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1 INTRODUCTION 

The late epoch of the 20th century has viewed an enormous increase in electronic 

sensitive equipment due to the huge growth in communication, computer and automa-

tion industries. These new generations of electronic equipment are becoming progres-

sively sensitive to power quality disturbances. Any variation in the supply voltage 

magnitude or frequency may have detrimental effects on the equipment. Electric utili-

ties must assess the present value of the power before taking any quality improvement 

actions. Therefore, monitoring and detection of power quality disturbances has be-

come a significant issue. 

 The increased concern for power quality has resulted in significant ad-

vances in monitoring algorithms, techniques and equipment that can be used to char-

acterize disturbances and power quality variations. Analysis tools can present the 

power quality information as individual events (disturbance waveforms), trends, or 

statistical summaries. By comparing events with libraries of typical power quality 

variation characteristics and correlating with system events (e.g., capacitor switching), 

causes of the variations can be determined. In the same manner, the measured data 

should be correlated with impacts to help characterize the sensitivity of end use 

equipment to power quality variations. This will help identify equipment that requires 

power conditioning and provide specifications for the protection that can be devel-

oped based on the power quality variation characteristics.  

 The main purpose of this thesis is to find, present, test and evaluate 

three relatively new algorithms that are being used for power quality monitoring and 

classification. These are· firstly the “Adaline” which is a neural network structure that 

detects an anomaly in the signal of  the voltage/current of a Power System whenever 

it occurs, secondly a “Wavelet-Based PNN, Probabilistic Neural Network”, which is 

also a neural network structure that makes use of the Wavelet Transform, which not 

only detects a disturbance when it occurs but it also classifies it, and finally a “Wave-

let-Based ANFIS, Adaptive Neuro-Fuzzy Inference System” a fuzzy network struc-

ture that also uses the Wavelet Transform, and is also capable of power quality distur-

bance classification. The algorithms were implemented in the Matlab v6.5.1 platform 

and tested with data that have been acquired from the Power Supply Station in 

Katsampas at Heraklion, Crete. Those data were acquired via the Series 5500 Dual-



Node, a Power Quality Monitoring Device that was installed at the capacitors’ 13.8kV 

busbar of the facility. The results of the algorithms’ use were evaluated, compared, 

and some final conclusions came up, regarding their effectiveness and their flexibility.  

 This thesis is mainly referring to electrician engineers that are already 

dealing with Power Quality Disturbances and are in the pursuit of better methods, al-

gorithms and devices for monitoring in order to improve the security level of their de-

vices or facilities. However, because of the importance of Power Quality, in general, 

it was found crucial for the medium reader, with some basic knowledge of electricity, 

to be introduced to the concept of Power Quality and it’s monitoring. Therefore, in 

order for the average reader, as well, to fully comprehend where, how and why those 

algorithms are utilised, an introduction was made, regarding Power Quality including 

the instruments and the techniques used for its monitoring.  

 As a result the final structure of the thesis came up as follows. In Sec-

tion 2 a very brief overview of Power Systems is written as well as its association 

with the consumers, which is, if not unknown, at least misunderstood!  Section 3 in-

troduces Power Quality. It explains what Power Quality really is and describes and 

analyses the disturbances that occur in a Power System, which, by the way are the 

only factors that establish the Power Quality of a System. Section 3 also explains the 

cause of their occurrence, and helps to realise how a classification of those phenom-

ena can be made based on their features. In Section 4 the need for monitoring Power 

Quality is discussed by presenting the observed effects of the disturbances on the op-

eration of various types of equipment, as well as the tolerances of the equipment upon 

those phenomena. Section 5 presents by category, based on their field of use and 

specifications, briefly some of the Power Quality Monitoring Devices that are usually 

utilized. In this presentation, the device that was used for the acquisition of the data 

used on this thesis, from the Power Supply Station in Heraklion, the Series 5500 Du-

alNode and its software, Signature System, is highlighted. Section 6 presents a state of 

the art on the classification of power quality events. Initially, basic tools and tech-

niques that have been employed during the last few years are presented. Conse-

quently, there is a rather detailed introduction to the scientific fields, Neural Net-

works, Fuzzy Networks and Wavelet Transform, that the power quality classification 

techniques used in this thesis are taken from. Section 7 demonstrates the three algo-

rithms that were used in this thesis, for power quality monitoring and classification. 

Firstly, the algorithms were theoritically-mathematically presented, afterwards they 
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were implemented in the Matlab v6.5.1. platform, where they were simulated with 

laboratory created power quality disturbances, once again in Matlab v6.5.1. and fi-

nally they were tested with real disturbances, taken from the Power Supply Station, 

via the Series 5500 DualNode and its software, Signature System, as mentioned ear-

lier. In section 8 the conclusions are written and a comparison between the methods is 

made in order to highlight the advantages and the disadvantages of the algorithms. 

Section 9 discusses the future work that has to be done in order to get a better under-

standing of voltages and currents behavior under different event conditions, and a bet-

ter understanding of relations between voltage and currents in different voltage levels 

and its propagation in the network as well. Finally, section 10 presents the references 

of the thesis. 
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2 POWER SYSTEMS IN GENERAL 

The aim of the electric power system is to generate electrical energy and to de-

liver this energy to the end-user equipment at an acceptable voltage. The constraint 

that was traditionally mentioned is that the technical aim should be achieved for rea-

sonable costs. The optimal level of investment was to be obtained by means of a 

trade-off between reliability and costs. A recurring argument with industrial custom-

ers concerned the definition of reliability: should it include only long interruptions or 

short interruptions and even voltage dips as well. The term power quality came in use 

referring to the other characteristics of the supply voltage (i.e. other than long inter-

ruptions). But, immediately, the first confusion started as utilities included the distur-

bances generated by the customers in the term ‘power quality’. This difference in em-

phasis will be discussed in more detail below. The main complaint of domestic cus-

tomers concerned the costs which were perceived too high, especially where cross-

subsidising was used to keep prices low for industrial or agricultural customers. This 

classical model of the power system, as it can be found in many textbooks, is found in 

fig. (1).  

 
 

 

 

 

 

 

 

 

 

Figure 1. Classical Model Of The Power System. 

 

The customers are traditionally referred to as loads. Various developments 

have led to a different view at the power system. These developments are strongly 

interrelated, but the three main ones are: 

 The deregulation of the electricity industry makes that there is no longer one 

single system but a number of independent companies with customers. 
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 Electricity customers have become more aware of their rights and demand 

low-cost electricity of high reliability and quality, where the priorities are dif-

ferent for different (types of) customers. Customers are certainly no longer 

willing to accept their position as merely one parameter in a global optimisa-

tion. 

