
Copyright

by

Konstantinos Papadopoulos

2009

Implementation of security algorithms for wireless sensor networks

using reconfigurable devices

by

Konstantinos Papadopoulos, B.Sc.

THESIS

Presented to the Faculty of the Graduate School of

The Technical University of Crete at Chania

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

THE TECHNICAL UNIVERSITY OF CRETE AT CHANIA

October 2009

Implementation of security algorithms for wireless sensor networks

using reconfigurable devices

APPROVED BY

SUPERVISING COMMITTEE:

Ioannis Papaefstathiou, Supervisor

Apostolos Dollas

Dionisios Pnevmatikatos

Implementation of security algorithms for wireless sensor networks

using reconfigurable devices

Konstantinos Papadopoulos, M.Sc.

The Technical University of Crete at Chania, 2009

Supervisor: Ioannis Papaefstathiou

Wireless sensor networks (WSNs) are quickly becoming a vital part of our

infrastructure. Since their integrated sensor nodes are very compact and wireless,

they are highly energy constrained. In general, energy-efficiency is a key concern in

WSNs. The large number of sensor nodes involved in such networks and the need

to operate over a long period of time require careful management of the energy re-

sources. At the same time, security is a critical factor in numerous ultra low-power

WSN applications. However, these tiny, pervasive computing devices have extremely

limited resources and computational capabilities. Thus, security engineers face the

seemingly contradictory challenge of providing lightweight algorithms for strong en-

cryption and other cryptographic services that can perform on a speck of dust.

Nowadays, using contemporary low-cost reprogrammble field-programmable gate

array (FPGA) technology enables us to improve the performance of WSN nodes.

FPGAs are semiconductor devices that can be configured by the customer or de-

signer after manufacturing and they perform certain CPU intensive tasks more ef-

ficiently than the general-purpose CPUs. Furthermore, FPGA manufacturers have

constructed small Complex Programmable Logic Devices (CPLDs) which are pro-

grammable logic devices with architectural features of Programmable Logic Arrays

(PLAs) and FPGAs. The main characteristics of the CPLDs are their very low en-

ergy consumption and the relative high frequency rate when executing certain data

manipulation tasks.

The purpose of this thesis is to use FPGAs and CPLDs in different kinds of nodes

(i.e., sensor nodes or base stations) within a WSN environment in order to improve

iv

their performance. Especially, a CPLD is an ideal addition in a sensor node plat-

form due to its characteristics resulting a decrease of its overall energy consumption.

Moreover, the base station of our platform is expanded using a more powerful FPGA

for increasing the nodes processing power (thus enabling the implementation of more

complex functions). Different ciphers are implemented on such nodes in order to

provide the high level of security expected. Skipjack and Blowfish algorithms were

selected to secure sensor nodes while a stronger cipher such AES-128 is the algo-

rithm implemented on our base station. Finally, base stations are usually a common

target of attackers while many of the aforementioned cryptographic schemes are vul-

nerable to sophisticated attacks such differential power analysis. Consequently, we

develop a hardware implementation of the AES-128 algorithm following a specific

methology which leads us to a well-protected base station system from such attacks.

v

Acknowledgments

First of all, I would like to thank my supervisor, Assistant Professor Papaefs-

tathiou, for the excellent working atmosphere and the trust and freedom he granted

me for my research. Furthermore, I am grateful to Professor Pnevmatikatos and

Professor Dollas who agreed to evaluate this thesis.

I would also like to mention all my colleagues in Microprocessor and Hardware

Laboratory (MHL) who have greatly helped me to accomplish this work. I am eter-

nally grateful to Ph.D. student Dimitrios Meintanis for his great help in learning

the tools needed for carrying out the specific measurements and Georgios-Grigorios

Mplemenos for his help during the working period of this work.

I would like to dedicate this work to my mother, who left us too early, and my

family for their ever-lasting support of my work and ideas and for getting me to the

stage where I could attempt it. Finally, I would also like to express my gratitude to

Magda for putting up with me.

vi

vii

Table of Contents

Abstract iv

Acknowledgments vi

List of Figures xii

List of Tables xvi

Chapter 1. Introduction 1

1.1 Motivation . 1

1.2 Scientific contribution . 2

1.3 Remainder . 3

Chapter 2. Theoretical background 5

2.1 Threats . 6

2.1.1 Denial of service attack . 6

2.1.1.1 Spoofed or altered routing information 6

2.1.1.2 Selective forwarding 6

2.1.1.3 Sinkhole attack . 7

2.1.1.4 Sybil attack . 7

2.1.1.5 Wormhole attack . 7

2.1.1.6 Hello flood attack . 7

2.1.1.7 Acknowledgment spoofing 8

2.1.2 Node compromise . 8

2.1.2.1 Eavesdropping . 8

2.1.2.2 Node replication . 9

2.1.2.3 Node masquerading 9

2.1.2.4 False injection of data 9

2.1.3 Attack on data aggregation . 10

viii

2.1.4 Impersonation attack . 10

2.1.4.1 Sybil attack . 11

2.1.4.2 Node replication . 11

2.1.4.3 Eavesdropping . 11

2.1.4.4 Message injection . 12

2.1.4.5 Wormhole attack . 12

2.1.5 Side-channel analysis . 12

2.1.5.1 Timing attacks . 13

2.1.5.2 Power-analysis attacks 13

2.1.5.3 EM attacks . 14

2.1.5.4 Combined attacks . 15

2.1.6 Other attacks . 15

2.1.6.1 Message modification 15

2.1.6.2 Message replay . 15

2.2 Ciphers . 15

2.2.1 Block ciphers . 16

2.2.2 Stream ciphers . 17

2.2.3 Symmetric-key algorithms . 18

2.2.4 Asymmetric-key algorithms 18

2.3 Dual-rail . 19

2.3.1 Single spacer dual-rail . 19

2.3.2 Dual spacer dual-rail . 21

Chapter 3. Cipher encryption schemes 25

3.1 Skipjack . 25

3.1.1 Basic Structure . 25

3.1.2 G-permutation . 27

3.2 Blowfish . 29

3.2.1 Sub-keys . 30

3.2.2 Encryption . 30

3.2.3 Function F . 31

3.3 Advanced encryption standard . 32

ix

3.3.1 Cipher . 34

3.3.1.1 SubBytes() transformation 34

3.3.1.2 ShiftRows() transformation 36

3.3.1.3 MixColumns() transformation 37

3.3.1.4 AddRoundKey() transformation 38

3.3.2 Key expansion . 39

Chapter 4. Implementation 43

4.1 Sensor node . 43

4.1.1 Sensor node architecture . 43

4.1.1.1 Skipjack . 44

4.1.1.2 Blowfish . 45

4.1.2 Sensor node implementation 48

4.1.2.1 Implementation details 50

4.1.2.2 Verification . 53

4.2 Base station . 54

4.2.1 Base station architecture . 54

4.2.1.1 Cipher . 55

4.2.1.2 Key expansion . 61

4.2.2 Base station implementation 64

4.2.2.1 Single-rail . 64

4.2.2.2 Dual-rail . 64

4.2.2.3 Duplicate dual-rail . 69

4.2.2.4 Implementation details 72

4.2.2.5 Verification . 75

Chapter 5. Performance 79

5.1 Sensor node results . 80

5.2 Base station results . 86

Chapter 6. Conclusions 107

Chapter 7. Future work 109

x

Appendices 111

Bibliography 123

xi

List of Figures

2.1 Single spacer dual-rail protocol. 20

2.2 Dual spacer dual-rail protocol. 22

3.1 Skipjack stepping rules . 26

3.2 Stepping rules equations . 27

3.3 G-permutation diagram . 28

3.4 Skipjack F-table . 29

3.5 Data flow graph of Blowfish block cipher 31

3.6 Blowfish function F . 32

3.7 State array input and output. 34

3.8 Pseudocode for the AES cipher. 35

3.9 SubBytes() applies the S-box to each byte of the State. 36

3.10 S-box: substitution values for the byte xy (in hexadecimal format). . 37

3.11 ShiftRows() cyclically shifts the last three rows in the State. 38

3.12 MixColumns() operates on the State column-by-column. 39

3.13 AddRoundKey() XORs each column of the State with a word from the key schedule. 40

3.14 Pseudocode for Key Expansion. 41

4.1 Wireless platform general scheme . 44

4.2 Skipjack encryption block diagram 46

4.3 Skipjack G-permutation block diagram 46

4.4 Blowfish round block diagram . 47

4.5 Blowfish encryption block diagram 47

4.6 Blowfish FSM scheme . 49

4.7 Blowfish procedure . 49

4.8 CBC encryption implementation . 50

4.9 CBC decryption implementation . 51

4.10 Wireless sensor node platform . 53

xii

4.11 AES encryption block diagram. 55

4.12 AES cipher block diagram. 56

4.13 AES cipher round block diagram. 56

4.14 SubBytes module block diagram. 57

4.15 ShiftRows module block diagram. 58

4.16 MixColumns module block diagram. 59

4.17 MixColumn module block diagram. 60

4.18 xtime module block diagram. 61

4.19 AddRoundKey module block diagram. 62

4.20 Key expansion block diagram. 63

4.21 Single-to-dual rail converter block diagram. 65

4.22 NCL NAND gate block diagram. 66

4.23 NCL XOR gate block diagram. 67

4.24 NCL NOT gate block diagram. 68

4.25 Dual-to-single rail converter block diagram. 69

4.26 Single-to-alternating spacer converter block diagram. 70

4.27 Toggle block diagram. 71

4.28 AES duplicate DR block diagram. 72

4.29 Base station top view . 73

4.30 Python script flowchart of base station SW suite 76

4.31 Base station development tools . 77

5.1 Blowfish encryption execution time results. 83

5.2 Blowfish decryption execution time results. 83

5.3 Blowfish encryption energy consumption results. 84

5.4 Blowfish decryption energy consumption results. 84

5.5 Blowfish encryption maximum power consumption results. 85

5.6 Blowfish decryption maximum power consumption results. 85

5.7 AES maximum power consumption results. 103

5.8 AES maximum power consumption results - continue... 103

5.9 AES average power consumption results. 104

5.10 AES average power consumption results - continue... 104

xiii

5.11 AES maximum power consumption total results. 105

5.12 AES average power consumption total results. 105

5.13 AES throughput results. 106

1 Sensor node communication protocol 115

2 Sensor node communication timing diagram 115

3 RS-232 module abstract block diagram. 118

4 UART FSM scheme. 119

xiv

xv

List of Tables

4.1 Single-to-dual rail converter truth table. 65

4.2 NCL NAND gate truth table. 66

4.3 NCL XOR gate truth table. 67

4.4 NCL NOT gate truth table. 68

4.5 Dual-to-single rail converter truth table. 69

5.1 Blowfish encryption results . 81

5.2 Blowfish decryption results . 82

5.3 Blowfish encipher CPLD utilization results 86

5.4 Blowfish decipher CPLD utilization results 86

5.5 AES single-rail results . 89

5.6 AES single-rail results - continue... 90

5.7 AES dual-rail results . 91

5.8 AES dual-rail results - continue... 92

5.9 AES 2-round duplicate DR results 93

5.10 AES 2-round duplicate DR results - continue... 94

5.11 AES 4-round duplicate DR results 95

5.12 AES 4-round duplicate DR results - continue... 96

5.13 AES 8-round duplicate DR results 97

5.14 AES 8-round duplicate DR results - continue... 98

5.15 AES total power results . 99

5.16 AES implementations timing results 100

5.17 AES software vs. hardware . 101

5.18 AES FPGA utilization results . 102

1 Custom cable pins . 114

xvi

xvii

Chapter 1

Introduction

This initial chapter provides some introductory information about the wire-

less sensor networks and the motivation for conducting research in security in WSNs,

summarizes the scientific contribution of the work and describes the structure of this

thesis.

1.1 Motivation

Wireless sensor networks (WSNs) are quickly becoming a vital part of our

infrastructure; applications of massively distributed sensor networks include seis-

mic, acoustic, medical and intelligence data gathering as well as climate, equipment

monitoring etc. Since these integrated sensor nodes are very compact and wireless,

they are highly energy constrained.

In general, energy-efficiency is a key concern in WSNs. The large number of sensor

nodes involved in such networks and the need to operate over a long period of time

require careful management of the energy resources. In addition, wireless commu-

nication is a major source of power consumption. Furthermore, replacing batteries

on thousands of WSN nodes may well become infeasible. Hence, it is well accepted

that one of the key challenges in unlocking the potential of such data gathering sen-

sor networks is conserving energy so as to maximize their post-deployment active

sensing lifetime [1].

At the same time, security is a critical factor in numerous ultra low-power WSN

applications. However, these tiny, pervasive computing devices have extremely lim-

ited resources and computational capabilities. Thus, security engineers face the

seemingly contradictory challenge of providing lightweight algorithms for strong en-

cryption and other cryptographic services that can perform on a speck of dust.

Moving to a different sector, Field-Programmable Gate Arrays (FPGAs) are semi-

conductor devices that can be configured by the customer or designer after man-

ufacturing and they perform certain CPU intensive tasks more efficiently than the

1

general-purpose CPUs. FPGAs contain programmable logic components called logic

blocks, and a hierarchy of reconfigurable interconnections that allow the blocks to

be wired together. In most FPGAs, the logic blocks also include memory elements,

which may be simple flip-flops or more complex memory structures [2] [3] [4].

Furthermore, Field Programmable Gate Array (FPGA) manufacturers have con-

structed small Complex Programmable Logic Devices (CPLDs) which are programmable

logic devices with architectural features of Programmable Logic Arrays (PLAs) and

FPGAs. The main characteristics of the CPLDs are a) their very low energy con-

sumption, b) the relative high frequency rate when executing certain data manip-

ulation tasks and c) their low cost (less than $10). On the other hand, the main

disadvantage of those devices is their small number of resources allowing them to

execute only relatively small, yet very CPU intensive, tasks.

1.2 Scientific contribution

As this thesis demonstrates, we can use FPGAs and CPLDs in different

kinds of nodes (i.e., sensor nodes or base stations) within a WSN environment in

order to improve their performance. Especially, a CPLD is an ideal addition in a

sensor node platform due to its main characteristics resulting a decrease of its overall

energy consumption. Moreover, the base station of our platform is expanded using

a more powerful FPGA for increasing the nodes processing power (thus enabling

the implementation of more complex functions).

As regards the high level of security that must be provided by such nodes, we choose

to implement different cipher encryption schemes in these reconfigurable devices.

Especially, a mini version of Skipjack and Blowfish are selected to be implemented

in sensor node CPLD taking into account its lower capabilities and needs of security

compared to the base station in the FPGA of which a stronger scheme such AES-128

is implemented.

Furthermore, base stations are usually a common target of attackers while many of

the aforementioned cryptographic schemes are vulnerable to sophisticated attacks

such differential power analysis. Consequently, we develop a hardware implemen-

tation of the AES-128 algorithm following a specific methology which leads us to a

well-protected base station system from such attacks.

2

1.3 Remainder

The remainder of this thesis is organized as follows:

• Chapter 2 presents the theoretical background of this work including the pos-

sible threats that may be used from an attacker in order to establish potential

vulnerabilities in different networks, the existing cipher schemes which can

give solutions to several of the previously referred attacks and the dual-rail

method that provides a way to avoid sophisticated attacks such as differential

power analysis.

• Chapter 3 describes in detail the three different cipher encryption schemes

that are selected to be implemented in this work.

• Chapter 4 illustrates the specific architectures which lead us to low energy

consumption and high performance cipher encryption and their hardware im-

plementations provide us with the desired results.

• Finally, chapters 5, 6 and 7 point out timing, energy and power consumption

results derived from the measurements in our real-world experiments, conclu-

sions and future work on cipher encryption in WSN nodes with reconfigurable

devices.

3

4

Chapter 2

Theoretical background

Embedded Peer-to-Peer (EP2P) systems introduce a new challenge in the

development of distributed systems. These systems have brought about an impor-

tant revolution in distributed computing paradigms, now that the roles of client and

server, which are the basis of the most widely used distributed computation models,

are disappearing. The new scenario consists of systems in which all the elements of

the network are symmetrical and in most cases, the mechanisms of communication

are not based on pre-existing infrastructures, but rather on dynamic ad-hoc networks

among peers. At the same time, the recent technological advances in short distance

wireless communications have opened up new areas of application which represent

important technological challenges. In addition, these systems are extremely vul-

nerable against internal and external attacks due to resource constraints, lack of

tamper-resistant packaging and the nature of open and public communication chan-

nels.

The most typical representative of EP2P systems is Wireless Sensor Network (WSN)

as it features the most important characteristics of EP2P systems, i.e., heterogene-

ity, resource constraints of devices and P2P network communication. Therefore, in

order to present a coherent view on the EP2P threats, we focus on the context of

wireless sensor networks.

WSNs are quickly gaining popularity due to the fact that they are potentially low

cost solutions to a variety of real-world challenges [5]. This provides a means to

deploy large sensor arrays in a variety of conditions capable of performing both

military and civilian tasks. However, security in WSNs poses different challenges

than traditional network/computer security due to inherent constraints of resources

(computing, communication and storage).

5

2.1 Threats

In this section, the according threats, most of them revolving around WSN,

are presented in order to establish the potential vulnerabilities of EP2P systems.

These threats are categorized as follows: denial of service attack (DoS), node com-

promise, attack on data aggression, impersonation attack, side-channel analysis and

other common attacks.

2.1.1 Denial of service attack

The denial-of-service (DoS) attacks have been regarded as serious security

threats against the Internet in general [6]. The EP2P system could not be an

exception.

Normally, the denial-of-service (DoS) attacks [7] involve three parameters: users, a

shared service or resource and a maximum waiting time. During a denial-of-service

attack, a user is made to wait longer than the predefined maximum waiting time

by a malicious user for the use of shared service(s) or resource(s). This is a very

general and straight forward definition of DoS attack. A more specific definition of

DoS for WSN is as follows; the result of any action that prevents any part of WSN

from functioning correctly or in a timely manner.

Some of the existing DoS attacks are described in the following subsections.

2.1.1.1 Spoofed or altered routing information

By spoofing the routing information exchanged among nodes, the adver-

saries want to cripple the sensor network by creating routing loops, partitioning the

network, increasing end-to-end latency, etc.

2.1.1.2 Selective forwarding

In a WSN, the motes double up as a router and forward the messages faith-

fully. A black hole is created when a malicious node refuses to forward any messages

it received. However, it is quite easy to detect this simple attack and neighboring

nodes exclude the malicious node from the routing path. A more refined form of

this attack is selective forwarding attack, where a malicious node selectively for-

wards messages depending on some criteria. This diminishes the probability of the

6

attack detection by neighboring nodes.

2.1.1.3 Sinkhole attack

Any network, where the predominant communication pattern is many-to-

one, is susceptible to sinkhole attacks. In a sinkhole attack, the adversary attracts

all the traffic of a particular area through a malicious node with false routing in-

formation and, then, tampers with the messages passing through it. Mounting a

sinkhole attack is particularly easy due to the nature of communication in WSN

where most of the packets share the same final destination, namely the base sta-

tion. Thus, a compromised node only needs to declare a high quality link to the

base station, which may lure a large number of nodes to send packets through the

compromised node.

2.1.1.4 Sybil attack

In a Sybil attack [8] [9], a single node takes on multiple identities to deceive

other nodes. It can reduce effectiveness of a fault-tolerant system which deploys

resources redundantly. It can also affect the functioning of geographic routing pro-

tocols [10] [11].

2.1.1.5 Wormhole attack

In the wormhole attack presented in [12], an attacker captures message bits

at one location and replays them in another location. A typical wormhole attack

involves two distant compromised nodes that falsely understate their distance us-

ing some high bandwidth channel available to them only. Well placed wormholes

can significantly alter the routing paths to their advantage. Most of the worm-

hole attacks are mounted in combination with selective forwarding, Sybil attack or

eavesdropping.

2.1.1.6 Hello flood attack

This is a very simple attack which can cripple an entire sensor network.

Nodes send HELLO packets to their neighbors, which are specifically susceptible to

this attack, during network setup or neighborhood discovery. Nodes which receive

7

these HELLO packets consider the other node to be their neighbor being within the

normal radio range. However, this can be false as a laptop-class attacker with strong

transmission power can send HELLO packets to the entire network and advertise a

very good link to the base station. Many motes may consider the adversary as their

neighbor but nodes far away from the attacker may actually send their packets into

oblivion. Thus, the network performance will degrade considerably.

2.1.1.7 Acknowledgment spoofing

It is a technique used by an adversary to mount attacks on those networks

where routing schemes use link-layer acknowledgments to decide the link reliability.

Adversary may be able to convince nodes that a weak link is strong or reinforce

a dead link by acknowledgment spoofing. Consequently, messages sent via these

routes are lost. This attack can also be used to mount several other attacks.

2.1.2 Node compromise

An embedded device is considered being compromised when an attacker,

through various means, gains control or access to the device (node) itself after

it is being deployed [13]. Using the compromised nodes, an attacker can easily

manipulate the nodes to create denial of service (DoS) attacks on the EP2P system

or to inject false data into the network. When a node is compromised, the attacker

is able to retrieve critical information, such as the security keys used for securing

the communication or information pertaining to the routing protocols. Using the

retrieved information, the attacker will be able to eavesdrop on the communication

data or launch other malicious attacks on the EP2P system.

There are several attacks from compromised nodes, some of which are presented

below.

2.1.2.1 Eavesdropping

Since an attacker is able to retrieve the security keys from the node, he is

able to eavesdrop on the on-going traffic and sniff out important information that

is sent across the network. Depending on the type of security protocol, the key is

used in a specific part of the network could become subject to eavesdropping. For

example, if the compromised key is the network key, the entire network will not be

8

secured since the attacker will be able to decrypt all the encrypted messages passing

through the network.

2.1.2.2 Node replication

With the capturing of the node, the attacker is able to replicate the node

at different locations since the attacker has the nodes program flash, EEPROM

and SRAM images. The attacker is able to confuse the EP2P system by deploying

replicated nodes throughout the network. These replicated nodes can also be used to

create DoS attacks or confuse the network protocols that perform data aggregation,

voting, routing and so on, by injecting false data into the network. Using more

compromised nodes in the network enables the attacker to obtain greater control

over the EP2P system.

2.1.2.3 Node masquerading

Using the compromised security keys and other information, an attacker

can masquerade as the legitimate node using a more powerful device such as a

laptop. This increase in the capability of the embedded device allows the attacker to

launch attacks that are more computational intensive. Such computational intensive

attacks are not possible to be launched from the embedded device itself due to its

limited resources, such as its processing power. Using a more powerful embedded

device, the attacker can also disrupt the routing protocol by sending out false routing

information. For example, the embedded device can now reach the control station

within 1 hop, instead of 4 hops, through the use of a more powerful antenna. This

will result in the neighboring nodes directing their traffic towards the malicious

embedded device due to its shorter route to the control station. Hence, the attacker

can perform attacks such as selective forwarding and modification of the data to

inject false data into the network.

