulic brake system. They have also used the concept “suspicion of failure”

for the system, where in a likely event of failure the system increases the dead zone before it

intervenes.

Automotive manufacturer Ford ([8]) has used the triad: Responsiveness, consistency, and

smoothness, as guidelines principles for the development of their stability control system. The

proposed ESP (ESP: Electronic Stability Program; similar abbreviation to the ESC) takes into

account an accurate interpretation of the driver’s future intention for the vehicle motion for

providing additional directional control (within physical limitations) as a driver’s aid. The

intention for the driver can be extracted partially from angular position of the steering wheel and

the turning direction.

The driver’s directional intention is determined by a desired yaw rate function based upon the

simplified “bicycle” model (with appropriate limitations, linearization and constraints). The

controller proposed by Ford will then use the above information to determine the need for

intervention and try to regulate the difference between the target and the real response of the

vehicle. Ford’s approach ([8]) the problem in two-stages; firstly the determination of the target

yaw rate and secondly limiting the error of the target yaw rate based upon the lateral acceleration

in a smooth manner. Under the assumptions that the longitudinal velocity is known via wheel

speeds, the lateral tire forces can be approximated by the Dugoff model ([64]), they try to

approximate the front and rear slip angle using small angle assumptions. After those assumptions

and approximations they create a dynamic calculated yaw rate target based on the driver’s steering

input and vehicle speed which is tuned firmly based on real experiments.

 20

For the tuning of the “bicycle” model they also take into account some vehicle parameters like

vehicle mass, center of gravity (CG) location with respect to the front and rear axle, rotational

moment of inertia in the yaw axis, the front and rear cornering compliances, and the maximum

vehicle’s yaw rate.

They have also built a theoretical limit for the yaw rate which they consider achievable at the

current tire/road and through this limit they assert that it manages to obtain smooth transitions

between the target’s yaw rates under the road’s friction coefficient transitions. In their

implementation the theoretical road surface coefficient isn’t directly calculated.

A very nicely written paragraph from the authors of [8] has been cited, which is a general rule

for every ESC system: While the target deviation from nominal response needs to be progressive

in order not to provoke a harsh reaction from the driver, the target deviation also needs to be large

enough to inform the driver that “the cornering capability of the vehicle has been approached or adverse

driving conditions exist”. Without sufficient feedback reaching to the driver, the latter is alienated

from critical information necessary for adapting to the driving conditions.

As in most ESP systems, the proposed stability control systems rely on the correct treatment of

the brake pressure distribution and engine/drivetrain torque. For robust control of the vehicle’s

sideslip angle they demand a controller insensitive to sensor dc offset, drift, or environmental

conditions. So they propose a method for correcting the corroded sensors measurements. In

retrospect, the methods for stabilizing, although weren’t cited very analytically, were similar with

that proposed by BOSCH at [65]. Both ESC systems (BOSCH and Ford) are evaluated of course

on real vehicles and are market products.

2.2 Published ESPs

Jürgen Ackerman is one of the top researchers in automotive control and is cited in almost every

publication, since he was a pioneer of his times.

Fig. 2.2 Extreme μ-split braking (courtesy of [5]).

 21

In the publication [5], the potential of active steering as an alternative or in combination with an

active braking system is discussed under the following assumptions: the total force Fmax which is

delivered by the tires does not depend on the direction in which the force acts; the center of

gravity (CG) is assumed to be midway between the front and rear axles of the vehicle and the

wheelbase is two times longer than the track width (Fig. 2.2).

Ackerman et al ([5]) assert that with the help of steering we can easily compensate for torques

caused by asymmetric braking (μ – split braking) through a corrective torque. At Fig. 2.2 which

derives from [5], an extreme μ – split braking situation is presented for showing the advantages of

active steering. The writers assert that the combination of braking and steering manages a better

balance of torque and supports his assumption with a simple but illuminating example. Finally,

they conclude that the use of active steering can influence efficiently a vehicle's yaw and roll

dynamics. Although individual wheel braking based ESC systems have low cost, they have

inherent drawbacks and limitations which can be compensated with the hybrid combination of

active steering.

In another publication Ackerman et al ([4]) proposes a robust car steering method for yaw

control. The main idea of this publication is a feedback control law that actuates on the steering of

the vehicle and decouples the yaw mode from the lateral mode of the front axle. This paper is also

based upon the dynamics of the “bicycle” model for the vehicle.

The implementation of the above system utilizes the yaw rate measured by a gyroscope and the

steering wheel angle. The writer assumes a longitudinal mass distribution and shows that a

compensator with unity transfer function and an integrating actuator is able to achieve the above

mentioned decoupling between the front axle lateral acceleration and the second order system with

state variables, the steering angle and the yaw rate. The novelty on this scheme is that the steering

wheel input controls lateral acceleration through a simple first order transfer function with only a

minor bondage on operating conditions. The writer proves his assertion that the unobservable

mode is always stable. Also they propose a state observer adaptive at its gain for estimating the

vehicle’s lateral velocity under sensor noise and bias, road surface coefficient uncertainty, as well as

vehicle model uncertainty.

The whole publication has more theoretical value than practical, since the main result of this

paper is a robust compensator/actuator design for all cars and all operating conditions, for

something that doesn’t seem to have practical applicability and the conclusion is that the theory of

observable / uncontrollable subspaces can be used to improve the dynamic behaviour of a car.

Nowhere inside this publication is mentioned anything about the applicability of the proposed

control law, neither about simulation or real test cases.

 22

In a third publication ([6]) of the same author, we can see an improved version of the decoupling

control law for active steering that was proposed in the previously mentioned paper. The vehicle

model for car steering model is a simplified version of the single track model. To achieve his goal,

the author introduces the sideslip angle at the front mass as a state variable. After some

linearizations and assumptions he reaches to a relationship where he shows that the state variable

he chose does not depend directly on the forces at the rear tires. He will try to decouple through

the corresponding control law, the indirect coupling between the yaw rate and on the forces at the

rear tires. The robust decoupling, as declared, is achieved by a feedback control law which has the

following properties: the coupling from the yaw mode into the lateral acceleration has been

removed. Thereby the steering transfer function is a first order function of the dimensionless

variable he used earlier (the steering wheel input correlated with the transmission ratio of the

steering gear).

The author proclaims that this law has disadvantages, such as yaw damping reduction at high

velocity and no immediate reaction of the lateral acceleration after a step command at the steering

input caused by the integration in the control law. Those drawbacks make the driver to feel that

the vehicle is not reacting as swiftly as a conventional car. Therefore he proposes a modified

control law where there is a direct connection between the inputs at the steering wheel to the front

wheel steering angle.

The author of [6] signifies that the use of a dimensionless representation of a system’s equations

is beneficial through introduction of dimensionless similarity numbers. The most interesting part

with respect to robust control theory is the potential of reduction of the system’s uncertain

parameters. Thereupon, the analysis and design of controlled systems are simplified. In the paper,

the author utilizes Buckingham’s theorem frequently, succeeding to put all uncertain parameters of

the conventional car into one similarity number. Therefore, the novelty this system achieves in its

dimensionless form is that all possible operating points can be represented by one single number;

while the other numbers are invariant for a specific car due to construction (tire properties).

After some simulation on the properties of a real vehicle, the author concludes that a car

designed to host the proposed controller, can be considered as a “compromise” between a typical car

which has poor attenuation properties concerning the yaw disturbance and the decoupled car

which “exhibits poor yaw damping at higher velocities”. A car equipped with the above control system

can return smoothly to the steady-state behaviour of the typical car.

Jong Hyeon Park and Chan Young Kim have proposed ([79]), in the “Vehicle System

Dynamics” journal, a very well organized and highly applicative scheme to enhance vehicle lateral

stability with a traction control system during cornering and lane changes. The specific writer will

be cited again in this thesis, for a second stability scheme he has proposed, because his work is

 23

transparent, easily comprehensible and unambiguous. The proposed scheme ([79]), controls wheel

slip during cornering by varying the slip ratio as a function of the slip angle assuming the existence

of traction control system acting on the engine throttle.

Jong Hyeon Park and Chan Young Kim, authors of [79] initiate their publication with an

introduction on the Traction Control System (TCS) signifying that when a vehicle is accelerated

on a slippery road, the resulting wheel slip reduces the traction force and increases the instability of

the vehicle. A TCS is maximizing the longitudinal friction coefficient by maintaining an

appropriate slip ratio. He also notifies that a vehicle in order to be able to turn without lateral

slippage (maintain stability), two different forces are demanded for the desired behaviour of a

vehicle driving straight and during cornering; longitudinal forces and lateral forces respectively.

The main idea of this publication is based on the typical characteristics of the tires, which show

that the longitudinal friction coefficient decreases as the slip angle increases and also the increase

on the slip angle shifts the peak of longitudinal friction coefficient ([79]). The authors of [79] also

use the established ([14], [64]) statement that the peak value of the lateral friction coefficient

occurs when there is absolute no slip ratio and increases as the slip angle increases. Thus, there is

the potential of building a controller that will impose a value for the slip ratio during cornering

lower than when driving straight, in order to achieve optimal balance of those two situations.

Therefore the authors propose a proportional, integrating control method to control wheel slip for

optimization of the longitudinal traction and the lateral force where the target slip ratio is given as

a function of the wheel slip angle, estimated from vehicle’s measurements (velocity, the yaw rate,

and the steering angle). The whole control scheme was simulated for a front-wheel-driven vehicle,

derived from an eight degree of freedom vehicle model (rotations of 4 wheels, yaw, roll,

longitudinal and lateral motions). Concluding, the key idea is the reduction of the slip ratio of the

wheels when the slip angle is large, in order to increase the lateral force producing this ways a

Variable Slip – Ratio Control (VSRC) ([79]).

Although the control scheme looks robust in a control manner, it has a flaw in the author’s (of

this thesis) opinion. The control algorithm needs the lateral velocity in order to be implemented

and the integration of lateral acceleration isn’t the optimal method for estimating the lateral

velocity. A state observer for this purpose should be constructed instead. Besides this flaw, the idea

is very nice, the presentation explicative and the simulated results from the scheme look really

promising.

Another interesting approach for yaw stabilization was proposed by Sohel Anwar ([60]). Anwar

presents the theoretical development and experimental results of his method for yaw control based

on generalized prediction. The idea is straightforward and derives directly from the title of the

paper that the objective of the controller is to track the desired yaw rate by minimizing future yaw

 24

rate errors based on the present errors between the actual and desired yaw rate. This writer,

although is his figures shows a four wheel vehicle model, he has used the common “bicycle” model.

The backbone of the process for the generalized predictive control algorithm is the utilization of

Diophantine type discrete mathematical identities for obtaining a prediction of the future output

of the plant which is to be controlled. The author of [60] asserts that his approach has been shown

to be robust against modelling errors and external disturbances. In the presented work ([60]) an

electromagnetic brake-by-wire based yaw control has been used, which energises selectively the

EM brake at each wheel, for controlling the yaw moment of the vehicle. The author also declares

in his publication that braking one wheel instead of more for generating the desired yaw rate

torque is more effective. For example, as he states, the best action to counteract the effect of an

oversteer condition is braking the front wheel is, while braking the rear wheel “has been found” to

be a thriving action in an understeer condition. Finally, the author concludes his paper by citing

the experimental results, which as he asserts show that the predictive controller can stabilize the

vehicle even in an oversteer/understeer condition on a packed snow surface.

Electronic stability program along with steering intervention, based on steer-by-wire system, for

heavy duty vehicles is a different approach to ESC proposed by P.Koleszar et al ([80]). The vehicle

dynamic control is based on the combination of braking and steering actions using electronic or

electro-hydraulic steering. Three actuators self equipped with electronic controllers have been used

for their implementation: brake, steering system and the engine throttle. The vehicle model used is

the all time classic “bicycle” model under simplifications like constant forward speed, neglected self

aligning torque of the tires, tire lateral forces proportional to the sideslip angle of the tire etc. The

authors of that paper declare that the measurable output signals of the model should be available

on a real vehicle, therefore yaw rate and lateral acceleration of the vehicle are chosen as output.

P.Koleszar et al [80] assume a “virtual” model which is the reference for the real vehicle, using a

3 degree of freedom model. Because of the fact that the sideslip angle of the vehicle is necessary

for controlling their model, they have used a simple proportional controller. When their controller

energises, depending on the behaviour of the vehicle, the dynamic controller brakes individual

wheel and steers the front axle for stabilization. The brake based controller has a defined “dead

band” in order to diminish the sensitivity of the system and prevent untimely interaction, “which

results in a rather harsh intervention”. The authors of the paper state that they have tested their

stabilizing algorithm both, in a simulator and a real prototype vehicle and after, some experiments,

like μ – split braking, lane change, braking in a turn and normal ESP situations, they derived to

the conclusion that ESP combined with a steer by wire system can be very fruitful. Although they

assert that their algorithm improves performance, something clear from the figures, they were very

poor concerning the explication on the exact way their control system works.

 25

An H∞ controller for integrated side slip angle, roll and yaw controls have been proposed by

Kazuya Kitajima et al ([82]). The H∞ filter, also called minimax filter, is used in H∞ control, where

all the necessary information about the noise of the system is unavailable, minimizes the worst case

estimation error and is used to design robust to unknown noise sources, control systems ([83]).

The authors of [82] have proposed two control algorithms, a feed – forward integration and H∞

control algorithm. The proposed system is highly complicated and involves the coordination VDC

(Vehicle Dynamic Control), active suspension and 4WS (four wheel steering). The idea of

decoupling, also used by Ackerman at [4] and [6], is additionally used for the feed – forward

integration method. On the other hand the H∞ control algorithm tries to minimize a cost function

under driver's steering and braking actions which are dealt as disturbances and simultaneously

design the chassis control functions. The authors of this paper ([82]) have utilized a 4WS steering

vehicle for their algorithms because as they claim, it reduces vehicle side slip angle and the phase

difference between yaw rate and lateral acceleration while increasing lateral tire force, in the effort

to unload the saturation from the other control inputs. In the feed – forward integration design,

one vehicle control input (front and rear steering angles) is designated for each output (yaw rate

and lateral velocity) and the others control inputs are treated as disturbances. For the evaluation of

their algorithms, the authors developed a Matlab/Simulink simulator which realizes vehicle

longitudinal, lateral, roll, yaw and each tire rotational motion. The concept of “relative authority”

has been used for the feed – forward integrator where i.e. VDC affects the yaw rate relatively more

than other vehicle states (i.e., side slip, roll angle, slip ratio). On the other hand, the H∞

integration measures front steering angle and regards it as a disturbance input, whose effect is to

be rejected by the control signal.

For the evaluation of the performance with and without vehicle yaw control, the authors put

their implementation under test, similar to maneuvers used by NHTSA. Maneuvers like J-turn,

where the vehicle is excited to roll and spin motions under sudden turns onto a sharp ramp and

fishhook maneuvers, where the vehicle is provoked to two – wheel lift – off by a drastic turn and

then turning back in the opposite direction ([82]). Simulations results of [82] showed that un-

coordinated chassis control only improves slightly from the no-control case, while the H∞

integrated case was found to perform significantly better and their control scheme can improve

vehicle stability in most situations, under some imposed limitations of inputs.

Another paper incorporating an H∞ controller has been proposed by the aforementioned Jong

Hyeon Park for his paper “Wheel Slip Control in Traction Control System for Vehicle Stability”

([79]). The second proposed H∞ controller for Yaw Moment Control With brakes ([59]) has been

a guideline for the development of the ESC controller of this thesis test bed and will be cited again

and explained extensively at “Yaw rate control with individual wheel braking” chapter. This paper

 26

([59]) introduces a H∞, yaw moment control scheme for improving vehicle stability especially in

high speed driving using individual wheel braking. Similar to previous cited paper by the same

author ([79]), steering angles are dealt as disturbances to the system and the controller tries to

minimize the error between the desired and actual response of the vehicle.

The author of [59] uses a two degree of freedom linear model, representing lateral and yaw

motions of a vehicle for the design of his H∞ controller, while the vehicle dynamics used for

simulation derives from an 8 DOF non linear model. The desired yaw moment is generated by

applying braking torque to just one wheel, since as the authors claim, some wheels are more

effective in generating the desired yaw moment than others, whereas braking only one wheel at a

time, decelerates the vehicle less than braking more than one wheels. The authors assert that they

evaluated the performance of the proposed controller through a series of computer simulations

which were based on an 8 DOF vehicle model and nonlinear tire model and the results showed

that their controller demonstrates efficient performance and robust stability.

The coordinated action of steering and individual wheel braking approach for ESC has also been

proposed by [9]. The authors of this paper uphold the belief that the most effective approach is

the coordinated and combined use of both methods for generating the corrective yaw moment.

The approach they propose is based upon a revised model regulator which imposes coordinated

steering and individual wheel braking for the better performance of the vehicle’s stability around

the Z axis. For the generation of their regulator, they have used the simplest model that can

accommodate steering and individual wheel braking, the two track model which neglects roll and

pitch motions. Their presentation is organized in three steps; the steering based ESC, the

individual wheel braking ESC and the combined action of the previous two. The basic method of

the combined controller is to regulate the error between the actual and desired yaw rate, through

coordinated action for the actuators of steering and wheel braking. The authors claim that after

realistic simulations and road tests of their model regulator, their approach was successful.

Continuing our related work presentation, we shall proceed with some “state of the art” ESC

systems. An excellent presented paper which can also be used as tutorial for ESC and Control

Allocation is proposed by Leo Laine and Johan Andreasson at [81]. This paper ([81]) combines

control allocation with an optimization formulation for the implementation of on – line electronic

stability control system for a conventional road vehicle. It is based on control allocation, methods

which is used for systems, were the degrees of freedom controlled are less than the actuators

(“over-actuated systems”). The driver manages the steering and the control allocator actuates on

the engine and the four mechanical brakes to compensate any undesired behaviour. The whole

idea concerning the control allocator is that it provides “automatic redistribution” when one actuator

saturates in position or in rate, where its effectiveness is limited from this point and on. The

 27

authors assert that the proposed algorithm is upgradeable and could be used in future vehicles

where the actuators would be more than in the current implementation. Since we found their work

very interesting we shall cite some parts of their publication. The desired path r = [vx vy wz] T ([81])

is calculated by the motion controller and then the path controller tries to follow the desired path

by correcting the global forces and yaw torque v = [Fx Fy Mz]T. The controller, then distributes the

correction over the actuators from v to u, where u=[tice tmb1 tmb2 tmb3 tmb4]T and rank(v) < rank(u).

We have cited the control illustration from [81] in Fig. 2.3.

Fig. 2.3 Control Design with a focus on control law for vehicle motion and its path controller, a PI controller

with Anti-Windup strategy. Abbreviations: Gas Pedal(GP), Brake Pedal (BP), and Steering Wheel Angle

(SWA). Figure derives directly from [81].

The control is divided in two steps. First, the formulation of a control law for the net effort v,

and second the design of the control allocator that maps virtual control input of the net to true

control input, v(t) mapping to u(t). The necessary desired lateral velocity vy and yaw rate wz are

predicted through a linear “bicycle” model. The whole implementation utilizes a path controller

that is based on feedback linearization which transforms the nonlinear system into a linear one in

order to have the ability to use linear techniques.

The next step in the control design for [81] was the creation of the control allocator, where the

most important part is the selection of the control input set “u” from all possible combinations.

The authors at this point, state that their proposed control allocation optimization is also suitable

for fuel cell vehicles and hybrid electric vehicles. The ESC system was simulated on

Matlab/Simulink, where the vehicle system models were implemented as S – functions and was

tested against the proposed test procedure, Sine with Dwell, for ESC systems from the National

Highway Traffic System Administrations, which did pass. After an excellent presentation, and

 28

highly documented results the authors conclude that their ESC systems can be considered as a

native characteristic of the motion control system for over-actuated road vehicles and that it is

suitable for real time implementation.

A second publication utilizing control allocation for ESC using multi parametric nonlinear

programming has been proposed by P. Tøndel and T. A. Johansen at [61]. This publication is

nicely written and can also be used as tutorial paper for automotive tire dynamics (Fig. 2.4). The

control scheme being introduced by the authors allows the control task to be divided into modules,

so that the higher level designates the desired behaviour of the vehicle, while the lower level, the

control allocator distributes the appropriate commands to the actuators so as to accomplish its

goal. Since the control allocation is defined ([61]) as a non linear optimization situation, therefore

computationally demanding, the piecewise linear approximate solution is computed off – line in

order a realistic implementation in real time of the proposed system be achievable. Solving the

problem in real time isn’t applicable for time critical tasks.

Fig. 2.4 Lateral friction coefficient as a function of the longitudinal wheel slip on the left and longitudinal

friction coefficient as a function of the longitudinal wheel slip on the right. The figures are taken by [61].

Continuing the presentation of [61], a double track model is used by to describe the dynamics of

the vehicle, while the vehicle is assumed to be ABS equipped with embedded wheel slip controller.

This controller is assumed to apply the commands for the desired longitudinal wheel slips

individually. The state vector of the proposed system consists of the longitudinal velocity, the yaw

rate and the slip angle, where the first two are directly measured by sensors, while the slip angle is

estimated through an observer. The control allocation scheme is a static mapping between the

commanded moment around the Z axis of the vehicle, and the control inputs, where the dynamics

of the vehicle are unconcernedly. These dynamics are adjusted by a higher level control system.

 29

The yaw stabilization is conducted through constraining the vehicle side slip angle and yaw rate

with the upper/lower bound for its current state. The authors declare through their simulations

that their control allocation algorithm works as desired and tracks the problem very accurately.

The authors claim that on a case where the vehicle loses steerability, then under the application of

the proposed controller, the manoeuvre remains stable.

An adaptive optimizing dynamic control allocation algorithm for yaw stabilization using brakes

is proposed by J. Tjønnas and T. A. Johansen ([7]) and derives partially from author of the

previous presented paper. This approach for ESC is similar to the previous cited in the sense that

it utilizes modularization in the control design. It consists of (similarly to the previous paper) a

high and low level module, allowing portability of the implementation, in the sense of software.

The high level module deals with motion control, consisting of the yaw rate reference generator

and an interface between the two levels and a low level module that deals with the actuation,

through commanding individual brakes and the longitudinal clamping force, such that the vehicle

meets the control objective (desired yaw rate). The adaptive dynamic control allocation algorithm

is responsible for generating the appropriate commands delivered to brakes. A plane two-track

model is then used for the stabilization design.

The actuator model depends on the unknown friction coefficient. Thus, the authors of [7]

developed an adaptive law for estimating the maximal value of the friction coefficient. The

allocation algorithm harnesses the parameter estimate and implements a certainty equivalent

update law. The validation of the ESC scheme by [7] was conducted on the Daimler Chrysler’s

proprietary simulation environment CASCaDE (Computer Aided Simulation of Car, Driver and

Environment) for MATLAB, which is a realistic nonlinear simulation environment ([7]). The

authors declare that their adaptive algorithm is expedient for improved performance in terms of

reference trajectory tracking and leans to be both more prosperous and robust compared to a non –

adaptive one in terms of meeting the control objective ([7]).

2.3 Scaled Implementations

Building a scaled model of a real vehicle and/or its environment bridges the gap between solely

simulation based implementations and real experiments. Development and evaluation of ESC

systems in full scale vehicles confronts with safety and cost issues. It is difficult to experiment with

the factory pre – installed sensors and actuators and even for a trial run, a racing track is necessary.

Therefore some researchers are tempted by the potential of valid results while having diminished

the above unflattering facts by building scaled automotive systems. It is most likely that we are the

first building a self contained scaled automotive vehicle incorporating the necessary sensors,

 30

actuators and computer systems for the implementation of a fully functional ESC system.

However scaled test beds have been developed by some other researchers too.

A very interesting approach utilizing scaled test beds for automotive experiments has been

introduced by [85]. Their main objective was to compare simulation data along with real data

gathered from their custom developed scaled test bed, in order to estimate the potentials of ESC

as vehicle properties change and particularly to specify vehicle’s stability threshold at those

changes. The implemented ESC system is simple; if the model exceeds some certain thresholds

for stability, known from simulation, intervene to throttle and steering. MATLAB is once more

used here for simulation purposes. The dynamic model they have used has 4 degrees of freedom,

and the dynamic motions taken into consideration are longitudinal, lateral, yaw and roll. Their

work is interesting, and has the potential for giving realistic results concerning vehicle dynamics

and could be used for educative purposes too.

A radio controlled model car as vehicle dynamics testbed has been developed by Paul Yih ([3])

from Stanford University. The model car is 1:5 scale, gas powered and has an onboard single

board computer which interfaces with the radio receiver, servo motors, and sensors through a

microcontroller and digital input/output ports analog input/output ports. The software for their

radio control model was developed with MATLAB Real-Time Workshop which generates C

code from the appropriate developed Simulink model. This software is executed at the single

board computer and is responsible for data acquisition and servo motor actuation. Although, this

test bed was developed about dynamic inspection control, nothing was mentioned about dynamics

or control for the vehicle.

Probably the most known and highly utilized facility for scaled testbeds, is the Illinois Roadway

Simulator (IRS) ([13], [86]). This Roadway is an experimental platform for scaled vehicles that

are simulated running on a road surface. The road surface moves relative to the vehicle, while

those are held fixed through an articulated mechanism with respect to inertial space. The

advantages, as claimed by the authors of [86] are many; cheap construction and design for new

vehicles, economic in tests, which can be repeated multiple times with little or no cost etc. The

roadway has the potentials to offer “considerable sensing and actuation flexibility” ([86]). The

moving surface is a treadmill that can reach a top speed of 24km/h. Of course, the roadway

simulator consists of all the necessary computing hardware and software for its operation which is

managed via Wincon, a Windows-based control program running real-time code generated by the

previous mentioned Real-Time Workshop of MATLAB.

The vehicle’s dynamics are described by the “bicycle” model, while roll and pitch motions are

neglected, allowing only two degrees of freedom, lateral position and yaw angle. The vehicle is

fixed on a coordinate system to the center of gravity for the needs of modelling. The authors claim

 31

that scaled vehicles showed similar dynamical behaviour to full scale vehicles. The roadway

simulator looks like a perfect mean for real control emulation.

The Illinois Roadway simulator, is an excellent idea for experimenting. Many publications, like

the previous two mentioned, and also [90], [91], [92], along with two Master Thesis have been

derived from the results of IRS ([87], [89]). The Master Thesis of Sean N. Brennan ([88]),

“Modelling and control issues associated with scaled vehicles”, is one of the best documented and

written with unambiguous results the author of the thesis you are reading now has seen. The work

his has done is a Masterpiece for the interested in building scaled vehicle and learn both basic and

advanced dynamics in vehicles. It is nicely written, along with many valid citations and could be

used as a tutorial on advanced modelling, dynamics, embedded systems etc.

In his thesis, he analyses the development of the roadway simulator the development of scaled

vehicles, critical tasks the bottlenecks they found in the development of the roadway, and many

experiments they did on fine tuning for the roadway and the scaled test beds, along with

experiments on the dynamic behaviour of the vehicles ([91], [13]). In the “Driver Assisted Yaw

Rate Control” publication ([91]) written by Mr. Brennan, he has proposed a yaw rate control

method, based on model reference control. Mr. Brennan has constructed a yaw rate reference and

tries to minimize the error between the reference and the plant, where the plant is the real vehicle.

He uses a proportional – differentional controller that acts on the rear wheels steering angle (4WS

test bed). It is a nicely written work utilizing the benefits from the roadway simulator.

A 1:10 radio control car has been used by William E. Travis et al ([87]) as test bed, for

validation of simulated experiments. The authors have modified the vehicle, so they can change

the properties of the vehicle like center of gravity, spring stiffness and roll center, in order to be

able to view the changes into the dynamic behaviour of the vehicle. The vehicle is equipped with

an inertial measurement unit, consisting of a GPS, two gyroscopes and a two – axis gyroscope.

The authors claim that the simulation followed the dynamic behaviour of the scaled car, in a real

good manner. They conclude their publication by declaring the connection between

experimentally observed dynamics with simulation results for full sized vehicles and claim that

scaled vehicles can be profitable used for some forms of rollover research.

A 1:10 radio control vehicle has also been by R. Holve and P. Protzel ([93]) used for his reverse

parking of a model car with the use of Fuzzy Control. Their fuzzy controller lacks any kinematics

or modelling for the vehicle and the algorithm is very simple, but as the authors claim, it works

nicely. Another very simple implementation utilizing the use scaled models for educational

purposes, as the authors assert, is written by Manuel C.G. Silva, Mário L.O.S. Mateus & João

M.S. Cruz .Their scaled model doesn’t do anything but is simple has an odometer and logs the

data to a computer through a commercial software. A third scaled vehicle for traction control

 32

study, was the submitted for Master of Science Thesis by Mark A. Morton ([95]). His thesis

covers the design of platform and car and the application of traction control system on the vehicle

(1:10 scaled car) and on the platform (Lego build treadmill). He cites the result from experiments

while claiming that he managed a small error between mathematical simulations and physical

tests.

In his master thesis, Mr. Richard D. Henry ([96]) developed an automatic ultrasonic headway

control for a scaled car. His thesis was about the development a platform for rapid prototyping of

systems similar to adaptive cruise control. A scaled test – bed was also built by Seung kook Jun and

Daniel O. Gott ([97]). The scaled Test Bed is a radio control truck with a PC/104 based

computer and various embedded sensor - and actuator. The goal of their work was to build a test –

bed for studying several concepts like instrumentality for complex robotic controlled by human,

stoutness of the control in the presence of varying grades of communication and “multi-user shared

teleoperation”. Their test bed, as the authors assert, can also be used for studying human computer

interaction, examining issues related to ground traffic control and issues related to drive-by-wire

system. The system is based on the XPC target toolbox from Mathworks (Matlab). Nothing is

mentioned about a control application in the publication.

2.4 Comparison between published ESPs and our system

Apart from the analytically presented publications towards ESC, there are hundreds different

approaches for vehicle modelling, reference generation, safety margins and simulation – emulation

of the different proposed vehicle stability control schemes. We can clearly notice that with the

evolution of technology and the wide availability of controllers in vehicles they can execute

computationally demanding algorithms in real time. If we look at origins of the research being

conducted for ESC and its evolution to present, we can definitely see the exponential growth in

control complexity. The origins of the research extend from the linear “bicycle” model of 1995, to

the 8 degree of freedom nonlinear complicated models, employing nonlinear curves for the tire

modelling, embedded in a 32 – bit ESC controller.

There are hundreds of different publications, under the appellation Electronic Stability Control,

Yaw Control, Electronic Stability Program, Vehicle Dynamics Control etc. For most of them the

objective is to stabilize the vehicle around the Z – axis and diminish the effects of oversteer or

understeer. The control methods proposed are based on the same principles: a gyroscope and an

accelerometer at the Center of Gravity, a reference for Yaw Rate and Slip angle, where the latter is

evaluated from a state observer in industrial applications, like those in BOSCH ([12], [65], [78])

and Ford ([8]). Key points from the previous two manufactures, like fine tuning of their

 33

algorithms and the construction of parts like the state observer for estimating the slip angle, are

not published. But most published ESPs (see the section “Published ESPs”) do have a detailed

description of their system’s operation.

Our ESP system (see section “Vehicle Dynamics and Stabilization Algorithm”) is governed by

similar principles of those presented in the literature. We utilize only one gyroscope without a

linear accelerometer, and by using a function of the velocity of the vehicle and the steering angle

and after some experimenting we used a yaw reference function from [62], chapter 8 (p. 230). Our

ESP is similar to [59], something clearly mentioned in the corresponding section. Our ESP is

using a simple and straightforward method, using only a single gyroscope, which proved in real life

experiments.

We know that our linearized ESP system isn’t the state of the art for controlling such complex

system, but did manage to prove the usefulness of the vehicle testbed and the reason it was build

for.

2.5 Attainment to Academic Community

The attainment to academic community for this thesis is clear. It is a complete construction

manual for building an open source, test bed for automotive experiments, along with the

evaluation of an ESP algorithm. It provides a description for the vehicle for a simple

“stabilization” scheme and presents key literature for those who want to start studying in vehicle

ESC.

This thesis is a tutorial on building from zero a very low cost test platform, illuminating key

points and key aspects for the future developer, giving a detailed guidance for what he/she should

be careful.

The most important part of this thesis is not the ESP algorithm proposed, but the fact that every

software used is free and its location is clearly cited in the following chapters. We have used the

most economic hardware available and none of the hardware used is industrialised or requires any

specific licence. Everything inside this thesis could be bought from local stores, and all the

software is available at the Internet. So we wish good luck to the potential researcher who plans to

develop a similar test bed and he/she should read this document first, since it would save him/her

quite a lot of time. It has citations everywhere needed, is documented and leaves no wonders or

speculation for any subject.

 34

3. Vehicle Dynamics and Stabilization Algorithm

3.1 Oversteer and Understeer

3.1.1 Abstractional Behaviour

The single track model will be used for a reduced complexity dynamical behaviour analysis for an

automotive vehicle that is derived from the mathematical model considered by [14] for steady state

cornering. The model takes into account tractive and inertial forces around the yaw axis, and

neglects roll and pitch motion. Nevertheless, the complete dynamics of a real vehicle are highly

non – linear and difficult to control. Interesting approaches have been proposed for non – linear

systems with measurable state by [16], where an unknown non – linear system is controlled, with

the usage of Recurrent High Order Neural Networks. The geometry of our single track model is

shown at Fig. 3.1. The dynamics equations are given by 3.1, 3.2, 3.3 and 3.4:

Fig. 3.1 Single track vehicle Model.

 35

Applying Newton’s Second Law in the lateral direction of the Vehicle, we can derive to the

necessary dynamics equations. For a vehicle travelling with a speed V, the sum of the lateral forces

(ΣFL) originating from the tires acting on the vehicle are equal to the Centripetal Force ([14]).

2

 L Lf Lr
VF F F M
R

= + =∑ (3.1)

Where M the mass of the vehicle, R: radius of turn, FLr and FLf the sum of the lateral forces

(vertical from each wheel’s direction of travel) acting on the rear and front axle correspondingly.

Applying Newton’s second law around the Center of Gravity (CG), if we consider the vehicle to

be in an equilibrium moment ([14]):

0 Lf f Lr rF l F l⋅ − ⋅ = (3.2)

Where lf and lr are the distance of the front and rear axle from the CG correspondingly. If we

substitute equation 3.2, back to 3.1:

2

(1) () () r fr
Lr Lr Lr

f f f

l llV LM F F F
R l l l

+
⋅ = ⋅ + = ⋅ = ⋅ (3.3)

2

2

()

()

f
Lr

r
Lf

l VF M
L R
l VF M
L R

⎫
= ⋅ ⋅ ⎪⎪

⎬
⎪= ⋅ ⋅ ⎪⎭

 (3.4)

Finally through Fig. 3.1(xfF is considered positive), Gillespie ([14]) concludes:

2

cos() sin() () r
Lf yf f xf f

l VF F a F a M
L R

δ δ= ⋅ + + ⋅ + = ⋅ ⋅ (3.5)

2

cos() sin() () f
Lr yr r xr r

l VF F a F a M
L R

= ⋅ + ⋅ = ⋅ ⋅ (3.6)

Key parameters and symbols are defined in Table 3-1.

M Mass of the Vehicle

V Forward speed

lf, lr Distance of front, rear axle from the center of gravity

L Wheelbase (L= lf + lr)

FLf,FLr Sum of lateral forces for front and rear axle.

Fyf,Fyr Cornering forces: front, rear axle

Fxf,Fxr Tractive forces: front, rear axle

af,ar Slip angles: front, rear axle

δ Steering Angle

Caf,Car Cornering stfiness: front, rear axle

R Radious of Turn

Table 3-1 Variables and parameters for the Single Track Model.

 36

Cornering forces Fyf,Fyr, are linear w.r.t. slip angle at low slip angles according to [14] and [64].

The relationship between forces and slip angle is:

 yr ar r

yf af f

F C a

F C a

= ⋅ ⎫⎪
⎬= ⋅ ⎪⎭

 (3.7)

For angles less than 20 degrees, the error for a first order approximation for sine and cosine

(sin a a≈ and cos 1a ≈), is less than 6.5%. From fig.3, assuming small angles, we can derive to the

following approximations:

1

2

2

 :small

 :small
1

 :small
2 0

tan

tan()

cos()= 1

r

f

f

r f

ar r
r r

af f
fa

a a

l x l xa a
h h
l x l x

a
h h

h h
R R

β δ

β
β δ

β δ

β

= −

= − + ≈

+ + ⎫= ⎯⎯⎯⎯→ = ⎪
⎪

− − ⎪= ⎯⎯⎯⎯→ − = ⎬
⎪
⎪⎯⎯⎯⎯⎯→ = ⎪
⎭

 (3.8)

Where x is distance from CG to the projection of Center of Turn on the longitudinal axis of the

vehicle. Adding the first two and substituting the 3rd, yields:

h=R L
R

r f
r f f r

l l
a a a a

h
δ δ

+
+ − = ⎯⎯⎯→ = + − (3.9)

If we substitute equations 3.7into 3.5 and 3.6, we get:

2

cos() sin() () r
af f f xf f

l VC a a F a M
L R

δ δ⋅ ⋅ + + ⋅ + = ⋅ ⋅ (3.10)

2

cos() sin() () f
ar r r xr r

l VC a a F a M
L R

⋅ ⋅ + ⋅ = ⋅ ⋅ (3.11)

Again, assuming small angles:

cos() cos cos sin sin 1

sin() cos sin sin cos
f f f f

f f f f

a a a a

a a a a

δ δ δ δ

δ δ δ δ

+ = − ≈ − ⋅

+ = + ≈ +

Using the above relationships into 3.10 and 3.11:

2

2

2

2
2

0

 , 20 0.04

(1) () ()

()

f
o

f f

r
af f f xf f

r
af f af f xf f xf

a

if a a

l VC a a F a M
L R

l VC a C a F a F M
L R

δ

δ δ

δ δ

δ δ

⋅ ≈

= → ⋅ =

⋅ ⋅ − ⋅ + ⋅ + = ⋅ ⋅ →

⋅ − ⋅ ⋅ + ⋅ + ⋅ = ⋅ ⋅

⎯⎯⎯⎯⎯⎯⎯⎯→

2

() r
af f xf f xf

l VC a F a F M
L R

δ⋅ + ⋅ + ⋅ = ⋅ ⋅ (3.12)

And

2

1 () f
ar r xr r

l VC a F a M
L R

⋅ ⋅ + ⋅ = ⋅ ⋅ (3.13)

Solving 3.12 and 3.13 w.r.t. fa and ra yields:

 37

2

(1) (1)

xfr
f

xf xf
af af

af af

FM l Va F F
C R L C

C C

δ⋅⋅ ⋅
= −

⋅ + ⋅ ⋅ ⋅ +
 (3.14)

2

(1)

f
r

xr
ar

ar

M l V
a FC R L

C

⋅ ⋅
=

⋅ + ⋅ ⋅
 (3.15)

If we substitute equations 3.14, 3.15 into 3.9, and solve w.r.t. R we get:

22
1 2

1
R (1)(1) (1)

xf

af fr

xf xf xr
araf

araf af

F
C M l VM l VLF F FC LC L CC C

δ
⎛ ⎞ ⎛ ⎞⋅ + ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅ ⋅⋅ ⋅⎝ ⎠ ⎜ ⎟= ⋅ + − ⇔

⎜ ⎟
⋅ + ⋅+ ⋅ + ⋅⎜ ⎟

⎝ ⎠

()
2

 1
1

(1)(1)1 2

xf

af fr

xf xrxf
araf

arafaf

V MR A L B C
L

F
C llA B CF FF CC CCC

δ

⎫⎛ ⎞⎛ ⎞⋅
= ⋅ + ⋅ − ⎪⎜ ⎟⎜ ⎟

⎝ ⎠ ⎪⎝ ⎠
⎪⎛ ⎞ ⎪⎛ ⎞ ⎛ ⎞+ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎪⎝ ⎠ ⎜ ⎟ ⎜ ⎟= ⋅ = = ⎪⎜ ⎟⎛ ⎞ ⎜ ⎟⋅ + ⋅ ⎪⋅ ++ ⋅ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎪⎝ ⎠⎝ ⎠ ⎭

 (3.16)

If we consider a steady steering angleδ , we can analyze the behaviour of the radius in a turn for

each term (A, B and C) of the above equation.

3.1.2 Counteracting Oversteer and Understeer

When a vehicle oversteers tends to narrow the radius of turn. On the other hand, when a vehicle

understeers, tends to widen the radius (Fig. 3.2). Applying the right inputs when the effect of

oversteer or understeer is detected, the ESC system, can counteract the undesired effects within

the physical limits of the system. With a closer look at equation 3.16 we can determine which

would be the appropriate inputs for each case.

Oversteer:

 In order to counteract oversteer; we have to increase the radius of turn:

o Reduction on the magnitude of a positive xfF , or better a negative xfF , increases

both A and B terms term, consequentlyR . This is translated as releasing

throttle on a FWD vehicle or applying brakes at the front axle.

o Increase on the magnitude of a positive xrF reduces C terms, therefore

increasesR . This accounts for applying throttle on RWD vehicle.