 Generation of electricity is shifting away from large power stations connected 

to the transmission system towards smaller units connected at lower voltage 

levels. Examples are combined-heat-and-power and renewable sources of en-

ergy like sun and wind. 

Because of this the power system can no longer be seen as one entity but as an 

electricity network with customers. This new model is shown in fig. (2).  

 
Figure 2 Modern Model Of The Power System 

Note that the physical structure of the power system/network has not changed, 

it is only the way of viewing it that has changed. In fig. (2) the electric power network 

connects some or many customers. Customers may generate or consume electrical 

energy, or even both albeit at different moments in time. Different customers have 

different demands on voltage magnitude, frequency, waveform, etc. Different cus-

tomers have different patterns of current variation, fluctuation and distortion, thus pol-

luting the voltage for other customers in different ways. The power network in fig. (2) 

could be a transmission network, a distribution network, an industrial network, or any 

other network owned by one single company. For a transmission network, the cus-

tomers are, e.g., generator stations, distribution networks, large industrial customers 

(who could be generating or consuming electricity at different times, based on the 

electricity price at that moment), and other transmission networks. For a distribution 

network, the customers are currently mainly end-users that only consume electricity, 

but also the transmission network and smaller generator stations are customers. Note 



that all customers are equal, even though some may be producing energy while others 

are consuming it. The aim of the network company is only to transport the energy, or 

in economic terms: to enable transactions between customers. The technical aim of 

the power network becomes one of allowing the transport of electrical energy between 

the different customers, guaranteeing an acceptable voltage and allowing the currents 

taken by the customers. Note that this same model also becomes attractive when con-

sidering the integration of renewable or other environmentally /friendly sources of en-

ergy into the power system. The power network is no longer the boundary condition 

that limits e.g. the amount of wind power that can be produced at a certain location. 

Instead the power network’s task becomes to enable the transport of the amount of 

wind power that is produced. With an ideal network each customer should perceive 

the electricity supply as an ideal voltage source with zero impedance, which means 

that whatever the current is, the voltage should be constant. As always, reality is not 

ideal. Power quality is all about this deviation between reality and ideal.  

Now that we have made a wide introduction into the term of Power Quality 

(PQ) as well as the reasons that engendered it let us take a closer, more scientific, look 

hereupon. 
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3 POWER QUALITY 

The term power quality refers to a wide variety of electromagnetic phenomena 

that characterize the voltage and the current at a given time and at a given location on 

the power system. The purpose of this clause is to present concise definitions of terms 

that convey the basic concepts of power quality and moreover power quality monitor-

ing. This is done by providing technical descriptions and examples of the principal 

electromagnetic phenomena causing power quality problems. Electromagnetic distur-

bances are caused by the increasing application of electronic equipment, of any size or 

function. Accompanying the increase in operation problems have been a variety of 

attempts to describe the phenomena. Unfortunately, different segments of the elec-

tronics community have utilized different terminologies to describe electromagnetic 

events. This clause expands the terminology that will be used in the power quality 

community to describe these common events and also offers explanations as to why 

commonly used terminology in other communities will not be used in power quality 

discussions.  

3.1 Electromagnetic Compatibility 

This document uses the electromagnetic compatibility approach to describing 

power quality phenomena. The electromagnetic compatibility approach has been ac-

cepted by the international community in IEC standards produced by IEC Technical 

Committee 77. Reference (4) provides an excellent overview of the electromagnetic 

compatibility concept and associated IEC documents. 

3.2 General Classification Of Phenomena 

The IEC classifies electromagnetic phenomena into several groups as shown 

in Table 1 (5). The IEC standard addresses the conducted electrical parameters shown 

in table 1. The terms high- and low-frequency are not defined in terms of a specific 

frequency range, but instead are intended to indicate the relative difference in princi-

pal frequency content of the phenomena listed in these categories. This practice also 

contains a few additional terms related to the IEC terminology. The term sag is used 

in the power quality community as a synonym to the IEC term dip. The category short 

duration variations is used to refer to voltage dips and short interruptions. The term 

swell is introduced as an inverse to sag (dip). The category long duration variation 
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has been added to deal with ANSI C84.1-1989 (6) limits. The category noise has been 

added to deal with broad-band conducted phenomena. The category waveform distor-

tion is used as a container category for the IEC harmonics, interharmonics, and dc in 

ac networks phenomena as well as an additional phenomenon from IEEE Std 519-

1992 (7) called notching. Table 2 shows the categorization of electromagnetic phe-

nomena used for the power quality community.  

Harmonics, interharmonics 

Signal systems (power line carrier) 

Voltage fluctuations 

Voltage dips and interruptions 

Voltage imbalance 

Power-frequency variations 

Induced low-frequency voltages 

 

  

  

Conducted low-frequency 

phenomena 

  

 
DC in ac networks 

Magnetic fields Radiated low-frequency phe-

nomena Electric fields 

Induced continuous wave voltages 

or currents 

Unidirectional transients 

Conducted high-frequency 

phenomena 

Oscillatory transients 

Magnetic fields 

Electric fields 

Electromagnetic fields 

Continuous waves 

Radiated high-frequency 

phenomena 

  

Transients 

Electrostatic discharge phe-

nomena 
─── 

Nuclear electromagnetic 

pulse 
─── 

Table 1. Principal Phenomena Causing Electromagnetic Disturbances As Classified By The IEC 

 

 



Categories 
Typical spectral 

content 

Typical du-

ration 

Typical voltage ma-

gnitude 

1.0 Transients    

   1.1 Impulsive    

      1.1.1 Nanosecond 5ns rise <50ns  

      1.1.2 Microsecond 1µs rise 50ns-1ms  

      1.1.3 Millisecond 0,1ms rise >1ms  

   1.2 Oscillatory    

      1.2.1 Low frequency <5kHz 0,3-50ms 0-4pu 

      1.2.2 Medium frequency 5-500kHz 20µs 0-8pu 

      1.2.3 High frequency 0,5-5MHz 5µs 0-4pu 

2.0 Short duration variations    

   2.1 Instantaneous    

      2.1.1 Sag  0,5-30 cycles 0,1-0,9pu 

      2.1.2 Swell  0,5-30 cycles 1,1-1,8pu 

   2.2 Momentary    

      2.2.1 Interruption  0,5cycles-3s <0,1pu 

      2.2.2 Sag  30cycles-3s 0,1-0,9pu 

      2.2.3 Swell  30cycles-3s 1,1-1,4pu 

   2.3 Temporary    

      2.3.1 Interruption  3s-1min <0,1pu 

      2.3.2 Sag  3s-1min 0,1-0,9pu 

      2.3.3 Swell  3s-1min 1,1-1,2pu 

3.0 Long duration variations    

   3.1 Interruption, sustained  >1min 0,0pu 

   3.2 Undervoltages  >1min 0,8-0,9pu 

   3.3 Overvoltages  >1min 1,1-1,2pu 

4.0 Voltage imbalance  steady state 0,5-2% 

5.0 Waveform distortion    

   5.1 DC offset  steady state 0-0,1% 

   5.2 Harmonics  steady state 0-20% 

   5.3 Interharmonics  steady state 0-2% 
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   5.4 Notching  steady state  