2.1.2.4 False injection of data

Since the attacker has the control of the compromised nodes, he is able to

modify its code to perform false data injection to the EP2P system. These false

data will mislead other nodes and also create false alarms, which will result in the

wastage of the embedded devices valuable resources in reaction to the false data.

9

Examples of the different types of false data injection include the embedded devices

reading, aggregation result, routing routes and reporting of bad neighbor nodes.

2.1.3 Attack on data aggregation

In the general network setting, there is a number of nodes communicating

with one or more base stations. This setting can be viewed as an event-based sys-

tem where the base stations act as sinks, which subscribe to specific data streams

by expressing interest and queries, and the nodes act as sources to report environ-

mental events to the sink. The sink is often assumed to be powerful enough to

perform computationally intensive cryptographic operations while the nodes have

constrained resources in terms of computation, memory and battery power. The

networking among nodes is usually assumed to be highly ad-hoc in a sense that the

network topology may change rapidly and unpredictably.

Among the sensor nodes, there can be some special nodes called aggregators that

conduct some computational operations on the data from their children nodes, for

example, taking the sum, average, maximum or minimum of the data [14]. The

resulting data from the aggregators are forwarded to the sinks.

There are two main security threats to the secure data aggregation. One is eaves-

dropping which an attacker uses to obtain information on the transmitted data

between sensing nodes (non-aggregators), between aggregators, and between aggre-

gators and sink. This causes a great damage especially when the data aggregated

are of critical importance.

The other threat is forging which makes it possible to an attacker to alter the ag-

gregated data or other related information in such a way that invalid aggregated

data are accepted as correct or vice versa.

2.1.4 Impersonation attack

In the EP2P system, impersonation attack means that a malicious embedded

device impersonates a legitimate one. The attacks described in this section can

be divided into impersonation attacks and attacks that result from impersonation

attacks. Several classes of attacks such node replication and the Sybil attack can

be categorized as impersonation attacks. Some of the existing attacks conducted by

impersonated nodes are described to the next subsections.

10

2.1.4.1 Sybil attack

In a Sybil attack, a single node takes on multiple identities to deceive other

nodes. A node that wishes to conduct the Sybil attack can adopt a new identity by

creating a new identity or stealing the identity of an existing node. It is difficult by

a node to create a new identity as there are several schemes in place that will detect

unknown identities, but it is possible by a Sybil node to masquerade as a single

node directly communicating with other nodes or an aggregator node pretending

to represent a number of identities that do not actually exist. Sybil attacks can

disrupt several of the functions that may be conducted on a network including data

aggregation, voting, routing and fair resource allocation.

2.1.4.2 Node replication

Node or identity replication is the simple duplication of nodes. As nodes tend

to be physically unprotected, it is feasible by an attacker to capture, replicate and

insert duplicate nodes back into selected regions of the network. Node replication is

different from a Sybil attack, because the multiple nodes are duplicates and basically

have the same identities. A Sybil attack is more sophisticated, because new identities

must be adopted. Node replication attacks should not be ignored because of their

simple nature as large networks cannot easily verify every identity. If identities

remain unchecked a node replication attack can achieve the same effects as the

Sybil attack disrupting data aggregation and threshold voting schemes.

2.1.4.3 Eavesdropping

Eavesdropping is an attack in which the malicious attacker uses the imper-

sonated node to obtain data. Attackers who impersonate cluster heads or intermedi-

ate nodes are able to gain access to data generated by sections of the network. If an

attacker is able to impersonate a base station or other privileged node, the attacker

can query the database for all information obtained by the network. Eavesdrop-

ping is an insidious attack as it does not alter the network in respect to its original

purpose. Eavesdropping can be mitigated by the use of encryption to prevent the

unauthorized access of data. However, if an attacker is able to obtain authentication

keys, it will be likely that encryption keys will have also been compromised.

11

2.1.4.4 Message injection

The message injection attack can be effectively used to mislead the data

aggregation algorithm. A typical scenario is that of an attacker impersonating a

number of nodes in a particular part of the network. All impersonated nodes can

be made to send false data reports about an event to the original network. This

may mislead the data aggregation algorithm in the original network if the number of

impersonated nodes is larger than the number of valid nodes. If an attacker is able

to impersonate a cluster head, aggregator or forwarder in a hierarchical network,

only one node will be needed to be impersonated. Message authentication mitigates

this attack as the original network is able to detect the messages generated by

impersonated nodes.

2.1.4.5 Wormhole attack

In the original wormhole attack, an attacker records messages from one part

of the network and replays them in another one. Attackers use a low-latency link

or out-of-bound channel to move the messages from one part of the network to

the other so that the copied message could appear at an aggregator node at the

same time. The original message can be encrypted and the attacker may not be

aware about the content of the message. An impersonation attack on the remote

node before conducting the wormhole attack will help the receiver believe that the

wormhole data is legitimate. Finally, wormhole attacks can be used to conduct

sinkhole attacks.

2.1.5 Side-channel analysis

In order to mitigate the threats to the network, cryptographic algorithms

are implemented on the devices. While the algorithms themselves can be deemed

secure from a mathematical standpoint, so-called implementation attacks allow to

extract secret keys from the devices, which would negate any gained security. A

very powerful class of implementation attacks are side-channel analysis attacks. In

such an attack, the adversary monitors certain physical properties (the side-channel,

which can be, e.g., execution time, power consumption or electromagnetic emana-

tion) of a device while it performs some cryptographic operation. If the recorded

physical values are influenced in some way by the processed secret key, the attacker

12

can extract information about this key or even reveal it completely.

In the last decade, a considerable number of side-channel analysis (SCA) attacks

have been published. In principle, any kind of information leaking from a crypto-

graphic device can be exploited by an attacker.

2.1.5.1 Timing attacks

Timing attacks exploit variations in execution time, which are dependent on

the secret key. Their first publication was by Kocher in 1996 [15] and they were

among the first side-channel attacks to be proposed. Such attacks have even been

shown to be feasible on Internet servers which execute cryptographic algorithms [16].

In the last years, there have been interesting proposals for timing attacks on software

implementations of cryptographic algorithms on processors with cache [17] [18] [19].

Processors with advanced micro-architectural features like hyper-threading, have

been shown to be especially vulnerable [20].

The execution time of cryptographic algorithms often shows slight differences de-

pendent on the input of the algorithm. This data-dependent variation is due to

performance optimization, conditional statements, handling of special cases, cache

misses and a variety of other causes. Since an adversary can easily measure the

execution time of a tamper-proof device like a smart card with high accuracy, the

dependence between public inputs, secret data hidden in the device and changes in

execution time can be used to derive valuable information about the secret data [15]

[21] [22] [23] [24].

2.1.5.2 Power-analysis attacks

Power-analysis attacks work by measuring the power consumption of a de-

vice while it performs a cryptographic operation. Measurement is usually conducted

with a digital oscilloscope connected to a sensing resistor or current probe on the

device power lines. The recorded course of the voltage (which is proportional to the

current and thus to the power consumption) during a single cryptographic operation

is commonly denoted as power trace.

The original publication by Kocher et al. [25] already pointed out different meth-

ods for exploiting the obtained power traces: Simple power analysis (SPA) and the

much more powerful differential power analysis (DPA). SPA [26] exploits the fact

that different operations and different data values processed by a device also have

13

different power consumption characteristics. In an SPA attack, single power traces

are used to look for such distinguishing features. With some knowledge of the struc-

ture and operation of the device, it can be possible to find out information about

the processed secret key. In the past, SPA attacks have been successful mainly on

unprotected implementations of public-key algorithms on smart cards.

DPA attacks [25] [27] use larger numbers of power traces and normally require less

knowledge about the cryptographic device than SPA attacks. For each cryptographic

operation corresponding to a power trace, the respective plaintext or ciphertext

needs to be known. Then, a small portion of the used key is guessed (key hy-

pothesis) and an intermediate value of the cryptographic algorithm, which depends

both on this portion of the key and the known plaintext or ciphertext calculated.

A suited power model (often based on the Hamming weight or Hamming distance

of the calculated intermediate values) is used to map the intermediate values to a

hypothetical power consumption value. With the help of powerful statistical meth-

ods (e.g., correlation between measured and hypothetical power consumption) the

most likely key hypothesis is identified. If the power model resembles the actual

power consumption characteristics, the correct key hypothesis will always be the

most likely one and the analysis procedure will deliver the correct key value. The

analysis procedure can then be repeated targeting another portion of the key until

the whole key is determined or a brute-force attack becomes feasible.

2.1.5.3 EM attacks

In general, electromagnetic (EM) attacks [28] [29] [30] are similar to power-

analysis attacks. Power traces are collected during the operation of the crypto-

graphic device with over an EM probe. The spatial positioning of the probe can

potentially be used to improve information extraction from the device. Analysis

of the traces is carried out similarly as power analysis with simple and differential

methods, which are sometimes denotes as simple EM analysis (SEMA) and differ-

ential EM analysis (DEMA), respectively.

The link between electromagnetic emanations and power consumption is given by

the fact that any movement of electric charges is accompanied by an electromagnetic

field.

14

2.1.5.4 Combined attacks

The power of side-channel analysis attacks can be increased further by com-

bining the information of several side channels (e.g., power consumption and EM)

or several attack techniques (e.g., template-based DPA [25]). Many of the possible

combinations still remain to be explored.

2.1.6 Other attacks

2.1.6.1 Message modification

Message modification is the alteration of messages or data, usually the col-

lection of sensors readings, with the aim of causing confusion to the network. An

adversary can simply intercept and modify the unsecured packets content meant by

the base station or intermediate nodes to disrupt the sensors value of a particular

sensing region. For example, a burglar may attempt to modify a motion sensors

signal to avoid alerting the base station of an intrusion. In this way, the intrusion

by the burglar will not be detected by the central control system since no alert

message was received.

2.1.6.2 Message replay

A message replay or replay attack is an attack where the adversary reuses

valid transaction messages or packets content with malicious intent. The adversary

performs a replay attack by, first, intercepting a valid critical transaction data packet

and, then, re-transmitting at a later time. This critical transaction data can be, for

example, a proof of identity in a form of a response to a challenge sent by a verifier.

Hence, by re-transmitting the correct response that has been captured earlier to the

same challenge, issued by the verifier, an adversary can fool the verifier to believe

that the adversary is the valid party in response to the challenge that was sent out.

2.2 Ciphers

One solution in order to avoid many of the threats referred to the previous

section is the use of cipher encryption. In cryptography, a cipher (or cypher) [31] [32]

is an algorithm for performing encryption and decryption, a series of well-defined

steps that can be followed as a procedure. An alternative term is encipherment. In

15

non-technical usage, a cipher is the same thing as a code; however, the concepts

are distinct in cryptography. In classical cryptography, ciphers were distinguished

from codes. Codes operated by substituting according to a large codebook which

linked a random string of characters or numbers to a word or phrase. For example,

”UQJHSE” could be the code for ”Proceed to the following coordinates”. When us-

ing a cipher, the original information is known as plaintext and the encrypted form

as ciphertext. The ciphertext message contains all the information of the plaintext

message, but it is not in a format readable by a human or computer without the

proper mechanism to decrypt it; it should resemble random gibberish to those not

intended to read it.

The operation of a cipher usually depends on a piece of auxiliary information, called

a key or, in traditional NSA parlance, a cryptovariable. The encrypting procedure

is varied depending on the key, which changes the detailed operation of the algo-

rithm. A key must be selected before using a cipher to encrypt a message. Without

knowledge of the key, it should be difficult, if not nearly impossible, to decrypt the

resulting cipher into readable plaintext.

Most modern ciphers can be categorized in several ways:

• By whether they work on blocks of symbols usually of a fixed size (block

ciphers) or a continuous stream of symbols (stream ciphers).

• By whether the same key is used for both encryption and decryption (symmetric-

key algorithms) or a different key is used for each (asymmetric-key algorithms).

If the algorithm is symmetric, the key must be known to the recipient and no

one else. If the algorithm is an asymmetric one, the enciphering key is different

from, but closely related to, the deciphering key. If one key cannot be deduced

from the other, the asymmetric key algorithm has the public/private key prop-

erty and one of the keys may be made public without loss of confidentiality.

The Feistel cipher [32] uses a combination of substitution and transposition

techniques. Most block cipher algorithms are based on this structure.

2.2.1 Block ciphers

Block ciphers [33] are symmetric-key ciphers which operate on fixed-length

groups of bits, termed blocks, with unvarying transformations. When encrypting,

a block cipher might take, for example, a 128-bit block of plaintext as input and

16

output a corresponding 128-bit block of ciphertext. The exact transformation is

controlled using a second input, the secret key. Decryption is similar; it takes, in

this example, a 128-bit block of ciphertext together with the secret key and yields

the original 128-bit block of plaintext.

To encrypt messages longer than the block size (128 bits in the above example), a

mode of operation is used.

Block ciphers can be contrasted with stream ciphers; a stream cipher operates on

individual digits once at a time and the transformation varies during the encryption.

The distinction between these two types is not always clear-cut; a block cipher, when

used in certain modes of operation, acts effectively as a stream cipher.

An early and highly influential block cipher design was the Data Encryption Stan-

dard (DES) [34] [35] developed by IBM and published as a standard in 1977. A

successor to DES, the Advanced Encryption Standard (AES) [36], was adopted in

2001.

2.2.2 Stream ciphers

Stream ciphers [37] are symmetric key ciphers where plaintext bits are com-

bined with a pseudo-random cipher bitstream (keystream), typically by an exclusive-

or (XOR) operation. In a stream cipher, the plaintext digits are encrypted once at

a time and the transformation of successive digits varies during the encryption. An

alternative name is a state cipher, as the encryption of each digit is dependent on

the current state. In practice, the digits are typically single bits or bytes.

Stream ciphers represent a different approach to symmetric encryption from block

ciphers. Block ciphers operate on large blocks of digits with a fixed, unvarying

transformation. This distinction is not always clear-cut; in some modes of opera-

tion, a block cipher primitive is used in such a way that it acts effectively as a stream

cipher. Stream ciphers typically execute at a higher speed than block ciphers and

have lower hardware complexity. However, stream ciphers can be susceptible to se-

rious security problems if used incorrectly; see stream cipher attacks in particular,

the same starting state must never be used twice.

Stream ciphers are often used in applications where plaintext comes in quantities of

unknowable length, for example, a secure wireless connection. If a block cipher were

to be used in this type of application, the designer would need to choose either trans-

mission efficiency or implementation complexity, since block ciphers cannot directly

17

work on blocks shorter than their block size. For example, if a 128-bit block cipher

received separate 32-bit bursts of plaintext, three quarters of the data transmitted

would be padding. Block ciphers must be used in ciphertext stealing or residual

block termination mode to avoid padding, while stream ciphers eliminate this issue

by naturally operating on the smallest unit that can be transmitted (usually bytes).

Another advantage of stream ciphers in military cryptography is that the cipher

stream can be generated in a separate box that is subject to strict security measures

and fed to other devices, e.g., a radio set, which will perform the XOR operation

as part of their function. The latter device can then be designed and used in less

stringent environments.

RC4 [38] is the most widely used stream cipher in software; others include: A5/1

[39], FISH [40], Phelix [41], ISAAC [42], MUGI [43] [44] [45], Panama [46], SEAL

[47] [48] and SOBER-128 [49] [50].

2.2.3 Symmetric-key algorithms

Symmetric-key algorithms [51] are a class of cryptographic algorithms that

use trivially related, often identical, cryptographic keys for both decryption and

encryption.

The encryption key is trivially related to the decryption key; they may be identical

or there is a simple transform to go between the two keys. The keys, in practice,

represent a shared secret between two or more parties that can be used to maintain

a private information link.

Other terms for symmetric-key encryption are secret-key, single-key, shared-key,

one-key and eventually private-key encryption. Use of the latter term does conflict

with the term private key in public-key cryptography.

Some examples of popular and well-respected symmetric algorithms include Twofish

[52], Serpent [53], AES (a.k.a. Rijndael) [36], Blowfish [54], CAST5 [55], RC4 [38],

TDES [56] and IDEA [57].

2.2.4 Asymmetric-key algorithms

Public-key cryptography [32] is a method for secret communication between

two parties without requiring an initial exchange of secret keys. It can also be used

to create digital signatures. Public-key cryptography is a fundamental and widely

used technology around the world and enables secure transmission of information

18

on the Internet.

It is also known as asymmetric key cryptography because the key used to encrypt a

message differs from the key used to decrypt it. In public-key cryptography, a user

has a pair of cryptographic keys, a public key and a private key. The private key is

kept secret, while the public key may be widely distributed. Messages are encrypted

with the recipient’s public key and can only be decrypted with the corresponding

private key. The keys are related mathematically, but the private key cannot be

feasibly (i.e., in actual or projected practice) derived from the public key.

Symmetric cryptography uses a single secret key for both encryption and decryp-

tion. To use a symmetric encryption scheme, the sender and receiver must share

a key in advance. Because symmetric encryption is less computationally intensive

and requires less bandwidth, it is common to exchange a key using a key-exchange

algorithm and transmit data using an enciphering scheme.

2.3 Dual-rail

As previously mentioned, cryptographic algorithms are implemented on the

specific devices in order to mitigate the threats to the network, but these solutions

make them vulnerable to side channel analysis such timing and power consumption

analysis. Several methods have been proposed for avoiding this threat.

Dual-rail encoding proposed by Sokolov et al. in [58] provides a method to enhance

the security properties of a system, making DPA more difficult.

2.3.1 Single spacer dual-rail

Dual-rail code uses two rails with only two valid signal combinations, {01}
and {10}, which encode values {0} and {1}, respectively. Dual-rail code is widely

used to represent data in self-timed circuits [59] [60], where a specific protocol of

switching helps to avoid hazards. The protocol allows only transitions from all-zeros

{00}, which is a non-code word, to a code word and back to all-zeros, as shown in

Figure 2.1; this means the switching is monotonic. The all-zeros state is used to

indicate the absence of data, which separates one code word from another. Such a

state is often called a spacer.

An approach for automatically converting single-rail circuits to dual-rail using the

above signaling protocol that is easy to incorporate in the standard RTL-based de-

19

Figure 2.1: Single spacer dual-rail protocol.

sign flow has been described in [61]. Within this approach, called Null-Convention

Logic [62], one of two major implementation strategies for logic can be followed;

the first one is with full completion detection through the dual-rail signals (NCL-D)

and the other one with separate completion detection (NCL-X). The former imple-

mentation strategy is more conservative with respect to delay dependence, while the

latter one is less delay-insensitive, but more area and speed efficient. NCL methods

of circuit construction exploit the fact that the negation operation in dual-rail cor-

responds to swapping the rails. Such dual-rail circuits do not have negative gates

(internal negative gates, for example, in XOR elements, are also converted into pos-

itive gates), hence they are race-free under any single transition.

If the design objective is only power balancing (as in our case), one can abandon

the completion detection channels relying on timing assumptions as in standard

synchronous designs, thus saving a considerable amount of area and power. This

approach was followed in [62] considering the circuit in a clocked environment, where

such timing assumptions were deemed quite reasonable to avoid any hazards in the

combinational logic. Hence, in the clocked environment, the dual-rail logic of an

AND gate is simply a pair of AND and OR gates.

The above implementation techniques certainly help to balance switching activity

at the level of dual-rail nodes. Assuming that the power consumed by one rail in

a pair is the same as in the other rail, the overall power consumption is invariant

to the data bits propagating through the dual-rail circuit. However, the physical

realization of the rails at the gate level is not symmetric and experiments with these

20

dual-rail implementations show that power source current leaks the data values.

While there could be ways of balancing power consumption between individual gates

in dual-rail pairs by means of modifications at the transistor level, adjusting loads,

changing transistor sizes, e.t.c., all such measures are costly. The standard logic

library requires finding a more economic solution. Randomization techniques can

be also applied independently and possibly in conjunction with the above method.

Synchronous flip-flops are built to be power efficient, so if they switch to the same

value (data input remains the same within several clocks), nothing will change at the

output. The absence of the output transition saves power, but, at the same time, it

makes the power consumption data dependent. In order to avoid this, flip-flops are

made in order to operate in the return-to-spacer protocol. This solution uses the

master-slave scheme, writing to the master is controlled by the positive edge of the

clock and writing to the slave is controlled by the negative edge. At the same time,

the high value of the clock enforces slave outputs into zero and the low clock value

enforces master outputs into one (a similar spacer for the logic with active zero).

In this circuit explained before, both the master and slave latches have their re-

spective reset and enable inputs (active zero for the master). The delay between

removing the reset signal and disabling writing for each latch (hold time) is formed

by the couple of buffers in the clock circuit. Buffers between master and slave are

needed to insert a delay. The advantage of this implementation is the use of a single

cross-coupled latch in each stage for a couple of input data signals.

2.3.2 Dual spacer dual-rail

In order to balance the power signature, the use of two spacers [63] is pro-

posed (i.e., two spacer states, {00} for all-zeros spacer and {11} for all-ones spacer),

resulting in a dual spacer protocol as shown in Figure 2.2. It defines the switching as

follows: spacer −→ code word −→ spacer −→ code word. The polarity of the spacer

can be arbitrary and possibly random, as in Figure 2.2a. A possible refinement for

this protocol is the alternating spacer protocol shown in Figure 2.2b. The advantage

of the latter is that all bits are switched in each cycle of operation, thus opening a

possibility for perfect energy balancing between cycles of operation.

As opposed to single spacer dual-rail, where, in each cycle, a particular rail is

switched up and down (i.e., the same gate always switches), in the alternating spacer

protocol, both rails are switched from all-zeros spacer to all-ones spacer and back.

21

Figure 2.2: Dual spacer dual-rail protocol.

The intermediate states in this switching are code words. In the scope of the entire

logic circuit, this means that, for every computation cycle, all gates are always fired

forming the dual-rail pairs. This makes the circuit more resistant to DPA.

The new alternating spacer discipline cannot be directly applied to the implemen-

tation techniques described in the previous subsection. Those, both in the logic

rails as well as in completion detection, assume the fact that, for each pair of rails,

the {11} combination never occurs. In fact, the use of all-ones spacer would up-

set the speed-independent implementation in NCL-D because the outputs of the

second layer elements would not be acknowledged during code word −→ all-ones

spacer transition. The completion detection for those gates can, of course, be en-

sured by using an additional three-input C-element, but this extra overhead would

make this implementation technique much less elegant because of the additional

acknowledgment signal channel. In the single spacer structure, due to the principle

of orthogonality (one-hot) between min-terms a0 ·b0, a1 ·b0 and a0 ·b1, only one

C-element in the rail c0 fires per cycle.