Understeer: In order to counteract understeer, we have to decrease radius of turn:

 38

o Increase on the magnitude of a positive xfF reduces both the A and B terms,

therefore reduction on R . This is translated as applying throttle on FWD

vehicle.

o Reduction on the magnitude of a positive xrF , or better a negative xfF , results to

an increased C term, therefore reduction on R . This accounts for releasing

throttle on a RWD vehicle, or applying brakes at the rear axle (tailbrake).

Fig. 3.2 Oversteer, Understeer and Neutral Steer.

Although the above analysis is simple, gives a clear case of what would be the response of

applying throttle or brake at the radius of turn of a vehicle. An experienced driver counteracts

impulsively with the above techniques in order to control the vehicle.

 39

3.2 Yaw rate control with individual wheel braking

Yaw rate control systems usually apply individual wheel braking and/or readjusting the engine

delivered torque, where some systems also use active steering or hybrid methods combining both:

differential braking, torque distribution and active steering. So the best approach which would

limit the impact of the ESC system at the original velocity of the vehicle would be to apply brakes

on the most effective wheel at each time. This wouldn’t slow down the vehicle very much and

would be as much effective, as those mentioned above at the “Oversteer and Understeer Effects

Section”.

A very nice and readable approach on the above stabilization scheme (differential wheel braking)

has been presented by [59] and most of the dynamical equations and mathematical formulas that

will be used in this section have derived from this paper. The dynamical model of the vehicle is

based upon the dynamics of the double track model, is real close to a real vehicle, and is quite

popular to automotive researchers, for example the [60] and [61].

The double track model is a two degree of freedom linear vehicle model constituting of the

lateral and yaw motion of the vehicle.

3.2.1 Vehicle dynamics

Using the longitudinal and lateral axis of the vehicle at Fig. 3.3 as coordinal axis we derive to

following dynamic equations, which are taken from [59].

Applying Newton law with respect to the longitudinal axis (X axis) of the vehicle:

() 1 1 2 2 1 1 2 2 3 4cos cos sin sinX Y X X Y X XM V V F F F F F Fω δ δ δ δΥ⋅ − ⋅ = ⋅ + ⋅ − ⋅ − ⋅ + + (3.17)

Applying Newton law with respect the lateral axis (Y axis) of the vehicle:

() 1 1 2 2 1 1 2 2 3 4sin sin cos cosY X X X Y Y YM V V F F F F F Fω δ δ δ δΥ⋅ + ⋅ = ⋅ + ⋅ + ⋅ + ⋅ + + (3.18)

Applying Newton law with respect the vertical axis (Z axis) of the vehicle around the center of

gravity:

() ()
() ()

1 1 2 2 1 1 2 2 3 4

1 1 2 2 1 1 2 2 3 4

cos cos sin sin

sin sin cos cos
Z f X X Y r X X

f X X Y r Y Y

I t F F F F t F F

L F F F F L F F

ω δ δ δ δ

δ δ δ δ
Υ

Υ

⋅ = ⋅ ⋅ − ⋅ − ⋅ + ⋅ + ⋅ − +

⋅ ⋅ + ⋅ + ⋅ + ⋅ − ⋅ +
 (3.19)

Where:

 FX1 - FX4: Longitudinal forces acting on the tires.

 VX: Longitudinal velocity along the X axis

 FY1 – FY4: Lateral forces acting on the tires.

 VY: Lateral velocity along the Y axis

 ω : Angular rate around Z axis.

 ω : Angular acceleration around Z axis.

 40

Fig. 3.3 Double track vehicle model.

All the parameters and symbols that will be used for the double track model are centralized in

Table 3-2 ([59]).

Parameter Unit

M Mass of the Vehicle
kg

Iz Moment of Inertia around the Z axis center of gravity (CG)
kgm2

lf, lr Distance of front, rear axle from CG
m

L Wheelbase (L= lf + lr) m

FX1 - FX4 Longitudinal forces acting on the tires.
N

FY1 - FY4 Lateral forces acting on the tires.
N

VX Longitudinal velocity along the X axis m/sec

VY Lateral velocity along the Y axis m/sec

a1,a2,a3,a4 Slip angles: front left, front right, rear left, rear right
rad

β Slip angle at CG
rad

δ1, δ2 Steering angle: Front left wheel, Front right wheel
rad

Caf, Car Cornering stiffness: front, rear axle
N/rad

tf, tr Half of the space between wheels: front and rear axle
m

ω
Angular rate around Z Axis at CG

rad/sec

ω
Angular acceleration around Z Axis at CG

rad/sec2

Table 3-2 Parameters for the double track model.

 41

Wheel slip angles for the front left, front right, back left and back right are expressed respectively

by ([59]):

1
1 1

1
2 2

1
3

1
4

tan ,

tan ,

tan ,

tan

Y f

f

Y f

f

Y r

r

Y r

r

V L
a

V t

V L
a

V t

V La
V t

V La
V t

ω
δ

ω

ω
δ

ω

ω
ω

ω
ω

−

Χ

−

Χ

−

Χ

−

Χ

⎛ ⎞+ ⋅
= − ⎜ ⎟⎜ ⎟+ ⋅⎝ ⎠

⎛ ⎞+ ⋅
= − ⎜ ⎟⎜ ⎟− ⋅⎝ ⎠

⎛ ⎞− ⋅
= − ⎜ ⎟+ ⋅⎝ ⎠

⎛ ⎞− ⋅
= − ⎜ ⎟− ⋅⎝ ⎠

 (3.20)

The above relations are directly taken from [59], but are quite popular to other publications

concerning vehicle dynamics. Proof for the slip angles can be found at [87] in pages 46 to 48. The

slip angle of the vehicle at the center of gravity is defined as the angle between the vector of the

actual velocity of the vehicle and the longitudinal axis of the vehicle (X Axis).

1tan YV
V

β −

Χ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (3.21)

The authors of [59], under some assumptions derive to a relationship really helpful to us. The

assumptions are:

 The longitudinal and lateral tire forces FX and FY, although they are highly non – linear

functions of the slip angle, slip ratio, velocity of the tires etc, are simulated with the

Dugoff tire model ([59],[64]), same as at the “Abstractional Behaviour” section, as linear

functions of the slip angle. The relationship between forces and slip angle is ([14],[59]

,[64]): 1,2,3, 4Yi ai iF C a i= ⋅ = (3.22)

 X YV V /YV Vβ Χ≈ (3.23)

 1 2 1fδ δ δ≈ =

 f rt t t≈ =

 X fV t ω⋅ and X rV t ω⋅

 Assuming quasi – static moment balance at the wheels about the rotational centers:

 1, 2,3, 4Xi Bi WF T R i= ⋅ = , (3.24)

Where TBi is the braking torque and RW is the effective radius of each wheel.

Under the above assumptions and combining the relationships 3.17 – 3.24, the author of [59],

reaches to the following state representation of the simplified vehicle model, with state variables,

the yaw rate ω and the slip angle .

 42

1

211 12 1

21 22 23 24 321 22 2

4

11 12 2

2 2

21 22

21 23

0 0 0 0

1
X

r f

b

b
f

b

b

af ar ar r af f

X

ar afar r af f

Z Z X

T
Ta a c

b b b b Ta a c
T

Where
C C C L C L

a a
M V M V

C L C LC L C L
a a

I I V
tb b

ββ
δ

ωω

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= ⋅ + ⋅ + ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎢ ⎥
⎣ ⎦

− + ⋅ − ⋅
= = − +

⋅ ⋅

⋅ + ⋅⋅ − ⋅
= = −

⋅

= = − 22 24

1 2

Z W Z W

af af f

X Z

tb b
I R I R

C C L
c c

M V I

= =
⋅ ⋅

⋅
= =

⋅

 (3.25)

The above relationships come from [59]. The control scheme we decided to use for stabilizing

the vehicle is based upon the relationship 3.25. It is simple but straightforward and proved quite

effective. It is presented in the next section.

3.2.2 Yaw rate stabilization algorithm

The yaw rate of the vehicle can be affected by the brake torque on the wheels as denoted by the

equation 3.25. Nevertheless, all wheels don’t have the same effect in generating torque. As proved

in section “Counteracting Oversteer and Understeer” and the relationship 3.16, applying brakes at

the front axles reduces oversteer, which is translated as widening the radius of turn of a vehicle,

which means that decreases the yaw rate. Applying brakes on the rear axle has the contrary effect;

increase on yaw rate of the vehicle. The above proof, agrees to the author of [59] where he asserts

that, “All wheels are not equally effective in generating the yaw moment”.

Thereafter, we have followed the same route as the [59] and modern ESP systems; applying

brakes only at one wheel at a time, based on the decision of oversteer or understeer. Thereupon,

we used an appropriate fitted reference yaw rate function of velocity and steering angle. If the error

between the reference and the actual yaw rate measured from the gyro exceeded a certain amount

then the system would detect oversteer or understeer and would apply brakes on the most effective

wheel to counteract the effect.

To determine understeer or oversteer, we collate the measurement from an inertial measurement

unit, a gyroscope at the center of gravity of the vehicle with the desired yaw rate. The control

scheme is the following:

 Detection of Oversteer (measured yaw rate > desired yaw rate)

 43

o Positive yaw rate measured from gyro scope

 Apply brakes at the front left wheel.

o Negative yaw rate measured from gyros scope

 Apply brakes at the front left wheel.

 Detection of Understeer (measured yaw rate < desired yaw rate)

o Positive yaw rate measured from gyro scope

 Apply brakes at the front left wheel.

o Negative yaw rate measured from gyros scope

 Apply brakes at the front left wheel.

The desired yaw rate function has derived from, [62] from the “Electronic Stability Control”

chapter and is presented at Fig. 3.4 along with the complete algorithm with the sensitivity

parameter. The parameters used are explained at Table 3-3.

Single gyroscope Electronic Stability Control Algorithm

1) Evaluate the reference yaw rate () the car should

 experience according to current state and actual yaw rate () from the gyro.

2 2()

22

ref

V V
ref M V l C l C M V Kr ar f af LL LC C Laf ar

ω

ω

ω δ= ⋅ = ⋅
⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

++ ⋅⋅ ⋅ ⋅

() ()
()

() ()

2) if () 10

 if () () (1/) 3 //

 if () 0, brake front left wheel;

 else, brake front right wheel

 if () () &&(

abs

abs abs S oversteerref

abs

abs abs S Vref

δ

ω

ω ω

ω

ω ω

≥

≥ ⋅ +

>

< ⋅ >()
()

2) //

 if () 0, brake rear right wheel;

 else, brake rear left wheel

 else, do nothing; //normal steering
3) Go to step 1 (repeat forever)

S: Sensit

understeer

abs ω >

ivity 0 1, best results with S=0.9
()

: understeer gradient, best results with K=0.004

S
l C l Cr ar f afK
C Caf ar

< <

⋅ − ⋅

⋅

Fig. 3.4 Single gyroscope Electronic Stability Control Algorithm.

 44

Parameter Unit

M Mass of the Vehicle
kg

lf, lr Distance of front, rear axle from CG
m

L Wheelbase (L= lf + lr) m

δ Steering angle: mean of both front wheels steering angles
rad

V

Longitudinal velocity along the X axis, average of longitudinal speed measured

for each wheel m/sec

Caf, Car Cornering stiffness: front, rear axle
N/rad

ω
Angular rate around Z Axis at CG

rad/sec

refω Angular rate reference around Z Axis at CG
rad/sec

Table 3-3 Parameters for Single gyroscope Electronic Stability Control Algorithm.

When the brake torque is applied only at one wheel at a time, just like the above control scheme,

from the relationship 3.25 we derive to relationship 3.26 ([59]), where the index i is set according

to the single gyroscope ESC algorithm (Fig. 3.4):

11 12 1

221 22 2

0
 1, 2,3,4bi f

i

a a c
T i

ba a c
ββ

δ
ωω

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅ + ⋅ + ⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
 (3.26)

A key point in the above algorithm is the determination of the reference yaw rate function. The

determination, was done after we had gathered real data from the vehicle and some simulations on

the Matlab. Thereafter, we had to build heuristically the most suitable reference function that

would accomplish the best results for the ESC system.

The most important part of the above process was the determination of the understeer gradient

“K”, at the reference function. The recipe was to gather data and collate different built reference

functions (with different understeer gradient values) along with the real yaw rate the vehicle would

measure. After that process, we would able to substitute the most appropriate understeer gradient

to the ESC reference function for the desired behaviour. The following figures (Fig. 3.5,Fig. 3.6)

show real data gathered from the onboard sensors on the vehicle.

At the upper subplot of both Fig. 3.5 and Fig. 3.6, we can see the yaw rate measured by the

gyroscope (red line) in parallel comparison with different understeer gradient values (K=1, K=0.1,

K=0.01, K=0.001), substituted into the reference function mentioned at the ESC (Yaw Rate Des:

Fig. 3.5) algorithm we used at Fig. 3.4. At the middle subplot we can see the turning angle and at

the lower subplot, individual wheel speed. It is clear that the best results for the reference function

would derive for an understeer gradient between 0.01 and 0.001. For K=0.001, at Fig. 3.5, we can

see that the reference yaw rate, tracks the actual yaw rate measured by the gyroscope very closely.

 45

It looses it at about Time= 1.8 sec, where the vehicle totally looses control, where the back left

wheel starts spinning unbridled and produces a large amount of oversteer. So the reference yaw

rate follows the actual yaw rate in a region that is undesired.

Fig. 3.5 Actual yaw rate collated with the reference for K=1, K=0.1, K=0.01, K=0.001.

At Fig. 3.6, we have plotted the same data as those at Fig. 3.5, but only with 0.01<K<0.001 for

K=0.008, K=0.006, K=0.004, K=0.002. After some trial and error tests, we decided that the value

for the understeer gradient K that would be more appropriate for a not to aggressive neither too

neutral ESC system would be K = 0.004 (Fig. 3.4).

Both figures, Fig. 3.5 and Fig. 3.6 are the same instance from a real experiment with the ESC

fully functional. At Fig. 3.7 it is presented just the final yaw reference used, along with the

decision and commands of the system. The green circles at the upper subplot denote the detection

of the system for oversteer, and the arrow (green) along with individual wheel speed at the lower

subplot, denotes the command the specific wheel to brake.

 46

Fig. 3.6 Actual yaw rate collated with the reference for K=0.008, K=0.006, K=0.004, K=0.002.

Fig. 3.7 Actual yaw rate collated with the reference for K=0.004. The green circles at the upper subplot denote

the detection of the system for oversteer, and the arrow (green) along with individual wheel speed at the lower

subplot, denotes the command the wheel is accepting from the system to brake.

 47

The algorithm, although it is simple, proved valid. At the section “Real Environment

Evaluation”, different scenarios will prove the effectiveness of the system. A first typical sample,

can be obtained from Fig. 3.7, where the system detects oversteer (upper subplot on green circles)

and counter acts the effect, by braking the appropriate wheel (which is the front right for this

specific experiment). This action, causes an excessive amount of oversteer, which is shown as the

immediate correction at the actual yaw rate, and finally stabilizes the vehicle while retaining the

similar velocity as before the effect took place.

Another parameter this algorithm needs is the sensitivity of the system, which is translated as

“what can be the error margin between the reference yaw rate and the actual yaw rate”. It is

something that has to do with the driving style. The most convenient value for this parameter was

the 0.9. The declaration of the parameter is shown at Fig. 3.4.

Analytic presentation of the algorithm

There are certain aspects concerning the ESC algorithm shown at Fig. 3.4 that must be clarified.

Thus, in that section, we shall unravel each part of the algorithm analytically. Most constants

inside the algorithm have come up from test runs and data inspection.

The first part of the algorithm ((1), Fig. 3.4), is the determination of the yaw rate reference

function which was explained at the previous section.

The second part of the algorithm consists of seven parts:

i. The condition “ if () 10 abs ω ≥ ”.

a. In order the system to act on brakes, we demand the vehicle to experience more

than 10 degrees/sec yaw rate. This value came up from the collected data. We

don’t want the system to intervene when it is unnecessary and the 10degrees/sec

is a very low yaw rate for the vehicle to experience an undesired effect.

b. We have used the absolute into the “if” condition, because for the system entering

the following “if”, where it will be determined if it understeers or oversteers and

the direction of travel, we don’t care if the yaw rate is positive (right turn) or

negative (left turn).

c. This specific testbed (because of the rear wheel drive and most of the load

straining the rear axle, has a strictly oversteering behaviour) doesn’t have the

slightest possibility experiencing less than 10degress/sec where it should

experience more (understeering).

ii. The condition “ () () if () () (1/) 3abs abs Srefω ω≥ ⋅ + ”

 48

a. At this condition the system determines whether the vehicle’s yaw rate, stays

inside the predetermined margin of yaw rate for the oversteer case.

b. It is examined if the yaw rate (()abs ω) is greater than the absolute yaw rate

reference (()abs refω) multiplied by a constant factor greater than 1 (0 1S< <

 (1/) 1S >). This multiplication prevents the system from acting early and

unnecessarily. Thus, it gives the driver the potential to determine sensitivity for

the system.

c. The “ 3+ ” term came up from the experimental data. Because of measurement

errors, we have 2 / seco± fluttering from the gyro. Thus, in low speed and a high

sensitivity, let’s say 1, the vehicle might detect falsely oversteer. For example, let’s

say the measurement from the gyro is 52deg/sec, when the real yaw rate of the

vehicle is 50deg/sec. Also let’s say the reference yaw rate generated from the

function from Fig. 3.4 is 50deg/sec (the same as the real yaw rate). In case we

have set the sensitivity 0.97, without this correction term (3+), the vehicle would

detect oversteer and act on the brakes (() ()() () (1/) 3abs abs S
ref

ω ω≥ ⋅ +

()52 50 (1/ 0.97) 51.54→ ≥ ⋅ =), where there is no reason to do that. Thus this

correction term is crucial for cases of high sensitivity and reference close to actual

yaw rate. After some experimenting, we came up that the value “ 3+ ” was enough,

while it wouldn’t cause late acting on oversteer cases, because of its small value.

iii. The term “ 0, ;if brake front left wheelω > ”

a. In case the vehicle is experiencing a positive yaw rate (right turn), greater than

desired, then we should try to decrease it in order the vehicle to stabilize.

Thereafter, though relationship 3.19, a negative FX1 force, which is acting on

front left wheel (front left wheel braking), would decrease the first derivative of

the yaw rate (angular acceleration around the Z axis), and thereupon would

decrease the rate of change for the yaw rate of the vehicle.

iv. The term “ , else brake front right wheel ”

a. This is the inverse from the iii) part. In case the vehicle is experiencing a negative

yaw rate (left turn), more negative than desired (left oversteer), then we should try

to increase it in order for the vehicle to reach the reference. Again through

relationship 3.19, a negative FX2 force, which is acting on front right wheel (front

right wheel braking), would increase the first derivative of the yaw rate provoking

the yaw rate to increase.

v. The term “ () ()() () () & &(2)if abs abs S V
ref

ω ω< ⋅ > ”.

 49

a. At this condition the system determines whether the vehicle’s yaw rate, stays

inside the predetermined margin of yaw rate for the understeer case.

b. It is examined if the yaw rate (()abs ω) is lesser than the absolute yaw rate

reference (()abs refω) multiplied by a constant factor less than 1 (0 1S< <).

This multiplication also prevents the system from acting early and unnecessarily,

the same as the oversteer case.

c. The “ (2)V > ” term, which means “do not intervene, unless the velocity of the

vehicle is higher than 2m/sec”, also came up from experimenting. It is likely for

small velocities, that the vehicle detects understeer. This is because the term

2

2
M V K

L
⋅ ⋅

⋅
from the denominator of the yaw rate reference function, because of

the low velocity, doesn’t dominate intensely to the term V δ⋅ at the nominator,

although it is a second order term of velocity. This has as an outcome, at low

velocities, the yaw rate reference get bigger, in analogy of that in higher velocities.

This remark can also be extracted from the plotted data at Fig. 3.5, Fig. 3.6 and

Fig. 3.7. Also the velocity of 2m/sec for the vehicle is not that big, so that the

driver looses control of the vehicle.

vi. The term “ 0, ;if brake rear right wheelω > ”

a. In case the vehicle is experiencing a positive yaw rate (right turn), less than

desired, then we should try to increase. Thereupon, though relationship 3.19, a

negative FX4 force, which is acting on rear right wheel (rear right wheel braking),

would increase the first derivative of the yaw rate (angular acceleration around the

Z axis), and thereafter would increase the rate of change for the yaw rate of the

vehicle.

vii. The term “ , else brake rear left wheel ”

a. This is the inverse from the (vi) part. In case the vehicle is experiencing a negative

yaw rate (left turn), less negative than desired (left understeer), then we should try

to decrease it in order the yaw rate to reach the reference. Again through

relationship 3.19, a negative FX3 force, which is acting on rear left wheel (rear left

wheel braking), would decrease the first derivative of the yaw rate provoking the

yaw rate to decrease.

3.3 Single Accelerometer Electronic Stability Control

A second stabilization scheme was designed in order to be simple to implement, easy to adjust

and would be cost effective on a real vehicle, considered an already ABS system installed. It could

 50

be implemented with a single dual axis accelerometer and a simple microcontroller with an

embedded CAN Bus core, in order to cooperate with the ABS controller and the ECU of the

vehicle.

The radius of turn for a vehicle travelling with low speed, with absence of oversteer or

understeer, assuming small angles will be equal to /mR L δ= [14]. This is the inverse of Ackerman

steering angle, for a desired radius of turn. We can use the inverse of Ackerman’s angle as a

reference model for driver’s desired radius of turn. The actual turning angle can be determined

from a dual axis accelerometer, installed at the CG of the vehicle. The accelerometer can measure

lateral acceleration towards the center of turn. The relationship is:

2VAcc
R

= (3.27)

Through the accelerometer, we can determine the magnitude of slip angle for CG. The

direction of travel for the vehicle at CG is vertical to the vector of lateral acceleration. The dual

axis accelerometer is oriented so that can measure both lateral (yAcc) and longitudinal (xAcc)

acceleration of the vehicle. Therefore, slip angle CGa at CG (Fig. 3.1) can be determined by:

1tan x
CG

y

Acca
Acc

−
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.28)

Since the only available speed for measurement is towards the vehicle’s longitudinal axis (XV),

we can compute via: cos()X CGV V V a= ⋅ (3.29)

Thus, through equations 3.27, 3.28 and 3.29 we can determine the radius of turn relatively well.

The stabilization algorithm is built for a RWD vehicle. The actuation is performed on the brakes

of front or rear axle. A sensitivity parameter S has been implemented in the algorithm for an

adjusted desired understeer or oversteer behaviour of the vehicle.

Single Accelerometer ESC algorithm

()

2

1

1) Evaluate Driver's Desired Radius of Turn , δ: steering input in radians

cos()
2) Estimate Actual Radius of Turn

tan /

3) If

m

X CG

CG x y

L
R V k

V V aV
R

Acc a Acc Acc

R

δ

−

= ⋅

= ⋅
=

=

<

⋅

⎧ ⎫
⎨ ⎬
⎩ ⎭

1 Apply Instantaneous Brakes on Front Axle

 Else if (1/) Apply Instantaneous Brakes on Rear Axle

 Else Do nothing

4) Repeat Forev

* m

m

S R

R S R

⋅

> ⋅

1er * k: non linear coefficient * S: Sensitivity 0 1S< <

Fig. 3.8 Single Accelerometer ESC algorithm

 51

3.3.1 Real Environment Evaluation for the Single Accelerometer ESC

The stabilization algorithm proposed at above and was summed at Fig. 3.8, although it looks

promising, hadn’t the expected results when evaluated on the test bed. Real environment

simulation showed that the use of a single accelerometer for electronic stability control is

inhibitory for a scaled vehicle. The limited functionality of the stabilization algorithm lies in the

physical operation of the accelerometer. Vibration from the engine (two stroke single cylinder

engine) and the anomalies from the ground in combination with small size of the vehicle corroded

the measurements from the accelerometer (see explanation at the fourth chapter, “ADXL311 and

ADXL213 bandwidth selection” section). The outcome from the miss measurements was a miss

calculated actual radius of turn. In most cases, the algorithm detected understeering, thus applied

brakes on the rear axle, provoking the vehicle to oversteer.

Another drawback of the algorithm that was clarified from experimental data is that the

reference radius used in the algorithm is valid only for very slow speed turning. Measurements

from the rest of the sensors revealed that the necessary centripetal force for the vehicle to follow

the desired radius of turn is difficult to be produced in real environment. This is the reason that

we used the term Rm=(L/δ)*V*k at Fig. 3.8. Initially this term didn’t include the velocity, but only

the non – linear coefficient (first results published at [58]). Neither this major correction helped

the applicability of the algorithm.

From the data, we can also derive to the maximum yaw rate, before the vehicle loses control,

with respect to individual wheel speed and steering angle. Loss of control can be determined from

the behaviour of vehicle’s yaw rate. That means if we have a constant steering angle and small

variations at the speed of front wheels (back wheels might be spinning, thus are bad candidates for

remarks) and we experience great variations on yaw rate the vehicle oversteers. On the other hand,

if we have an increase at the speed of vehicle’s front wheels and/or increase at steer angle, and

experience little or decrease in magnitude of the yaw rate, the vehicle understeers.

From the above results, we concluded that the applicability of the Single Accelerometer ESC

algorithm is rather poor and wouldn’t even worth testing on a real vehicle. Comparing it with the

performance of the Single Gyroscope algorithm presented earlier we can conclude that the use of

gyroscope is probably one way solution (until now, September 2008) for building an ESC.

An alternative approach for abolishing the use of the gyroscope would be to estimate the forces

acting on the wheels directly. Lateral and longitudinal force could be measured from the ball

bearings the wheels seat, an innovative and robust method that the author of this thesis will

research intensively in the near future with the greatest ball bearing manufacturer, the Swedish

SKF for building a fault tolerant ESC system for real vehicles.

 52

4. System’s Implementation

The Test Bed is based on a XRC 1:5 scale remote control car. The model is a 2 rear wheel drive

car, with a single cylinder 23cc two stroke air – cooled engine. It has a centrifugal clutch for

transmission, a single disk brake for the rear axle and two independent disk brakes for each of the

front wheels. It has a standard 2 channel FM radio with one servo for steering and another for

throttle – brake with 18kg·cm and 5.5kg·cm torsion correspondingly with response time of

0.48s/60o. In order to meet our experimental standards, the platform had to be completely self –

contained without equipment or machinery off the vehicle, had to be inexpensive, independent

from special hardware and commercial software and comply with the terms of GNU General

Public Licence. The model is equipped with all the necessary sensors, actuators and computing

power for data fusion, dynamics modelling and control. The main processing unit of the system is

a mini – ITX VIA Computer running Linux. The data logging and actuation control is imploded

trough an ATMEL 8 – bit microcontroller which communicates through the serial port with the

computer. The majority of the software for the microcontroller and the computer is written in

C/C++ and all the necessary hardware is built from scratch. The system has a wireless LAN for

remote access through a laptop with IEEE 802.11.

4.1 Mechanical modifications

The model at its original state was far beyond from an appropriate platform for experimenting.

The mechanical flaws, the low quality of materials used for its construction and the

malfunctioning installed electronic system, demanded an extensive rebuild and in some cases

totally new mechanical and electronic parts. The model, also had to carry all the necessary

equipment mentioned above, which had as an outcome the rearrangement of some vehicle’s

components and the mounting of substructures that would support the cases of computer systems,

sensors, actuators and peripherals. At the figure below (Fig. 4.1) one can have a general

perspective of the hardware placement.

The most important part of the system is the central processing unit, the single board computer,

which is located inside a plastic insulated case mounted at the centre of the vehicle. This case was

originally an electrical case suitable for outer use. The case is mounted on an aluminium rod

screwed on the chassis, which allows a vibration in lower frequency than the typical frequency of

operation of the engine which has a range of 15Hz – 100Hz (900rpm – 6000 rpm respectively).

 53

With the above method and not directly connecting the computer to the rigid body of the vehicle

we can expand the life expectancy of the computer.

Fig. 4.1 Hardware Placement.

The SBC board computer inside the plastic case has been attached on rubber taps for further

reduction of vibration delivered to the computer from the engine and of course the road. The case

has also been modified to host a wireless compact router connected to the SBC via the Ethernet

port and the power source of the whole system, which is 12V 4Ah Nickel – Metal Hydride battery

pack, the custom built power supply for the router and a small fan (Fig. 4.2).

One extensive mechanical modification was on the front brakes. We completely removed the

non functional built in front braking system, which was controlled by the throttle servo. At its

prime state, both brakes were connected to a rod attached to the throttle servo through two

Bowden cables and would brake all wheels (including those at the rear axle) at the same time.

Most of the power was lost on the poor quality cables, which also locked when they were pulled

and wouldn’t return to their normal position. We left the original braking disk and pincer which

we improved (added spring to unlock the pincer etc) but we used different braking actuators for

each wheel since an ESP system demands individual wheel braking.

 54

Fig. 4.2 Central case; host computer and peripherals.

Our low cost specifications demanded standard model servos as actuators and not hydraulic

brakes that are used on expensive 1:5 scale model cars. In order to diminish the latency time

between the braking command and the braking action, we decided to place the actuators as close

as possible to the brakes themselves.

Fig. 4.3 Front braking system.

 55

We also tried to use as few as possible transmission mechanisms for the motion derived from the

servos, in order to reduce back – lash and elastic effects. Thereafter, we placed the servos upside –

down on each fellow (Fig. 4.3) and used an iron articulated mechanism to deliver the braking

action. They were set up so as to take only few degrees of servo turn between releasing and braking

the wheel. You can also notice at Fig. 4.3 the Hall Effect sensors used. The Hall Effect sensor

faces the rim, which has been attached with 8 reed relay magnets polarized wisely so that every

time a magnet passes in front of the sensor, sinks its output.

For the rear axle brakes we went through a simpler solution. We used the already installed

braking system which is a disk brake attached to the differential of the vehicle and a pincer

controlled from the throttle servo, in parallel with our ESP controlled brake (Fig. 4.4). This

method was followed for safety purposes, so that in case of ESP’s malfunction we have a

redundant brake. We don’t have individual wheel braking, since the vehicle didn’t have the

provisions for installing a system relative to the front axle and the braking command acts to both

rear wheels. The effect from braking both wheels isn’t as rewarding as braking one wheel but it is

effective too and due to the strictly oversteering behaviour this recession doesn’t affect the system.

Fig. 4.4 Rear axle braking system and case mountings.

 56

At Fig. 4.4 we can also see the mounted white plastic case which houses the printed circuit

board with the microcontroller, the power supplies for the peripherals, such as actuators and

sensors and finally the sockets for all the wiring system that delivers the power and samples for and

from the sensors, and the power and commands for and from the actuators. We can see the top

view of the plastic case and the organization of the hardware inside on the next figure (Fig. 4.5).

Fig. 4.5 Plastic case with the ATMega32.

The microcontroller and the sensors are powered by a 600mAh, 12V Nickel – Cadmium battery

pack, capable for delivering power for more than 10 hours, through the power supply PCB, which

we have mounted vertically from the ground inside the plastic case (Fig. 4.5). The power supply

has regulators for producing different voltages: 5V, 6V and an adjusted voltage source from 2V –

Input V. The whole system was built very carefully in order to have the less power dissipation

possible (more analytical in the next two sections). Finally, the steering angle from the model is

estimated through an articulated mechanism, which moves the shaft of a potentiometer, with the

motion derived from the steering axon (Fig. 4.6).

The output of the potentiometer is sampled through an Analog to Digital Converter (ADC).

Using the value of the voltage and through a fourth degree polynomial, we can estimate the

steering angle. The potentiometer is insulated for heat, dust and moisture, similar to every exposed

wire on the model.

 57

Fig. 4.6 Steering angle estimation mechanism.

4.2 Computing hardware

As mentioned previously, our goal was to build a low cost experimental platform with the

potentiality to alter and publish software and results, without any special licence. We concluded

that a mini – ITX (form factor 17cm*17cm) PC with a free operating system would be

appropriate. Hence the system is based on VIA Jetway single board computer (SBC), with

onboard VIA C7 1.5GHz nanoBGA2 Processor, an integrated graphics card, 400MHz FSB, 512

MB DDR2 400MHz RAM, 1 PCI slot, ATA 100/133 & 2 SATA ports support, IEEE 1394

firewire, 8 USB 2.0 ports & 2 COM ports and VIA 10/100 Ethernet, running an Ubuntu 6.10

Linux distribution, complaint under the GNU general public licence. There has also been installed

a wireless – g Linksys WRt54GC compact router connected to the SBC via the Ethernet port.

The SBC is powered through 12V 80Watt pico power supply and the power source is 12V, 4Ah

Ni – Mh battery pack. Data fusion and actuation control is conducted by a versatile custom

designed 2 – layer PCB. The PCB has an attached AVR ATMega32 RISC microcontroller

connected to the serial port of the SBC with 32Kb program flash and 2Kb RAM. USB

communication was prohibitive, because it would consume the majority of computing power of

the microcontroller who runs in 16MHz. ATMega32 doesn’t have an embedded USB core, so the

communication would have to be incorporated in software. The speed of data flow is 115.2Kbs

which is more than adequate for our purpose, since the bottleneck of the system is the actuation

and not the computing power. The microcontroller has been exploited to the limits, since it

manages to control 6 actuators (servo) and log data from 17 sensor inputs, in a sum of 32 I/O

ports with an astounding real time precision.

 58

4.2.1 Sensors

Front and Rear Axle Accelerometers: ADXL311

Lateral and longitudinal acceleration in the front and rear axle of the vehicle is evaluated through

two ADXL311 accelerometers from Analog Devices. ADXL311 is a low cost high accuracy ±2g

accelerometer with analog output, proportional to the measured acceleration ([17]). It is housed in

Leadless Chip Carrier (Lcc) package with 8 output lines and can measure acceleration into two

axles, X – Y. The output of ADXL311 (X and Y axis measurement) is fed to the microcontroller

through an analog to digital converter (ADC) I/O line. The bandwidth of the measurements is

easily adjusted through two capacitors CX and CY at the XOUT and YOUT pins (Fig. 4.7). The less

the bandwidth the lower the measurement error. ADXL311 can measure static and dynamic

acceleration proportional to the acceleration it experiences. The typical noise floor limit is

300 /g Hzμ providing the capability of measurement with 2mg accuracy, at the low bandwidth

of 10Hz.

Fig. 4.7 Functional diagram of ADXL311 from data sheet [17].

The theory of operation of the accelerometer is the following: The sensor is a surface micro –

machined structure of polysilicon built on top of the wafer suspended by polysilicon springs that

provide a resistance against acceleration forces ([17]). This structure is stressed relative with the

acceleration it experiences. The deflection of the structure is estimated by a differential capacitor

([18]), which consists of the stators, seating on the polysilicon surface and the rotor which lies on

top of the structure, which is mounted on the springs. The stators of this differential capacitor, are

driven by squares waves which are 180o out of phase. The deflection because of the acceleration

will result to a square wave proportional to the acceleration. Afterwards, with some demodulation

procedures based on the phase of the wave, can be determined the direction of the acceleration.

ADXL311, has provisions for bandlimiting the noise, acting as low pass filter while diminishing

the noise. The equation for the -3dB bandwith is: 3 (,)1/(2 (32))dB X YF pi k C− = ⋅ ⋅ Ω ⋅ . The next table

has the typical values of capacitors for determining the bandwidth.

 59

Bandwidth (Hz) Capacitor (uF)

10 0.047

50 0.01

100 0.05

200 0.027

500 0.01

5000 0.001

Table 4-1 Capacitor (CX, CY) selection for bandwidth determination.

Noise from the ADXL311, has characteristics of white additive noise and contributes equally to

all outputs. The output of this sensor is analog and for Vdd = 5V, the sensitivity is approximately

312mV/g. For 0g acceleration, the output equals with Vdd /2 for every voltage of operation.

Fig. 4.8 PCB (top left) top layer, face of the copper at bottom layer (top right), schematic of the circuit used

(bottom left) for ADXL311 and the sensor placed inside it’s housing (bottom right).

Analog Devices Corporation has announced that this specific accelerometer is not recommended

for new design since it will be withdrew from manufacturing and proposes as alternative choice the

ADXL320. We could agree that this withdrawal is normal, since the noise measured from the

accelerometer deviates from the data sheet and also because of accelerometer’s nature of operation,

 60

analog output voltage depending on the power supply, is prone to mismeasurements. The

acceleration axis for ADXL311, are illustrated at Fig. 4.8, at the bottom right subfigure. The

orientation and direction of the arrows, shows the positive acceleration. At Fig. 4.8 we can also see

the PCB that the accelerometer has been mounted on and the schematic diagram of the circuit.

More details for all those mentioned on this paragraph at “Observation, problem and possible

improvemnts on the interface between the accelerometers and the microcontroller” section. At the

bottom right subfigure of Fig. 4.8 one can observe system with the four screws for the aligning of

the accelerometer with the plane.

ADXL311 ±2g interface with the microcontroller

The output of the ADXL311 accelerometer is an analog voltage proportional to the acceleration.

Thereafter, the interface between the microcontroller (ATMega32) was simple. We have used 4

out of the 8 ADC ports from ATMega32 for measuring, X and Y axis of both front and rear axle

ADXL311 accelerometers.

The ATMega32 is a RISC microcontroller, capable for 1MIPS per MHz, thus we have the

execution of a single instruction per clock pulse ([20]). It has been set to work with the frequency

of 16MHz. The built in analog to digital converter of the microcontroller has maximum resolution

of 10bits and completes a conversion every 13 ADC clock cycles (almost). At the firmware

running, we have used as clock source for the ADC the clock from the AVR, with the ADC clock

prescaled at 64. That means that for every AVR clock pulses, we have 1 ADC clock pulse. This is

translated as a conversion every 6
6

13*64 sec 52*10 sec 52 sec
16*10

u−= = . The conversion for each port

is computed in cyclic mode.

We have used 7 ADC ports. That means that we have a new sample every

almost 7*52 sec 364 sec 0.4 secu u m= ≈ . The “almost” at the equation arises because of the fact,

that we don’t initiate a new conversion right after the previous finishes, but we do have some

latency from new call of the routine that is responsible for this cyclic succession of conversions.

The previous routine was big enough to be embedded into the ADC interrupt routine, so it is

called from the endless loop of the firmware. More details on the firmware section.

Central Accelerometer: ADXL213

Lateral and longitudinal acceleration for the center of gravity of the car, is evaluated via one

ADXL213 ±1.2g accelerometer from Analog Devices housed into an LCC package. It can

measure acceleration in two axles, X – Y, with a range ±1.2g range of measurements. The output

of this sensor is digital signals, duty cycled modulated. The output is proportional to the

 61

acceleration and it is evaluated from the ratio of pulse width to the period (30% /g of acceleration).

To typical noise floor limit is 160 /g Hzμ . The user selects the bandwidth through capacitors CX

and CY at Xfilt and Yfilt pins respectively (Fig. 4.9).

Fig. 4.9 Block diagram from ADXL213 data sheet [19].

The theory of operation is the same as ADXL311, with the main the difference that the output

of this sensor is pulse width modulated and the acceleration can be realized from the duty cycle of

the signal. When the output passed through the lowpass filter, the duty cycle controller, modulates

appropriately the signal. For 0g acceleration, we have 50% modulation Fig. 4.10.

Fig. 4.10 Duty Cycle Modulated output for 0g acceleration from data sheet [19].

The acceleration can be realized by estimating the width of the positive pulse T1 (Fig. 4.10) and

the period T2. The formula for estimating the acceleration is ([19]):

Τ1 - Zero g Bias
Τ2Acceleration =

Sensitivity
Where:
Zero g Bias=50%=0.5 nominal

30% Sensitivity= =0.3 nominal
g

T2 = Rset/125MΩ and Rset=1MΩ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 62

From the above formula, it is clear that the period of the signal is specified by the resistor Rset

(Fig. 4.11). Bandwidth is determined exactly the same way as ADXL311, but the Peak to Peak

and RMS measurement error is much less than that of ADXL311.

Fig. 4.11 PCB top layer (left), face of the copper at bottom layer (center), schematic of the circuit used (right)

for ADXL213.

ADXL213 ±1.2g interface with the microcontroller

The computing of the duty cycle for both of X and Y axis for the ADXL213, is conducted

through an external interrupt port. ATmega32 has only 3 external interrupt ports and they are

quite valuable to be wasted for the measurement of the values of just one accelerometer. For this

reason we built a smart provision that would allow us to use one external interrupt port for both

axes through a XOR gate. We have programmed the external interrupt to be executed at any

logical change of the port. Whenever the microcontroller realises a rising edge at the external

interrupt, starts counting the width of the logical “one” pulse with the help of the Timer Counter

Overflow routine. The period of the PWM signal according to the data sheet for the ADXL213 is

T2=Rset/125MΩ, and we have used Rset=1MΩ. This value was supposed to give us period of

PWM signal with 125Hz frequency. But the real signal was 136Hz. We couldn’t determine the

cause of a deviation with that magnitude. It is not referred to the data sheet, although it is a

problem also presented to other engineers as we found out from a little search on the internet.