   5.5 Noise broad-band steady state 0-1% 

6.0 Voltage fluctuations <25Hz intermittent 0,1-7% 

7.0 Power frequency varia-

tions 
 <10sec  

Table 2. Categories And Typical Characteristics Of Power System Electromagnetic Phenomena 

 

The phenomena listed in table 1 can be described further by listing appropriate 

attributes. For steady-state phenomena, the following attributes can be used (8):  

 Amplitude 

 Frequency 

 Spectrum 

 Modulation 

 Source impedance 

 Notch depth 

 Notch area 

For non-steady state phenomena, other attributes may be required (8):  

 Rate of rise 

 Amplitude 

 Duration 

 Spectrum 

 Frequency 

 Rate of occurrence 

 Energy potential 

 Source impedance 

Table 1 provides information regarding typical spectral content, duration, and 

magnitude where appropriate for each category of electromagnetic phenomena (8), 

(9), (10). The categories of table 2, when used with the attributes mentioned above, 

provide a means to clearly describe an electromagnetic disturbance. The categories 

and their descriptions are important in order to be able to classify measurement results 

and to describe electromagnetic phenomena that can cause power quality problems. 

The remainder of this clause will discuss each category in detail. 



3.3 Detailed Descriptions Of Phenomena  

This paragraph provides more detailed descriptions for each of the power 

quality variation categories presented in Table 2. These descriptions provide some 

history regarding the terms currently in use for each category. Typical causes of elec-

tromagnetic phenomena in each category are introduced, and are expanded later on. 

One of the main reasons for developing the different categories of electromagnetic 

phenomena is that there are different ways to solve power quality problems depending 

on the particular variation that is of concern. The different solutions available are dis-

cussed for each category. There are also different requirements for characterizing the 

phenomena using measurements. It is important to be able to classify events and elec-

tro-magnetic phenomena for analysis purposes. The measurement requirements for 

each category of electro-magnetic phenomenon are discussed.  

3.3.1 Transients 

The term transient has been used in the analysis of power system variations for 

a long time. Its name immediately conjures up the notion of an event that is undesir-

able but momentary in nature. The IEEE Std 100-1992 definition of transient reflects 

this understanding. The primary definition uses the word rapid and talks of frequen-

cies up to 3 MHz when defining transient in the context of evaluating cable systems in 

substations. The notion of a damped oscillatory transient due to a RLC network is also 

mentioned. This is the type of phenomena that most power engineers think of when 

they hear the word transient.  

Other definitions in IEEE Std 100-1992 are broader in scope and simply state 

that a transient is “that part of the change in a variable that disappears during transi-

tion from one steady-state operating condition to another”. Unfortunately, this defini-

tion could be used to describe just about anything unusual that happens on the power 

system.  

Another word used in current IEEE standards that is synonymous with tran-

sient is surge. IEEE Std 100-1992 defines a surge as “a transient wave of current, po-

tential, or power in an electric circuit”. The IEEE C62 Collection (11) uses the terms 

surge, switching surge, and transient to describe the same types of phenomena. For 

the purposes of this document, surge will not be used to describe transient electro-

magnetic phenomena. Since IEEE Std 100-1992 uses the term transient to define 

surge, this limitation should not cause conflicts.  
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Broadly speaking, transients can be classified into two categories: impulsive 

and oscillatory. These terms reflect the waveshape of a current or voltage transient. 

3.3.1.1 Impulsive Transient 

An impulsive transient is a sudden, nonpower frequency change in the steady-

state condition of voltage, current, or both, that is unidirectional in polarity (primarily 

either positive or negative). Impulsive transients are normally characterized by their 

rise and decay times. These phenomena can also be described by their spectral con-

tent. For example, a 1.2/50 ms 2000 V impulsive transient rises to its peak value of 

2000 V in 1.2 ms, and then decays to half its peak value in 50 ms (11).  

The most common cause of impulsive transients is lightning. fig. (3) illustrates 

a typical current impulsive transient caused by lightning.  

Due to the high frequencies involved, impulsive transients are damped quickly 

by resistive circuit components and are not conducted far from their source. There can 

be significant differences in the transient characteristic from one location within a 

building to another. Impulsive transients can excite power system resonance circuits 

and produce the following type of disturbance: oscillatory transients. 

 
Figure 3. Lightning Stroke Current That Can Result In Impulsive Transients On The Power Sys-

tem 
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3.3.1.2 Oscillatory Transient 

An oscillatory transient consists of a voltage or current whose instantaneous 

value changes polarity rapidly. It is described by its spectral content (predominant 

frequency), duration, and magnitude. The spectral content subclasses defined in table 

2 are high, medium, and low frequency. The frequency ranges for these classifications 

are chosen to coincide with common types of power system oscillatory transient phe-

nomena. 

As with impulsive transients, oscillatory transients can be measured with or 

without the fundamental frequency component included. When characterizing the 

transient, it is important to indicate the magnitude with and without the fundamental 

component.  

Oscillatory transients with a primary frequency component greater than 500 

kHz and a typical duration measured in microseconds (or several cycles of the princi-

pal frequency) are considered high-frequency oscillatory transients. These transients 

are almost always due to some type of switching event. High-frequency oscillatory 

transients are often the result of a local system response to an impulsive transient. 

Power electronic devices produce oscillatory voltage transients as a result of 

commutation and RLC snubber circuits. The transients can be in the high kilohertz 

range, last a few cycles of their fundamental frequency, and have repetition rates of 

several times per 60 Hz cycle (depending on the pulse number of the device) and 

magnitudes of 0.1 pu (less the 60 Hz component). 

A transient with a primary frequency component between 5 and 500 kHz with 

duration measured in the tens of microseconds (or several cycles of the principal fre-

quency) is termed a medium-frequency transient. 

