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1   Introduction 
 

 

Systems biology is a new field of biology that aims to develop a system-level 

understanding of biological systems and provide information that will be useful to 

molecular biology and medicine. System-level understanding of course, requires a set 

of principles and methodologies that links the behaviors of molecules to system 

characteristics and functions. Ultimately, cells, organisms, and human beings will be 

described and understood at the system-level grounded on a consistent framework of 

knowledge that is underpinned by the basic principles of physics. 

In this thesis, we will simulate and identify combination (or multicomponent) 

therapy models using a neuro fuzzy approach. Systems Biology provides a 

perspective from which to understand at a molecular level the basis for the efficacy of 

some multicomponent drugs. Combination therapy is a very important field in modern 

medicine and Systems Biology can provide the help for finding answers and solutions 

in many problems that exist - and mostly in how to predict this efficacy we 

mentioned. 

Starting this thesis, in Chapter 2 we make an introduction to molecular biology 

and its most basic concepts. Cells, DNA, genomes and proteins are presented in order 

to introduce biological issues that will help the reader to comprehend better our work. 

We also make an introduction to the field of Systems Biology, relevant to the 

application of systems theory to biology. 

In Chapter 3, we make a presentation of combination therapy and 

multicomponent drug; drugs that act selectively on a specific combination of target 

activities found in diseased cells. We examine the Systems Biology approach of how 

to predict what we call synergy of multicomponent drugs and we simulate four 

models of combination therapy pathways. 

Chapter 4 is referred to fuzzy systems. We examine basic concepts of the 

fuzzy theory, such as membership functions, fuzzy sets and fuzzy rules through the 

presentation of the procedure needed for designing a fuzzy controller. Of course, we 

conclude presenting a neuro fuzzy identification scheme we use in our work based on 

Addaptive Fuzzy Systems and High Order Neural Network Functions. 
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Finally, in Chapter 5 we applicate this identification scheme to the 

combination therapy models mentioned in Chapter 3. Our work is implemented in 

Matlab code and the results as we will see are really successful. Of course, we end 

with the conclusions and possible future work in the field of Systems Biology. 
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2   Biological Background –  

  Systems Biology 
 

 

Since this is a thesis in the field of systems biology, we will start with an 

introduction to molecular biology and its most basic concept; the cell and its general 

structure. The development of multicellular organisms makes it necessary to have 

mechanisms for communication between cells, which gives to these organisms the 

organized structure and ability to maintain different tissues. The basis for intercellular 

communication is intracellular signaling; the cells’ ability to receive and compute 

stimuli reaching the cell membrane. In this chapter we also discuss about DNA, 

genomes and proteins since they are the basis for a better understanding of biological 

issues and will help the reader to comprehend better our work. 

Continuing in this chapter, we will examine opportunities and challenges for 

the application of systems theory to biology in the post-genomic era - an area of 

research also referred to as Systems Biology. While the developments in genomics and 

bioinformatics have brought tremendous advances in our understanding of molecular 

biology, it is increasingly recognized that it is the temporal interaction amongst large 

numbers of molecules that determines phenomena observed at higher (metaboli, 

cellural, or physiological) levels. Systems Biology is the field which takes a closer 

look to this dynamic or systems perspective and integrative approach (combining data 

from the genome, transcriptome, proteome, metabolome etc.), offering control 

theorists and engineers a great variety of opportunities and challenges. 

 

 

2.1 Molecular Biology 
 

2.1.1 Cell 

  

Cells are the smallest units of living organisms, capable of the basic life 

processes: growth, sensitivity, movement, respiration (turning ‘food’ into energy), 

nutrition (taking in nutrients), excretion (getting rid of waste) and reproduction. All 
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living things in this world are composed of cells. Some microscopic organisms, such 

as most bacteria and protozoa, are unicellular (consist of a single cell). Other 

organisms, such as humans, plants and animals are multicellular (composed of a great 

many cells working in concert). But whether it makes up an entire organism or is just 

one of trillions in a human being, the cell is marvel of design and efficiency. Cells 

implement thousands of biochemical reactions per minute and reproduce new cells 

that give life a continuity. 

Cells have a great variety of size and shape. A typical cell size is 10 µm, while 

the bacterium mycoplasma, the smallest cell, measures 0.0001 mm in diameter. The 

largest biological cell is often cited as the ostrich egg, which is about 15 cm long and 

weighs about 1.4 kg. This is actually a myth, since there exist nerve cells in especially 

long animals, such as the Giant Squid and Colossal Squid, which may have nerve 

cells as long as 12 m. This variety of sizes we can find it also in human cells; from 

small red blood cells that measure 0.00076 mm to liver cells that may be ten times 

larger. About 10,000 average – sized human cells can fit on the head of a pin. As 

about cells’ shape, there is an amazingly great variation from organism to organism 

and even from cell to cell in the same organism. In humans, the outermost layers of 

skin cells are flat, while muscle cells are long and thin. Some nerve cells, with their 

elongated, tentacle – like extensions, suggest an octopus. Plant cells typically 

resemble boxes or cubes, and the amoeba, a protozoan, has an irregular form that 

changes shape as it moves around. In multicellular organisms shape is typically 

tailored to the cell’s job. For example, flat skin cells pack tightly into a layer that 

protects the underlying tissues from invasion by bacteria. Long, thin muscle cells 

contract readily to move bones. The numerous extensions from a nerve cell enable it 

to connect to several other nerve cells in order to send and receive messages rapidly 

and efficiently.  

A remarkable characteristic of cells is their independence. Each cell is at least 

somewhat self-contained and self-maintaining. The cell constantly is moving lively, 

shuttling essential molecules from place to place to carry out the business of living. 

Despite their individuality, however, cells also display a great ability to join, 

communicate and coordinate with other cells. The human body, for example, consists 

of an estimated 100 trillion cells. Cells of different kind are organized into specialized 

groups called tissues. Different tissues, in turn, are assembled into organs (e.g. brain, 

heart, liver etc.), specialized to perform a specific function or group of functions. A 
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group of related organs forms an organ system (or biological system) - such as the 

circulatory, muscular, or nervous system - which in turn, form the human body. 

Cells are consisted of molecules, non-living structures formed by the union of 

two or more atoms held together by covalent bonds. A molecule may consist of atoms 

of the same chemical element (e.g. oxygen - O2), or of different elements (e.g. water - 

H2O). Small molecules serve as building blocks for larger molecules. There are four 

major molecules that underlie cell structure and also participate in cell functions; 

proteins, nucleic acids, carbohydrates, and lipids. For example, a tightly organized 

arrangement of lipids, proteins and protein – sugar compounds forms the plasma 

membrane of certain cells. The organelles, membrane – bound compartments in cells, 

are built largely from proteins. Biochemical reactions in cells are guided by enzymes, 

specialized proteins that speed up chemical reactions. The deoxyribonucleic acid 

(DNA) is the nucleic acid that contains the hereditary information for cells. It works 

with ribonucleic acid (RNA) to build the thousands of proteins the cell needs. 

Cells fall into one of two categories: prokaryotic or eukaryotic. Prokaryotic 

cells are usually independent and they lack a cell nucleus, or any other membrane-

bound organelles, while eukaryotic cells, which have a cell nucleus, are found in 

animals, plants, fungi, and protists. Most of prokaryote organisms are unicellular, but 

a few prokaryotes (e.g. myxobacteria) have multicellular stages in their life cycles. 

The prokaryotes are divided into two domains; the bacteria and the archaea, 

which share a similar overall structure. Prokaryotic cells are the smallest, ranging in 

size from 0.0001 mm to 0.003 mm in diameter. As about their shape, it can be rod 

like, spherical, or spiral. They are surrounded by a protective cell wall and live in a 

watery environment. Tiny pores in the cell wall enable water and the substances 

dissolved in it, such as oxygen, to flow into the cell; these pores also allow wastes to 

flow out. In spite of their simplicity in construction, prokaryotic cells display 

extremely complex activity, having a much greater range of biochemical reactions 

than those found in the eukaryotic cells. 

A prokaryotic cell has three architectural regions. Flagella and pili, on the 

outside, project from the cell's surface. Enclosing the cell is the cell envelope - 

generally consisting of a cell wall covering a plasma membrane. However, some 

bacteria also have a further covering layer called a capsule. The plasma membrane, 

composed of two layers of flexible lipid molecules, is both supple and strong. Unlike 

the cell wall, whose open pores allow the unregulated traffic or materials in and out of 



11 

 

the cell, the plasma membrane is selectively permeable. Thus, the plasma membrane 

actively separates the cell’s contents from its surrounding fluids. Inside the cell is the 

cytoplasmic region that contains the cell genome (DNA). Cytoplasm is the semi fluid 

that fills the cell. Composed of about 65 % water, the cytoplasm is packed with up to 

a billion molecules per cell, a rich storehouse that includes enzymes and dissolved 

nutrients, such as sugars and amino acids. The water provides a favorable 

environment for the thousands of biochemical reactions that take place in the cell. The 

DNA is about 1000 times the length of the cell, and to fit inside, repeatedly twists and 

folds to form a compact structure called a chromosome. The chromosome in 

prokaryotes is circular, and is located in a region of the cell called the nucleoid. Also 

immersed in the cytoplasm are ribosomes, the only organelles in prokaryotic cells like 

structures, which we can say that play the role of the cell’s protein factories. 

Following the instructions encoded in the DNA, ribosomes produce hundreds of 

proteins every minute. 

 

                  

       Figure 2.1 Diagram of a typical prokaryotic cell (from Wikipedia, the free encyclopedia) 

 

The eukaryotic cell is about 10 times the size of a typical prokaryote and can 

be as much as 1000 times greater in volume. It is much more complex than a 

prokaryote cell, having a nucleus and a lot of other membrane-enclosed organelles 

that prokaryotes don’t have. Like separate rooms of a house, these organelles enable 

specialized functions to be carried out efficiently. The eukaryotes’ plasma membrane 
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resembles that of prokaryotes in function, with minor differences in the setup. In 

animal cells, the plasma membrane, rather than a cell wall, forms the cell’s outer 

boundary. With a design similar to the plasma membrane of prokaryotic cells, it 

separates the cell from its surroundings and regulates the traffic across the membrane. 

The major difference between prokaryotes and eukaryotes is that eukaryotic cells 

contain membrane-bound compartments in which specific metabolic activities take 

place. Most important among these is the presence of a cell nucleus, a membrane-

delineated compartment that houses the eukaryotic cell's DNA, which is organized in 

one or more linear molecules, called chromosomes. The nucleus is the largest 

organelle in an animal cell. Unlike the circular prokaryotic DNA, long sections of 

eukaryotic DNA pack into the nucleus by wrapping around proteins. The nucleus is 

surrounded by a double-layered membrane that protects the DNA from potentially 

damaging chemical reactions that occur in the cytoplasm. Messages pass between the 

cytoplasm and the nucleus through nuclear pores, which are holes in the membrane of 

the nucleus. In each nuclear pore, molecular signals flash back and forth as often as 

ten times per second. For example, a signal to activate a specific gene comes in to the 

nucleus and instructions for production of the necessary protein go out to the 

cytoplasm. 

 

             

         Figure 2.2 Structure of a typical animal cell (from Wikipedia, the free encyclopedia) 

 

The nucleus is surrounded by a double membrane (nuclear envelope), with 

pores that allow material to move in and out. Various tube- and sheet-like extensions 

of the nuclear membrane form what is called the endoplasmic reticulum (ER), which 
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is involved in protein transport and maturation. This organelle tunnels through the 

cytoplasm, folding back and forth on itself to form a series of membranous stacks. It 

takes two forms; the rough ER (RER), where ribosomes are attached, and smooth ER 

(SER), which lacks ribosomes and has an even surface. The ribosomes in eukaryotic 

cells have the same function as those in prokaryotic cells - protein synthesis - but they 

differ slightly in structure. Eukaryote ribosomes that are bound to the endoplasmic 

reticulum help in assembling proteins that typically are exported from the cell. The 

ribosomes work with other molecules to link amino acids to partially completed 

proteins. These incomplete proteins then travel to the inner chamber of the 

endoplasmic reticulum, where chemical modifications, such as the addition of a sugar, 

are carried out. Chemical modifications of lipids are also carried out in the 

endoplasmic reticulum. The endoplasmic reticulum and its bound ribosomes are 

particularly dense in cells that produce many proteins for export, such as the white 

blood cells of the immune system, which produce and secrete antibodies. There are 

also some ribosomes that manufacture proteins, which are not attached to the 

endoplasmic reticulum (free ribosomes). They typically make proteins (many of them 

enzymes), that remain in the cell. The SER, in turn, has some winding channels where 

are the enzymes needed for the construction of molecules, such as carbohydrates and 

lipids. It is extremely important in liver cells, where it also serves to detoxify 

substances such as alcohol, drugs, and other poisons. 

The proteins synthesized from the RER generally enter vesicles, which bud off 

from the SER. In most eukaryotes, these proteins are transported from free and bound 

ribosomes to the Golgi apparatus (also called the Golgi body, Golgi complex, or 

dictyosome), an organelle that resembles a stack of deflated balloons. The primary 

function of the Golgi apparatus is to process and package the macromolecules such as 

proteins and lipids that are synthesized by the cell. It has great importance for the 

processing of proteins for secretion, since it is packed with enzymes that complete this 

processing. The completed protein then leaves the Golgi apparatus for its final 

destination inside or outside the cell. During its assembly on the ribosome, each 

protein has acquired a group of from 4 to 100 amino acids called a signal. The signal 

works as a molecular shipping label to direct the protein to its proper location. 

In general, there are several types of organelles within an animal cell. 

Lysosomes and mitochondria for example, are of great interest and can be numerous 

(from hundreds to thousands). Lysosomes are small, often spherical organelles that 
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function as the cell’s recycling centre and garbage disposal. They contain powerful 

digestive enzymes that break down the contents of food vacuoles and ship their 

building blocks to the cytoplasm where they are used to construct new organelles. It 

was believed they can only be found in animal cells, but there is new evidence that 

supports that they may also exist in plant cells. Lysosomes also decompose and 

recycle proteins, lipids, and other molecules.  

Mitochondria are self-replicating organelles that occur in various numbers, 

shapes, and sizes in the cytoplasm of nearly all eukaryotic cells. They are the 

powerhouses of the cell (described sometimes as ‘cellular power plants’) because they 

generate most of the cell's supply of adenosine triphosphate (ATP), used as a source 

of chemical energy. Within these long, slender organelles, enzymes convert the sugar 

glucose and other nutrients into ATP. This molecule, in turn, serves as an energy 

battery for countless cellular processes, including the shuttling of substances across 

the plasma membrane, the building and transport of proteins and lipids, the recycling 

of molecules and organelles, and the dividing of cells. Muscle and liver cells are 

particularly active and require dozens and sometimes up to a hundred mitochondria 

per cell to meet their energy needs. In addition to supplying cellular energy, 

mitochondria are involved in a range of other processes, such as signaling, cellular 

differentiation, cell death, as well as the control of the cell cycle and cell growth. 

Mitochondria are unusual in that they contain their own DNA in the form of a 

prokaryote-like circular chromosome; they have their own ribosomes, which resemble 

prokaryotic ribosomes; and they are only formed by the fission of other mitochondria. 

They are now generally held to have developed probably from proteobacteria. The 

few protozoa that lack mitochondria have been found to contain mitochondrion-

derived organelles, such as hydrogenosomes and mitosomes.[1],[2],[3],[4],[5] 

 

 

2.1.2 D"A 

  

Inside the nucleus of every eukaryotic cell, or in the cytoplasm for 

prokaryotes, we can find the genetic instructions that provide almost all the 

information necessary for a living organism (and for some viruses) to grow and 

function. These instructions are encrypted in a nucleic acid called Deoxyribonucleic 
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acid (DNA). The main role of DNA molecules is to preserve, copy and transmit 

information within cells and from generation to generation. We could say that DNA is 

something like a set of blueprints or a recipe, or a code, since it contains the 

instructions needed to construct other components of cells, such as proteins and RNA 

(Ribonucleic acid) molecules. The DNA segments that carry this genetic information 

are called genes, but other DNA sequences have structural purposes, or are involved 

in regulating the use of this genetic information. 

 

      

                    Figure 2.3 "ucleotides of D"A 

 

In most of these cases DNA molecule consists of two ribbon–like strands and 

wrap around each other, resembling a twister ladder. A single strand of DNA is a 

biomolecule consisting of many linked, smaller components called nucleotides. Each 

nucleotide has three components: a phosphate group, a sugar and a nitrogen-

containing base (alkaline chemical substance, in particular the cyclic nitrogen 

compounds found in DNA and RNA). In DNA, the sugar is always deoxyribose. The 

different types of nucleotide differ only in the nature of the nitrogen-containing base. 

In DNA there are four alternative bases: adenine, thymine, guanine and cytosine. 

When writing out genetic information these bases are designed by the letters A, T, G 

and C respectively. The phosphate groups and the deoxyribose sugars form the 



16 

 

backbone of each strand of DNA. The bases are joined to the deoxyribose and stick 

out sideways. Each nucleotide has two distinct ends, the 5’ End and the 3’ End; so 

that the 5’ End of a nucleotide is linked to the 3’ End of another nucleotide by a 

strong chemical bond, thus forming a long, one–dimensional chain (backbone) of a 

specific directionality. Therefore, each DNA single strand is represented by a 

character string, which, by convention specifies the 5’ to 3’ direction when read from 

left to right. 