If some parts of a dual-rail circuit operate using the single spacer and other parts the

alternating spacer protocol, then spacer converters should be used. The alternating-

to-single spacer converter is transparent to code words and enforces all-zeros spacer

on the output if the input is all-ones or all-zeros.

The implementation of a single-to-alternating spacer converter uses a toggle to de-

22

cide which spacer to inject all-ones or all-zeros. The toggle can be constructed out

of two latches and operates in the following way:

x+ −→ x1+ −→ x− −→ x2+ −→ x+ −→ x1− −→ x− −→ x2−,

i.e., x1 changes on the positive edge of x and x2 switches on its negative edge. The

frequency of x1 and x2 is half the frequency of x.

The alternation of spacers in time is enforced by flip-flops. The alternating spacer

flip-flop can be built by combining a single spacer dual-rail flip-flop with a single

spacer to alternating spacer converter. The power consumption of the single spacer

dual-rail flip-flop is data independent due to the symmetry of its rails. The rails of

the spacer converter are also symmetric, which makes the power consumption of the

resultant alternating spacer flip-flop data independent. This implementation uses

the clk2 signal to decide which spacer to inject on the positive phase of clk. The

signal clk2 changes on the negative edge of the clock and is formed by a toggle (one

for the whole circuit) whose input is clk. The timing assumption for clk2 is that it

changes after the output of single spacer flip-flop. Both the slave latch of the single

spacer flip-flop and the toggle which generates the clk2 signal are triggered by the

negative edge of clk. The depth of logic in the toggle is greater than in the slave

latch of the flip-flop. At the same time, clk2 goes to all flip-flops of the circuit and

requires buffering, which also delays it.

It should be mentioned that the inputs of the dual-rail circuit must also support the

alternating spacer protocol. Moreover, the same spacer should appear each cycle on

the inputs of a dual-rail gate. That means the spacer protocol on the circuit inputs

and flip-flop outputs must be synchronized in the reset phase.

23

24

Chapter 3

Cipher encryption schemes

3.1 Skipjack

Skipjack [64] is a block cipher developed by the U.S. National Security

Agency (NSA). Initially classified, it was originally intended for use in the con-

troversial Clipper chip [65]. Subsequently, the algorithm was declassified and now

provides a unique insight into the cipher designs of a government intelligence agency.

Skipjack was proposed as the encryption algorithm in a U.S. government-sponsored

scheme of key escrow and the cipher provided for use in the Clipper chip and im-

plemented in tamper-proof hardware. Skipjack is used only for encryption; the key

escrow is achieved through the use of a separate mechanism known as the Law

Enforcement Access Field (LEAF) [66]. The design was initially secret and was re-

garded with considerable suspicion by many in the public cryptography community

for that reason. It was declassified on 24 June 1998. To ensure public confidence

in the algorithm, several academic researchers from outside the government were

called in to evaluate the algorithm [67]. The researchers found no problems with

either the algorithm itself or the evaluation process.

Skipjack uses an 80-bit key to encrypt or decrypt 64-bit data blocks. It is an unbal-

anced Feistel network [32] with 32 rounds. It was specially designed to replace the

Data Encryption Standard (DES) [34].

3.1.1 Basic Structure

Skipjack encrypts 4-word (i.e., 8-byte) data blocks by alternating between

the two stepping rules (A and B) shown in Figure 3.1 and 3.2. A step of rule A does

the following:

1. G permutes w1,

2. the new w1 is the XOR of the G output, the counter and w4,

25

Figure 3.1: Skipjack stepping rules

3. words w2 and w3 shift one register to the right; i.e., become w3 and w4 respec-

tively,

4. the new w2 is the G output and

5. the counter is incremented by one.

Rule B works similarly.

The algorithm requires a total of 32 steps. As referred to the encryption procedure,

the input is w0
i , 1 ≤ i ≤ 4, (i.e., k = 0 for the beginning step). The counter is

initialized to start at 1. It steps 8 times according to Rule A, then switch to Rule B

and steps 8 more times. Return to Rule A for the next 8 steps and, then, complete

the encryption with 8 steps in Rule B. The counter increments by one after each

step. The output is w32
i , 1 ≤ i ≤ 4. In contrast with the encryption procedure, the

decryption one has as input w32
i , 1 ≤ i ≤ 4, (i.e., k = 32 for the beginning step).

The counter starts at 32, steps according to Rule B−1 for 8 times, then switch to

Rule A−1 and perform 8 more steps. Then, it returns to Rule B−1 for the next 8

steps and, finally, it completes the decryption with 8 steps based on Rule A−1. The

counter is decremented by one after each step. The output is w0
i , 1 ≤ i ≤ 4.

26

Figure 3.2: Stepping rules equations

3.1.2 G-permutation

The cryptovariable-dependent permutation G on a subword (16 bits) is a

four-round Feistel structure. The round function is implemented by a fixed byte-

substitution table (permutation on a byte), which is called the F-table. Each round

of G also incorporates a byte cryptovariable. We give two characterizations of the

function below:

1. Recursively (mathematically): Gk(g1||g2) = g5||g6, where

gi = F (gi−1
⊕

cv4k+i−3)
⊕

gi−2, k is the step number (the first step is 0), F is

the substitution table and cv4k+i−3 is the (4k + i− 3)th byte in cryptovariable

schedule. Thus,

g3 = F (g2
⊕

cv4k)
⊕

g1

27

Figure 3.3: G-permutation diagram

g4 = F (g3
⊕

cv4k+1)
⊕

g2

g5 = F (g4
⊕

cv4k+2)
⊕

g3

g6 = F (g5
⊕

cv4k+3)
⊕

g4.

Similarly, for the inverse, [Gk]−1(w = g5||g6) = g1||g2, where

gi−2 = F (gi−1 ⊕ cv4k+i−3) ⊕ gi.

2. Figure 3.3 presents a schematic description of G-permutation.

The cryptovariable is 10 bytes long (labelled 0 through 9) and used in its natural

order. So the schedule subscripts given in the definition of the G-permutation are

to be interpreted in a modulo-10 manner.

The Skipjack F-table is given in Figure 3.4 in hexadecimal notation. The high order

4 bits of the input index the row and the low order 4 bits index the column.

28

Figure 3.4: Skipjack F-table

3.2 Blowfish

Blowfish [54] is a secret-key block cipher that can be used as a drop-in

replacement of DES [34] or IDEA [57]. It takes a variable-length key, from 32 bits

to 448 bits, making it ideal for both domestic and exportable use. Blowfish was

designed in 1993 by Bruce Schneier as a fast, free alternative to existing encryption

algorithms. Since then it has been considerably analyzed and it is slowly gaining

acceptance as a strong encryption algorithm.

Blowfish is a Feistel network, employing a simple encryption function 16 times. Its

block size is 64 bits and its key can have any length up to 448 bits. Although there is

a complex initialization phase required before any encryption takes place, the actual

encryption of data is very efficient [54].

29

Blowfish is a variable-length key, 64-bit block cipher. The algorithm consists of two

parts: a key-expansion part and a data-encryption part. Key expansion converts a

key of at most 448 bits into several sub-key arrays totaling 4168 bytes.

Data encryption occurs via a 16-round Feistel network. Each round consists of a key-

dependent permutation and a key- and data-dependent substitution. All operations

are XORs and additions on 32-bit words. The only additional operations are four

indexed array data lookups per round.

3.2.1 Sub-keys

Blowfish uses a large number of sub-keys. These keys must be precomputed

before any data encryption or decryption.

• The P-array consists of 18 32-bit sub-keys:

P1, P2,..., P18.

• There are four 32-bit S-boxes with 256 entries each:

S1,0, S1,1,..., S1,255;

S2,0, S2,1,..,, S2,255;

S3,0, S3,1,..., S3,255;

S4,0, S4,1,..,, S4,255.

3.2.2 Encryption

As mentioned above, the encryption process of Blowfish consists of 16 rounds

(see Figure 3.5) and its input is a 64-bit data element, X.

The data encryption algorithm is shown below:

Divide X into two 32-bit halves: XL, XR

For i = 1 to 16:

XL = XL ⊕ Pi

XR = F (XL) ⊕ XR

Swap XL and XR

Next i

30

Figure 3.5: Data flow graph of Blowfish block cipher

Swap XL and XR (Undo the last swap)

XR = XR ⊕ P17

XL = XL ⊕ P18

Recombine XL and XR

3.2.3 Function F

Function F, the non-reversible function, gives Blowfish the best possible

avalanche effect for a Feistel network: every text bit on the left half of the round

affects every text bit on the right half. Additionally, since every sub-key bit is

affected by every key bit, the function also has a perfect avalanche effect between

the key and the right half of the text after every round. Hence, the algorithm

exhibits a perfect avalanche effect after three rounds as well as every two rounds

after that.

The Function F implemented in our systems is an 8x8 S-box, which has been derived

from the method developed by Yi et al. [68] and is presented in Figure 3.6.

31

Figure 3.6: Blowfish function F

3.3 Advanced encryption standard

Advanced Encryption Standard (AES) [36] is an encryption standard adopted

by the U.S. government. The standard comprises three block ciphers, AES-128,

AES-192 and AES-256, adopted from a larger collection originally published as Ri-

jndael [69] [70]. Each AES cipher has a 128-bit block size, with key sizes of 128,

192 and 256 bits, respectively. The AES ciphers have been extensively analyzed and

are now used worldwide, as was the case with its predecessor, the Data Encryption

Standard (DES) [34].

The rest of this section specifies the Rijndael algorithm, a symmetric block cipher

that can process data blocks of 128 bits, using cipher keys with length of 128 bits.

Rijndael was designed to handle additional block sizes and key lengths, however

32

they are not adopted in this work. Throughout the remainder of this section, the

algorithm specified herein will be referred to as ”the AES algorithm”.

The input and output for the AES algorithm each consist of sequences of 128 bits

(digits with values of 0 or 1). These sequences will sometimes be referred to as

blocks and the number of bits they contain will be referred to as their length. The

Cipher Key for the AES algorithm is a sequence of 128 bits.

Internally, the AES algorithm operations are performed on a two-dimensional array

of bytes called the State. The State consists of four rows of bytes, each containing

four bytes. In the State array denoted by the symbol s, each individual byte has

two indices, with its row number r in the range 0 ≤ r < 4 and its column number

c in the range 0 ≤ c < 4. This allows an individual byte of the State to be referred

to as either sr,c or s[r, c].

At the start of the Cipher, the input - the array of bytes in0, in1, ...in15 - is copied

into the State array as illustrated in Figure 3.7. The Cipher operation is then con-

ducted on this State array. After the completion of this operation, its final value is

copied to the output - the array of bytes out0, out1, ...out15.

Hence, at the beginning of the Cipher, the input array, in, is copied to the State

array according to the scheme:

s[r, c] = in[r + 4c], for 0 ≤ r < 4 and 0 ≤ c < 4,

and at the end of the Cipher, the State is copied to the output array, out, as follows:

out[r + 4c] = s[r, c], for 0 ≤ r < 4 and 0 ≤ c < 4.

For its Cipher, the AES algorithm uses a round function that is composed of four

different byte-oriented transformations:

1. byte substitution using a substitution table (S-box),

2. shifting rows of the State array by different offsets,

3. mixing the data within each column of the State array and

4. adding a Round Key to the State.

These transformations are described in the following subsections.

33

Figure 3.7: State array input and output.

3.3.1 Cipher

At the start of the Cipher, the input is copied to the State array as described

above. After an initial Round Key addition, the State array is transformed by im-

plementing a round function 10 times, with the final round differing slightly from

the first 9 ones. The final State is then copied to the output as described above.

The round function is parameterized using a key schedule that consists of a one-

dimensional array of four-byte words derived by the Key Expansion routine.

The Cipher is described in the pseudocode in Figure 3.8. The individual transfor-

mations - SubBytes(), ShiftRows(), MixColumns() and AddRoundKey() process the

State and are described in the following subsections. In Figure 3.8, the array w[]

contains the key schedule.

As shown in Figure 3.8, all rounds are identical with the exception of the final round,

which does not include the MixColumns() transformation.

3.3.1.1 SubBytes() transformation

The SubBytes() transformation is a non-linear byte substitution that oper-

ates independently on each byte of the State using a substitution table (S-box). This

S-box, which is invertible, is constructed by composing two transformations:

1. Take the multiplicative inverse in the finite field GF (28); the element {00} is

mapped to itself.

2. Apply the following affine transformation (over GF (2)):

34

Figure 3.8: Pseudocode for the AES cipher.

b′i = bi ⊕ b(i+4)mod8 ⊕ b(i+5)mod8 ⊕ b(i+6)mod8 ⊕ b(i+7)mod8 ⊕ ci

for 0 ≤ i < 8, where bi is the ith bit of the byte, and ci is the ith bit of a

byte c with the value {63} or {01100011}. Here and elsewhere, a prime on a

variable (e.g., b′) indicates that the variable is to be updated with the value

on the right.

In matrix form, the affine transformation element of the S-box can be expressed

as:
























b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7

























=

























1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

























·

























b0

b1

b2

b3

b4

b5

b6

b7

























+

























1
1
0
0
0
1
1
0

























.

Figure 3.9 illustrates the effect of the SubBytes() transformation on the State.

The S-box used in the SubBytes() transformation is presented in hexadecimal form

35

Figure 3.9: SubBytes() applies the S-box to each byte of the State.

in Figure 3.10. For example, if s1,1 = {53}, then the substitution value would be

determined by the intersection of the row with index ’5’ and the column with index

’3’ in Figure 3.10. This would result in s′1,1 having a value of {ed}.

3.3.1.2 ShiftRows() transformation

In the ShiftRows() transformation, the bytes in the last three rows of the

State are cyclically shifted over different numbers of bytes (offsets). The first row,

r = 0, is not shifted.

Specifically, the ShiftRows() transformation proceeds as follows:

s′r,c = sr,(c+shift(r,4))mod4, for 0 ≤ r < 4 and 0 ≤ c ≤ 4,

where the shift value shift(r,4) depends on the row number, r, as follows:

shift(1, 4) = 1; shift(2, 4) = 2; shift(3, 4) = 3.

This has the effect of moving bytes to ”lower” positions in the row (i.e., lower values

of c in a given row), while the ”lowest” bytes wrap around into the ”top” of the row

(i.e., higher values of c in a given row).

Figure 3.11 illustrates the ShiftRows() transformation.

36

Figure 3.10: S-box: substitution values for the byte xy (in hexadecimal format).

3.3.1.3 MixColumns() transformation

The MixColumns() transformation operates on the State column-by-column,

treating each column as a four-term polynomial. The columns are considered as

polynomials over GF (28) and multiplied modulo x4 + 1 with a fixed polynomial

a(x), given by

a(x) = {03}x3 + {01}x2 + {01}x + {02}.

The above equation can be written as a matrix multiplication. Let s′(x) = a(x) ⊗
s(x):









s′0,c

s′1,c

s′2,c

s′3,c









=









02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02









·









s0,c

s1,c

s2,c

s3,c









,

for 0 ≤ c < 4.

As a result of this multiplication, the four bytes in a column are replaced by the

following:

37

Figure 3.11: ShiftRows() cyclically shifts the last three rows in the State.

s′0,c = ({02} · s0,c) ⊕ ({03} · s1,c) ⊕ s2,c ⊕ s3,c

s′1,c = s0,c ⊕ ({02} · s1,c) ⊕ ({03} · s2,c) ⊕ s3,c

s′2,c = s0,c ⊕ s1,c ⊕ ({02} · s2,c) ⊕ ({03} · s3,c)

s′3,c = ({03} · s0,c) ⊕ s1,c ⊕ s2,c ⊕ ({02} · s3,c)

Figure 3.12 illustrates the MixColumns() transformation.

3.3.1.4 AddRoundKey() transformation

In the AddRoundKey() transformation, a Round Key is added to the State

by a simple bitwise XOR operation. Each Round Key consists of four words from

the key schedule. Those four words are each added into the columns of the State,

such that

[s′0,c, s
′

1,c, s
′

2,c, s
′

3,c] = [s0,c, s1,c, s2,c, s3,c] ⊕ [wround·4+c], for 0 ≤ c < 4,

38

Figure 3.12: MixColumns() operates on the State column-by-column.

where [wi] are the key schedule words and round is a value in the range 0 ≤ round ≤
10. In the Cipher, the initial Round Key addition occurs when round = 0, prior to

the first application of the round function. The application of the AddRoundKey()

transformation to the 10 rounds of the Cipher occurs when 1 ≤ round ≤ 10.

The action of this transformation is illustrated in Figure 3.13, where l = round · 4.

3.3.2 Key expansion

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion

routine to generate a key schedule. The Key Expansion generates a total of 44 words;

the algorithm requires an initial set of 4 words and each of the 10 rounds requires

4 words of key data. The resulting key schedule consists of a linear array of 4-byte

words, denoted [wi], with i in the range 0 ≤ i < 44.

The expansion of the input key into the key schedule proceeds according to the

pseudocode in Figure 3.14.

SubWord() is a function that takes a four-byte input word and applies the S-box

(Figure 3.10) to each of the four bytes to produce an output word. The function

RotWord() takes a word [a0, a1, a2, a3] as input, performs a cyclic permutation, and

39

Figure 3.13: AddRoundKey() XORs each column of the State with a word from the
key schedule.

returns the word [a1, a2, a3, a0]. The round constant word array, Rcon[i], contains

the values given by [xi−1, {00}, {00}, {00}], with xi−1 being powers of x (x is denoted

as {02}) in the field GF (28) (note that i starts at 1, not 0). From Figure 3.14, it

can be seen that the first 4 words of the expanded key are filled with the Cipher

Key. Every following word, w[i], is equal to the XOR of the previous word, w[i-1],

and the word 4 positions earlier, w[i-4]. For words in positions that are a multiple

of 4, a transformation is applied to w[i-1] prior to the XOR, followed by an XOR

with a round constant, Rcon[i]. This transformation consists of a cyclic shift of the

bytes in a word (RotWord()), followed by the application of a table lookup to all

four bytes of the word (SubWord()).

40

Figure 3.14: Pseudocode for Key Expansion.

41

42

Chapter 4

Implementation

This chapter describes both the sensor node and base station architecture

and implementation in detail including the hardware and the software used for these

nodes integration. As this work demonstrates, we can use FPGAs and CPLDs in dif-

ferent kinds of nodes (i.e. sensor nodes or base stations) within a WSN environment

in order to increase the nodes processing power (thus enabling the implementation

of more complex functions) and decrease their overall energy consumption which is a

crucial factor of wireless nodes functionality because it affects their battery lifetime.

A general scheme of the platform that is going to be described is illustrated in Fig-

ure 4.1. This figure shows all the hardware modules that are used for implementing

this sophisticated platform consisting of sensor node and base station including both

processor and reconfigurable devices. Moreover, all the platform interconnections

between these devices are presented.

4.1 Sensor node

4.1.1 Sensor node architecture

Sensor nodes of a wireless sensor network are low requirements nodes that

sense the environment and send this data to a base station via a wireless link. In

such nodes, we propose to embed a CPLD, a small reconfigurable device, in order to

decrease their energy consumption and, consequently, increase their battery lifetime.

The main characteristics of the CPLDs are: (a) their very low energy consumption,

(b) their relatively high bandwidth when executing certain data manipulation tasks

and (c) their low cost (less than $10). On the other hand, the main disadvantage

of those devices is their small number of resources allowing them to execute only

small, yet very CPU intensive, tasks.

43

XBOARD

IRIS
Integrated
ATMega1281

micro-controller

GPIO
Wireless
Link

Zigbee
802.15.4

Zigbee Card

Intel Board
XUPV2P

RS232

XC2C256

CPLD

XC2VP30

FPGA

USB Atom

Processor

Figure 4.1: Wireless platform general scheme

4.1.1.1 Skipjack

Our first thought for providing security in such nodes is to use the Tiny-

Sec security protocol. TinySec [10] is the first fully-implemented link layer security

architecture for wireless sensor networks developed by Karlof et al. in 2004. Tiny-

Sec addresses these extreme resource constraints with careful design exploring the

trade-offs among different cryptographic primitives and using the inherent sensor

network limitations to advantage when choosing parameters to find a sweet spot for

security, packet overhead and resource requirements. It is portable to a variety of

hardware and radio platforms.

Skipjack is the default cipher encryption scheme of TinySec because it is found to be

most appropriate for software implementation on embedded micro-controllers. Tak-

ing into account the limited resources of our given CPLD and the low requirements

of wireless sensor nodes in security, a mini version of this cipher (with 32-bit plain-

text/ ciphertext) is implemented on hardware for taking advantage of the CPLD

low energy consumption. This hardware implementation of Skipjack plus Cipher

Block Chaining (CBC) [71] provides a relatively high level of security according to

sensor nodes requirements.

Moreover, the Skipjack encipher has been implemented on the CPLD since (a) it is

a very CPU intensive task, (b) the encryption task is executed much more frequent

than the decryption one in the WSN motes (i.e. each node encrypts the collected

data, whereas they are decrypted only in their final destination which is most often

the base station) and (c) the block cipher encryption tasks consume the majority of

the overall sending message procedure execution time based on our measurements.

In the proposed architecture, we use four entry pipeline registers (W1, W2, W3 and

W4) and four 8-bit 2-to-1 multiplexers which give us the opportunity to choose the

plaintext or the result derived from a single step of the algorithm. In particular for

44

the first step of the algorithm, we use the plaintext and for the subsequent ones we

select the previous result as input of the four pipeline registers. Furthermore, we

have designed a module named G-permutation implementing the specified permu-

tation and its architecture is described below.

Except for the main components of the architecture referred above, there are also

some secondary ones used for several purposes. Firstly, a circuit consisting of two

XOR gates and a counter increases the grade of randomness of the encryption. The

first XOR gate gets as inputs the output of the last register in row (W4 register)

and the output of G-permutation. The result of the previous gate is XORed with the

value of the counter, which corresponds to the number of the algorithm step. The

result of the second XOR gate is the final result of the current step. This process is

repeated 32 times equal to the number of algorithm steps. After these 32 steps, the

pipeline registers are disabled and their outputs are concatenated in order to form

the final result of the encryption procedure.

Figure 4.2 presents the block diagram of the presented Skipjack encryption imple-

mentation.