For the counting of the duty cycle we have used one of the two 8 bit Timer Counter of the

Atmega32. This Counter has been programmed to signal an overflow interrupt and has Timer –

Prescaler equals to 0 (the Timer Counter Increases by one with every clock cycle). Since the

Counter is 8 bit length, an overflow occurs every 256 clock cycles. The clock cycle lasts 0.0625usec

(16 MHz clock), that means we have an overflow every 256*16=16usec. The period of the pulse is

136Hz which means T = (1/136) sec = 0.00735 sec = 7.35 msec. If we divide the period of the

pulse with the sampling period we get 0.00735 sec/16usec=460 samples per pulse.

 63

From the formula for estimating the acceleration presented ad the previous section, we saw that

the sensitivity of the ADX213 is 30% per g of acceleration. The maximum range of measurement

is 2.4g (±1.2g). So the 72% of the pulse represents a range of 2.4gs, where the 100% of the pulse

would represent 2.4g/0.72=3.333g. That result divided with the number of samples we can have

per sample gives a maximum resolution of 3.333/460 ≈ 7.2 mg, a value more than adequate for our

application.

As mentioned above, the output for both axes of ADXL213 are measured through a XOR gate

guided to an external interrupt. The output from each X axis and Y axis is directed to the 1st and

2nd input of the XOR gate and PORTC6 and PORTC7 of the microcontroller respectively (Fig.

4.12).

Fig. 4.12 ADXL213 interface with AVR.

The algorithm for counting the duty cycle is fast and economic in program resources. It consists

of two parts. The first part is External Interrupt routine (Table 4-2) and the second the Timer

Counter Overflow routine (Table 4-3), inside the firmware running at ATmega32. It uses the fewer

variables possible. Since both X and Y axis pass through the XOR gate to the AVR external

interrupt, any logical change to either of the outputs would change the output of the XOR gate,

thus causing an external interrupt.

// External Interrupt Request 1, +1.2 Accelerometer
SIGNAL(INT1_vect)
{

 temp=PINC;
 if (temp&0b01000000){ //PC6 X axis (temp&0b01000000)
 if(acc_12_X_ticks==0)
 acc_12_X_ticks++; // Trigger Counting
 }
 else{
 if(acc_12_X_ticks>0){
 if(TX_read!=3) // An exei steilei to high char mhn to allaxeis
 acc_12_X=(acc_12_X_ticks-1);
 acc_12_X_ticks=0;
 }

 64

 }…
Table 4-2 External Interrupt Request 1, routine (part of it)

/* Timer/Counter0 Overflow */
SIGNAL(TIMER0_OVF_vect){
 if(acc_12_X_ticks>0)
 acc_12_X_ticks++;
 if(acc_12_Y_ticks>0)
 acc_12_Y_ticks++;
 …
 …

Table 4-3 Timer Counter0 Overflow, routine (part of it)

When the External Interrupt request is issued the program checks for the logical state of each

axis. Using of the same counter used to count the time quantums as a flag for the previous logical

state of the Axis we can count the duty cycle. The flow chart of the counting operation is on the

following flow chart (Fig. 4.13).

Fig. 4.13 Flow chart for measuring the duty cycle of each axis for the ADXL213 (rectangles in red line are for

decision, more convenient than conventional rhombus).

 65

The routine which is responsible for the increase of the time quantums of each counter is

displayed in Table 4-3. That part of the routine is executed every 16usec as explained earlier. If the

counters for the time quantums are greater than zero, which means that a counting sequence has

been triggered by the External Interrupt routine (logical transition from low to high), then this

would initiate their further increase. Whenever a logical transition from high to low takes place,

the quantum counter is stored at a variable that is fed though the serial to the SBC.

ADXL311 and ADXL213 bandwidth selection

One major issue for the accelerometers was the selection of the bandwidth of operation. Initially,

we had chosen the bandwidth of 50Hz in order to have high resolution variability while retaining

the measurement error in a low lever. After our first real environment evaluation (on the vehicle

with working engine) run, the acceleration measurements were very enlightening concerning the

selected bandwidth. Vibration from the engine (two stroke single cylinder engine) and the

anomalies from the ground in combination with small size of the vehicle corroded the

measurements from the accelerometer. Although both types accelerometers have provisions for

bandlimiting the measurements and can achieve low pass filtering for antialising and noise

reduction they were physically constrained by the harsh environment of operation. Fig. 4.14 shows

static vibration sampled from the ADXL213 w.r.t. time with the bandwidth of the accelerometers

set at 50Hz (we had chosen 0.1uF capacitors). 50Hz is higher than the frequency operation of the

engine in the lowest speed, which is about 800RPM which is translated as 80/6 ≈ 13 rotations per

second, translated to 13Hz. It is clear from the figure that we should narrow the bandwidth. Thus,

we set the bandwidth at 10Hz. The outcome was a lower vibration measured from the engine, but

not satisfying at all.

Fig. 4.14 Static acceleration measured by ADXL213 with engine working and bandwidth set at 50Hz.

We concluded that in order to have a valid measurement, we had to bandlimit lower than 3Hz.

Therefore we used 2.2uF capacitors for the filtering which results in

 66

() ()3 3 6
(,)

1 1 2.26
2 (32) 2 32 10 2.2 10dB

X Y

F Hz
pi k C pi− −

= = ≈
⋅ ⋅ Ω ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 bandwidth. A typical output

of the ADXL213 accelerometer with 2.2uF capacitors is illustrated in Fig. 4.15.

Fig. 4.15 Subplots of the same Instance (an auto generated experiment). Top three subplots are the

acceleration measured by the front, center of gravity and rear accelerometer respectively. The bottom three

subplots are the yaw rate measured by the gyroscope, the steering angle collated with the acceleration

measured by the center of gravity accelerometer and finally, individual wheel speed respectively.

 67

It is obvious from Fig. 4.15 that the noise from the engine is filtered whilst the resolution

remains still in adequate level at the bandwidth of the 2.6Hz (Fig. 4.15). Edges on the measured

acceleration still exists, but those are real moments of acceleration that the vehicle experiences and

are due to bumps on the road, the vibration of the whole chassis from the movement etc. We

could filtered the signal even further but the design trade – off between noise and resolution,

would favour even further the low noise, but would increase the resolution at a level where the

measurement wouldn’t be any useful.

Observations, problems and possible improvements on the interface between the accelerometers and

the microcontroller

ADXL311

The output values from the ADXL311 for static vehicle (engine shut off, nothing moving except

for the fans of the computer and power supply) present an oscillation ±0.03g. This phenomenon is

justified by:

 We do have ±1/2 bit quantization error for the analog to digital conversion operation. As

voltage reference for the ADC we have set Vdd=5V which is represented by 1023 or 210-1

(10bit ADC resolution).

 The formula for the estimation of acceleration is
()/ 2

0.312
ddV Vout

A
−

= where Vdd=5V

([17]). The variation from +2g into -2g is translated into analog output 1.876V and

3.124V respectively. That means that we have 3.124V-1.876V=1.248Volts to determine

the range of 4g of acceleration, which is translated as 0.312V/g sensitivity. The

maximum resolution with 10bit ADC is 5mV with 5V as voltage reference. Thus,

maximum resolution for acceleration measurement is (5mVg)/(0.312V/g)≈16mg.

 The voltage varies from 4.96V – 4.99V, although it is regulated and filtered and we have

used this varying voltage as voltage reference. This variation decreases the resolution even

further. Supposing the Vout from the accelerometer is constant while the Vdd varies, we

would come to:

() () () ()4.99 / 2 4.96 / 2 4.99 / 2 4.96 / 2

0.048
0.312 0.312 0.312

Vout Vout
error g

− − −
= − = =

If we take the worst case scenario from the above we conclude to the oscillation presented is

normal due to the ADC interface. In order to improve our measurements we have defined a

function of weighted sums from the previous samples measured at the software running at the

SBC (Table 4-4).

 68

#define forgeting_sum(last,previous) (double)(last*0.4+previous[0]*0.3+previous[1]*0.15+previous[2]*0.15)

Table 4-4 Forgetting sum definition.

The weighted sum uses the current at the last three samples for smoothing out the variations

from the whole process. Without deteriorating the real value of the samples, through this way we

have diminished the oscillation from ±0.03g to ±0.02g.

Outlining the above process, although the interface of ADXL311 with the AVR was easy, it

would have been better, if it used a communication protocol less prone to mismeasurements and

sensitive to voltage variation, like Serial Peripheral Interface (SPI). A precision voltage reference as

voltage source for the accelerometer would improve the situation, but wouldn’t eliminate the poor

communication. In applications like ESC, the precision of the measurements is marginally

sufficient and more robust algorithmic solutions should be found, that would take into account

this uncertainty, like an adaptive ESC algorithm.

ADXL213

The ADXL213 accelerometer, whereas much more expensive than ADXL311 and theoretically

much more precise didn’t perform the maximum of its capabilities, due the restraints of the

implementation. That is, the pulse T2 (Fig. 4.10) that we considered constant, in reality is not

constant and should be measured too. The variation was smaller than the maximum resolution

(time quantum equals to 16usec) but does exist and does worsen our measurements. We have an

oscillation here too, which is about ±0.02g. We were able to shorten the time quantum but this

would consume even more resources from our microcontroller and since the resolution was good

enough for our application, it was left this way. Of course, a more robust communication protocol

(like SPI or I2C) would be welcome here too.

Side by side comparison of ADXL311 and ADXL213

The interface between both accelerometers ADXL311and ADXL213 was quite interesting and

at the same time very demanding. The output of the sensors, analog and duty cycle modulated

respectively made the whole process a trade off between speed, precision and resources of the

microcontroller. Although the sensors do have divergence between the measured data and the

characteristics proclaimed in the data sheets (might be just because of our implementation) they

are quite functional, do have very good documentation and are really robust both in operation and

construction. Although the LCC packages that the accelerometers were housed were soldered

directly to a DIP8 socket, they remained intact, despite the fact that they are really tiny.

 69

Steering Angle Estimation

 Steering angle estimation is conducted via variable resistance. An articulated mechanism moves

the shaft of a potentiometer, with motion derived from the steering axon (Fig. 4.6 and Fig. 4.16

left subfigure). The output of the potentiometer is driven to the ADC4 I/O line of the AVR (Fig.

4.16 right subfigure). Because the voltage generated is not proportional of the actual steering angle

([14]), we have sampled enough voltage values with respect to the actual angle of each wheel.

These values are presented on Table 4-5.

Fig. 4.16 Provision for estimating the steering angle.

Steering Angle Estimation

Voltages

(Volt)
1,924 1,943 1,953 1,987 2,04 2,051 2,09 2,104 2,139 2,163 2,183 2,212 2,246 2,266 2,3

Steering

Angle

(degrees)

Real values

21 19 18 14,5 10,5 8 4 0 -3 -5 -8 -10 -12,5 -14,5 -19

Estimated

Values by

polynomial

20,99 19,2 18,2 14,7 8,8 7,5 3,1 1,4 -3 -5 -7 -10,4 -14 -15,32 -18

Final

Values

Used

19,99 18,2 17,2 13,7 7,8 6,5 2,1 0,4 -4 -6 -8 -11,4 -15 -16,32 -19

Table 4-5 Voltages measured by the system for steering angle estimation.

 70

With the built in function of MATLAB, polyfit (uses LMS to fit values to a polynomial), we

have derived to a third degree polynomial of angle with respect to (w.r.t.) voltage. The actual and

estimated angles are quite close (Fig. 4.17 and Table 4-5). The polynomial is the following:

3 2
3 0.31570260254613 -1.97189807334590

() 10
3.98997966117411 - 2.60471114838461

volts volts
steering volts

volts
⎛ ⎞⋅ ⋅ +

= ⋅⎜ ⎟
⋅⎝ ⎠

Fig. 4.17 Comparison between the real angle and the estimated by the 3rd degree polynomial.

The use of variable resistance for estimating the steering angle is not the best solution. The main

drawback is the robustness of the system. The resistor with time passing will wear out and change

its value. The resistance also depends on the temperature. So the outer temperature can quite

easily give us two different measurements for the same crack shaft position. The steering angles

presented on Table 4-5 are the average turn of both wheels. For a vehicle turning with low speed,

in order not to experience reversely forces on the tires, the inner of the turn wheel must be turned

by
/ 2inner

R
L h

δ =
−

 and the outer by
/ 2outer

R
L h

δ =
+

([14]), where R is where the desired radius of

turn, L is the wheelbase of the vehicle and h is the space between wheels. The average of those

two angles is the Ackerman Steering Angle.

Different solutions more credible than a potentiometer have been proposed and are used by

automotive industry. The most widespread solution are optical and magnetic type sensors

([21],[22]). An optical sensor can detect very small angles, but the cost for installing such a sensor

is high and is very sensitive to harsh environment. That means it requires very good shielding for

temperature and stain ([21]). Fig. 4.18 from the presentation of [23] shows the principles and

disadvantages of typical angle sensors.

 71

Another very common provision for rotational angle estimation is imploded with the use

magnetic sensors. They can achieve contact less position sensing providing the capability for

measuring distance, angle, rotational speed etc ([23]). The main advantage is that they work even

under the most unfriendly, grubby environmental conditions ([21], [23]). The previous mentioned

basic advantages have resulted in the widespread use of magnetic sensors in contact less position

detection ([23]). Typical magnetic sensors are conventional magneto resistors and Hall Effect

sensors. Both of them have high environment resistance and are prone to air gap deviations ([21],

[23]). So different methods for increased accuracy have been proposed like, multipole magnet

sensors ([21]) or sensors based on the giant magneto resistance (GMR) effect ([23]).

Fig. 4.18 Principles and disadvantages of angle sensors, from presentation of [22].

The reason we used a simple potentiometer as an angle sensor was to achieve our goal to limited

cost. A better resolution for measurements wouldn’t benefit our design, since our main problem

was mechanical lush which provokes a typical deviation of more than 1 degree in angle. This is

due to the fact this is a scaled model with poorer assembly than a typical vehicle, where the

magnitude of the mechanical lush, is multiplied by the scale of the vehicle. That means, if we have

2 mm lush between the steering system and the steering shaft, on a full scale vehicle it would

provoke a (lets say) 0.2o wobble on the steering wheel where it would provoke 1o on the model.

Wheel angular velocity

Wheel angular velocity is computed with four SS433 series Hall effect sensors from Honeywell.

More specific we have used the SS443A unipolar Hall effect sensor. When exposed to the

appropriate magnetic flux, SS443A sinks its output ([24]).

 72

The digital output of the Hall Effect sensor is open collector type. That means that the output

signal is applied to the base of an internal NPN transistor whose collector is connected (open) to a

load ([25]). In our implementation this load is the power supply through a 10K pull up resistor, in

order to limit the current sinking to the ground (Fig. 4.20 left). The emitter of the NPN transistor

is connected grounded. The current flows from the load into NPN transistor (Fig. 4.19). When

the Hall Effect sensor is exposed to the appropriate flux, leads the internal NPN transistor to an

on state, so the output of the sensor, the base of the transistor, is conducting current to the

ground. That means that we have a logical zero. On the other hand, when the internal transistor is

off, the output is connected to the load.

Fig. 4.19 NPN output Hall Effect Sensor. Figure from [25].

So in order to limit even further the current flowing from the load to our sampling circuit and to

restore the voltage at the output back to original TTL levels we have used a XOR 74LS86 gate

(Fig. 4.20).

Fig. 4.20 Hall Effect circuitry

http://en.wikipedia.org/wiki/Bipolar_junction_transistor#NPN

 73

This circuitry provision was designed that way, in order to limit the current flowing from the

source to the ground (limit short circuit ass much as possible). The connections to the

microcontroller from the Hall Effect Sensors through the XOR gate are exactly as illustrated on

the above figure (Fig. 4.20). The most inquisitive part of the above figure is the switch (SW1) for

the power supply of the XOR gate. The explanation is simple. The output from the XOR gate is

fed to PB4 – PB7 pin from PORTB of the ATmega32. Those specific ports have dual purpose.

The first is that they are general purpose digital I/O lines and the second is that they are the pins

used for the In Circuit Programming (ISP) of the microcontroller. ATmega32 has the capability

to be programmed in circuit using SPI Serial Downloading to both the program flash and

EEPROM memory. The serial interface consists of pins SCK/PB7 (serial clock), MOSI/PB5

(input) and MISO/PB6 (output) ([20]) which in our case are driven by the XOR gate. To ease our

development and not have to remove the microcontroller in order to put into the development

board for programming (STK500) and then back to the PCB, we did put a pin header connecting

necessary pins for the ISP which is conducted through a cable coming from the development

board. The isolation between the XOR gate and ISP cable was necessary. Therefore, in order to

program the microcontroller we have to manually power off the gate. More details about the

programming on the “Microcontroller: Schematics, PCB and Development Tools” section.

To estimate the angular velocity we have attached 8 reed relay magnets at each rim (Fig. 4.21).

Whenever a magnet passes close a Hall Effect sensor sinks its output. At Fig. 4.20 we can see that

the output is directed at the first input of a XOR gate. The second input is hardwired to a TTL

logical “One” level. So we have two states:

 Magnet in front of SS443A

o Output sinked Output of XOR gate driven from sensor at logical “One” (One

input of XOR gate is “One” and the other is “Zero”).

 Magnet away from SS443A

o Output at logical “One” Output of XOR gate driven from sensor at logical

“Zero” (Both inputs of XOR gate are at logical “One”).

The outputs from the XOR gates at Fig. 4.20, besides to the I/O lines of the ATmega32 PB4 –

PB7 are fed to second circuitry of XOR gates. The main reason we did this, is because we had to

measure the logical transitions for each Hall Effect Sensor through the XOR gate provision

illustrated at Fig. 4.20 within a certain amount of time. The best way to do that was to build a

similar to ADXL213’s measuring scheme (Fig. 4.12), using one I/O external interrupt and three

XOR gates.

 74

The angular velocity is updated every 100msec, delivering 2*pi/(8*100ms) rad/sec or 0.4625m/s

(longitudinal speed with 11.7cm wheel diameter) resolution for each wheel. A timer counter

interrupt measures the logical transitions for every sensor within a certain amount of time.

Fig. 4.21 Eight Reed Relay Magnets attached at inner side of the rim.

The final circuitry with external interrupt driven input for the microcontroller is schematized at

Fig. 4.22.

Fig. 4.22 Complete circuit for estimating angular velocity of individual wheel.

 75

We have programmed the microcontroller to signal an Interrupt at any logical transition of the

External Interrupt 0, PD2/INT0 pin (Fig. 4.22). Thus, whenever we have a state change at the

output of the XOR gate driven by the Hall Effect sensor, we also do have a state change at the

XOR gate which is fed at the PD2/INT0. When a interrupt is signalled, the routine responsible

for estimating the rotational speed checks the inputs at ports PB4 – PB7, compares it with the

previous state (when the last interrupt was signalled) and if it detects a state change to any of the

inputs, increases a counter. At Table 4-6 we can see part of the code responsible for the

estimation. The following code is well commented and the name of the variables show their origin

and use.

SIGNAL(INT0_vect)
{

 temp=PINB;
 if (temp&0b00010000){ // If its high, check for the previous state
 if ((previous_state&0b00010000)==0) // If true, then change the state of PB4
 front_right_ticks++;
 }

 if (temp&0b00100000){ // If its high, check for the previous state
 if ((previous_state&0b00100000)==0) // If true, then change the state of PB5
 front_left_ticks++;

 }
 if (temp&0b01000000){ // If its high, check for the previous state
 if ((previous_state&0b01000000)==0) // If true, then change the state of PB6
 back_right_ticks++;
 }

 if (temp&0b10000000){
 if((previous_state&0b10000000)==0) // If its high, check for the previous state
 back_left_ticks++; // If true, then change the state of PB7

 }

 previous_state=temp;
}

Table 4-6 External Interrupt 0 routine. Estimation of state change at the wheels.

The only purpose the above routine checks for the previous state and doesn’t increase the clock

“ticks” at TTL high voltage level, is because a magnet might stop in front of a sensor thus

producing a continuous logical “one”, which means no revolution. The flow chart diagram of the

routine responsible for the handling of the external interrupt is presented at Fig. 4.23.

 76

Fig. 4.23 Flow chart of External Interrupt handling routine 0.

After 100msec the interrupt driven routine (Table 4-7) based on timer counter 2 checks how

many “ticks” we had for each wheel, stores the values and nullifies the counters to start over the

process.

/* Timer/Counter2 Overflow */
SIGNAL(TIMER2_OVF_vect){ // We have overflow every 128us

 wheel_big_counter++;
 if(wheel_big_counter>781){ // If it gets in here they have passed
781*128us=100000usec=0.1sec
 front_left_speed=front_left_ticks; // Previously(If it gets in here they have
passed 1562*128us=200000usec)

 77

 front_right_speed=front_right_ticks;
 back_left_speed=back_left_ticks;
 back_right_speed=back_right_ticks;
 wheel_big_counter=0; // Start Counting Again
 front_left_ticks=front_right_ticks=back_left_ticks=back_right_ticks=0;
 }

}

Table 4-7 Timer/Counter2 overflow routine (part of it).

More details on the function of the routines presented and general the firmware, on the software

section.

Yaw rate estimation

Yaw rate estimation is conducted through an ADXRS300 gyroscope from Analog Devices. It is

a ±300o/s yaw rate gyro with signal conditioning. It uses a surface-micromachining process from

Analog Devices Embedded with all the required electronics on the chip in order to be a fully

functional low cost angular rate sensor ([26]). ADXRS300 has analog output, a voltage

proportional to the angular rate about the z axis to the top surface of the BGA package (Fig. 4.24)

and has 5mv/o/sec sensitivity. The output is fed directly to an ADC line for estimation.

The user can set the bandwidth by an external capacitor and lower the scale of the measurements

with the use of a single resistor. In order to compensate for the miss measurement and adjust the

readings, the gyro provides a precision voltage reference and a temperature output too. That

means, that the user may read both, the output from the sensor and the precision voltage which

has a known precise value and through those two fix the real value. It also has an

electromechanical provision (self test) that excite the sensor for proper operation ([27]).

Fig. 4.24 ADXRS300 rate axis orientation from data sheet ([27]).

The operation on most MEMS gyroscopes is based on Coriolis force. The typical provision for

angular rate in MEMS gyroscopes consists of an inertial element mounted on elastic suspension

with two degrees of freedom (Fig. 4.25, [28]). The element, often called sensitive element,

mounted on the springs is driven to oscillate on the primary axis, (Fig. 4.25) with prescribed

 78

amplitude thus a known impulse response. When the sensitive element rotates around a particular

axis, which in the case of the ADXRS300 is the z axis to the top surface of the BGA package, the

oscillating mass experiences coriolis force, which causes the mass to oscillate on the secondary axis

thereupon in different mode. So the yaw rate information lies in these oscillations in contrast with

electromechanical gyroscopes where the yaw rate information is extracted from nonharmonic or

angular displacements. The primary motion that the sensitive element driven, might be rotary and

not necessarily oscillatory ([28]).

Fig. 4.25 Theory of operation for vibrating MEMS gyroscopes [28].

The ADXRS300 through built in provisions has the ability to preserve signal integrity and with

the usage of a dual sensor regime is able to reject external g – forces and vibrations. At Fig. 4.26

we can see the recommended by the manufacturer connections for the ADXRS300 from the data

sheet. The bandwidth is set by the capacitor COUT and resistor ROUT (Fig. 4.26). ROUT has been

trimmed during manufacturing to be 180KΩ ± 1% ([26]).

Fig. 4.26 Recommended connections for the ADXRS300 from the manufacturer’s data sheet ([26]).

 79

The formula for setting the bandwidth is 3
1

2dB
OUT OUT

F
pi R C− =
⋅ ⋅ ⋅

 ([26]). As mentioned above

the original package of the ADXRS300 is a tiny BGA (bald grid array), thus we had to use a

breakout board. We chose to buy a breakout board from Sparkfun Electronics ([29]) which was

suitable for our application (Fig. 4.27).

Fig. 4.27 ADXRS300 breakout board from SparkFun Electronics. Schematic from data sheet left ([27]) and

picture from website right ([29]).

The COUT capacitor was originally set at the value of 2.2nF (Fig. 4.27) which is the

recommended value from the manufacturer too, and with the formula presented on the previous

paragraph results to 400Hz bandwidth.

The output from the gyro is analog, proportional to the yaw rate and has 5mv/o/sec sensitivity.

The 0o/sec represented as 2.5V output. That means that the maximum rate measured, 300o/sec is

represented by an offset from the 2.5Vof magnitude which is: 300 o/sec * 5mv/o/sec = 1.5V,

resulting to a 4V output.

The functionality of the accelerometer is exemplary. The characteristics were met exactly as

asserted by the manufacturer. The only paradox with the sensor was that it didn’t suffer a drift,

except in the case of limited available current. Even though the gyroscope wasn’t current

consuming did suffer from drift when it was supplied together from the same power source along

with another device that would drew high current, for example the single board computer. The

previous is the main reason that we used a different battery (600mAh, 12V Nickel – Cadmium,

see Fig. 4.5) for the microcontroller and the sensors. This phenomenon did also occur when we

had low voltage on the battery, which was below the nominal (less than 11V) which obvious

means that the battery was with very little power. Although the rest of the system would continue

 80

working until it would go completely out of power, the gyroscope provision was the first to suffer

from the current drain. We can see can see a typical output from the sensor at Fig. 4.15.

Driver’s commands

Driver’s Command from the transmitter are delivered to the receiver and sampled from the

microcontroller. We have used a standard FM 2 channel radio system from Acoms. The output of

receiver is a pulse width modulated 50Hz signal. It is the common interface used by standard

model radio system ([30]). The position of the servo is determined by the duty cycle of the signal

(Fig. 4.28). The output of the receiver is sampled in a satisfactory manner, every 32us. The period

of the pulse is 20ms. Thereupon, the 32us sampling period have as an outcome 20ms/32us=625

time quantums. Since the information about the position lies between in the duty cycle of the

signal and the length of the high to low pulse fluctuates between 1ms (-90o position) and 2ms (90o

position) we have 1ms/32us ≈ 31 time quantums to encode a 180o angular position which is

translated as 6o angular accuracy.

The connection scheme used between the receiver, the microcontroller and the servos (throttle

and steering) is illustrated at Fig. 4.29.

Fig. 4.28 Standard model servo PWM control.

The signal from the FM receiver is sampled by the microcontroller at PB2 and PB3 I/O pins of

PORTB (Fig. 4.29) for the throttle and steering servos respectively. The final control signal

 81

arriving at the servos comes either directly from the receiver or from the processed signal

originating from the AVR. The user can manually switch the origination of the signal. This

double signal feeding is done for safety and practicality.

Fig. 4.29 Radio system connection scheme.

Why safety? Consider the situation that we want to conduct an automating driven experiment.

For example; we can program the model to steer left after it reaches a certain velocity and hold

that steering for a programmed amount of time. In a custom made system, many things can go

wrong, like the program controlling the vehicle from the SBC to crash or the regulator supplying

the microcontroller to fail (has happened to the author at the past) and many other undesired

situations. So it would be better for the user to keep at least one channel of operation totally

manual. In the example of the automatic experiment just mentioned, the steering servo must be

controlled by the program and the throttle – brake servo can be controlled directly from the user.

Thereafter, the user can brake the vehicle in case something goes wrong. In a different experiment,

the program might just need to use the throttle servo. Or finally we might need to conduct

experiments that would need one, both or none steering or throttle servos to be controlled from

the program. So the easiest and safer way was to use the wiring scheme of Fig. 4.29, since the user

can change at will the signal source of the servos. And since the model originates from toy it is

pretty easy to switch the source to the receiver, take off the SBC case and trim the vehicle or play

without the slightest fear that something could go wrong.

 82

At Fig. 4.29, we can see that we have used a different power supply from the microcontroller

and the SBC. The explanation is simple. The servos have 18kg·cm and 5kg·cm and can draw more

than 8A power from the battery and which can produce voltage spikes that can totally destroy the

readings from the ADC of the microcontroller. Beside the fact that we have used power regulated

power supplies it is generally recommended to use a different power source for situations like the

one mentioned.

Whether the final signal arriving at the throttle – brake and steering servos comes directly from

the FM transmitter or a processed version from the receiver, the driver’s command, that means the

signal coming out from the receiver, is fed to microcontroller sampled and is send to SBC with

many more readings. The sampling scheme is easy and will be presented into the firmware section.

4.2.2 Actuators

 Standard model servo mechanisms are the actuators for the platform. There are two servos

attached to the nave of each of the left and right wheel correspondingly and another one for the

real axle brake; exclusive of the two factory installed servos. The servos at the front axle are two

ACOMS AS -12 standard servos with 3.0kg-cm at 4.8 Volt. The servo responsible for braking the

rear axle is a Hitec HS – 311 with 3.7kg·cm with rotational speed 60o/0.15sec at 6V supply (Fig.

4.30).

Fig. 4.30 Hitec HS – 311 standard model servo used from the braking of the rear axle.

One major drawback of the design is the usage of standard servos for the braking system. A real

automobile, with ABS installed has hydraulic valves as actuators and the reaction time is tens time

less than an electro mechanical servo ([31], [32]). The Fig. 4.31 is the portrayal of the typical

braking system installed on a real vehicle with ABS. When the driver pressures the brake pedal, a

brake servo mechanism (or more common the brake pump) increases the pressure on the hydraulic

system delivering high pressured brake fluids to the brake pistons which are attached to the brake

clippers. The more the pressure from the driver, the higher the pressure from the brake servo. In

the case a wheel locks because of the braking and the electronic unit responsible for the

 83

antilocking decides that this is an undesired effect, takes action by sending the command to release

the brake pressure of this specific wheel. This is operation done by the relief valve which recycles

some of the fluids, back to the central fluid tank which has as an outcome the wheel to unlock.

Fig. 4.31 Typical braking system of a real vehicle with ABS system.

The typical reaction time of a relief valve is some tens of milliseconds. Thus, it is obvious that an

ESP system acting on real vehicle’s hydraulic brakes has a great advance towards our

implementation. The development and installation of a respective system on the model was more

beyond our specifications and would raise the cost very high. So we had to suffice our needs with

the servos, which finally did work fine and didn’t let us down.

4.2.3 Power Supply

The schematic diagram for the power supply board installed on the rear plastic case of the model

(Fig. 4.5) is illustrated below at Fig. 4.32. We have used one LM7806 and two LM317 voltage

regulators and their required circuitry for operation. We have also attached a DIP switch on the

PCB build in case we want to solicitude a regulator or a pin header from power for power saving

purposes, since their idle current is not negligible.

 84

220

c18

1K

c18

1 2
3 4
5 6
7 8
9 10

12V

HEADER 5X2

1 2
3 4
5 6
7 8
9 10

6V
HEADER 5X2

1 2
3 4
5 6
7 8
9 10

5V
HEADER 5X2

1 2
3 4
5 6
7 8
9 10

1,2 -9,6V
HEADER 5X2

VIN1

G
N

D
3

VOUT 2

U5 LM7806

VIN3

AD
J

1

VOUT 2

U6
LM317

VIN3

AD
J

1

VOUT 2

U7
LM317

123456

121110987

S1SW DIP-6

330

2,2K

c18

12V

1
2

D1
LED

10K

Fig. 4.32 Power supply schematic.

As illustrated on the above schematic we have one input source (a 12V battery) and 4 different

voltages as outputs. The first output is directly fed from the battery, thus it has the same voltage

level as the battery. The second derives from an LM7806 delivering 6V ([33]). The third output

comes from an LM317. The output of the LM317 is adjusted ([34]) with the use of some

resistors. Just following the directions from the data sheet we adjusted it so that we had 5V output,

using one 1K and one 330Ω resistor. From this regulator and the 5V output respectively, we

supply the microcontroller and the sensors. The fourth and last voltage output derives also from an

LM317, but through a trimmer (onboard potentiometer) and by adjusting the resistance it delivers

from 1.2V to battery voltage (12V). It has been implemented for potential future use.

Fig. 4.33 PCB board for the central power supply. Top layer (up) and face of the copper – bottom layer

(down).

The PCB built to house the above circuitry is shown at Fig. 4.33. The green lines appearing on

the bottom layer are the second routing layer used. Those lines were drawn by hand as simple

 85

wires. The use of second layer for routing was obligatory and it was easier drawing the wires

manual than building a two layer copper PCB.

We have also used a second PCB for power supplies attached in the central plastic case housing

the single board computer (Fig. 4.2). From this second power board, we supply the current for the

Linksys router and also an Iogear Bluetooth serial modem device, which can be used when we

remove the plastic case with SBC, router batteries etc from the vehicle and we need the data to be

delivered wirelessly. The router requires a voltage of 3.3V and 2A current. A typical LM317 can

supply current in excess of 1.5A. So we decided to use two LM317 paired together delivering 3.3V

and current more than 3A. Because of the fact that the current drawn was high, we also used a

light alloy heat sink and a small typical computer fan driving the hot air from the regulators away

from the plastic case of the PCB out to the environment.

Fig. 4.34 Typical connection for the LM317 from data sheet ([34]).

The typical connection for an LM317 is illustrated on Fig. 4.34. The output for the above

connection scheme is Vout=1.25·(1+R1/R2)+IADJ(R2), where the IADJ(R2) is almost zero. Therefore

we chose R1=330Ω and R2=560Ω Vout=1.25·(1+330/560)=3.375 Volts. The reason for

choosing the previous values is because we wanted commercial available carbon resistors.

The schematic of the second power supply board is displayed at Fig. 4.35. For building the

PCB, we did use a simple perforated prototype board, where we drew the wires manually.

VIN1

G
N

D
3

VOUT 2

U9 LM7806

VIN3

AD
J

1

VOUT 2

U10
LM317

330

12V 4Ah Battery

1
1

6V to Bluetooth

1

12V to Fan

1uF

VIN3

AD
J

1

VOUT 2

U11
LM317

330

560

1uF

3.3V to router

560

1uF

Fig. 4.35 Schematic of the router and Bluetooth serial modem power supply.

 86

4.2.4 Microcontroller: Schematics, PCB and Development Tools

Schematics and PCB

The conductor of our whole implementation is an AVR ATmega32 (Fig. 4.36) microcontroller

from ATMEL. ATmega32 is Reduced Instruction Set Computer (RISC) microcontroller

connected to the serial port of the SBC; with 32Kb program flash and 2Kb RAM ([20]). The

built in AVR core of the ATmega32 combines a rich instruction set with 32 directly connected to

the Arithmetic Logic Unit (ALU), general purpose working registers. This architecture allows

within one clock single instruction execution, two independent registers to be accessed, providing

the capability of achieving ten times more throughput than the conventional architecture used in

CISC microcontrollers ([20]).

Fig. 4.36 Pinout Atmega32, PDIP package (data sheet: [20]).

The ATmega32 has the following provisions ([20]):

 32K bytes of In-System Programmable Flash Program memory with Read-While-Write

capabilities

 32 general purpose I/O lines

 32 general purpose working registers

 2Kbyte SRAM

 1024 bytes EEPROM

 A JTAG interface

 On-chip Debugging support and programming

 Three flexible Timer/Counters with compare modes

 Internal and External Interrupts

 87

 Serial programmable USART

 Byte oriented Two-wire Serial Interface

 8-channel, 10-bit ADC with optional differential input stage with programmable gain

 Programmable Watchdog Timer with Internal Oscillator

 SPI serial port

 Six software selectable power saving modes.

The ATmega32 AVR is supported with a full suite of program and system development tools

including: program debugger/simulators like AVR studio ([36]), C compilers like Winavr ([15]),

macro assemblers, in-circuit emulators, evaluation kits and development kits ([35],[36],[20]).

More details on the programming and development section.

Central PCB for the microcontroller

When we started designing our implementation, our main goal wad to build a central PCB for

housing the microcontroller, that would be completely self depended from the rest of the sensors

and power supplies, thereupon could be reusable for another project. Also this specification did

leave us with the potential to make errors and mistakes on the peripherals and wouldn’t require the

remake of the whole system. Consequently the best way to achieve our goal was to break the

design into many different peripherals that would be portable to every vehicle and could be

evaluated even on a real vehicle too with some additions only. Most of the peripherals have

already been outlined into the previous section. At this section we will present the most important

part of the system that is the intermediate between sensing, decision and actuation part of the

process.

The route that we followed for the design was to place the microcontroller on a PCB, with just

the necessary electronics from operation and use dedicated sockets and connectors for the rest of

the system. At Fig. 4.37 we can see the wiring of the board. The main parts of the board are: the

microcontroller, the XOR gate for the Hall Effect sensors and the ADXL213 interface with the

external interrupts, the 16MHz crystal with the necessary capacitors for oscillation, a MAX232

chipset for TTL to RS232 level conversion, a DSUB DB9 female adapter for the serial cable. We

have also placed some voltage dividers in case we want to evaluate the level of a voltage above the

5V which is the voltage reference for ADC conversion. Almost every pin from the microcontroller

is accessed though pin headers, so we can change the routing at no time. One important aspect

that is not clear in the schematic, but is on the PCB board, is that we have used jumpers for

certain connections. To be more specific, we might have designed the routing arriving at a certain

pin on the microcontroller, but the final connection is not hard wired, but is done through a

 88

simple jumper through a VIA originating out under the bottom layer of the PCB. So we have

limited the amount of wires hanging above the microcontroller while retaining the possibility of

placing another input directly to the headers. This whole design proved very convenient.

Fig. 4.37 Central board with ATmega32 schematic

In order to connect the peripherals (sensor circuits or actuators) the user just places the input to

the right header. There is a brief description, of which signals arrives or leaves a specific pin from

the microcontroller. Something that needs to be spelled out is the fact the wherever we have a +5V

voltage supply illustrated into the schematic, comes from the regulated power supply presented

earlier. That means that the +5V volts reaching to the Vcc of the ATmega32, the AVcc (ADC

power supply) and AREF (ADC voltage reference) pins are regulated and retain a quite stable

level. The oscillation of the voltage is very limited. Although we had the possibility to use a

precision voltage reference chipset on the AREF pin, we decided to use the power supply of the

microcontroller itself. The reason we did it is simple and straightforward. Since the voltage

arriving at the Vcc, Avcc and AREF pin of the ATmega32 and the voltage at the sensors originate

from the same source (the LM317 of the power supply board), then the oscillation of the voltage

at the ADC process would be compensated by the fact that if the voltage would increase, it would

 89

happen the same at the output of those sensors which their output is ratiometric of the input

voltage, like:

 The steering angle estimation provision. It is a voltage divider output proportional to

input.

 The ADXL311 accelerometer, for which is clearly mentioned on the datasheet that the

output and the zero g bias are radiometric. That means that the zero g output is equal to

Vcc/2 ([17]).

 The ADXL213 accelerometer, for which is clearly mentioned on the datasheet that the

output and the zero g bias are also radiometric. That means that the zero g output is

equal to Vcc/2 for every supply voltage ([19]).

The only sensory provision in the system that is not ratiometric is the ADXRS300 gyroscope.

The output is non ratiometric ([26]), but has an internal voltage reference of 2.5V which can be

used for compensating the voltage oscillation error ([37]).

From the above we can conclude that the error between the real analog value and the value

estimated from the conversion is less when both the analog value and the reference suffer the same

offset by the voltage oscillation. For example, lets consider a situation where the accelerometer

ADXL311 with ratiometric output experiences zero g acceleration and the voltage Vcc drops at

4.95V instead of the 5V that is considered to be nominal.

 The output of the accelerometer would be Vcc/2. The output for the nominal value (5V)

would be Vcc/2=5/2=2.5V. In our situation the output would be 2.475V.

 The voltage at the AREF pin of the microcontroller also drops at 4.95V.

 The 10bit estimated value from the ADC of the ATmega32([20]) is ADC=1024*Vin(at

Vcc pin)/Vref(at AREF pin)= 1024*2.475/4.95= 512 .

 When we receive this value at the SBC, the conversion from the decimal number back to

voltage will be given by Vin=ADC*Vref/1024, where Vref is nominal the reference

voltage (5V) at AREF pin of the microcontroller for the ADC conversion.

 At the opposite operation, conversion back to voltage, as Vref we are using the nominal

value which is 5V. That yields to Vin=512*5/1024=2.5V, which would be the nominal

value. So we have absolute no error (at this specific situation were we don’t have

quantization error).

More examples and thorough explanation will be given at the firmware section. The PCBs

created to mount the circuit of Fig. 4.37 are presented at Fig. 4.38 and Fig. 4.39, top and bottom

illustration respectively.

 90

Fig. 4.38 Central PCB: Top layer. The green wires are the second routing layer drew manually with

conventional wires.

On the actual PCB used of Fig. 4.38, at the right part of the board we have placed three 10 pin

ribbon cable connectors and through them we are connecting the sensors and actuators with the

microcontroller while keeping the chaotic routing tidy and easily accessible.