To understand how nucleotides are joined, we must clarify the situation by 

numbering the carbon atoms of the sugar molecule. Figure (2.4) shows the convention 

for numbering nucleotides.  

 

 

    

            Figure 2.4 

 

Nucleotides are joined by linking the phosphate on the 5’ end of the 

deoxyribose of one to the 3’ position of the next, as it’s shown in Figure (2.5).  

In practice, DNA is normally found as a double stranded molecule. Single 

DNA strands tend to form double helices with other single DNA strands. Thus, a 

DNA double strand contains two single strands called complementary to each other 

because each nucleotide of one strand is linked to a nucleotide of the other strand by a 

chemical bond, so that A is linked to T and vice versa, and C is linked to G and vice 

versa. The bases A and G are referred to as the purine bases as they contain a double 

ring structure known as a purine ring. The other two bases, C and T, are the 

pyrimidine bases, since they contain a single, pyrimidine ring. Each base pair consists 
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            Figure 2.5 

 

                              

      Figure 2.6 Structure of part of a D"A double helix (from Wikipedia, the free encyclopedia) 
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of one double size purine base paired with a smaller pyrimidine base. In double 

stranded DNA each base pair is held together by linkages known as hydrogen bonds.  

The A – T base pair has two hydrogen bonds and the G – C base pair is held together 

by three. Hydrogen bonds are very weak, but since a molecule of DNA usually 

contains millions of base pairs, the added effect of millions weak bonds is strong 

enough to create a stable, double helical structure. 

The hydrogen bonding in DNA base pairs uses either oxygen (O) or nitrogen 

(N), giving three alternative arrangements. In each case the hydrogen (H) is held 

between the other two atoms and serves to link them together. Before hydrogen bonds 

form and the bases pair off, the hydrogen atom is found attached to one or the other of 

the two bases.[6],[7],[8] 

 

       

          Figure 2.7 Hydrogen bonds 

 

 

2.1.3 Genes 

 

  The fundamentals of modern genetics were laid when Gregor Mendel found 

that hereditary information is made up of discrete fundamental units which we now 

call genes. The realization that genes are made up of molecules that obey the laws of 

chemistry has opened the way both to a deeper understanding of life and to its 

artificial alteration by genetic engineering. Genes are the basic unit of heredity in 

living organisms. All living organisms depend on genes. They hold the information to 

build and maintain their cells and pass genetic traits to offspring.  
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      Genes consist of a length of DNA that contains instructions (codes) for 

making a specific protein. Through these proteins, our genes influence almost 

everything about us; for example how tall we will be, how we process food, and how 

we respond to infections and medicines. Each gene is responsible for a single 

inherited property or characteristic of the organism. Certain properties of higher 

organisms, such as height or skin color, are due to the combined action of multiple 

genes. Consequently, in these cases there is a gradation of the property. Such multi-

gene characteristics they are still very difficult to analyze, especially if more than two 

or three genes are involved. Although most of our cells have the same genes, not all 

genes are active in every cell. Heart cells for example, synthesize proteins required for 

the heart’s structure and function or liver cells make liver proteins. In other words, not 

all the genes are switched ‘on’ and expressed as proteins within every cell. Within an 

individual cell, the same genes may be switched ‘on’ at some times and switched ‘off’ 

at other times. 

The complete set of genes in an organism or cell is called a genome. Each 

gene is found in linear order and is a major component of structures known as 

chromosomes. In prokaryotes, the vast majority of genes are located on a single 

chromosome of circular DNA, while eukaryotes usually possess multiple individual 

linear DNA helices. Each chromosome has some accessory protein molecules which 

help maintain its structure and is an exceedingly long single molecule of DNA. Genes 

that appear together on one chromosome of one species may appear on separate 

chromosomes in another species. With the exception of identical twins, the sequence 

of the bases is different for everyone, which makes each organism unique. In sexually 

reproducing organisms, one copy is normally inherited from each parent. 

Although we all look quite different from one another, we are surprisingly 

similar at the DNA level, considering that the DNA of most humans is 99.9% the 

same. Only about 3 million base pairs are responsible for the differences among us, 

which is only 1‰ of our DNA. However, these DNA base sequence variations 

influence most of our physical differences and many other of our characteristics. 

Sequence variations that occur in our genes, and the resulting difference forms of the 

same gene are called alleles. Humans can have two identical or two different alleles 

for a particular gene.[6],[7],[9] 
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2.1.4 Proteins 

  

Proteins are among the fundamental molecules of biology, being common to 

all life present on Earth today. They can be considered as the major structural 

constituent of living beings. According to the Central Dogma of Molecular Biology, 

proposed by Francis Crick in 1958, information is transferred from DNA to RNA and 

from RNA to proteins. Molecules whose primary role is to carry information (nucleic 

acids like DNA and messenger RNA) are basically linear molecules with a regular 

repeating structure. Molecules that form cellular structures or have active roles 

carrying out reactions are normally folded into three-dimensional (3-D) structures. 

These include both proteins and certain specialized RNA molecules (rRNA and 

tRNA). 

Like other biological macromolecules such as nucleic acids, proteins are 

essential parts of organisms and participate in every process within cells. Virtually, all 

the complex biochemical functions of the living cell are performed by protein–based 

catalysts called enzymes. Moreover, most of scaffolding that holds cells and 

organelles together is made of proteins. In addition to their catalytic functions, 

proteins transmit and commute signals from the external environment, duplicate 

genetic information, transform the energy in light and chemicals with astonishing 

efficiency, convert chemical energy into mechanical work, carry molecules between 

cell compartments. Proteins are also necessary in animals' diets, since animals cannot 

synthesize all the amino acids they need and must obtain essential amino acids from 

food. Through the process of digestion, animals break down ingested protein into free 

amino acids that are then used in metabolism. 

All proteins are biomolecules consisting of many linked, smaller components 

called amino acids. Broadly speaking, amino acids are molecules that contain both 

amino (-NH2) and carboxylic acid (-COOH) functional groups. In biochemistry, 

amino acids consist of a primary amine bound to an aliphatic carbon (-carbon) atom, 

which in turn is bound to carboxylic acid group. At least one hydrogen atom is bound 

to the –carbon; in addition, the –carbon bears a side chain, which is different for 

different amino acids. 
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We can subdivide proteins into four main categories: 

1) structural proteins, 

2) enzymes, 

3) regulatory proteins, and 

4) transport proteins. 

Structural proteins are found making up many subcellular structures. The 

flagella with which bacteria swim around, the microtubules used to control traffic 

flow inside cells of higher organisms, the fibers inside a muscle cell, and the outer 

coats of viruses are some few examples of structures built using proteins. 

Enzymes are proteins that carry out chemical reactions. An enzyme first binds 

another molecule, known as its substrate, and then performs some chemical 

operations with it. Some enzymes bind only a single substrate molecule; others may 

bind two or more, which they react together to make the final product. In any case, the 

enzyme needs an active site, a pocket or cleft in the protein, where the substrate binds 

and the reaction occurs. The active site is produced by folding up the polypeptide 

chain correctly so that amino acid residues that were spread out at great distances in 

the linear chain now come together and will cooperate in the enzyme reaction.  

Regulatory proteins vary enormously. Many of them can bind both small 

signal molecules and DNA. The presence or absence of the signal molecule 

determines whether or not the gene is switched on. Although regulatory proteins and 

transport proteins are not enzymes, they also bind other molecules and so they also 

need ‘active sites’ to accommodate them. 

Transport proteins are found mostly in biological membranes where they carry 

material from one side to the other. Nutrients, such as sugars, must be transported into 

cells of all organisms, whereas waste products are deported. Multicellular organisms 

also have transport proteins to carry materials around the body. 

While there are theoretically billions of possible amino acids, most proteins 

are formed of only 20 amino acids, the natural or proteogenic amino acids. These 

amino acids are connected with strong bonds, one after the other, forming a long 

chain (backbone) of a specific directionality. Protein molecules tend to fold into 

complex three–dimensional (3-D) structures forming weak bonds between their own 

atoms, and they are responsible for carrying out nearly all of the essential functions in 

the living cell by properly binding to other molecules with a number of chemical 

bonds connecting neighboring atoms. Although we do not yet know how to reliably 
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predict protein 3-D structures from their one-dimensional amino acid sequences, we 

do know that nearly all proteins in the living cell are uniquely determined by these 

sequences. Therefore, the amino acid character strings determine the functions of 

proteins. In fact, protein functions are ultimately determined by the DNA character 

string because it is the digital information in the DNA nucleotide sequences that 

determine the amino acid sequences; each protein character string is generated based 

on information in genes, which are regions in the DNA character strings. This process 

is shown schematically in Figure (2.8) in which, for simplicity, the intermediate role 

of another biomolecule (RNA) is omitted, as it is the fact that sometimes the same 

gene may code for multiple proteins through a process called alternative splicing. 

 

 

            Figure 2.8 Information is transferred from each gene to make a protein 

 

Protein synthesis is governed by the genetic code which maps each of the 64 

possible triplets (codons) of DNA characters into one of the 20 possible amino acids 

(or into a punctuation mark, like a stop codon, signalling termination of protein 

synthesis). Figure (2.9) shows the genetic code in which the 20 amino acids are 

designated by both their one-letter and three-letter symbols. A particular triplet, ATG, 

serves as the START codon and it also codes for the M amino acid (methionine): thus, 

methionine appears as the first amino acid of proteins, but it may also appear in other 

locations. We also see that there are three STOP codons indicating termination of 
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amino acid chain synthesis, and the last amino acid is the one generated by the codon 

preceding the STOP codon.[6],[10],[11] 

 

AAA: K (Lys) GAA: E (Glu) TAA: STOP CAA: Q (Gln) 

AAG: K (Lys) GAG: E (Glu) TAG: STOP CAG: Q (Gln) 

AAT: N (Asn) GAT: D (Asp) TAT: T (Tyr) CAT: H (His) 

AAC: N (Asn) GAC: D (Asp) TAC: Y (Tyr) CAC: H (His) 

 

AGA: R (Arg) GGA: G (Gly) TGA: STOP CGA: R (Arg) 

AGG: R (Arg GGG: G (Gly) TGG: W (Trp) CGG: R (Arg) 

AGT: S (Ser) GGT: G (Gly) TGT: C (Cys) CGT: R (Arg) 

AGC: S (Ser) GGC: G (Gly) TGC: C (Cys) CGC: R (Arg) 

 

ATA: I (Ile) GTA: V (Val) TTA: L (Leu) CTA: L (Leu) 

ATG: M 

(Met)/START 

GTG: V (Val) TTG: L (Leu) CTG: L (Leu) 

ATT: I (Ile) GTT: V (Val) TTT: F (Phe) CTT: L (Leu) 

ATC: I (Ile) GTC: V (Val) TTC: F (Phe) CTC: L (Leu) 

 

ACA: T (Thr) GCA: A (Ala) TCA: S (Ser) CCA: P (Pro) 

ACG: T (Thr) GCG: A (Ala) TCG: S (Ser) CCG: P (Pro) 

ACT: T (Thr) GCT: A (Ala) TCT: S (Ser) CCT: P (Pro) 

ACC: T (Thr) GCC: A (Ala) TCC: S (Ser) CCC: P (Pro) 

 

               Figure 2.9 The genetic code 

 

 

2.2 Systems Biology 

 
2.2.1 General Overview 

  

The ultimate goal of biology is to understand every detail and principle of 

biology systems. Almost fifty years ago, Watson and Crick indentified the structure of 

DNA; the beauty of their work was that they grounded biological phenomena on a 

molecular basis[12]. This made it possible to describe every aspect of biology, such as 

heredity, development, disease and evolution, on a solid theoretical ground. Biology 
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became part of a consistent framework of knowledge based on fundamentals laws of 

physics. 

Since then, the field of molecular biology has emerged and enormous progress 

has been made. Molecular biology enables us to understand biological system as 

molecular machines. Today, we have in-depth understanding of elementary process 

behind heredity, evolution, development and disease. Such mechanisms include 

replication, transcription, translation and so forth.  Large numbers of genes and the 

functions of their transcriptional products have been indentified, with the symbolic 

accomplishment of the complete sequencing of DNA. Methods to obtain extensive 

gene expression profiles are now available that provide comprehensive measurement 

of the mRNA level. Measurement of protein level and their interactions is also 

making process. In parallel with such efforts, various methods have been invented to 

disrupt the transcription of genes, such as loss-of-function knockout of specific genes 

and RNA interference (RNAi).[13],[14] 

Systems biology is a new field of biology that aims to develop a system-level 

understanding of biological systems. System-level understanding requires a set of 

principles and methodologies that links the behaviors of molecules to system 

characteristics and functions. Ultimately, cells, organisms, and human beings will be 

described and understood at the system-level grounded on a consistent framework of 

knowledge that is underpinned by the basic principles of physics.[15] 

It is not the first time that system-level understanding of biological system has 

been pursued; it is a recurrent theme in the scientific community. Norbert Wiener was 

one of the early proponents of system- level understanding that led to the birth of 

cybernetics, or biological cybernetics. Ludwig von Bertalanffy proposed general 

system theory in 1968 in an attempt to establish a general theory of the system, but 

the theory was too abstract to be grounded[16]. A precursor to such work can be 

found in the work of Cannon, who proposed the concept of homeostasis[17]. With the 

limited availability of knowledge from molecular biology, most such attempts have 

focused on the description and analysis of biological systems at the physiological 

level. The unique feature of systems biology that distinguishes it from past attempts is 

that there are opportunities to ground system-level understanding directly on the 

molecular level such as genes and proteins, whereas past attempts have not been able 

to sufficiently connect system level description to molecular-level knowledge. Thus, 

although it is not the first time that system-level understanding has been pursued, it is 
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the first time to have an opportunity to understand biological systems within the 

consistent framework of knowledge built up from the molecular level to the system 

level. 

The scope of systems biology is potentially very broad and different sets of 

techniques may be deployed for each research target. It requires collective efforts 

form multiple research areas, such as molecular biology, high-precision 

measurements, computer science, control theory and other scientific and engineering 

fields. Research needs to be carried out in four key areas: genomics and other 

molecular biology research, computational studies such as simulation, bioinformatics 

and software tools, analysis of dynamics of the system and technologies for high 

precision, comprehensive measurements. This constitutes a major multi – disciplinary 

research efforts that will enable us to understand biological system as systems. To 

understand the system, it is essential that it can be not only to describe in detail, but 

also it to comprehend what happens when certain stimuli or disruptions occur. The 

ultimate goal should be the ability to design the system to meet specific functional 

properties. It takes more than a simple in – depth description; it requires more active 

synthesis to ensure that it is completely understood. 

The functions of a cell do not reside in the molecules themselves but in their 

interactions, just as life in emergent, rather than immanent or inherent, property of 

matter. Although life, or the function of the cell, arises from the material world, they 

cannot be reduced to it. Systems biology therefore signals a shift, away from 

molecular characterization and cataloguing of the components in the cell, towards an 

understanding of functional activity. 

The term systems in systems biology refers to systems theory, or more 

specifically, to dynamic systems theory. Thus, systems biology focuses on dynamics 

and transient changes occurring within cells. These changes, which in most cases will 

be molecule concentrations, carry information and are at the root of cellular functions 

that sustain and develop an organism.[18] 

Several methods of modeling such intracellular signal transduction pathways 

have appeared such a reaction systems using ordinary differential equations, 

stochastic models, Petri-nets, neuronal networks, rule based systems, and Boolean 

networks. The dominant concept by which scientists use to organize these processes is 

chemical kinetic models known as transduction pathways, i.e., networks of 

biochemical reactions. A pathway is an abstraction, a model, of an observed reality. In 
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most of cases, these chemical reactions are represented mathematically as differential 

equations where the changes in the concentrations of reactants and post reaction 

products are recorded based on the reaction rates, as we will see in more detail further 

down in this document. Normally such a system of differential equations is too 

complex to be solved explicitly. Moreover, in most of the cases, such a mathematical 

model of a biological system is too simple to code the entire detail which the real 

system encapsulates.[19] 

 

 

2.2.2 Cells as I/O Systems 

  

One may view cell life as a collection of “wireless networks” of interactions 

among proteins, RNA, DNA and smaller molecules involved in signaling and energy 

transfer. These networks process environmental signals, induce appropriate cellular 

responses, and sequence internal events such as gene expression, thus allowing cells 

and entire organisms to perform their basic functions. 

Research in molecular biology, genomics, and proteomics has provided, and 

will continue to produce, a wealth of data describing the elementary components of 

such networks, as well the mapping of intra and inter-cellular signaling networks. The 

genome encodes, through a particular ordering of the four possible (A,T,C,G) bases in 

its DNA sequence, a parts list for the proteins that are potentially present in every cell 

of a given organism. Genomics research has as its objective the complete decoding of 

this information, both the parts common for a species as a whole as well as the 

cataloging of differences among individual members. The shape of proteins is what 

largely determines their function, and thus the elucidation of their three-dimensional 

structure is a goal of proteomics research. Proteins, which interact with each other 

through lego-like fitting of parts in lock and key fashion, are the primary components 

of living things. Among other roles, they form receptors that endow the cell with 

sensing capabilities, actuators that make muscles move (myosin, actin), detectors for 

the immune response, enzymes that catalyze chemical reactions, and switches that 

turn genes on or off. They also provide structural support and help in the transport of 

smaller molecules, as well as in directing the breakdown and reassembly of other 

cellular elements such as lipids and sugars. (An intermediate link between genetic 
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information and the proteins that DNA encodes for is RNA. Until recently, RNA was 

not believed to be a direct player in cell control mechanisms, but research into 

microRNA conducted within the past two years is forcing a complete rethinking of 

their role.) Massive amounts of data are being generated by genomics and proteomics 

projects, facilitated by sophisticated genetic engineering tools (gene knock-outs and 

insertions, PCR), and measurement technologies (green fluorescent protein, 

microarrays, FRET), and there is a widely recognized need to organize and interpret 

these data. 