The G-permutation box is implemented as shown in Figure 4.3. This device im-

plements the specified permutation previously referred. It consists of eight XOR

gates and four 4x4 S-boxes representing the F function. These main components of

this module enable us to substitute the value of input byte in a completely different

value which lead us to a relatively high level of security. At the beginning of the G-

permutation procedure, the input byte is divided in two 4-bit quantities, q1 and q2.

These two quantities are separately processed and, after a total of transformations,

concatenated in order to form the final result of the permutation (the output byte)

using a concatenation circuit. Apart from this input byte, this module has also four

other inputs that are four 4-bit long parts of the cryptovariable cv[4k], cv[4k+1],

cv[4k+2] and cv[4k+3], where k is the number of the current step and 0 ≤ k ≤ 31.

These cryptovariable parts are used for performing several transformations by XOR

them with some intermediate values (g2, g3, g4, g5) of the two 4-bit quantities as

shown in Figure 4.3.

4.1.1.2 Blowfish

Another approach for securing data communication among the sensor nodes

of a wireless network is to use Blowfish cipher in combination with CBC. There are

45

W1

register

W2

register

G

permutation

W3

register

W4

register

c
lo
c
k

re
s
e
t

e
n
a
b
le
w
1

c
lo
c
k

re
s
e
t

e
n
a
b
le
w
2

c
lo
c
k

re
s
e
t

e
n
a
b
le
w
3

c
lo
c
k

re
s
e
t

e
n
a
b
le
w
4

M
U
X

M
U
X

M
U
X

M
U
X

p
la
in
te
x
t

(7
 d
o
w
n
to
 0
)

p
la
in
te
x
t

(1
5
 d
o
w
n
to
 8
)

p
la
in
te
x
t

(2
3
 d
o
w
n
to
 1
6
)

p
la
in
te
x
t

(2
3
 d
o
w
n
to
 1
6
)

counter

c
lo
c
k

re
s
e
t

e
n
a
b
le
C
o
u
n
te
r

counterOvf

Figure 4.2: Skipjack encryption block diagram

g1

g2

input

F

cv[4k]

cv[4k+1]

F

cv[4k+2]

F

F

cv[4k+3]

concatenation

circuit
output

g3

g4

g5

g6

Figure 4.3: Skipjack G-permutation block diagram

also some mini versions of Blowfish, such as Blowfish-16 which has a 16-bit block

size. Its small block size makes this version of Blowfish perfectly suitable for wireless

sensor network platforms and, moreover, taking into account the limited resources of

a CPLD, Blowfish-16 seems a good algorithm to offer security in such small devices.

We implement both encipher and decipher process of the Blowfish algorithm in or-

der to have a complete view of cipher performance.

In the proposed architecture, a 16-bit 2-to-1 multiplexer is used. This multiplexer

give us the opportunity to choose the plaintext or the result derived from a single

round of the algorithm. In particular for the first round of the algorithm, we use

the plaintext and for the subsequent ones we select the previous result. Another

multiplexer is also used for choosing the specific byte of the crypto-variable that is

going to be used to each round. Furthermore, we have designed a module named

Round implementing a specified round of the algorithm; the architecture of this

round is described below.

46

Figure 4.4: Blowfish round block diagram

Figure 4.5: Blowfish encryption block diagram

The Round box is implemented as shown in Figure 4.4. This system implements a

single round of the Blowfish encryption. It consists of a 256-to-1 multiplexer which

represents the S-box, two XOR gates, a swap circuit which change the order of the

high and low bytes of the result and a concatenation circuit that creates the final

result of each round.

The high byte of the input is XORed with the specific byte of the crypto-variable

corresponding to the current algorithm round in order to calculate, the new value of

the high byte. The result is passed through the S-box and this new value is XORed

with the input low byte in order to calculate the new low byte value. Finally, these

two bytes are swapped and concatenated in order to create the final result of the

current round that is stored in a 16-bit register.

47

Apart from the main components of the architecture referred above, there are also

some secondary ones used for several purposes. Firstly, a swap circuit is used in

order to undo the swap of the last algorithm round (round 16). Furthermore, two

XOR gates are used; the swapped result of the last round of Blowfish is XORed

with the two last bytes of the crypto-variable. Finally, the ciphertext, the output of

the whole encryption procedure, is created by using a concatenation circuit which

concatenates the results of the two XOR gates.

Figure 4.5 presents the block diagram of the presented Blowfish encryption imple-

mentation.

As mentioned above, the presented blocks execute only one of the rounds of the

encryption algorithm. So the use of a finite state machine (FSM) is necessary for

securing the right operation of the system.

First of all, during the first cycle, the round register is enabled and the plaintext

is selected as the input for the first round of the algorithm. Regarding the key

selection, the first byte of the crypto-variable is chosen to be used. Then, fifteen

cycles, in which the next fifteen rounds of the encryption procedure are executed,

follow. The input chosen is the result derived from the previous round and the

key is the specific byte that corresponds to the current round (the n-th byte of the

crypto-variable is used in the n-th round). Obviously, the duration of the whole

procedure is 16 cycles.

Each cycle described above corresponds to a state of the FSM which is presented in

Figure 4.6. Moreover, all the information described in this paragraph are summa-

rized in Figure 4.7, which demonstrates the internal loop of the implemented task.

Finally, the only difference between the encipher and the decipher procedure is that

the second one takes as inputs the key bytes with the inverse row compared to that

of the encipher. Consequently, if the cipher gets as input the key[r], the inverse

cipher will take key[16-r], where r is the number of the current cipher round and

0 ≤ r ≤ 15.

4.1.2 Sensor node implementation

First of all, our idea of using TinySec with a CPLD implementation of Skip-

jack drove us to a dead-end. The main reasons of this failure is that the specific

security protocol has been ported only to an obsolete version of sensor node operat-

ing system and the mini version of the cipher algorithm can not offer the expected

48

Figure 4.6: Blowfish FSM scheme

Figure 4.7: Blowfish procedure

level of security.

Consequently, we decide to proceed with the Blowfish implementation. Since the

previously described hardware implementation of the Blowfish cipher encryption

supports only 16-bit block, we use CBC in order to be able to efficiently encrypt

more data bytes. A software implementation of this mode of operation is used for

supporting variable lengths of plaintexts up to 128 bits. This software implements

CBC for both encryption and decryption process.

According to the CBC encryption, the first input block (16 bits) is XORed with the

input initialization vector (IV) and the result of this port is send to the CPLD in

order to be enciphered by Blowfish cipher. The first output block is equal to the

ciphertext derived from encipher process and sent back from the CPLD representing

the initialization vector of the next CBC step. This procedure previously described

49

input block 1

IV

Blowfish
encipher

output block 1

input block 2

Blowfish
encipher

output block 2

input block N

Blowfish
encipher

output block N

. . .

. . .

Figure 4.8: CBC encryption implementation

is a single step of the CBC encryption and is repeated such times equal to the num-

ber of input blocks (size of plaintext divided by the size of every block being equal

to 16 bits). Figure 4.8 shows the scheme of CBC encryption implementation.

Moving to the decryption procedure, every step gets as input an 16-bit long block

that is sent to the CPLD in order to be directly deciphered by the Blowfish deci-

pher hardware implementation. The CPLD output is sent back to the mote and

is XORed with the initialization vector of the current step which is equal to the

input block of the previous CBC step. Finally, the decryption process consists of N

steps, where N is the number of input blocks. The scheme of the CBC decryption

is illustrated in Figure 4.9.

4.1.2.1 Implementation details

The basic sensor nodes utilized in our infrastructure are the MICAz and IRIS

[72] ones which are probably the most widely used such motes worldwide made by

Crossbow Technology. They include IEEE 802.15.4 compliant, ZigBee ready radio

50

IV

Blowfish
decipher

output block 1

input block 1

Blowfish
decipher

output block 2

input block 2

Blowfish
decipher

output block N

input block N

. . .

. . .

Figure 4.9: CBC decryption implementation

frequency transceivers which are integrated with an Atmega1281 micro-controller.

The actual WSN nodes are connected to Crossbow MDA100 sensor and data acqui-

sition boards [73] which provide a precision thermistor, a light sensor/photocell and

a general prototyping area.

We expanded this platform by connecting to it a Xilinx CoolRunner-II CPLD. The

CoolRunner-II CPLD family [74] utilizes Xilinx second-generation RealDigital tech-

nology so as to provide high performance, advanced features and low power con-

sumption, all at a very low price. Featuring a 100% digital core, up to 323 MHz

performance and ultra-low stand-by current, CoolRunner-II CPLDs offer a wide

range of densities, plus abundant I/O, the flexibility to move from one density to

another in the same package and the lowest cost per I/O pin in industry.

The specific prototyping CPLD board utilized is the Digilent X-Board [75] which is a

complete circuit development platform for Xilinx CoolRunner-II CPLD. It contains

all essential support circuits for the CoolRunner-II including an on-board USB2

port which provides a data port for CPLD configuration as well as for user data

51

transfers. This board includes a very low-cost 256 macrocell CoolRunner-II CPLD

device (XC2C256) in a TQ-144 package while more than 75 CPLD signals are routed

to expansion connectors so our designs can be easily extended.

The tool used to implement our design was Xilinx ISE 10.1 [76] while its embedded

simulator was used in order to verify the correct operation of our architecture via

the process of behavioral simulation. Next, we had to carry out post-fit simulation

and, for this purpose, we preferred Modesim SE 6.3f [77]. Finally, the CPLD was

programmed using the Digilent ExPort.

One of the most important issues when implementing our reference platform was the

connection between the motes and the reconfigurable device. Regarding the CPLD

connection, the JTAG ports were chosen for data transfers between the motes and

the CPLD. For the mote connection, only 24 pins out of the 102 of the prototyping

area are actually available since the remaining pins are either open or dedicated to

a specific operation of the main mote micro-controller. Based on a traffic profiling

of our applications, we decided to use 8 of those pins as an input to the mote, 8 for

the output traffic and the remaining ones for several input/output control signals.

Regarding the actual system testing, the motes and the CPLD were programmed

and connected together via a custom-made cable. Figure 4.10 presents our pioneer-

ing wireless sensor node platform.

The development of custom sensor applications is facilitated through the TinyOS

2.1 tools. TinyOS [78] is an operating environment designed to run on embed-

ded devices used in distributed WSNs. For the programming of the sensor nodes,

we have utilized the nesC language. NesC [79] (network embedded systems C) is

a component-based, event-driven programming language which is an extension to

the commonly used C one with components wired together to run applications on

TinyOS.

As mentioned above, the I/O bus has limited size. Unfortunately, the available mote

pins are only 24 and only 8 bits can be imported to or exported from the mote at

the same time, but, in most applications, the input/output bandwidth requested is

higher. Consequently, the use of a certain intercommunication protocol is necessary

in order to implement an efficient platform.

For example, if the application implemented in the reconfigurable device requires

16-bit input and 16-bit output, the system should spend two phases in order to

import the input data and additionally two for sending the output of the CPLD to

the mote.

52

Figure 4.10: Wireless sensor node platform

In order to efficiently and correctly synchronize the data exchange between the

CPLD and the mote, a simple toggle (hand-shake) synchronization protocol (see

appendix 1) was also implemented; in particular a specific output toggle bit gets the

inverted value of the input toggle bit when the correct result is ready.

4.1.2.2 Verification

The correct operation of our sensor node platform must be certified using

a complete testbench and testing all its existing parts. First of all, hardware im-

plementation of Blowfish cipher is tested using the behavioral simulation process

and the specific simulator provided by the ISE tool. The testing samples used for

this process are derived from the execution of the open-source software provided by

the developers of Blowfish cipher [80]. After completing the simulation procedure

for both the Blowfish encipher and decipher, the reconfigurable device is connected

53

with the wireless mote via the custom-made cable in order to test our platform in

real-world experiments. Moreover, the software implementation of CBC encryption

and decryption is integrated for supporting different block sizes. A total of plain-

texts is collected and encrypted while the encrypted data is aggregated to messages

which are sent to other nodes via the wireless link. The messages exchanged among

the nodes can be captured by the Integration Wireless Platform Analyzer using a

ZigBee dongle (Integration IA-OEM-DAUB1-2400 - ZigBee ready, 2.404 - 2.481GHz

/ IEEE 802.15.4), which is installed on a monitoring PC. These messages are trans-

ferred to the PC, so as to certify the correctness of the messages exchanged between

the nodes that formed the network. For this purpose, the derived ciphertexts are

also calculated manually. The same procedure is followed for certifying the correct

functionality of CBC decryption too. The final step of the sensor node verification

is to implement both encryption and decryption in different nodes. In this step,

there are two groups of nodes; the first one consists of nodes that create different

plaintexts, encrypt them and send the encrypted data via the link and the second

one contains nodes that receive these messages with the encrypted data, decrypt

them, send back a message with this decrypted data. All the exchanged messages

among these nodes of the network can be captured by the monitoring PC where the

decrypted data is compared with the initial plaintext.

4.2 Base station

4.2.1 Base station architecture

In contrast with a sensor node, base station needs a higher level of security

because it usually collects the packets from all the sensor nodes and is more common

target of attackers for obtaining information according to the network. For this pur-

pose, a more powerful FPGA is embedded in every base station in order to improve

its processing power and enable us to implement a stronger security algorithm such

AES-128 due to the more available resources of the given FPGA compared to the

CPLD ones.

This section describes the device that implements the AES-128 algorithm since it is

optimal for this cipher encryption scheme while the next sections present the way

each component of the whole system is implemented.

The top level of our design consists of two main module; the first one is the cipher

module which implements the main part of the encryption procedure and the second

54

Key expansion

Cipher

w[0] w[1] w[2] w[3] w[42] w[43]. . .

plaintext ciphertext

cipher key

Figure 4.11: AES encryption block diagram.

one is the module that creates the key schedule required for this procedure and is

called key expansion.

The AES-128 top level gets as input two 128-bit long quantities; the official data or

plaintext and the key or cryptovariable used for creating its final output which is

the 128-bit long encrypted data or the so-called ciphertext.

The block diagram of the AES encryption architecture is illustrated in the Figure

4.11.

4.2.1.1 Cipher

As referred above, this module implements the main part of the encryption

procedure. The whole procedure is completed after 10 rounds. Initially, the input

(plaintext) is copied to a state in order to create the initial one in which a round key

is added using the 4 first keywords (32-bit long) deriving from the Key expansion

module. Then, the first 9 cipher rounds are followed. Finally, the encryption pro-

cess is completed with the last cipher round which contains only the three quarters

compared to the previous rounds. Especially, the state is transformed through the

SubBytes, MixColumns and AddRoundKey modules using the 4 last keywords from

55

AddRoundKeyplaintext Cipher Round 1 Cipher Round 2 . . .

AddRoundKey MixColumns SubBytes Cipher Round 9ciphertext

w[40] w[41] w[42] w[43] w[36] w[37] w[38] w[39]

w[0] w[1] w[2] w[3] w[4] w[5] w[6] w[7] w[8] w[9] w[10] w[11]

Figure 4.12: AES cipher block diagram.

AddRoundKeyplaintext MixColumnsSubBytes

w[k] w[k+1] w[k+2] w[k+3]

ShiftRows ciphertext

Figure 4.13: AES cipher round block diagram.

the key schedule in order the final result (ciphertext) of the encryption procedure

to be created. Figure 4.12 presents the previously described block diagram of the

Cipher module.

Each of the first 9 cipher rounds is implemented as shown in Figure 4.13. Its main in-

put is the current state which is transformed using the four modules that implement

the specific transformations presented in the previous chapter (SubBytes, ShiftRows,

MixColumns and AddRoundKey) in order the new value of the State to be derived.

This new value of the state is the output of every cipher round. Moreover, four

keywords from the key schedule are imported to each round as input for adding

them to the current through the AddRoundKey module. The specific keywords are

selected according to the round number. Consequently, the keywords imported are

w[k], w[k+1], w[k+2] and w[k+3] where k = 4 · round and 1 ≤ round < 10.

In the following subsections, the four modules used in order to implement the spe-

cific transformations are described in detail.

SubBytes module: SubBytes module implements a non-linear transformation in

which each byte of the State is substituted by another one using a substitution table

(S-box). This modules consists of 8 S-boxes generated as dual-port block read-only

56

S-box 1

s[0,0]

s[0,1]

s'[0,0]

s'[0,1]

S-box 2

s[0,2]

s[0,3]

s'[0,2]

s'[0,3]

S-box 8

s[3,2]

s[3,3]

s'[3,2]

s'[3,3]

.

.

.

Figure 4.14: SubBytes module block diagram.

memories (DPROMs) containing 256 positions of 8-bit data. So the length of the

DPROM input addresses and output data is 8 bits while each of the 16 input ports

is used to substitute a specific byte of the State. These DPROMs are generated

using Xilinx CORE Generator and initialized using a .coe file which contains the

data of the table presented in Figure 3.10.

The block diagram of this module is illustrated in Figure 4.14, where s[i,j] and

s’[i,j] are the bytes of the i-th row and j-th column of the State before and after the

transformation, respectively.

ShiftRows module: In this subsection, the module that implements the ShiftRows()

transformation is described. The bytes in the last three rows of the State are cycli-

cally shifted over different number of bytes (offsets). The first row is not shifted.

Specifically, the second row is rotated left by one byte, the third by two and the

fourth one by three. So the bytes move to ”lower” positions in the row, while the

”lowest” ones wrap around into the ”top” of it.

ShiftRows module is implemented using three cyclic shifters that get as input the

specific row of the State and rotate it by an offset according to its number. Figure

4.15 provides the block diagram used to implement this module, where r[i] and r’[i]

are the i-th rows of the State before and after the transformation, respectively.

MixColumns module: The MixColumns module operates on the State column-

by-column, treating each column as a four-term polynomial. This module is imple-

57

<< 0r[0] r'[0]

<< 8r[1] r'[1]

<< 16r[2] r'[2]

<< 24r[3] r'[3]

Figure 4.15: ShiftRows module block diagram.

mented using four components (MixColumn module) that take as input a column

of the State and calculate its new value using the MixColumn transformation. The

block diagram of the MixColumns module is shown in Figure 4.16, where c[i] and

c’[i] are the i-th columns of the State before and after the transformation, respec-

tively.

According to the MixColumn component, the columns are considered as polynomi-

als over GF (28) and multiplied modulo x4 + 1 with a fixed polynomial a(x), given

by

a(x) = {03}x3 + {01}x2 + {01}x + {02}.

As a result of this multiplication, the four bytes in a column are replaced by the

following:

s′0,c = ({02} · s0,c) ⊕ ({03} · s1,c) ⊕ s2,c ⊕ s3,c

s′1,c = s0,c ⊕ ({02} · s1,c) ⊕ ({03} · s2,c) ⊕ s3,c

s′2,c = s0,c ⊕ s1,c ⊕ ({02} · s2,c) ⊕ ({03} · s3,c)

s′3,c = ({03} · s0,c) ⊕ s1,c ⊕ s2,c ⊕ ({02} · s3,c)

Taking into account that {03} · x can be analyzed as {02} · x⊕{01} · x and {01} · x
is equal to x, the previous equations can be written as follows:

58

MixColumn 1c[0] c'[0]

MixColumn 2c[1] c'[1]

MixColumn 3c[2] c'[2]

MixColumn 4c[3] c'[3]

Figure 4.16: MixColumns module block diagram.

s′0,c = ({02} · s0,c) ⊕ ({02} · s1,c) ⊕ s1,c ⊕ s2,c ⊕ s3,c

s′1,c = s0,c ⊕ ({02} · s1,c) ⊕ ({02} · s2,c) ⊕ s2,c ⊕ s3,c

s′2,c = s0,c ⊕ s1,c ⊕ ({02} · s2,c) ⊕ ({02} · s3,c) ⊕ s3,c

s′3,c = ({02} · s0,c) ⊕ s0,c ⊕ s1,c ⊕ s2,c ⊕ ({02} · s3,c)

Furthermore, {02} · x can be calculated using the xtime() transformation and, con-

sequently, the above equation table can be changed as follows:

s′0,c = xtime(s0,c) ⊕ xtime(s1,c) ⊕ s1,c ⊕ s2,c ⊕ s3,c

s′1,c = s0,c ⊕ xtime(s1,c) ⊕ xtime(s2,c) ⊕ s2,c ⊕ s3,c

s′2,c = s0,c ⊕ s1,c ⊕ xtime(s2,c) ⊕ xtime(s3,c) ⊕ s3,c

s′3,c = xtime(s0,c) ⊕ s0,c ⊕ s1,c ⊕ s2,c ⊕ xtime(s3,c)

According to the aforementioned simplifications, MixColumn component is imple-

mented with the use of four XOR gates that have five 8-bit long inputs each one

and four modules which implement the xtime() transformation. Its complete block

diagram is illustrated in Figure 4.17, where c[i,j] and c’[i,j] are the bytes of the i-th

row and j-th column before and after the transformation, respectively.

Finally, it is indispensable to describe the operation of the xtime() transformation

and the way implemented for providing a full view of the MixColumns module. Mul-

tiplication by x can be implemented at the byte level as a left shift and a subsequent

59

c[0,j]

xtime 1

c[1,j]

xtime 2

c[2,j]

xtime 3

c[3,j]

xtime 4

XOR

XOR

XOR

XOR

c'[1,j]

c'[2,j]

c'[3,j]

c'[0,j]

Figure 4.17: MixColumn module block diagram.

conditional bitwise XOR with {1b}. This operation on bytes is denoted by xtime().

Multiplication by higher powers of x can be implemented by repeated application

of xtime(). By adding intermediate results, multiplication by any constant can be

implemented. Consequently, xtime component is implemented using a left shifter

where the input byte is shifted by one bit, a 2-to-1 multiplexer with 8-bit inputs

used to choose the specific constant for the subsequent XOR operation according to

the MSB of the input byte and a XOR gate of two 8-bit inputs in which the outputs

of the other two components are XORed in order to create the final result of the

xtime module.

Figure 4.18 shows the block diagram used in order to implement the xtime() trans-

formation, where c[i,j] and c’[i,j] are the bytes of the i-th row and j-th column

before and after the transformation, respectively. In addition, c[i,j](7) is the MSB

of the input byte.

AddRoundKey module: In this module, a Round Key is added to the State by

60

<< 1

XOR
M
U
X

0x00

0x1B

c[i,j]

c'[i,j]

c[i,j](7)

Figure 4.18: xtime module block diagram.

a simple bitwise XOR operation. Each Round Key consists of four words from the

key schedule deriving from the key expansion procedure. Those keywords are added

into the columns of the State. Consequently, AddRoundKey module is implemented

with the use of four XOR gates with two 32-bit inputs each one, where every column

of the State is XORed with the specific keyword selected according to the number of

the current cipher round. The block diagram of this module is presented in Figure

4.19, in which c[i] and c’[i] are the columns of the State before and after the trans-

formation, respectively, and w[k], w[k+1], w[k+2] and w[k+3] are the four words

from the key schedule, where k = 4 · round and 0 ≤ round ≤ 10.