 91

Fig. 4.39 Central PCB: Bottom layer (copper layer). The green wires are the second routing layer drew

manually with conventional wires.

The final outcome of the PCB was presented at Fig. 4.5. Everything was easily accessed, very

stable and robust. The environment of operation is very harsh and wouldn’t leave any margin for

mediocre constructions or soldering.

One important aspect of our design was the ability of the microcontroller to be able to

communicate with host. The best solution was to use the built – in USART (Universal

Asynchronous Receiver Transmitter) of the AVR to communicate with the SBC through the

serial port. The serial port of the PC uses the typical RS – 232 levels, while the microcontroller

uses classical TTL levels.

RS-232 is a standard that defines the voltage levels that correspond to logical one and logical

zero levels and has range of -3 to -15volts and 3 to 15 volts for the logical one and zero

respectively while the typical TTL levels are 0 and 5 Volts for the logical zero and one respectively

([38]). For a logical connection between the RS – 232 serial port of the SBC and the USART of

the ATmega32 two we have to use a typical level converter; a MAX232 chip ([39]).

 92

For the serial communication, we have used the minimal 3-wire required RS-232 connection

consisting only of transmit data, receive data, and ground (Fig. 4.40). This communication was

enough since we didn’t need any more facilities of the RS-232 standard. We haven’t used any flow

control on since it wasn’t necessary, so we had to short circuit the Request to Send (RTS) with

Clear to Send (CTS) lines (necessary for handshaking), and the Data Terminal Ready

(DTR) with Data Set Ready (DSR) line for both the microcontroller and the host computer (Fig.

4.37). For their connection we used a simple null modem cable wire. A null modem cable is a

simple cable where the receive and transmit line for microcontroller are crosslinked the

transmit from the ATmega32 connects to the receive of the SBC and the transmit of the SBC

connects to the ATmega32. One key part of this process that should raise attention, is that in case

the wire is fixed and is a null modem cable wire, the RTS with CTS and DTR and DSR should

be short circuited manually on the host two (Fig. 4.40). This did cause us some trouble, since we

thought that all nine wires from the DB9 connector of the SBC would reach to the short circuit at

the PCB board. But this proved to be wrong, since only three wires were travelling inside the

shielding from the ready to use cable.

Fig. 4.40 Serial connection between the microcontroller and the SBC

 93

Development Tools

The greatest advantage of using ATMEL AVR microcontrollers is the wide availability of

development tools for programming and prototyping. The hardware development tools for

prototyping are very economic and can be obtain with very little cost, or can be self build. There

are numerous free designs for AVR programmers on the web accompanied with a very nice

documentation and software. In case someone wants to use a commercial available development

tool from the ATMEL Corporation itself, with several peripherals for prototyping, an excellent

documentation and guarantee for easy to use device can use the STK500 ([35]). The AVR®

STK500 (Fig. 4.41) is a low cost complete starter kit and development system for the AVR Flash

Microcontroller from ATMEL Corporation.

Development Board

It has been designed in a simple manner so that to give electronics systems designers an easy and

quick way to start developing code on the AVR microcontrollers, both for prototyping and

testing([35]). STK500 has many features, such as:

 Serial interface to the host computer.

 Regulated power supply input from DC power.

 Serial In System Programming for AVR devices

 Sockets for various sizes of AVR DIP Devices (8-pin, 20-pin, 28-pin, and 40-pin).

 8 push buttons.

 8 switches.

 8 LEDS.

 Connectors for prototyping, giving access to all AVR I/O

 On-board 2-Mbit DataFlash® for Nonvolatile Data Storage ([35]).

 An RS-232 level converter to TTL level.

 Provision for Parallel and Serial High-voltage Programming.

 In-System Programmer for Programming AVR Devices in External Target System.

o Very convenient feature that we really did appreciate.

 And the most important feature is 100% compatibility with the free AVR Studio®.

 94

Fig. 4.41 STK500 Starter Kit from ATMEL. Image from ([35]).

The STK500 development board is controlled from AVR Studio (version 3.2 and higher)

([35],[36]). On the other hand AVR Studio is an integrated development environment (IDE) for

developing and debugging AVR applications.

Development Software

AVR Studio is easy to work and user friendly. It provides a project management tool, source file

editor for C/C++ programming, simulator, in circuit emulator interface and programming

interface for STK500. The most important feature of AVR studio is the simulator. It has a built in

simulator for most of the AVR devices and provides a full inspection of the I/O inside the AVR

device ([36]) (see Fig. 4.42). The user can simulate his microcontroller application step by step;

watch the values for variables in both assembly and high-level languages and use the

comprehensive help manual embedded into the AVR Studio ([36]).

Most part of the project was developed at the AVR Studio version 4. 13. The firmware for the

microcontroller was developed in C language, with WinAVR [15] a suite of executable, open

source software development tools for the Atmel AVR series of RISC microcontrollers. WinAVR

includes the GNU GCC compiler for C and C++. The software in total is free and available in

WWW. WinAVR automatically installs it’s assembler into the AVR Studio. So, at the creation

of a new project the user has the ability to choose between the AVR assembler from ATMEL

contained into the studio, where the typical language for development is assembly. Of course we

chose C language instead of AVR assembly for a number of reasons ([42]):

 95

 Reduced development time.

 Portability.

 The GCC compiler is known for the excellent machine and fully optimized machine.

 A number of routines and libraries are available for different AVR devices.

 The debugging is much easier. The code is easily readable.

 Most of AVR developers are also using C, so it is easier in case of a wonder we had the

ability to ask for help in a forum.

 And many more…

The only superiority of the assembly programming is that the user can have complete inspection

of the code to the last clock cycle. So in case of a very time sensitive application the assembly

language is obligatory. There is also the opportunity for the user to mix assembly and C language

using a different high level language development tool, like the IAR C – compiler ([40]).

Fig. 4.42 AVR Studio 4.13; project simulation.

Programming the device

To program the firmware we have developed into the AVR device we first compile the program

and to produce a hex file. Afterwards, we connect the STK500 into the computer and select

 96

“Connect” from the “Tools” menu in AVR Studio. Thereinafter we select the AVR target which

in our case is the ATMega32 and we locate the hex file from the compilation. We choose the ISP

(In Circuit Programming) mode and press the program button. Another important part from the

programming process is the fact that we must also program some fuses in order the device to work

in the desired manner. The settings for the fuses are (Fig. 4.43):

 Uncheck the On – Chip Debug.

o We didn’t have the necessary equipment for the On – Chip debug, which would

be the AVR® JTAGICE mklI from Atmel® ([41]).

 Uncheck the JTAG Interface.

o The JTAG interface is at PC1 – PC5 pins of the microcontroller, which have

been used for interfacing the braking servos. In order this port to be functional we

have to disable the interface.

 Check the fuse for using the “External Crystal Resonator, High frequency”.

o By default, ATmega32 uses the built in clock which is a 1MHz. In order to be

clocked from the crystal we have placed at the XTAL1:2 pins we have to check

this fuse.

ATmega family of microcontrollers have the provisions to be programmed in circuit without the

need to remove the device, attach to the development board and put it back to the circuit. The

STK500 can be used as a programmer for external target systems.

Fig. 4.43 Setting the fuses for the ATmega32.

 97

ISP programming requires only VCC, GND, RESET and three signal lines for programming.

Therefore, our approach for maintaining the AVR attached to the chip while programming was

simple. We used one of the two ISP connectors of the STK500 by connecting the appropriate pins

of the connectors and the ATmega32. The connection is illustrated at Fig. 4.44.

Fig. 4.44 In circuit serial connection for programming from the STK500 6 PIN ISP connector.

We have to underline the fact that in order to program the microcontroller we have to isolate the

pins PB5:7 from every active component. In our design, the output from a XOR gate is delivered

at those specific ports, so we just had power off the gate (Fig. 4.37). We could follows more

sophisticated solution that would do the process automatically but the installation of a simple

switch was more than enough.

 98

4.3 Software at SBC

4.3.1 Single Board Computer; Ubuntu Linux

The operating system installed is Linux Ubuntu 6.10. Ubuntu is a community developed, Linux-

based open source free operating system complaint under the GNU general public licence. It

contains all the applications a typical operating systems has; graphical user interface to the

operating system through Gnome or KDE, a web browser, document and spreadsheet software,

and much more. It has a graphical installer which gives the user the opportunity to “get up and

running quickly and easily” ([44]) so a standard installation to a nowadays typical computer takes

less than 25 minutes. Ubuntu is and always will be “free of charge” ([44]). The user doesn’t need to

pay any licensing fees. It is free and has a number of potentialities and as true Linux – based

operating system can be customized to the extent of the capabilities of the developer.

The philosophy around Ubuntu Linux and general public license (GPL) is software freedom

that aims to distribute around the globe and brings the benefits of software to everyone, while

promoting software improvement, cooperation between developers and maintaining the prices of

commercial software reasonable, since there is high quality alternatives ([46]). The idea

concerning free software and where Ubuntu is a member is that every computer user should have

the freedom to download, run, study, share, alter and improve their software for any purpose

([46]). Especially for the academic community, open source software has set the foundations for

the exponential growth of the number of software developers, the internet itself and generally has

sparked many people to occupy themselves with a number of different topics that turned out to be

very interesting and priceless to the academic community. The term “Open Source” doesn’t just

mean access to the source code of the software, but has a broader definition ([49]).

On the other hand, the term “free software” is not directly refereed to the price ([46], [48])

although it presumes no charge for the software. For Ubuntu, is used mainly in regard to freedom

so that ([48]):

 Anyone can run the programme, for any purpose.

 Anyone can study the operation of the programme through the open source and the

necessary nice documentation and adapt it at his needs.

 Anyone can redistribute the alterations he made or new programmes he developed so can

help the rest of the developing community, to improve the programme and release his

improvements so that everyone benefits.

 99

The licensing concerning Ubuntu is a more complicated. Ubuntu, like most Linux based free

operating systems, is collection of different computer software and files created by numerous

individuals, teams and companies. It is most probable that each of these attempts come under a

different license. There are some restrictions though at the software adapted by Ubuntu: All

software included into the operating system’s wider access database must include source code and

allow modification and distribution of modified copies under the same license. Besides the fact the

source code is obligatory, the users must have the potential to change it ([45]). More information

concerning Ubuntu Licensing can be found at [45] and free software definition on [48] and [47].

After hundreds of hours of customization we finally reached the Ubuntu Linux installed at our

specifications. We disabled whichever part of the operating system wasn’t indispensable for the

application and installed all the necessary software. We disabled the desktop environment,

GNOME, which is the graphical user interface that controls programs which manages application

launching, task management file handling in a window environment and is generally an interface

for the programs running at the background, similar to working to Microsoft Windows.

Typical Microsoft Windows programs are self contained and do not need many external libraries

to work, which are installed automatically with their installers, producing a redundancy and

duplicates of libraries. On the other hand Linux based operating systems like Ubuntu, are

dependant on external libraries to work. Usually in a Linux system, there exists only one copy of a

specific library. While this thing saves a lot of space and keeps the libraries up to date for all the

programs sharing the library it produces a great amount of dependencies. Thus in Ubuntu, similar

to most modern Linux distribution, has a built in system responsible to deal with software

packages and with all the necessary dependencies, without having scattered duplicate of programs

or libraries ([50]). Therefore, installing the necessary software to Ubuntu, besides the fact that it is

free isn’t that complicated as it used to be in the past. There is a main repository for software

packages supported by Ubuntu and are guaranteed to work easily. So the user has just to type the

command, “apt-get install package” (where package is the name of the specific software he wants

to install), while having his computer connected to the internet ([50]).

Unfortunately not all the required software is available from ready to install packages from the

Ubuntu community, so the dependencies problems are very difficult to deal with and require a lot

of manual work at patience.

Many packages come in source code form. That means that the Linux user has to compile them

himself. In order to do this, first has to install some compiler tools. In Ubuntu, those required

tools all come with the package build-essential, easily available with the “apt-get install package”

command, where the package is the most updated available tools in the community ([50]).

 100

The analytic description of the customisation took place, is beyond the scope of this document,

and there exists some very nice tutorials, on how to set up Ubuntu Linux in a convenient manner.

Something worth to be mentioned was the disabling of the IPV6 protocol for speed up the

computer itself. The improvement was dramatic and a short description of the process can be

found here [51].

Third Party Software

Additional software was installed on the system such as: an SSH server, the GNU GCC

compiler, an FTP server, a Webcamserver and an Apache webserver. Everything was set to meet

the necessary requirements for the robust function of the platform. The most difficult of all to

setup was the webcam server. We have mounted on the model two regular Labtec webcams that

worked out of the box with the built – in drivers of Ubuntu. Unfavourably the webcam server

found here [52], that was installed manually from source code, was very difficult to set up. The

webcam server projects a sequence of Jpegs pictures captured from the webcam to a user specified

port, through a Java client program running on the web browser. The application was very stable

and is highly recommended! However, the dependencies we met were really annoying and did

consume a lot of time and patience until they were set up properly. We had to install the webcam

server along with the libc6 package back and forth many time until we find a way to fix it. We

tested the webcam server on the Ubuntu 7.10, “Gutsy Gibbon” edition with the same webcams and

worked excellent. The future developer should just use a newer from our distribution (6.10) and

will face no problem.

4.3.2 Custom developed source code

The presentation of the operation of the system will be conducted in three parts: first a brief

outline of the different part of the programs developed, second a thorough and analytic description

of each programme, routine, code or script and its operation, and finally setting the model to

operate and access the gathered data.

A Brief outline

A daemon server was developed for data acquisition from the computer’s serial port. The

daemon is written in C/C++ and besides the data collection calls the routine for the stabilization of

 101

the vehicle, also written in C/C++. The program was altered in order to cooperate with a Java

Server – Client program for graphical user interface through a common browser that was

developed by Mr. Bill Hatzidiakos with contribution from the author (Fig. 4.45). With the usage

of this program the user can define the method of stabilization, adjust some parameters, have

access to log files and generally have access to a nice graphical interface of the collected data from

the sensors and the control decision for the stabilization.

Fig. 4.45 The Java client GUI with the real time video streaming from the webcam server. Instance from an

auto generated experiment. Left turn where the vehicle oversteers and brakes the front left inner wheel (with

red).

For the operation of the ESP system with the Java GUI through the browser there are four

different parts – programs which cooperate to each other. The most important part of the program

is the daemon server which was developed for data acquisition from the computer’s serial port.

This daemon opens the serial port, listens for data packets, processes the data and calls the

stabilization routines. It also writes the commands back to the serial port and builds the log file.

This daemon is called by a socket server which is developed by Mr. Hatzidiakos. The socket

server listens for in bounding connections from the internet. When a connection is set through a

web browser, the user can access the port 80 where the Apache webserver handles the

 102

communication. We have placed the Java jar file for the client execute at the user’s browser at the

root directory of the Apache webserver which was left at its default: /var/www. also developed by

Mr. Hatzidiakos were the exchange between the user and the daemon takes place.

The communication is handled through sockets providing the potential for real time data

exchange between the user and the system. Data is provided in the form of C pointers with the

help of threads and mutexes. Initialization process:

i. Connect the power cable and press the power push button to switch on the system.

ii. Connect through a wireless connection to the Linksys router using Static IP Addressing.

iii. Use an SSH client (PUTTY ([53]) to connect to the SSH server of the SBC. Connect to

IP: 192.168.1.101.

iv. Execute the socket server from the folder it is stored at the SBC.

v. With a web browser, connect from the client computer; connect to the address

192.168.1.101.The client computer should have Java Runtime Environment Installed.

vi. At web browser of the client computer, the index.html will be loaded by default. This

HTML code initiates three Java applets (Table 4-8). The first is the Java GUI, and the

other two are two Java Applets for the real time video streaming. The outcome is displayed

at Fig. 4.45.

vii. The user in order to connect to the socket server running at the SBC, must press the

connect button and everything is ready for experimenting using different ESC schemes,

adjusting parameters and fine tuning the ESC algorithms.

From this point on, at the SBC the socket server is exchanging data with the browser and is

generating a log file with all the operation, from the data gathered to the commands issued, which

can be accessed from the browser through a hyperlink.

<html>
<body>
<p>
<applet code=demos.TestJApplet archive=index.jar width="800" height="700" align="left">
 Your browser does not understand Java.
</applet></p>
<p>Top WebCam</p>
<p>
<APPLET CODE = "WebCamApplet.class" archive="applet.jar" WIDTH = "320" HEIGHT = "240">
<param name=URL value="http://192.168.1.101:8888">
<param name=FPS value="10">
<param name=width value="320">
<param name=height value="240">
</APPLET></p>
<p>Wheel Webcam</p>
<p><APPLET CODE = "WebCamApplet.class" archive="applet.jar" WIDTH = "320" HEIGHT = "240">
<param name=URL value="http://192.168.1.101:8887">
<param name=FPS value="10">

 103

<param name=width value="320">
<param name=height value="240">
</APPLET>
</p>
<p>Log File</p>
</body>
</html>

Table 4-8 Index.html: Loads the applets, HTML code.

Daemon!

The running socket server calls the daemon, which listens to the serial port, processes the data

and controls the vehicle, in a function call. The daemon, as any programmed characterized this

way, runs in the background, is active all the time while consuming very little process power and is

invisible to the user. We can see an instance of the daemon printing the data on the standard

output, at the SSH client window (Fig. 4.46).

Fig. 4.46 Instance of the daemon printing some data on the standard output through the SSH client.

The program starts with the execution of the of the socketserver program also written in C/C++

by Mr. Hatzidiakos. Socketserver handles the threads creations and execution of the daemon

through sockets. An abstractional flowchart of the process is illustrated on Fig. 4.47, where it

 104

portrays only key parts of the procedure. We shall comment the software analytically from the

point where the thread is created and after, since until the thread creation, the software has been

developed by Mr. Hatzidiakos for his undergraduate thesis. The daemon as mentioned before is

executed in a thread form named “serial_com” (

Table 4-9).

 105

Fig. 4.47 Socketserver abstractional flowchart.

The part of the process that initiates the thread creation is presented at

Table 4-9. From this point on the software presented is developed from the author.

 //run a serial comm thread

 if (!comm_data.serial_running)
 {
 pthread_t serialread;
 if (pthread_create(&serialread,NULL,serial_comm,&comm_data)!=0){
 puts("Could not create serial thread");
 }

else pthread_detach(serialread);

Table 4-9 Serial_com thread creation. Inside socketserver.

The so – called “daemon”, the serial_com routine which is called inside a thread is the conductor

the electronic stability control system. An analytical flow chart of the operations taking place at

the serial_com is cited below on

Fig. 4.48. Because the flow chart would be very big, it is presented in sequential figures referring

to each other.

 106

Fig. 4.48 Serial_com routine flow chart part A. File inclusion (*1) and definitions (*2).

Fig. 4.49 Serial_com routine flow chart part B. Routine (*3) and variables (*4) definitions.

At Fig. 4.48 and Fig. 4.49 we can see the initialization of the routine serial_com until the point it

reaches the while(1) “endless loop” . The routine is placed in C++ file called async.cpp, where it

has some inclusions of another C, C++ or header files necessary for the software. The whole

software has been divided at the most possible separate files in order to be more legible, simpler to

debug, easily reusable and most of all easier to develop. So instead having a big chaotic file to work

with, we are combining many different. Also all the routines are defined outside from the file C++

which includes the “endless loop”; for the same reasons as those cited above. The included files

are:

 "files/headers.h"
 "context.h"
 "files/time_etc.cpp"
 "files/init_serial.c"
 "files/servos.h"
 "stab/stabilization_routine1.c"
 "stab/stabilization_routine2.c"
 "stab/stabilization_routine3.c"

 107

The folder “files/” and “stab/” are directories for better organization of the files. Continuing with

the serial_com routine from the

Fig. 4.48 we reach at the point where the program enters the “endless loop” (Fig. 4.50).

Fig. 4.50 Serial_com routine flow chart part C. “Endless loop”.

 108

One important part that must be outlined into the above figure (Fig. 4.50) is that the data

arriving at the serial port is in char form. That means it is binary data represented by one byte of

information. In order to increase the bandwidth, we didn’t use the ASCII representation for the

binary data arriving at the serial port.

Fig. 4.51 Serial_com routine flow chart part D. “Endless loop”.

 109

Thus, instead one byte of information having the code value in decimal form just 0 – 9 (ASCII),

we are using the whole 8 bit of information, except the 255 which is left for packet handling. The

above means that in one byte we are coding 0 – 254 in decimal representation.

Fig. 4.52 Serial_com routine flow chart part E. “Endless loop”, last part.

Fig. 4.52 shows the completion of the flow chart of the routine serial_com. Some key parts of the

routine must be cleared out:

 Serial port is initialization and configuration through the routines at init_serial.c file.

 The way data are evaluated from the information of the binary data.

 The way the auto generated experiments work, first mentioned at Fig. 4.52.

 110

Serial port initialization, reading and writing

At

Fig. 4.48 we can see the sequence of events to initialize and configure the serial port. Most of the

settings and configuration has been done through guidance from [55] and the tty_iotcl manual

page for Linux. The program first calls the open_serial() routine placed at the included files of

init_serial.c. The open_serial() (

Table 4-10) returns a integer file descriptor (int fd) for opening the MODEMDEVICE defined

as “#define MODEMDEVICE "/dev/ttyS0" ” in the included file settings.h, in Read/Write open

mode (O_RDWR) and with No TTY control (O_NOCTTY), with the O_NONBLOCK flag

set, where read() returns immediately without reading any data if not available (doesn’t blocks).

int open_serial(void)
{
 int fd;
 /* open the device to be non-blocking (read will return immediatly) */;
 fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY | O_NONBLOCK);
 if (fd <0) {perror(MODEMDEVICE); kill(getpid(),0); }
 return fd;
}

Table 4-10 Routine open_serial()at init_serial.c.

The next routine to be called is the init_serial() at the file init_serial.c. It is presented at Table

4-11 along with the signal handler “void signal_handler_IO (int status)” for the asynchronous

operation. It accepts a number of inputs, where two of them are structs “struct termios

oldtio,newtio;” for the old and new settings used for setting the serial port. The sigaction()

function allows the calling process to examine the action to take: “saio.sa_handler =

signal_handler_IO;” to be associated with a specific signal, which in our case in the SIGIO

interrupt, “sigaction(SIGIO,&saio,NULL);” ([56]).The fcntl() function provides control of open

file descriptors, “fcntl(fd, F_SETOWN, getpid());”, where the F_SETOWN flag sets the owning

process ID, “getpid()”. The owning process or process group can receive SIGIO signals for

readable data on communications ports (serial port in our case). The argument is the process ID or

the negative of the process group ID for the owner, as a variable of type pid_t. The return value is

0 on success, or -1 on error.

To receive SIGIO signals, the process should establish a SIGIO handler, “saio.sa_handler =

signal_handler_IO;”, prior to setting ownership of the file descriptor, and then must enable

O_ASYNC with the F_SETFL command to fcntl(): “fcntl(fd, F_SETFL, FASYNC);”.

 111

#include "headers.h"

/***
* signal handler. sets wait_flag to FALSE, to indicate above loop that *
* characters have been received. *
***/

void signal_handler_IO (int status)
{
 //printf("signaled\n") ;
 wait_flag = FALSE;
}

void init_serial(int &fd,struct sigaction &saio,struct termios &oldtio,struct termios &newtio)
{
 ///////////////+++++++++++++++++/////////////////
 // install the signal handler before making the device asynchronous
 saio.sa_handler = signal_handler_IO;
 saio.sa_flags = 0;
 saio.sa_restorer = NULL;
 sigaction(SIGIO,&saio,NULL);

 // allow the process to receive SIGIO
 fcntl(fd, F_SETOWN, getpid());
 // Make the file descriptor asynchronous (the manual page says only
 //O_APPEND and O_NONBLOCK, will work with F_SETFL...)
 fcntl(fd, F_SETFL, FASYNC);

 tcgetattr(fd,&oldtio); // save current port settings

 //async1
 //
 // Set bps rate and hardware flow control and 8n1 (8bit,no parity,1 stopbit).
 // Also don't hangup automatically and ignore modem status.
 //Finally enable receiving characters.

 newtio.c_cflag = BAUDRATE | CRTSCTS | CS8 | CLOCAL | CREAD;

 newtio.c_iflag = IGNPAR; //Ignore bytes with parity errors and make terminal raw and dumb.

 newtio.c_oflag = 0; //Raw output.

 //Don't echo characters because if you connect to a host it or your
 //modem will echo characters for you. Don't generate signals.

 newtio.c_lflag = 0;

 // blocking read until 1 char arrives
 newtio.c_cc[VMIN]=1;
 newtio.c_cc[VTIME]=0;

 // now clean the modem line and activate the settings for modem
 tcflush(fd, TCIFLUSH);
 tcsetattr(fd,TCSANOW,&newtio);
}

Table 4-11 Routine init_serial()at init_serial.c

 112

A SIGIO signal is generated whenever there is data to be read on the file descriptor. So

whenever we have data at the serial buffer, the singnal_handler_IO() routine will be called making

the “wait_flag = FALSE;”. Although we have set the software to signal on IO and this is the

approach for most programmers seeking an asynchronous operation for their program, we decided

to use a more secure and robust solution. The approach was to read how many bytes where at the

serial port input buffer. If they where more than 0, we issued the read command. This was done

with the function ioctl(). At Table 4-12 we can see the way our approach works. The main

difference is that our packet needs to be reconstructed, since it is read with a random number of

bytes every time. That means, that the program will issue a command for reading 70 bytes, will

read those available at the buffer denoted by the “res” variable and will reconstruct the data packet

with a little programming.

// Read serial port
ioctl(fd,FIONREAD,&bytes);
if(bytes>0){ // Append at serial_port_buffer to consume
 res = read(fd,buf,70);
}

ioctl(fd,TIOCOUTQ,&w_bytes);

// Write at serial port
if(w_bytes==0){
 write_buffer=&stab_commands[0];
 write_buffer[0]=255; // Start 255, terminator

 n=write(fd,write_buffer,32);
 if (n < 0)
 fputs("write() of 32 bytes failed!\n", stderr);
}

Table 4-12 Read and write at the serial port at inside serial_com() routine.

Evaluation of the information from the binary data

The data arriving at the serial port are raw binary data needed to be translated into useful

information. The first thing we have to do is convert them from char form (single bytes) into

integers. The data are in two’s complement representation. So a directed assign from their to

binary value to integers is prohibited. We have used a directive definition “#define

char_to_int(input) if(input<0) input=256-abs(input)”. So in order to translate a the char (byte)

into integer the call we make is “acc_2_front_X_high = (int) (data[7]); char_to_int

(acc_2_front_X_high);”. So we convert the char variable “data[7]” to integer through a direct

integer assign, and then convert this two’s complement integer into a real number integer with the

 113

definition. Most of the data arriving at the serial port consist of two bytes. So we have to combine

two chars (two single bytes) into an integer. The conversion is straightforward and is illustrated at

Table 4-13. The array “data[]”, is a char array which holds the bytes from the data packet

transmitted from the microcontroller into the SBC through the serial port. At

Table 4-13 we have an example how to combine the 16 – bits measurement (two bytes) for the

ADXL213 accelerometer. The lower nibble is “acc_12_X_low” the and the higher is

“acc_12_X_high” which are finally combined into the integer “acc_12_X_high”. The if – else

pattern at the conversion has to do with the fact that a “0” (00000000 in binary representation) in

a char array is the end of file for the C language.

//------------------1.2g Accelerometer-----------
acc_12_X_high = (int)(data[3]);
char_to_int(acc_12_X_high);
 if(acc_12_X_high==254)
 acc_12_X_high=0;
acc_12_X_low = (int)(data[4]);
char_to_int(acc_12_X_low);
acc_12_X_high=(256*acc_12_X_high)+acc_12_X_low;

Table 4-13 Conversion from raw binary data arriving at the serial port into two bytes integers.

Thus, we must not transmit “0” in binary because it denotes the end of the array. So for some

values, we know that the decimal “254” is not a valid representation, like the higher nibble from a

10 bit ADC conversion. So when we detect a decimal “254”, we know that it was an original

decimal “0” at the microcontroller transmitted as “254” in order not signal the EOF for our data

array. The problem is that we miss a bit for the lower nibbles, since we can’t distinguish the “0”

from the “1”, but in ADC conversions where this it causes a 1/1024 % ≈ 0.1% error, which is not

catastrophic collated with the speed up our method for transmission gives.

Besides the conversion of raw binary data into integers, we have to transform each integer value

into useful information. For example, the outcome from the analog to digital converter for the X

axis of the front axle ADXL311 accelerometer (analog output) is an integer value between 0 and

1023 value in decimal representation. This value has to be translated firstly into voltage and after

that into acceleration. We shall present one by one how we evaluate the information for all the

data measured.

 Acceleration from the central accelerometer: ADXL213 ±1.2g Accelerometer

o X Axis:

//------------------1.2g Accelerometer-----------
acc_12_X_high = (int)(data[3]);
char_to_int(acc_12_X_high);
if(acc_12_X_high==254)
 acc_12_X_high=0;
acc_12_X_low = (int)(data[4]);
char_to_int(acc_12_X_low);

 114

acc_12_X_high=(256*acc_12_X_high)+acc_12_X_low;
acc_12_X_gs = Acceleration_12(acc_12_X_high,455);
acc_12_X_gs=forgeting_sum(acc_12_X_gs,acc_12_X_gs_buf);
shift_values(acc_12_X_gs,acc_12_X_gs_buf);

After we have evaluated the length of the T2 pulse (Fig. 4.10), we are passing the

value into the pre-processor defined formula for evaluating the acceleration, the:

“#define Acceleration_12(T1,T2) -(double) (((double) ((double)T1 / (double)T2)-

0.5)/0.3)”. This definition takes as input the length of pulse T1 and T2 and returns

the acceleration in Gs, according to methodology presented at the ADXL213

interface section. In order to reduce the effect from the noise of the error we are using

a forgetting sum (Table 4-4) of the last four values measured stored into the array

“acc_12_X_gs_buf”. After that we use simple routine “shift_values

(acc_12_X_gs,acc_12_X_gs_buf);” which shifts the values of the array by one for the

next evaluation.

o Y Axis:

acc_12_Y_high = (int)(data[5]);
char_to_int(acc_12_Y_high);
if(acc_12_Y_high==254)
 acc_12_Y_high=0;
acc_12_Y_low = (int)(data[6]);
char_to_int(acc_12_Y_low);
acc_12_Y_high=(256*acc_12_Y_high)+acc_12_Y_low;
acc_12_Y_gs = Acceleration_12(acc_12_Y_high,458);
acc_12_Y_gs=forgeting_sum(acc_12_Y_gs,acc_12_Y_gs_buf);
shift_values(acc_12_Y_gs,acc_12_Y_gs_buf);

Same as X axis.

 Acceleration from the front accelerometer: ADXL311 ±2g Accelerometer

o X Axis

acc_2_front_X_high = (int)(data[7]);
char_to_int(acc_2_front_X_high);
if(acc_2_front_X_high==254)
 acc_2_front_X_high=0;
acc_2_front_X_low = (int)(data[8]);
char_to_int(acc_2_front_X_low);
acc_2_front_X_gs=(256*acc_2_front_X_high)+acc_2_front_X_low;
acc_2_front_X_gs=((acc_2_front_X_gs * 5)/ 1024); // Se volt
acc_2_front_X_gs=((acc_2_front_X_gs-2.5)/0.312);
acc_2_front_X_gs=forgeting_sum(acc_2_front_X_gs,acc_2_front_X_gs_buf);
shift_values(acc_2_front_X_gs,acc_2_front_X_gs_buf);

The analog to digital converter results into a 10 bit measurement, where the 1023d

represents the voltage reference, which in our case is 5V and ant 0d represents 0 volts.

The formula for estimating the analog value was presented at “Observations,

problems and possible improvements on the interface between the accelerometers and

the microcontroller” section. Therefore the “((acc_2_front_X_gs * 5)/ 1024);” give

the measurement in volts and the “” gives the measurement in Gs. The justification

about the “acc_2_front_X_gs = forgeting_sum (acc_2_front_X_gs,

acc_2_front_X_gs_buf);” and the “shift_values(acc_2_front_X_gs,

 115

acc_2_front_X_gs_buf);” was presented for the ADXL213 X axis and are valid here

too.

o Y Axis

acc_2_front_Y_high = (int)(data[9]);
char_to_int(acc_2_front_Y_high);
if(acc_2_front_Y_high==254)
 acc_2_front_Y_high=0;
acc_2_front_Y_low = (int)(data[10]);
char_to_int(acc_2_front_Y_low);
acc_2_front_Y_gs=(256*acc_2_front_Y_high)+acc_2_front_Y_low;
acc_2_front_Y_gs=((acc_2_front_Y_gs * 5)/ 1024); // Se volt twra sel 214 ATmega16;
acc_2_front_Y_gs=((acc_2_front_Y_gs-2.5)/0.312);
acc_2_front_Y_gs=forgeting_sum(acc_2_front_Y_gs,acc_2_front_Y_gs_buf);
shift_values(acc_2_front_Y_gs,acc_2_front_Y_gs_buf);

Same as ADXL311 X axis.

 Acceleration from the rear accelerometer: ADXL311±2g Accelerometer

o X Axis

acc_2_back_X_high = (int)(data[11]);
char_to_int(acc_2_back_X_high);
if(acc_2_back_X_high==254)
 acc_2_back_X_high=0;
acc_2_back_X_low = (int)(data[12]);
char_to_int(acc_2_back_X_low);
acc_2_back_X_gs=(256*acc_2_back_X_high)+acc_2_back_X_low;
acc_2_back_X_gs=((acc_2_back_X_gs * 5)/ 1024); // Se volt twra sel 214
acc_2_back_X_gs=((acc_2_back_X_gs-2.5)/0.312);
acc_2_back_X_gs=forgeting_sum(acc_2_back_X_gs,acc_2_back_X_gs_buf);
shift_values(acc_2_back_X_gs,acc_2_back_X_gs_buf);

Same as ADXL311 X axis.

o Y Axis

acc_2_back_Y_high = (int)(data[13]);
char_to_int(acc_2_back_Y_high);
if(acc_2_back_Y_high==254)
 acc_2_back_Y_high=0;
acc_2_back_Y_low = (int)(data[14]);
char_to_int(acc_2_back_Y_low);
acc_2_back_Y_gs=(256*acc_2_back_Y_high)+acc_2_back_Y_low;
acc_2_back_Y_gs=((acc_2_back_Y_gs * 5)/ 1024); acc_2_back_Y_gs=((acc_2_back_Y_gs-2.5)/0.312);
acc_2_back_Y_gs=forgeting_sum(acc_2_back_Y_gs,acc_2_back_Y_gs_buf);
shift_values(acc_2_back_Y_gs,acc_2_back_Y_gs_buf);

Same as ADXL311 X axis.

 Front left wheel angular velocity

front_left_ticks = (int)(data[15]);
char_to_int(front_left_ticks);
if(front_left_ticks==254)front_left_ticks=0;
front_left_speed=front_left_ticks*taxythta_ana_ticks;

o The evaluation of the wheel angular velocity was presented at the “Wheel angular

velocity” section. Every clock “tick” represents longitudinal speed of 0.4625m/s.

Thereupon the definition “#define taxythta_ana_ticks 0.4625” multiplied by the “ticks”

gives the longitudinal velocity.

 Front right wheel angular velocity

front_right_ticks = (int)(data[16]);
char_to_int(front_right_ticks);
if(front_right_ticks==254)front_right_ticks=0; // An htan 254 einai 0
front_right_speed=front_right_ticks*taxythta_ana_ticks;

 116

Same as front left wheel.

 Back left wheel angular velocity

back_left_ticks = (int)(data[17]);
char_to_int(back_left_ticks);
if(back_left_ticks==254)back_left_ticks=0; // An htan 254 einai 0
back_left_speed=back_left_ticks*taxythta_ana_ticks;

Same as front left wheel.

 Back right wheel angular velocity

back_right_ticks = (int)(data[18]);
char_to_int(back_right_ticks);
if(back_right_ticks==254)back_right_ticks=0; // An htan 254 einai 0
back_right_speed=back_right_ticks*taxythta_ana_ticks;

Same as front left wheel.

 Steering angle

// Pontesiometro gia gwnia timoniou
pont_high = (int)(data[19]);
char_to_int(pont_high);
if(pont_high==254)
 pont_high=0;
pont_low = (int)(data[20]);
char_to_int(pont_low);
pont_volts=(256*pont_high)+pont_low;
pont_volts=((pont_volts * 5)/ 1024); // Se volt twra sel 214
ATmega16;
pont_volts=forgeting_sum_steer(pont_volts,pont_volts_buf);
 shift_values(pont_volts,pont_volts_buf);
 steer=1000*((0.31570260254613*pow(pont_volts,3)) + (-
1.97189807334590*pow(pont_volts,2))+ (3.98997966117411 *pow(pont_volts,1)) -2.60471114838461);
 steer-=1;

o The steering angle is evaluated through a third degree polynomial as mentioned

into the corresponding section. Thus after we compute the voltage across the

potentiometer we can insert that value into the polynomial and estimate the

steering angle.

 Yaw rate

// Gyroskopio
gyro_high = (int)(data[21]);
char_to_int(gyro_high);
if(gyro_high==254)
 gyro_high=0;
gyro_low = (int)(data[22]);
char_to_int(gyro_low);
gyro_volts=(256*gyro_high)+gyro_low;
gyro_volts=((gyro_volts * 5)/ 1024); // Se volt twra sel 214 ATmega16;
gyro_volts=forgeting_sum(gyro_volts,gyro_volts_buf);
shift_values(gyro_volts,gyro_volts_buf);
// To gyroscopio exei 5mv/ana sec eyais8hsia
gyro_degs_ana_sec=floor(((gyro_volts-2.50)/0.005)); // Ta 2.866V einai se 0 moires/sec To
apotelesma einai se moires/sec
gyro_degs_ana_sec++;

 Battery health

// Mpataria
batt_high = (int)(data[23]);
char_to_int(batt_high);
if(batt_high==254)
 batt_high=0;
batt_low = (int)(data[24]);
char_to_int(batt_low);
batt_volts=(256*batt_high)+batt_low;

 117

batt_volts=((batt_volts * 5)/ 1024); // Se volt twra sel 214 ATmega16;
batt_volts=batt_volts*2; //Brisketai se diaireth tashs

The battery health is just the analog voltage at the corresponding pin of the

microcontroller. The only strange thing is that the value is multiplied by two and the

explanation is simple; the voltage passes through a voltage divider (Fig. 4.37).

 Steer servo

// Ta throttle kai steer servo ta stelnw anapoda apo to atmega. 25, kai 26 antistoixa
// steer_servo
steer_servo = (int)(data[25]);
char_to_int(steer_servo);
if(steer_servo==254)
 steer_servo=0;

 Throttle servo

// throttle_servo
throttle_servo = (int)(data[26]);
char_to_int(throttle_servo);
if(throttle_servo==254)
 throttle_servo=0;

For some of the above conversions as we have the earlier mentioned, we can see the pattern

“if(value==254) then value is 0”. For all those data we have placed this “if – else” we know that will

never reach the value of 254d and that whenever we come across it, it has derived from a binary “0”

(EOF for C) that we didn’t want to transmit. For example the pulse of the throttle servo arriving

at the receiver, sampled by the ATmega32 and transmitted to the SBC will never be zero, but will

have a value between 20 and 70.

Auto generated experiments function

In order to have the potential to compare the behaviour of the car in a valid manner, with ESP

system on or off and/or while adjusting some parameters we can program the car to perform the

same experiment multiple times. For example, we might program the car to steer 10 degrees left

when it would reach the velocity of 5m/s and hold than steering for 0.5 seconds. The command is

given by the driver at the Java GUI on the browser, from where it is transmitted to the SBC and

passed as an argument to the serial_com() routine. Something that hasn’t been mentioned so far is

how the time is estimated. It is crucial for us to have an accurate measurement of time, while the

gettimeofday() function returns time with 10msec resolution which is very low. At Table 4-14 we

see a typical instance for time estimation in microseconds we have used ([57]). Through this

simple code at Table 4-14 have accuracy of micro second for time readings.

struct timeval tp;
gettimeofday(&tp,0);
time_end = ((unsigned)tp.tv_sec)*1000000+((unsigned)tp.tv_usec);

 118

Table 4-14 Time measurement in usec.

Fig. 4.53 Auto generated experiments flow chart.

 119

The variables necessary for the program to conduct an experiment are:

 unsigned char auto_speed=0;

o Starts turning when it reaches the auto_speed;

 unsigned char auto_steer=0;

o Turn by auto_steer (in steer servo pulses, see Driver’s Commands section).

 unsigned char auto_chronos=0;

o Hold that steering auto_chronos*500msec.

 unsigned char auto_times=0;

o Repeat experiment for auto_times times.

 long auto_chronos_start=0;

o Trigger time counting and hold that value at auto_chronos_start.

 long hold_for_3secs=0;

o Wait hold_for_3secs seconds between a new experiment.

 bool auto_triggered=false;

o Boolean flag.

 int auto_trig=0;

o Flag.