Back-to-back capacitor energization results in oscillatory transient currents in 

the tens of kilohertz. This phenomenon occurs when a capacitor bank is energized in 

close electrical proximity to a capacitor bank already in service. The energized bank 

sees the de-energized bank as a low impedance path (limited only by the inductance 

of the bus to which the banks are connected, typically small). Fig. (4) illustrates the 

resulting current transient due to back-to-back capacitor switching. Cable switching 

results in oscillatory voltage transients in the same frequency range. Medium-

frequency transients can also be the result of a system response to an impulsive tran-

sient.  
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Figure 4. Oscillatory Transient Caused By Back-To-Back Capacitor Switching 

 

A transient with a primary frequency component less than 5 kHz, and a dura-

tion from 0.3 to 50 ms, is considered a low-frequency transient.  

This category of phenomena is frequently encountered on subtransmission and 

distribution systems and is caused by many types of events, primarily capacitor bank 

energization. The resulting voltage waveshape is very familiar to power system engi-

neers and can be readily classified using the attributes discussed so far. Capacitor 

bank energization typically results in an oscillatory voltage transient with a primary 

frequency between 300 and 900 Hz. The transient has a peak magnitude that can ap-

proach 2.0 pu, but is typically 1.3-1.5 pu lasting between 0.5 and 3 cycles, depending 

on the system damping, see fig. (5) below. 

 
Figure 5. Low Frequency Oscillatory Transient Caused By Capacitor-Bank Energization 
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Oscillatory transients with principal frequencies less than 300 Hz can also be 

found on the distribution system. These are generally associated with ferroresonance 

and transformer energization, see fig. (6). Transients involving series capacitors could 

also fall into this category. They occur when the system resonance results in magnifi-

cation of low-frequency components in the transformer inrush current (second, third 

harmonic) or when unusual conditions result in ferroresonance. IEEE Std C62.41-

1991 (11) describes surge waveforms deemed to represent the environment in which 

electrical equipment and surge protective devices will be expected to operate. Refer-

ence (11) covers the origin of surge (transient) voltages, rate of occurrence and volt-

age levels in unprotected circuits, waveshapes of representative surge voltages, en-

ergy, and source impedance.  

 
Figure 6. Low-Frequency Oscillatory Transient Caused By Ferroresonance Of An Unloaded 

Transformer 
 

3.3.2 Short-Duration Variations 

This category encompasses the IEC category of voltage dips and short inter-

ruptions as well as the antithesis of dip or swell. Each type of variation can be desig-

nated as instantaneous, momentary, or temporary, depending on its duration as de-

fined in Table 2. 

Short-duration voltage variations are almost always caused by fault conditions, 

the energization of large loads that require high starting currents, or intermittent loose 

connections in power wiring. Depending on the fault location and the system condi-

tions, the fault can cause either temporary voltage rises (swells) or voltage drops 

(sags), or a complete loss of voltage (interruptions). The fault condition can be close 
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to or remote from the point of interest. In either case, the impact on the voltage during 

the actual fault condition is a short-duration variation. Changes in current which fall 

into the duration and magnitude categories are also included in short-duration varia-

tions. 

3.3.2.1 Interruption 

An interruption occurs when the supply voltage or load current decreases to 

less than 0.1 pu for a period of time not exceeding 1 min.  

Interruptions can be the result of power system faults, equipment failures, and 

control malfunctions. The interruptions are measured by their duration since the volt-

age magnitude is always less than 10% of nominal. The duration of an interruption 

due to a fault on the utility system is determined by utility protective devices and the 

particular event that is causing the fault. The duration of an interruption due to 

equipment malfunctions or loose connections can be irregular.  

Some interruptions may be preceded by a voltage sag when these interruptions 

are due to faults on the source system. The voltage sag occurs between the time a fault 

initiates and the protective device operates. On the faulted feeder, loads will experi-

ence a voltage sag followed immediately by an interruption. The duration of the inter-

ruption will depend on the reclosing capability of the protective device. Instantaneous 

reclosing generally will limit the interruption caused by a non-permanent fault to less 

than 30 cycles. Delayed reclosing of the protective device may cause a momentary or 

temporary interruption.  

Fig. (7) shows a momentary interruption during which voltage drops for about 

2.3 s. Note from the wave-shape plot of this event that the instantaneous voltage may 

not drop to zero immediately upon interruption of the source voltage. This residual 

voltage is due to the back-emf effect of induction motors on the interrupted circuit. 

 16



 
Figure 7. Momentary Interruption Due To A Fault And Subsequent Recloser Operation 

3.3.2.2 Sags (Dips) 

Terminology used to describe the magnitude of a voltage sag is often confus-

ing. The recommended usage is “a sag to 20%” which means that the line voltage is 

reduced down to 20% of the normal value, not reduced by 20%. Using the preposition 

“of” (as in “a sag of 20%” or implied in “a 20% sag”) is deprecated. This preference 

is consistent with IEC practice, and with most disturbance analyzers that also report 

remaining voltage. Just as an unspecified voltage designation is accepted to mean 

line-to-line potential, so an unspecified sag magnitude will refer to the remaining 

voltage. Where possible, the nominal or base voltage and the remaining voltage 

should be specified. 

Voltage sags are usually associated with system faults but can also be caused 

by switching of heavy loads or starting of large motors. Fig. (8) shows a typical volt-

age sag that can be associated with a single line-to-ground (SLG) fault. Also, a fault 

on a parallel feeder circuit will result in a voltage drop at the substation bus that af-

fects all of the other feeders until the fault is cleared. Typical fault clearing times 
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range from 3 to 30cycles, depending on the fault current magnitude and the type of 

overcurrent detection and interruption.  

 
Figure 8. Instantaneous Voltage Sag Caused By A SLG Fault 

 
Voltage sags can also be caused by large load changes or motor starting. An 

induction motor will draw six to ten times its full load current during starting. This 

lagging current causes a voltage drop across the impedance of the system. If the cur-

rent magnitude is large relative to the system available fault current, the resulting 

voltage sag can be significant. Fig. (9) illustrates the effect of a large motor starting.  
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Figure 9. Temporary Voltage Sag Caused By Motor Starting 

 
The term sag has been used in the power quality community for many years to 

describe a specific type of power quality disturbance: a short duration voltage de-

crease. Clearly, the notion is directly borrowed from the literal definition of the word 

sag. The IEC definition for this phenomenon is dip. The two terms are considered in-

terchangeable, with sag being preferred in the US power quality community. 