 

 

Figure 2.9 Part of the signal transduction network in human cells (Reproduced from [21] with 

permission from Elsevier) 

 

 

The control and systems-theory paradigm of input/output systems, built out of 

simpler components that are interconnected according to certain rules, is a most 

natural one in this context. Cells receive external information through inputs that may 

be physical (UV or other radiation, mechanical, or temperature) as well as chemical 

(drugs, growth factors, hormones, nutrients), and their measurable outputs include 

chemical signals to other cells, the movement of flagella or pseudopods, the activation 

of transcription factors, and so forth. Each cell can be thought of, in turn, as composed 

of a large number of subsystems, involved in processes such as cell growth and 
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maintenance, division, and death. Indeed, an important theme in the current molecular 

biology literature is the attempt to understand cell behavior in terms of cascades and 

feedback interconnections of elementary ‘modules’[22],[23]. For example, in Figure 

(2.9) we can view the wiring diagram of the growth signaling circuitry of the 

mammalian cell. Of course, such a figure leaves out a lot of information, some known 

but omitted for simplicity, and some unknown: much of the system has not been 

identified yet, and the numerical values of most parameters as well as the functional 

forms of interactions are only very approximately known. However, data is being 

collected at an amazing rate and better and better models are being constantly 

obtained.[20] 

 

 

2.2.3 Cell Chemistry 

  

The cell is the basic building block of which higher organizational levels such 

as tissues and organs and entire organisms are composed. It is a rather complex 

environment, consisting of many different components. Because cells are about 70% 

water, life depends mostly on aqueous chemical reactions. These reactions occur 

between molecules, where a molecule is a cluster of atoms, held together by so called 

covalent bonds. The weight of a molecule is its mass relative to that of a hydrogen 

atom. The mass of a molecule is specified in Daltons; 1 Da being an atomic mass unit 

approximately equal to the mass of a hydrogen atom. 

 

 (a quantity) 

 

One mole (1 M) corresponds to NA = 6.001 * 10²³ molecules of a given 

substance. NA is referred as the Avogadro’s number. The molarity of a solution is 

defined by a concentration of 1 moles of the substance in 1 liter of solution: 

 

  (a concentration) 
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If molecules are cluster of atoms, held together by bonds, these bonds can be 

broken by violent collisions amongst molecules. Average thermal motion does not 

break these bonds and thus the breaking and making of bonds is the fundamental 

process that determines the concentrations of chemical species in a reaction. This 

process requires energy to place and is carefully controlled by highly specific 

catalysts, called enzymes. How fast a reaction occurs is a matter of kinetics, defined 

by the rate of a reaction. In general, kinetics energy is the ability of a system to 

perform work; therefore whether or not a reaction can proceed is determined by its 

energetic. 

There are two principle types of reactions: catabolic pathways, breaking down 

foodstuff and thereby generating energy and smaller building blocks. Secondly, 

biosynthetic or anabolic pathways use energy to synthesize molecules. Both sets of 

reactions together constitute what is called the metabolism of the cell. 

Proteins are particularly versatile, having various roles in maintaining the 

function of a cell and the organism as a whole. Many proteins serve as enzymes that 

are catalysts that control kinetic (bond-breaking and –making) reactions. Other 

proteins are used to build the structural components that make up the cell, or they act 

as motors and produce fore and movement. Enzymes catalyze reactions by binding 

one or more ligands which are also called substrates, and converting them into one or 

more chemically modified products, without changing themselves. Enzyme-catalyzed 

reactions happen faster by a factor of a million or more and are therefore an important 

mechanism by which the cell can respond to changes and regulate functions. A typical 

enzyme will catalyze the reaction of thousands substrate molecules every second. The 

enzyme therefore requires sufficient amounts of substrate around it. The motion 

caused by collision and thus heat energy ensures that molecules are rapidly moving  

about a confined area but can also move (diffuse) wider distances. The cell is a 

crowded environment and yet a small organic molecule can diffuse the entire distance 

across a cell in a fraction of a second.                                                                

Enzymes move much more slowly than substrates, and the rate of encounter of 

each enzyme molecule with its substrate will depend on the concentration of the 

substrate molecule. For example, an abundant substrate may have a concentration of 

0.5 mM and since water is 55 M, there is only about one such substrate molecule in 

the cell for every 105 water molecules. Nevertheless, an enzyme that could bind this 

substrate would collide with it about 500,000 times a second. The biological 
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properties or function of a protein is determined by its physical interaction with other 

molecules. The substance that is bound by a protein is referred to as a ligand for that 

protein. 

Antibodies, or immunoglobulins, are proteins produced by the immune system 

in response for foreign molecules. A specific antibody binds tightly to its particular 

target (called an antigen), and thereby inactivates it. Antibodies can therefore be used 

in experiments to select and quantitate proteins. For example, considering a 

population of antibody molecules which suddenly encounter a population of ligands, 

diffusing in the fluid surrounding them. The frequent encounters of ligands and 

antibody will increase the formation (association) of antibody-ligand complexes. The 

population of such complexes will initially increase but eventually complexes will 

also break apart (dissociation). Eventually, a chemical equilibrium is reached in which 

the number of association events per second is equal to the number of dissociation 

events. From the concentrations of the ligand, antibody and the complex at 

equilibrium, one can calculate the equilibrium constant Keq of the strength of binding. 

The same principle described here for antibodies, applies to any binding of molecules. 

  For example consider two proteins A and B, the corresponding complex they 

form AB and the reversible reaction 

 

A+B ↔ AB 

 

For association the reaction diagram is  

 

A+B ak→AB, 

where the association rate is the product of ak  , A and B. 

For disassociation respectively, the reaction diagram is 

 

A+B dk←  AB, 

and the disassociation rate equals the product of dk  and the complex 

concentration AB. At equilibrium 

 

ak  [A][B] = dk [AB], 

which leads to the definition of the equilibrium constant 
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eqk =  a

d

k

k
 

The equilibrium constant has a unit of liters per mole. The larger the 

equilibrium constant, the stronger the binding between A and B.[18] 

 

 

2.2.4 Mathematical Modeling using ODEs 

  

As we saw, the area of cellular signaling investigates intracellular 

communication. Modern scientists are trying to establish a mathematical and 

computational framework in order to investigate dynamic interactions within cells. In 

other words, they are concerned with dynamic pathway modeling since they do not 

simply map or list proteins in a pathway. Spatial-temporal sequences of reaction 

events in a biochemical network form the basis for signals, a non – physical concept 

used to describe the information processing, regulation and control in cells. The 

objective of dynamic pathway modeling is to establish mathematical models that 

allow scientists and researchers to predict the spatio-temporal response of protein 

concentrations and gene expression to pathway stimulation. 

Thus, mathematical modeling and simulation of molecular or cellular 

biological systems is challenging. Such systems are indeed “complex” for the 

following reasons. A collection of cells, but also an individual cell consists of many 

interacting subsystems. For example, choosing any particular pathway there will be 

other pathways that cross talk. Due to the complexity of experiments to generate data 

and the sometimes complicated maths involved, it is usually easier to consider one 

pathway or particular aspect of one pathway at a time. 

Modeling implies a process of abstraction and is often also a form of 

generalization. In this process numerous assumptions about the natural system under 

consideration are being made in order to simplify the mathematical approach, without 

losing the ability to make predictions. It is therefore, possible to build predictive 

models without them being precise. Modeling and simulation should in this sense 

complement the in biologists reasoning, help them to generate and test hypotheses in 
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conjunction with the design of experiments and experimental data. System biology 

requires an iteration of the modeling loop as shown in Fig (2.10). 

 

 

Figure 2.10 Iteration of the modeling loop 

 

The diagram shows the role of mathematical modeling and simulation in 

testing hypotheses but also in generating hypotheses through prediction. The purpose 

of modeling is to support experimental design, helping to identify which variables to 

measure and why. As we have previously stated, the dominant mathematical 

modeling tool for intracellular signaling networks is their description with the help of 

ordinary differential equations (ODE). As a simple example of the way by which such 

a model is built, consider the following enzymatic reaction: 

 

E+A ↔ EA → E +P (2.1) 

 

In the first step, enzyme E binds reversibly with substrate A, and in a second 

step, the enzyme releases the modified substrate P. the second step is assumed to be 

irreversible. This is a reasonable assumption for phosphorylation, because 

phophorylation consumes energy in the form of ATP and it cannot be reserved, once 

the ADP is released. And also dephosphorylation can be modeled by this, because the 

phosphorylated state of a protein is on an energetically higher level, therefore the 

probability of returning to the phosphorylated state is very small. Such enzymatic 
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reaction schemes are in the most of the cases the fundamental building blocks of large 

intracellular signaling pathways. 

The reaction scheme of Equation (2.1) is called Michaelis – Menten 

mechanism. The rates for the three reactions (v1, v2, v3) are: 

 

E+A →EA  :  v1 = α[E][A] (2.2) 

E+A ←EA  :  v2 =d [EA] (2.3) 

EA → E+P  :  v3= V[EA] (2.4) 

where [E], [A] and [EA] are the concentrations of enzyme E, substrate A, and 

enzyme-substrate complex EA, while α, d and V are rate constants. Thus, there are 

two unimolecular and one bimolecular reaction. The ordinary differential equations 

for this system are given by: 

 

 (2.5) 

 (2.6) 

 = -v1 + v2 + v3 (2.7) 

 (2.8) 

with the initial conditions: 

 

[E](0)  = [Etot] (2.9) 

[A](0) = [Atot] (2.10) 

[P](0) = 0 (2.11) 

[EA](0) = 0 (2.12) 

 

Given the two conservation laws for the molar concentrations, 

[Etot] = [E] + [EA] (2.13) 

[Atot] = [A] + [EA] + [P] (2.14) 

 

the system can be reduced to two equations: 

 

  = a[A]([Etot] - [EA]) - d[EA] - V[EA] (2.15) 
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 = - a([Etot] - [EA])[A] + d[EA] (2.16) 

 

The Michaelis-Menten equation can be derived in case that the amount of 

enzyme-substrate complex is in pseudo steady-state (d[EA]/dt = 0). Collecting terms 

in EA] and rearranging leads to: 

 =  (2.17) 

 

Conventionally, a parameter called Michaelis-Menten constant, Km is 

introduced: 

 

Km =  (2.18) 

 

with the dimension of a concentration, and the parameter V is called Vmax- . 

Introducing these parameters, the steady-state of [EA] can be written as 

 

[EA] =  (2.19) 

 

the rate of production of P is given by: 

 

v3 = V [EA] =  (2.20) 

 

Equation (2.20) is known as Michaelis-Menten equation. Thus, the pseudo 

steady – state is reached in the time scale of 

 

EA=  (2.21) 

 

Another detailed analysis of the steady – state is made by Schnell and 

Mendoza: Assuming that [A] >> [Etot], the timescale is estimated as 

 

EA =  =  (2.22) 
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Furthermore, they also estimate the time for the change of the substrate 

concentration as 

A =  =  (2.23) 

 

Therefore, the ratio of the two timescales is given by 

 

 =  (2.24) 

 

A more general condition for the pseudo steady – state assumption is given by 

Segel: 

 (2.25) 

 

Therefore, the steady – state assumption is reasonable, if the enzyme 

concentration is small compared to the concentration of the substrate. A problem 

might occur, if an enzyme acts in different reactions. In this case, the two 

conservation equations (2.13) and (2.14) are no longer valid. Nevertheless, if the 

saturation of the enzyme is small, they might be a good approximation, because the 

concentration of bound enzyme is small. [24] 
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3   Combination Therapy and  

  Systems Biology 
 

 

Therapeutic treatments that combine two or more active ingredients are 

commonly used in clinical medicine and increasingly important in probing biological 

systems. It is what we call combination or multicomponent therapy. In this chapter we 

are presenting this kind of therapy, so that we will completely understand the models 

we will identify later. 

We start with the drugs used in this kind of therapy; their first applications, 

their main categories and, of course, the way they interact to produce such effective 

results. How we reach in what is called synergy between two components and how we 

can predict it. 

And after we examine the two main reference models of synergy, we continue 

with the Systems Biology approach. Systems biology provides a perspective from 

which to understand the basis of the efficacy of most multicomponent drugs. Using 

basic principles, we simulate four signaling pathways characterized from 

amplification, ultrasensitivity and feedback control, which helps us to understand 

better the behaviour of a full-drug interaction network. 

 

  

3.1 History of Combination Therapy 

and Multicomponent Drugs 
 

Drug treatments with more than one active component are not in fact 

something new in medicine, since they have been used in several forms for many 

years, starting from a lot of historical and traditional approaches to medicine. For 

example, Chinese have used mixtures of naturally occurring herbs and herbal extracts, 

and such mixtures are considered integral to the therapy[28]. Many of the natural 

product extracts that have been tested, have brought in activities that later disappeared 

when the extracts were used as individual chemical components[29],[30],[31]. 

Numerous combinations of active compounds have been found to be produced by 
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natural sources. In Western medicine, we can find the first attempts to examine 

interactions between purified single compounds only at the end of the nineteenth 

century, when Thomas Richard Fraser investigated the interaction between 

physostigma and atropia[32]. After this first step, we had to reach 1928, for further 

studying of the interactions between other defined drug combinations from Loewe 

and others[33],[34]. At the beginning of the twentieth century, most therapeutic 

regimens were composed of cocktails or complex extracts, such as the application of 

polyclonal antibody therapy. 

The gradual shift from the use of complex extracts to the use of purified single 

compounds started in the early part of the twentieth century with Paul Ehrlich’s 

pioneering one-gene-one-drug approach. Ehrlich proposed the – known as - ‘magic 

bullets’, chemicals that selectively target the constituents of infectious organisms 

relative to the host’s constituents[35]. For his work, he was awarded the Nobel Prize 

for Physiology or Medicine in 1908. Ehrlich’s first ‘magic bullet’ was Salvarsan or 

arsphenamine, which provided the only cure for syphilis until it was superseded and 

replaced by penicillin. What occurred in the following years can be described as a 

‘bombing’ of researches and significant discoveries in the direction given by Ehrlich. 

Except from syphilis, compounds were subsequently found that were effective against 

many other diseases, such as sleeping sickness, malaria, trypanosomes, pneumonia, 

sepsis, schistosomiasis and babesiasis. These findings were followed in subsequent 

years by the monumental discoveries of the sulphonamides and penicillin[36]. 

However, most diseases of interest to contemporary drug discovery involve 

physiological processes controlled in a combinatorial fashion. These diseases are 

frequently difficult to treat using Ehrlich’s approach. In the second half of the 

twentieth century, the evolution described above reached its logical zenith in the 

search for single compounds that affect single targets. It was the time to revisit past 

experiences to identify multicomponent therapeutics for the treatment of complex 

diseases. There was already a lot of widespread evidence that combinations of 

compounds can be more effective than the sum of the effectiveness of the individual 

agents themselves; and in addition to that, more recent findings with the great help of 

sciences like modern systems and molecular biology came to support these 

theories.[25],[26] 
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3.2 Combination Drugs 

  

As we mentioned above, most disease processes present a combinatorial 

behaviour, while redundancy and multifunctionality seem to be the most obvious 

features of this behaviour. The solution to this can be the use of a multicomponent 

drug; a drug that will act selectively on a specific combination of target activities 

found in diseased cells. For example, it is now known that not only one, but several 

mutations are required for the development of colorectal cancer[37]; the correction of 

these defective pathways will probably require several interventions. Except from 

colorectal cancer, this phenomenon can be observed and to other kinds of cancer. 

Furthermore, we can already notice that oncological chemotherapeutic regimens most 

often involve combination therapies, such as doxorubicin, cyclophosphamide, 

vincristine and prednisone[38]. In noticing the success of such combinations, some 

companies have converted clinically used drug combinations into single-pill 

formulations. 

The most common way for developing multicomponent drugs is from the 

combination of single-compound drugs that already exist to treat the target disease. 

For example, Advair for asthma combines a steroid, which affects an inflammatory 

component of asthma, with a long-acting β2-adrenoceptor agonist, which acts as a 

bronchodilator to relax constriction of the airways. It has been proved from trials that 

this combination provides greater benefit to the patient than either agent alone[39]. 

There are many other examples of such drugs (e.g. Advicor for 

hypercholesterolaemia, Combivir for HIV) which have shown how successful 

multicomponent products can be. 