When those values reach the point where the auto generated experiments are controlled, we

reach at the flow chart for the auto generated experiments, which is illustrated at

Fig. 4.53.

4.3.3 Stabilization routines

The user of the system can select up to eight different ESC stabilization algorithms from the

Java GUI. In our implementation, we have used just three different routines where the one is

based upon the ESC algorithm presented at the third chapter, the second is a single accelerometer

ESC routine and the third is a hybrid method combining some characteristics from the previous

two. Since the ESC algorithm we have evaluated most and was working unexceptionably, we shall

present only this specific stabilization routine.

The routine is called “char * stabilization_1(double front_left_speed …)”, and takes as inputs

most of the measurements transmitted from the ATmega32, like the yaw rate, individual wheel

speed, steering angle, the sensitivity and understeer gradient set by the user at the Java GUI (by

default are 0.9 and 0.004 respectively). The routine returns a pointer to a char array. This array

 120

contains the commands for braking that will be transmitted to the microcontroller through the

serial port. The flow chart of the routine is portrayed at Fig. 4.54.

 121

Fig. 4.54 Flow chart of the stabilization routine “stabilization_1”.

4.3.4 Scripts

In order to reduce the development time, for example compilation and linking of several

programs and libraries, we have developed certain bash scripts that will do routine tasks. An

example of a script that links the program the author developed along with the socketserver

developed by Mr. Hatzidiakos for the Java interface, and executes the compiled program (after it

prompts the user for this operation) is presented at Table 4-15. The only thing the user has to do,

is do the script, named “compile” executable by changing its attributes with UNIX command

“chmod 755 compile”.

#step 1
#set correct local address in defines.h //#define LADDR "192.168.86.2"

#step 2
#to compile run
echo "Compiling: g++ -c async.cpp socketserver.cpp"
g++ -c async.cpp socketserver.cpp
echo "Linking: g++ async.o socketserver.o -lpthread -o socketserver"
g++ async.o socketserver.o -lpthread -o socketserver
echo "Done!"
echo "Do you want me to execute y or n?"
read choice
if [$choice = "y"]
 then
 clear
 echo "Yes sellected, Socketserver running!"
 ./socketserver
 else
 echo "Bye!"
fi

#step 3
#run

Table 4-15 Compilation script.

Scripts like the above have been used widely and are really helpful.

 122

4.4 Firmware at the Microcontroller

The firmware for the microcontroller was developed in C language, with WinAVR ([15]) a suite

of executable, open source software development tools for the Atmel AVR series of RISC

microcontrollers. WinAVR includes the GNU GCC compiler for C and C++. The software in

total is free and available in WWW.

The development of the software, was quite demanding, since the computing resources are

limited, and had to deal with time sensitive applications, like PWM pulses, USART etc, so we

had to be extremely careful with the usage of the whole system.

The motive for the development of the ATmega32 firmware was the same as the SBC software:

source code packed into as many more different routines, spread to many different C files. The

aim was to build an easily readable, easily expandable well documented source code that would be

portable to any microcontroller after a few alterations. The firmware consisted of many different

files. Those files are included from the C file, named “ESC_new.c”, where the “main” loop of the

firmware lies:

 #include <avr/io.h>

 #include <math.h>

 #include <avr/interrupt.h>

 #include <avr/pgmspace.h>

 #include <ctype.h>

 #include <avr/sfr_defs.h>

 #include "files/adc_accelerometers.c"

 #include "files/interrupt_routines.c"

 #include "files/servos.h"

 #include "header.h"

The first six inclusions inside the tags (<>), are built in header files from the compiler, and the

rest inside the quotes (“”), are the developed firmware. There are also some external dependencies

files, which are included automatically inside the project of the AVR studio, when we select the

ATmega32 as the target microcontroller. The most important file from those external

dependencies, is the “iom32.h”, which is the mapping between the IO ports and control variables

for the ATmega32, which in general are registers that have a certain address. It is really useful,

since it has all the necessary definitions for accessing everything at the microcontroller. If we

 123

hadn’t used the mapping between the registers and names, the access to pin 5 from PORTA of

the ATmega32, would have to be accessed like “$1B&=~(1<<5);” contrary to

“PORTA&=~(1<<PA5); // PA5 low”, which is more legible.

4.4.1 Main loop

As mentioned at the previous section, the main loop of the firmware lies inside the file

“ESC_new.c”. The implemented systems, is a Real Time system and its operation is based on the

interrupts. Most of the processing and control is taken place inside the interrupt routines.

The whole idea around Real Time system and interrupts is that the firmware is running on a

continuous loop doing basic operations, which are not time critical tasks. When an interrupt is

signalled, then the program jumps immediately from the normal execution of the program, to the

corresponding interrupt service routine. For example suppose we have an initiation at serial

communication between the SBC and the ATmega32. Instead of polling (continuous asking) the

corresponding bit of a register which indicates that a byte has been received, we have programmed

the microcontroller to signal an USART received complete interrupt (SIGNAL

(SIG_UART_RECV)). The real time interrupt driven method, secures that everything is executed

and served within restraint time margins. We have asynchronous operation, and no execution is

blocked waiting for another one to finish. If an interrupt is signalled when the microcontroller

executes the ISR (interrupt service routine) of another, then this is held into the appropriate

register (stored into a stack). Thus, when it completes the current execution, it jumps to

corresponding routine of the new interrupt. The flow chart of Fig. 4.55 shows the progress of an

interrupt execution instance.

We shall present the operation of the system in flow chart form, with samples of source code

inside. The flow chart of the main loop is illustrated at Fig. 4.56.

 124

Fig. 4.55 Real time Interrupt driven firmware execution.

 125

Fig. 4.56 Flow chart of “main loop” inside firmware.

 126

As illustrated on both Fig. 4.55 and Fig. 4.56, the firmware depends on various routines; normal

and Interrupt Service Routines. Most of the necessary initialization is held inside the routines.

The normal routines inside the firmware are:

Normal Routines:

 void InitPorts(void);

 void USART_Init(unsigned int ubrr);

 void Timers_Init(void);

 void external_interrupts_init(void);

 void adc_init(void);

 void adc_routine(void);

4.4.2 Normal Routines

The operation of each routine will be explained with the corresponding flow chart. The first two

to be explained are the InitPorts and USART_Init (Fig. 4.57).

Fig. 4.57 InitPorts() routine (Initialization of ports) left and USART_Init() (Initialization of Universal

Asynchronous Receiver Transmitter) right.

The InitPorts() routine, initializes the direction of the ports for the microcontroller (Fig. 4.57).

The USART_Init(), initializes the universal asynchronous receiver transmitter of the ATmega32

 127

for the serial communication with the SBC (Fig. 4.57). It sets the BAUD rate, enables receiver

and transmitter interrupts and triggers a transmission.

Fig. 4.58 Timers_Init(), external_Interrupts_init() and adc_init() routines flow charts.

The Timers_Init(), initializes the 8 – bit Timer/Counter0 and Timer/Counter 2 counters of the

microcontroller, using a 0 and 8 prescaling respectively and enables the timer overflow interrupt

(Fig. 4.58). That means that we have an overflow interrupt every 256 clock cycles 16usec for

the Timer/Counter0 and 256*8 clock cycles 128usec for the Timer/Counter1.

 128

The external_interrupts_init(), enables both external interrupts, on PD2 and PD3 pin to be

triggered with any logical change (Fig. 4.58). The adc_init(), commands the microcontroller to use

as voltage reference, the analog voltage connected to the AREF pin of the ATmega32, align the

result right, sets the source of analog voltage to sample (PA0 pin) with the ADMUX register and

enables the ADC interrupt (Fig. 4.58). So whenever a conversion is complete we have an

interrupt. It also arranges the ADC clock prescaler to 64 we have an increase at the ADC clock

every 64 clock cycles, at takes 13 ADC clocks to complete a conversion. Finally it initiates the first

conversion.

We have dedicated a routine for the ADC conversion called adc_routine(). The function of this

routine is to change cyclically the ADC input source from PA0 to PA6.

Fig. 4.59 Routine: adc_routine() flow chart.

 129

The adc_routine(), also performs a check to the status of the bytes sent (TX_read at Fig. 4.58) at

the serial port. So, when the higher nibble from the 10 – bit analog to digital conversion of a

source has been sent, for example the voltage of the battery, then it doesn’t change the value of the

lower nibble and holds the previous value for consistency reasons. This doesn’t happen often but in

the occasion it does, it might ruin completely a measurement. Let’s say that the higher nibble from

an analog to digital conversion is in hexadecimal form 01h and the lower 00h. Suppose that on the

next conversion the higher nibble is 00h and the lower is FFh. That means that the value changed 1

bit. If the old higher nibble was sent before the new update of value and the lower after the

update, the value that would reach at the SBC through the serial would be 01FFh and not the

00FF which is more or less the double value. So a simple if – else pattern is enough to prevent the

situation.

4.4.3 Interrupt Routines:

The SIGNAL(SIG_UART_RECV) is the interrupt routine signalled when a byte of information

has been received at the USART of the microcontroller (Fig. 4.60). The information arriving from

the SBC to the microcontroller is the desired position of each servo working on the system. The

character FFhex is used as terminator for the data packet. That means that a packet of info starts

and ends with this byte. The flow chart is quite revealing concerning the operation of the routine

(Fig. 4.60).

The SIGNAL(SIG_UART_TRANS) is the interrupt routine which is signalled every time a byte

has been transmitted at the serial port (Fig. 4.61). The data packet transmitted is 32 bytes long

and is initiated and terminated with the character FFhex. The routine is responsible for the cycling

rotation of the data to be transmitted, sending the data in the correct order. It also assures that the

data byte transmitted is not the terminating character (FFhex), changing the value in a way that can

be detected by the receiving SBC and can be restored. It also reassures that it doesn’t transmit the

00hex because this is the end of file for the C language. One example is the wheel speed. In case the

speed is 0 dec, it sends the 254dec which is an invalid situation for the vehicle (it would denote the

velocity of 400Km/hour). Thereafter, at reception, the program can restore the original value.

The SIGNAL(TIMER0_OVF_vect) is signalled every time we have overflow at the 8 bit

Timer/Counter0 (Fig. 4.62). The counter increases with a ratio denoted by its corresponding

prescaler (Fig. 4.58). For this counter, we have used 0 prescaling, thus we have overflow every

16usec. The operation of this routine is crucial. It is executed more often than every other routine

in the firmware. It samples the pulse for the ADXL213, samples the commands from the driver

 130

arriving at the receiver, and controls all six servos. It also performs check over the sampled duty

cycle of the driver’s command. If the duty cycle is invalid, it sends commands to the servos, that

would put them into a centered position.

The SIGNAL(TIMER2_OVF_vect) is the interrupt routine for the 8 bit Timer/Counter2

Overflow (Fig. 4.63). The prescaler for the Timer/Counter2 has been set that way, so that the

routine is signalled every 128usec. The main operation for this routine is the determination of

individual wheel speed. It stores the number of the logical transition for each wheel every 0.1sec

into a dedicated variable and zero the counters for the following update. Also, the

SIGNAL(INT0_vect), is External Interrupt Request 0, dedicated for the wheel speeds (Fig. 4.65).

A more detailed description for both routines has been presented at the section “Wheel angular

velocity”.

Fig. 4.60 Interrupt routine flow chart of SIGNAL(SIG_UART_RECV): USART, Rx Complete.

Finally, the interrupt routine SIGNAL(INT1_vect), is the External Interrupt Request 1 which

interfaces the ADXL213 accelerometer with the ATmega32 (Fig. 4.64). A detailed description

has been cited at the section “ADXL213 ±1.2g interface with the microcontroller”.

 131

Fig. 4.61 Interrupt routine flow chart of SIGNAL(SIG_UART_TRANS): USART, Tx Complete.

 132

Fig. 4.62 Interrupt routine flow chart of SIGNAL(TIMER0_OVF_vect): Timer/Counter0 Overflow.

 133

Fig. 4.63 Interrupt routine flow chart of SIGNAL(TIMER2_OVF_vect): Timer/Counter2 Overflow.

Fig. 4.64 Interrupt routine flow chart of SIGNAL(INT1_vect): External Interrupt Request 1 ADXL213

Accelerometer.

 134

Fig. 4.65 Interrupt routine flow chart of SIGNAL(INT0_vect): External Interrupt Request 0 Wheel speeds.

 135

4.5 How to operate the system

The setup and running of the system has been scattered into different sections of this document.

The “Custom developed source code” section has a wide description for the operation. At this

section, we shall concentrate all the necessary steps from the powering up of the system, until the

log file extraction.

1. Connect the power cable and press the power push button to switch on the system.

2. Connect through a wireless connection to the Linksys router using Static IP Addressing.

3. Use an SSH client (PUTTY ([53]) to connect to the SSH server of the SBC. Connect to

IP: 192.168.1.101.

4. Execute the socket server from the folder it is stored at the SBC.

5. With a web browser, connect from the client computer; connect to the address

192.168.1.101.The client computer should have Java Runtime Environment Installed.

6. At web browser of the client computer, the index.html will be loaded by default. This

HTML code initiates three Java applets (Table 4-8). The first is the Java GUI, and the

other two are two Java Applets for the real time video streaming. The outcome is displayed

at Fig. 4.45.

7. The user in order to connect to the socket server running at the SBC, must press the

connect button and everything is ready for experimenting using different ESC schemes,

adjusting parameters and fine tuning the ESC algorithms.

From this point on, at the SBC the socket server is exchanging data with the browser and is

generating a log file with all the operation, from the data gathered to the commands issued, which

can be accessed from the browser through a hyperlink.

 136

5. Real Environment Evaluation

The improvement on the vehicle’s behaviour with the ESC algorithm in function, based on a

single Gyroscope we presented at Fig. 3.4, was downright. We used an appropriate fitted reference

yaw rate function of velocity and steering angle (Fig. 3.4). After some trial runs, and the infallible

method of trial and error, we managed to estimate nice values for the parameters of the algorithm,

for increased performance. If the error between the reference and the actual yaw rate measured

from the gyro exceeded a certain amount then the system would detect oversteer or understeer and

would apply brakes on the most effective wheel to counteract the effect.

In a few words everything worked nice! Both hardware and software worked in a robust manner.

In fact the battery for the SBC the router and some more peripherals, would last twice the battery

of the author’s laptop which became the bottleneck for the experiments. Besides the intense

distress and harassment of the system, everything stayed in place and the VIA SBC deserves

honourable mention.

We can concentrate the performance of the whole system, both testbed and the algorithm in a

few bullets.

 Robust function for hardware, software, sensors and actuators.

 Tactile improvement on the vehicle’s behaviour with the ESC system in function.

 There is potential application of the system into a real vehicle.

 The ESC algorithm was independent to road bank angle, bumps and engine vibration.

 Low cost implemented.

 Easily adjusted to every vehicle and to different driving styles.

Real Environment Experiments

Figures Fig. 5.1 and Fig. 5.2 are characteristic plots or yaw rate, individual wheel speed and

steering angle with the single gyro ESP algorithm from auto generated experiments.

In order to have the opportunity to compare the behaviour of the car in a valid manner, with

ESP system on or off and/or while adjusting some parameters we should program the testbed to

perform the same experiment multiple times. Thereafter, we have programmed the vehicle to steer

20 degrees left when it reached the velocity of 3m/s, for both instances presented at Fig. 5.1 and

Fig. 5.2.

 137

Fig. 5.1 is a plot with the ESP system technically off, where we have set the sensitivity to

intervene very late (S = 0.2, Fig. 3.4). At this instance, the vehicle totally loses control and

experiences more than 200deg/sec yaw rate.

Fig. 5.2 shows relatively the same as the previous auto generated experiment, but with ESP fully

active, were we have set the sensitivity equal to that of the ESC algorithm we have adopted (Fig.

3.4). If we look at the upper subplot of the Fig. 5.2, the green circles projected on the yaw rate

assert that the vehicle detects oversteer. In the lowest subplot the up arrows (↑) on individual

wheel velocity assert the command from the ESP system to brake the specific wheel.

The vehicle on the same tarmac at the same turning velocity and the almost the same

acceleration, experiences half yaw rate without the ESP system. When it first detects oversteer

starts to brake the appropriate front wheel, producing a large amount of understeer which is also

detected from the system (upper subplot inside black oval) and acts by braking the correct rear

wheel, producing oversteer (upper and lower subplot inside red oval) and so on.

Fig. 5.1 Yaw rate, individual wheel speed and steering angle for the auto generated experiment with the ESP

sensitivity set at 0.2 technically Off.

 138

Fig. 5.2 Yaw rate, individual wheel speed and steering angle for the auto generated experiment with the ESP

sensitivity set at 0.9 and the understeer gradient 0.004 (Fig. 3.4).

The improved performance comparing the previous two figures is obvious. The car retains a

much higher velocity with regards the experiment with the ESP off. The greatest improvement

can be observed in a slalom situation. With the ESP off, the vehicle totally looses control, because

of its oversteering behaviour, even in very low velocity, whilst with the ESP in function the vehicle

behaves much more stable. Unfortunately, it is not much useful to program an auto generated

sequence of events for conducting slalom. Due to the extreme oversteering behaviour, the vehicle

without the ESC system (in functional mode), isn’t able to complete more than a single stiff turn

without spinning out. To conduct more than one stiff turn in manual driving, the driver must

always try to counteract the oversteering, by turning the steering wheel to the other side. Thus it is

difficult to “build” a slalom situation and compare both conditions (with the ESC on and off) in a

valid manner. The video accompanies this thesis is revealing for the improved behaviour of the

vehicle with the ESC.

Ideally, for the illustration of the improved kinematics behaviour of the vehicle at exactly the

same experiments as those cited previously, is the collation of the trajectories that the vehicle

 139

follows for both experiments, in a bird-eye-view plot of traces. Of course, estimating the real

trajectory is not an easy task and requires a sequence of pictures taken from a camera that would

capture the kinesis of the vehicle and under vision techniques would reveal the path. Another

possible way to do the same estimation is the usage of a GPS system onboard of the vehicle, but

the error is also very high in that situation. Consequently, in order we have a bird-eye-view plot of

traces, we use the collected data. Through the utilization of those data and simplified equations of

motion we can derive to relatively realistic trajectory of the vehicle.

Bird-Eye-View

Fig. 5.3 Bird’s eye view.

Suppose having the vehicle on a Cartesian fixed plane with coordinates (x, y). The position P of

the vehicle (Fig. 5.3) is a function of the yaw rate (ω) of the vehicle and the velocity V, which are

both functions of time. Suppose the vehicle starts at time = 0 sec at P0 = [0, 0] with an initial

velocity V0 and an initial yaw rate 0ω . The position P of the vehicle at time equals “t" will be:

[] []0 0 0

 (,) [(), ()]

 (,) (0), (0) 0, 0

P V x t y t
and

P V x y

ω

ω

=

= =

 (5.1)

Where:

() ()()
() ()()

() ()()
() ()()

t
t

0
0

t
t

0
0

 () = ()
 () cos

() cos

 () = ()
 () sin

() sin

x

x

y

y

x t V t dt
x t V t t dt

V t V t t

y t V t dt
y t V t t dt

V t V t t

ψ
ψ

ψ
ψ

⎫
⎪ = ⋅⎬

= ⋅ ⎪⎭
⎫
⎪ = ⋅⎬

= ⋅ ⎪⎭

∫ ∫

∫ ∫

 (5.2)

 140

And

()
t

0
 = ()t t dtψ ω∫ (5.3)

If we consider that the slip ratio of each wheel is low, the magnitude of the velocity “V” of the

vehicle at Fig. 5.3, can be estimated through with the following relationship (5.4):

()
() ()() () ()()cos

4
:

:

:
:

fl fr rl rr

fl

fr

rl

rr

V t V t V t V t
V t

V Longitudinal for front left wheel

V Longitudinal for front right wheel

V Longitudinal for rear left wheel
V Longitudinal for rear right wheel

δ+ ⋅ + +
=

 (5.4)

Combining the four previous relationships (5.1 - 5.4) and using the data collected from the

vehicle, we can illustrate an approximation of the trajectory (Fig. 5.5 and Fig. 5.6) of the vehicle in

the plane for the same auto – generated experiments presented above. The red arrow at the Fig.

5.5 and Fig. 5.6 shows the heading angle of the vehicle. The command for a wheel to brake is also

illustrated on the figure, left and right of the trajectory of the vehicle. The time (character

indicating time) is plotted with a time interval of 160 msec. At Fig. 5.7, we can see both figures

Fig. 5.5 and Fig. 5.6 collated into the same plot.

Fig. 5.4 Vehicle’s Velocity considering zero slip angles.

 141

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t=0.2→t=0.3→t=0.5→t=0.6→t=0.8→t=1.0→

t=1.1→

t=1.3→

t=1.4→

t=1.6→

t=1.8→

t=1.9→

t=2.1

→

t=2.2

→

t=2.4

→

t=2.6

→

t=2.7

→

t=2.9→

t=3.0→

t=3.2→ t=3.4→t=3.5→t=3.7→t=3.8→t=4.0→t=4.2→t=4.3→t=4.5→t=4.6→t=4.8→t=5.0→

Y
 (m

)

X (m)

Bird's Eye View

Front Left:♣
Front Right:♥
Back Left:♦
Back Right:♠

♥♥
♥♥

♥♥
♥♥

♥
♥

♥♥
♥

♥
♥♥

♥
♥♥

♥♥
♥
♥♥
♥♥♥
♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

Vehicle's Trajectory
Sensitivity:0.2

Fig. 5.5 Vehicle’s bird-eye-view plot of traces from for the auto generated experiment shown at Fig. 5.1 with

the ESP sensitivity set at 0.2 technically Off.

-8 -7 -6 -5 -4 -3 -2 -1 0 1
0

1

2

3

4

5

6

7

t=0.2→t=0.3→t=0.5→t=0.6→

t=0.8→

t=1.0→

t=1.1→

t=1.3→

t=1.4→

t=1.6

→

t=1.8

→

t=1.9

→

t=2.1

→t=2.2

→t=2.4

→

t=2.6

→

t=2.7

→

t=2.9

→

t=3.0

→

t=3.2

→

t=3.4

→

t=3.5

→

t=3.7

→

t=3.8

→

t=4.0

→

t=4.2

→

t=4.3

→

t=4.5

→

t=4.6

→

t=4.8

→

t=5.0

→

Y
 (m

)

X (m)

Bird's Eye View

Front Left:♣
Front Right:♥
Back Left:♦
Back Right:♠

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♥

♥
♥
♥♥
♥

♥
♥♥
♥♥
♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥
♥♥

♥
♥♥

♥
♥♥

♥♥
♥
♥♥

♥♥
♥♥

♥♥
♥♥♥

♥♥♥♥
♥♥

♥♥♥♥
♥♥♥

♥♥♥♥♥♥♥♥♥♥♥♥♥

♦
♦♦

♦
♦♦

♦
♦

♦
♦

Vehicle's Trajectory
Sensitivity:0.9

Fig. 5.6 Vehicle’s bird-eye-view plot of traces from for the auto generated experiment shown at Fig. 5.2 with

the ESP sensitivity set at 0.9 and the understeer gradient 0.004 (Fig. 3.4).

 142

It is obvious, that the above presented method isn’t impeccable. The flaws are due to the

measurement errors. By integrating the values from the gyroscope, for estimating the direction of

vector of the velocity, we accumulate the measurement errors from the gyroscope. The same is also

true for the integration of the velocity over time, for the determination of the position in the plane.

The most undermining factor of this method is the inner (of the turn) rear wheel which starts

spinning when the vehicle oversteers. Thereafter, by the time the vehicle starts to oversteer, the

real velocity of the rear inner wheel is less than the measured. This fact can be compensated (in

case the ESC is active) by the fact that the longitudinal velocity of the wheel which is commanded

to brake is higher than the measured, because of the moment of the vehicle and the high slip the

wheel is experiencing.

The aforementioned problem for estimating a realistic trajectory is more intense in the case the

ESC is off and the vehicle’s behaviour is more unpredictable. The more intense the oversteer the

higher the spinning, which is translated as a corroded measurement of velocity, thus as

displacement at the real final position of the vehicle. Artlessly, if an experiment lasts little time,

the errors accumulated are small, thus shorter experiments are desired.

-7 -6 -5 -4 -3 -2 -1 0 1
0

1

2

3

4

5

6

7

t=0.2→t=0.3→t=0.5→t=0.6→t=0.8→t=1.0→t=1.1→t=1.3→

t=1.4→

t=1.6→

t=1.8→

t=1.9→

t=2.1

→t=2.2

→t=2.4

→

t=2.6

→

t=2.7

→

t=2.9→

t=3.0→

t=3.2→t=3.4→t=3.5→t=3.7→t=3.8→t=4.0→t=4.2→t=4.3→t=4.5→t=4.6→t=4.8→t=5.0→

X (m)

Front Left:♣Front Right:♥Back Left:♦Back Right:♠

♥♥

t=0.2→t=0.3→t=0.5→t=0.6→t=0.8→

t=1.0→

t=1.1→

t=1.3→

t=1.4→

t=1.6

→

t=1.8

→

t=1.9

→t=2.1

→t=2.2
→

t=2.4
→

t=2.6
→

t=2.7
→

t=2.9
→

t=3.0
→

t=3.2
→

t=3.4
→

t=3.5
→

t=3.7
→

t=3.8
→

t=4.0
→

t=4.2
→

t=4.3
→

t=4.5
→

t=4.6
→

t=4.8
→

t=5.0
→

Front Left:♣Front Right:♥Back Left:♦Back Right:♠

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣

♥
♥♥
♥♥♥
♥
♥♥
♥♥
♥♥
♥♥
♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

♥♥♥
♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥♥

♥♥♥♥
♥♥♥♥♥

♥♥♥♥♥♥
♥♥♥♥♥♥♥♥♥♥

♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥
♥♥♥♥♥♥♥♥♥♥♥♥♥

♦♦
♦♦
♦♦

♦♦
♦♦

Vehicle's Trajectory
Sensitivity:0.2
Vehicle's Trajectory
Sensitivity:0.9

Fig. 5.7 Vehicle’s bird-eye-view plot of traces from for the auto-generated experiment shown at shown at Fig.

5.2, for both inactive and active ESC tests with the ESC sensitivity correspondingly set to 0.2 (technically Off)

for (magenta line trajectory) and ESC sensitivity set to 0.9 (blue line trajectory, ESC active).

 143

6. Conclusions and Future Work

6.1 Conclusions

A scaled test bed was presented along with the evaluation of an electronic stability control

scheme. The scaled testbed was built upon open source software and proved to be economic and

robust in operation. It is highly recommended for the future researcher who plans to develop a

similar testbed, to use a better base for the testbed (a better model car of higher quality) and a

smaller form factor SBC. Enough time was spent in the upgrading of the model for becoming

more credible and capable of hosting individual wheel brakes. A model with all the mechanical

parts preinstalled from the factory, is recommended since the cost of buying a better model is

lesser than the cost of upgrading a poor quality model. Also a smaller form factor SBC, like a PC-

104 can have similar computing power as the one we used, but would dissipate less power, which

means lighter batteries for the computer. A ready to use embedded system with preinstalled Linux

that work out of the box, would be a nice solution too.

Lithium batteries are also proposed because their cost has dropped dramatically since the

beginning of the construction of the scaled testbed (December 2006), are lighter and have similar

characteristics in providing current. A modern lithium battery used for radio controlled models can

provide up to 100 amperes (or more) of current at 14.8 Volts.

An important issue of the implementation was the single cylinder two stroke engine. It proved

to be a real burden. In the market, there are 1:5 scaled radio controlled model cars that operate on

battery and are as fast as those running on fuels. In case we redesigned the system, we would buy

one of those. They are slightly more expensive, since they usually host brushless motors and

brushless motor controllers, and high capacity lithium batteries which are all expensive equipment

compared to an internal combustion engine and petrol respectively. However, the vibration from

the engine would obliterate, we wouldn’t have to mix petrol and oil for running the engine and it

would not need any effort either for running the engine or for maintenance.

In terms of ESC; the applicability of the proposed ESC system was clear and useful results came

up from the trial runs. First of all the use of gyroscope is one – way solution for an ESC system on

a scaled test bed. All three accelerometers embedded in the scaled car, reported similar to

ADXL213 sensitivity at measurements. There are several factors that can undermine the

credibility of the samples. Vibration from the engine, shock from bumps on the road, inclination

of the ground etc. The effects from the precedent would be reduced in a full scale vehicle,

compared to a scaled car, but they wouldn’t obliterate. The collected experimental data provide

also the opportunity for a better understanding of understeering and oversteering effects.

 144

Thereupon, we might be able to derive to more robust ESC schemes and heuristic algorithms.

Through examination of velocity, steering angle and yaw rate we were able to determine the

maximum yaw rate a vehicle can experience before loses handling. Thus, it was possible to

construct off – line an appropriate reference function for yaw rate and discern when the vehicle

experiences an undesired effect.

If we prove an explicit connection between the test bed and a real vehicle, the results and

algorithms that would derive from the scaled car would be applicable on a real vehicle too.

Therefore, the use of scaled test beds in automotive engineering could accelerate prototyping

process and diminish the cost of development.

Using the testbed, we had the opportunity to run tests for different stabilization algorithms

([58]) that hadn’t been proposed earlier, irrespective with the fact that those algorithms were not

prosperous. After all, this is the reason that a scaled testbed is built for: testing in the real

environment, easily and with low cost, new dynamic stabilization schemes and generally running

experiments that can help us understand the application of theory.

One key outcome from this thesis was that the ESP should be adopted by every vehicle since it

can improve dramatically even the behaviour of a scaled car where:

 the measurements errors are reversely proportional to the scale

 the reaction time is proportional to the scale

 and the mechanical actuators used are much more primitive than the conventional

hydraulic brake system.

The system is a pure fun to experiment and implement. Scaled test beds could prove useful to

automotive manufacturers and researchers.

 145

6.2 Future work and potentials extensions

What would be the best sequel for the project?

 Develop, test and evaluate more sophisticated algorithms.

 Control the vehicle without the use of gyroscope, through a trained artificial neural

network.

 Prove the behavioural and dynamical connection between the scaled model and a real

vehicle, thus proving the utility of the model

 Add faster and more powerful actuators (higher torque) on the model.

 Manifest the connection between experiments in the test bed and a real vehicle.

 Use car dynamics based on double track model and Investigate vehicle’s behaviour under

high speed driving techniques [10], [11].

 Implementation of similar sensory provision on a real vehicle is desired.

 Use case specific computing hardware components, such as FPGAs, that can run high

complexity and time consuming algorithms in real time.

 146

7. Acknowledgements

The author is grateful to his advisors, Dr. Yannis Papaefstathiou, Dr. Michail Lagoudakis and

Dr. Apostolos Dollas, from TUC for their excellent cooperation and supervision and most of all

for their and support to obtain this Master degree. He would also like to thank Dr. Dionysios

Pneymatikatos from TUC for his invaluable help to solve bothersome aspects during the

development of this thesis and his brother Antonis Katzourakis from the Foundation of Research

and Technology Hellas for the great 3D drawings he made for the completion of this thesis. The

author is also thankful towards Professor Petros Ioannou from the University of Southern

California who gave him academic access to one of the best institutes of the World, Professor

Kostas Kalaitzakis from TUC for the donation of the accelerometers, graduate student Mr. Spiros

Ninos at TUC for his tutorial help with Linux systems and administration and the undergraduate

student Mr. Bill Hatzidiakos from TUC for his cooperation. The project was sponsored mainly by

technical University of Crete and has received donations from Silicon Sensing Systems through

Mr. Mike Barnes to whom the author is obliged.

 147

8. References

[1] European New Car Assessment Programme (EuroNCAP) and European Commission,

“Choose ESC,” 2007.

[2] National Highway Traffic System Administrator, “Electronic Stability Control System,”

FMVSS no.126, March 2007.

[3] Paul Yih, “Radio Control Car Model as Vehicle Dynamics Test Bed,” Dynamic Design

Lab, Stanford University, September 2000.

[4] J. Ackermann, “Robust Car Steering by Yaw Rate Control,” Conference Proceedings of

the, 29th Conference on Decision and Control, Honolulu, Hawaii, vol. 4, pp. 2033–2034, Dec.

1993.

[5] J. Ackermann, T. Bünte, D.Odenthal, “Advantage of Active Steering for Vehicle

Dynamics Control,” German Aerospace Research Establishment, Institute for Robotics and

System Dynamics, Oberpfaffenhofen, 1999.

[6] J. Ackermann, T. Bünte “Automatic Car Steering Control Bridges Over the Driver

Reaction Time,” German Aerospace Research Establishment, Institute for Robotics and System

Dynamics, Oberpfaffenhofen, 24 May 1995.

[7] J. Tjønnas, T. A. Johansen, “Adaptive Optimizing Dynamic Control Allocation Algorithm

for Yaw Stabilization of an Automotive Vehicle using Brakes,” Med’s ’06. 14th Mediterranean

Conference on Control and Automation, pp. 1 – 6, June 2006.

[8] H.E.Tseng, B. Ashrafi, D. Madau, T. Allen Brown, D. Recker, “The development of

Vehicle Stability at Ford,” IEEE/ASME Transactions on Mechatronics, Vol. 4, pp. 223 – 234,

Issue 3, Sept 1999.

[9] B.A. Guvenc, T. Acarman, L.Guvenc, “Coordination of Steering and Individual Wheel

Braking Actuated Vehicle Yaw Stability Control,” Intelligent Vehicles Symposium, IEEE

Proceedings, pp. 288 – 293, June 2003.

[10] Velenis, E., Tsiotras, P., and Lu, J., “Aggressive Maneuvers on Loose Surfaces: Data

Analysis and Input Parameterization,” 15th IEEE Mediterranean Control Conference, CD

Proceedings, June 26-29, Athens, Greece.

[11] Velenis, E., Tsiotras, P., and Lu, J., "Modelling Aggressive Maneuvers on Loose Surfaces:

The Cases of Trail-Braking and Pendulum-Turn,'' European Control Conference, CD

Proceedings, Kos, Greece, July 2-5, 2007.

[12] T. Van Zanten et al, VDC, the Vehicle Dynamics Control System of Bosch, SAE 950759,

1995.

 148

[13] S. Brennan, A. Alleyne, “Using a Scale Testbed: Controller Design and Evaluation,” IEEE

Control Systems Magazine, pp. 15-26, June 2001.

[14] T.D. Gillespie, Fundamental of Vehicle Dynamics, SAE, 1992.

[15] WinAVR, Available: http://winavr.sourceforge.net/

[16] G. A. Rovithakis, M. A. Christodoulou, Adaptive Control With Recurrent High-order

Neural Networks: Theory and Industrial Applications, Springer 2000.

[17] Analog Devices, ADXL311 accelerometer data sheet, “Low Cost, UltraCompact ±2g Dual

Axis Accelerometer,” Analog Inc. 2003.

[18] Walt Boyes, Instrumentation Reference Book, Online Book, Available: www.google.com , p.

132.

[19] Analog Devices, ADXL213 accelerometer data sheet, “Low Cost, ±1.2g Dual Axis

Accelerometer,” Analog Inc. 2004.

[20] ATMEL Corporation, ATmega32 data sheet, “8-bit AVR Microcontroller with 32K

Bytes In-System Programmable Flash”, Atmel Corporation, 2006.

[21] T. Ina, K. Takeda, Nippon Soken, Inc. A. Sawada, S. Fukaya, Denso Corp, “Micro –

Rotational Angle Sensor with Integrated Hall IC,” Advanced Microsystems for Automotive

Applications 2008, pp. 229-237, Springer 2008.

[22] T. Ina, K. Takeda, T. Nakamura, O. Shimomura, T. Ban and T. Kawashima, “360-degree

Rotation Angle Sensor Consisting of MRE Sensors with a Membrane Coil,” Advanced

Microsystems for Automotive Applications 2005, pp. 447-457, Springer, 2005.

[23] G. Rieger, K. Ludwig, J. Hauch and W. Clemens, Siemens AG, Corporate Technology,

“GMR sensors for contact less position detection,” Sensors and Actuators A: Physical, Volume 91,

Issues 1-2, pp. 7-11, 5 June 2001.

[24] Honeywell Inc., SS400 series data sheet, “Digital Position Solid State Sensors SS400

series”.

[25] Honeywell Inc., Hall Effect Sensing and Applications, Electronic Book, Available:

http://content.honeywell.com/sensing/prodinfo/solidstate/technical/hallbook.pdf

[26] Analog Devices, ADXRS300 data sheet, “±300°/s Single Chip Yaw Rate Gyro with Signal

Conditioning,” Analog Inc., 2004.

[27] SparkFun Electronics, “ADXRS300: Gyro Breakout Board v1.1”, July 2005, Available:

http://www.sparkfun.com/datasheets/Sensors/ADXRS-Breakout.pdf

[28] V. Apostolyuk “Theory and design of micromechanical vibratory gyroscopes,”

MEMS/NEMS Handbook, Springer, 2006, Vol.1, pp.173-195.

[29] SparkFun Electronics, Available: http://www.sparkfun.com/commerce/categories.php

http://winavr.sourceforge.net/
http://www.google.com/
http://www.sciencedirect.com/science/journal/09244247
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235282%232001%23999089998%23250479%23FLA%23&_cdi=5282&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=ee6d15a3f2ae973164b39cb37e6b4847
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235282%232001%23999089998%23250479%23FLA%23&_cdi=5282&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=ee6d15a3f2ae973164b39cb37e6b4847
http://content.honeywell.com/sensing/prodinfo/solidstate/technical/hallbook.pdf
http://www.sparkfun.com/datasheets/Sensors/ADXRS-Breakout.pdf
http://www.sparkfun.com/commerce/categories.php

 149

[30] Paul Sandin , Robot Mechanisms and Mechanical Devices Illustrated, McGraw-Hill/TAB

Electronics; 1 edition, June 2003, pp. 20-23.

[31] Kevin O'Dea: Delphi Corporation, “Anti-Lock Braking Performance and Hydraulic Brake

Pressure Estimation”, SAE Technical Paper Series, 2005-01-1061.

[32] Th. Zamachoglou, G. Kapetanakis, P. Karampolas, G. Patsiavos, Automotive Technology,

Beyond 2000, IDEA 2000.

[33] Fairchild Semiconductor Inc., Data Sheet for: LM7805, LM7806, LM7808, LM7809,

LM7810, LM7812, LM7815, LM7818, LM7824, LM7805A, LM7806A, LM7808A,

LM7809A, LM7810A, LM7812A, LM7815A, LM7818A, LM7824A, “3 – Terminal 1A

Positive Voltage Regulator”, Data Sheet, Revised December 2005.

[34] National Semiconductor Inc, LM117/LM317A/LM317 data sheet, “3-Terminal

Adjustable Regulator”, April 2007.

[35] ATMEL, “AVR STK500 User Guide,” Atmel Corporation, 03/2003, Available:

http://www.atmel.com/dyn/Products/tools_card.asp?tool_id=2735,

http://www.atmel.com/dyn/resources/prod_documents/doc1925.pdf

[36] ATMEL, “AVR Studio: Integrated Development Environment,” Atmel Corporation,

10/2007, Available: http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725,

http://www.atmel.com/dyn/resources/prod_documents/doc2510.pdf

[37] Harvey Weinberg: Analog Devices, “Using Absolute Output iMEMS® Gyroscopes with

Ratiometric ADCs”, Application Note.

[38] Craig Peacock, “Interfacing the Serial / RS232 Port V5.0,” Craig Peacock. 1998,

Available: http://www.beyondlogic.org/serial/serial.pdf

[39] Texas Instruments, MAX232 data sheet, “MAX232, MAX232L: Dual EIA – 232

Drivers/Receivers,” Revised March 2004.

[40] ATMEL, “AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for

AVR”, ATMEL Corporation 2003.