Previously, the duration of sag events has not been clearly defined. Typical 

sag duration defined in some publications ranges from 2 ms (about 1/8 of a cycle) to a 

couple of minutes. Undervoltages that last less than 1/2 cycle cannot be characterized 

effectively as a change in the rms value of the fundamental frequency value. There-

fore, these events are considered transients; see IEC 1000-2-1 (1990). Undervoltages 

that last longer than 1 min can typically be controlled by voltage regulation equipment 

and may be associated with a wide variety of causes other than system faults. There-

fore, these are classified as long duration variations in 2.3.3. 

Sag durations are subdivided here into three categories:  

 Instantaneous 

  Momentary and  

 Temporary 



Which coincide with the three categories of interruptions and swells. These durations 

are intended to correlate with typical protective device operation times as well as du-

ration divisions recommended by international technical organizations (9). 

3.3.2.3 Swells 

A swell is defined as an increase in rms voltage or current at the power fre-

quency for durations from 0.5 cycles to 1 min. Typical magnitudes are between 1.1 

and 1.8 pu. Swell magnitude is also is also described by its remaining voltage, in this 

case, always greater than 1.0. 

As with sags, swells are usually associated with system fault conditions, but 

they are much less common than voltage sags. A swell can occur due to a single line-

to-ground fault on the system resulting in a temporary voltage rise on the unfaulted 

phases. Swells can also be caused by switching off a large load or switching on a 

large capacitor bank. Fig. (10) illustrates a voltage swell caused by a SLG fault. 

 
Figure 10. Instantaneous Voltage Swell Caused By A SLG Fault 

 
Swells are characterized by their magnitude (rms value) and duration. The se-

verity of a voltage swell during a fault condition is a function of the fault location, 
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system impedance, and grounding. On an ungrounded system, the line-to-ground 

voltages on the ungrounded phases will be 1.73 pu during a line-to-ground fault con-

dition. Close to the substation on a grounded system, there will be no voltage rise on 

the unfaulted phases because the substation transformer is usually connected delta-

wye, providing a low impedance zero-sequence path for the fault current. 

In some publications, the term momentary overvoltage is used as a synonym 

for the term swell. A formal definition of swell in IEEE Std C62.41-1991 is “A mo-

mentary increase in the power-frequency voltage delivered by the mains, outside of 

the normal tolerances, with a duration of more than one cycle and less than a few sec-

onds (11)”. This definition is not preferred by the power quality community. 

3.3.3 Long Duration Variations 

 Long duration variations encompass rms deviations at power frequencies for 

longer than 1 min. The steady-state voltage tolerances expected on a power system are 

specified in (3). These magnitudes are reflected in Table 2. Long duration variations 

are considered to be present when the ANSI limits are exceeded for greater than 1 

min.  

Long duration variations can be either overvoltages or undervoltages, depend-

ing on the cause of the variation. Overvoltages and undervoltages generally are not 

the result of system faults. They are caused by load variations on the system and sys-

tem switching operations. These variations are characterized by plots of rms voltage 

versus time. 

3.3.3.1 Overvoltage 

Overvoltages can be the result of load switching (e.g., switching off a large 

load), or variations in the reactive compensation on the system (e.g., switching on a 

capacitor bank). Poor system voltage regulation capabilities or controls result in over-

voltages. Incorrect tap settings on transformers can also result in system overvoltages. 

3.3.3.2 Undervoltage 

Undervoltages are the result of the events that are the reverse of the events that 

cause overvoltages. A load switching on, or a capacitor bank switching off, can cause 

an undervoltage until voltage regulation equipment on the system can bring the volt-

age back to within tolerances. Overloaded circuits can result in under-voltages also. 
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The term brownout is sometimes used to describe sustained periods of low 

power-frequency voltage initiated as a specific dispatch strategy to reduce power de-

livery. The type of disturbance described by brownout is basically the same as that 

described by the term undervoltage defined here. Because there is no formal defini-

tion for the term brownout, and because the term is not as clear as the term undervolt-

age when trying to characterize a disturbance, the term brownout should be avoided in 

future power quality activities in order to avoid confusion.  

3.3.3.3 Sustained Interruptions 

The decrease to zero of the supply voltage for a period of time in excess of 1 

min is considered a sustained interruption. Voltage interruptions longer than 1 min are 

often permanent in nature and require manual intervention for restoration. Sustained 

interruptions are a specific power system phenomena and have no relation to the us-

age of the term outage. Outage, as defined in IEEE Std 100-1992, does not refer to a 

specific phenomenon, but rather to the state of a component in a system that has failed 

to function as expected. Also, use of the term interruption in the context of power 

quality monitoring has no relation to reliability or other continuity of service statistics. 

3.3.4 Voltage Imbalance 

Voltage imbalance (or unbalance) is defined as the ratio of the negative or 

zero sequence component to the positive sequence component. The negative or zero 

sequence voltages in a power system generally result from unbalanced loads causing 

negative or zero sequence currents to flow. Fig. (11) shows an example of a one-week 

trend of imbalance measured at one point on a residential feeder. 
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Figure 11. Imbalance Trend For A Residential Feeder 

 
Imbalance can be estimated as the maximum deviation from the average of the 

three-phase voltages or currents, divided by the average of the three-phase voltages or 

currents, expressed in percent. In equation form: 

max deviation from average voltagevoltage imbalance = 100  
average voltage

×  

For example, with phase-to-phase voltage readings of 230, 232, and 225, the 

average is 229. The maximum deviation from the average among the three readings is 

4. The percent imbalance is: 

4voltage imbalance = 100  1.7%
229

× =  

The primary source of voltage imbalance less than 2% is unbalanced single 

phase loads on a three-phase circuit. Voltage imbalance can also be the result of ca-

pacitor bank anomalies, such as a blown fuse on one phase of a three-phase bank. Se-

vere voltage imbalance (greater than 5%) can result from single-phasing conditions. 

3.3.5 Waveform Distortion 

Waveform distortion is a steady-state deviation from an ideal sine wave of 

power frequency principally characterized by the spectral content of the deviation. 

There are five primary types of waveform distortion as follows: 

a) DC offset 



b) Harmonics 

c) Interharmonics 

d) Notching 

e) Noise 

Each of these will be discussed separately. 

3.3.5.1 DC Offset 

The presence of a dc voltage or current in an ac power system is termed dc 

offset. This phenomenon can occur as the result of a geomagnetic disturbance or due 

to the effect of half-wave rectification. Incandescent light bulb life extenders, for ex-

ample, may consist of diodes that reduce the rms voltage supplied to the lightbulb by 

half-wave rectification. Direct current in alternating current networks can be detri-

mental due to an increase in transformer saturation, additional stressing of insulation, 

and other adverse effects. 