We can find two main categories of combination drugs; congruous and 

syncretic drugs. A congruous drug is composed of two or more active ingredients, 

each of which has been individually used to treat the target disease indication. Advair, 

which described above, is such a congruous combination, built on the basis of clinical 

observations, a combination that would be logical to test because both of the 

component drugs are already being used to treat the target disease. Syncretic drugs on 

the other side, they have components with discrete mechanisms of action into a single 
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intervention, at least one of which is not used individually to treat the target disease 

indication. Syncretic and congruous drugs both belong to what is called 

multicomponent therapeutic, an optimized combination and formulation of multiple 

active ingredients. In general though, it’s not easy to systematize a set of principles 

that can account for combination drugs that exist today, but this exactly can make 

easier the discovery of future effective combination drugs and this is the direction 

researchers are facing. [25] 

 

 

3.3 Theoretical Evaluation of 

Combination Therapy 

    

In the field of Biology there have been many studies focusing on interactions 

between specific drugs. In this thesis we focus on the system properties of a full drug 

interaction network. There are three main types of interactions among multiple drugs: 

additive, synergistic and antagonistic[25],[34],[40],[41]. In other words, drugs may 

not interact at all (additive); their interaction may have a smaller-than–additive effect, 

suppressing their individual effects (antagonistic – negative interaction); or it may 

have a larger-than-additive effect, increasing their individual effects (synergistic – 

positive interaction) (Fig. 3.1). Synergistic combinations are those with the greatest 

interest, since they provide greater effect than would be predicted by simply adding 

together the effects of the components. In one word, the ‘key’ of synergy is 

effectiveness; benefit of the combination of the drugs that could not be achieved by 

the components on their own. There are two main reference models of synergy, two 

methods that calculate the expected dose-response relationship for combination 

therapy as compared to monotherapy: Loewe Additivity [33],[34],[42],[43],[44] and 

Bliss Independence[41],[45],[46]. 
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     Figure 3.1 Schematic illustration of additive, synergistic and antagonistic 

         interactions between two drugs X and Y 

 

Loewe additivity, which for most is the preferred additive reference model, 

assumes that two inhibitors act on a target through a similar mechanism (Fig. 3.2). 

Let’s suppose we have the concentrations of two inhibitors ([ 1I ], [ 2I ]), that 

individually achieve X% target inhibition. Then the concentration of inhibitors 

theoretically required to produce the same X% effect when used in combination 

( 1 2[ ],[ ]CI CI ), can be calculated by taking into account the potency of the inhibitors. 

 

                                 1 % 2 %

1 % 2 %

[ ] [ ]
1

[ ] [ ]

X X

X X

CI CI

I I
= + (3.1) 

 

For denoting whether or not inhibitors interacted with each other, Loewe 

additivity uses the Combination Index method of Chou and Talalay[42],[43],[47], a 

generalized method for analysing combination effects on the basis of the principle of 

mass action: 

 

                       > 1 antagonism (negative interaction) 

         1 2

1 2

[ ] [ ]
 

[ ] [ ]

CI CI
Combination index

I I
= +  = 1 additive (no interaction)        (3.2) 

          < 1 synergy (positive interaction) 
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The combination index compares the doses of inhibitors that experimentally 

produce the same level of inhibition, and individually and in combination. By finding 

the dose required for equal effect, we can determine whether the combination is 

effective at a lower total dose. An experimentally determined dose–response surface 

is synergistic when its combination index is less than 1 and antagonistic when it is 

greater than 1. 

Furthermore, the method gives us the opportunity to calculate the expected 

combination’s degree of inhibition. For example, if we consider a mass action kinetic 

enzyme inhibition with constant substrate, where E is the enzyme activity, MAXE  is the 

maximum activity, m is the hill coefficient and IK  is the concentration of inhibitor I  

required to decrease enzyme activity by 50%, we have the following equation that 

gives the effect of  the inhibitor ( UAF ): 

 

                     
1

[ ]
1 ( )

UA
mMAX

I

E
F

IE

K

= =
+

(3.3) 

 

From equations (3.1) and (3.3) we take the following equation which relates the 

expected combined effect of the two inhibitors ( UAF ) to the concentrations of the 

inhibitors: 

 

  

1 2

1 2

1 2

1 1

[ ] [ ]
1

1 1
( ) ( )

m mUA UA
I I

UA UA

CI CI

F F
K K

F F

= +
− −

(3.4) 

 

From equation (3.4), we can determine UAF  for any combination of inhibitor 

concentrations, which helps in the evaluation of clinical dose-response curves relative 

to a simple computed standard of additivity. When the combination is better than 

additive, it means that we have found a beneficial case of synergism, without caring 

about the - usually unknown - mechanism. 
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         Figure 3.2 Loewe additivity and Bliss independence in single enzymes 

 

The advantage of Loewe additivity compared to the Bliss independence 

method is that it can correctly predict the trivial case in which the two inhibitors are 

actually the same compound, since it is based in the assertion that a compound, when 

combined with itself, must by definition be additive. A theoretical Loewe additive 

response surface for a combination of two agents can be calculated from the fitted 

dose–response curves of the individual compounds. Bliss independence on the other 

hand, does not require the determination of dose–response curves for the individual 

compounds to generate the theoretical reference case, but its expectation for a 

combination is simply the product of the activity ratios of the individual inhibitors 

(
1UAF ,

2UAF ) at the same compound concentrations (equation (3.5)). That’s why it is 

also called the fractional product approach. 

 

  
1 2UA UA UAF F F= × (3.5) 

 

What we should take into account is that Bliss independence as a method 

describes the case for two active agents, which, when combined, do not directly 

interfere with each other (Fig. 3.2). It assumes that the two inhibitors act through 

independent mechanisms but, as we saw, they can both contribute to a common result. 

Another characteristic of the method, in contrast with Loewe additivity as described 

before, is that a compound that is tested in combination with itself will not generally 

seem to be independent, so it cannot be considered as additive. It is logical so, that the 

two methods provide different outcome. This can be more specific if we combine the 
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fractional product (equation (3.5)) with the enzyme kinetic relations (equation (3.3)). 

The combined effect result is different from that Loewe additivity produces, except 

from some specific circumstances of non-exclusivity: 

 

   

1 2

1 2

1 1

[ ] [ ]
1 ( ) 1 ( )

UA

I I

F
CI CI

K K

= ×
+ +

(3.6) 

 

Loewe additivity and Bliss independence are two methods with great 

differences, with advantages and disadvantages, each of which can be characterized 

‘better’ in various occasions. And their ‘conflict’ can be extended and in different 

level; for example which method performs better with noisy clinical data. There will 

always be ‘for’ and ‘against’, ideal and undesirable cases; this is not goal of this thesis 

though. What is clear from what we examined until now is that the methods are 

developed to describe simple enzyme reactions. It is easy to justify them theoretically, 

but we cannot be certain that they can completely represent the biochemistry of 

complex cell-signaling networks (Fig. (3.3)). 

 

 

    Figure 3.3 Loewe additivity and Bliss independence in signaling pathways 

 

We can say though, that these methods mostly seem to constitute black-box 

approaches, extremely valuable in clinical trials, considering the importance of 

synergy in combination therapy (Fig. (3.4)). 
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   Figure 3.4 Loewe additivity and Bliss independence as a black-box approach 

 

However, synergy determination remains one very difficult and complicated 

procedure. Sometimes, researchers have to think in a higher level than the 

conventional way Loewe additivity and Bliss independence provide. A combination 

for example, can be synergistic over one range of doses and antagonistic over another. 

In such case the answer they have to find is not if the combination is synergistic, but 

the dose range which optimizes the synergy of this combination. It is obvious that the 

methods we analysed are very helpful tools but certainly they don’t solve all the 

problems.[25],[26],[27] 

 

 

3.4 A Systems Biology Approach 

   

After analyzing theoretical methods for the evaluation of combination therapy, 

in this section we will examine models of cell signaling networks to simulate the 

effects of multicomponent drugs. We use ODE-based models, which contain one or 

more cell surface receptors and a downstream signaling cascade. These models cannot 
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completely represent real biological networks, but they are quite close to reality, 

especially considering the fact that they are characterized from amplification, 

ultrasensitivity and feedback control[48]. The greatest advantage of this analysis is 

that a big number of drug combinations can be explored computationally at much 

lower cost than in preclinical or clinical experiments. We simulated four signaling 

pathways using Matlab code (models and parameter values taken from[26]), in each 

of which we calculated dose-response curves for a single downstream signaling 

protein when combined inhibitors are used. 

 

 

3.4.1 Combination of Inhibitors Targeting 

Two Converging Pathways 

  

In the first system that we simulate, two ligands ( 1A  and 2A ) and their 

receptors ( 1B  and 2B ) converge on a single downstream signaling kinase C which is 

activated by phosphorylation (Fig. (3.5)). As we can see in the reaction scheme, 

activation of 1B  and 2B  by ligands 1A  and 2A  respectively, contributes equally to the 

activity of C. Phosphatases Ptse1 and Ptse2 ensure recycling of activated C and B. 

 

 

         Figure 3.5 Regulatory and reaction scheme for a combination of two  

                  inhibitors targeting two converging pathways 
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By using Systems Biology principles, as described in the previous chapter, we 

have the following reactions that describe our model: 

 

Reaction Description Reaction ReactionRate 

activation of B1 by A1 A1 + B1 <-> A1:B1 k1*A1*B1 - kd1*[A1:B1] 

B1P + A1 <-> A1:B1 k2*B1P*A1 - kd2*[A1:B1] 

P1 + B1P <-> P1:B1P k3*P1*B1P - kd3*[P1:B1P] 

P1 + B1 <-> P1:B1P k4*P1*B1 - kd4*[P1:B1P] 

activation of C by B1 C + B1P <-> C:B1P k5*C*B1P - kd5*[C:B1P] 

CP + B1P <-> C:B1P k6*CP*B1P - kd6*[C:B1P] 

P2 + CP <-> P2:CP k7*P2*CP - kd7*[P2:CP] 

P2 + C <-> P2:CP k8*P2*C - kd8*[P2:CP] 

inhibition of B1 I1 + B1 <-> I1:B1 k9*I1*B1 - kd9*[I1:B1] 

inhibition of B2 I2 + B2 <-> I2:B2 k10*I2*B2 - kd10*[I2:B2] 

activation of B2 by A2 B2 + A2 <-> B2:A2 k11*B2*A2 - kd11*[B2:A2] 

B2P + A2 <-> B2:A2 k12*B2P*A2 - kd12*[B2:A2] 

P1 + B2P <-> P1:B2P k13*P1*B2P - kd13*[P1:B2P] 

P1 + B2 <-> P1:B2P k14*P1*B2 - kd14*[P1:B2P] 

activation of C by B2 C + B2P <-> C:B2P k15*C*B2P - kd15*[C:B2P] 

CP + B2P <-> C:B2P k16*CP*B2P - kd16*[C:B2P] 

 

 For the simulation, we used the differential equations that we take from the 

reactions above, as we can see in the following part of our Matlab code: 

 

A1=x(1); 
B1=x(2); 

A1B1=x(3); 
C=x(4); 

CB1P=x(5); 
CP=x(6); 
P1=x(7); 

P1B1P=x(8); 
P2=x(9); 

P2CP=x(10); 
B1P=x(11); 
I1=x(12); 

I2=x(13); 
I1B1=x(14); 

B2=x(15); 
I2B2=x(16); 
A2=x(17); 

B2A2=x(18); 
B2P=x(19); 

P1B2P=x(20); 
CB2P=x(21); 

  

  

xdot(1)=-k1*A1*B1+kd1*A1B1-k2*B1P*A1+kd2*A1B1; 
xdot(2)=-k1*A1*B1+kd1*A1B1-k4*P1*B1+kd4*P1B1P-k9*I1*B1+kd9*I1B1; 

xdot(3)=k1*A1*B1-kd1*A1B1+k2*B1P*A1-kd2*A1B1; 
xdot(4)=-k5*C*B1P+kd5*CB1P-k8*P2*C+kd8*P2CP-k15*C*B2P+kd15*CB2P; 

xdot(5)=k5*C*B1P-kd5*CB1P+k6*CP*B1P-kd6*CB1P; 
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xdot(6)=-k7*P2*CP+kd7*P2CP-k6*CP*B1P+kd6*CB1P-k16*CP*B2P+kd16*CB2P; 
xdot(7)=-k3*P1*B1P+kd3*P1B1P-k4*P1*B1+kd4*P1B1P-  

  k13*P1*B2P+kd13*P1B2P-k14*P1*B2+kd14*P1B2P; 
xdot(8)=k3*P1*B1P-kd3*P1B1P+k4*P1*B1-kd4*P1B1P; 

xdot(9)=-k7*P2*CP+kd7*P2CP-k8*P2*C+kd8*P2CP; 
xdot(10)=k7*P2*CP-kd7*P2CP+k8*P2*C-kd8*P2CP; 
xdot(11)=-k2*B1P*A1+kd2*A1B1-k3*P1*B1P+kd3*P1B1P-k5*C*B1P+kd5*CB1P- 

   k6*CP*B1P+kd6*CB1P; 
xdot(12)=-k9*I1*B1+kd9*I1B1; 

xdot(13)=-k10*I2*B2+kd10*I2B2; 
xdot(14)=k9*I1*B1-kd9*I1B1; 
xdot(15)=-k10*I2*B2+kd10*I2B2-k11*B2*A2+kd11*B2A2- 

   k14*P1*B2+kd14*P1B2P; 
xdot(16)=k10*I2*B2-kd10*I2B2; 

xdot(17)=-k11*B2*A2+kd11*B2A2-k12*B2P*A2+kd12*B2A2; 
xdot(18)=k11*B2*A2-kd11*B2A2+k12*B2P*A2-kd12*B2A2; 
xdot(19)=-k12*B2P*A2+kd12*B2A2-k13*P1*B2P+kd13*P1B2P- 

   k15*C*B2P+kd15*CB2P-k16*CP*B2P+kd16*CB2P; 
xdot(20)=k13*P1*B2P-kd13*P1B2P+k14*P1*B2-kd14*P1B2P; 

xdot(21)=k15*C*B2P-kd15*CB2P+k16*CP*B2P-kd16*CB2P; 

 

Here are the results of our simulation for the two inhibitors and the ‘output’ of 

the system, the activated C, which is a measure of therapeutic effect: 
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This model is a simplified implementation of the apparent interaction of 

insulin-like growth factor 1 (IGF-1) and ErbB signaling in breast cancer. Further 

analysis of the network has shown the existence of synergy between 1I  and 2I , 

although neither Loewe additivity nor Bliss independence predicts that correctly[26]. 

 

 

3.4.2 Inhibition of a Single Target by Two 

Inhibitors 

  

The second system we examine is about dual inhibition of a single target (Fig. 

(3.6)). As we can see, inhibitors 1I , 2I  and 3I  block binding of ligand A to receptor B 

and prevent the activation of C. We assume that the kinetic parameters of 1I , 2I  and 

3I  are equal. 

 

 

         Figure 3.6 Regulatory scheme of a single linear pathway with dual                

             inhibition of a single target and its reaction scheme 

 

We have two occasions, depending on which is the second inhibitor. If it is 2I , 

it prevents 1I  from binding ( 1I  and 2I  mutually exclusive); if it is 3I  though, it does 

not affect binding of 1I  ( 1I  and 3I  mutually non-exclusive). When we have mutually 

exclusive inhibitors, it is reasonable to assume they act through a similar mechanism 

and that their combined effect on C is described by Loewe additivity. In the second 

case, it is reasonable to expect Bliss independence. This is represented in the model 
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by inclusion of a triplex species [ 1I : 3I :B]. There is no change in the effectiveness of 

the individual inhibitors, but the difference is that in this case we have synergy. This 

model can be considered as an implementation of dual inhibition of gefitinib (Iressa) 

and certuximab (Erbitux) to the ErbB1 tyrosine kinase[26]. 

The reactions that describe the model and the differential equations taken from 

our Matlab code are the following: 

 

Reaction Description Reaction ReactionRate 

ligand binding to receptor A + B <-> A:B k1*A*B - kd1*[A:B] 

receptor activation BP + A <-> A:B k2*BP*A - kd2*[A:B] 

binding of Pase1 P1 + BP <-> P1:BP k3*P1*BP - kd3*[P1:BP] 

deactivation of B P1 + B <-> P1:BP k4*P1*B - kd4*[P1:BP] 

activation of C by BP C + BP <-> C:BP k5*C*BP - kd5*[C:BP] 

producing CP CP + BP <-> C:BP k6*CP*BP - kd6*[C:BP] 

binding of Pase2 P2 + CP <-> P2:CP k7*P2*CP - kd7*[P2:CP] 

dephosphorylation of CP P2 + C <-> P2:CP k8*P2*C - kd8*[P2:CP] 

inhibition of B by I1 I1 + B <-> I1:B k9*I1*B - kd9*[I1:B] 

inhibition of B by I2 I2 + B <-> I2:B k10*I2*B - kd10*[I2:B] 

non-excusive inhibition of B by I3 I3 + B <-> l3:B k11*I3*B - kd11*[I3:B] 

dual inhibitor non-exclusive 

binding 

I3 + I1:B <-> 

I3:I1:B 

k11*I3*[I1:B] - 

kd11*[I3:I1:B] 

dual inhibitor non-exclusive 

binding 

I1 + I3:B <-> 

I3:I1:B k9*I1*[I3:B] - kd9*[I3:I1:B] 

 

 

A=x(1); 

B=x(2); 
AB=x(3); 
BP=x(4); 

C=x(5); 
CBP=x(6); 

CP=x(7); 
P1=x(8); 
P1BP=x(9); 

P2=x(10); 
P2CP=x(11); 

I1=x(12); 
I1B=x(13); 
I2=x(14); 

I2B=x(15); 
I3=x(16); 

I3B=x(17); 
I3I1B=x(18); 

  

xdot(1)=-k1*A*B+kd1*AB-k2*BP*A+kd2*AB; 
xdot(2)=-k1*A*B-k4*P1*B+kd1*AB+kd4*P1BP-k9*I1*B+kd9*I1B- 

  k10*I2*B+kd10*I2B-k11*I3*B+kd11*I3B; 
xdot(3)=-kd1*AB-kd2*AB+k1*A*B+k2*BP*A; 
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xdot(4)=-k2*BP*A-k3*P1*BP-k5*C*BP- 

  k6*CP*BP+kd2*AB+kd3*P1BP+kd4*P1BP+kd5*CBP+kd6*CBP; 

xdot(5)=-k5*C*BP-k8*P2*C+kd5*CBP+kd8*CBP; 
xdot(6)=k5*C*BP-kd5*CBP+k6*CP*BP-kd6*CBP; 

xdot(7)=-k6*CP*BP+kd6*CBP-k7*P2*CP+kd7*P2CP; 
xdot(8)=-k3*P1*BP+kd3*P1BP-k4*P1*B+kd4*P1BP; 
xdot(9)=k3*P1*BP-kd3*P1BP+k4*P1*B-kd4*P1BP; 

xdot(10)=-k7*P2*CP+kd7*P2CP-k8*P2*C+kd8*P2CP; 
xdot(11)=k7*P2*CP-kd7*P2CP+k8*P2*C-kd8*P2CP; 

xdot(12)=-k9*I1*B+kd9*I1B-k9*I1*I3B+kd9*I3I1B; 
xdot(13)=k9*I1*B-kd9*I1B; 
xdot(14)=-k10*I2*B+kd10*I2B; 

xdot(15)=k10*I2*B-kd10*I2B; 
xdot(16)=-k11*I3*B+kd11*I3B-k11*I3*I1B+kd11*I3I1B; 

xdot(17)=k11*I3*B-kd11*I3B-k9*I1*I3B+kd9*I3I1B; 
xdot(18)=k11*I3*I1B-kd11*I3I1B+k9*I1*I3B-kd9*I3I1B; 

      

 And here is the result of our simulation for the activated C in the mutually 

non-exclusive case of dual inhibition of a single target: 
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3.4.3 Targeting Different Levels of a Single 

Pathway 

  

In the next case we will examine, two inhibitors target different components of 

a linear amplification pathway (Fig. (3.7)). As we can see, we have the same 

regulatory scheme as in previous case, but now 2I  binds to a downstream signalling 

molecule C. 