[41] ATMEL, “AVR JTAGICE mkII: Debug AVR Applications using system JTAG or

Debugwire interface“, ATMEL Corporation 2004. Available:

 http://www.atmel.com/dyn/resources/prod_documents/doc2489.pdf

[42] OJ Svendlsi, “Designing for Efficient Production with In-System Re-programmable Flash

μCs”, ATMEL, Available:

http://www.atmel.com/dyn/resources/prod_documents/issue4_pg16_17_DesignC.pdf

[43] Ubuntu Linux, Available: http://www.ubuntu.com/

[44] Ubuntu Linux, What is Ubuntu, Available:

 http://www.ubuntu.com/products/whatisubuntu

http://www.atmel.com/dyn/Products/tools_card.asp?tool_id=2735
http://www.atmel.com/dyn/resources/prod_documents/doc1925.pdf
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725
http://www.atmel.com/dyn/resources/prod_documents/doc2510.pdf
http://www.beyondlogic.org/serial/serial.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2489.pdf
http://www.atmel.com/dyn/resources/prod_documents/issue4_pg16_17_DesignC.pdf
http://www.ubuntu.com/
http://www.ubuntu.com/products/whatisubuntu

 150

[45] Ubuntu Linux, Licensing, Available:

http://www.ubuntu.com/community/ubuntustory/licensing

[46] Ubuntu Linux, Ubuntu Philosophy, Available:

 http://www.ubuntu.com/community/ubuntustory/philosophy

[47] Free Software Foundation, Available: http://www.fsf.org/

[48] GNU Operating System, The free software definition, Available:

 http://www.gnu.org/philosophy/free-sw.html

[49] Open Source Initiative, Open Source definition, Available:

http://www.opensource.org/docs/definition.php

[50] Simon Gray, How to Install Anything on Ubuntu, Available:

http://monkeyblog.org/ubuntu/installing/

[51] Ubuntu forums, How to disable IPV6 to speed – up internet, Available:

http://ubuntuforums.org/showthread.php?t=87798

[52] Ubuntu, Package: webcam-server (0.50-2), Available:

http://packages.ubuntu.com/feisty/net/webcam-server

[53] Putty, Free SSH Client, Available:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

[54] David S.Lawyer, Serial HOWTO, The Linux Documentation Project, January 2007,

Available: http://tldp.org/HOWTO/Serial-HOWTO.html

[55] Michael R Sweet, Serial Programming Guide for POSIX Operating Systems 5th Edition,

6th Revision Copyright 1994 – 2005 by Michael R. Sweet, Available:

http://www.easysw.com/~mike/serial/serial.html

[56] Available: http://www.opengroup.org/

[57] Ralf Habacker, Mailing list of Cygwin Project, “gettimeofday() does not returns usec

resolution”, Available: http://cygwin.com/ml/cygwin/2002-01/msg01408.html

[58] Diomidis I. Katzourakis, Antonis I.Katzourakis, “Scaled Testbed for Automotive

Experiments,” AMAA 2008, Berlin 2008, pp. 239-257.

[59] Jong Hyeon Park and Woo Sung Ahn, “H∞ Yaw-Moment Control with Brakes for

Improving Driving Performance and Stability,” Proceedings of the 1999 IEE/ASME International

Conference on Advanced Intelligent Mechatronics September 19-23, pp. 747-752, Atlanta, USA,

1999.

[60] Sohel Anwar, “Yaw Stability Control of an Automotive Vehicle via Generalized Predictive

Algorithm,” Proceedings of the American Control Conference 2005, pp. 435-440, Portland, OR,

USA, June 8-10, 2005.

http://www.ubuntu.com/community/ubuntustory/licensing
http://www.ubuntu.com/community/ubuntustory/philosophy
http://www.fsf.org/
http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org/docs/definition.php
http://monkeyblog.org/ubuntu/installing/
http://ubuntuforums.org/showthread.php?t=87798
http://packages.ubuntu.com/feisty/net/webcam-server
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://tldp.org/HOWTO/Serial-HOWTO.html
http://www.easysw.com/~mike/serial/serial.html
http://www.opengroup.org/
http://cygwin.com/ml/cygwin/2002-01/msg01408.html

 151

[61] P. Tøndel, T. A. Johansen, “Control Allocation for Yaw Stabilization in Automotive

Vehicles using Multiparametric Nonlinear Programming,” Hamilton Institute, Ireland.

[62] Rajesh Rajamani, Vehicle Dynamics and Control, Springer 2006.

[63] Petros A. Ioannou, Barış Fidan, Adaptive Control Tutorial, SIAM 2005.

[64] H. Dugoff, P. S. Francher, and L. Segel, “An analysis of tire traction properties and their

influence on the vehicle dynamic performance,” SAE 700377, 1970.

[65] E. K. Liebemann, K. Meder, J. Schuh, G. Nenninger, Robert Bosch GmbH, “Safety and

Performance Enhancement:The Bosch Electronic Stability Control (ESP)”, SAE, Paper

Number 05-0471, 2004.

[66] WikiPedia, The free Encyclopaedia, “The air – bag”, Available:

http://en.wikipedia.org/wiki/Airbag

[67] WikiPedia , Electronic Stability Control, Available:

http://en.wikipedia.org/wiki/Electronic_Stability_Control

[68] Robert Bosch GmbH, Germany, Available: www.bosch.com

[69] TRW, USA, Available: http://www.trw.com

[70] Continental Automotive Systems, USA, Available:

http://www.conti-online.com/generator/www/start/com/en/index_en.html

[71] Delphi, USA, Available: http://delphi.com/

[72] Aisin Advics, Japan, Available: http://www.aisin.com/

[73] Nissin Kogyo, Japan, Available: http://www.nissinkogyo.co.jp/

[74] Hitachi, Japan, Available: http://www.hitachi.com/

[75] Mando Corporation, Korea, Available: http://www.mando.com/

[76] Bendix Corporation, USA, Available: http://www.bendix.com

[77] WABCO, USA, Available: http://www.wabco-auto.com

[78] BOSCH Live, “Bosch celebrates major milestones,” The magazine, September 2007

Available: http://www.bosch.us/content/language1/html/715_5859.htm

[79] Jong Hyeon Park and Chan Young Kim, “Wheel Slip Control in Traction Control System

for Vehicle Stability,” Vehicle System Dynamics, pp. 263–278, 1999.

[80] P.Koleszαr, B. Trencsιni and L. Palkovics, “Development of an Electronic Stability

Program Completed with Steering Intervention for Heavy Duty Vehicles,” Proceedings of the

IEEE International Symposium on Industrial Electronics, ISIE 2005.

Vol. 1, pp. 379 – 384, June 20-23, 2005.

[81] Leo Laine and Johan Andreasson, “Control Allocation based Electronic Stability Control

System for a Conventional Road Vehicle,” Proceedings of the 2007 IEEE Intelligent

Transportation Systems Conference Seattle, pp. 514-521, WA, USA, Sept. 30 - Oct. 3, 2007.

http://en.wikipedia.org/wiki/Airbag
http://en.wikipedia.org/wiki/Electronic_Stability_Control
http://www.bosch.com/
http://www.trw.com/
http://www.conti-online.com/generator/www/start/com/en/index_en.html
http://delphi.com/
http://www.aisin.com/
http://www.nissinkogyo.co.jp/
http://www.hitachi.com/
http://www.mando.com/
http://www.bendix.com/
http://www.wabco-auto.com/
http://www.bosch.us/content/language1/html/715_5859.htm

 152

[82] Kazuya Kitajima, Huei Peng, “Control For Integrated Side Slip, Roll and Yaw Controls

for Ground Vehicles,” Proceedings of AVEC 2000, 5th Symposium on Advanced Vehicle Control,

August 22 – 24, 2000, Ann Arbor, Michigan.

[83] Dan Simon, “From here to Infinity,” Embedded Systems Programming, October 2001,

Available: http://academic.csuohio.edu/simond/courses/eec641/hinfinity.pdf

[84] Jihua Huang, Jasim Ahmed, Aleksandar Kojic, Jean-Pierre Hathout, “Control Oriented

Modeling for Enhanced Yaw Stability and Vehicle Steerability,” Proceeding of the 2004 American

Control Conference Boston, Vol. 4, pp. 3405 – 3410, Massachusetts June 30 -July 2, 2004.

[85] Randy Whitehead, Ben Clark, Matt Breland, Kenny Lambert, David M. Bevly, George

Flowers, “Scaled Vehicle Electronic Stability Control,” ESV International Collegiate Student

Safety Technology Design Competition , North American Regional Review , March 25, 2005.

[86] Sean Brennan and Andrew Alleyne, “The Illinois Roadway Simulator: A Mechatronic

Testbed for Vehicle Dynamics and Control,” IEEE/ASME Transaction On Mechatronics, Vol. 5,

pp. 349-359, No. 4, December 2000.

[87] William E. Travis, Randy J. Whitehead, David M. Bevly, and George T. Flowers, “Using

Scaled Vehicles to Investigate the Influence of Various Properties on Rollover Propensity,”

Proceedings of the 2004 American Control Conference, pp. 3381 – 3386, Boston, Massachusetts,

June 30 -July 2004.

[88] Sean N. Brennan, MSC Thesis, Modelling and control issues associated with scaled vehicles,

Submitted in partial fulfilment of the requirements for the degree of Master of Science in

Mechanical Engineering in the Graduate College of the University of Illinois at Urbana –

Champaign, 1999.

[89] DePoorter Mark. MSC Thesis, Development, Experimentation and Control of Small Scale

Vehicle Dynamics and Control Laboratory. M.S. Mechanical and Industrial Engineering,

University of Illinois at Urbana – Champaign, Urbana, 1997a.

[90] DePoorter, M., S. Brennan and A. Alleyne, “Driver Assisted Control Strategies: Theory

and Experiment,” Paper read at 1998 ASME International Mechanical Engineering Congress and

Exposition, pp. 721-725, at Anaheim , CA, Nov. 1998.

[91] Sean Brennan Andrew Alleyne, “Driver Assisted Yaw Rate Control,” Proceedings of the

1999 American Control Conference, Vol. 3, 2-4 June 1999, pp. 1697 – 1701.

[92] Brennan, S., DePoorter, M., & Alleyne, A. “The Illinois Roadway Simulator - A

Hardware-in-the-Loop Testbed for Vehicle Dynamics and Control,” Proceedings of the 1998

American Control Conference, Philadelphia, PA, pp. 493-497, June 1998.

[93] R. Holve*, P. Protzel, “Reverse Parking of a Model Car with Fuzzy Control”, Proceedings

of the 4th European Congress on Intelligent Techniques and Soft Computing - EUFIT ‘96, pp. 2171-

http://academic.csuohio.edu/simond/courses/eec641/hinfinity.pdf

 153

2175, Aachen, Germany, Sept. 1996.

[94] Manuel C.G. Silva, Mário L.O.S. Mateus & João M.S. Cruz, “Teaching kinematics and

mathematics with a radio-controlled scale car”, World Transactions on Engineering and Technology

Education 2003, Vol.2, pp. 87-90, UICEE No.1, 2003.

[95] Mark A. Morton, Traction Control Study for a Scaled Automated Robotic Car, Thesis

submitted to the Faculty of the Virginia Polytechnic Institute and State University In partial

fulfillment of the requirements for the degree of Master of Science in Electrical Engineering,

2004.

[96] Richard D. Henry, Automatic Ultrasonic Headway Control for a Scaled Robotic Car, Thesis

submitted to the Faculty of the Virginia Polytechnic Institute and State University In partial

fulfilment of the requirements for the degree of Master of Science in Computer Engineering,

Virginia Polytechnic Institute & State University, 2001.

[97] Seung kook Jun, Daniel O. Gott, “The Smart Car Project: Development and

implementation of a modular scaled testbed,” Proceedings of DETC’ 03 ASME2003 Design

Engineering Technical Conferences and Computer and Information in Engineering Conference,

Chicago, Illinois, September 2 – 6, 2003.

Author: Diomidis I. Katzourakis (I.= Ioannis)

Address: Vernadaki 16B, Chania, Crete, Greecee

E-mail: diomidis@systems.tuc.gr , diomkatz@gmail.com

Keywords: scaled test bed, model car, electronic stability control, sensors, gyroscope,

ADXRS300, accelerometer, ADXL213, ADXL311, experiment, vibration, radio control, single

board computer, microcontroller, AVR, ATmega32, remote access, hall effect sensor, SS443,

single track model, bicycle, oversteer, understeer, yaw rate

mailto:diomidis@systems.tuc.gr
mailto:diomkatz@gmail.com

 154

This page was intentionally left blank.

This page was intentionally left blank.

 155

9. Appendix

9.1 Host code

9.1.1 daemon

async.cpp

//OLES OI ALLAGES POU EXW KANEI EINAI ANAMESA SE SXOLIA TOU TYPOU
//ALLAGH APO BILL
//TELOS ALLAGHS

#include "files/headers.h"
#include <iostream>
using namespace std;

//ALLAGH APO BILL
// kanw include ena header mou gia to struct twn parametrwn (gia leptomereies des sto sygekrimeno header)
#include "context.h"
//TELOS ALLAGHS

#define logfile "log.txt"
#define logmath "logmath.txt"

void signal_handler_IO (int status); /* definition of signal handler */
int wait_flag=FALSE; /* TRUE while no signal received */
char * return_date(void);

int * return_time(void); //17_2_08 Dio

#include "files/time_etc.cpp"
#include "files/init_serial.c" //serial port intialization, signal
handler
 //to include ginetai meta
 //thn dhlwsh twn global metablhtwn

#define Acceleration_12(T1,T2) -(double)(((double)((double)T1/(double)T2)-0.5)/0.3)
#define Vref 5;
//#define char_to_int(input) if(input<0) input=255-abs(input) else if(input==0) input=255 else if(input==NULL)
input=0 // Metatrepei to 8 bit char se integer

#define char_to_int(input) if(input<0) input=256-abs(input)
//#define forgeting_sum(last,previous)
(double)(last*0.4+previous[0]*0.25+previous[1]*0.15+previous[2]*0.1+previous[3]*0.1)

//#define forgeting_sum(last,previous) (double)(last*0.8+previous[0]*0.1+previous[1]*0.05+previous[2]*0.05)
18_2_08
#define forgeting_sum(last,previous) (double)(last*0.4+previous[0]*0.3+previous[1]*0.15+previous[2]*0.15)

#define forgeting_sum_steer(last,previous) (double)(last*0.3+previous[0]*0.25+previous[1]*0.25+previous[2]*0.2)

#define taxythta_ana_ticks 0.4625 // H taxythta tou ka8e troxou einai u=ticks*0.4625(m/s)
#define adxr300_sens 5 // 5mv/moira/sec

 156

/// New defintions--
#define wheelbase 0.54 // Wheelbase =0.54
#define mass 11 // 11 kg maza
#include "files/servos.h"
#define pi 3.14159265358979
#define sensitivity_def 0.5

void shift_values(double last,double previous[]) {
 previous[3]=previous[2];
 previous[2]=previous[1];
 previous[1]=previous[0];
 previous[0]=last;
}

// Nees routines 8-10-200

char * stabilization_1(double front_left_speed,double front_right_speed,double back_left_speed,double
back_right_speed,double gyro_degs_ana_sec,int throttle_servo,int steer_servo,double steer,int*
stab_int_parameters,double* stab_double_parameters,long time_passed);

char * stabilization_2(double front_left_speed,double front_right_speed,double back_left_speed,double
back_right_speed,double gyro_degs_ana_sec,int throttle_servo,int steer_servo,double steer,int*
stab_int_parameters,double* stab_double_parameters,long time_passed);

char * stabilization_3(double acc_12_X_gs,double acc_12_Y_gs,double acc_2_front_X_gs,double
acc_2_front_Y_gs,double acc_2_back_X_gs,
 double acc_2_back_Y_gs,double front_left_speed,double
front_right_speed,double back_left_speed,double back_right_speed,
 double pont_volts,double gyro_degs_ana_sec,double batt_volts,int
throttle_servo,int steer_servo,double steer,int* stab_int_parameters,double* stab_double_parameters);

//Dio 10_2_08
#include "stab/stabilization_routine1.c"
#include "stab/stabilization_routine2.c"
#include "stab/stabilization_routine3.c"
//

//ALLAGH APO BILL
// gia na tre3ei san thread apo to diko mou programma , bgazw thn main

//---> main()

//kai bazw
void* serial_comm(void *comm_data)
{
// kanw cast to comm_data sto struct pou prepei na einai
struct context_struct* bill_data = (struct context_struct*) comm_data;

// twra mporei na ektelestei apo to diko mou programma kai na antalla3ei dedomena mesw tou bill_data
// h domh tou bill_data dld to context_struct orizetai sto context.h kai exei ena float array gia na pairnw
//ta dedomena sou kai ena unsigned char array sto opoio sou stelnw dedomena

// px bill_data->command_buffer[0] einai to stabilization method pou exei stalei

 int bill_wheel=0; //metablhth gia to frenarisma se ka8e troxo ,gia ka8e
troxo pros8etoume thn antistoixh timh fl +8 fr +4 bl +2 br +1
 int bill_brake=0; //metablhth gia to state tou brake decision: 0 neutral 1
over 2 under
 unsigned char bill_local_command=0; // Metablhth gia to an 8a kanei h oxi stabilization, Diomidis, Sto
0 den grafei sta txt arxeia

 157

 unsigned char bill_local_command_last_time=1;
//TELOS ALLAGHS

 int fd,c, res,n;
 struct termios oldtio,newtio;
 struct sigaction saio; /* definition of signal action */
 char buf[100];
 int hr8e;
 int posa;
 int bytes=0,w_bytes=0;
 long deigmata=0;
 // Acceleration 1.2 g
 //int acc_12_X=0,acc_12_Y=0;
 int acc_12_X_high=0,acc_12_X_low=0;
 int acc_12_Y_high=0,acc_12_Y_low=0;
 double acc_12_X_gs=0,acc_12_Y_gs=0;
 double acc_12_X_gs_buf[4],acc_12_Y_gs_buf[4];

 // 2g front Accelerometer
 int acc_2_front_X_low=0,acc_2_front_X_high=0; // X axis, High kai low nibble
 double acc_2_front_X_gs=0; // H
metrhsh se gs
 double acc_2_front_X_gs_buf[4];
 int acc_2_front_Y_low=0,acc_2_front_Y_high=0; // Y axis, High kai low nibble
 double acc_2_front_Y_gs=0;
 double acc_2_front_Y_gs_buf[4];
 // 2g back Accelerometer
 int acc_2_back_X_low=0,acc_2_back_X_high=0; // X axis, High kai low nibble
 double acc_2_back_X_gs=0; // H metrhsh se gs
 double acc_2_back_X_gs_buf[4];
 int acc_2_back_Y_low=0,acc_2_back_Y_high=0; // Y axis, High kai low nibble
 double acc_2_back_Y_gs=0;
 double acc_2_back_Y_gs_buf[4];
 // Wheel Speeds
 int front_left_ticks=0, front_right_ticks=0,back_left_ticks=0,back_right_ticks=0; // Ticks
 double front_left_speed=0, front_right_speed=0,back_left_speed=0,back_right_speed=0; // Speed, m/sec
 // Pontentiometer gia gwnia stripsimatos
 int pont_high=0;
 int pont_low=0;
 double pont_volts=0; // Posa Volt blepei
 double steer=0; // Poses moires stribei
 double pont_volts_buf[4];
 // Gyro
 int gyro_high=0;
 int gyro_low=0;
 int gyro_high_last_value=0;
 int gyro_low_last_value=0;
 double gyro_volts=0; // Posa Volt blepei
 double gyro_volts_buf[4];
 double gyro_degs_ana_sec=0; // Moires Ana sec
 // Battery
 int batt_high=0;
 int batt_low=0;
 double batt_volts=0; // Posa Volt blepei
 // throttle_servo
 int throttle_servo=0;
 // steer_servo
 int steer_servo=0;

 // Metablhtes gia stabilization

 158

 int command=0; // Apo aythn thn metablhth
epilegetai to eidos ths sta8eropoihs
 int stab_int_parameters[32];
 //double stab_double_parameters[32];
 double *stab_double_parameters= new (nothrow) double[32];

 //19_2_08 Xrhsimopoieitai gia to aytomato stripsimo
 unsigned char *local_command_buffer=new (nothrow)unsigned char [10];
 unsigned char auto_speed=0;
 unsigned char auto_steer=0;
 unsigned char auto_chronos=0;
 unsigned char auto_times=0;
 long auto_chronos_start=0;
 long hold_for_3secs=0;
 bool auto_triggered=false;
 int auto_trig=0;

 //19_2_08

 ///---
 // Metablhtes prin stabilization
 static double sensitivity=sensitivity_def;//0.9;
 double radius_des=0,radius_actual=0,slip_angle=0, velocity=0;
 char *brake_decision;
 brake_decision = new (nothrow) char[30];
 if (brake_decision == 0){
 std::cout << "Error: memory could not be allocated";
 kill(getpid(),0);
 }
 ///---

 char *stab_commands;
 stab_commands =new (nothrow) char [32];
 if (stab_commands == 0){
 std::cout << "Error: memory could not be allocated";
 kill(getpid(),0);
 }

 //--------------------------------------

 // Arxikopoihsh twn buffers gia to ADC
 for(n=0;n<4;n++){
 acc_2_front_X_gs_buf[n]=0;
 acc_2_front_Y_gs_buf[n]=0;
 acc_2_back_X_gs_buf[n]=0;
 acc_2_back_Y_gs_buf[n]=0;
 acc_12_X_gs_buf[n]=0;
 acc_12_Y_gs_buf[n]=0;
 pont_volts_buf[n]=0;
 }

 // Servo Outputs
 char front_left_servo=47; // Arxika htan 12 me TOVF=128us. Twra exw
TOVF=32us
 char front_right_servo=47;
 char back_left_servo=47;
 char back_right_servo=47;

 // 22-8-07

 int start_address;
 char serial_port_buffer[200];
 //char testing[] = "nai ola ok";

 159

 bool consume_data=FALSE;
 int last_append=0; // O deikths gia ths teleytaias
prosarthshs

 // up to here 22-8-07

 int start,end; //DIka mou
 char *data,*previous_valid_data; //data=malloc(70*sizeof(char)); //
 data = new (nothrow) char[70]; //Gia c++
 if (data == 0){
 std::cout << "Error: memory could not be allocated";
 kill(getpid(),0);
 }
 char *write_buffer;
 write_buffer = new (nothrow) char[32] ;
 if (write_buffer == 0){
 std::cout << "Error: memory could not be allocated";
 kill(getpid(),0);
 }

 for (n=0;n<32;n++){
 write_buffer[n]='a';
 }
 char *pch;
 char temp_char[20];
 char *big_buffer;
 big_buffer =new char [350];
 if (big_buffer == 0)
 { std::cout << "Error: memory could not be allocated";
 kill(getpid(),0);
 }
 char *big_buffer_new;
 big_buffer_new =new char [250];
 if (big_buffer_new == 0)
 { std::cout << "Error: memory could not be allocated";
 kill(getpid(),0);
 }

 /*
 FILE *fptr;
 if((fptr=fopen(logfile,"w"))==NULL)
 { perror(logfile); kill(getpid(),0); } //kill(getpid(),0) anti gia exit(-1) pou bgazei warning
 big_buffer=return_date();
 strcat(big_buffer,"\n\n\n");
 fputs(big_buffer,fptr);
 */

 //---
 /*
 FILE *fptrmath; // Tab delimited
file
 if((fptrmath=fopen("dummy","w"))==NULL)
 { perror(logmath); kill(getpid(),0); } //kill(getpid(),0) anti gia exit(-1) pou bgazei warning
//
 fputs(big_buffer,fptrmath); // Grapse thn hmeromhnia kai se ayto
to arxeio
 */// 15_2_08
 //ALLAGH APO BILL
 FILE *billfptr;
 if ((billfptr=fopen(logmath,"a+"))==NULL) // a+, anoigei h dhmiourgei ena neo arxeio gia
prosarthsh, sel 358

 160

 { perror(logmath); kill(getpid(),0); }
 big_buffer=return_date();
 fputs(big_buffer,billfptr);
 //TELOS ALLAGHS

 char *big_buffer_math;
 big_buffer_math =new char [300];
 if (big_buffer_math == 0)
 { std::cout << "Error: memory could not be allocated";
 kill(getpid(),0);
 }
 // 17_2_08==== O xronos se Integers Arxh
 int *time_int;
 time_int=new int[4];
 time_int[0]=0;
 time_int[1]=0;
 time_int[2]=0;
 time_int[3]=0;
 int hour=0;
 int min=0;
 int sec=0;
 int usec=0;
 // 17_2_08==== O xronos se Integers telos

 //---
 fd=open_serial(); //include init_serial.c
 // H thn init_serial h ta akolou8a
 init_serial(fd,saio,oldtio,newtio); //include init_serial.c
 ////////////++++++++++++++++++++//////////////
 // Oti leipei einai sto init_stuff_serial.c
 ////////////++++++++++++++++++++/////////////////

 struct timeval tp; //Apo http://cygwin.com/ml/cygwin/2002-
01/msg01408.html
 long time_start,time_end;
 long time_passed=0,time_passed_sum=0;

 gettimeofday(&tp,0);
 time_start = ((unsigned)tp.tv_sec)*1000000+((unsigned)tp.tv_usec);

 printf("Debug1\n");
 //ALLAGH APO BILL
 bill_data->serial_running=true;
 //TELOS ALLAGHS APO BILL

 res = read(fd,buf,100);

 printf("Debug2: %d res\n",res);
 //ALLAGH APO BILL anti gia 1 bazw dikh mou metablhth gia na elegxw pote 3ekinaei / stamataei
 while(1)//while (!bill_data->serial_stop) //16_2_08
 //TELOs ALLAGHS
 {
 // An einai true jekina neo log file, exw xrhsimopoihsei to serial_stop gia dhmiourgia neou log file
 if(bill_data->serial_stop){
 bill_data->serial_stop=false;
 fclose(billfptr);
 big_buffer=return_date();
 if ((billfptr=fopen(logmath,"w"))==NULL){
 perror(logmath);

 161

 kill(getpid(),0);
 }
 fputs(big_buffer,billfptr);

 }
 ///*
 // after receiving SIGIO, wait_flag = FALSE, input is available and can be read

 // Read Data
 ///*
 ioctl(fd,FIONREAD,&bytes);
 if(bytes>0){ // Append at serial_port_buffer to consume
 res = read(fd,buf,70);
 buf[res]='\0';
 for(n=0;n<res;n++){
 if(!buf[n]){ // Bres ta '/0' End of File
 buf[n]=1; // Kai kanta 1, meta tha epanaferoume ta 1 se
0
 //printf("Problima!!! n=%d",n);
 }
 }
 strncpy(&serial_port_buffer[last_append],&buf[0],res);
 last_append+=res;
 //printf("res:%d last_append:%d\n",res,last_append);
 if (last_append>66)
 start=last_append-65; // Psaje sta 69 neotera dedomena
 else
 start=0;
 pch = (char*) memchr (&serial_port_buffer[start], 255, sizeof(char)*33);
 start=pch-serial_port_buffer;
 if((start>0)&&(start<199)){
 // Find 2nd char=255 : Terminator
 pch = (char*) memchr (&serial_port_buffer[start+1], 255,
sizeof(char)*33);
 end=pch-serial_port_buffer;
 if ((end>0)&&(end<199)&&((end-start)==32)){
 strncpy(data,&serial_port_buffer[start],32);
 // Remove now the 1

 consume_data=TRUE;
 strcpy(&serial_port_buffer[0],&serial_port_buffer[end]);//Left
shift
 last_append=last_append-end;//strlen(serial_port_buffer);
 // Terminator copied at position 0,start from 1
 //printf("Found start:%d end %d last_append:%d deigmata:%d
time_passed:%d \n\n",start,end,last_append,deigmata,(time_passed_sum/1000));
 //printf("strlen=%d\n",strlen(data));

 }// if ((end>0)&&(end<600))
 }// if((start>0)&&(start<600))

 if (last_append>199){
 last_append=0;
 printf("crap\n");
 }
 }
 ///*
 //ioctl(fd,FIONREAD,&bytes);
 if(consume_data){ // if consume_data=TRUE

 gettimeofday(&tp,0);
 time_end = ((unsigned)tp.tv_sec)*1000000+((unsigned)tp.tv_usec);

 162

 time_passed=(long)(time_end-time_start);

 gettimeofday(&tp,0);
 time_start = ((unsigned)tp.tv_sec)*1000000+((unsigned)tp.tv_usec);

 //------------------1.2g Accelerometer-----------
 acc_12_X_high = (int)(data[3]);
 char_to_int(acc_12_X_high);
 if(acc_12_X_high==254)
 acc_12_X_high=0;
 acc_12_X_low = (int)(data[4]);
 char_to_int(acc_12_X_low);
 acc_12_X_high=(256*acc_12_X_high)+acc_12_X_low;
 acc_12_X_gs = Acceleration_12(acc_12_X_high,455);

 acc_12_X_gs=forgeting_sum(acc_12_X_gs,acc_12_X_gs_buf);
 shift_values(acc_12_X_gs,acc_12_X_gs_buf);

 acc_12_Y_high = (int)(data[5]);
 char_to_int(acc_12_Y_high);
 if(acc_12_Y_high==254)
 acc_12_Y_high=0;
 acc_12_Y_low = (int)(data[6]);
 char_to_int(acc_12_Y_low);
 acc_12_Y_high=(256*acc_12_Y_high)+acc_12_Y_low;
 acc_12_Y_gs = Acceleration_12(acc_12_Y_high,458);

 acc_12_Y_gs=forgeting_sum(acc_12_Y_gs,acc_12_Y_gs_buf);
 shift_values(acc_12_Y_gs,acc_12_Y_gs_buf);
 //------------------------------------

 //------------------2g Front Accelerometer---------
 // ---------------X axis---------------------------
 acc_2_front_X_high = (int)(data[7]);
 char_to_int(acc_2_front_X_high);
 if(acc_2_front_X_high==254)
 acc_2_front_X_high=0;
 acc_2_front_X_low = (int)(data[8]);
 char_to_int(acc_2_front_X_low);
 acc_2_front_X_gs=(256*acc_2_front_X_high)+acc_2_front_X_low;
 acc_2_front_X_gs=((acc_2_front_X_gs * 5)/ 1024); // Se volt twra sel 214 ATmega16;
 acc_2_front_X_gs=((acc_2_front_X_gs-2.5)/0.312);

 acc_2_front_X_gs=forgeting_sum(acc_2_front_X_gs,acc_2_front_X_gs_buf);
 shift_values(acc_2_front_X_gs,acc_2_front_X_gs_buf);
 //--

 // ---------------Y axis---------------------------
 acc_2_front_Y_high = (int)(data[9]);
 char_to_int(acc_2_front_Y_high);
 if(acc_2_front_Y_high==254)
 acc_2_front_Y_high=0;
 acc_2_front_Y_low = (int)(data[10]);
 char_to_int(acc_2_front_Y_low);
 acc_2_front_Y_gs=(256*acc_2_front_Y_high)+acc_2_front_Y_low;
 acc_2_front_Y_gs=((acc_2_front_Y_gs * 5)/ 1024); // Se volt twra sel 214 ATmega16;
 acc_2_front_Y_gs=((acc_2_front_Y_gs-2.5)/0.312);
 acc_2_front_Y_gs=forgeting_sum(acc_2_front_Y_gs,acc_2_front_Y_gs_buf);
 shift_values(acc_2_front_Y_gs,acc_2_front_Y_gs_buf);
 //--

 //------------------2g Back Accelerometer---------

 163

 // ---------------X axis---------------------------
 acc_2_back_X_high = (int)(data[11]);
 char_to_int(acc_2_back_X_high);
 if(acc_2_back_X_high==254)
 acc_2_back_X_high=0;
 acc_2_back_X_low = (int)(data[12]);
 char_to_int(acc_2_back_X_low);
 acc_2_back_X_gs=(256*acc_2_back_X_high)+acc_2_back_X_low;
 acc_2_back_X_gs=((acc_2_back_X_gs * 5)/ 1024); // Se volt twra sel 214 ATmega16;
 acc_2_back_X_gs=((acc_2_back_X_gs-2.5)/0.312);

 acc_2_back_X_gs=forgeting_sum(acc_2_back_X_gs,acc_2_back_X_gs_buf);
 shift_values(acc_2_back_X_gs,acc_2_back_X_gs_buf);
 // -------------Y axis---------------------------
 acc_2_back_Y_high = (int)(data[13]);
 char_to_int(acc_2_back_Y_high);
 if(acc_2_back_Y_high==254)
 acc_2_back_Y_high=0;
 acc_2_back_Y_low = (int)(data[14]);
 char_to_int(acc_2_back_Y_low);
 acc_2_back_Y_gs=(256*acc_2_back_Y_high)+acc_2_back_Y_low;
 acc_2_back_Y_gs=((acc_2_back_Y_gs * 5)/ 1024); // Se volt twra sel 214 ATmega16;
 acc_2_back_Y_gs=((acc_2_back_Y_gs-2.5)/0.312);

 acc_2_back_Y_gs=forgeting_sum(acc_2_back_Y_gs,acc_2_back_Y_gs_buf);
 shift_values(acc_2_back_Y_gs,acc_2_back_Y_gs_buf);
 //------------------------------------

 // Wheel speeds==> Einai oi palmoi pou blepoun ta hall effects mesa se 0.1 sec.
 // To montelo me 8 hall effect sensors, gia ka8e palmo dianyei 4,625 cm.
 // Seira pou erxontai. front_left_speed, front_right_speed, back_left_speed,
back_right_speed

 // int front_left_ticks=0, front_right_ticks=0,back_left_ticks=0,back_right_ticks=0;
 // Ticks
 //double front_left_speed=0, front_right_speed=0,back_left_speed=0,back_right_speed=0;
 // Speed, m/sec

 front_left_ticks = (int)(data[15]);
 char_to_int(front_left_ticks);
 if(front_left_ticks==254)front_left_ticks=0; // An htan 254 einai 0
 front_left_speed=front_left_ticks*taxythta_ana_ticks;

 front_right_ticks = (int)(data[16]);
 char_to_int(front_right_ticks);
 if(front_right_ticks==254)front_right_ticks=0; // An htan 254
einai 0
 front_right_speed=front_right_ticks*taxythta_ana_ticks;

 back_left_ticks = (int)(data[17]);
 char_to_int(back_left_ticks);
 if(back_left_ticks==254)back_left_ticks=0; // An htan 254 einai 0
 back_left_speed=back_left_ticks*taxythta_ana_ticks;

 back_right_ticks = (int)(data[18]);
 char_to_int(back_right_ticks);
 if(back_right_ticks==254)back_right_ticks=0; // An htan
254 einai 0
 back_right_speed=back_right_ticks*taxythta_ana_ticks;

 velocity=(front_left_speed+front_right_speed+back_left_speed+back_right_speed)/4;

 // Pontesiometro gia gwnia timoniou

 164

 pont_high = (int)(data[19]);
 char_to_int(pont_high);
 if(pont_high==254)
 pont_high=0;
 pont_low = (int)(data[20]);
 char_to_int(pont_low);
 pont_volts=(256*pont_high)+pont_low;
 pont_volts=((pont_volts * 5)/ 1024); // Se volt
twra sel 214 ATmega16;
 pont_volts=forgeting_sum_steer(pont_volts,pont_volts_buf);
 shift_values(pont_volts,pont_volts_buf);
 steer=1000*((0.31570260254613*pow(pont_volts,3)) + (-
1.97189807334590*pow(pont_volts,2))+ (3.98997966117411 *pow(pont_volts,1)) -2.60471114838461);
 steer-=1;

 // Gyroskopio
 gyro_high = (int)(data[21]);
 char_to_int(gyro_high);
 if(gyro_high==254)
 gyro_high=0;
 gyro_low = (int)(data[22]);
 char_to_int(gyro_low);

 gyro_high_last_value=0;
 gyro_low_last_value=0;

 gyro_volts=(256*gyro_high)+gyro_low;
 gyro_volts=((gyro_volts * 5)/ 1024); // Se volt twra sel 214 ATmega16;
 gyro_volts=forgeting_sum(gyro_volts,gyro_volts_buf);
 shift_values(gyro_volts,gyro_volts_buf);
 // To gyroscopio exei 5mv/ana sec eyais8hsia
 gyro_degs_ana_sec=floor(((gyro_volts-2.50)/0.005)); // Ta 2.866V einai se 0 moires/sec To
apotelesma einai se moires/sec
 gyro_degs_ana_sec++;
 //printf("gyro_high:%d \t gyro_low:%d \t Gy:%3.0f
\n",gyro_high,gyro_low,gyro_degs_ana_sec);

 // Mpataria
 batt_high = (int)(data[23]);
 char_to_int(batt_high);
 if(batt_high==254)
 batt_high=0;
 batt_low = (int)(data[24]);
 char_to_int(batt_low);
 batt_volts=(256*batt_high)+batt_low;
 batt_volts=((batt_volts * 5)/ 1024); // Se volt twra sel 214 ATmega16;
 batt_volts=batt_volts*2; //Brisketai se diaireth tashs

 // Ta throttle kai steer servo ta stelnw anapoda apo to atmega. 25, kai 26 antistoixa
 // steer_servo
 steer_servo = (int)(data[25]);
 char_to_int(steer_servo);
 if(steer_servo==254)
 steer_servo=0;

 // throttle_servo
 throttle_servo = (int)(data[26]);
 char_to_int(throttle_servo);
 if(throttle_servo==254)
 throttle_servo=0;

 // O xronos trexei parolo pou den ta grafei sta log arxeia!
 ///

 165

 time_passed_sum=time_passed+time_passed_sum;
 if((bill_local_command!=0)&&(bill_local_command_last_time==0)){ // An htan sto 0
jekina na grafeis!!!

 big_buffer=return_date();
 strcat(big_buffer,"Start writing Again\n");
 //fputs(big_buffer,fptr);
 fputs(big_buffer,billfptr);
 bill_local_command_last_time=1;
 printf("bill_local_command:%d
bill_local_command_last_time:d\n",bill_local_command,bill_local_command_last_time);
 }

 if(bill_local_command!=0)
 {
 // Edw kalountai oi stabilization routines!
 switch (bill_local_command){
 case 1:
 //sensitivity=stab_double_parameters[0]
 //understeer_coeff=stab_double_parameters[1]
 stab_commands=stabilization_1(front_left_speed,
front_right_speed, back_left_speed, back_right_speed,
 gyro_degs_ana_sec, throttle_servo,
steer_servo,steer,stab_int_parameters,stab_double_parameters,time_passed);
 break;
 case 2:
 //sensitivity=stab_double_parameters[0]
 //understeer_coeff=stab_double_parameters[1]
 stab_commands=stabilization_2(front_left_speed,
front_right_speed, back_left_speed, back_right_speed,
 gyro_degs_ana_sec, throttle_servo,
steer_servo,steer,stab_int_parameters,stab_double_parameters,time_passed);
 break;
 case 3:
 //sensitivity=stab_double_parameters[0]
 //non_linear_coef=stab_double_parameters[1]
 stab_commands=stabilization_3(acc_12_X_gs, acc_12_Y_gs,
acc_2_front_X_gs, acc_2_front_Y_gs, acc_2_back_X_gs,
 acc_2_back_Y_gs, front_left_speed,
front_right_speed, back_left_speed, back_right_speed,
 pont_volts, gyro_degs_ana_sec,
batt_volts, throttle_servo, steer_servo,steer,stab_int_parameters,stab_double_parameters);
 break;
 case 8: // Do nothing but log data
 stab_commands[2]=front_left_servo_release ;
 stab_commands[3]=front_right_servo_brake;
 stab_commands[4]=back_left_servo_release;

 stab_commands[5]=back_right_servo_release;
 //printf("Log_data\n");
 break;
 default:
 //sensitivity=stab_double_parameters[0]
 //understeer_coeff=stab_double_parameters[1]
 stab_commands=stabilization_1(front_left_speed,
front_right_speed, back_left_speed, back_right_speed,
 gyro_degs_ana_sec, throttle_servo,
steer_servo,steer,stab_int_parameters,stab_double_parameters,time_passed);
 break;
 }

 //**//

 166

 if((stab_commands[2]==front_left_servo_brake)||(stab_commands[3]==front_right_servo_brake)){
 brake_decision="Oversteer!";
 //ALLAGH APO BILL
 bill_brake=1;
 //TELOS ALLAGHS

 }
 else{

 if((stab_commands[4]==back_left_servo_brake)||(stab_commands[5]==back_right_servo_brake)){
 //ALLAGH APO BILL
 brake_decision="Understeer!";
 bill_brake=2;
 //TELOS ALLAGHS
 }
 else{
 //ALLAGH APO BILLL
 brake_decision="Neutral Steer";
 bill_brake=0;
 //TELOS ALLAGHS
 }
 }
 //puts(brake_decision);
 ///
 deigmata++;
 time_int=return_time();
 hour=time_int[0];
 min=time_int[1];
 sec=time_int[2];
 usec=time_int[3];

 if(auto_triggered)
 auto_trig=1;
 else
 auto_trig=0;

 sprintf(big_buffer_math,"%1.3f \t%1.3f \t%1.3f \t%1.3f \t%1.3f \t%1.3f \t%2.2f
\t%2.2f \t%2.2f \t%2.2f \t%3.0f \t%2.2f \t%d \t%4.4f \t%4.4f \t%4.4f \t%d \%d
 \t%d \t%d \t%d \t%d \t%d \t%d \t%d \t%d \t%d \t%d \t%d
\t%d \t%d
\n",acc_12_X_gs,acc_12_Y_gs,acc_2_front_X_gs,acc_2_front_Y_gs,acc_2_back_X_gs,acc_2_back_Y_gs,front_left_
speed,front_right_speed,back_left_speed,back_right_speed,gyro_degs_ana_sec,steer,bill_local_command,stab_double
_parameters[0],stab_double_parameters[1],stab_double_parameters[2],auto_trig,auto_speed,auto_steer,stab_comman
ds[2],stab_commands[3],stab_commands[4],stab_commands[5],bill_brake,deigmata,time_passed,(time_passed_sum/1
000),hour,min,sec,usec);
 // MX \tMY \tFX \tFY
\tBX \tBY \tFLS \tFRS \tBLS \tBRS \tGyro \tSteer \tMethod \tSDP[0] \tSDP[1] \tSDP[2]\tauto_trig
 \auto_speed \tauto_steer \tFLB \tFRB \tRLB \tBRB \tbill_brake \tSamples \tTime_passed:
\tTimeSum \tHour \min \tsec \tusec
\n",acc_12_X_gs,acc_12_Y_gs,acc_2_front_X_gs,acc_2_front_Y_gs,acc_2_back_X_gs,acc_2_back_Y_gs,front_left_
speed,front_right_speed,back_left_speed,back_right_speed,gyro_degs_ana_sec,steer,bill_local_command,stab_double
_parameters[0],stab_double_parameters[1],stab_double_parameters[2],auto_trig,auto_speed,auto_steer,stab_comman
ds[2],stab_commands[3],stab_commands[4],stab_commands[5],bill_brake,deigmata,time_passed,(time_passed_sum/1
000),hour,min,sec,usec);

 fputs(big_buffer_math,billfptr);