4.2.1.2 Key expansion

Using this module, the AES algorithm takes the Cipher Key and performs

a key expansion routine to generate a key schedule. This component generates a

total of 44 words, four of which are the initial set required from the algorithm and

the remaining ones are used in each of the ten rounds of the cipher process. The

resulting key schedule consists of a linear array of 4-byte words, denoted as w[i],

61

XOR

c[0]

w[k]

c'[0]

XOR

c[1]

w[k+1]

c'[1]

XOR

c[2]

w[k+2]

c'[2]

XOR

c[3]

w[k+3]

c'[3]

Figure 4.19: AddRoundKey module block diagram.

with i in the range 0 ≤ i < 44.

The expansion of the input key into the key schedule proceeds as shown in Figure

4.20.

Initially, the first four keywords (w[0], w[1], w[2], w[3]), which are the initial set

required from the cipher procedure, derive from the four words of the Cipher Key.

The remaining 40 keywords are calculated in groups of four (w[k], w[k+1], w[k+2],

w[k+3] for k = 4 · round and 1 ≤ round ≤ 10), where the w[k-1] is left rotated

by 8 bits (implementation the RotWord() transformation), its bytes are replaced

using SubWord() transformation, it is XORed with the round constant word array,

Rcon[i], and the value of w[k-4] in order to create the value of w[k]. The remaining

three words are calculated as follows:

w[k + 1] = w[k] ⊕ w[k − 3]

w[k + 2] = w[k + 1] ⊕ w[k − 2]

w[k + 3] = w[k + 2] ⊕ w[k − 1]

Furthermore, the structure of the component that implements the SubWord() trans-

formation is similar to that of the SubBytes module. The only difference between

62

Cipher key

w[0]

w[1]

w[2]

w[3]

<< 8 SubWord

XOR

XOR

0x01000000

XOR

XOR

XOR

w[4]

w[5]

w[6]

w[7]

. . .

w[36]

w[37]

w[38]

w[39]

<< 8 SubWord

XOR

XOR

0x36000000

XOR

XOR

XOR

w[40]

w[41]

w[42]

w[43]

Figure 4.20: Key expansion block diagram.

them is that the input of SubBytes is 128-bit (16-byte) long in contrast with the one

of SubWord that is 32-bit (4-byte) long. So only two DPROMs are required for the

implementation of SubWord in contrast with the eight ones used for the SubBytes

implementation. Moreover, the round constant word array, Rcon[i], contains the

values given by [xi−1, {00}, {00}, {00}], with xi−1 being powers of x (x is denoted

as {02}) in the field of GF (28).

Consequently, the key expansion is implemented using ten left cyclic shifters, ten

SubWord modules (or 20 DPROMs) and 50 XOR gates with two 32-bit inputs each

one, as shown in Figure 4.20.

63

4.2.2 Base station implementation

Except for a stronger cipher, such AES, our base station must be well-

protected from other attacks too. As mentioned in chapter 2, cryptographic algo-

rithms are implemented on specific devices in order to mitigate the threats to the

network, but these solutions make them vulnerable to side-channel analysis, such

timing and power consumption analysis. We are going to concentrate to differential

power analysis.

This section describes six different FPGA-based implementations of the AES-128 ci-

pher used for improving the security of our system and making it less susceptible to

such threats. The following subsections present the changes and the additions made

in each implementation compared with the system architecture that is previously

referred. Finally, the two lasts subsections provide some implementation details and

information for the verification of this base station.

4.2.2.1 Single-rail

Single-rail implementation is the simplest one from AES designs. No dif-

ference compared with the system architecture that is described in the previous

chapter exists. It is a fully pipelined implementation designed in order to improve

the value of the system throughput.

4.2.2.2 Dual-rail

The next step for achieving better results in the power consumption of our

system is to apply the very common technique of dual-rail in the given system archi-

tecture. This step enable us the creation of two new implementations; the single and

the dual (or alternating) spacer dual-rail one, which are presented to the following

subsections.

Single spacer dual-rail : According to the single spacer dual-rail implementation,

all the bits of the architecture quantities are changed and, consequently, all the bit-

wise gates have to be replaced by others that calculate the specific results based on

2-bit arithmetic.

So the value of every bit is changed from {0} and {1} to {01} and {10}, respectively.

This process is made using a single-to-dual rail converter, the structure of which is

very simple. The MSB of the new quantity is equal to the initial one and the LSB to

64

NOT

a q1

q0

Figure 4.21: Single-to-dual rail converter block diagram.

Table 4.1: Single-to-dual rail converter truth table.
a q1q0

0 01

1 10

its inverse. The block diagram and the truth table of this converter are illustrated

in Figure 4.21 and Table 4.1, respectively.

Except for this conversion of bits into 2-bit quantities, there is a total of many

changes in the logic gates of our architecture that have to be made. Especially, a

new structure for NAND and XOR gates have to be defined in order to support the

dual-rail method with its 2-bit quantities. Moreover, the NCL approach is used for

the conversion of these circuits from single-rail to dual-rail.

Regarding the NCL NAND gate, four single AND and a OR gates are utilized for

its implementation. As it can be derived from the truth table of this gate shown in

Table 4.2, all the possible of two inputs bits combinations are logically conjuncted

and the results of the three out of four AND gates are disjuncted in order to calcu-

late the value of the final result MSB. Referring to the final result LSB, it is equal

to the result of the fourth AND gate (logic conjunction of the two inputs MSBs).

This structure is presented in Figure 4.22.

Another logic gate that is widely used in AES architecture is the XOR one and a

redefinition according to the rules of dual-rail circuit and NCL approach is though

indispensable. Consequently, an NCL XOR gate is implemented using the previ-

ously defined NCL NAND one. Especially, four NCL NAND gates must be used in

order to implement this new circuit to follow the values of its truth table shown in

Table 4.3. Initially, the two inputs are negatively conjuncted while the results of

this gate is negatively conjuncted with both the two inputs, separately. The results

65

AND

AND

AND

AND

OR

a0

a0

a1

a1

b0

b0

b1

b1

c1

c0

Figure 4.22: NCL NAND gate block diagram.

Table 4.2: NCL NAND gate truth table.
a1a0 b1b0 c1c0

01 01 10

01 10 10

10 01 10

10 10 01

of the two last NCL NAND gates are NANDed in order to reach the final result

of the whole NCL XOR gate. The block diagram of this structure is illustrated in

Figure 4.23.

In hardware implementations, a positive gate is usually constructed out of a nega-

tive gate and an inverter. In addition, the total area overhead in dual-rail logic is

more than twofold compared to single-rail. The use of positive gates is not only a

disadvantage for the size of a dual-rail circuit, but also for the length of the critical

path. This is the reason we implement NCL NAND gates instead of AND ones and

use them in order to define a new structure for the NCL XOR gate. Thus, the use

of positive gate is inevitable in some case. Consequently, a new method for negative

gate optimization must be found.

66

NCL

NAND

NCL

NAND

NCL

NAND

NCL

NAND

a

b
c

Figure 4.23: NCL XOR gate block diagram.

Table 4.3: NCL XOR gate truth table.
a b c

01 01 01

01 10 10

10 01 10

10 10 01

In order to optimize a dual-rail circuit for negative gates, the following transforma-

tions should be applied: First, all gates of positive dual-rail logic are replaced by

negative gates. Then, the output rails of those gates are swapped. So NCL NOT

gate can be optimized and implemented as a swap of the two bits of every quantity,

taking advantage of the structure of the dual-rail circuits. The block diagram and

the truth table of this optimized negative gate is illustrated in Figure 4.24 and Table

4.4.

Shifters in single spacer dual-rail design is changed and their inputs are shifted (ei-

ther cyclically or not) by twice the bits they shifted in the given architecture. For

example, a shifter that moves its input by 8 bits is replaced by another one that

shifts it by 16. Moreover, all the inputs and outputs of the components and the

intermediate signals used by the AES architecture are doubled in length. So the in-

puts (plaintext and cipher key) and the output (ciphertext) of the AES encryption

67

a1

a0

c1

c0

Figure 4.24: NCL NOT gate block diagram.

Table 4.4: NCL NOT gate truth table.
a c

01 10

10 01

are 256-bit long.

Another critical issue about this dual-rail implementation is the conversion of Sub-

Bytes module. In contrast with the other parts of the architecture, SubBytes module

does not change in this implementation, because it would be infeasible to use so many

S-boxes with 16-bit long input and output. This memory change means that every

S-box would consists of 216 = 65536 positions of 16-bit long data and, consequently,

1Mbit of memory. Taking into account that the number of the S-boxes used in our

architecture is equal to 100, our design had to be implemented in a FPGA-device

with 100Mbit memory, but such a device does not exist in retail. Furthermore, only

28 out of 216 positions would contain useful data. For all these reasons, we prefer

not to change the SubBytes module. In order to use this module in the dual-rail

implementation, two converters are placed to its input and output for converting

dual-rail data to single-rail one and vice versa. The output converter that changes

single-rail data in dual-rail one is the same to the previously described one. Refer-

ring to the input converter, every 2-bit quantity is converted in a specific bit using a

circuit consisting of a NOT and a NOR gate. The final bit is the result of the NOR

between the LSB and the inverse MSB of the initial quantity. The block diagram

and the truth table of this converter are presented in Figure 4.25 and Table 4.5,

respectively.

Dual spacer dual-rail : In order to balance the power signature, the use of

two spacers is proposed. As opposed to single spacer dual-rail, where a particular

rail is switched up and down (i.e., the same gate always switches) in each cycle,

in the alternating spacer protocol, both rails are switched from all-zeros spacer to

68

NOT
NOR

a1

a0

q

Figure 4.25: Dual-to-single rail converter block diagram.

Table 4.5: Dual-to-single rail converter truth table.
a1a0 q

01 0

10 1

all-ones spacer and back. The intermediate states in this switching are code words.

In the scope of the entire logic circuit, this means that, for every computation cycle,

we always fire all gates forming the dual-rail pairs. This makes the circuit more

resistant to DPA.

The new alternating spacer discipline can be directly applied to the implementation

techniques by using a single-to-alternating spacer converter, the structure of which

is presented in Figure 4.26. This component consists of a alternating spacer dual-rail

flip-flop (including simple AND and OR gates) and an OR gate. It also uses a toggle

to decide which spacer to inject all-ones or all-zeros. The toggle can be constructed

out of two latches, as shown in Figure 4.27.

Consequently, in order to convert the implementation described in the previous sub-

section into a dual spacer one, we must insert this converter in every circuit used.

Unfortunately, this is infeasible due to the limited resources of the given FPGA de-

vice. A dual spacer dual-rail implementation for the AES cipher encryption might

require more than ten times the available logic slices of the specific device. So the

idea of this specific implementation has been abandoned prematurely.

4.2.2.3 Duplicate dual-rail

Due to the failure of the last idea of a dual spacer dual-rail implementa-

tion, we must find another solution for balancing the power consumption of AES

algorithm. Studying the results derived from the single spacer implementation, we

69

Figure 4.26: Single-to-alternating spacer converter block diagram.

conclude that this method does not perform well for cases that the combination

of plaintext and cipher key consists of a small number of ones. Consequently, we

decide to use the duplication method. Another implementation of the AES cipher

encryption (including key expansion routine) is placed to run in parallel with the

initial one while this duplicated implementation takes as input the inverse of the

plaintext and the cipher key. Unfortunately, another problem has derived in this

implementation too. A full AES procedure of ten cipher rounds cannot be imple-

mented to run in parallel with the initial one due to the memory blocks required

for this implementation that are more than the available ones included in the spe-

cific FPGA device. For this purpose and taking into account that the result of this

second implementation does not affect the final result of the encryption, we decide

to implement some other designs consisting of two, four and eight cipher rounds in

order to study their performance based on the power consumption balance. Ad-

ditionally, the remaining rounds are replaced with pipeline registers in order the

result of these parallel implementations to be created in the same clock cycle that

the ciphertext is derived from the initial implementation. Furthermore, the output

bits of these additional implementations are conjuncted in order to drive an output

bit of our system. Otherwise, the development tools used would trim this compo-

nent because it does not affect the general output of the system. Finally, the key

expansion routine of these implementations is implemented in such a way to have

70

Figure 4.27: Toggle block diagram.

less rounds according to the key schedule requirements. So the key expansion rou-

tines produce a key schedule of 12, 20 and 36 keywords for the 2-, 4- and 8-round

duplicate dual-rail implementations, respectively.

Figure 4.28 illustrates an abstract block diagram of AES duplicate DR implemen-

tations.

2-round duplicate dual-rail : A parallel implementation with two cipher rounds

plus eight pipeline registers and a key expansion routine that produces a key sched-

ule of 12 words is added to the previous designs in order to balance the power

consumption. No further changes are needed to create a new 2-round duplicate

dual-rail system.

4-round duplicate dual-rail : Moving to the 4-round duplicate dual-rail imple-

mentation, the additional component contains four cipher rounds, six pipeline reg-

isters and a 20-word key schedule. Moreover, a minor change is made to fulfill this

new design. The blocks of memory required are more than the available ones, but

the number of the used logic slices is limited. Consequently, some of the required

memories (S-boxes) are replaced from distributed ones (look-up tables constructed

by logic slices) which are generated by the Xilinx CORE generator. A register is

also added after the output of these memories in order to synchronously read data

71

2-, 4- or 8-round

AES

encryption

AES

encryption

NO

NO

plaintext

cipher key

ciphertext

Figure 4.28: AES duplicate DR block diagram.

such the block memories that are used by the remaining parts of our system.

8-round duplicate dual-rail : The last implementation described by this work is

the 8-round duplicate dual-rail one. This implementation is the most sophisticated

compared to the previous ones and achieves the best results according to the balance

of power consumption. Four cipher round is added to the system referred to the pre-

vious subsection and the specific pipeline registers are removed. Referring to its key

expansion routine, its key schedule contains 36 words. Finally, the S-boxes of the

additional cipher rounds are implemented as described in the previous subsection

using distributed memories.

4.2.2.4 Implementation details

In order to create a complete view for the implementations presented in this

chapter and their development, it is though indispensable to point out some imple-

mentation details.

First of all, VHSIC (Very High Speed Integrated Circuits) hardware description

language (VHDL) [81] and Xilinx ISE 10.1i are used during the whole implementa-

tion procedure. ISE different tools enable us to develop, synthesize and implement

our designs while its embedded simulator (ISE simulator) is used for verifying their

correct functionality. After completing the implementation procedure in each of the

above designs, the area cost and the performance (clock period and frequency) are

measured using the synthesis and place and route tools of ISE.

Regarding the reconfigurable hardware utilized for implementing the above sys-

72

Figure 4.29: Base station top view

tems, we have selected a Virtex-II Pro Evaluation Platform based on the Digilent

XUPV2P Development System [82]. Digilent XUPV2P is a feature-rich general

purpose evaluation and development platform with on-board memory and industry

standard connectivity interfaces. It features a Xilinx Virtex-II Pro ”XC2VP30” [83]

FPGA device supporting USB host, peripheral controllers, programmable system

clock generator and many other I/O devices including RS-232 port. This specific

FPGA device consists of 30,816 Logic Cells, 136 18-bit multipliers, 2,448Kb of block

RAM and two PowerPC processors. The speed grade of the device used is equal to

-6. The reason behind selecting this specific development platform for implementing

and evaluating our systems is because it provides a complete framework to measure

the power consumption on the reconfigurable device due to its external connectors

of the voltage powers which enable us to power the FPGA using an external device.

Furthermore, Xilinx iMPACT accessory is the tool used in order to program the

73

FPGA device by downloading the specific bitstream. According to the I/O problem,

the serial port (RS-232) of the development board is used for importing/ exporting

data to/ from our reconfigurable system. For this purpose, a new I/O component

is designed, implemented and placed in the reconfigurable device (see appendix 2)

in order to take the role of the interface between the AES algorithm implemented

on the FPGA board and the external world.

The previously described device is connected with an Intel Desktop Board D945GCLF2

that contains an integrated Intel Atom processor [84]. The Intel Desktop Board

D945GCLF2 is designed to support Internet-centric computing in a Mini-ITX form

factor using the Intel 945GC Express Chipset. Besides that, our board is equipped

with a 1-GB DDR2 RAM module and an external SATA2 hard disk drive.

The connection of the previously described devices can be made via RS-232 port.

In our platform, we connected the two development systems with a serial cable,

utilizing the RS-232 ports of each device at 115200 Kbps.

As far as the wireless part of our innovative platform is concerned, we used the

Crossbow MIB520CB USB Gateway connected to a ZigBee card.

Figure 4.29 shows the top view of our wireless base station platform.

Apart from the hardware modules utilized in our WSN base station, a software suite

was also developed in order to enhance our platform with the appropriate function-

ality. To begin with, one of the most crucial issues was the correct selection of the

Operating System of the Intel Atom Board. The operating system should be as

minimal as it can so as to meet the WSN need for low power consumption; as a

result, Linux Xubuntu 8.10 with Linux kernel 2.6.27 was selected which is claimed to

be appropriate for low power solutions [85]. A python software suite was developed

on the top of this OS which controls the efficient and correct data transfer between

the FPGA and the ZigBee interface. Python [86] is a dynamic object-oriented pro-

gramming language that can be used for many kinds of software development. It

offers strong support for integration with other languages and tools and comes with

extensive standard libraries. For our application, we used the open-source PySerial

and Socket python libraries. PySerial [87] is a library which provides support for

serial connections over a variety of different devices: old-style serial ports, Bluetooth

dongles, infra-red ports, and so on. In our case, PySerial provides all the necessary

functions for the communication between the Atom Processor and the FPGA Board,

whereas the Socket [88] library provides access to the BSD socket interface. The

Socket python library is also utilized for the interconnection with the ZigBee card,

74

through the SerialForwarder Tool, which is described later in this subsection.

Furthermore, the SerialForwarder program opens a so called packet source and let

many applications connect to it over a TCP/IP stream. For example, a SerialFor-

warder whose packet source is the serial port can be executed; instead of connecting

to the serial port directly, applications connect to the SerialForwarder, which acts

as a proxy to read and write packets. Since the applications connect to the Serial-

Forwarder over TCP/IP, those applications can also connect over the Internet. In

general, the base station is used to receive, process, forward and, optionally, store

data packets using all the aforementioned software tools.

Figure 4.30 presents the flowchart of our basic software suite while Figure 4.31

presents the complete software stack of our development tools.

Utilizing our development tools, any application implemented on the Atom CPU,

the FPGA or a combination of the two, can easily process incoming packets from

the motes. Upon a packet is received, our suite reads its size and the actual data

itself. The received packet, then, is either processed by the software executed on the

Atom or written to the RS-232 port in order to be processed by the FPGA. When

an incoming packet is monitored in the RS-232 port, our software suite reads it,

forms it according to the SerialForwarder Protocol and sends its size and the actual

data to the socket, so as to either be further processed by the software executed on

the Atom or be broadcast to the air via the ZigBee card. Our development tools

can also store this packet to a database.

4.2.2.5 Verification

A critical issue in the development process of our designs was the verifica-

tion. In order to certify the correct functionality of our implementation, complete

testbenches had to be created. AES specification [36], as most of such documents,

contain examples that provide us data for testing procedure. These examples give

the input values of different plaintexts and cipher keys and the value of the ci-

phertexts that must derive after the whole encryption process. Moreover, all the

intermediate values of the State after each transformation during the cipher proce-

dure are provided by the authors of the specification and they were used in order

to debug our designs. Apart from the examples referring to the cipher procedure,

some examples for the second part of the encryption, the key expansion routine,

also exist. These additional examples are used for debugging our implementations

75

Figure 4.30: Python script flowchart of base station SW suite

too.

The process of verification mainly consisted of two steps; the behavioral simulation

and the testing on-board. Firstly, taking into account the input and output data

proposed by the algorithm specification, we created an complete testbench and,

then, every of our implementations was simulated using the specific tool referred

to the previous subsection. After completing the simulation process and certifying

that the results derived from it are the desirable ones, we kept on with the on-board

testing. All the testing values used from the previous process were embedded to the

specific software (python script) and, after connecting the development platform

with a PC via a serial port, this software enabled us to send the input values we

wanted to the FPGA. After the completion of the encryption procedure, the FPGA

sent the deriving output values back to the PC where the specific software depicted

them to its monitor while these values were compared with the desirable ones.

76

BaseStation -

nesC

u
s
b

socket
SerialForwarder

- java

Packet

Reception/

transmission -

python

write/read paket

UART - python

p
y
S
e
ria
l

in packet

out packet

Figure 4.31: Base station development tools

77

78

Chapter 5

Performance

In previous chapters, the different sensor node and base station platforms

and their system architectures are presented. We refer to the idea on which every

architecture is based and, then, we describe the design process plus the implementa-

tions of it. In this chapter, we have to evaluate these implementations and illustrate

their energy and power consumption as well as the performance (throughput) and

the area cost. These values will give us a clear view of our designs.

Firstly, the sensor node platform is evaluated based on three major metrics: execu-

tion time, energy and maximum power consumption. All these are critical parame-

ters in WSNs, since it is certainly desirable to increase the limited processing power

of the node while also increasing the life time of the wireless mote by lowering the

energy and maximum power consumption.

Referring to the base station platform, the different systems are evaluated based

on two major metrics: maximum and average power consumption. All these are

critical parameters in order to show how data independent the power consumption

of the initial design is and how can be improved by applying the previously pre-

sented methods, since it is certainly desirable to make our cryptographic systems

well-protected from differential power analysis.

Our performance results are based on real-world experiments in which a mixed sig-

nal oscilloscope has been used in order to take the power measurements. An extra

signal has been used in both the software and the hardware implementations of the

specific application in order to measure the execution time; this signal transits to

high when the execution of the specific process starts and then toggles back to low,

when the process ends. Regarding our base station, it is significant to point out

that the measured results referred only to the encryption process (the calculation

of ciphertext) and that the procedure of receiving input or sending does not been

taken into account.

The framework that is used for taking the required power measurements is mainly

consisted of a high precision resistance that is placed in row with the power supply

79

of the measured system (sensor node CPLD or base station FPGA). The FPGA of

our base station is powered using an external DC supplier of 1.5 V while the value

of the reference resistance used is equal to 0.1 Ω.

First of all, the energy consumption is calculated using the integral of the measured

voltage Vm for the measured execution time period ∆τ . The result is divided with

the reference resistance Rref in order to calculate the reference current Iref .

Multiplying the Iref with the reference voltage Vref that is equal to 2.7 V for the

mote and 3.3 V for the CPLD, the overall energy consumption is calculated based

on the formula below.