 

            

Figure 3.7 Regulatory scheme of a single linear amplification pathway with inhibitors acting at 

    different level of a single target and the reaction scheme of an ultrasensitive signaling 

    cascade (dual phosphorylation) 

 

Double phosphorylation makes our model ultrasensitive, similar to the MAPK 

cascade, where MAPKK is also activated by two independent phosphorylations. The 

combination of 1I  and 2I  is synergistic, something that wouldn’t happen with a single 

phosphorylation (additive)[26]. 

 

Reactions, differential equations and result for the double phosphorylated C 

are the following: 
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Reaction Description Reaction ReactionRate 

ligand binding to receptor A + B <-> A:B k1*A*B - kd1*[A:B] 

receptor activation BP + A <-> A:B k2*BP*A - kd2*[A:B] 

binding of Pase1 P1 + BP <-> P1:BP k3*P1*BP - kd3*[P1:BP] 

deactivation of B P1 + B <-> P1:BP k4*P1*B - kd4*[P1:BP] 

activation of C by BP C + BP <-> C:BP k5*C*BP - kd5*[C:BP] 

producing CP CP + BP <-> C:BP k6*CP*BP - kd6*[C:BP] 

binding of Pase2 P2 + CP <-> P2:CP k7*P2*CP - kd7*[P2:CP] 

dephosphorylation of CP P2 + C <-> P2:CP k8*P2*C - kd8*[P2:CP] 

inhibition of B by I1 I1 + B <-> I1:B k9*I1*B - kd9*[I1:B] 

inhibition of C by I2 I2 + C <-> I2:C k12*I2*C - kd12*[I2:C] 

double phosphorylation of C by BP CP + BP <-> CP:BP k5*CP*BP - kd5*[CP:BP] 

CPP + BP <-> CP:BP k6*CPP*BP - kd6*[CP:BP] 

dephosphorylation of CPP CPP + P2 <-> P2:CPP k7*CPP*P2 - kd7*[P2:CPP] 

CP + P2 <-> P2:CPP k8*CP*P2 - kd8*[P2:CPP] 

 

 

A=x(1); 
B=x(2); 

AB=x(3); 
BP=x(4); 

C=x(5); 
CBP=x(6); 
CP=x(7); 

P1=x(8); 
P1BP=x(9); 

P2=x(10); 
P2CP=x(11); 
I1=x(12); 

I1B=x(13); 
I2=x(14); 

I2C=x(15); 
CPBP=x(16); 
CPP=x(17); 

P2CPP=x(18); 

  

  

xdot(1)=-k1*A*B+kd1*AB-k2*BP*A+kd2*AB; 
xdot(2)=-k1*A*B+kd1*AB-k4*P1*BP+kd4*P1BP-k9*I1*B+kd9*I1B; 

xdot(3)=-kd1*AB-kd2*AB+k1*A*B+k2*BP*A; 
xdot(4)=-k2*BP*A+kd2*AB-k3*P1*BP+kd3*P1BP-k5*C*BP+kd5*CBP- 

        k6*CP*BP+kd6*CBP-k5*CP*BP+kd5*CPBP-k6*CPP*BP+kd6*CPBP; 

xdot(5)=-k5*C*BP+kd5*CBP-k8*P2*C+kd8*P2CP-k12*I2*C+kd12*I2C; 
xdot(6)=k5*C*BP-kd5*CBP+k6*CP*BP-kd6*CBP; 

xdot(7)=-k6*CP*BP+kd6*CBP-k7*P2*CP+kd7*P2CP-k5*CP*BP+kd5*CPBP- 

        k8*CP*P2+kd8*P2CPP; 
xdot(8)=-k3*P1*BP+kd3*P1BP-k4*P1*B+kd4*P1BP; 

xdot(9)=k3*P1*BP-kd3*P1BP+k4*P1*B-kd4*P1BP; 
xdot(10)=-k7*P2*CP+kd7*P2CP-k8*P2*C+kd8*P2CP-k7*CPP*P2+kd7*P2CPP- 

         k8*CP*P2+kd8*P2CPP; 
xdot(11)=k7*P2*CP-kd7*P2CP+k8*P2*C-kd8*P2CP; 
xdot(12)=-k9*I1*B+kd9*I1B; 

xdot(13)=k9*I1*B-kd9*I1B; 
xdot(14)=-k12*I2*C+kd12*I2C; 

xdot(15)=k12*I2*C-kd12*I2C; 
xdot(16)=k5*CP*BP-kd5*CPBP+k6*CPP*BP-kd6*CPBP; 
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xdot(17)=-k6*CPP*BP+kd6*CPBP-k7*CPP*P2+kd7*P2CPP; 
xdot(18)=k7*CPP*P2-kd7*P2CPP+k8*CP*P2-kd8*P2CPP; 

 

 

     

 

 

3.4.4 Feedback-Controlled Targets 

  

Finally, we simulated a model, in which the target of inhibitor 2I  is within a 

negative feedback loop (Fig. (3.8)). In the reaction scheme we can see that PC  

deactivates B creating the loop. What is interesting in this case, is that C is inhibited 

more effectively by 1I  than by 2I , while in the previous model where we didn’t have 

feedback it was happening the opposite[26]. 

 

 

      Figure 3.8 Regulatory scheme in which the target of the second inhibitor 

              is within a negative feedback loop and its reaction scheme 
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Negative feedback is found very often in biological networks probably 

because of the robustness it can ensure[49],[50],[51],[52],[53]. However, this makes 

quite difficult the intuition of combination therapy’s effectiveness. Because of that, 

we must be very careful with the reaction pathways when feedback regulation is 

involved, if we want to maximize therapeutic efficacy[26]. 

Reactions, differential equations and result for the activated C are following: 

 

Reaction Description Reaction ReactionRate 

ligand binding to receptor A + B <-> A:B k1*A*B - kd1*[A:B] 

receptor activation BP + A <-> A:B k2*BP*A - kd2*[A:B] 

binding of Pase1 P1 + BP <-> P1:BP k3*P1*BP - kd3*[P1:BP] 

deactivation of B P1 + B <-> P1:BP k4*P1*B - kd4*[P1:BP] 

activation of C by BP C + BP <-> C:BP k5*C*BP - kd5*[C:BP] 

producing CP CP + BP <-> C:BP k6*CP*BP - kd6*[C:BP] 

binding of Pase2 P2 + CP <-> P2:CP k7*P2*CP - kd7*[P2:CP] 

dephosphorylation of CP P2 + C <-> P2:CP k8*P2*C - kd8*[P2:CP] 

inhibition of B by I1 I1 + B <-> I1:B k9*I1*B - kd9*[I1:B] 

inhibition of C by I2 I2 + C <-> I2:C k12*I2*C - kd12*[I2:C] 

negative feedback from CP to BP CP + BP <-> CP:BP k12*CP*BP - kd12*[CP:BP] 

feedback dephosphorylation of BP CP + B <-> CP:BP k13*CP*B - kd13*[CP:BP] 

 

 

A=x(1); 

B=x(2); 
AB=x(3); 
BP=x(4); 

C=x(5); 
CBP=x(6); 

CP=x(7); 
P1=x(8); 
P1BP=x(9); 

P2=x(10); 
P2CP=x(11); 

I1=x(12); 
I1B=x(13); 
I2=x(14); 

I2C=x(15); 
CPBP=x(16); 

  

xdot(1)=-k1*A*B+kd1*AB-k2*BP*A+kd2*AB; 
xdot(2)=-k1*A*B+kd1*AB-k4*P1*B+kd4*P1BP-k9*I1*B+kd9*I1B- 

        k13*CP*B+kd13*CPBP; 
xdot(3)=-kd1*AB-kd2*AB+k1*A*B+k2*BP*A; 
xdot(4)=-k2*BP*A+kd2*AB-k3*P1*BP+kd3*P1BP-k5*C*BP+kd5*CBP- 

        k14*CP*BP+kd14*CPBP-k6*CP*BP+kd6*CBP; 
xdot(5)=-k5*C*BP+kd5*CBP-k8*P2*C+kd8*P2CP-k12*I2*C+kd12*I2C; 

xdot(6)=k5*C*BP-kd5*CBP+k6*CP*BP-kd6*CBP; 
xdot(7)=-k6*CP*BP+kd6*CBP-k7*P2*CP+kd7*P2CP-k14*CP*BP+kd14*CPBP- 

        k13*CP*B+kd13*CPBP; 

xdot(8)=-k3*P1*BP+kd3*P1BP-k4*P1*B+kd4*P1BP; 
xdot(9)=k3*P1*BP-kd3*P1BP+k4*P1*B-kd4*P1BP; 
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xdot(10)=-k7*P2*CP+kd7*P2CP-k8*P2*C+kd8*P2CP; 
xdot(11)=k7*P2*CP-kd7*P2CP+k8*P2*C-kd8*P2CP; 

xdot(12)=-k9*I1*B+kd9*I1B; 
xdot(13)=k9*I1*B-kd9*I1B; 

xdot(14)=-k12*I2*C+kd12*I2C; 
xdot(15)=k12*I2*C-kd12*I2C; 
xdot(16)=k14*CP*BP-kd14*CPBP+k13*CP*B-kd13*CPBP; 

 

    

 

 

3.4.5 Summary 

  

In this section, we simulated four models of combination therapy, which we 

will use them later for identification. What we have to notice from biological view is 

that only experimentally validated models that accurately describe actual signaling 

systems can be used to explore the mechanisms of action of real combination drugs. 

‘Toy’ models, such those we examined, can be very helpful but they can only 

illustrate possibilities. However, models of biological networks relevant to human 

diseases that realistically capture, in mathematical form, actual cellular and tissue 

physiology are not far to be developed. Until then, mathematical models of cellular 

physiology will be the most reliable guides for drug development despite their 

limitations. 
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4   Fuzzy Systems 
 

 

In the previous chapter we examined the combination therapy models that we 

will identify in this thesis. Now, it is time to present the neuro fuzzy identification 

scheme that we will use in this process. It is a Neuro-Fuzzy Dynamical System 

Definition Scheme, which uses the concept of Adaptive Fuzzy Systems operating in 

conjunction with High Order Neural Network Functions (F-HONNFs)[54]. 

In the first section of the chapter we focus on fuzzy systems and mostly on 

fuzzy control theory. Our goal is to examine basic concepts of the fuzzy theory, such 

as membership functions, fuzzy sets and fuzzy rules, which we will use in the 

identification procedure. We show how fuzzy logic provides a methodology for 

representing and implementing our knowledge about how best to control a process. 

The second section of the chapter is about our identification scheme. After a 

brief introduction, we examine some essential theory in Addaptive Fuzzy Systems and 

High Order Neural Network Functions that is the basis for the identification scheme 

we use, which is finally presented in section 4.2.3. 

 

 

 

4.1 Fuzzy Control 
 

4.1.1 Introduction 

  

Before starting to examine fuzzy control, we will try to explain the reasons for 

turning to it from conventional control. It is a fact that the difficult task of modeling 

and simulating complex real–world systems for control systems development, 

especially when implementation issues are considered, is well documented. Even if a 

relatively accurate model of a dynamic system can be developed, it is often too 

complex to use in controller development, especially for many conventional control 

design procedures that require restrictive assumptions for the plant (linearity for 

example). It is for this reason that in practice conventional controllers are often 

developed via simple models of the plants behavior that satisfy the necessary 
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assumptions, and via the ad hoc tuning of relatively simple linear or nonlinear 

controllers. However, it is well understood that heuristics enter the conventional 

control design process as long as we are concerned with the actual implementation of 

the control system. What we certainly must admit, is that conventional control 

engineering approaches that use appropriate heuristics to tune the design have been 

relatively successful. 

The main idea of fuzzy control is to build a model of a human control expert 

who is capable of controlling a plant without thinking in terms of a mathematical 

model. It provides a formal methodology for representing, manipulating, and 

implementing a human’s heuristic knowledge about how to control a system. We will 

try now to approach the design of fuzzy controllers, starting from examining a block 

diagram of a fuzzy control system (Fig. 4.1). 

 

 

Figure 4.1 Block diagram of a fuzzy controller 

 

In the diagram we can see a fuzzy controller embedded in a closed–loop 

control system. The plant inputs are denoted by u(t), its outputs by y(t), and the 

reference input to the fuzzy controller is denoted by r(t). The fuzzy controller is 

composed of the following four elements: 

1) A rule base (a set of If – Then rules), which contains a fuzzy logic 

quantification of the expert’s linguistic description about how to achieve good 

control. 

2) An inference mechanism (‘fuzzy inference’ module), which emulates the 

expert’s decision making interpreting and applying knowledge about how best 

to control the plant. 
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3) A fuzzification interface, which converts controller inputs into information 

that the inference mechanism can easily use to activate and apply rules. 

4) A defuzzification interface, which converts the conclusions of the inference 

mechanism into actual inputs for the process. 

In general, we can describe the fuzzy controller as an artificial decision maker 

that operates in a closed–loop system in real time. It gathers plant output data y(t), 

compares it to the reference input r(t), and then decides what the plan input u(t) 

should be ensure that the performance objectives will be meet. 

To design the fuzzy–controller, we need information on how the artificial 

decision maker should act in the closed–loop system. Sometimes this information can 

come from a human decision maker who performs the control task, while at other 

times the control engineer can come to understand the plan dynamics and write down 

a set of rules about how to control the system without outside help. Trying to describe 

these ‘rules’, we could imagine them of the form: ‘If the plant output and reference 

input are behaving in a certain manner, then the plant input should be some value.’ 

After the whole set of such ‘If – Then’ rules is loaded into the rule–base and an 

inference strategy is chosen, then the system is ready to be tested to see if the closed–

loop specifications are met.  

For a better understanding of the above, we will use the problem of balancing 

an inverted pendulum on a cart (Fig. (4.2)), a very simple and common nonlinear 

control problem, for which there already are many techniques to provide a solution.  

 

   

  Figure 4.2 Inverted pendulum on a cart 

 

Here, u is the force input that moves the cart, y denotes the angle that the 

pendulum makes with the vertical, and l is the half–pendulum length. We suppose that 
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r is the desired angular position of the pendulum. The goal is to balance the pendulum 

in the upright position (r = 0) when it initially starts with some nonzero angle off the 

vertical (y ≠0). 

Continuing in this chapter we will examine general issues in fuzzy control 

system design, using the inverted pendulum as a convenient problem to illustrate the 

design and basic mechanics of the operation of a fuzzy control system.[55] 

 

 

4.1.2 Choosing Fuzzy Controller 

Inputs and Outputs 

  

The first step in the design of a fuzzy controller is to choose its inputs and 

outputs. We can describe a fuzzy system as a static nonlinear mapping between its 

inputs and outputs, which, in fact, are ‘crisp’ (real numbers) and not fuzzy sets. The 

fuzzification block converts the crisp inputs to fuzzy sets, the inference mechanisms 

uses the fuzzy rules in the rule-base to produce fuzzy conclusions, and the 

defuzzification block converts these fuzzy conclusions into the crisp outputs (Fig. 

(4.1). 