3.3.5.2 Harmonics 

Harmonics are sinusoidal voltages or currents having frequencies that are inte-

ger multiples of the frequency at which the supply system is designed to operate 

(termed the fundamental frequency; usually 50 Hz or 60 Hz), see IEC 1000-2-1 

(1990). Harmonics combine with the fundamental voltage, or current, and produce 

waveform distortion. Harmonic distortion exists due to the nonlinear characteristics of 

devices and loads on the power system.  

These devices can usually be modelled as current sources that inject harmonic 

currents into the power system. Voltage distortion results as these currents cause 

nonlinear voltage drops across the system impedance. Harmonic distortion is a grow-

ing concern for many customers and for the overall power system due to increasing 

application of power electronics equipment. 

Harmonic distortion levels can be characterized by the complete harmonic 

spectrum with magnitudes and phase angles of each individual harmonic component. 

It is also common to use a single quantity, the total harmonic distortion, as a measure 

of the magnitude of harmonic distortion. 

Harmonic currents result from the normal operation of nonlinear devices on 

the power system. Fig. (12) illustrates the waveform and harmonic spectrum for a 

typical adjustable speed drive input current. Current distortion levels can be character-
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ized by a total harmonic distortion, as described above, but this can often be mislead-

ing. For instance, many adjustable speed drives will exhibit high total harmonic dis-

tortion values for the input current when they are operating at very light loads. This is 

not a significant concern because the magnitude of harmonic current is low, even 

though its relative distortion is high.  

 
Figure 12. Current Waveform And Harmonic Spectrum For An ASD Input Current 

To handle this concern for characterizing harmonic currents in a consistent 

fashion, IEEE Std 519-1992 (7) defines another term, the total demand distortion. 

This term is the same as the total harmonic distortion except that the distortion is ex-

pressed as a percent of some rated load current rather than as a percent ofthe funda-

mental current magnitude. Guidelines for harmonic current and voltage distortion lev-

els on distribution and transmission circuits are provided in (7). 

3.3.5.3 Interharmonics 

Interharmonics can be found in networks of all voltage classes. They can ap-

pear as discrete frequencies or as a wide-band spectrum. The main sources of inter-

harmonic waveform distortion are static frequency converters, cyclo-converters, in-

duction motors, and arcing devices. Power-line carrier signals can also be considered 

as interharmonics. 

The effects of interharmonics are not well known, but have been shown to af-

fect power line carrier signaling, and induce visual flicker in display devices such as 

CRTs. IEC 1000-2-1 (1990) places background noise phenomenon in the interhar-

monic category. 
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3.3.5.4 Notching 

Notching is a periodic voltage disturbance caused by the normal operation of 

power electronics devices when current is commutated from one phase to another.  

Voltage notching represents a special case that falls between transients and 

harmonic distortion. Since notching occurs continuously (steady state), it can be char-

acterized through the harmonic spectrum of the affected voltage. However, the fre-

quency components associated with notching can be quite high and may not be read-

ily characterized with measurement equipment normally used for harmonic analysis. 

Three-phase converters that produce continuous dc current are the most impor-

tant cause of voltage notching, fig. (13). The notches occur when the current commu-

tates from one phase to another. During this period, there is a momentary short circuit 

between two phases. The severity of the notch at any point in the system is deter-

mined by the source inductance and the isolating inductance between the converter 

and the point being monitored. Notching is described in detail in IEEE Std 519-1992 

(7). 

 
Figure 13. Example Of Voltage Notching Caused By Converter Operation 

 

3.3.5.5 Noise 

Noise is unwanted electrical signals with broadband spectral content lower 

than 200 kHz superimposed upon the power system voltage or current in phase con-

ductors, or found on neutral conductors or signal lines. Noise in power systems can be 

caused by power electronic devices, control circuits, arcing equipment, loads with 

solid-state rectifiers, and switching power supplies. Noise problems are often exacer-
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bated by improper grounding. Basically, noise consists of any unwanted distortion of 

the power signal that cannot be classified as harmonic distortion or transients. 

The frequency range and magnitude level of noise depend on the source, 

which produces the noise and the system characteristics. A typical magnitude of noise 

is less than 1% of the voltage magnitude. Noise disturbs electronic devices such as 

microcomputer and programmable controllers. The problem can be mitigated by using 

filters, isolation transformers, and some line conditioners.  

3.3.6 Voltage Fluctuations 

Voltage fluctuations are systematic variations of the voltage envelope or a se-

ries of random voltage changes, the magnitude of which does not normally exceed the 

voltage ranges specified by (3) of 0.95 - 1.05 pu. 

IEC 555-3, which has been revised as IEC 1000-3-3 (1994) (12) defines vari-

ous types of voltage fluctuations. The reader is referred to this document for a detailed 

breakdown of these types. The remainder of this discussion on voltage fluctuations 

will concentrate on the IEC 1000-3-3 (1994) Type (d) voltage fluctuations. This type 

is characterized as a series of random or continuous voltage fluctuations. 

Any load that has significant current variations, especially in the reactive 

component, can cause voltage fluctuations. Loads that exhibit continuous, rapid varia-

tions in load current magnitude can cause voltage variations erroneously referred to as 

flicker. The term flicker is derived from the impact of the voltage fluctuation on light-

ing intensity. Voltage fluctuation is the response of the power system to the varying 

load and light flicker is the response of the lighting system as observed by the human 

eye. The power system, the lighting system, and the human response are all variables. 

Even though there is a clear distinction between these terms -cause and effect- they 

are often confused to the point that the term “voltage flicker” is used in some docu-

ments. Such incorrect usage should be avoided. 

Arc furnaces are the most common cause of voltage fluctuations on the trans-

mission and distribution system. Voltage fluctuations are defined by their rms magni-

tude expressed as a percent of the fundamental. Lighting flicker is measured with re-

spect to the sensitivity of the human eye. An example of a voltage waveform that pro-

duces flicker is shown in fig. (14). 
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Figure 14. Example Of Voltage Fluctuations Caused By Arc Furnace Operation 

 
Voltage fluctuations generally appear as a modulation of the fundamental fre-

quency (similar to amplitude modulation of an am radio signal). Therefore, it is easi-

est to define a magnitude for the voltage fluctuation as the rms magnitude of the 

modulation signal. This can be obtained by demodulating the waveform to remove the 

fundamental frequency and then measuring the magnitude of the modulation compo-

nents. Typically, magnitudes as low as 0.5% can result in perceptible light flicker if 

the frequencies are in the range of 6-8 Hz. 