E = Iref · Vref , where Iref =
ΣiVm,i∆τ

R

Furthermore, the maximum power consumption is calculated by multiplying the

reference voltage of the system Vref , which is equal to 3.3 V for the FPGA, with the

maximum measured value of the current Im,max, which is calculated by the division

of the maximum measured value for the voltage Vm,max with the reference resistance

Rref . The maximum power consumption is calculated based on the formula below.

Pmax = Im,max · Vref , where Im,max =
Vm,max

Rref

Regarding average power consumption, its calculation is derived by the multipli-

cation of the reference voltage Vref and the average measured value of the current

Im,avg, which is calculated by the division of the average measured value for the

voltage Vavg with the reference resistance Rref . The actual equation used is the one

below.

Pavg = Im,avg · Vref , where Im,avg =
1

N
· ΣN

i=1Vm,i

Rref

5.1 Sensor node results

Regarding sensor node, we measure four different implementations of Blow-

fish plus CBC encryption and decryption. These four implementations differ only

in the block size. Consequently, encryption and decryption of 16, 32, 64 and 128-bit

long blocks are used for the evaluation of our sensor node platform based on execu-

tion time, energy and maximum power consumption. Tables 5.1 and 5.2 illustrate

80

Table 5.1: Blowfish encryption results
Block Execution Energy Maximum power

size (bits) time (us) consumption (uJ) consumption (mW)

Mote Mote Mote Mote Mote Mote
plus CPLD plus CPLD plus CPLD

16 75.0 79.8 106.6 7.2 446.9 196.1

(Reduction: 93.3%) (Reduction: 56.1%)

32 169.2 546.0 182.0 14.0 443.4 206.3

(Reduction: 92.3%) (Reduction: 53.5%)

64 337.0 954.0 313.6 29.5 433.1 218.6

(Reduction: 90.6%) (Reduction: 49.5%)

128 955.0 2735.0 507.4 58.0 417.7 210.4

(Reduction: 88.6%) (Reduction: 49.6%)

the deriving results for these three metrics of Blowfish encryption and decryption,

respectively.

As these tables show, the time needed for the calculation of the final result (cipher-

text for the encryption procedure or plaintext for the decryption one) from the new

platform including the CPLD is much larger than that needed from the initial mote.

Especially, in most of the cases, this execution time of the proposed platform is three

times larger in both Blowfish encryption and decryption. Thus, the low reference

current provided by the CPLD leads us to a significant reduction in energy and

maximum power consumption. For the encryption procedure, the proposed scheme

consumes around 50% less power than the single mote and, subsequently, it performs

an important reduction in energy consumption that is around 90%. Moving to the

decryption procedure, the maximum power consumption is decreased at the same

level as in the encryption one while the reduction in energy consumption achieved

by our sensor node platform is a little smaller than the specific one in encryption,

but it still remains high (more than 80%). Another issue that must be pointed out

is that the execution time and the energy consumption in both processes and plat-

forms increase relatively to the block size (size of input/ output) while the maximum

power consumption remains almost invariable.

Figures 5.1, 5.3 and 5.5 present the results of the encryption process in a schematic

way while Figures 5.2, 5.4 and 5.6 schematically illustrate the previously referred

81

Table 5.2: Blowfish decryption results
Block Execution Energy Maximum power

size (bits) time (us) consumption (uJ) consumption (mW)

Mote Mote Mote Mote Mote Mote
plus CPLD plus CPLD plus CPLD

16 48.9 136.8 47.1 8.8 417.7 222.8

(Reduction: 81.2%) (Reduction: 46.7%)

32 99.4 275.5 96.7 17.0 432.1 214.5

(Reduction: 82.4%) (Reduction: 50.4%)

64 198.0 555.0 189.7 34.3 434.9 216.8

(Reduction: 81.9%) (Reduction: 50.2%)

128 354.0 984.0 343.6 56.3 438.3 189.8

(Reduction: 83.6%) (Reduction: 56.7%)

results of the decryption one.

In Tables 5.3 and 5.4, the CPLD utilization of Blowfish encipher and decipher is

presented in order to have a complete view of the resources needed for the imple-

mentation of this cipher on such a small reconfigurable device.

82

Figure 5.1: Blowfish encryption execution time results.

Figure 5.2: Blowfish decryption execution time results.

83

Figure 5.3: Blowfish encryption energy consumption results.

Figure 5.4: Blowfish decryption energy consumption results.

84

Figure 5.5: Blowfish encryption maximum power consumption results.

Figure 5.6: Blowfish decryption maximum power consumption results.

85

Table 5.3: Blowfish encipher CPLD utilization results

Macrocells Used 118/256 (47%)
Pterms Used 613/896 (69%)

Registers Used 71/256 (28%)
Pins Used 28/118 (24%)

Function Block Inputs Used 271/640 (43%)

Table 5.4: Blowfish decipher CPLD utilization results

Macrocells Used 113/256 (45%)
Pterms Used 621/896 (70%)

Registers Used 71/256 (28%)
Pins Used 28/118 (24%)

Function Block Inputs Used 251/640 (40%)

5.2 Base station results

Referring to our base station platform, a critical issue for its implementations

is the values of the system inputs (plaintext and cipher key) that must be selected

in order to lead us to correct conclusions evaluating our platform. The different

values that a 128-bit quantity such plaintext and cipher key can take are 2128.

So it is impossible to measure the performance of all these different combinations.

Consequently, the selection of plaintexts and cipher keys is of a great importance

and the specific values must chosen in such a way that can give safe results about

the power consumption of all our implementations.

Taking into account all the above, we conclude to try 6 different groups of plaintext

values which are chosen to contain different number of ones. Some of these groups

contain values with either no or being full of ones. In addition, some other groups

consist of small or intermediate number of ones. It could be also pointed out that

each group has values with only minor changes which are selected in order to evaluate

the performance of AES designs in such changes. Especially, the plaintext values

in a group differ only in their 8 LSBs. The different groups of plaintext values in

hexadecimal radix are the following ones:

• 0x000000000000000000000000000000XX,

86

• 0x010101010101010101010101010101XX,

• 0x101010101010101010101010101010XX,

• 0x111111111111111111111111111111XX,

• 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAXX and

• 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFXX,

where XX is a 8-bit counter that inserts the minor changes previously referred.

Moreover, every group consists of 100 different plaintext values.

Regarding the cipher key, its different values are six and they are selected with a

similar way to that of the plaintext ones. These values are chosen as follows:

• 0x00000000000000000000000000000000

• 0x01010101010101010101010101010101

• 0x10101010101010101010101010101010

• 0x11111111111111111111111111111111

• 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

• 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Combining these values, 36 different groups containing 100 combinations of plain-

texts and cipher keys each one are derived while these 3600 different experimental

power measurements that are a representative sample can lead us to safe conclusions

about the data-independence of our AES implementations.

The last issue for this work is the way the results are going to be presented. The

oscilloscope prints the different graphs in a removable disk as a .csv file. So every

of these files represents the measured values of voltage over the reference resistance

during the encryption procedure of one experimental measurement. All these files

are collected and processed by a MATLAB script in order to calculate the power

values and, then, some statistical metrics of every group. The first statistical metric

which is calculated is the mean value for both the maximum and average power

consumption of each group. This metric give us a general view about the real value

of the power consumed. The mean value µ is calculated as the arithmetic mean of

the measured values and is given by the following formula:

87

µ =
1

N
· ΣN

i=1xi =
1

N
· (x1 + x2 + ... + xN)

Another statistical metric that is useful for showing how spread out the measured

values are is the deviation. Deviation σ is defined as the square root of the variance

σ2 which is equal to the mean value of the square of difference between the measured

values and the mean one. This metric is calculated as follows:

σ =
√

σ2, where

σ2 =
1

N
· ΣN

i=1(xi − µ)2 =
1

N
· ((x1 − µ)2 + (x2 − µ)2 + ... + (xN − µ)2)

The deviation is a very useful metric in order to show how much the measured values

differ from the mean one in single group of combinations, but it represents only the

real value of these difference. It is important to have an metric that is going to be

used for illustrating the relative value of this difference compared to the mean one

and this statistical metric is the coefficient of variation δ which is defined as the

ratio of the deviation over the mean value. The equation used for calculating this

metric is the following one:

δ =
σ

µ

The first implementation that is going to be evaluated is the simple single-rail one

the results of which are of great importance, because they will show if this work has

a research interest. In other words, these results can lead us to the conclusion if a

simple FPGA-based implementation of the AES algorithm consume data-dependent

power. The results that were derived from this study have further statistically pro-

cessed and are presented in Tables 5.5 and 5.6 where plainXY is the group of 100

plaintexts, each byte of which is equal to XY (e.g., 00, 01, 10, 11, AA and FF), apart

from their last one which is equal to the current value of the counter, and keyWZ

is that hexadecimal value of cipher key being equal to WZWZ...WZ. These tables

consists of all the statistic metrics referred above of both the maximum and average

power consumption for each group of plaintext and cipher key combinations.

As shown in these tables, the maximum power consumption of this AES imple-

mentation varies 19.68% on average in the total test case and, regarding its average

power consumption, the coefficient of variation is more than 30% on average (see

Table 5.15). So the above values of coefficient of variation lead us to the conclusion

88

Table 5.5: AES single-rail results
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

key00 plain00 0.0712 0.0156 0.2183 0.0273 0.0100 0.3685

plain01 0.1050 0.0107 0.1022 0.0550 0.0069 0.1257

plain10 0.1154 0.0104 0.0904 0.0655 0.0058 0.0886

plain11 0.0880 0.0089 0.1006 0.0408 0.0045 0.1098

plainAA 0.0727 0.0131 0.1800 0.0312 0.0083 0.2667

plainFF 0.1061 0.0127 0.1201 0.0588 0.0084 0.1431

key01 plain00 0.0615 0.0096 0.1554 0.0193 0.0026 0.1329

plain01 0.1067 0.0094 0.0877 0.0614 0.0060 0.0981

plain10 0.1212 0.0096 0.0796 0.0707 0.0049 0.0691

plain11 0.0775 0.0197 0.2537 0.0327 0.0154 0.4701

plainAA 0.0769 0.0113 0.1472 0.0345 0.0057 0.1643

plainFF 0.1054 0.0123 0.1166 0.0613 0.0086 0.1407

key10 plain00 0.0643 0.0093 0.1438 0.0214 0.0033 0.1534

plain01 0.1162 0.0115 0.0991 0.0695 0.0074 0.1071

plain10 0.1289 0.0131 0.1013 0.0768 0.0088 0.1149

plain11 0.0747 0.0127 0.1702 0.0300 0.0072 0.2404

plainAA 0.0862 0.0125 0.1445 0.0451 0.0072 0.1600

plainFF 0.0965 0.0109 0.1130 0.0508 0.0054 0.1056

that the power consumption is data-dependent which makes this implementation

vulnerable to the differential power analysis and that must be improved. Study-

ing more carefully the results of every group, this conclusion is strengthen, because

maximum power consumption coefficient of variation ranges from 5.42% to 25.37%

and average power consumption one from 4.11% to 47.01% according to the input

values of system. Another issue that can not be presented in these tables is that the

graph of power consumption during the encryption process differs from one input

to another. The maximum value of the power consumption is performed in different

time instances which can lead to many vulnerabilities, because if an attacker studies

this performance of our system, he can retrieve information that he has not right to

89

Table 5.6: AES single-rail results - continue...
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

key11 plain00 0.0895 0.0093 0.1043 0.0482 0.0047 0.0971

plain01 0.1188 0.0079 0.0666 0.0705 0.0029 0.0411

plain10 0.1367 0.0074 0.0542 0.0828 0.0031 0.0376

plain11 0.0718 0.0123 0.1715 0.0268 0.0046 0.1722

plainAA 0.0980 0.0104 0.1065 0.0552 0.0080 0.1440

plainFF 0.0930 0.0180 0.1932 0.0460 0.0140 0.3047

keyAA plain00 0.0801 0.0162 0.2018 0.0405 0.0129 0.3182

plain01 0.1143 0.0107 0.0937 0.0605 0.0056 0.0926

plain10 0.0960 0.0102 0.1061 0.0456 0.0077 0.1696

plain11 0.0812 0.0101 0.1238 0.0365 0.0057 0.1559

plainAA 0.0939 0.0129 0.1370 0.0503 0.0071 0.1406

plainFF 0.1100 0.0133 0.1207 0.0653 0.0117 0.1784

keyFF plain00 0.0849 0.0151 0.1778 0.0414 0.0105 0.2544

plain01 0.1236 0.0103 0.0832 0.0696 0.0049 0.0706

plain10 0.0942 0.0159 0.1689 0.0461 0.0139 0.3005

plain11 0.0790 0.0114 0.1444 0.0350 0.0070 0.2005

plainAA 0.0947 0.0121 0.1279 0.0505 0.0081 0.1597

plainFF 0.1108 0.0106 0.0957 0.0633 0.0087 0.1372

access.

As previously referred, these results have to be improved in order to create a well-

protected approach for implementing AES algorithm. The first idea for smooth-

ing the power consumption of this cryptographic system is the use of the dual-rail

method. Unfortunately, a alternating spacer dual-rail implementation have not been

feasible to be created due to the limited resources of the given FPGA device. In

contrast, we implemented a single spacer one, the deriving results of which are pre-

sented in Tables 5.7 and 5.8.

Regardless the results of this implementation are encouraging (see Table 5.15), they

are not close to the desirable ones and must be further improved. If an alternating

90

Table 5.7: AES dual-rail results
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

key00 plain00 0.1142 0.0091 0.0800 0.0671 0.0073 0.1092

plain01 0.1189 0.0085 0.0713 0.0659 0.0047 0.0719

plain10 0.0967 0.0137 0.1417 0.0504 0.0094 0.1867

plain11 0.0824 0.0152 0.1841 0.0418 0.0098 0.2336

plainAA 0.1117 0.0138 0.1236 0.0632 0.0094 0.1492

plainFF 0.0981 0.0068 0.0692 0.0474 0.0033 0.0687

key01 plain00 0.0822 0.0158 0.1918 0.0372 0.0105 0.2835

plain01 0.1096 0.0149 0.1357 0.0565 0.0115 0.2041

plain10 0.0901 0.0121 0.1340 0.0460 0.0065 0.1417

plain11 0.0827 0.0144 0.1735 0.0404 0.0094 0.2333

plainAA 0.1151 0.0108 0.0936 0.0664 0.0084 0.1260

plainFF 0.1095 0.0090 0.0820 0.0577 0.0036 0.0624

key10 plain00 0.0617 0.0125 0.2022 0.0224 0.0073 0.3274

plain01 0.1160 0.0099 0.0851 0.0596 0.0061 0.1031

plain10 0.0865 0.0112 0.1295 0.0448 0.0069 0.1534

plain11 0.0840 0.0152 0.1812 0.0423 0.0100 0.2371

plainAA 0.0925 0.0112 0.1213 0.0498 0.0070 0.1415

plainFF 0.1071 0.0112 0.1044 0.0568 0.0060 0.1063

spacer implementation was feasible, the results would be better. The single spacer

DR one performs coefficient of variation equal to 14.58% and 21.24% on average for

the maximum and average power consumption (see Table 5.15) that means a total

decrease of 25% and 30%, respectively, but it is not enough for supporting that this

system is well-protected from differential power analysis. Furthermore, its maximum

power consumption coefficient of variation ranges from 6.23% to 24.93% while its

average one from 4.15% to 42.28% and the problem with the different distribution

of the power consumption during the calculation is already exists.

For all the above reasons and taking into account the infeasibility of a dual-rail

implementation of two spacers, we conclude that a new method must be found for

91

Table 5.8: AES dual-rail results - continue...
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

key11 plain00 0.0752 0.0187 0.2493 0.0319 0.0135 0.4228

plain01 0.1133 0.0117 0.1031 0.0579 0.0065 0.1129

plain10 0.0846 0.0105 0.1240 0.0421 0.0079 0.1890

plain11 0.0790 0.0148 0.1878 0.0386 0.0110 0.2838

plainAA 0.1005 0.0173 0.1719 0.0549 0.0119 0.2174

plainFF 0.0929 0.0106 0.1144 0.0481 0.0060 0.1254

keyAA plain00 0.0791 0.0149 0.1885 0.0362 0.0103 0.2840

plain01 0.0998 0.0101 0.1009 0.0474 0.0046 0.0980

plain10 0.0931 0.0142 0.1528 0.0492 0.0096 0.1949

plain11 0.1049 0.0185 0.1767 0.0586 0.0120 0.2053

plainAA 0.1010 0.0108 0.1070 0.0552 0.0048 0.0868

plainFF 0.1137 0.0071 0.0623 0.0638 0.0027 0.0415

keyFF plain00 0.0844 0.0158 0.1871 0.0406 0.0123 0.3034

plain01 0.1091 0.0102 0.0933 0.0566 0.0063 0.1111

plain10 0.0908 0.0099 0.1090 0.0478 0.0062 0.1302

plain11 0.1028 0.0148 0.1438 0.0559 0.0107 0.1920

plainAA 0.0781 0.0099 0.1273 0.0343 0.0057 0.1649

plainFF 0.1072 0.0081 0.0753 0.0599 0.0040 0.0665

the improvement of the power consumption results. If we study the results from the

previous design more carefully, we can see that the dual-rail method performs well

in test cases where the combination plaintext and cipher key contains no ones or a

large number of them. On the contrary, test cases where these combinations consists

of a relatively small number of ones are the main drawback of this implementation.

The last observation leads us to the solution of using the ”duplication” method

where another implementation of the AES encryption is placed to run in parallel

with the initial one. The inputs of this additional module are the bitwise inverses

of the initial ones, because of the observation previously referred. Consequently,

when the initial module gets inputs with a small number of ones, the inputs of the

92

Table 5.9: AES 2-round duplicate DR results
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

key00 plain00 0.1188 0.0025 0.0208 0.0757 0.0014 0.0182

plain01 0.1050 0.0052 0.0491 0.0740 0.0040 0.0542

plain10 0.1110 0.0036 0.0323 0.0790 0.0021 0.0266

plain11 0.1249 0.0029 0.0234 0.0908 0.0011 0.0121

plainAA 0.1281 0.0032 0.0248 0.0928 0.0014 0.0150

plainFF 0.0789 0.0027 0.0337 0.0534 0.0014 0.0257

key01 plain00 0.0920 0.0016 0.0178 0.0705 0.0012 0.0170

plain01 0.1060 0.0043 0.0406 0.0754 0.0032 0.0430

plain10 0.1225 0.0025 0.0206 0.0882 0.0008 0.0086

plain11 0.1242 0.0028 0.0222 0.0902 0.0014 0.0151

plainAA 0.1257 0.0033 0.0262 0.0912 0.0016 0.0179

plainFF 0.0708 0.0032 0.0458 0.0469 0.0020 0.0417

key10 plain00 0.1044 0.0034 0.0322 0.0842 0.0025 0.0302

plain01 0.1044 0.0044 0.0421 0.0735 0.0031 0.0419

plain10 0.1241 0.0026 0.0213 0.0901 0.0010 0.0116

plain11 0.1215 0.0035 0.0285 0.0876 0.0020 0.0228

plainAA 0.1249 0.0031 0.0249 0.0905 0.0014 0.0160

plainFF 0.0764 0.0024 0.0312 0.0521 0.0007 0.0141

additional module contain a large number of them and vice versa, which are going

to help us to smooth the power consumption during the calculation. As described in

the previous chapter, three different designs containing an additional module with

different number of cipher rounds have derived from this method. The results of the

first one, the 2-round duplicate DR system, are illustrated in Tables 5.9 and 5.10.

The results shown in these tables are quite impressive, because there is a significant

reduction in the coefficient of variation of maximum and average power consumption

being equal to 75% and 83% compared to the initial design, respectively. Especially,

the maximum power consumption coefficient of variation is equal to 5.47% on aver-

age (see Table 5.15) and ranges from 1.78% to 6.25%. Regarding the average power

93

Table 5.10: AES 2-round duplicate DR results - continue...
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

key11 plain00 0.1057 0.0033 0.0315 0.0749 0.0015 0.0199

plain01 0.1021 0.0048 0.0467 0.0708 0.0026 0.0369

plain10 0.1247 0.0030 0.0240 0.0901 0.0013 0.0143

plain11 0.1225 0.0030 0.0245 0.0887 0.0014 0.0156

plainAA 0.1259 0.0035 0.0279 0.0910 0.0013 0.0143

plainFF 0.0777 0.0028 0.0355 0.0528 0.0014 0.0263

keyAA plain00 0.1057 0.0039 0.0373 0.0746 0.0024 0.0323

plain01 0.1007 0.0043 0.0432 0.0699 0.0024 0.0343

plain10 0.1250 0.0029 0.0234 0.0907 0.0014 0.0155

plain11 0.1248 0.0031 0.0249 0.0902 0.0012 0.0136

plainAA 0.1244 0.0030 0.0243 0.0901 0.0009 0.0102

plainFF 0.0794 0.0023 0.0284 0.0544 0.0011 0.0200

keyFF plain00 0.1088 0.0035 0.0321 0.0773 0.0016 0.0206

plain01 0.1002 0.0063 0.0625 0.0694 0.0043 0.0614

plain10 0.1248 0.0032 0.0253 0.0906 0.0013 0.0144

plain11 0.1253 0.0033 0.0263 0.0911 0.0013 0.0145

plainAA 0.1249 0.0028 0.0227 0.0908 0.0012 0.0133

plainFF 0.0825 0.0022 0.0263 0.0568 0.0007 0.0129

consumption of 2-round duplicate DR implementation, it presents coefficient of vari-

ation equal to 4.84% on average (see Table 5.15) ranging from 0.86% to 6.14%. In

addition, the main advantage of this new design is that the power it consumes has a

fixed distribution and, consequently, is independent from the data input inserted to

the AES module. Observing the above result tables, we can conclude that, despite

the fact that this new system performs well in minor changes of inputs (moving

inside a group of plaintexts that differ only in their least significant bytes), it has a

problem with larger ones (selecting input from different groups with very different

values of plaintexts and cipher keys) and there is able to be further improved.