For the inverted pendulum problem we described before, let’s consider a 

human–in–the–loop whose responsibility is to control the pendulum. The fuzzy 

controller is to be designed to automate how a human expert who is successful at this 

task would control the system. First, the expert has to decide about the information 

that will be used as inputs to the decision–making process. Suppose that for the 

inverted pendulum, we have the following variables on which to base decision: 

 

                                  e(t) = r(t) – y(t) 

 

                                   ( )
d

e t
dt

 

 

We have to note here, that we can have many other choices and that’s something very 

common in most control problems. 
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The next step is to identify the controller variable. For the inverted pendulum, 

we are allowed to control only the force that moves the cart, so the choice here is 

simple. For more complex applications though, the choice of the inputs to the 

controller and outputs of the controller (inputs to the plant) can be more difficult. 

Essentially, we have to make sure that the controller will have the proper information 

available to be able to make good decisions and have proper control inputs to be able 

to steer the system in the directions needed for achieving high-performance operation. 

Practically speaking, access to information and the ability to effectively control the 

system often costs money. If we believe that proper information is not available for 

making control decisions, we may have to invest to another sensor that can provide a 

measurement of another system variable. Alternatively, we can implement some 

filtering or other processing of the plant outputs. In addition, if it is determined that 

the current actuators will not allow for the precise control of the process, we may need 

to invest in designing and implementing an actuator that can properly affect the 

process. What we want to show is that, while in most academic problems we may be 

given the plant inputs and outputs, in many practical situations we may have some 

flexibility in our choice. These choices affect what information is available for 

making on-line decisions about the control of a process and hence affect how we 

design a fuzzy controller. 

Once the fuzzy controller inputs and outputs are chosen, we must determine 

what the reference inputs are. For example, in the inverted pendulum the choice of the 

reference input r=0 is clear. After all the inputs and outputs are defined for the fuzzy 

controller, we can specify the fuzzy control system, which for the example of the 

inverted pendulum, with our choice of inputs and outputs, we can see in Figure 4.3. 

 

   Figure 4.3 Fuzzy controller for an inverted pendulum on a cart 

 

Now, within this framework we seek to obtain a description of how to control 

the process. In many occasions the choice of the inputs and outputs of the controller 



61 

 

may place certain constraints of the reminder of the fuzzy control design process. If 

the proper information is not provided to the fuzzy controller, there will be little hope 

for being able to design a good rule–base or inference mechanism. Moreover, even if 

the proper information is available to make control decisions, this will be of little use 

if the controller is not able to properly affect the process variables via the process 

inputs. From all these, it is clear that the choice of the controller inputs and outputs is 

a fundamentally important part of the control design process.[55],[56],[57] 

 

 

4.1.3 Rule-Bases 

  

To specify rules for the rule-base, the expert will use a ‘linguistic description’; 

hence, linguistic expressions are needed for the inputs and outputs and their 

characteristics. Suppose that the human expert provides a description of how best to 

control the plant in some natural language (e.g. Greek). Our goal is to take this 

‘linguistic’ description and load in into the fuzzy controller. We will use ‘linguistic 

variables’ (constant symbolic descriptions of what are in general time-varying 

quantities) to describe fuzzy system inputs and outputs. For example, let’s suppose we 

use linguistic variables iuɶ  and iyɶ  to describe the inputs iu  and the outputs iy  

respectively. An input to the fuzzy system may be described as iuɶ = ‘position error’ 

and an output from the fuzzy system may be iyɶ = ‘voltage in’. 

The linguistic description provided by the expert can generally be broken into 

several parts. There will be ‘linguistic variables’ that describe each of the time–

varying fuzzy controller inputs and outputs. To make things more clear, for the 

inverted pendulum as described previously we will have: 

 

‘error’ describes e(t) 

‘change–in–error’ describes 
d

e
dt

 

‘force’ describes u(t) 
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Note that we use quotes to emphasize that certain words or phrases are 

linguistic descriptions, and that we have added the time index (e.g. e(t)) to emphasize 

that generally e varies with time. There are many possible choices for the linguistic 

descriptions for variables. Some designers like to choose them so that they are quite 

descriptive for documentation purposes. However, this can sometimes lead to long 

descriptions. Others seek to keep the linguistic description as short as possible (e.g., 

using ‘e(t)’ as the linguistic variable for e(t)), yet accurate enough so that they 

adequately represent the variables. The truth is that the choice of the linguistic 

variable has no impact on the way that the fuzzy controller operates. It is simply a 

notation that helps to facilitate the construction of the fuzzy controller via fuzzy logic.  

   Just as e(t) takes on a value of, for example 1 at t = 2 (e(2) = 1), linguistic 

variables take on ‘linguistic values’ that are used to describe characteristics of the 

variables. That is, the values that linguistic variables take on over time change 

dynamically. Suppose for the pendulum example that ‘error’, ‘change–in–error’ and 

‘force’ take on the following values: 

‘neglarge’ 

‘negsmall’ 

‘zero’ 

‘possmall’ 

‘poslarge’ 

We are using ‘negsmall’ as an abbreviation for ‘negative small in size’, 

‘neglarge’ for ‘negative large in size’ and so on for the other variables. Such, 

abbreviations help keep the linguistic description short yet precise. For an even 

shorter description we could use integers: 

‘-2’ to represent ‘neglarge’ 

‘-1’ to represent ‘negsmall’ 

‘0’ to represent ‘zero’ 

‘1’ to represent ‘possmall’ 

‘2’ to represent ‘poslarge’ 

This is a particularly appealing choice for the linguistic values since the 

descriptions are short and nicely represent that the variable we are concerned with has 

a numeric quality. We are not, for example, associating ‘-1’ with any particular 

number of radians of error: the use of the numbers for linguistic description simply 

quantifies the sign of the error (in the usual way) and indicates the size in relation to 
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the other linguistic values. We shall find the use of this type of linguistic value quite 

convenient and hence will give it the special name, ‘linguistic – numeric value’. 

   The linguistic variables and values provide a language for the expert to 

express her or his ideas about the control decision – making process in the context of 

the framework established by our choice of fuzzy controller inputs and outputs. Recall 

that for the inverted pendulum r = 0, and e = r – y, so we have: 

 

e = -y  , and 

                                
d d

e y
dt dt

= −  , since  0
d

r
dt

= . 

 

. First, we will examine how we can quantify certain dynamic behaviors with 

linguistics. Let’s see for example how to quantify knowledge about how to control the 

pendulum using linguistic descriptions. Each of the following statements quantifies a 

different configuration of the pendulum (Fig. 4.2): 

• The statement ‘error is poslarge’ can represent the situation where the 

pendulum is at significant angle to the left of the vertical. 

• The statement ‘error is negsmall’ can represent the situation where the 

pendulum is just slightly to the right of the vertical, but not too close to the 

vertical to justify quantifying it as ‘zero’ and not too far away to justify 

quantifying it as ‘neglarge’. 

• The statement ‘error is zero’ can be represented the situation where the 

pendulum is very near the vertical position (a linguistic quantification is not 

precise, so we have to accept any value of the error around e(t) = 0 as being 

quantified linguistically by ‘zero’, since this can be considered a better 

quantification than ‘possmall’ or ‘negsmall’). 

• The statement ‘error is poslarge and change–in–error is possmall’ can 

represent the situation where the pendulum is to the left of the vertical, and 

since 
d

y
dt

 < 0, the pendulum is moving away from the upright position (the 

pendulum is moving counterclockwise). 

• The statement ‘error is negsmall and change–in–error is possmall’ can 

represented the situation where the pendulum is slightly to the right of the 
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vertical and, since  
d

y
dt

 < 0, the pendulum is moving toward the upright 

position (the pendulum is moving counterclockwise). 

Overall, we see that to quantify the dynamics of the process we need to have a 

good understanding of the physics of the underlying process we are trying to control. 

While for the pendulum problem, the task of coming to a good understanding of the 

dynamics is relatively easy, this does not happen usual for most physical processes. 

Quantifying the process dynamics with linguistic is not always easy, and certainly a 

better understanding of the process dynamics generally leads to a better linguistic 

quantification, which in turn leads to a better fuzzy controller, provided that we can 

adequately measure the system dynamics so that the fuzzy controller can make the 

right decisions at the proper time. 

Next step in the procedure is to map the inputs to the outputs for our fuzzy 

system. This mapping is in part characterized by a set of condition → action rules, 

which are of the form: 

 

                                           If premise Then consequent. 

 

For this, we use the previous linguistic quantification to specify a set of rules 

(a rule–base) that captures the expert’s knowledge about how to control the plant. For 

better understanding, we consider the inverted pendulum in the three positions shown 

in Figure 4.4, for which we have the following rules: 

 

a) If error is neglarge and change–in–error is neglarge Then force is poslarge 

This rule quantifies the situation in Figure (4.4a) where the pendulum has a large 

positive angle and is moving clockwise; we should apply a strong positive force (to 

the right) so that we can try to start the pendulum moving in the proper direction. 

 

b) If error is zero and change–in–error is possmall Then force is negsmall 

This rule quantifies the situation in Figure (4.4b) where the pendulum has nearly a 

zero angle with the vertical and is moving counterclockwise; we should apply a small 

negative force (to the left) to counteract the movement so that it moves toward zero. 
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c) If error is poslarge and change–in–error is negsmall Then force is negmall 

This rule quantifies the situation in Figure (4.4c) where the pendulum is far to the left 

of the vertical and is moving clockwise; we should apply a small negative force (to 

the left) to assist the movement, (not large since the pendulum is already moving in 

the proper direction). 

  

 

  Figure 4.4 Inverted pendulum on a cart in various positions 

 

Each of the three rules listed above is a ‘linguistic rule’ since it is formed only 

from linguistic variables and values. Since linguistic values are not precise 

representations of the underlying quantities that they describe, linguistic rules are not 

precise either. They are simply abstract ideas about how to achieve good control. Of 

course, this could mean somewhat different things to different people, but in general 

humans are often comfortable with such abstraction in terms of specifying how to 

control a process. 

As we can see from the three rules above, the premises are associated with the 

fuzzy controller inputs and the consequents are associated with the fuzzy controller 

outputs. The number of fuzzy controller inputs and outputs places an upper limit on 

the number of elements in the premises and consequents. What we should note is that 

there does not need to be a premise or consequent term for each input or output in 

each rule, although often there is. 

Using the above approach, we could continue to write down rules for the 

pendulum problem for all possible cases. Since we only specify a finite number of 

linguistic variables and linguistic values, there is only a finite number of possible 

rules. For the pendulum problem for example, with two inputs and five linguistic 
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values for each of these, there are at most 5² = 25 possible rules (all possible 

combinations of premise linguistic values for two inputs). 

The most common and convenient way to list all possible rules for the case 

where there are not too many inputs to the fuzzy controller is to use a tabular 

representation. We present a tabular representation of one possible set of rules for the 

inverted pendulum in the next table: 

 

“force” 

u 

“change – in – error” e 

-2 -1 0 1 2 

 

“error” 

e 

-2 2 2 2 1 0 

-1 2 2 1 0 -1 

0 2 1 0 -1 -2 

1 1 0 -1 -2 -2 

2 0 -1 -2 -2 -2 

 

If we view the body of the table as a matrix, we can see that it has a kind of 

symmetry; also we can see a diagonal of zeros. This symmetry that emerges when the 

rules are tabulated is no accident and is actually a representation of abstract 

knowledge about how to control the pendulum; it arises due to a symmetry in the 

system’s dynamics. In general, similar patterns are found when constructing rule–

bases for most applications; this symmetry is very useful and it can be exploited in 

implementing fuzzy controllers.[55],[57] 

 

 

4.1.4 Membership Functions 

  

Up to this point we have only quantified, in an abstract way, the knowledge 

that the human expert has about how to control the plant. Next, we will show how to 

use fuzzy logic to fully quantify the meaning of linguistic descriptions so that we may 

automate, in the fuzzy controller, the control rules specified by the expert. 

First, we quantify the meaning of the linguistic values using ‘membership 

functions’. Let iU  denote a universe of discourse and 
j

i iA A∈ɶ ɶ  denote a specific 



67 

 

linguistic value for the linguistic variable iuɶ . The function ( )iuµ  associated with 
j

iAɶ  

that maps iU  to [0,1] is called a ‘membership function’. This function describes the 

‘certainty’ that an element iu  of iU  with a linguistic description iuɶ , may be classified 

linguistically as
j

iAɶ . Membership functions are subjectively specified in an ad hoc 

(heuristic) manner from experience or intuition. 

Trying to make things more clear we will examine the plot of Figure 4.5. This 

is a plot of a function µ versus e(t) that takes on special meaning. The function µ 

quantifies the certainty² that e(t) can be classified linguistically as ‘possmall’. To 

understand the way what membership function works, it is best to perform a case 

analysis where we show how to interpret it for various values of e(t): 

• If e(t) = -π/2 then µ(-π/2) = 0, indicating that 

we are certain that e(t) = -π/2 is not ‘possmall’. 

• If e(t) = π/8 then µ(π/8) = 0.5, indicating that 

we are halfway certain that e(t) = π/8 is ‘possmall’ (we are only halfway 

certain since it could be also ‘zero’ with some degree of certainly – this value 

is in a ‘gray area’ in terms of linguistic interpretation). 

• If e(t) = π/4 then µ(π/4) = 1.0, indicating that 

we are absolutely certain that e(t) = π/4 is what we mean by ‘possmall’. 

• If e(t) = π then µ(π) = 0, indicating that we are 

certain that e(t) = π is not ‘possmall’ (actually, it is ‘poslarge’). 

 

                              

Figure 4.5 Membership function for linguistic value ‘possmall’ 
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The membership function quantifies, in a continuous manner, whether values 

of e(t) belong to the set of values that are ‘possmall,’ and hence it quantifies the 

meaning of the linguistic statement ‘error is possmall’. This is why it is called a 

membership function. Of course, the membership function of Figure (4.5) is not the 

only possible definition of the meaning of ‘error is possmall’; it could used a bell – 

shaped function, a trapezoid, a gaussian or many others. 

 

 

Figure 4.6 Four membership function choices for representing ‘error is possmall’ 

 

To become more specific, we will examine the membership functions shown 

in Figure 4.6. For some applications someone may be able to argue that we are 

absolutely certain that any value of e(t) near  is still ‘possmall’ and only when we get 

sufficiently far from do we lose our confidence that it is ‘possmall’. One way to 

characterize this understanding of the meaning of the ‘possmall’ is via a trapezoid–

shaped membership function (Fig. (4.6a)). For other applications we may think of 

membership in the set of ‘possmall’ values as being dictated by the Gaussian–shaped 

membership function (Fig. (4.6b)). And for other applications we may not readily 

accept values far away from  as being ‘possmall’, so we may use the membership 

function in Figure (4.6c) to represent this. Finally, while we often think about 
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symmetric characterizations of the meaning of linguistic values, we are not restricted 

to these symmetric representations. For example, we can represent that we believe 

that as e(t) moves to the left of   we are very quick to reduce our confidence that it is 

‘possmall’, but if we move to the right of    our confidence that e(t) is ‘possmall’ 

diminishes at a slower rate (Fig. (4.6d)). 

To sum up, we saw that depending on the application and the designer, many 

different choices of membership functions are possible. What we should notice, 

however, is that for the most part the definition of a membership function is 

subjective rather than objective. That is, we simply quantify it in a manner that makes 

sense to us, but others may quantify it in a different manner. 

Now, we will try to examine with simple examples the meaning of the term 

‘fuzzy set’. The set of values that is described by µ as being ‘positive small’ is called a 

‘fuzzy set’. Let A denote this fuzzy set. As we saw in Figure (4.5), we are absolutely 

certain that e(t) =  is an element of A, but we are less certain that e(t) =  is an 

element of A. Membership in the set, as specified by the membership function, is 

fuzzy; hence we use the term ‘fuzzy set’. 

A ‘crisp’ (as contrasted to ‘fuzzy’) quantification of ‘possmall’ can also be 

specified, but with the help of the membership function shown in Figure (4.7). This 

membership function is simply an alternative representation for the interval on the 

real line π/8 ≤ e(t) ≤ 3π/8, and it indicates that this interval of numbers represents 

‘possmall’. Clearly, this characterization of crisp is simply another way to represent a 

normal interval (set) of real numbers. 

 

                        

Figure 4.7 Membership function for a crisp set 

 

Returning again to Figure (4.5) we will take a closer look in its horizontal axis. 

While the vertical axis in represents certainty, the horizontal axis is also given a 
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special name. It is call the ‘universe of discourse’ for the input e(t) since it provides 

the range of values of e(t) that can be quantified with linguistics and fuzzy sets. In 

conventional terminology, a universe of discourse for an input and output of a fuzzy 

system is simply the range of values the inputs and outputs can take on. 

Now that we saw how to specify the meaning of linguistic value via a 

membership function (and hence a fuzzy set), we can easily specify the membership 

functions for all 15 linguistic values (live for each input and five for the output) of our 

inverted pendulum example (Fig. (4.8)). 

 

 

Figure 4.8 Membership functions for an inverted pendulum on a cart 

  

  In Figure (4.8) there are listed both the linguistic values and the linguistic–

numeric values associated with each membership function. Hence, we see that the 

membership function in Figure (4.5) for ‘possmall’, is embedded among several 

others that describe other sizes of values (so that, for instance, the membership 
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function to the right of the one for ‘possmall’ is the one that represents ‘error is 

poslarge’). 

The membership functions at the outer edges in Figure (4.8) deserve special 

attention. For the inputs e(t) and ( )
d

e t
dt

 we see that the outermost membership 

functions ‘saturate’ at a value of one. This makes intuitive sense as at some point the 

human expert would just group all large values together in a linguistic description 

such as ‘poslarge’. The membership functions at the outermost edges appropriately 

characterize this phenomenon since they characterize ‘greater than’ (for the right side) 

and ‘less than’ (for the left side). 