 }//(bill_local_command!=0) Dio 1_2_07

 //ALLAGH APO BILL

 167

 // antigrafh twn dedomenwn sto koino struct gia apostolh se client
 #ifdef MUTEX_SR
 //lock mutex and write the data
 pthread_mutex_lock(&(bill_data->mutex_receive));
 #endif
 bill_data->read_data[0]=acc_12_X_gs;
 bill_data->read_data[1]=acc_12_Y_gs;
 bill_data->read_data[2]=acc_2_front_X_gs;
 bill_data->read_data[3]=acc_2_front_Y_gs;
 bill_data->read_data[4]=acc_2_back_X_gs;
 bill_data->read_data[5]=acc_2_back_Y_gs;
 bill_data->read_data[6]=front_left_speed*3.6;
 bill_data->read_data[7]=front_right_speed*3.6;
 bill_data->read_data[8]=back_left_speed*3.6;
 bill_data->read_data[9]=back_right_speed*3.6;
 bill_data->read_data[10]=velocity*3.6;
 bill_data->read_data[11]=gyro_degs_ana_sec;
 bill_data->read_data[12]=batt_volts;
 bill_data->read_data[13]=steer;

 bill_wheel=0;
 if(stab_commands[2]==front_left_servo_brake) bill_wheel+=8;
 if(stab_commands[3]==front_right_servo_brake) bill_wheel+=4;
 if(stab_commands[4]==back_left_servo_brake) bill_wheel+=2;
 if(stab_commands[5]==back_right_servo_brake) bill_wheel+=1;

 bill_data->read_data_int[3]=bill_wheel;
 bill_data->read_data_int[2]=bill_brake;
 bill_data->read_data_int[1]=throttle_servo;
 bill_data->read_data_int[0]=steer_servo;
 //enhmerwnoume metablhth gia na 3erei o server oti exoun er8ei kainourgia dedomena
 bill_data->data_received=true;
 #ifdef MUTEX_SR
 //unlock mutex after data is written
 pthread_mutex_unlock(&(bill_data->mutex_receive));
 #endif

 //paradeigma pws pairneis merika apo ta dedomena pou exoun stalei
 //einai protimotero na antigrafoun ola me thn mia se topikes metablhtes
 if (bill_data->command_received==true){
 #ifdef MUTEX_SR
 //lock mutex and read the data
 pthread_mutex_lock(&(bill_data->mutex_send));
 #endif
 printf("Command bill=%u\n",bill_data->command_buffer[0]);

 // Dio
 bill_local_command_last_time=bill_local_command; // O
bill_local_command_last_time krataei thn teleytaia timh pou eixa o bill_local_command
 bill_local_command=bill_data->command_buffer[0];

 stab_double_parameters=bill_data->double_buffer;
 //19_2_08 Xrhsimopoieitai gia to aytomato stripsimo
 local_command_buffer=bill_data->command_buffer;
 auto_speed=local_command_buffer[1];
 auto_steer=local_command_buffer[2];
 auto_chronos=local_command_buffer[3];
 auto_times=local_command_buffer[4]+1;

 /*
 long auto_chronos_start=0;
 bool auto_triggered=false;
 */

 168

 //19_2_08

 bill_data->command_received=false;
 #ifdef MUTEX_SR
 //unlock mutex after data is read
 pthread_mutex_unlock(&(bill_data->mutex_send));
 #endif
 }//TELOS ALLAGHS
 /*
 Char Commands:
 If velocity > [1]m/sec then steer [2] degrees for [3]*10ms, repeat [4] times
 Velocity:[1] Steer:[2] Holdfor:[3] Repeat:[4] :[5] :[6]
 */
 //----------------Auto steer----------------------------//
 if(auto_times>1){
 printf("Auto Steer Pending for:%d times",auto_times);
 if((auto_triggered==false)&&
((((unsigned)tp.tv_sec)*1000000+((unsigned)tp.tv_usec)-hold_for_3secs)>3000000)){ // Perimene na
perasoun 3 secs
 if(velocity>=(unsigned int)auto_speed){
 printf("velocity:%f >=auto_speed:%u \n",velocity,auto_speed);
 auto_triggered=true;
 gettimeofday(&tp,0);
 auto_chronos_start = ((unsigned)tp.tv_sec)*1000000+((unsigned)tp.tv_usec);
 auto_times--;
 stab_commands[7]=auto_steer; /// Stripse toses
moires oses exeis diabasei
 printf("Auto Triggered auto_chronos_start%d auto_steer:%d
auto_times:%d\n",auto_chronos_start/1000,auto_steer,auto_times);
 }
 }
 }//if(auto_times>0)
 if(auto_triggered==true){
 if((((unsigned)tp.tv_sec)*1000000+((unsigned)tp.tv_usec)-
auto_chronos_start)<(auto_chronos*500000)){
 stab_commands[7]=auto_steer;
 }
 else{ // Time passed
 stab_commands[7]=254;
 printf("Times Up auto_chronos_start%d auto_steer:%d
auto_times:%d\n",(((unsigned)tp.tv_sec)*1000000+((unsigned)tp.tv_usec))/1000,auto_steer,auto_times);
 auto_triggered=false;
 hold_for_3secs=((unsigned)tp.tv_sec)*1000000+((unsigned)tp.tv_usec);
 }
 }
 //----------------Auto steer----------------------------//

 // epeidh exoume ena servo frenaroume kai tous dyo mazi an frenarei o enas;

 if((stab_commands[4]==back_left_servo_brake)||(stab_commands[5]==back_right_servo_brake)){
 stab_commands[4]=back_left_servo_brake; // Frenare to
aristero pisw troxo!
 stab_commands[5]=back_right_servo_brake; // Frenare to deji
pisw troxo!
 }

 consume_data=FALSE; //Data consumed
 }// consume_data=TRUE

 169

 if((bill_local_command!=0)&&(bill_local_command!=8)){ // bill_local_command=8 ==> Do
nothing, log data only
 // Ayto to tmhma grafei sthn seiriakh.
 ioctl(fd,TIOCOUTQ,&w_bytes);
 if(w_bytes==0){
 write_buffer=&stab_commands[0];
 write_buffer[0]=255; // Start 255, terminator

 n=write(fd,write_buffer,32);
 if (n < 0)
 fputs("write() of 32 bytes failed!\n", stderr);
 }//(w_bytes==0)
 }//if(bill_local_command!=0)

 }//while (1)

 /* restore old port settings */
 tcsetattr(fd,TCSANOW,&oldtio);

 //ALLAGH APO BILL
 bill_data->serial_running=false;
 bill_data->serial_stop=false;
 //TELOS ALLAGHS APO BILL
}

headers.h

#include <termios.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/signal.h>
#include <sys/types.h>
#include <stropts.h>
#include <termio.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include "rdtsc.h" //http://www-unix.mcs.anl.gov/~kazutomo/rdtsc.html
#include <cstdlib> // Gia malloc
#include <math.h>
#include <sys/time.h>
#include <linux/tty.h>

#define BAUDRATE B115200 //B230400
#define MODEMDEVICE "/dev/ttyS0"
#define _POSIX_SOURCE 1 /* POSIX compliant source */
#define FALSE 0
#define TRUE 1

 170

init_serial.c

#include "headers.h"

/***
* signal handler. sets wait_flag to FALSE, to indicate above loop that *
* characters have been received. *
***/

void signal_handler_IO (int status)
{
 //printf("signaled\n") ;
 wait_flag = FALSE;
}

int open_serial(void)
{
 int fd;
 /* open the device to be non-blocking (read will return immediatly) */;
 fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY | O_NONBLOCK);
 if (fd <0) {perror(MODEMDEVICE); kill(getpid(),0); }
 return fd;
}

void init_serial(int &fd,struct sigaction &saio,struct termios &oldtio,struct termios &newtio)
{
 ///////////////+++++++++++++++++/////////////////
 // install the signal handler before making the device asynchronous
 saio.sa_handler = signal_handler_IO;
 saio.sa_flags = 0;
 saio.sa_restorer = NULL;
 sigaction(SIGIO,&saio,NULL);

 // allow the process to receive SIGIO
 fcntl(fd, F_SETOWN, getpid());
 // Make the file descriptor asynchronous (the manual page says only
 //O_APPEND and O_NONBLOCK, will work with F_SETFL...)
 fcntl(fd, F_SETFL, FASYNC);

 tcgetattr(fd,&oldtio); // save current port settings

 //async1
 //
 // Set bps rate and hardware flow control and 8n1 (8bit,no parity,1 stopbit).
 // Also don't hangup automatically and ignore modem status.
 //Finally enable receiving characters.

 newtio.c_cflag = BAUDRATE | CRTSCTS | CS8 | CLOCAL | CREAD;

 newtio.c_iflag = IGNPAR; //Ignore bytes with parity errors and make terminal raw and dumb.

 newtio.c_oflag = 0; //Raw output.

 //Don't echo characters because if you connect to a host it or your
 //modem will echo characters for you. Don't generate signals.

 newtio.c_lflag = 0;

 // blocking read until 1 char arrives

 171

 newtio.c_cc[VMIN]=1;
 newtio.c_cc[VTIME]=0;

 // now clean the modem line and activate the settings for modem
 tcflush(fd, TCIFLUSH);
 tcsetattr(fd,TCSANOW,&newtio);
}

time_etc.cpp

char * return_date(void)
{
 char buffer[30];
 struct timeval tv;
 char * bigger_buffer;
 bigger_buffer= new char[100];

 time_t curtime;

 gettimeofday(&tv, NULL);
 curtime=tv.tv_sec;

 strftime(buffer,30,"%m-%d-%Y %T.",localtime(&curtime));
 sprintf(bigger_buffer,"%s%ld\n",buffer,tv.tv_usec);

 return bigger_buffer;

}

int * return_time(void)
{
 int sec=0;
 int usec=0;
 int hour=0;
 int min=0;
 int *time_int;
 time_int=new int[4];

 char buffer[30];
 char buffer2[3];
 struct timeval tv;

 time_t curtime;
 gettimeofday(&tv, NULL);
 curtime=tv.tv_sec;

 strftime(buffer,30,"%T.",localtime(&curtime));

 strncpy(buffer2,&buffer[0],2*sizeof(char));
 buffer[2]='\0';
 hour=atoi(buffer2);

 strncpy(buffer2,&buffer[3],2*sizeof(char));
 buffer[2]='\0';
 min=atoi(buffer2);

 strncpy(buffer2,&buffer[6],2*sizeof(char));

 172

 buffer[2]='\0';
 sec=atoi(buffer2);
 usec=(int)tv.tv_usec;

 //printf("hour:%d min:%d sec:%d usec:%d \n",hour,min,sec,tv.tv_usec);
 time_int[0]=hour;
 time_int[1]=min;
 time_int[2]=sec;
 time_int[3]=usec;

 return time_int;
}

servos.h

// Definition gia tis 8eseis twn servo!

#define front_left_servo_brake 57
#define front_left_servo_release 47
#define front_right_servo_brake 37
#define front_right_servo_release 47
#define back_left_servo_brake 33
#define back_left_servo_release 47
#define back_right_servo_brake 47
#define back_right_servo_release 33

stabilization_routine1.c

//**---------------------------------------Stabilization_method_1---**//

char * stabilization_1(double front_left_speed,double front_right_speed,double back_left_speed,double back_right_speed,double
gyro_degs_ana_sec,int throttle_servo,int steer_servo,double steer,int* stab_int_parameters,double* stab_double_parameters,long
time_passed){
 // Analoga me to pou an einai aristerh h dexia strofh. Dejia einai 8etikh. 8etikh einai epishs kai h epitaxynsh

 static double sensitivity=0.9; // 0<sensitivity<1
 static char *stab_commands;
 stab_commands =new (nothrow) char [32];
 if (stab_commands == 0){
 std::cout << "Error: memory could not be allocated";
 kill(getpid(),0);
 }
 stab_commands[0]=0;

 static double time_passed_array[10];
 static double time_passed_sum=0;

 static double understeer_coeff=0;
 double yaw_rate_desired=0,velocity=0;

 if((stab_double_parameters[0]>0)&&(stab_double_parameters[0]<=1))
 sensitivity=stab_double_parameters[0]; // understeer_coefficient
 else
 sensitivity=0.9;

 understeer_coeff=stab_double_parameters[1];
 // understeer_coefficient

 173

 velocity=(back_left_speed+back_right_speed+front_right_speed+front_left_speed)/4;
 yaw_rate_desired=(velocity*steer/(wheelbase+(mass*velocity*velocity*understeer_coeff/(2*wheelbase))));//*(steer*pi/180);
 // Einai se rad/sec
 //yaw_rate_desired=yaw_rate_desired*(180/pi);
 // Twra einai se moires/sec!!!

 printf("steer:%2.1f gyro:%3.0f \t yaw_rate_desired:%3.3f \t velocity:%2.2f \t understeer_coeff:%3.7f \t
sensitivity%1.2f\n",steer,gyro_degs_ana_sec,yaw_rate_desired,velocity,understeer_coeff,sensitivity);

 if (fabs(gyro_degs_ana_sec)<=10){ //If gyro_degs_ana_sec<=10 do nothing
 //----------------Release all servos;
 stab_commands[2]=front_left_servo_release ;//47; //stab_commands[2]=front_left_servo;
 stab_commands[3]=front_right_servo_release;//47; //stab_commands[3]=front_right_servo;
 stab_commands[4]=back_left_servo_release;//47; //stab_commands[4]=back_left_servo;
 stab_commands[5]=back_right_servo_release;//33; //stab_commands[5]=back_right_servo;
 //--------------------------
 }
 else{
 // Oversteer

 if((fabs(gyro_degs_ana_sec)>=(fabs(fabs(yaw_rate_desired)*(1/sensitivity))+3))&&(fabs(gyro_degs_ana_sec)>=10)){
 // Pros8etw 5 gia otan einai yaw_rate_desired==0
 if(gyro_degs_ana_sec>=0){ // Dejia
strofh
 stab_commands[2]=front_left_servo_brake ; // Frenare to mprosta aristera troxo
 stab_commands[3]=front_right_servo_release;
 stab_commands[4]=back_left_servo_release;
 stab_commands[5]=back_right_servo_release;
 }
 else{
 // Aristero oversteer
 stab_commands[2]=front_left_servo_release ;
 stab_commands[3]=front_right_servo_brake; // Frenare to deji mprosta
troxo!
 stab_commands[4]=back_left_servo_release;
 stab_commands[5]=back_right_servo_release;
 }

 }
 else{
 if((fabs(gyro_degs_ana_sec)<fabs(yaw_rate_desired*sensitivity*0.8))&&(velocity>2)){
 // Understeer
 if(steer>0){
 // Dejia strofh
 stab_commands[2]=front_left_servo_release ;
 stab_commands[3]=front_right_servo_release;
 stab_commands[4]=back_left_servo_release;
 stab_commands[5]=back_right_servo_brake; // Frenare to deji pisw
troxo!
 printf("\nUndersteer\n");
 }
 else{
 // Aristerh strofh
 stab_commands[2]=front_left_servo_release ;
 stab_commands[3]=front_right_servo_release;
 stab_commands[4]=back_left_servo_brake; // Frenare to aristero pisw
troxo!
 stab_commands[5]=back_right_servo_release;
 }
 /*
 // epeidh exoume ena servo frenaroume kai tous dyo mazi;
 stab_commands[4]=back_left_servo_brake; // Frenare to aristero pisw troxo!

 174

 stab_commands[5]=back_right_servo_brake; // Frenare to deji pisw troxo!
 */
 }
 else{
 //----------------Release all servos;
 stab_commands[2]=front_left_servo_release ;//47;
 //stab_commands[2]=front_left_servo;
 stab_commands[3]=front_right_servo_release;//47;
 //stab_commands[3]=front_right_servo;
 stab_commands[4]=back_left_servo_release;//47;
 //stab_commands[4]=back_left_servo;
 stab_commands[5]=back_right_servo_release;//33;
 //stab_commands[5]=back_right_servo;
 //--------------------------
 }
 }

 }// else

 return stab_commands;
}

stabilization_routine2.c

//**---------------------------------------Stabilization_method_2 ART---**//
char * stabilization_2(double front_left_speed,double front_right_speed,double back_left_speed,double back_right_speed,double
gyro_degs_ana_sec,int throttle_servo,int steer_servo,double steer,int* stab_int_parameters,double* stab_double_parameters,long
time_passed){
 // Analoga me to pou an einai aristerh h dexia strofh. Dejia einai 8etikh. 8etikh einai epishs kai h epitaxynsh

 static double sensitivity=0.9; // 0<sensitivity<1
 static char *stab_commands;
 stab_commands =new (nothrow) char [32];
 if (stab_commands == 0){
 std::cout << "Error: memory could not be allocated";
 kill(getpid(),0);
 }
 stab_commands[0]=0;

 static double time_passed_array[10];
 static double time_passed_sum=0;

 static double understeer_coeff=0;
 double yaw_rate_desired=0,velocity=0;

 static int times_called=0;
 static double last_velocities [5][10]; // Aytos o pinakas periexei tis 10 prohgoumenes times gia tis taxythtes twn
troxwn [1,:]FL,[2,:]FR,[3,:]BL,[4:]BR. H [:,1] einai h pio prosfath h 8esh [5,:] einai dummy

 // Shift values by one;
 for(int pos=0;pos<9;pos++){
 last_velocities[1][pos+1]=last_velocities[1][pos];
 last_velocities[2][pos+1]=last_velocities[2][pos];
 last_velocities[3][pos+1]=last_velocities[3][pos];
 last_velocities[4][pos+1]=last_velocities[4][pos];
 time_passed_array[pos+1]=time_passed_array[pos];

 //printf("[1][0]:%2.2f,[2][0]:%2.2f,[3][0]:%2.2f,[4][0]:%2.2f\n[1][1]:%2.2f,[2][1]:%2.2f,[3][1]:%2.2f,[4][1]:%2.2f\n\n",last_
velocities[1][0],last_velocities[2][0],last_velocities[3][0],last_velocities[4][0],last_velocities[1][5],last_velocities[2][5],last_velociti
es[3][5],last_velocities[4][5]);
 time_passed_sum+=time_passed_array[pos];

 175

 }
 //printf("Xronos se 10 deigmata time_passed=%f\n",time_passed_sum);
 time_passed_sum=0;

 last_velocities[1][0]=front_left_speed;
 last_velocities[2][0]=front_right_speed;
 last_velocities[3][0]=back_left_speed;
 last_velocities[4][0]=back_right_speed;
 time_passed_array[0]=(double)time_passed;
 if((stab_double_parameters[0]>0)&&(stab_double_parameters[0]<=1))
 sensitivity=stab_double_parameters[0]; // understeer_coefficient
 else
 sensitivity=0.9;

 understeer_coeff=stab_double_parameters[1]/1000; // understeer_coefficient
 velocity=(back_left_speed+back_right_speed+front_right_speed+front_left_speed)/4;
 //velocity=(front_left_speed)*2;
 yaw_rate_desired=(velocity/(wheelbase+(mass*velocity*velocity*understeer_coeff/(2*wheelbase))))*(steer*pi/180);
 // Einai se rad/sec
 yaw_rate_desired=yaw_rate_desired*(180/pi);
 // Twra einai se moires/sec!!!
 printf("steer:%2.1f gyro:%3.0f \t yaw_rate_desired:%3.3f \t velocity:%2.2f \t understeer_coeff:%3.7f \t
sensitivity%1.2f\n",steer,gyro_degs_ana_sec,yaw_rate_desired,velocity,understeer_coeff,sensitivity);

 if (fabs(gyro_degs_ana_sec)<=3){ //If gyro_degs_ana_sec<=10 do nothing
 //----------------Release all servos;
 stab_commands[2]=front_left_servo_release ;//47; //stab_commands[2]=front_left_servo;
 stab_commands[3]=front_right_servo_release;//47; //stab_commands[3]=front_right_servo;
 stab_commands[4]=back_left_servo_release;//47; //stab_commands[4]=back_left_servo;
 stab_commands[5]=back_right_servo_release;//33; //stab_commands[5]=back_right_servo;
 //--------------------------
 //printf("\nDesired radius= apeirh\n");
 }
 else{
 if(fabs(gyro_degs_ana_sec)>=fabs(yaw_rate_desired*(1/sensitivity))){ // Oversteer
 if(gyro_degs_ana_sec>=0){ // Dejia
strofh
 stab_commands[2]=front_left_servo_release ;
 stab_commands[3]=front_right_servo_brake;
 stab_commands[4]=back_left_servo_release; // Frenare to deji mprosta
troxo!
 stab_commands[5]=back_right_servo_release;
 }
 else{
 // Aristero oversteer
 stab_commands[2]=front_left_servo_brake ;
 stab_commands[3]=front_right_servo_release; // Frenare to mprosta
aristera troxo
 stab_commands[4]=back_left_servo_release;
 stab_commands[5]=back_right_servo_release;
 }

 }
 else{
 if(fabs(gyro_degs_ana_sec)<fabs(yaw_rate_desired*sensitivity)){ //
Understeer
 if(gyro_degs_ana_sec>=0){ // Dejia
strofh
 stab_commands[2]=front_left_servo_release ;
 stab_commands[3]=front_right_servo_release;
 stab_commands[4]=back_left_servo_release;

 176

 stab_commands[5]=back_right_servo_brake; // Frenare to deji pisw
troxo!
 printf("\nUndersteer\n");
 }
 else{
 // Aristerh strofh
 stab_commands[2]=front_left_servo_release ;
 stab_commands[3]=front_right_servo_release;
 stab_commands[4]=back_left_servo_brake; // Frenare to aristero pisw
troxo!
 stab_commands[5]=back_right_servo_release;
 }
 // epeidh exoume ena servo frenaroume kai tous dyo mazi;
 stab_commands[4]=back_left_servo_brake; // Frenare to aristero pisw troxo!
 stab_commands[5]=back_right_servo_brake; // Frenare to deji pisw troxo!
 }
 }

 }// else

 return stab_commands;
}

stabilization_routine3.c

//**---------------------------------------Stabilization_method_3---**//

char * stabilization_3(double acc_12_X_gs,double acc_12_Y_gs,double acc_2_front_X_gs,double acc_2_front_Y_gs,double
acc_2_back_X_gs,
 double acc_2_back_Y_gs,double front_left_speed,double front_right_speed,double
back_left_speed,double back_right_speed,
 double pont_volts,double gyro_degs_ana_sec,double batt_volts,int throttle_servo,int
steer_servo,double steer,int* stab_int_parameters,double* stab_double_parameters){
 // Analoga me to pou an einai aristerh h dexia strofh. Dejia einai 8etikh. 8etikh einai epishs kai h epitaxynsh

 static char *stab_commands;
 stab_commands =new (nothrow) char [32];
 if (stab_commands == 0){
 std::cout << "Error: memory could not be allocated";
 kill(getpid(),0);
 }
 stab_commands[0]=0;

 static double sensitivity=0.9;
 static double non_linear_coef=0.1;
 double radius_des=0,radius_actual=0,slip_angle=0, velocity=0;
 sensitivity=stab_double_parameters[0]; // Sensitivity
 non_linear_coef=stab_double_parameters[1]; // non_linear_coefficient

 radius_des=(wheelbase*(velocity*non_linear_coef)/((pi/180)*(fabs(steer))));
 if(fabs(acc_12_Y_gs)>0.4)
 slip_angle=atan(acc_12_X_gs/acc_12_Y_gs);
 else
 slip_angle=0;
 //velocity=cos(slip_angle)*(back_left_speed+back_right_speed+front_right_speed+front_left_speed)/4;
 velocity=(back_left_speed+back_right_speed+front_right_speed+front_left_speed)/4;

 177

 radius_actual=(velocity*velocity)/(sqrt((acc_12_X_gs*acc_12_X_gs)+(acc_12_Y_gs*acc_12_Y_gs)));
 printf("Desired radius=%4.1f m \t Actual_radious=%4.1f m \t slip _angle=%4.4f \t sensitivity:%4.4f
non_linear_coef:%4.6f\n",radius_des,radius_actual,slip_angle,sensitivity,non_linear_coef);

 if (fabs(steer)<=1){ //If steer_angle==0 do nothing
 //----------------Release all servos;
 stab_commands[2]=front_left_servo_release ;//47; //stab_commands[2]=front_left_servo;
 stab_commands[3]=front_right_servo_release;//47; //stab_commands[3]=front_right_servo;
 stab_commands[4]=back_left_servo_release;//47; //stab_commands[4]=back_left_servo;
 stab_commands[5]=back_right_servo_release;//33; //stab_commands[5]=back_right_servo;
 //--------------------------
 }
 else{

 if(velocity>1){
 if(radius_actual>(radius_des*(1/sensitivity))){ // Understeer, apply rear brakes;
 stab_commands[2]=front_left_servo_release ;
 stab_commands[3]=front_right_servo_release;
 stab_commands[4]=back_left_servo_brake;
 stab_commands[5]=back_right_servo_brake;
 }
 else{
 if(radius_actual<(radius_des*sensitivity)){ // UbderSteer, apply front brakes
 stab_commands[2]=front_left_servo_brake ;
 stab_commands[3]=front_right_servo_brake;
 stab_commands[4]=back_left_servo_release;
 stab_commands[5]=back_right_servo_release;
 }
 else{ // Neutral Steer
 stab_commands[2]=front_left_servo_release ;//47;
 //stab_commands[2]=front_left_servo;
 stab_commands[3]=front_right_servo_release;//47;
 //stab_commands[3]=front_right_servo;
 stab_commands[4]=back_left_servo_release;//47;
 //stab_commands[4]=back_left_servo;
 stab_commands[5]=back_right_servo_release;//33;
 //stab_commands[5]=back_right_servo;
 }
 }
 }
 else{
 stab_commands[2]=front_left_servo_release ;//47; //stab_commands[2]=front_left_servo;
 stab_commands[3]=front_right_servo_release;//47; //stab_commands[3]=front_right_servo;
 stab_commands[4]=back_left_servo_release;//47; //stab_commands[4]=back_left_servo;
 stab_commands[5]=back_right_servo_release;//33; //stab_commands[5]=back_right_servo;
 }
 }// else

 return stab_commands;
}

 178

9.1.2 Scripts

compile

#step 1
#set correct local address in defines.h //#define LADDR "192.168.86.2"

#step 2
#to compile run
echo "Compiling: g++ -c async.cpp socketserver.cpp"
g++ -c async.cpp socketserver.cpp
echo "Linking: g++ async.o socketserver.o -lpthread -o socketserver"
g++ async.o socketserver.o -lpthread -o socketserver
echo "Done!"
echo "Do you want me to execute y or n?"
read choice
if [$choice = "y"]
 then
 clear
 echo "Yes sellected, Socketserver running!"
 ./socketserver
 else
 echo "Bye!"
fi

#step 3
#run

9.1.3 index.html

<html>
<body>
<p>
<applet code=demos.TestJApplet archive=index.jar width="800" height="700" align="left">
 Your browser does not understand Java.
</applet></p>
<p>Top WebCam</p>
<p>
<APPLET CODE = "WebCamApplet.class" archive="applet.jar" WIDTH = "320" HEIGHT = "240">
<param name=URL value="http://192.168.1.101:8888">
<param name=FPS value="10">
<param name=width value="320">
<param name=height value="240">
</APPLET></p>
<p>Wheel Webcam</p>
<p><APPLET CODE = "WebCamApplet.class" archive="applet.jar" WIDTH = "320" HEIGHT = "240">
<param name=URL value="http://192.168.1.101:8887">
<param name=FPS value="10">

 179

9.2 Microcontroller codes

9.2.1 ESC_new.c

#include <avr/io.h>
#include <math.h>
#include <avr/interrupt.h>
#include "header.h"
#include <avr/pgmspace.h>
#include <ctype.h>
#include <avr/sfr_defs.h>

// Routine definition
void InitPorts(void);
void USART_Init(unsigned int ubrr);
void update_values(void);
void Timers_Init(void);
void external_interrupts_init(void);
void adc_init(void);
void software_servo_int(void);

// Global variables

static u8 *TX_buffer;
static u8 TX_data_to_send[TX_buffer_length];

volatile static u8 TX_read;
static u8 RX_buffer[RX_buffer_length];
static u8 *Received_data;

volatile static u8 RX_write;
static u8 receive_full=0,fresh_data=0; //Receive Flag

static u8 send_data=1;//send_data=0;
static u8 number=0;
static u8 temp;
// Accelerometers
#include "files/adc_accelerometers.c" //ADC kai Accelerometers Variables

#include "files/interrupt_routines.c"
#include "files/servos.h" // Se poies 8eseis frenaroun ta servo
//#include "files/stability.c"
//--------------------------------main-----------------------------------
int main(void)
{
 sei();
 adc_init();
 InitPorts();
 external_interrupts_init();

 USART_Init(MYUBRR); //115.2K
 Timers_Init();
 static u8 servo_propotion=0; // Poso na kinh8oun ta servo tou timoniou
 static u8 esp_on=0;

 while(1)
 {

 /*if (receive_full==1)

 180

 {
 TX_buffer=&RX_buffer[0];
 //TX_buffer=&IDN[0];
 //TX_buffer=pgm_read_byte(&IDNT[0]);

 UDR=TX_buffer[0]; //Trigger transmition by loading UDR
 receive_full=0;
 }*/
 if ((send_data==1))//&&(fresh_data==1))
 {
 //update_values();
 TX_buffer=0;
 //TX_buffer=Received_data;
 UDR=TX_buffer[0]; //Trigger transmition by loading UDR

 send_data=0;
 fresh_data=0;

 }

 if(!(ADCSRA&0b01000000)) // An oloklhrw8hke to Conversion xekina ena neo, To ADSC
phge sto 0
 adc_routine(); // Jekina neo Conversion

 // 3_12_07

 if (watchdog_timer<100)
 watchdog_timer++;
 if (watchdog_timer>50){ // Mpei edw mesa, den exei labei poly wra dedomena.
Mhdennizetai sthn receive
 front_left_servo=47; // Kentrare ta servo
 front_right_servo=47;
 back_left_servo=47;
 back_right_servo=46; // Sto 47 frenarei kai mas xalaei ton akolou8o elegxo
 esp_on=0;
 //throttle_servo=47;
 //steer_servo=47;
 }

 if((front_left_servo==front_left_servo_brake)||(front_right_servo==front_right_servo_brake)||(back_left_servo==back_left_s
ervo_brake)||(back_right_servo==back_right_servo_brake))
 esp_on=1; // An hmaste edw shmainei pws douleyei to ESP;
 else
 esp_on=0;
 if((throttle_servo<41)&&(throttle_servo>20)&&(esp_on==0)){ // Boh8hse sto frenarisma
 servo_propotion=(43-throttle_servo); // Sto 43
einai sto kentro
 front_left_servo=front_left_servo_release+servo_propotion;
 front_right_servo=front_right_servo_release-servo_propotion;
 back_left_servo=back_left_servo_release-2*servo_propotion;
 back_right_servo=back_right_servo_release+2*servo_propotion;

 watchdog_timer=45; //
 }
 if((steer_servo_ser>23)&&(steer_servo_ser<63)&&(steer_servo>36)&&(steer_servo<50)) // An einai ola OK dwse
thn entolh apo seiriakh
 steer_servo_out=steer_servo_ser;
 else
 steer_servo_out=steer_servo;
 // Alliws ayto pou metrhses

 // 3_12_07

 181

 //stability();
 //software_servo_int();
 /*
#define front_left_servo_brake 57
#define front_left_servo_release 47
#define front_right_servo_brake 37
#define front_right_servo_release 47
#define back_left_servo_brake 33
#define back_left_servo_release 47
#define back_right_servo_brake 47
#define back_right_servo_release 33
*/

 }

}
//--------------------------------main-----------------------------------

void InitPorts(void){

 // Disable Jtag in order to use PORTC5:2

 MCUCSR|=(1<<JTD); // ATmega 16 sel 59 kai sel 232
 MCUCSR|=(1<<JTD); // ATmega 16 sel 59 kai sel 232

 DDRB&=~((1<<PB7)|(1<<PB6)|(1<<PB5)|(1<<PB4)); // PB4:7 inputs (Hall Effect Sensors)
 DDRB&=~((1<<PB3)|(1<<PB2)); // PB2:3 inputs (SteerIn PB3, Trothle_in
PB2)
 DDRB|=0b00000011; // PB1:0 outputs (SteerOut PB1,
ThottleOut PB0)

 DDRA=0; // PortA input

 DDRD|=(0<<PD0)|(1<<PD1); // PD0 RXD in, PD1 TXDoutcv
 DDRD|=(0<<PD2); // PD2==>External Interrupt 0, in. Duty Cycle
Accelerometer
 DDRD|=(0<<PD3); // PD3==>External Interrupt 1, in. XOR from Hall
Effect

 DDRC&=~((1<<PC6)|(1<<PC7)); // PC6:in, PC7:in;
 DDRC|=(1<<PC5)|(1<<PC4)|(1<<PC3)|(1<<PC2); //PC2:5 out
}

void Timers_Init(void)
{
 // Timer Counter_0 8bit
 TCCR0|=(0<<CS02)|(0<<CS01)|(1<<CS00); //No prescaling Timer prescaler T_overflow=16us
 TIMSK|=(1<<TOIE0); //Timer/Counter 0, overflow enable

 // Timer Counter_2 8bit
 TCCR2|=(0<<CS22)|(1<<CS21)|(0<<CS20); //Timer prescaler=8 T_overflow=128 us
 TIMSK|=(1<<TOIE2); //Timer/Counter 2, overflow enable

}

void USART_Init(unsigned int ubrr)
{
 //Set Baud rate here

 182

 UBRRH=(unsigned char)(ubrr>>8);
 UBRRL=(unsigned char)ubrr;
 // Enable receiver and trasmitter and receiver and transmitter Interrupts
 UCSRB=(1<<RXEN)|(1<<TXEN)|(1<<RXCIE)|(1<<TXCIE);
 //Set frame format; 8 data, 1 stop bit sel 164
 UCSRC=(1<<URSEL)|(0<<USBS)|(1<<UCSZ1)|(1<<UCSZ0);
 //PORTB=~ubrr;

 TX_read=1;
 RX_write=0;
}

void update_values(void)
{
 TX_data_to_send[0]='F';
 TX_data_to_send[1]='L';
 TX_buffer=&TX_data_to_send[0];
 UDR=TX_buffer[0]; //Trigger transmition by loading UDR

}

void external_interrupts_init(void)
{
 GICR|=(1<<INT0) ; //Enable external Interrupt 0
 MCUCR|=(0<<ISC01)|(1<<ISC00); //Any logical change on Interrupt 0 generates
Interrupt sel 67

 GICR|=(1<<INT1) ; //Enable external Interrupt 1
 MCUCR|=(0<<ISC11)|(1<<ISC10); //Any logical change on Interrupt 0 generates
Interrupt sel 67

}

void adc_init(void){
 ADMUX&=~((1<<REFS0)|(1<<REFS1)); // REFS0=0 kai REFS1=0 ARef,Internal Vref off(sel 215)
 //ADMUX|=((1<<REFS0)|(1<<REFS1)); // REFS0=1 kai REFS1=1 ARef,Internal Vref on(sel
215)
 ADMUX&=~(1<<ADLAR); // Left Adjust result off

 ADMUX&=ADC0_and;
 ADMUX|=ADC0_or; // Start from ADC0 port

 ADCSRA|=(1<<ADIE)|(1<<ADEN); // Interrupt Enable, ADC Enable
 //ADCSRA|=(0<<ADPS2)|(1<<ADPS1)|(0<<ADPS0); // ADC prescaler=4 sel 218

 ADCSRA|=(1<<ADPS2)|(1<<ADPS1)|(0<<ADPS0); // ADC prescaler=64 sel 218

 ADCSRA|=(1<<ADSC); // Start Conversion
}

 183

9.2.2 adc_accelerometers.c

// Gia ton accelerometer 1.2 g

static u8 acc_12_flag=0; // Gia na kanw prescaling 2, mia mpainei kai mia oxi
unsigned int acc_12_X_ticks=0; // Metraei to duty cycle
unsigned int acc_12_Y_ticks=0;
unsigned int acc_12_X=0;
unsigned int acc_12_Y=0;

// Analog to Digital Conversion

static u8 ADC_flag=0; // Gia poio port egine to teleytaio conversion
// acc+-2g front
static u8 acc_2_front_X_low=0;
static u8 acc_2_front_X_high=0;
static u8 acc_2_front_Y_low=0;
static u8 acc_2_front_Y_high=0;
// acc+-2g back
static u8 acc_2_back_X_low=0;
static u8 acc_2_back_X_high=0;
static u8 acc_2_back_Y_low=0;
static u8 acc_2_back_Y_high=0;
// Pontentiometro (gia gwnia strofhs)
static u8 pont_low=0;
static u8 pont_high=0;

// Gyroskopio
static u8 gyro_low=0;
static u8 gyro_high=0;

// Battery
static u8 batt_low=0;
static u8 batt_high=0;

static u8 temp_u8; // Gia proswrinh xrhsh

// brake servos
//static u8 servo_clock; // Me prescaler 8, exoume overflow ka8e 128us, opote
20ms/128us=156,25 kyklous
static int servo_clock; // Me prescaler 0, exoume overflow ka8e 32us(mesw flag),
opote 20ms/32us=625 kyklous
static u8 front_left_servo=47; // Exw kentro me 1.5ms, opote 1.5ms/32us=47 palmous
static u8 front_right_servo=47;
static u8 back_left_servo=47;
static u8 back_right_servo=47;

// Other Servos
static u8 throttle_servo=47; //PB0 Ch2_out, PB2 Ch2_in
static u8 steer_servo=47; //PB1 Ch1_out, PB3 Ch1_in

static u8 steer_servo_out=47;
static u8 steer_servo_ser=0;

static u8 throttle_servo_ticks=47; //PB0 Ch2_out, PB2 Ch2_in
static u8 steer_servo_ticks=47; //PB1 Ch1_out, PB3 Ch1_in

static u8 watchdog_timer=0;

// Hall Effect Sensors

 184

static int wheel_big_counter=0; // Metraei ta 1024*128us=131072us
static u8 front_left_ticks=0;
static u8 front_right_ticks=0;
static u8 back_left_ticks=0;
static u8 back_right_ticks=0;
static u8 previous_state=0; // Xrhsimopoieitai gia na ypodhlwsei thn prohgoumenh
katastash,high h low

static u8 front_left_speed=0;
static u8 front_right_speed=0;
static u8 back_left_speed=0;
static u8 back_right_speed=0;

void adc_routine(void){
 switch (ADC_flag){
 case 0:
 ADC_flag=1;
 if((TX_read<6)||(TX_read>7)){//if(TX_read!=7){
 acc_2_front_X_low=ADCL;
 acc_2_front_X_high=ADCH;
 }
 else{
 temp_u8=ADCL;
 temp_u8=ADCH;
 }
 ADMUX&=ADC1_and; // Sample ADC1
 ADMUX|=ADC1_or;
 break;
 case 1:
 ADC_flag=2;
 if((TX_read<8)||(TX_read>9)){//if(TX_read!=9){
 acc_2_front_Y_low=ADCL;
 acc_2_front_Y_high=ADCH;
 }
 else{
 temp_u8=ADCL;
 temp_u8=ADCH;
 }
 ADMUX&=ADC2_and;
 ADMUX|=ADC2_or; // Sample ADC2
 break;
 case 2:
 ADC_flag=3; // Sample next
ADC port
 if((TX_read<10)||(TX_read>11)){//if(TX_read!=11){
 acc_2_back_X_low=ADCL;
 acc_2_back_X_high=ADCH;
 }
 else{
 temp_u8=ADCL;
 temp_u8=ADCH;
 }
 ADMUX&=ADC3_and;
 ADMUX|=ADC3_or; // Sample ADC3
 break;
 case 3:
 ADC_flag=4; // Sample next
ADC port
 if((TX_read<12)||(TX_read>13)){//if(TX_read!=13){
 acc_2_back_Y_low=ADCL;
 acc_2_back_Y_high=ADCH;
 }