For improving the power consumption coefficient of variation for such large input

94

Table 5.11: AES 4-round duplicate DR results
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

key00 plain00 0.1029 0.0037 0.0362 0.0852 0.0029 0.0337

plain01 0.1142 0.0030 0.0261 0.0956 0.0020 0.0212

plain10 0.1165 0.0029 0.0249 0.0989 0.0012 0.0125

plain11 0.1063 0.0044 0.0416 0.0881 0.0038 0.0434

plainAA 0.1125 0.0030 0.0268 0.0946 0.0012 0.0125

plainFF 0.1148 0.0037 0.0319 0.0962 0.0019 0.0201

key01 plain00 0.1064 0.0031 0.0291 0.0891 0.0020 0.0224

plain01 0.1222 0.0039 0.0320 0.1037 0.0020 0.0192

plain10 0.1153 0.0047 0.0406 0.0973 0.0031 0.0319

plain11 0.1099 0.0033 0.0305 0.0910 0.0014 0.0159

plainAA 0.1110 0.0030 0.0269 0.0927 0.0009 0.0099

plainFF 0.1145 0.0032 0.0280 0.0961 0.0018 0.0187

key10 plain00 0.1071 0.0031 0.0294 0.0895 0.0023 0.0256

plain01 0.1175 0.0036 0.0308 0.0991 0.0024 0.0245

plain10 0.1151 0.0042 0.0365 0.0977 0.0028 0.0288

plain11 0.1128 0.0029 0.0256 0.0944 0.0012 0.0129

plainAA 0.1114 0.0031 0.0282 0.0926 0.0013 0.0137

plainFF 0.1141 0.0035 0.0309 0.0956 0.0019 0.0198

changes, it is thought that the number of cipher rounds in the additional module of

AES must be increased. We decide to try to implement a design with an additional

module containing four cipher rounds called 4-round duplicate DR, the results of

which are illustrated in Tables 5.11 and 5.12.

Increasing the cipher rounds of the parallel module of AES leads us to a further

improvement of the power consumption coefficient of variation which means a fur-

ther decrease of its value. Maximum power consumption of 4-round duplicate DR

implementation varies 3.47% on average (see Table 5.15) ranging from 2.43% to

5.66% while average power consumption of the same implementation varies 3.99%

on average (see Table 5.15) ranging from 0.99% to 5.90%. The distribution of

95

Table 5.12: AES 4-round duplicate DR results - continue...
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

key11 plain00 0.1069 0.0033 0.0305 0.0898 0.0021 0.0232

plain01 0.1131 0.0064 0.0566 0.0945 0.0056 0.0590

plain10 0.1128 0.0036 0.0318 0.0950 0.0019 0.0196

plain11 0.1114 0.0033 0.0301 0.0929 0.0010 0.0107

plainAA 0.1138 0.0039 0.0344 0.0954 0.0028 0.0294

plainFF 0.1142 0.0030 0.0261 0.0955 0.0015 0.0161

keyAA plain00 0.1110 0.0033 0.0301 0.0940 0.0016 0.0167

plain01 0.1176 0.0051 0.0436 0.0993 0.0037 0.0375

plain10 0.1114 0.0043 0.0386 0.0931 0.0031 0.0333

plain11 0.1132 0.0029 0.0255 0.0955 0.0011 0.0112

plainAA 0.1146 0.0039 0.0341 0.0957 0.0023 0.0241

plainFF 0.1158 0.0028 0.0243 0.0979 0.0013 0.0128

keyFF plain00 0.1061 0.0037 0.0349 0.0882 0.0023 0.0259

plain01 0.1178 0.0036 0.0306 0.1000 0.0020 0.0198

plain10 0.1133 0.0036 0.0315 0.0954 0.0025 0.0266

plain11 0.1087 0.0029 0.0264 0.0903 0.0010 0.0116

plainAA 0.1144 0.0048 0.0422 0.0957 0.0041 0.0427

plainFF 0.1153 0.0029 0.0251 0.0961 0.0013 0.0137

power consumption still remains fixed and, consequently, data-independent during

the whole encryption process.

In spite of the very good performance that the last implementation presents, we

also try to implement another design with increased cipher rounds. This design con-

sists of an additional module of eight cipher rounds and is called 8-round duplicate

DR. The results of the 8-round duplicate DR implementation, which is the last one

presented by this work, are presented in Tables 5.13 and 5.14.

8-round duplicate DR implementation is the one that presents the best results

among the five implementations described by this work. This implementation leads

to an important decrease of the power consumption coefficient of variation. Espe-

96

Table 5.13: AES 8-round duplicate DR results
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

key00 plain00 0.1488 0.0012 0.0108 0.0910 0.0007 0.0110

plain01 0.1402 0.0036 0.0258 0.0924 0.0021 0.0225

plain10 0.1411 0.0040 0.0286 0.0916 0.0020 0.0213

plain11 0.1437 0.0042 0.0292 0.0936 0.0021 0.0222

plainAA 0.1347 0.0012 0.0092 0.0848 0.0007 0.0081

plainFF 0.1420 0.0011 0.0077 0.0891 0.0019 0.0215

key01 plain00 0.1457 0.0009 0.0099 0.0991 0.0005 0.0110

plain01 0.1423 0.0036 0.0253 0.0953 0.0030 0.0319

plain10 0.1400 0.0042 0.0298 0.0897 0.0025 0.0281

plain11 0.1446 0.0050 0.0349 0.0932 0.0022 0.0233

plainAA 0.1493 0.0048 0.0323 0.0949 0.0034 0.0362

plainFF 0.1394 0.0047 0.0340 0.0898 0.0020 0.0228

key10 plain00 0.1474 0.0043 0.0293 0.0945 0.0025 0.0266

plain01 0.1292 0.0009 0.0071 0.0828 0.0007 0.0086

plain10 0.1424 0.0044 0.0308 0.0929 0.0019 0.0201

plain11 0.1431 0.0011 0.0076 0.0917 0.0023 0.0255

plainAA 0.1511 0.0049 0.0322 0.0953 0.0022 0.0229

plainFF 0.1433 0.0049 0.0345 0.0918 0.0023 0.0254

cially, the coefficient of variation of maximum and average power consumption is

equal to 1.73% and 1.64% (see Table 5.15), respectively, while their ranges are from

0.70% to 3.45% for the first metric and from 0.61% to 3.76% for the second one. The

last figures show a significant decrease more than 90% for both variations compared

to the initial design and also make us to conclude that the power consumption of

the final design is data-independent due to the low value of these variations among

the different inputs tested and taking into account that its distribution during the

calculation of the ciphertext still remains fixed. Besides the value of the coefficient

of variation of both maximum and average power consumption is not equal to zero,

it is very close to it which makes us to support that it may be caused by measure-

97

Table 5.14: AES 8-round duplicate DR results - continue...
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

key11 plain00 0.1501 0.0040 0.0266 0.0966 0.0033 0.0344

plain01 0.1407 0.0045 0.0322 0.0901 0.0006 0.0070

plain10 0.1421 0.0038 0.0267 0.0914 0.0032 0.0348

plain11 0.1464 0.0047 0.0324 0.0951 0.0036 0.0376

plainAA 0.1480 0.0011 0.0073 0.0926 0.0022 0.0242

plainFF 0.1457 0.0010 0.0070 0.0936 0.0030 0.0320

keyAA plain00 0.1507 0.0038 0.0255 0.0981 0.0019 0.0191

plain01 0.1413 0.0038 0.0269 0.0918 0.0020 0.0214

plain10 0.1444 0.0040 0.0274 0.0944 0.0028 0.0300

plain11 0.0138 0.0010 0.0071 0.0868 0.0025 0.0290

plainAA 0.1528 0.0046 0.0303 0.0979 0.0006 0.0061

plainFF 0.1405 0.0047 0.0335 0.0907 0.0006 0.0069

keyFF plain00 0.1423 0.0044 0.0308 0.0938 0.0030 0.0316

plain01 0.1427 0.0047 0.0328 0.0922 0.0019 0.0202

plain10 0.1455 0.0041 0.0283 0.0957 0.0033 0.0342

plain11 0.1325 0.0011 0.0084 0.0811 0.0005 0.0060

plainAA 0.1418 0.0011 0.0081 0.0881 0.0008 0.0089

plainFF 0.1410 0.0043 0.0304 0.0914 0.0006 0.0063

ments faults.

The statistics of the total test case including 3600 samples are referred in the

previous paragraphs, but they are not illustrated in the specific tables, because it

is thought preferable to collect and show them in Table 5.15 in order to be com-

pared. Observing this table, the great decrease between the initial design (single-

rail) and the final one (8-round duplicate DR) referring to the data-independence of

their power consumption is presented. In addition, this table illustrates the cost of

improving the data-independence of the AES implementation power consumption

which is the increase of its real value. Regarding the initial design, the maximum

and average power consumption are equal to 95.7 and 49.6 mW, respectively, while

98

Table 5.15: AES total power results
Maximum Power Consumption Average Power Consumption

Mean Deviation Coefficient Mean Deviation Coefficient
value of variation value of variation

Single-rail 0.0957 0.0188 0.1968 0.0496 0.0161 0.3255

Dual-rail 0.0964 0.0140 0.1458 0.0498 0.0106 0.2124

2-round 0.1097 0.0060 0.0547 0.0783 0.0038 0.0484

Duplicate DR (Reduction: 62.5%) (Reduction: 77.2%)

4-round 0.1127 0.0039 0.0347 0.0945 0.0038 0.0399

Duplicate DR (Reduction: 76.2%) (Reduction: 81.2%)

8-round 0.1418 0.0024 0.0173 0.0920 0.0015 0.0164

Duplicate DR (Reduction: 88.1%) (Reduction: 92.3%)

these metrics of the final design are equal to 141.8 and 92.0 mW, which means that

the last implementation presents a 50% increase in maximum and 80% in average

power consumption compared to the first one. In Table 5.15, the decrease values of

coefficient of variation are shown in order to evaluate more precisely the results de-

rived from the latter implementation of AES. Especially, this comparison is carried

out between the three latter implementations (the ”duplicate” implementations)

and the dual-rail one, because the decrease of this metric performed between the

single-rail and the dual-rail implementation is due to the large decrease of the sys-

tem clock frequency, as it will be presented later in this chapter. So we decided that

it would be more proper to compare systems with similar clock frequency.

Except for the power results previously presented, it is important to show the tim-

ing ones. The significant advantage of data-independent power consumption that

means that our system is well-protected from differential power analysis must be fol-

lowed by a high value of throughput in order to present an efficient system offering

high security and performance. For this purpose, Table 5.16 illustrates the deriving

timing results of the five designs described by this work. These results derive from

the Xilinx ISE place-and-route tool.

The pipeline and the high level of parallelism that is used by our AES implemen-

tations enable us to have such high values of throughput. Regarding the single-rail

AES implementation, cipher rounds unrolling leads us to a throughput value more

than 13 Gbps which is one of the highest ones achieved by an FPGA implementa-

99

Table 5.16: AES implementations timing results
Clock period Clock Frequency Throughput

(ns) (MHz) (Gbps)

Single-rail 9.798 102.062 13.064

Dual-rail 16.647 60.071 7.689

2-round 18.254 54.783 7.012

Duplicate DR

4-round 17.568 56.922 7.286

Duplicate DR

8-round 19.774 50.572 6.473

Duplicate DR

tion since now. Especially, only Hodjat et al. implementation in [89] achieves higher

throughput that is equal to 21.54 Gbps, as a result of their exclusive study based on

this metric. Although the throughput is not the main goal of our work, the value

achieved is very encouraging for further research in the future. Moving to the other

implementations, the throughput is dropping down due to the higher complexity

of these circuits. The value achieved by our final design (8-round duplicate DR

implementation) that is the most secure one according to its power independence is

50% smaller than the one of the initial design being equal to 6.5 Gbps. This drop in

the throughput value is another cost for achieving high security and creating a well-

protected system from differential power analysis. Despite this notable decrease,

the throughput value still remains high. These values of throughput are shown in

Figure 5.13 in a schematic way.

Another important issue for evaluating the performance of our platform is to com-

pare it with the results derived when the whole encryption process is executed by

a software running on a low-power CPU such Intel Atom. The metrics in terms of

which the comparison is going to be made are execution time, energy and power

consumption.

In order to measure the execution time of the AES software on the Atom Proces-

sor, we used the Intel Vtune Performance analyzer tool 9.1 [90] installed on Linux

Xubuntu 8.10, whereas for the power draw measurement, we used the Linux Pow-

erTop tool [91]. PowerTop is a tool that measures the percentage of power states

100

Table 5.17: AES software vs. hardware
Execution Energy Power

time (us) consumption (uJ) consumption (W)

Software 215.57 431.13 2.00

Single-rail 2.92 0.15 0.05

(Speedup: 73.8x) (Reduction: 99.9%) (Reduction: 97.5%)

Dual-rail 4.96 0.25 0.05

(Speedup: 43.5x) (Reduction: 99.9%) (Reduction: 97.5%)

2-round 5.44 0.43 0.08

Duplicate DR (Speedup: 39.6x) (Reduction: 99.9%) (Reduction: 96.1%)

4-round 5.24 0.50 0.10

Duplicate DR (Speedup: 41.1x) (Reduction: 99.9%) (Reduction: 95.3%)

8-round 5.89 0.54 0.09

Duplicate DR (Speedup: 36.6x) (Reduction: 99.9%) (Reduction: 95.4%)

at which a processor exists, when executing a software. We could not use the pre-

viously described methodology, in order to measure the execution time, energy and

power draw of the Intel Atom board, since we could not isolate the voltage regulator,

which drives the current to the processor. This is the only technique that is used in

bibliography, in order to measure the power consumption of this kind of boards.

Regarding the power states of the Atom processor, these are described in detail in

[92] datasheet. To summarize, the Atom 330 Family processors have 2 states: C0

and C1. The C0 state is the normal operating state for threads in the processor

while C1 is a low-power state entered when a thread executes a halt or wait instruc-

tions. When the Atom processor enters in C0 state, the average power draw is 8 W,

whereas when it enters in C1 state the average power draw is 2 W. These are the

only experimental values the manufacturer provides, without giving details for this

specific experimental topology.

In order our measurements on the FPGA to keep up with the measurements on

the Atom processor, the same experiments were carried out; the same number of

plaintext and cipher key combinations were inserted as inputs to the two systems.

The results of the above measurements were collected and illustrated in Table 5.17.

As shown in this table, the proposed platform executes the encryption procedure

from 36.6 to 73.8 times faster than the software does while there is a subsequent

101

Table 5.18: AES FPGA utilization results
No of No of No of No of

Slices 4-input LUTs Slice Flip Flops RAMB16s

(out of 13696) (out of 27392) (out of 27392) (out of 136)

Single-rail 2617 (19%) 4618 (16%) 492 (1%) 101 (74%)

Dual-rail 4848 (35%) 8932 (32%) 493 (1%) 101 (74%)

2-round 6469 (47%) 12013 (43%) 511 (1%) 129 (94%)

Duplicate DR

4-round 7936 (57%) 14996 (54%) 655 (2%) 136 (100%)

Duplicate DR

8-round 13341 (97%) 25604 (93%) 1167 (4%) 136 (100%)

Duplicate DR

reduction in energy and power consumption more than 95%.

Finally, in order to have a complete view about the performance and the efficiency

of our method, it is thought indispensable to show the figures of FPGA utilization.

These figures are illustrated in Table 5.18.

Our initial design gets only a few of the available resources of the given FPGA de-

vice. Especially, the ratio of logic slices utilization is very low and equal to 19%, in

contrast with the BRAMs utilization ratio which is higher and equal to 74%. Mov-

ing to the remaining implementations, a higher number of the available resources

is utilized. Finally, the last system (8-round duplicate DR) uses the total of the

FPGA available resources (97% of slices and 100% of BRAMs).

Figures 5.7 to 5.13 show the above results in a schematic way. Especially, Fig-

ures 5.7 and 5.8 present the comparison among the AES implementations based on

the coefficient of variation of maximum power consumption while Figures 5.9 and

5.10 depict the same comparison according to the average power consumption. Each

group in these four figures contains five columns representing the five different imple-

mentations of AES and depicts the coefficient of variation of every single plaintext

and cipher key combinations set and, consequently, the internal variation among

the 100 combinations of this specific set. Moreover, Figures 5.11 and 5.12 illustrate

this comparison for the total results of maximum and average power consumption,

respectively. Finally, Figure 5.13 shows the different values of throughput achieved

by the five AES implementations.

102

Figure 5.7: AES maximum power consumption results.

Figure 5.8: AES maximum power consumption results - continue...

103

Figure 5.9: AES average power consumption results.

Figure 5.10: AES average power consumption results - continue...

104

Figure 5.11: AES maximum power consumption total results.

Figure 5.12: AES average power consumption total results.

105

Figure 5.13: AES throughput results.

106

Chapter 6

Conclusions

This work introduces a completely new framework for creating wireless plat-

forms using reconfigurable devices. Different kinds of wireless platforms (sensor

nodes and base stations) are expanded using these specific devices in order to take

benefit of them. Especially, a given wireless mote is expanded by connecting it with

a CPLD for creating our sensor node platform while an FPGA is connected to a

desktop board used in order to produce our new base station platform.

Regarding sensor node, our CPLD-based platform for wireless sensor networks pro-

vides higher level of security than the existing solutions at a significantly lower

energy cost. This approach triggers a reduction in energy and power consumption

equal to 90% and 50%, respectively, when executing certain encryption algorithms.

Furthermore, different cipher encryption schemes are implemented on sensor node

CPLD to offer the expected security level and the one that is selected for being

the default of our platform is Blowfish-16. Its small block size makes this version

of Blowfish perfectly suitable for wireless sensor network platforms and, moreover,

taking into account the limited resources of a CPLD, Blowfish-16 seems a good

candidate for increasing the security supported by the small WSN nodes. Since

the previously described hardware implementation of the Blowfish cipher encryp-

tion supports only 16-bit block, we developed a software implementation of Cipher

Block Chaining (CBC) in order to be able to efficiently encrypt more data bytes.

According to our base station platform, we develop an FPGA-based architecture

for the Advanced Encryption Standard, which is a stronger cipher and is used for

providing higher level of security compared to the sensor node. The main reason

behind this decision is that base stations are more common targets of the attackers,

because they collect data from all the other nodes and contain important informa-

tion about the structure and the operation of the wireless network. Another issue

is that platforms including such cryptographic schemes (i.e., AES) are vulnerable

to side-channel analysis. The power that AES consumes varies according to the

data input of the algorithm. Consequently, an attacker can retrieve information

107

about the network by performing differential power analysis. This drawback drove

us to the decision of implementing an AES system with data-independent power

consumption and, subsequently, a system that is well-protected from side-channel

analysis. For this purpose, six different hardware implementations of AES are pro-

posed for reaching the desirable results. Besides the coefficient of variation of our

final implementation (8-round duplicate dual-rail) is not equal to zero, the results

deriving from this system are very close to the ideal ones and the variation per-

formed in this design can come from measurements faults. On the other hand, there

are also some disadvantages in this method. Its main drawback is the increase in

the value of power consumption which reaches up to 100% compared to the initial

design.

Based on our real-world measurements, we believe that this work demonstrates a

very promising approach for building highly secure WSN nodes that will incorporate

low-power and high-performance reconfigurable devices.

108

Chapter 7

Future work

Regardless of the encouraging results derived from the above implementa-

tions, there are some things necessary for the further development of our framework.

Referring to our sensor node, a more energy-efficient communication protocol can

be designed for the CPLD-mote platform in order to improve its energy and power

consumption. Besides that, other cryptographic schemes or, at least, a stronger

version of the existing scheme can be implemented on it for improving the security

level offered. This target can be achieved by the use of a larger CPLD, the more

available resources of which can enable us to implement such stronger algorithms.

In addition, the custom-made cable can be replaced together with all the develop-

ment areas of the boards, since they waste a lot of energy. Instead of these, a custom

board can be designed which will contain only a CPLD device, the micro-controller

of the mote and the ZigBee module.

Moving to the base station platform, the first idea would be to change the input/

output protocol (RS232) with another of higher performance (i.e., Gigabit Ethernet)

for taking advantage of the high values of throughput that can be achieved by our

system.

Furthermore, we can implement the AES inverse cipher by using the implementa-

tions of the given one, which is not so complex, because some parts of the AES

decryption procedure are the same compared with the specific parts of the encryp-

tion one and the remaining parts are very similar.

In this work, we implement the AES-128 cipher, so another idea is to develop a sim-

ilar method for data-independent power consumption referring to other ”flavors”

such as AES-192 and AES-256 including both the cipher process and the inverse

one.

Moreover, it might be useful to implement other cryptographic standards such DES

and Triple-DES or algorithms such AES competition finalists (Twofish, Serpent,

MARS and RC6) in the FPGA of our base station platform and use the method

of improving the data-independence of power consumption in these designs. These

109

implementations can lead us to more secure conclusions about the performance of

this method.

Another subject for further research will be to apply the complete method to differ-

ent kind of security algorithms such authentication algorithms or digital signatures.

Taking into account that the development of a new hash standard (SHA-3) is in

progress, a research on the data-independence of its FPGA implementation power

consumption would be a great addition.

To sum up, these extensions lead closer to efficient FPGA implementations of cryp-

tographic algorithms with data-independent power consumption that makes them

well-protected from a power consumption analysis attack.

110

Appendices

111

112

Appendix 1 - Sensor node interconnection

One issue of great importance according our sensor node platform is the way

via which the wireless mote and the CPLD are going to be connected, but before

planning this interconnection, we must to choose the I/O ports that is going to be

used from both the devices.

This I/O issue was confronted with the following way; regarding the CPLD con-

nection, the JTAG ports were chosen for data transfers between the motes and the

CPLD and the mote connection, only 24 pins out of the 102 of the prototyping area

are actually available since the remaining pins are either open or dedicated to a spe-

cific operation of the main micro-controller of the mote. Based on a traffic profiling

of several applications and since it was necessary for this connection to be used in

many applications, we decided to use 8 of those pins as an input to the mote, 8 for

the output traffic and the remaining ones for several input/output control signals,

as shown in Table 1.