For the output u, the membership functions at the outermost edges cannot be 

saturated for the fuzzy system to be properly defined. The basic reason for this is that 

in decision–making process of such type, we seek to take actions that specify an exact 

value for the process input. 

In general, in such a procedure it is important to have a clear picture in our 

mind of how the values of the membership functions change. For instance, as e(t) 

changes form –π/2 to π/2 we seek that various membership functions will take on zero 

and nonzero values indicating the degree to which the linguistic value appropriately 

describes the current value of e(t). For example, at e(t) = -π/2 we are certain that the 

error is ‘neglarge’, and as the value of e(t) moves toward –π/4 we become less certain 

that it is ‘neglarge’ and more certain that it is ‘negsmall’. We see that the membership 

functions quantify the meaning of linguistic statements that describe time–varying 

signals. 

The rule–base of the fuzzy controller holds the linguistic variables, linguistic 

values, their associated membership functions, and the set of all linguistic rules (as we 

can saw them above in the rule table for the inverted pendulum), so it is completed the 

description of our system (for example of the simple inverted pendulum). Next, 

follows the fuzzification process, the inference mechanism and finally the 

defuzzification process. In our work for this thesis we don’t use these procedures, so 

we will be restricted in a briefly description for each.[55],[57] 
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4.1.5 Fuzzification 

 

Fuzzy sets are used to quantify the information in the rule-base, and the 

inference mechanism operates on fuzzy sets to produce fuzzy sets. So, we have to 

specify how the fuzzy system will convert its numeric inputs into fuzzy sets so that 

they can be used from the fuzzy system. This process is called fuzzification process 

and can be described more specifically as the act of obtaining a value of an input 

variable (for example e(t)) and finding the numeric values of the membership 

function(s) that are defined for that variable. For example, let’s suppose that we have 

e(t) = π/4 and  e(t) = π/16. With the fuzzification process we find the values of the 

input membership functions, which as we can see from Figure (4.8) are: 

 

( ( )) 1possmall e tµ =  ,and 

( ( )) ( ( )) 0.5zero possmall

d d
e t e t

dt dt
µ µ= = . 

 

As we can see, it is a very simple process; hence for most fuzzy controllers the 

fuzzification block can be ignored. 

The most common fuzzification process which can be found is the, so called, 

‘singleton fuzzification’. If *

iU  is the set of all possible fuzzy set that can be defined 

on iU , given that numeric inputs i iu U∈ , singleton fuzzification produces a fuzzy set 

*ˆ fuz

i iA U∈ , with a membership function defined by 

                                    

Any fuzzy set with this membership function form is called a ‘singleton’ and 

as we can see, its membership function can be represented by the discrete impulse 

function. In fact, we can consider the singleton fuzzy set as a different representation 

for the number iu . Singleton fuzzification is generally used in implementations when, 

without the presence of noise, we can be certain that iu  takes on only its measured 

value. It is preferred from other fuzzification methods because it does not add so 
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much computational complexity to the inference process and because with its use 

there can be achieved very good functional capabilities with the fuzzy system.[55] 

 

 

4.1.6 The Inference Mechanism 

  

We can consider the membership function values as an ‘encoding’ of the fuzzy 

controller numeric input values; this encoded information is then used in the fuzzy 

inference process, which in general involves two steps. 

In the first step, the premises of all the rules are compared to the controller 

inputs to determine which rules apply to the current situation. This ‘matching’ process 

involves determining the certainty that each rule applies, and typically we will more 

strongly take into account the recommendations of rules for which we are more 

certain that apply to the current situation. 

To perform inference we must first quantify each of the rules with fuzzy logic. 

To do this, we first quantify the meaning of the premises of the rules that are 

composed of several terms, each of which involves a fuzzy controller input. After this, 

we have to determine which rules are ‘on’. We say that a rule is ‘on at time t’ if for its 

premise membership function we have µpremise (e(t),  e(t)) > 0. Hence, the inference 

mechanism seeks to determine which rules are on to find out which rules are relevant 

to the current situation. In the next step, the inference mechanism will seek to 

combine the recommendations of all the rules to come up with a single conclusion. 

In the second step (inference step), we determine the conclusions (what 

control actions to take) using the rules that have been determined to apply at the 

current time. The conclusions are characterized with a fuzzy set (or sets) that 

represents the certainty that the input to the plant should take on various values. To do 

this, usually we consider first the recommendations of each rule independently and 

then we combine all the recommendations together. There are two standard 

alternatives for performing the inference step; one by determining the implied fuzzy 

sets and another one by determining the overall implied fuzzy set.[55] 
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4.1.7 Defuzzification 

  

The final step for the designing of a fuzzy controller is the defuzzification 

process, in which we convert the conclusions of the inference mechanism into actual 

inputs for the process. Defuzzification operates on the implied fuzzy sets produced by 

the inference mechanism and combines their effects to provide the ‘most certain’ 

controller output (plant input). It can be considered as ‘decoding’ the fuzzy set 

information produced by the inference process (i.e., the implied fuzzy sets) into 

numeric fuzzy controller outputs. 

There exist many defuzzification strategies, and it is believed that it is not hard 

to invent even more. Each provides a means to choose a single output based on either 

the implied fuzzy sets or the overall implied fuzzy set, depending on the type of the 

inference strategy chosen as we saw before. As most common techniques we can 

mention the ‘Center of gravity’(COG), the ‘Center-average), the ’Max criterion’, the 

‘Mean of maximum’, the ‘Center of area’ and many others more.[55] 

 

 

4.2 A "euro Fuzzy Identification 

Scheme 
 

4.2.1 Introduction 

  

In this section we will present the identification scheme we use in this thesis 

for the identification of the combination therapy models we described in the previous 

chapter. We will use a neuro fuzzy identification scheme, which uses the concept of 

Adaptive Fuzzy Systems operating in conjunction with High Order Neural Network 

Functions (F-HONNFs). Since the plant is considered unknown, we first propose its 

approximation by a special form of an adaptive fuzzy system and in the sequel the 

fuzzy rules are approximated by appropriate HONNFs. Thus the identification scheme 

leads up to a Recurrent High Order Neural Network, which however takes into 

account the fuzzy output partitions of the initial AFS. The proposed scheme does not 

require a-priori experts’ information on the number and type of input variable 
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membership functions making it less vulnerable to initial design assumptions. There 

are provided weight updating laws for the involved HONNFs, which guarantee that 

the identification error reaches zero exponentially fast. Simulations illustrate the 

potency of the method and comparisons with conventional approaches are given. 

We know that a nonlinear dynamical system can be represented by general 

nonlinear dynamical equations of the form xɺ  = f(x, u) (4.1). We need this 

mathematical description of the system, so that we will be able to control it. In most 

of cases the exact mathematical model of the plant, especially when this is highly 

nonlinear and complex, is unknown; hence we have to use appropriate identification 

schemes which can provide an approximate model of the plant. 

We saw in the previous section, how a fuzzy system can perform control. 

Fuzzy systems of course, and neural networks too, can be also universal 

approximators[58],[59],[60]; they can approximate any nonlinear function to any 

prescribed accuracy. Essential for this is that sufficient hidden neurons and training 

data or fuzzy rules are available. The combination of these two different technologies 

has given rise to neuro fuzzy approaches, which have the advantages of both fuzzy 

logic and neural networks. Neural and fuzzy approaches are most of the time 

equivalent, differing between each other mainly in the structure of the approximator 

chosen. Many recent researchers have brought them even closer introducing adaptive 

schemes using a class of parameterized functions that include both neural networks 

and fuzzy systems[61],[62],[63],[64],[65],[66]. 

The identification procedure is an essential part in any control procedure. In 

the neuro fuzzy control approaches, it is most common the use of indirect adaptive 

control and not the direct approach, because it is not always clear how to construct the 

control law without knowing the system dynamics. Their difference is that indirect 

adaptive control first identifies the dynamics of the systems and then performs 

control, while direct adaptive control directly generates the control input to guarantee 

stability. High order neural network function approximators (HONNFs) have been 

also proposed for the identification of nonlinear dynamical systems, approximated by 

a Fuzzy Dynamical System. This approximation depends on the fact that fuzzy rules 

could be identified with the help of HONNFs. 

In the scheme we use in this thesis, HONNFs are also used for the neuro fuzzy 

identification of unknown nonlinear dynamical systems. In fuzzy or neuro-fuzzy 

approaches the identification phase usually consists of structure identification and 
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parameter identification. In structure identification we find the main input variables 

out of all possible, we specify the membership functions, the partition of the input 

space and then we determine the number of fuzzy rules which is often based on a 

substantial amount of heuristic observation to express proper strategy’s knowledge. 

These approaches require that all input-output data are ready before we start to 

identify the plant (off-line identification). In the approach we use, structure 

identification is also made off-line, based either on human expertise or on gathered 

data. However, the required a-priori information obtained by linguistic information or 

data is very limited, which is a very big advantage, especially for bilogical systems 

like those we examine in our work. The only required information is an estimate of 

the centers of the output fuzzy membership functions. Information on the input 

variable membership functions and on the underlying fuzzy rules is not necessary 

because this is automatically estimated by the HONNFs. This way the proposed 

method is less vulnerable to initial design assumptions. Hence, the parameter 

identification is easily addressed by HONNFs, based on the linguistic information 

regarding the structural identification of the output part and from the numerical data 

obtained from the actual system to be modelled. This means that the parameters of 

identification model are updated on-line in such a way that the error between the 

actual system output and the model output reaches zero exponentially fast.[54] 

 

 

4.2.2 Addaptive Fuzzy Systems 

  

The performance, complexity, and adaptive law of an adaptive fuzzy system 

representation can be quite different depending upon whether the representations is 

linear or nonlinear in its adjustable parameters. Adaptive fuzzy controllers depend 

also on the type of the adaptive fuzzy subsystems they use and they can be classified 

into first-type and second-type adaptive fuzzy controllers, which are both 

nonlinear.[60] 

In the first-type adaptive fuzzy controllers there are used fuzzy logic systems 

which are linear in their adjustable parameters. Suppose we have to approximate the 

nonlinear function f(x). Then we can use the following fuzzy logic representation: 
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where M is the number of fuzzy rules, 
1( ,..., )T
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lθ  are adjustable parameters and l
iF

µ  are given membership functions of the input 

variables of any type. If we assume that l
iF

µ  are given and they will not change during 

the adaptation procedure, we have: 
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In the second-type adaptive fuzzy controllers now, there are used fuzzy logic 

systems which are nonlinear in their adjustable parameters. In this case, for the 

approximation of the nonlinear function f(x), we use the following fuzzy logic 

system: 
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where ly , l

ix , l

iσ  are the adjustable parameters. 

From the above we can understand that the success of the adaptive fuzzy 

system representations in approximating the nonlinear function f(x) depends on the 

careful selection of the fuzzy partitions of input and output variables, the selected type 

of the membership functions and the proper number of the fuzzy rules, which for 

complex nonlinear functions may become very large and may lead to parameter 

explosion.[54] 
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4.2.3 HO""Fs as Fuzzy Rule Approximators 

  

We will see in this section that functions of high order neurons are capable of 

approximating discontinuous functions; hence, we use high order neural network 

functions in order to approximate the indicator functions 1

1

,...,

,...,
n

n m

l l

j jI
+

. However, if we 

want the approximation problem to make sense, the space y := x × u must be 

compact. So, the following assumptions are made: 

 

y := x × u is a compact set, and 

 

T
y  is a compact set. 

 

Suppose now we have the following high order neural network functions 

(HONNFs): 

 

( )

1

( , ; , ) j

k

L
d k

k j

k j I

8 x u w L w
= ∈

= Φ∑ ∏  

where 1 2{ , ,..., }LI I I  is a collection of L not-ordered subsets of {1, 2, ...,m+n}, ( )jd k  

are non-negative integers, 
jΦ  are sigmoid functions of the state or the input and 

1: [ ... ]T

Lw w w=  are the HONNF weights. The HONNF can be also written: 

 

1

( , ; , ) ( , )
L

k k

k

8 x u w L w s x u
=

=∑  

where ( , )ks x u  are high order terms of sigmoid functions of the state and input. Τhe 

next lemma states that a HONNF of this form can approximate the indicator function 

1

1

,...,

,...,
n

n m

l l

j jI
+

. 

. 
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Lemma 1: Consider the indicator function 1

1

,...,

,...,
n

n m

l l

j jI
+

 and the family of the HONNFs 

N(x,u;w,L). Then for any ε > 0 there is a vector of weights 1 1,..., ; ,...,n m nj j l l
w +  and a number 

of 1 1,..., ; ,...,n m nj j l l
L +  high order connections such that 

 

1 1 1 1 1

1

,..., ,..., ; ,..., ,..., ; ,...,

,...,
( , )

sup { ( , ) ( , ; , )}n n m n n m n

n m

l l j j l l j j l l

j j
x u y

I x u 8 x u w L+ +

+
∈

− <  ε 

where y ≡  y, if y := x × u is a compact set, and Ty ≡  y, if T
y  is a compact set, as we 

assumed before.[54] 

 

 

4.2.4 The Identification Scheme 

  

In this section we will see how from the theory we presented in sections 4.2.1 

and 4.2.2 we can be lead to the neuro fuzzy identification scheme we will use. Let’s 

consider affine in the control, nonlinear dynamical systems of the form xɺ  = f(x) + 

G(x)・u (4.2), where the state nx R∈  is assumed to be completely measured, the 

control u is in nR ,  f is an unknown smooth vector field ( the drift term ) and G is a 

matrix with columns the unknown smooth controlled vector fields ig , i = 1, 2, ..., n    

( 1 2[ , ,..., ]nG g g g= ). 

The above class of continuous-time nonlinear systems are called affine, 

because in Equation (4.2) the control input appears linear with respect to G. Most of 

the systems encountered in engineering, are by nature or design, affine. Furthermore, 

we note that non affine systems of the form given in Equation (4.1) can be converted 

into affine, by passing the input through integrators. The existence and uniqueness of 

solution for any finite initial condition and u∈U is guaranteed. 

It is proved that the following affine Recurrent High Order Neural Network 

(RHONN), which depends on the centers of the fuzzy output partitions 
lf  and 

,i lg  

approximates the system in Equation (4.2): 

 

1 1 1
ˆ ˆ ( ) ( )A XWS X W S uχ χ χ χ= + +ɺ  
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where A is an n × n stable matrix which for simplicity can be taken to be diagonal as 

A = diag[ 1 2, ,..., na a a ], 1,X X  are matrices containing the centres of the partitions of 

every fuzzy output variable of f(x) and g(x) respectively, S(χ), S1(χ) are matrices 

containing high order combinations of sigmoid functions of the state χ and W,W1 are 

matrices containing neural weights. The dimensions and the contents of all the above 

matrices are chosen so that XWS(χ) is an n × 1 vector and X1W1S1(χ) is a n × n 

matrix, while the matrix G is diagonal. All output fuzzy variables are partitioned to 

the same number, m, of partitions. Under these specifications X is an n × n・m block 

diagonal matrix of the form X = diag(X1,X2, . . . ,Xn) with each Xi being an m-

dimensional raw vector of the form 
1 2[ , ,..., ]i i i i

mX f f f= , where 
i

pf  denotes the centre 

of the p-th partition of fi. Also, 
1( ) [ ( )... ( )]T

kS s sχ χ χ= , where each si(χ) is a high 

order combination of sigmoid functions of the state variables and W is a n・m × k 

matrix with neural weights. W is of the form 1[ ... ]n TW W W= , where each iW  is a 

matrix [ ]i

jl m kw × . X1 is an n × n・m block diagonal matrix 

1 1 1 2 1

1 ( , ,..., )nX diag X X X= , with each 1 iX  being an m-dimensional raw vector of the 

form 1 , , ,

1 2[ , ,..., ]i i i i i i i

mX g g g= , where ,i i

kg  denotes the center of the k-th partition of iig . 

W1 is a m・n × n block diagonal matrix 1 1 1 2 1

1 ( , ,..., )nW diag W W W= , where each 

1 iW  is a column vector 
1

1[ ]i

jl mw ×  of neural weights. Finally, S1(χ) is a n × n diagonal 

matrix with each diagonal element si(χ) being a high order combination of sigmoid 

functions of the state variables. 

Assuming the existence of only parameter uncertainty, the actual system (4.2) 

can be modeled by the following neural form: 

* *

1 1 1( ) ( )A XW S X W S uχ χ χ χ= + +ɺ  

The error between the identifier states and the real states is defined as: 

ˆe χ χ= −  

So, we have the following error equation: 

1 1 1( ) ( )e Ae XWS X W S Uχ χ= + +ɶ ɶɺ  

where *W W W= −ɶ  and *

1 1 1W W W= −ɶ . 
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Finally, we take the following learning laws: 

T TW X PeS= −ɺ , and 

1 1 1

T TW X PEUS= −ɺ  

where E and U are diagonal matrices such that 1( ,..., )nE diag e e=  and 

1( ,..., )nU diag u u= , and P > 0 is chosen to satisfy the Lyapunov equation 

TPA A P I+ = − .[54] 
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5   Identification of Combination 

  Therapy Models 

 

  

In previous chapter, we saw the importance of combination therapy in 

medicine nowadays by examining its theory and we also presented four models used 

for the evaluation of multicomponent drugs, which we also simulated. Furthermore, 

we presented a new neuro fuzzy dynamical system identifier based on High Order 

Neural Network function approximators. Now, it is time to use this identifier to see 

the results it can have in approximating biological systems; and more specific for our 

thesis, in approximating combination therapy models that show amplification, 

ultrasensitivy and feedback control. Before though we present the analytical 

description of the identification procedure it is necessary to prove that this F-HONNF 

approximator is applicable for these systems.  