 185

 else{
 temp_u8=ADCL;
 temp_u8=ADCH;
 }
 ADMUX&=ADC4_and;
 ADMUX|=ADC4_or; // Sample ADC4

 break;
 case 4:
 ADC_flag=5;
 if((TX_read<18)||(TX_read>19)){//if(TX_read!=19){
 pont_low=ADCL;
 pont_high=ADCH;
 }
 else{
 temp_u8=ADCL;
 temp_u8=ADCH;
 }
 ADMUX&=ADC5_and;
 ADMUX|=ADC5_or; // Sample ADC5
 break;
 case 5:
 ADC_flag=6;
 //cli();
 if((TX_read<20)||(TX_read>21)){
 gyro_low=ADCL;
 gyro_high=ADCH;
 //sei();
 }
 else{
 //sei();
 temp_u8=ADCL;
 temp_u8=ADCH;
 }
 ADMUX&=ADC6_and;
 ADMUX|=ADC6_or; // Sample ADC6
 break;
 case 6:
 ADC_flag=0;
 if(TX_read!=23){
 batt_low=ADCL;
 batt_high=ADCH;
 }
 else{
 temp_u8=ADCL;
 temp_u8=ADCH;
 }
 ADMUX&=ADC0_and;
 ADMUX|=ADC0_or; // Sample ADC0
 break;

 default:
 ADC_flag=0;

 ADMUX&=ADC0_and;
 ADMUX|=ADC0_or;
 break;
 }
 ADCSRA|=(1<<ADSC); // Start New Conversion
}

 186

9.2.3 interrupt_routines.c

// -------------Interrupt routines-------------------------- start
/* USART, Rx Complete */
SIGNAL(SIG_UART_RECV) /* USART, Rx Complete */
{

 if (RX_write==(RX_buffer_length-1)){
 RX_buffer[RX_write]=UDR;
 Received_data=&RX_buffer[0];
 fresh_data=1;
 RX_write=0; //Mhdenise ton deikth
 receive_full=1; //Received buffer full, start transmitting
 }
 else{
 RX_buffer[RX_write]=UDR;
 switch (RX_write){
 case 1:
 front_left_servo=UDR;
 break;
 case 2:
 front_right_servo=UDR;
 break;
 case 3:
 back_left_servo=UDR;
 break;
 case 4:
 back_right_servo=UDR;
 break;
 /*
 case 5:
 throttle_servo=UDR;
 break;
 */
 case 6:
 steer_servo_ser=UDR;
 break;
 default:
 break;
 }
 RX_write++; //Increase pointer
 watchdog_timer=0; // Xrhsimopoeitai ws watchdog
 if(UDR==255){ //ascii(255) Terminator
 RX_write=0; //Mhdenise ton deikth
 }
 }

}
/* USART, Tx Complete */
SIGNAL(SIG_UART_TRANS) /* USART, Tx Complete */
{
 if (TX_read<=(TX_buffer_length-1)) //Check if more bytes are available
 {
 switch (TX_read)
 {

 case 1:
 UDR='S';
 break;
 case 2: // Higher Nibble First
 temp_u8=(acc_12_X>>8); // Right shift 8
 if (temp_u8==0)
 temp_u8=254; // An einai mhden kanto 254

 187

 UDR=temp_u8;
 break;
 case 3:
 temp_u8=acc_12_X; // Fortwnei to dexi twn dyo char
 if (temp_u8==255)
 temp_u8--; // An einai o terminator meiwse to
 UDR=temp_u8;
 break;
 case 4: // Higher Nibble First
 temp_u8=(acc_12_Y>>8); // Right shift 8
 if (temp_u8==0)
 temp_u8=254; // An einai mhden kanto 254
 UDR=temp_u8;
 break;
 case 5:
 temp_u8=acc_12_Y; // Fortwnei to dexi twn dyo char
 if (temp_u8==255)
 temp_u8--; // An einai o terminator meiwse to
 UDR=temp_u8;
 break;
 /// Acc +-2g front Accelerometer
 // Epeidh stelnei low kai high nibbles se jexwrista bytes kai endexetai na allaxoun xrhsimopoioume
 // to TX_read ws flag gia na mhn allajei tis an exei fygei to ena apo ta dyo nibbles
 case 6:
 if(acc_2_front_X_high==0)
 UDR=254;
 else
 UDR=acc_2_front_X_high;
 break;
 case 7:
 if (acc_2_front_X_low==255)
 acc_2_front_X_low--; // An einai o terminator meiwse to
 UDR=acc_2_front_X_low;
 break;
 case 8:
 if(acc_2_front_Y_high==0)
 UDR=254;
 else
 UDR=acc_2_front_Y_high;
 break;
 case 9:
 if (acc_2_front_Y_low==255)
 acc_2_front_Y_low--; // An einai o terminator meiwse to
 UDR=acc_2_front_Y_low;
 break;
 /// Acc +-2g back Accelerometer
 case 10:
 if(acc_2_back_X_high==0)
 UDR=254;
 else
 UDR=acc_2_back_X_high;
 break;
 case 11:
 if (acc_2_back_X_low==255)
 acc_2_back_X_low--; // An einai o terminator meiwse to
 UDR=acc_2_back_X_low;
 break;
 case 12:
 if(acc_2_back_Y_high==0)
 UDR=254;
 else
 UDR=acc_2_back_Y_high;
 break;

 188

 case 13:
 if (acc_2_back_Y_low==255)
 acc_2_back_Y_low--; // An einai o terminator meiwse to
 UDR=acc_2_back_Y_low;
 break;
 case 14:
 if (front_left_speed==0)
 front_left_speed=254; // An einai o terminator meiwse to
 UDR=front_left_speed;
 break;
 case 15:
 if (front_right_speed==0) // An einai 0 diabazetai ws EOF
 front_right_speed=254; // Allaje to se 254 opou den tha ginei pote
 UDR=front_right_speed;
 break;
 case 16:
 if (back_left_speed==0)
 back_left_speed=254; // An einai 0 diabazetai ws EOF
 UDR=back_left_speed; // Allaje to se 254 opou den tha ginei pote
 break;
 case 17:
 if (back_right_speed==0)
 back_right_speed=254; // An einai o terminator meiwse to
 UDR=back_right_speed;
 break;
 case 18:
 if(pont_high==0)
 UDR=254;
 else
 UDR=pont_high;
 break;
 case 19:
 if (pont_low==255)
 pont_low--; // An einai o terminator meiwse to
 UDR=pont_low;
 break;
 case 20:
 if(gyro_high==0)
 gyro_high=254;
 else
 UDR=gyro_high;
 break;
 case 21:
 if (gyro_low==255)
 gyro_low--; // An einai o terminator meiwse to
 UDR=gyro_low;
 break;
 case 22:
 if(batt_high==0)
 UDR=254;
 else
 UDR=batt_high;
 break;
 case 23:
 if (batt_low==255)
 batt_low--; // An einai o terminator meiwse to
 UDR=batt_low;
 break;

 case 24:
 if (steer_servo==0)
 steer_servo=254; // An einai o terminator meiwse to
 UDR=steer_servo;

 189

 break;
 case 25:
 if (throttle_servo==0)
 throttle_servo=254; // An einai o terminator meiwse to
 UDR=throttle_servo;
 break;
 default:
 if(TX_read!=(TX_buffer_length-1)){
 //UDR=TX_buffer[TX_read]; //Start transmition by loading UDR
 if ((number>='0')&& (number<='9')){
 UDR=number ;
 number++;
 }
 else{
 UDR='0';
 number='0';
 }
 }
 else{
 UDR=255; //Terminator

 }
 break; //Default
 }// End switch

 TX_read++; //Increase TX_read;
 }
 else{
 TX_read=1; // Start from 1 cause 0 is allready sent whole Data
sent
 send_data=1; // Esteile to paketo
 }

}

/* Timer/Counter0 Overflow */
SIGNAL(TIMER0_OVF_vect){
 if(acc_12_X_ticks>0)
 acc_12_X_ticks++;
 if(acc_12_Y_ticks>0)
 acc_12_Y_ticks++;

 if(acc_12_flag==1){ // Daneiko flag. Tha mpainei ka8e 32us. Mpainei otan den mpainei sto
"epomeno if"

 if(servo_clock==0){ // Ola sto high
 PORTC|=(1<<PC5)|(1<<PC4)|(1<<PC3)|(1<<PC2); // PC5:2 high
 PORTB|=(1<<PB1)|(1<<PB0); //PB1:0 high
 servo_clock++;
 }
 else{
 if(servo_clock==front_left_servo)
 PORTC&=~(1<<PC5); // PC5 low
 if(servo_clock==front_right_servo)
 PORTC&=~(1<<PC4); // PC4 low
 if(servo_clock==back_left_servo)
 PORTC&=~(1<<PC3); // PC3 low
 if(servo_clock==back_right_servo)
 PORTC&=~(1<<PC2); // PC2 low
 if(servo_clock==steer_servo_out)
 PORTB&=~(1<<PB0); // PB1 low
 if(servo_clock==throttle_servo)

 190

 PORTB&=~(1<<PB1); // PB0 low

 servo_clock++;
 if (servo_clock>625) //156 // An perasei to 156, tote oloklhrwse ton
Palmo
 servo_clock=0;
 }
 }// if(acc_12_flag==0){

 // Epomeno if
 if (acc_12_flag==0){ //Tha mpainei edw kathe 32us

 acc_12_flag=1; //Mia mpainei kai mia oxi

 ///////////Pros8eto////////////////////////
 ///--
 if((PINB&0b00001000)) //PB2
Throttle_in High Trigger Counting
 throttle_servo_ticks++;
 else{
 if(throttle_servo_ticks>0){ //PB2 Throttle_in
Low Stop Counting
 throttle_servo=throttle_servo_ticks;
 throttle_servo_ticks=0;
 if((throttle_servo<20)||(throttle_servo>90)){

 steer_servo=throttle_servo=47;
 // Phgaine ta sto kentro // Xasame to shma, opote blepei mhden
 }
 }

 }
 ///--
 if((PINB&0b00000100)) //PB3
Steer_in High Trigger Counting
 steer_servo_ticks++;
 else{
 if(steer_servo_ticks>0){ //PB3 Steer_in
 Low Stop Counting
 steer_servo=steer_servo_ticks;
 steer_servo_ticks=0;
 if((steer_servo<20)||(steer_servo>90)){

 steer_servo=throttle_servo=47;
 // Phgaine ta sto kentro // Xasame to shma, opote blepei mhden
 }
 }
 }
 ///--
 ///////////Pros8eto////////////////////////

 }
 else
 acc_12_flag=0;
}

/* Timer/Counter2 Overflow */
SIGNAL(TIMER2_OVF_vect){ // Exoume Overflow Ka8e 128us

 wheel_big_counter++;
 if(wheel_big_counter>781){ // An mpei edw exoune perasei
781*128us=100000usec=0.1sec

 191

 front_left_speed=front_left_ticks; // Pio prin (An mpei edw exoune perasei
1562*128us=200000usec)
 front_right_speed=front_right_ticks;
 back_left_speed=back_left_ticks;
 back_right_speed=back_right_ticks;
 wheel_big_counter=0; // Start Counting Again
 front_left_ticks=front_right_ticks=back_left_ticks=back_right_ticks=0;
 }

}

// External Interrupt Request 1, +1.2 Accelerometer
SIGNAL(INT1_vect)
{

 temp=PINC;
 if (temp&0b01000000){ //PC6 X axis (temp&0b01000000)
 if(acc_12_X_ticks==0)
 acc_12_X_ticks++; // Trigger Counting
 }
 else{
 if(acc_12_X_ticks>0){
 if(TX_read!=3) // An exei steilei to high char mhn to allaxeis
 acc_12_X=(acc_12_X_ticks-1);
 acc_12_X_ticks=0;
 }
 }
 if (temp&0b10000000){ //PC7 Y axis (temp&0b10000000)
 if(acc_12_Y_ticks==0)
 acc_12_Y_ticks++; // Trigger Counting
 }
 else{
 if(acc_12_Y_ticks>0){
 if(TX_read!=5) // An exei steilei to high nibble mhn to
allaxeis
 acc_12_Y=(acc_12_Y_ticks-1);
 acc_12_Y_ticks=0;
 }
 }

}

// External Interrupt Request 0 Wheel speeds

SIGNAL(INT0_vect)
{

 temp=PINB;
 if (temp&0b00010000){ // An einai high koita to previous state
 if ((previous_state&0b00010000)==0) // An isxyei exei allaxei to state tou PB4
 front_right_ticks++;
 }

 if (temp&0b00100000){ // An einai high koita to previous state
 if ((previous_state&0b00100000)==0) // An isxyei exei allaxei to state tou PB5
 front_left_ticks++;

 }
 if (temp&0b01000000){ // An einai high koita to previous state

 192

 if ((previous_state&0b01000000)==0) // An isxyei exei allaxei to state tou PB6
 back_right_ticks++;
 }

 if (temp&0b10000000){
 if((previous_state&0b10000000)==0) // An einai high koita to previous state
 back_left_ticks++; // An isxyei exei allaxei to state tou
PB7

 }

 previous_state=temp;
}

// ADC Conversion Complete
SIGNAL(ADC_vect){
}

// Default interrupt vector to avoid reset
//http://hubbard.engr.scu.edu/embedded/avr/doc/avr-libc/avr-libc-user-manual/index.html
SIGNAL(__vector_default){
 // user code here
}

// -------------Interrupt routines---------------------------- end

9.2.4 servos.c

// Definition gia tis 8eseis twn servo!

#define front_left_servo_brake 57
#define front_left_servo_release 47
#define front_right_servo_brake 37
#define front_right_servo_release 47
#define back_left_servo_brake 33 // Ayto einai to pisw servo pou douleyei
#define back_left_servo_release 47
#define back_right_servo_brake 47 // Ayto einai to asyndeto servo
#define back_right_servo_release 33

9.2.5 header.h

typedef unsigned char u8;
typedef unsigned int u16;
typedef unsigned long u32;

#define FOSC 16000000 //Clock speed
#define BAUD 230400 //38400 //57600 //115200
#define MYUBRR 8 //FOSC/16/BAUD-1 //8

#define TX_buffer_length 32
#define TX_buffer_mask 31 //Xrhsimopoieitai gia na mhn ginetai out of bounds buffer
#define RX_buffer_length 32
#define RX_buffer_mask 31 //Xrhsimopoieitai gia na mhn ginetai out of bounds buffer

// ADC Masks (sel 216) Ayta tha ginontai Bit -and me ton ADMUX gia thn epilogh tou channel

 193

#define ADC0_and 0b11100000
#define ADC0_or 0
#define ADC1_and 0b11100001
#define ADC1_or 1
#define ADC2_and 0b11100010
#define ADC2_or 2
#define ADC3_and 0b11100011
#define ADC3_or 3
#define ADC4_and 0b11100100
#define ADC4_or 4
#define ADC5_and 0b11100101
#define ADC5_or 5
#define ADC6_and 0b11100110
#define ADC6_or 6
#define ADC7_and 0b11100111
#define ADC7_or 7

 194

9.3 MATALAB codes

9.3.1 plotdata

function plotdata(data,k);

% sprintf(big_buffer_math,"%1.3f \t%1.3f \t%1.3f \t%1.3f \t%1.3f \t%1.3f \t%2.2f \t%2.2f \t%2.2f \t%2.2f \t%3.0f \t%2.2f \t%d
\t%4.4f \t%4.4f \t%4.4f \t%d \%d \t%d \t%d \t%d \t%d \t%d \t%d
\t%d \t%d \t%d \t%d \t%d \t%d \t%d
\n",acc_12_X_gs,acc_12_Y_gs,acc_2_front_X_gs,acc_2_front_Y_gs,acc_2_back_X_gs,acc_2_back_Y_gs,front_left_speed,front_rig
ht_speed,back_left_speed,back_right_speed,gyro_degs_ana_sec,steer,bill_local_command,stab_double_parameters[0],stab_double_pa
rameters[1],stab_double_parameters[2],auto_trig,auto_speed,auto_steer,stab_commands[2],stab_commands[3],stab_commands[4],sta
b_commands[5],bill_brake,deigmata,time_passed,(time_passed_sum/1000),hour,min,sec,usec);
% // MX \tMY \tFX \tFY \tBX \tBY \tFLS \tFRS \tBLS
\tBRS \tGyro \tSteer \tMethod \tSDP[0] \tSDP[1] \tSDP[2]\tauto_trig \auto_speed \tauto_steer \tFLB \tFRB
\tRLB \tBRB \tbill_brake \tSamples \tTime_passed: \tTimeSum \tHour \min \tsec \tusec
\n",acc_12_X_gs,acc_12_Y_gs,acc_2_front_X_gs,acc_2_front_Y_gs,acc_2_back_X_gs,acc_2_back_Y_gs,front_left_speed,front_rig
ht_speed,back_left_speed,back_right_speed,gyro_degs_ana_sec,steer,bill_local_command,stab_double_parameters[0],stab_double_pa
rameters[1],stab_double_parameters[2],auto_trig,auto_speed,auto_steer,stab_commands[2],stab_commands[3],stab_commands[4],sta
b_commands[5],bill_brake,deigmata,time_passed,(time_passed_sum/1000),hour,min,sec,usec);

enadyox=data(:,1);
enadyoy=data(:,2);
dyofx=data(:,3);
dyofy=data(:,4);
dyobx=data(:,5);
dyoby=data(:,6);
fl=data(:,7);
fr=data(:,8);
bl=data(:,9);
br=data(:,10);
gyro=data(:,11);
steer=data(:,12);
method=data(1,13);
SDP0=data(:,14);
SDP1=data(:,15);
SDP2=data(:,16);

auto_trig=data(:,17);
auto_speed=data(:,18);
auto_steer=data(:,19);

FLB=data(:,20);
FRB=data(:,21);
BLB=data(:,22);
BRB=data(:,23);
Brake_command=data(:,24);
samples=data(:,25);
% to 23 to afhnw
time=data(:,27)/1000;
hour=data(:,28);
min=data(:,29);
sec=data(:,30);
usec=data(:,31);
velocity=(fl+fr+bl+br)/4;
wheelbase=0.54;
mass=11;

%range=1835:2200;
% range=934:1500;

 195

% range=2:3000;%3000;
% range=300:1000;
%

% range=2021:3000; % kalo gia plotdata(logmath_23_2_cropped,0.004);

% range=2100:3000; % kalo gia plotdata(logmath_23_2_cropped,0.004);
% range=1:700; %plotdata(logmath_23_2_crop,0.004);
%range=1:900; %plotdata(log_25part_1,0.004);
% range=1050:1850; %plotdata(log_25_part2,0.004);
range=1050:1780; %plotdata(log_25_part2,0.004);
timeplot=time(range)-time(range(1));
% Normalize time
% 50954
% stoixeio 8357
for i=2:length(timeplot);
 timeplot(i)=timeplot(i-1)+8000;
end
timeplot=timeplot/1000000;
step=7;
fl(range)=exomalyne(fl(range),step);
fr(range)=exomalyne(fr(range),step);
bl(range)=exomalyne(bl(range),step);
br(range)=exomalyne(br(range),step);

velocity=(fl+fr+bl+br)/4;

for i=1:length(steer)
 yaw_rate_des(i)=(velocity(i)*steer(i))/(wheelbase+(mass*velocity(i)^2*k/(2*wheelbase)));
end

h1=subplot(3,1,1); plot(timeplot,gyro(range),'-r*',timeplot,yaw_rate_des(range),'-bx');
xlabel('Time (sec)')
title('ADXRS300 Gyroscope')
legend('Gyro (deg/sec)','Yaw Rate Des(deg/sec)')
h2=subplot(3,1,2); plot(timeplot,steer(range),'--m.');
xlabel('Time (sec)')
title('Steering Angle')
legend('Steering Angle (degrees)')
h3=subplot(3,1,3); plot(timeplot,fl(range),'-r.',timeplot,fr(range),'-go',timeplot,bl(range),'-bx',timeplot,br(range),'-
c+',timeplot,velocity(range),'-m.')
title('Wheel Speed (m/sec)')
xlabel('Time (sec)')
legend('Front Left','Front Right','Back Left','BackRight','Velocity')

axis([h1 h2 h3] ,'tight')
set(h1,'nextplot','replacechildren');
set(h2,'nextplot','replacechildren');
set(h3,'nextplot','replacechildren');

brake_FLB=[];
brake_FRB=[];
brake_BLB=[];
brake_BRB=[];
brake_decision_m=[];
textaki=[];
for J=1:length(range);

 h1=subplot(3,1,1);plot(timeplot(1:J),gyro(range(1:J)),'-r*',timeplot(1:J),yaw_rate_des(range(1:J)),'-bx');
 if (Brake_command(range(J))==1)

 196

 temp=length(brake_decision_m);
 brake_decision_m(temp+1)=J;
 textaki='O';%'\uparrow O';
 elseif (Brake_command(range(J))==2)
 temp=length(brake_decision_m);
 brake_decision_m(temp+1)=J;
 textaki='U';%'\downarrow U';
 end

text(timeplot(brake_decision_m),gyro(range(brake_decision_m)),textaki,'color','green','HorizontalAlignment','left','FontWeight','bold','
FontSize',9);

 h2=subplot(3,1,2); plot(timeplot(1:J),steer(range(1:J)),'--m.');
 h3=subplot(3,1,3); plot(timeplot(1:J),fl(range(1:J)),'-r.',timeplot(1:J),fr(range(1:J)),'-g.',timeplot(1:J),bl(range(1:J)),'-
b.',timeplot(1:J),br(range(1:J)),'-c.',timeplot(1:J),velocity(range(1:J)),'-m.')

 if (FLB(range(J))==57)
 temp=length(brake_FLB);
 brake_FLB(temp+1)=J;
 end
 if (FRB(range(J))==37)
 temp=length(brake_FRB);
 brake_FRB(temp+1)=J;
 end
 if (BLB(range(J))==33)
 temp=length(brake_BLB);
 brake_BLB(temp+1)=J;
 end
 if (BRB(range(J))==47)
 temp=length(brake_BRB);
 brake_BRB(temp+1)=J;
 end

text(timeplot(brake_FLB),fl(range(brake_FLB)),'\uparrow','HorizontalAlignment','left','color','red','FontWeight','bold','FontSize',12);

text(timeplot(brake_FRB),fr(range(brake_FRB)),'\uparrow','HorizontalAlignment','left','color','green','FontWeight','bold','FontSize',12)
;

text(timeplot(brake_BLB),bl(range(brake_BLB)),'\uparrow','HorizontalAlignment','left','color','black','FontWeight','bold','FontSize',12
);

text(timeplot(brake_BRB),br(range(brake_BRB)),'\uparrow','HorizontalAlignment','left','color','cyan','FontWeight','bold','FontSize',12)
;

 F(J)=getframe(gca,[-30; -30; 1100; 670]);

end

movie(F,1);
movie2avi(F,'test1');

function out=exomalyne(in,step)
 out=in;
 for i=1:(length(in)-step)
 out(i)=sum(in(i:i+step))/step;
 end

 197

9.3.2 gwnies

function [p1 p2]=gwnies28_3_07

%
% xn=[1.924 1.943 1.953 1.987 2.04 2.051 2.090 2.104 2.104 2.139 2.163 2.183 2.212 2.246 2.266 2.3];
% yn=[21 19 18 14.5 10.5 8 4 0 0 -3 -5 -8 -10 -12.5 -14.5 -19];

format long
xn1=[1.924 1.943 1.953 1.987 2.04 2.051 2.090 2.104];
yn1=[21 19 18 14.5 10.5 8 4 0];
xn2=[2.104 2.139 2.163 2.183 2.212 2.246 2.266 2.3];
yn2=[0 -3 -5 -8 -10 -12.5 -14.5 -19];

p1 = polyfit(xn1,yn1,3);
p2 = polyfit(xn2,yn2,3);

y1 = polyval(p1,1.924:0.01:2.104);
y2 = polyval(p2,2.104:0.01:2.3);

plot(1.924:0.01:2.104,y1,2.104:0.01:2.3,y2,xn1,yn1,xn2,yn2);

xlabel('Voltage (vots)')
ylabel('Steering Angle(deg)')
title('Steering Angle Estimation')
legend('Estimated Angle(right)','Estimated Angle(left)','Real Angle(right)','Real Angle(left)')
grid

% est=polyval(p,[1.924 1.943 1.953 1.987 2.04 2.051 2.090 2.104 2.104 2.139 2.163 2.183 2.212 2.246 2.266 2.3]);
% polyval(p,2.104)

9.3.3 Bird’s eye view

function birdeyeview_final(data); % 13-7-2008

% Shmeiwsh, exei diafora, edw einai h taxythta apo tous 4 troxous

% sprintf(big_buffer_math,"%1.3f \t%1.3f \t%1.3f \t%1.3f \t%1.3f \t%1.3f \t%2.2f \t%2.2f \t%2.2f \t%2.2f \t%3.0f \t%2.2f
\t%d \t%4.4f \t%4.4f \t%4.4f \t%d \%d \t%d \t%d \t%d \t%d \t%d \t%d \t%d \t%d
\t%d \t%d \t%d \t%d \t%d
\n",acc_12_X_gs,acc_12_Y_gs,acc_2_front_X_gs,acc_2_front_Y_gs,acc_2_back_X_gs,acc_2_back_Y_gs,front_left_speed,fr
ont_right_speed,back_left_speed,back_right_speed,gyro_degs_ana_sec,steer,bill_local_command,stab_double_parameters[0],s
tab_double_parameters[1],stab_double_parameters[2],auto_trig,auto_speed,auto_steer,stab_commands[2],stab_commands[3],s
tab_commands[4],stab_commands[5],bill_brake,deigmata,time_passed,(time_passed_sum/1000),hour,min,sec,usec);
% // MX \tMY \tFX \tFY \tBX \tBY \tFLS \tFRS \tBLS \tBRS \tGyro \tSteer \tMethod
\tSDP[0] \tSDP[1] \tSDP[2]\tauto_trig \auto_speed \tauto_steer \tFLB \tFRB \tRLB \tBRB \tbill_brake \tSamples
\tTime_passed: \tTimeSum \tHour \min \tsec \tusec
\n",acc_12_X_gs,acc_12_Y_gs,acc_2_front_X_gs,acc_2_front_Y_gs,acc_2_back_X_gs,acc_2_back_Y_gs,front_left_speed,fr
ont_right_speed,back_left_speed,back_right_speed,gyro_degs_ana_sec,steer,bill_local_command,stab_double_parameters[0],s
tab_double_parameters[1],stab_double_parameters[2],auto_trig,auto_speed,auto_steer,stab_commands[2],stab_commands[3],s
tab_commands[4],stab_commands[5],bill_brake,deigmata,time_passed,(time_passed_sum/1000),hour,min,sec,usec);

compensate_range=470:530; % Apo edw exoume mhdenikes taxythtes opote mporoume na dior8wsoume tis times twn
epitaxynsimetrwn

 198

k=0.004;

enadyox=data(:,1);
enadyoy=data(:,2);
enadyoxcon=sum(enadyox(compensate_range))/length(compensate_range);
enadyoycon=sum(enadyoy(compensate_range))/length(compensate_range);
enadyox=enadyox-enadyoxcon;
enadyoy=enadyoy-enadyoycon;

dyofx=data(:,3);
dyofy=data(:,4);
dyofxcon=sum(dyofx(compensate_range))/length(compensate_range);
dyofycon=sum(dyofy(compensate_range))/length(compensate_range);
dyofx=dyofx-dyofxcon;
dyofy=dyofy-dyofycon;

dyobx=data(:,5);
dyoby=data(:,6);
dyobxcon=sum(dyobx(compensate_range))/length(compensate_range);
dyobycon=sum(dyoby(compensate_range))/length(compensate_range);
dyobx=dyofx-dyobxcon;
dyoby=dyofy-dyobycon;

fl=data(:,7);
fr=data(:,8);
bl=data(:,9);
br=data(:,10);

gyro=data(:,11);
steer=data(:,12);

method=data(1,13); % 1: single accelerometer ESC

SDP0=data(:,14); % Sensitivity
SDP1=data(:,15); % Understeer Gradient
SDP2=data(:,16);

auto_trig=data(:,17); % An einai 1 exei klh8ei h auto steer
auto_speed=data(:,18); % Poso na ftasei gia na stripsei
auto_steer=data(:,19); % Poso na stripsei

FLB=data(:,20);
FRB=data(:,21);
BLB=data(:,22);
BRB=data(:,23);

Brake_command=data(:,24);
samples=data(:,25);
% to 23 to afhnw
time=data(:,27)/1000;
hour=data(:,28);
min=data(:,29);
sec=data(:,30);
usec=data(:,31);
velocity=(fl+fr+bl+br)/4;
wheelbase=0.54;
mass=11;

 199

% range=1:650; %plotdata_auto(log25_2_08_auto_ESP_off,0.004);
% range=1:620; %plotdata_auto(log_25_2_esp_off_auto,0.004); kalo ayto
%plotdata_auto(log_25_2_auto_ESP_on,0.004); kai ayto kalo!!! gia esp on Apo to 470-530 deigma kai meta einai mhdenikes
oi taxythtes, opote mporoume na kanoume compensate ta accelerometers

range=1:620; %plotdata_auto(log_25part,0.004)

timeplot=time(range)-time(range(1));

dt=8000;
% Normalize time
for i=2:length(timeplot);
 timeplot(i)=timeplot(i-1)+dt; %dt=8000;
end
timeplot=timeplot/1000000;
step=7;

fl(range)=exomalyne(fl(range),step);
fr(range)=exomalyne(fr(range),step);
bl(range)=exomalyne(bl(range),step);
br(range)=exomalyne(br(range),step);

velocity=(fl+fr+bl+br)/4;

for i=1:length(steer)
 yaw_rate_des(i)=(velocity(i)*steer(i))/(wheelbase+(mass*velocity(i)^2*k/(2*wheelbase)));
end

steer_rad=steer(range)*pi/180; % Convert to radians
gyro_rad=gyro(range)*pi/180; % Convert to radians/sec

psi_rad(1)=0; % Arxikh Gwnia =0 rad
pos_x(1)=0;
pos_y(1)=0;
for i=2:length(gyro_rad)
 psi_rad(i)=psi_rad(i-1)+((gyro_rad(i)*dt)/1000000);
end

vel=bl(range)+br(range)+((fr(range)+fr(range)).*cos(steer_rad)); % Shmeio pros shmeio
vel=vel/4;

for i=2:length(gyro_rad)
 pos_x(i)=pos_x(i-1)+vel(i)*cos(psi_rad(i))*dt/1000000;
 pos_y(i)=pos_y(i-1)+vel(i)*sin(psi_rad(i))*dt/1000000;
end
% To akolou8o ta kanoume gia na kanoume hold ta plots
plot(pos_y,pos_x,'m-',0,0,'b-');

for i=1:length(gyro_rad)
 if(mod(i,20)==0)
 temp=sprintf('t=%1.1f',timeplot(i));
 text(pos_y(i),pos_x(i),temp,'FontSize',8);
 %text(pos_y(i),pos_x(i),'\uparrow','FontSize',14,'Rotation',-psi_rad(i)*180/pi,'color','red');
 text(pos_y(i),pos_x(i),'\rightarrow','FontSize',20,'Rotation',-psi_rad(i)*180/pi+90,'color','red');
 end
end
% ,'linestyle','-','EdgeColor','red','LineWidth',1
% psi_rad*180/pi sthn abaparastash sto grafhma 8elei -psi_rad*180/pi

 200

% Prwta 8a kanoume plot me to ESP of kai meta to me hold to auto
ylabel('Y (m)')
xlabel('X (m)')
title('Bird''s Eye View')
sensitivity=data(1,14);
temp=sprintf('Vehicle''s Trajectory\nSensitivity:%1.1f',sensitivity);
% legend('Vehicle''s Trajectory')
temp1=sprintf('Vehicle''s Trajectory\nSensitivity:0.9');
legend(temp,temp1);

brake_FLB=[];
brake_FRB=[];
brake_BLB=[];
brake_BRB=[];
brake_decision_m=[];
textaki=[];

brake_FLB=find(FLB(range)==57);
brake_FRB=find(FRB(range)==37);
brake_BLB=find(BLB(range)==33);
brake_BRB=find(BRB(range)==47);
temp=sprintf('Brake: \n FL:Front Right\nFR:Front Right\nBL:Back Left\nBR:Back Right\n');

% chi=-4.8; %on
chi=-2; % off
psi=0.5;
text(chi,psi+0.45,'Front Left:\clubsuit','color','red')
text(chi,psi+0.3,'Front Right:\heartsuit','color','green')
text(chi,psi+0.15,'Back Left:\diamondsuit','color','black')
text(chi,psi,'Back Right:\spadesuit','color','cyan')%,'linestyle','-','EdgeColor','red','LineWidth',2)

aktina=0.1;
text(pos_y(brake_FLB)-sin(-psi_rad(brake_FLB)+pi/4)*aktina,pos_x(brake_FLB)+cos(-
psi_rad(brake_FLB)+pi/4)*aktina,'\clubsuit','HorizontalAlignment','left','color','red','FontWeight','bold','FontSize',6);
text(pos_y(brake_FRB)-sin(-psi_rad(brake_FRB)-pi/4)*aktina,pos_x(brake_FRB)+cos(-psi_rad(brake_FRB)-
pi/4)*aktina,'\heartsuit','HorizontalAlignment','left','color','green','FontWeight','bold','FontSize',6); % Swsto gia front right
text(pos_y(brake_BLB)+sin(-psi_rad(brake_BLB)-pi/4)*aktina,pos_x(brake_BLB)-cos(-psi_rad(brake_BLB)-
pi/4)*aktina,'\diamondsuit','HorizontalAlignment','left','color','black','FontWeight','bold','FontSize',6);% Swsto gia back left
text(pos_y(brake_BRB)+sin(-psi_rad(brake_BRB)+pi/4)*aktina,pos_x(brake_BRB)-cos(-
psi_rad(brake_BRB)+pi/4)*aktina,'\spadesuit','HorizontalAlignment','left','color','cyan','FontWeight','bold','FontSize',6);

grid

function out=exomalyne(in,step)
 out=in;
 for i=1:(length(in)-step)
 out(i)=sum(in(i:i+step))/step;
 end

 201

9.4 Typical Log file output

02-25-2008 09:54:35.767807
Start writing Again
0.098 -0.010 -0.044 -0.059 0.047 -0.028 0.00 0.00 0.00 0.00 0 -23.89 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 1 46591 113322 9 54 35 778116
0.095 -0.011 -0.051 -0.060 0.046 -0.029 0.00 0.00 0.00 0.00 -1 -23.86 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 2 10546 113332 9 54 35 778455
0.100 -0.009 -0.041 -0.054 0.046 -0.029 0.00 0.00 0.00 0.00 -1 -22.84 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 3 206 113332 9 54 35 778639
0.101 -0.006 -0.045 -0.059 0.046 -0.030 0.00 0.00 0.00 0.00 -1 -23.89 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 4 172 113333 9 54 35 778807
0.093 -0.014 -0.046 -0.060 0.047 -0.030 0.00 0.00 0.00 0.00 -2 -23.56 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 5 166 113333 9 54 35 778971
0.098 -0.009 -0.046 -0.054 0.053 -0.030 0.00 0.00 0.00 0.00 -1 -23.93 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 6 162 113333 9 54 35 779164
0.101 -0.006 -0.046 -0.046 0.049 -0.031 0.00 0.00 0.00 0.00 -2 -23.93 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 7 192 113333 9 54 35 779329
0.101 -0.005 -0.046 -0.050 0.055 -0.012 0.00 0.00 0.00 0.00 -2 -23.88 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 8 1961 113335 9 54 35 781355
0.097 -0.010 -0.046 -0.049 0.044 -0.025 0.00 0.00 0.00 0.00 0 -23.22 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 9 7963 113343 9 54 35 789379
0.102 -0.005 -0.047 -0.042 0.060 -0.027 0.00 0.00 0.00 0.00 -1 -23.93 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 10 53053 113396 9 54 35 842461
0.103 -0.006 -0.047 -0.052 0.052 -0.026 0.00 0.00 0.00 0.00 -2 -23.75 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 11 437 113396 9 54 35 842775
0.103 -0.007 -0.047 -0.054 0.056 -0.028 0.00 0.00 0.00 0.00 -2 -23.55 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 12 213 113397 9 54 35 842974
0.107 -0.004 -0.053 -0.049 0.046 -0.029 0.00 0.00 0.00 0.00 0 -23.93 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 13 183 113397 9 54 35 843156
0.108 -0.003 -0.049 -0.043 0.061 -0.029 0.00 0.00 0.00 0.00 -1 -23.36 1 0.9000
 0.0040 0.0000 0 1 55 47 47
 47 33 0 14 181 113397 9 54 35 843331

0.098 -0.011 -0.042 -0.041 0.059 -0.030 0.00 0.00 0.00 0.00 -1 -23.87 1
 0.9000 0.0040 0.0000

 202

The end

The end!

	Scaled Test Bed for Automotive Experiments: Evaluation of Electronic Stability Control Schemes
	Master thesis of
	Diomidis I. Katzourakis
	Dr. Yannis Papaefstathiou
	Dr. Apostolos Dollas
	Dr. Michail G. Lagoudakis
	Abstract

	Υπό Κλίμακα Πλατφόρμα για Αυτοκινητιστικά Πειράματα: Αξιολόγηση Συστημάτων Ηλεκτρονικού Ελέγχου Ευστάθειας
	Μεταπτυχιακή Διατριβή του
	Κατζουράκη Ι. Διομήδη
	Δρ. Παπαευσταθίου Γιάννης
	Δρ. Δόλλας Απόστολος
	Δρ. Λαγουδάκης Γ. Μιχαήλ
	Περίληψη
	Table of Contents
	1. Introduction
	2. Related work
	2.1 Existing ESPs
	2.1.1 Historical and Commercial background of the ESC…

	2.2 Published ESPs
	2.3 Scaled Implementations
	2.4 Comparison between published ESPs and our system
	2.5 Attainment to Academic Community

	3. Vehicle Dynamics and Stabilization Algorithm
	3.1 Oversteer and Understeer
	3.1.1 Abstractional Behaviour
	3.1.2 Counteracting Oversteer and Understeer

	3.2 Yaw rate control with individual wheel braking
	3.2.1 Vehicle dynamics
	3.2.2 Yaw rate stabilization algorithm
	Single gyroscope Electronic Stability Control Algorithm
	Analytic presentation of the algorithm

	3.3 Single Accelerometer Electronic Stability Control
	Single Accelerometer ESC algorithm
	3.3.1 Real Environment Evaluation for the Single Accelerometer ESC

	4. System’s Implementation
	4.1 Mechanical modifications
	4.2 Computing hardware
	4.2.1 Sensors
	Front and Rear Axle Accelerometers: ADXL311
	ADXL311 ±2g interface with the microcontroller
	Central Accelerometer: ADXL213
	ADXL213 ±1.2g interface with the microcontroller
	ADXL311 and ADXL213 bandwidth selection
	Observations, problems and possible improvements on the interface between the accelerometers and the microcontroller
	ADXL311
	ADXL213
	Side by side comparison of ADXL311 and ADXL213
	Steering Angle Estimation
	Wheel angular velocity
	Yaw rate estimation
	Driver’s commands

	4.2.2 Actuators
	4.2.3 Power Supply
	4.2.4 Microcontroller: Schematics, PCB and Development Tools
	Schematics and PCB
	Central PCB for the microcontroller
	Development Tools
	Development Board
	Development Software
	Programming the device

	4.3 Software at SBC
	4.3.1 Single Board Computer; Ubuntu Linux
	Third Party Software

	4.3.2 Custom developed source code
	A Brief outline
	Daemon!
	Serial port initialization, reading and writing
	Evaluation of the information from the binary data
	Auto generated experiments function

	4.3.3 Stabilization routines
	4.3.4 Scripts

	4.4 Firmware at the Microcontroller
	4.4.1 Main loop
	4.4.2 Normal Routines
	4.4.3 Interrupt Routines:

	4.5 How to operate the system

	5. Real Environment Evaluation
	Real Environment Experiments
	Bird-Eye-View

	6. Conclusions and Future Work
	6.1 Conclusions
	6.2 Future work and potentials extensions

	7. Acknowledgements
	8. References
	9. Appendix
	9.1 Host code
	9.1.1 daemon
	async.cpp
	headers.h
	init_serial.c
	time_etc.cpp
	servos.h
	stabilization_routine1.c
	stabilization_routine2.c
	stabilization_routine3.c

	9.1.2 Scripts
	compile

	9.1.3 index.html

	9.2 Microcontroller codes
	9.2.1 ESC_new.c
	9.2.2 adc_accelerometers.c
	9.2.3 interrupt_routines.c
	9.2.4 servos.c
	9.2.5 header.h

	9.3 MATALAB codes
	9.3.1 plotdata
	9.3.2 gwnies
	9.3.3 Bird’s eye view

	9.4 Typical Log file output