3.3.7 Power Frequency Variations 

The power system frequency is directly related to the rotational speed of the 

generators on the system. At any instant, the frequency depends on the balance be-

tween the load and the capacity of the available generation. When this dynamic bal-

ance changes, small changes in frequency occur. The size of the frequency shift and 

its duration depends on the load characteristics and the response of the generation sys-

tem to load changes. 

Frequency variations that go outside of accepted limits for normal steady-state 

operation of the power system are normally caused by faults on the bulk power trans-

mission system, a large block of load being disconnected, or a large source of genera-

tion going off-line.  

Frequency variations that affect the operation of rotating machinery, or proc-

esses that derive their timing from the power frequency (clocks), are rare on modern 

interconnected power systems. Frequency variations of consequence are much more 
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likely to occur when such equipment is powered by a generator isolated from the util-

ity system. In such cases, governor response to abrupt load changes may not be ade-

quate to regulate within the narrow bandwidth required by frequency sensitive equip-

ment. 
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4 MONITORING OBJECTIVES 

Power quality monitoring is necessary to characterize electromagnetic phe-

nomena at a particular location on an electric power circuit. In some cases, the objec-

tive of the monitoring is to diagnose incompatibilities between the electric power 

source and the load. In others, it is to evaluate the electrical environment at a particu-

lar location to refine modelling techniques or to develop a power quality baseline. In 

still others, monitoring may be used to predict future performance of load equipment 

or power quality mitigating devices. In any event, the most important task in any 

monitoring project is to define clearly the objectives of monitoring. 

The objectives of monitoring for a particular project will determine the choice 

of monitoring equipment, the method of collecting data, the triggering thresholds 

needed, the data analysis technique to employ, and the overall level of effort required 

of the project. The objective may be as simple as verifying steady-state voltage regu-

lation at a service entrance, or may be as complex as analyzing the harmonic current 

flows within a distribution network. The resulting data need only meet the objectives 

of the monitoring task in order for the monitoring to be successful. 

The procedure for defining monitoring objectives differs by the type of study. 

For diagnostic monitoring to solve shutdown problems with sensitive equipment, the 

objective may be to capture out-of-tolerance events of certain types. Evaluative or 

predictive monitoring may require collection of several voltage and current parame-

ters in order to characterize the existing level of power quality. 

Measurement of electromagnetic phenomena includes both time and frequency 

domain conducted parameters, which may take the form of overvoltages and under-

voltages, interruptions, sags and swells, transients, phase imbalance, frequency aber-

rations, and harmonic distortion. Non-conducted environmental factors can also have 

an effect on load equipment, although these types of disturbances are not considered 

in this document. Such factors include temperature, humidity, electromagnetic inter-

ference (EMI), and radio frequency interference (RFI). 

4.1 Need For Monitoring Power Quality 

There are several important reasons to monitor power quality. The primary 

reason underpinning all others is economic, particularly if critical process loads are 

being adversely affected by electromagnetic phenomena. Effects on equipment and 
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process operations can include misoperation, damage, process disruption, and other 

such anomalies. Such disruptions are costly since a profit-based operation is inter-

rupted unexpectedly and must be restored to continue production. In addition, equip-

ment damage and subsequent repair cost both money and time. Product damage can 

also result from electromagnetic phenomena requiring that the damaged product either 

be recycled or discarded, both of which are economic issues. 

In addition to resolving equipment disruptions, a database of equipment toler-

ances and sensitivity can be developed from monitored data. Such a database can pro-

vide a basis for developing equipment compatibility specifications and guidelines for 

future equipment enhancements. In addition, a database of the causes for recorded dis-

turbances can be used to make system improvements. Finally, equipment compatibil-

ity problems can create safety hazards resulting from equipment misoperation or fail-

ure. 

Problems related to equipment misoperation can only be assessed if customer 

disturbance reports are kept. These logs describe the event inside the facility, the type 

of equipment that was affected, how it was affected, the weather conditions, and the 

losses incurred.  

4.2 Equipment Tolerances And Effects Of Disturbances On Equipment 

The tolerance of various equipment needs to be considered in power quality 

monitoring. A specific type of equipment, such as an ASD (Adjustable Speed Drive), 

may be sensitive to an overvoltage or undervoltage condition, for example, while 

there may also be a significant variation to the same phenomena between ASDs built 

by other manufacturers. Power quality monitoring should attempt to characterize in-

dividual process equipment by matching monitoring results with reported equipment 

problems. This characterization of individual loads will show which equipment needs 

protection, and the level of protection required. 

4.3 Equipment Types 

Although there may be a wide variety in the response of specific equipment 

types manufactured by different companies, there may be some similarity in the re-

sponse of certain types of equipment to specific disturbance parameters. In any case, 

it is useful to consider certain specific equipment types or groupings in terms of their 

immunity to power quality disturbances.  
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4.4 Effect On Equipment By Phenomena Type 

Clause 2.3 defines seven major categories of electromagnetic phenomena. The 

following subclauses describe the observed effects of these phenomena on the opera-

tion of various types of equipment. 

4.4.1 Transients 

Transient voltages caused by lightning or switching operations can result in 

degradation or immediate dielectric failure in all classes of equipment. High magni-

tude and fast rise time contribute to insulation breakdown in electrical equipment like 

rotating machinery, transformers, capacitors, cables, CTs, PTs, and switchgear. Re-

peated lower magnitude application of transients to these equipment type cause slow 

degradation and eventual insulation failure, decreasing equipment mean time between 

failure (MTBF). In electronic equipment, power supply component failures can result 

from a single transient of relatively modest magnitude. Transients can also cause nui-

sance tripping of adjustable speed drives due to the dc link overvoltage protection cir-

cuitry. 

4.4.2 Short Duration Variations  

The most prevalent problem associated with interruptions, sags, and swells is 

equipment shutdown. In many industries with critical process loads, even instantane-

ous short duration phenomena can cause process shut-downs requiring hours to re-

start. In these facilities, the effect on the process is the same for a short duration varia-

tion as for long duration phenomena.  

Monitoring is important because it is often difficult to determine from the ob-

servable effects on customer equipment which electromagnetic phenomena caused the 

disruption. Further, solution alternatives are much different if the equipment is being 

affected by sags, for instance, rather than by interruptions. 