 

 

5.1 Identifying Autonomous Systems  

  

As we saw in previous section (4.2.3), a nonlinear dynamical system of the 

form xɺ  = f(x) + G(x)・u, where the state nx R∈  is assumed to be completely 

measured, the control u is in nR ,  f  is an unknown smooth vector field ( the drift term 

) and G is a matrix with columns the unknown smooth controlled vector fields ig , i = 

1, 2, ..., n can be modeled by the neural form * *

1 1 1( ) ( )A XW S X W S uχ χ χ χ= + +ɺ . 

However, it is clear that the systems of combination therapy we want to identify as 

they are described in Chapter 3 are autonomous, since they don’t possess an external 

control u, having only instant external input stimuli (inhibitors). Hence, we will 

present now the proof that an autonomous system can behave dynamically as a non-

autonomous system and so it can be modeled by the neural form 

* *

1 1 1( ) ( )A XW S X W S uχ χ χ χ= + +ɺ . 
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Lemma 1: An autonomous system, with arbitrary initial conditions described by the  

differential equation: 

 

( ) ( ( ))t f tχ χ=ɺ , with χ(0) arbitrary (5.1) 

 

can behave dynamically exactly as the next system, with given initial conditions: 

 

( ) ( ( ))x t f x t u= +ɺ , with x(0) given and constant (5.2) 

 

if u is of the form: 

 

( ) [ (0) (0)] ( )u t x tχ δ= − ⋅  (5.3) 

where δ(t) is a dirac function. 

 

Proof: Consider the two systems described by the Equations (5.2) and (5.3). By 

integrating these two equations, we get: 

 

0
( ) ( ( )) (0)

t

t f t dtχ χ χ
−

= +∫  (5.4) 

0 0

( ) ( ( )) (0) ( )

t t

x t f x t dt x u t dt
− −

= + +∫ ∫ (5.5) 

 

If we choose the control u to be equal to: 

 

( ) [ (0) (0)] ( )u t x tχ δ= − ⋅  (5.6) 

system (5.7) is rewritten as follows: 

 

0 0 0
( ) ( ( )) (0) [ (0) (0)] ( ) ( ( )) (0)

t t t

x t f x t dt x x t dt f x t dtχ δ χ
− − −

= + + − ⋅ = +∫ ∫ ∫  (5.7) 

since, the integration of the dirac function δ(t) is 
0

0
( ) 1tδ

+

−
=∫ . 

Thus the control u brings the systems (5.1) and (5.2) in the same initial state. So for t 

> 0 they present identical behaviour. 
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We proved how an autonomous system ( ) ( ( ))i it f tχ χ=ɺ , with arbitrary initial 

conditions can behave similarly to the system ( ) ( ( ))i ix t f x t u= +ɺ , with constant initial 

conditions by choosing an external input u as in Equation (5.8). 

We will now use the neuro fuzzy identification scheme, to identify the four 

combination therapy models we described previously (models and parameter values 

taken from [26]). For external input in the scheme we can now use the function (5.8), 

where x(0) is constant and χ(0) can vary over a wide range of values, without causing 

any problems to our autonomous systems. 

 

 

5.2 Combination of Inhibitors Targeting 

Two Converging Pathways - 

Identification 

  

The combination therapy model that we identify is described analytically in 

Section (3.4.1). For the identification we use the neuro fuzzy identification scheme we 

presented in Section (4.2.3) and the whole procedure is implemented using Matlab 

code. 

 

 

         Figure 3.5 Regulatory and reaction scheme for a combination of two  

                  inhibitors targeting two converging pathways 
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Our model has n = 21 states, each of which represents a protein of the pathway 

shown in Figure (3.5). For the F-HONNF approach we used the following adaptive 

law: 

 

T TW X PeS= −ɺ
 

 

Hence, the Recurrent High Order Neural Network (RHONN) approximator we 

used, which depends on the centers of the fuzzy output partition 
lf  , is: 

 

ˆ ˆ ( )A XWSχ χ χ= +ɺ  

where A is a diagonal n × n stable matrix, X  is a matrix containing the centres of the 

partitions of every fuzzy output variable of f(x), S(χ) is a matrix containing high order 

combinations of sigmoid functions of the state χ and W is a matrix containing neural 

weights. The dimensions and the contents of all the above matrices are chosen so that 

XWS(χ) is an n × 1 vector. 

In order our model to be equivalent with regard to adjustable parameters we 

have chosen 3 centers for the fuzzy output variables partition in each HONNF. Under 

these specifications X is an 21 × 63 block diagonal matrix of the form X = diag 

(X1,X2, . . . ,Xn) with each Xi being a 3-dimensional raw vector of the form 

1 2 3[ , , ]i i i iX f f f= , where 
i

pf  denotes the centre of the p-th partition of fi. Also, we 

have 
1 42( ) [ ( )... ( )]TS s sχ χ χ= , where each si(χ) is a first or second order sigmoid 

function of the state variables and W is a 63 × 42 matrix with neural weights of the 

form 1 21[ ... ]TW W W= , where each iW  is a matrix 3 42[ ]i

jlw × . We have selected to use 

the Log-Sigmoid: 

 

1
( )

1
s

e χχ
−

=
+

 

 

In our training process, our neuro fuzzy model learns to approximate the 

dynamical behavior of the system in each epoch. The process is consisted from the 

following steps: 
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1) Initialization of the W matrix. 

 

2) Initialization of the diagonal matrixes A and P ( P > 0, satisfies the Lyapunov 

equation TPA A P I+ = − ). 

 

3) Initialization of the block diagonal matrix X. 

 

4) Initialization of the real system and the approximator in the same initial 

condition. 

 

5) Extraction of the training data from the model we have simulated (Section 

3.4.1). 

 

6) The data pass through the Log-Sigmoids to compute S. 

 

7) Evaluation of the approximator’s state. 

 

8) Calculation of the error ˆe χ χ= − . 

 

9) Calculation of the weights (W). 

 

10) The final weight values of W are set as initial values for W in the next 

iteration of the training process. 

 

These steps are performed until a number of maximum epochs to be reached. 

Our goal is the error to be driven to an acceptable low value ( converge to zero ), 

which means that our model ‘follows’ the real system, which actually happens. 

After completing the training process successfully, we proceeded to the 

validation process, which is similar with before but this time we want results for 

unknown input stimuli ( 1I  and 2I  initial concentrations). So, we changed the initial 

conditions of 1I  and 2I  using random values. 

In the following figures, we can see our results for the errors between our 

model’s and the real system’s states: 
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Figure 5.1 

 

 
Figure 5.2 
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Figure 5.3 

 

In Figures (5.1), (5.2) and (5.3) we can see that the approximating errors for 

the neuro fuzzy identification scheme indeed converge to zero, and actually this 

happens very fast. We present our results in three figures, showing from seven errors 

in each, for the reason to be easier to the reader to understand the success of the 

identification.  

 

 

5.3 Inhibition of a Single Target by Two 

Inhibitors - Identification 

  

The third combination therapy model that we identify is described analytically 

in Section (3.4.2). For the identification we use the neuro fuzzy identification scheme 

we presented in Section (4.2.3) and the whole procedure is implemented using Matlab 

code. 
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         Figure 3.6 Regulatory scheme of a single linear pathway with dual                

             inhibition of a single target and its reaction scheme 

 

This model has n = 18 states, each of which represents a protein of the 

pathway shown in Figure (3.6). For the F-HONNF approach we used the following 

adaptive law: 

 

T TW X PeS= −ɺ
 

 

Hence, the Recurrent High Order Neural Network (RHONN) approximator we 

used, which depends on the centers of the fuzzy output partition 
lf  , is: 

 

ˆ ˆ ( )A XWSχ χ χ= +ɺ  

as described and in the previous section. 

In order our model to be equivalent with regard to adjustable parameters we 

have chosen 3 centers for the fuzzy output variables partition in each HONNF. Under 

these specifications X is an 18 × 54 block diagonal matrix of the form X = diag 

(X1,X2, . . . ,Xn) with each Xi being a 3-dimensional raw vector of the form 

1 2 3[ , , ]i i i iX f f f= , where 
i

pf  denotes the centre of the p-th partition of fi. Also, we 

have 
1 36( ) [ ( )... ( )]TS s sχ χ χ= , where each si(χ) is a first or second order sigmoid 

function of the state variables and W is a 54 × 36 matrix with neural weights of the 

form 1 18[ ... ]TW W W= , where each iW  is a matrix 3 36[ ]i

jlw × . We have selected again to 

use the Log-Sigmoid: 
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1
( )

1
s

e χχ
−

=
+

 

 

Following again the training steps we described in Section (5.3) until a 

number of maximum epochs to be reached, we wanted the error to be driven to an 

acceptable low value ( converge to zero ), which means that our model ‘follows’ the 

real system. Again the procedure was successful. 

After changing the initial conditions of 1I  and 3I  using random values, we 

have the results for the errors between our model’s and the real system’s states that 

we can see in the following figures: 

 

 

Figure 5.4 
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Figure 5.5 

 

 
Figure 5.6 

 

In Figures (5.4), (5.5) and (5.6) we can see that the approximating errors for 

the neuro fuzzy identification scheme indeed converge to zero, and actually again this 

happens very fast. We present our results in three figures, showing from six errors in 

each, for the reason to be easier to the reader to understand the success of the 

identification. 
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5.4 Targeting Different Levels of a Single 

Pathway - Identification 

  

The third combination therapy model that we identify is described analytically 

in Section (3.4.3). For the identification we use the neuro fuzzy identification scheme 

we presented in Section (4.2.3) and the whole procedure is implemented using Matlab 

code. 

 

 

Figure 3.7 Regulatory scheme of a single linear amplification pathway with inhibitors acting at 

    different level of a single target and the reaction scheme of an ultrasensitive signaling 

    cascade (dual phosphorylation) 

 

This model has again n = 18 states, each of which represents a protein of the 

pathway shown in Figure (3.7). For the F-HONNF approach we used the following 

adaptive law: 

 

T TW X PeS= −ɺ
 

 

and the following High Order Neural Network (RHONN) approximator: 

 

ˆ ˆ ( )A XWSχ χ χ= +ɺ  

as described and in the previous sections. 

In order our model to be equivalent with regard to adjustable parameters we 

have chosen 3 centers for the fuzzy output variables partition in each HONNF. Under 
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these specifications X is an 18 × 54 block diagonal matrix of the form X = diag 

(X1,X2, . . . ,Xn) with each Xi being a 3-dimensional raw vector of the form 

1 2 3[ , , ]i i i iX f f f= , where 
i

pf  denotes the centre of the p-th partition of fi. Also, we 

have 
1 36( ) [ ( )... ( )]TS s sχ χ χ= , where each si(χ) is a first or second order sigmoid 

function of the state variables and W is a 54 × 36 matrix with neural weights of the 

form 1 18[ ... ]TW W W= , where each iW  is a matrix 3 36[ ]i

jlw × . We have selected again to 

use the Log-Sigmoid: 

 

1
( )

1
s

e χχ
−

=
+

 

 

Following again the training steps we described in Section (5.3) until a 

number of maximum epochs to be reached, we wanted the error to be driven to an 

acceptable low value ( converge to zero ), which means that our model ‘follows’ the 

real system. Again the procedure was successful. 

After changing the initial conditions of the input stimuli, 1I  and 2I , using 

random values, we have the results for the errors between our model’s and the real 

system’s states that we can see in the following figures: 

 

 

Figure 5.7 
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Figure 5.8 

 

 
Figure 5.9 

 

In Figures (5.7), (5.8) and (5.9) we can see that the approximating errors for 

the neuro fuzzy identification scheme indeed converge to zero, and actually again this 

happens very fast (except one case in Fig. (5.8) where error of our state χ(9) it needs 

more time). We present our results in three figures again, showing from six errors in 

each, for the same reason; to be easier to the reader to understand the success of the 

identification. 
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5.5 Feedback-Controlled Targets -  

Identification 

  

The fourth – and final - combination therapy model that we identify is 

described analytically in Section (3.4.4). For the identification we use the neuro fuzzy 

identification scheme we presented in Section (4.2.3) and the whole procedure is 

implemented using Matlab code. 

 

 

      Figure 3.8 Regulatory scheme in which the target of the second inhibitor 

              is within a negative feedback loop and its reaction scheme 

 

Our model this time has again n = 16 states, each of which represents a protein 

of the pathway shown in Figure (3.8). For the F-HONNF approach we used the 

following adaptive law: 

 

T TW X PeS= −ɺ
 

 

and the following High Order Neural Network (RHONN) approximator: 

 

ˆ ˆ ( )A XWSχ χ χ= +ɺ  

as described and in the previous sections. 

In order our model to be equivalent with regard to adjustable parameters we 

have chosen 3 centers for the fuzzy output variables partition in each HONNF. Under 

these specifications X is an 16 × 48 block diagonal matrix of the form X = diag 
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(X1,X2, . . . ,Xn) with each Xi being a 3-dimensional raw vector of the form 

1 2 3[ , , ]i i i iX f f f= , where 
i

pf  denotes the centre of the p-th partition of fi. Also, we 

have 
1 32( ) [ ( )... ( )]TS s sχ χ χ= , where each si(χ) is a first or second order sigmoid 

function of the state variables and W is a 48 × 32 matrix with neural weights of the 

form 1 16[ ... ]TW W W= , where each iW  is a matrix 3 32[ ]i

jlw × . We have selected again to 

use the Log-Sigmoid: 

 

1
( )

1
s

e χχ
−

=
+

 

 

Following again the training steps we described in Section (5.3) until a 

number of maximum epochs to be reached, we wanted the approximating error to 

converge to zero, which means that our model ‘follows’ the real system. Again the 

procedure was successful. 

After changing the initial conditions of the input stimuli, 1I  and 2I , using 

random values, we have the results for the errors between our model’s and the real 

system’s states that we can see in the following figures: 

 

 

Figure 5.10 
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Figure 5.11 

 

 
Figure 5.12 

 

In Figures (5.10), (5.11) and (5.12) we can see that the approximating errors 

for the neuro fuzzy identification scheme indeed converge to zero, and actually again 

this happens very fast in every case. We present our results in three figures again; for 

the same reason as before. 

As it is clear from the results shown in the previous figures, in all four models, 

the neuro fuzzy identification scheme we chose to use has effectively learned to 

approximate the dynamic behavior of the proteins in the four different pathways of 

combination therapy models we examined. It is important that in every case, the 
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identifier managed to approximate accurately these dynamic behaviors for input 

stimulus that had never been seen before. The results of this identification process are 

very important, showing the great capabilities of the scheme we used, in biological 

systems of great interest that show amplification, ultrasensitivity and feedback 

control. 
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6   Conclusions 
 

 

In this thesis we presented approaches for modelling and identifying the 

dynamic behaviour of proteins in combination therapy pathways used for the 

evaluation of multicomponent drugs. Combination or multicomponent therapy is a 

very important field in modern medicine and Systems Biology can give it the boost 

for even greater inventions. A Systems Biology approach to analyzing combination 

therapy relies on the use of numerical models to simulate the effects of drugs 

individually and as mixtures. Mathematical analysis is potentially powerful because 

many pairwise drug combinations can be explored computationally at much lower 

cost than in preclinical or clinical experiments. Preliminary success has been achieved 

in formulating mathematical models of signaling pathways and oncogenic processes 

relevant to human disease. Numerical analysis has also been used to identify critical 

network nodes and model drug action. The models we use of course, cannot be 

considered as real representations of biological networks. They can provide though 

information of great significance, especially in evaluation of multicomponent drugs; 

they can help in deciding whether a combination of two active ingredients can be 

synergistic, which is and the desirable in multicomponent therapeutics. 

As about the identification scheme we used, it seems to be very powerful. It is 

an identification scheme for unknown nonlinear dynamical systems using a new 

definition of Adaptive Fuzzy Systems (AFS); it uses the concept of Adaptive Fuzzy 

Systems operating in conjunction with High Order Neural Network Functions 

(FHONNFs). Under this scheme the identification is driven to a Recurrent High Order 

Neural Network, which however takes into account the fuzzy output partitions of the 

initial AFS. The big advantage of this identifier - and the greatest reason for choosing 

it – is that it does not require a-priori experts’ information on the number and type of 

input variable membership functions. This is something that can be very useful in the 

field of Systems Biology, since the difficulty in finding real data still exists.  

This is besides, what we expect in the future from the biological side. The 

more real data are available the better the identification is. As more and more potent 

single-agent inhibitors are developed, the question for the biologists will be how to 

find useful combinations without resorting to large mechanism-blind clinical trials. 
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The answers, as we saw, can be given from Systems Biology and more available data 

would make it even more possible; the difficulty though in that must be admitted. The 

next step relevant to our work, could also be the evaluation of the right control to 

pathways that do not work properly in order to bring the system to the right dynamical 

behavior. In medical words, this might mean ‘finding the treatment to a disease’. And 

we think that it can be very helpful, in such a control procedure, the neuro fuzzy 

identification scheme we saw this thesis to be used as the first part in a control 

algorithm. 
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