In order to efficiently and correctly exchange data between the CPLD and the mote,

a simple toggle synchronization protocol was also implemented both in software (on

the motes) and in hardware (on the CPLD). As described in the algorithm archi-

tecture, the input and the output of the CPLD should be 16-bit long. As a result,

a number of the mote and CPLD pins should be used 4 times for a single Mote-to-

CPLD transfer. The protocol we have designed works as follows; firstly, the mote

sends the first 8 bits to the CPLD. This datum is stored in a register. When the

CPLD receives the first block of data, a toggle bit transits from its current state to

the other, so as to ensure the data freshness and that the datum is received correctly

from the CPLD. Additionally, a block-offset bit is used, to indicate which block is

transferred each time. So, when the first 8 out of 16 bits are sent to the CPLD, the

value of the block offset is 0, whereas the value of the block offset bit is 1 when the

second byte is sent to the CPLD. After the successful reception of the first block of

data, the CPLD sends an inversed toggle bit to the mote, so as to trigger the sending

of the second block of data. The same procedure is also followed for the second input

block, which is stored to another register in the CPLD. At this point the CPLD is

ready to start the processing of the received data. After the completion of the data

113

MDA100CB Pin Mode CPLD Pin Mode

F2 DATA (out) p117 DATA (in)

F3 DATA (out) p136 DATA (in)

F4 DATA (out) p134 DATA (in)

F5 DATA (out) p132 DATA (in)

F6 DATA (out) p57 DATA (in)

F7 DATA (out) p59 DATA (in)

F8 DATA (out) p119 DATA (in)

F13 DATA (out) p45 DATA (in)

C10 DATA (in) p129 DATA (out)

C11 DATA (in) p126 DATA (out)

C12 DATA (in) p124 DATA (out)

C13 DATA (in) p120 DATA (out)

D10 DATA (in) p118 DATA (out)

D11 DATA (in) p116 DATA (out)

D12 DATA (in) p114 DATA (out)

D13 DATA (in) p112 DATA (out)

E2 RESET (out) p106 RESET (in)

E3 TOGGLE (in) p137 TOGGLE (out)

E4 OFFSET (out) p135 OFFSET (in)

Table 1: Custom cable pins

processing, the CPLD starts sending the data to the mote. The protocol used for

sending the data to the mote is almost the same with the one used for receiving data

from the mote: every block is stored in an output register in the CPLD. Initially, a

toggle bit is sent to the mote; then, the mote replies and, upon the reception of the

answer, the CPLD sends the first block with the correct value of the block offset.

At this point, it should be mentioned that the output of our hardware module is

16-bit long. So, every output block is 8-bit long and, consequently, two blocks are

sent to the mote. Upon correctly receiving the first block of data, the mote notifies

the CPLD about this fact and the latter starts sending the second block of data to

the mote. Once the transfer is finished, the mote notifies the CPLD and sends the

data to the other nodes in the network.

The implementation of the communication protocol on the CPLD is presented in

Figure 1, whereas, for better explanation, a timing diagram of this protocol is pre-

114

Figure 1: Sensor node communication protocol

Figure 2: Sensor node communication timing diagram

sented in Figure 2.

115

116

Appendix 2 - RS-232 hardware module

As referred to the implementation chapter, serial port is used by the base

station for sending/ receiving data to/ from the FPGA device. For this purpose, a

RS-232 hardware module has been implemented in order to be used as the input/

output interface from the side of the reconfigurable device. An abstract block dia-

gram of this module is illustrated in Figure 3.

The first components which are the main ones and are used for communicating with

the external port are the UART receiver and transmitter; the first one is used for

receiving data from the port and the other one for transmitting data to it. Another

component used for the same purpose is called baud and is a clock divided utilized

for adjusting the system clock with the UART one.

The remaining components of this module are used for certifying its correct func-

tionality. RS-232 module also consists of two multiplexers (a 2-to-1 and a 16-to-1

one with 8-bit inputs/ output) and 32 8-bit registers. Finally, a memory containing

1024 8-bit long data is necessary for its right operation. It is generated by Xilinx

CORE generator and captures an available block of the given FPGA RAM.

Furthermore, the use of a control unit is thought indispensable for securing the cor-

rect operation of this RS-232 module. According to the timing diagram defined, the

whole procedure starts when the UART receiver is in waiting state. When an inter-

rupt of receiving data is sent, the UART receiver is enabled in order to get this data.

This data is received in quantities of 8 bits each one. Then, 32 clock cycles follow for

receiving and storing the received 32 bytes (16 of the plaintext and 16 of the cipher

key) to the RS-232 memory. The first multiplexer is set to select the output of the

UART receiver in order to store the input data. The following 32 cycles are spent

in order to read this input data byte-by-byte (reading each position of the memory)

and store it to the 32 byte-registers, the outputs of which are connected to the in-

put of AES module. This module calculates the specific ciphertext according the

implementation chosen. The output of the calculation module which is one of these

described in previous chapter (single-rail, dual-rail, 2-, 4- or 8-round duplicate DR)

is divided in 16 8-bit quantities being the inputs of the second multiplexer. These

16 quantities are stored to the RS-232 memory in the following 16 clock cycles while

117

UART
receiver

UART
transmitter

BRAM

MU

register
1

register
2

register
32

enableenableenable

input

output

. . .

AES module

MUX

. . .

transmit

receive

Figure 3: RS-232 module abstract block diagram.

the first multiplexer is set to select the derived system output. Finally, the output

data are read from the BRAM and sent to the UART transmitter during the last

16 clock cycles in order to send it to the serial port enabling its transmit interrupt.

The FSM scheme described above is schematically presented in Figure 4.

118

UART receiver

waiting

Input data

stored in

BRAM

BRAM data

stored in

registers

Ciphertext

calculation

process

Output data

stored in

BRAM

Ouput data

sent via

RS-232

START

END

cycle = 0

while no receive data

while cycle < 32

while cycle < 64

while cycle < 74

while cycle < 90

while cycle < 106

Figure 4: UART FSM scheme.

119

120

Appendix 3 - Acronyms

AES: Advanced Encryption Standard

CBC: Cipher Block Chaining

CPLD: Complex Programmable Logic Device

CPU: Central Processing Unit

DEMA: Differential EM Analysis

DoS: Denial-of-Service

DPA: Differential Power Analysis

DPROM: Dual-Port Read-Only Memory

EM: ElectroMagnetic

EP2P: Embedded Peer-to-Peer

FPGA: Field-Programmable Gate Array

FSM: Finite State Machine

IV: Initialization Vector

LEAF: Law Enforcement Access Field

LSB: Least Significant Bit

MSB: Most Significant Bit

NCL: Null-Convention Logic

NesC: Network embedded systems C

NIST: National Institute of Standards and Technology

NSA: National Security Agency

P2P: Peer-to-Peer

ROM: Read-Only Memory

RTL: Register Transfer Level

SCA: Side-Channel Analysis

SEMA: Simple EM Analysis

SPA: Simple Power Analysis

VHDL: VHSIC Hardware Description Language

VHSIC: Very High Speed Integrated Circuits

WSN: Wireless Sensor Network

121

122

Bibliography

[1] C. S. Raghavendra, Wireless Sensor Networks. Springer, July 2005.

[2] S. Brown, “FPGA architectural research: a survey,” Design & Test of Com-

puters, IEEE, vol. 13, no. 4, pp. 9–15, 1996.

[3] Xilinx Online. http://www.xilinx.com, Last accessed: 2009/05/15.

[4] Altera Online. http://www.altera.com, Last accessed: 2009/05/15.

[5] R. Anderson and M. Kuhn, “Tamper resistance: a cautionary note,” in WOEC’96:

Proceedings of the 2nd conference on Proceedings of the Second USENIX Work-

shop on Electronic Commerce, (Berkeley, CA, USA), pp. 1–1, USENIX Associ-

ation, 1996.

[6] Internet Denial-of-Service Considerations. IETF Network Working Group,

November 2006.

[7] V. D. Gligor, “A note on the denial-of-service problem,” in SP ’83: Proceed-

ings of the 1983 IEEE Symposium on Security and Privacy, (Washington, DC,

USA), p. 139, IEEE Computer Society, 1983.

[8] J. R. Douceur, “The sybil attack,” in IPTPS ’01: Revised Papers from the First

International Workshop on Peer-to-Peer Systems, (London, UK), pp. 251–260,

Springer-Verlag, 2002.

[9] J. M. McCune, E. Shi, A. Perrig, and M. K. Reiter, “Detection of denial-

of-message attacks on sensor network broadcasts,” in SP ’05: Proceedings of

the 2005 IEEE Symposium on Security and Privacy, (Washington, DC, USA),

pp. 64–78, IEEE Computer Society, 2005.

[10] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer security archi-

tecture for wireless sensor networks,” in SenSys ’04: Proceedings of the 2nd

international conference on Embedded networked sensor systems, (New York,

NY, USA), pp. 162–175, ACM, 2004.

123

http://www.xilinx.com
http://www.altera.com

[11] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical en-route filtering of injected

false data in sensor networks,” in INFOCOM, pp. 839–850, 2004.

[12] Y.-C. Hu, D. B. Johnson, and A. Perrig, “SEAD: Secure efficient distance vec-

tor routing for mobile wireless ad hoc networks,” in WMCSA ’02: Proceedings

of the Fourth IEEE Workshop on Mobile Computing Systems and Applications,

(Washington, DC, USA), p. 3, IEEE Computer Society, 2002.

[13] C. Hartung, J. Balasalle, and R. Han, “Node compromise in sensor networks:

The need for secure systems,” tech. rep., Department of Computer Science,

University of Colorado, Boulder, January 2005.

[14] H. Chan, A. Perrig, B. Przydatek, and D. Song, “SIA: Secure information

aggregation in sensor networks,” J. Comput. Secur., vol. 15, no. 1, pp. 69–102,

2007.

[15] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems,” in CRYPTO ’96: Proceedings of the 16th Annual

International Cryptology Conference on Advances in Cryptology, (London, UK),

pp. 104–113, Springer-Verlag, 1996.

[16] D. Brumley and D. Boneh, “Remote timing attacks are practical,” in SSYM’03:

Proceedings of the 12th conference on USENIX Security Symposium, (Berkeley,

CA, USA), pp. 1–1, USENIX Association, 2003.

[17] D. Page, “Theoretical use of cache memory as a cryptanalytic side-channel,”

Tech. Rep. CSTR-02-003, Department of Computer Science, University of

Bristol, June 2002.

[18] Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi, “Cryptanalysis of

block ciphers implemented on computers with cache,” in 25th International

Symposium on Information Theory and Its Applications (ISITA 2002), 2002.

[19] D. J. Bernstein, “Cache-timing attacks on AES,” 2004.

[20] C. Percival, “Cache missing for fun and profit,” in Proc. of BSDCan 2005,

2005.

124

[21] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L.

Willems, “A practical implementation of the timing attack,” in CARDIS ’98:

Proceedings of the The International Conference on Smart Card Research and

Applications, (London, UK), pp. 167–182, Springer-Verlag, 2000.

[22] A. Hevia and M. Kiwi, “Strength of two data encryption standard implemen-

tations under timing attacks,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 4,

pp. 416–437, 1999.

[23] F. Koeune, J.-J. Quisquater, and J.-J. Quisquater, “A timing attack against

Rijndael,” tech. rep., 1999.

[24] H. Handschuh and H. M. Heys, “A timing attack on RC5,” in SAC ’98: Pro-

ceedings of the Selected Areas in Cryptography, (London, UK), pp. 306–318,

Springer-Verlag, 1999.

[25] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Lecture Notes in

Computer Science, vol. 1666, pp. 388–397, 1999.

[26] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of power

analysis attacks on smart cards,” in WOST’99: Proceedings of the USENIX

Workshop on Smartcard Technology on USENIX Workshop on Smartcard Tech-

nology, (Berkeley, CA, USA), pp. 17–17, USENIX Association, 1999.

[27] L. Goubin and J. Patarin, “DES and differential power analysis (the ”duplica-

tion” method),” in CHES ’99: Proceedings of the First International Workshop

on Cryptographic Hardware and Embedded Systems, (London, UK), pp. 158–

172, Springer-Verlag, 1999.

[28] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete

results,” in CHES ’01: Proceedings of the Third International Workshop on

Cryptographic Hardware and Embedded Systems, (London, UK), pp. 251–261,

Springer-Verlag, 2001.

[29] J.-J. Quisquater and D. Samyde, “ElectroMagnetic Analysis (EMA): Measures

and counter-measures for smart cards,” in E-SMART ’01: Proceedings of the

International Conference on Research in Smart Cards, (London, UK), pp. 200–

210, Springer-Verlag, 2001.

125

[30] S. Mangard, “Exploiting radiated emissions - EM attacks on cryptographic

ICs,” in Proceedings of Austrochip 2003 (L. Ostermann, ed.), pp. 13 – 16, 2003.

[31] B. Schneier, Applied Cryptography. John Wiley & Sons, 1996.

[32] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of Applied

Cryptography. Boca Raton, FL, USA: CRC Press, Inc., 1996.

[33] M. Liskov, R. L. Rivest, and D. Wagner, “Tweakable block ciphers,” in CRYPTO

’02: Proceedings of the 22nd Annual International Cryptology Conference on

Advances in Cryptology, (London, UK), pp. 31–46, Springer-Verlag, 2002.

[34] N.I.S.T., “DES modes of operation.” FIPS Publication 81, December 1980.

[35] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treat-

ment of symmetric encryption: Analysis of the DES modes of operation,” in

Proceedings of 38th Annual Symposium on Foundations of Computer Science

(FOCS 97), 1997.

[36] N.I.S.T., “Announcing the Advanced Encryption Standard (AES).” FIPS Pub-

lication 197, November 2001.

[37] M. Robshaw, “Stream ciphers,” 1995.

[38] RC4 Page. http://www.wisdom.weizmann.ac.il/~itsik/RC4/rc4.html, Last

accessed: 2009/03/05.

[39] G. Rose, “A precis of the new attacks on GSM encryption,” in Proceedings of

QUALCOMM, September 2003.

[40] U. Blöcher and M. Dichtl, “Fish: A fast software stream cipher,” in Fast Soft-

ware Encryption, Cambridge Security Workshop, (London, UK), pp. 41–44,

Springer-Verlag, 1994.

[41] D. Whiting, B. Schneier, S. Lucks, and F. Muller, “Phelix - fast encryption

and authentication in a single cryptographic primitive,” in Proc. Fast Software

Encryption 2003, volume 2887 of LNCS, pp. 330–346, Springer-Verlag, 2003.

[42] R. J. Jenkins, “ISAAC,” in Fast Software Encryption, Cambridge Security

Workshop, (London, UK), pp. 41–49, Springer-Verlag, 1996.

126

http://www.wisdom.weizmann.ac.il/~itsik/RC4/rc4.html

[43] D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, and B. Preneel, “A new

keystream generator MUGI,” in FSE ’02: Revised Papers from the 9th Inter-

national Workshop on Fast Software Encryption, (London, UK), pp. 179–194,

Springer-Verlag, 2002.

[44] J. D. Golic, “A weakness of the linear part of stream cipher MUGI,” in FSE,

pp. 178–192, 2004.

[45] A. Biryukov and A. Shamir, “Analysis of the non-linear part of MUGI,” in

FSE, pp. 320–329, 2005.

[46] Panama Page. http://www.quadibloc.com/crypto/co4821.htm, Last ac-

cessed: 2009/03/05.

[47] Software-efficient pseudorandom function and the use thereof for encryption.

U.S. Patent No. 5,454,039, September 1995.

[48] Computer readable device implementing a software-efficient pseudorandom func-

tion encryption. U.S. Patent No. 5,675,652, October 1997.

[49] D. Wantanabe, S. Furuya, and T. Kaneko, “A MAC forgery attack on SOBER-

128*,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E88-A,

no. 5, pp. 1166–1172, 2005.

[50] P. Hawkes and G. Rose, “Primitive specification for SOBER-128.” IACR

ePrint archive, 2003.

[51] A. Beutelspacher, The Future Has Already Started or Public Key Cryptography.

1994.

[52] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, The

Twofish encryption algorithm: a 128-bit block cipher. New York, NY, USA:

John Wiley & Sons, Inc., 1999.

[53] Serpent Page. http://www.cl.cam.ac.uk/~rja14/serpent.html, Last ac-

cessed: 2009/03/05.

[54] B. Schneier, “Description of a new variable-length key, 64-bit block cipher

(Blowfish),” in Fast Software Encryption, Cambridge Security Workshop, (Lon-

don, UK), pp. 191–204, Springer-Verlag, 1994.

127

http://www.quadibloc.com/crypto/co4821.htm
http://www.cl.cam.ac.uk/~rja14/serpent.html

[55] C. M. Adams, “Constructing symmetric ciphers using the cast design proce-

dure,” Des. Codes Cryptography, vol. 12, no. 3, pp. 283–316, 1997.

[56] R. C. Merkle and M. E. Hellman, “On the security of multiple encryption,”

Commun. ACM, vol. 24, no. 7, pp. 465–467, 1981.

[57] X. Lai and J. L. Massey, “A proposal for a new block encryption standard,” in

EUROCRYPT ’90: Proceedings of the workshop on the theory and application

of cryptographic techniques on Advances in cryptology, (New York, NY, USA),

pp. 389–404, Springer-Verlag New York, Inc., 1991.

[58] D. Sokolov, J. Murphy, A. Bystrov, and A. Member-Yakovlev, “Design and

analysis of dual-rail circuits for security applications,” IEEE Trans. Comput.,

vol. 54, no. 4, pp. 449–460, 2005.

[59] M. A. Kishinevskii and A. V. Yakovlev, Self-Timed Control of Concurrent Pro-

cesses: The Design of Aperiodic Logical Circuits in Computers and Discrete

Systems. Norwell, MA, USA: Kluwer Academic Publishers, 1990.

[60] I. David, R. Ginosar, and M. Yoeli, “An efficient implementation of boolean

functions as self-timed circuits,” IEEE Trans. Comput., vol. 41, no. 1, pp. 2–11,

1992.

[61] A. Kondratyev and K. Lwin, “Design of asynchronous circuits using synchronous

CAD tools,” IEEE Design and Test of Computers, vol. 19, no. 4, pp. 107–117,

2002.

[62] K. Fant and S. Brandt, “Null convention logic: A complete and consistent logic

for asynchronous digital circuit synthesis,” IEEE International Conference on

Application-Specific Systems, Architectures and Processors, vol. 0, p. 261, 1996.

[63] D. Sokolov, J. Murphy, A. Bystrov, and A. Yakovlev, “Improving the security of

dual-rail circuits,” in Proc. Workshop Cryptographic Hardware and Embedded

Systems (CHES), 2004.

[64] N.S.A., “SKIPJACK and KEA algorithm specifications,” tech. rep., May

1998.

[65] C. The White House, “Fact sheet: public encryption management,” pp. 420–

422, 1997.

128

[66] “Escrowed Encryption Standard (EES),” Tech. Rep. FIPS PUB 185, U.S.

Department of Commerce, February 1994.

[67] B. Kaliski, “A survey of encryption standards,” IEEE Micro, vol. 13, no. 6,

pp. 74–81, 1993.

[68] X. Yi, S. X. Cheng, X. H. You, and K. Y. Lam, “A method for obtaining cryp-

tographically strong 8x8 S-boxes,” in Proceedings of IEEE Global Telecommu-

nications Conference (GLOBECOM), vol. 2, pp. 689 – 693, Nov 1997.

[69] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1999.

[70] J. Daemen and V. Rijmen, “The block cipher Rijndael,” in CARDIS ’98: Pro-

ceedings of the The International Conference on Smart Card Research and Ap-

plications, (London, UK), pp. 277–284, Springer-Verlag, 2000.

[71] M. Dworkin, Recommendation for Block Cipher Modes of Operation. National

Institute of Standards and Technology, NIST special publication 800-38a ed.,

2001.

[72] Crossbow, MPR-MIB Users Manual, June 2007. Revision A.

[73] Crossbow, MTS/ MDA Sensor Board Users Manual, June 2007. Revision A.

[74] Xilinx, CoolRunner-II CPLD Family. Xilinx, v3.1 ed., September 2008.

[75] Digilent, X-Board Reference Manual, January 2007.

[76] Xilinx, ISE Design Suite 10.1 Release Notes and Installation Guide.

[77] ModelTech, ModelSim Users Manual, 6.3g ed., May 2008.

[78] TinyOS Online Tutorial. http://www.tinyos.net, Last accessed: 2009/03/05.

[79] NesC Online Tutorial. http://en.wikipedia.org/wiki/NesC, Last accessed:

2009/03/05.

[80] Blowfish Online. http://www.schneier.com/blowfish.html, Last accessed:

2009/08/04.

[81] VASG: VHDL Analysis and Standardization Group.

http://www.eda.org/vhdl-200x/, Last accessed: 2009/08/19.

129

http://www.tinyos.net
http://en.wikipedia.org/wiki/NesC
http://www.schneier.com/blowfish.html
http://www.eda.org/vhdl-200x/

[82] Digilent, Virtex-II Pro Development System.

http://www.digilentinc.com/Products/Detail.cfm?Prod=XUPV2P, Last ac-

cessed: 2009/08/19.

[83] Xilinx, Virtex-II Pro and Virtex-II Pro X FPGA User Guide, November 2007.

[84] Intel, Intel Desktop Board D945GCLF2, Technical Product Specification, De-

cember 2008.

[85] Xubuntu Online. http://www.xubuntu.com, Last accessed: 2009/05/15.

[86] Python Online. http://www.python.org, Last accessed: 2009/05/15.

[87] PySerial documentation. http://pyserial.sourceforge.net/, Last accessed:

2009/08/19.

[88] Socket: Low-level networking interface.

http://docs.python.org/library/socket.html, Last accessed: 2009/08/19.

[89] A. Hodjat and I. Verbauwhede, “A 21.54 Gbits/s fully pipelined AES processor

on FPGA,” in FCCM ’04: Proceedings of the 12th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines, (Washington, DC, USA),

pp. 308–309, IEEE Computer Society, 2004.

[90] Intel VTune Performance Analyzer.

http://software.intel.com/en-us/intel-vtune/, Last accessed: 2009/06/29.

[91] PowerTop. http://www.lesswatts.org/projects/powertop/, Last accessed:

2009/06/29.

[92] Intel, Intel Atom Processor 330 Systems Datasheet, February 2009. Revision

002.

130

http://www.digilentinc.com/Products/Detail.cfm?Prod=XUPV2P
http://www.xubuntu.com
http://www.python.org
http://pyserial.sourceforge.net/
http://docs.python.org/library/socket.html
http://software.intel.com/en-us/intel-vtune/
http://www.lesswatts.org/projects/powertop/

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter 1. Introduction
	Motivation
	Scientific contribution
	Remainder

	Chapter 2. Theoretical background
	Threats
	Denial of service attack
	Node compromise
	Attack on data aggregation
	Impersonation attack
	Side-channel analysis
	Other attacks

	Ciphers
	Block ciphers
	Stream ciphers
	Symmetric-key algorithms
	Asymmetric-key algorithms

	Dual-rail
	Single spacer dual-rail
	Dual spacer dual-rail

	Chapter 3. Cipher encryption schemes
	Skipjack
	Basic Structure
	G-permutation

	Blowfish
	Sub-keys
	Encryption
	Function F

	Advanced encryption standard
	Cipher
	Key expansion

	Chapter 4. Implementation
	Sensor node
	Sensor node architecture
	Sensor node implementation

	Base station
	Base station architecture
	Base station implementation

	Chapter 5. Performance
	Sensor node results
	Base station results

	Chapter 6. Conclusions
	Chapter 7. Future work
	Appendices
	Bibliography