4.4.2.1 Interruptions 

Even instantaneous interruptions may affect electronic and lighting equipment 

causing misoperation or shut-down. Electronic equipment includes power and elec-

tronic controllers, computers, and the electronic controls for rotating machinery. Mo-

mentary and temporary interruptions will almost always cause equipment to stop op-
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erating, and may cause drop-out of induction motor contactors. In some cases, inter-

ruptions may damage electronic soft-start equipment. 

4.4.2.2 Sags 

Short duration sags, in particular, cause numerous process disruptions. Often, 

the sag is sensed by electronic process controllers equipped with fault-detection cir-

cuitry, which initiates shutdown of other, less-sensitive loads. A common solution to 

this problem is to serve the electronic controller with a constant-voltage transformer, 

or other mitigating device, to provide adequate voltage to the controller during a sag. 

The application challenge is to maintain the electronic controller during sags that will 

not damage process equipment protected by the fault circuitry, while simultaneously 

reducing nuisance shutdowns. 

Electronic devices with battery backup should be unaffected by short duration 

reductions in voltage. Equipment such as transformers, cable, bus, switchgear, CTs 

and PTs should not incur damage or malfunction due to short duration sags. A slight 

speed change of induction machinery and a slight reduction in output from a capacitor 

bank can occur during a sag. The visible light output of some lighting devices may be 

reduced briefly during a sag. 

4.4.2.3 Swells 

An increase in voltage applied to equipment above its nominal rating may 

cause failure of the components depending upon the frequency of occurrence. Elec-

tronic devices, including adjustable speed drives, computers, and electronic control-

lers, may show immediate failure modes during these conditions. However, trans-

formers, cable, bus, switchgear, CTs, PTs, and rotating machinery may suffer reduced 

equipment life overtime. A temporary increase in voltage on some protective relays 

may result in unwanted operations while others will not be affected. Frequent voltage 

swells on a capacitor bank can cause the individual cans to bulge while output is in-

creased from the bank. The visible light output from some lighting devices may be 

increased during a temporary swell. Clamping type surge protective devices (e.g., 

varistors or silicon avalanche diodes) may be destroyed by swells exceeding their 

MCOV (Maximum Continuous Operating Voltage) rating. 
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4.4.3 Long Duration Variations  

Variations in supply voltage lasting longer than 1 min can cause equipment 

problems. Overvoltage and undervoltage problems are less likely to occur on utility 

feeders, as most utilities strive to maintain ±5% voltage regulation. Overvoltage and 

undervoltage problems can occur, however, due to overloaded feeders, incorrect tap 

settings on transformers, blown fuses on capacitor banks, and capacitor banks in ser-

vice during light load conditions. Sustained interruptions can result from a variety of 

causes, including tripped breakers, blown fuses, utility feeder lockouts, and failed cir-

cuit components. 

4.4.3.1 Sustained Interruptions 

The effect of a sustained interruption is equipment shutdown, except for those 

loads protected by UPS systems, or other forms of energy storage devices.  

4.4.3.2 Undervoltages 

Undervoltages in excess of 1 min can also cause equipment to malfunction. 

Motor controllers can drop out during undervoltage conditions. The dropout voltage 

of motor controllers is typically 70-80% of nominal voltage. Long duration undervolt-

ages cause an increased heating loss in induction motors due to increased motor cur-

rent. Speed changes are possible for induction machinery during undervoltage condi-

tions. Electronic devices such as computers and electronic controllers may stop oper-

ating during this condition. Undervoltage conditions on capacitor banks result in a 

reduction of output of the bank, since var output is proportional to the square of the 

applied voltage. Generally, undervoltage conditions on transformers, cable, bus, 

switchgear, CTs, PTs, metering devices, and transducers do not cause problems for 

the equipment. The visible light output from some lighting devices may be reduced 

during undervoltage conditions. 

4.4.3.3 Overvoltages 

Overvoltages may cause equipment failure. Electronic devices may experience 

immediate failure during the overvoltage conditions; however, transformers, cable, 

bus, switchgear, CTs, PTs, and rotating machinery do not generally show immediate 

failure. Sustained overvoltage on transformers, cable, bus, switchgear, CTs, PTs and 

rotating machinery can result in loss of equipment life. An overvoltage condition on 
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some protective relays may result in unwanted operations while others will not be af-

fected. A sign of frequent overvoltage conditions on a capacitor bank is the bulge of 

individual cans. The var output of a capacitor will increase with the square of the 

voltage during an overvoltage condition. The visible light output from some lighting 

devices may be increased during overvoltage conditions. 

4.4.4 Voltage Imbalance 

In general, utility supply voltage is maintained at a relatively low level of 

phase imbalance since even a low level of imbalance can cause a significant power 

supply ripple and heating effects on the generation, transmission, and distribution sys-

tem equipment. Voltage imbalance more commonly emerges in individual customer 

loads due to phase load imbalances, especially where large, single-phase power loads 

are used, such as single-phase arc furnaces. In these cases, overheating of customer 

motors and transformers can readily occur if the imbalance is not corrected. Phase 

current imbalance to three-phase induction motors varies almost as the cube of the 

voltage imbalance applied to the motor terminals. The effects on other types of 

equipment are much less pronounced, although significant imbalance can cause load-

ing problems on current-carrying equipment such as bus ducts. Desirable levels of 

imbalance are less than 1% at all voltage levels to reduce possible heating effects to 

low levels.  

Utility supply voltages are typically maintained at less than 1%, although 2% 

is not uncommon. Voltage imbalance of greater than 2% should be reduced, where 

possible, by balancing single-phase loads as phase current imbalance is usually the 

cause. Voltage imbalance greater than 2% may indicate a blown fuse on one phase of 

a three-phase capacitor bank. Voltage imbalance greater than 5% can be caused by 

single-phasing conditions, during which one phase of a three-phase circuit is missing 

or de-energized. Phase monitors are often required to protect three-phase motors from 

the adverse affects of single phasing. 

4.4.5 Waveform Distortion 

Harmonic current injection from customer loads into the utility supply system 

can cause harmonic voltage distortion to appear on the utility system supply voltage. 

This harmonic current and voltage distortion can cause overheating of rotating 

equipment, transformers, and current-carrying conductors, premature failure or opera-
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tion of protective devices (such as fuses), harmonic resonance conditions on the cus-

tomer’s electric power system, which can further deteriorate electrical system opera-

tion, and metering inaccuracies. Harmonic voltage distortion on a utility system can 

cause the same problems to a customer’s equipment and can cause overheating of util-

ity transformers, power-carrying conductors, and other power equipment. Typical 

harmonic current limits for customers and harmonic voltage limits for utility supply 

voltage that customers and utilities in general should attempt to operate within in or-

der to minimize the effects of harmonic distortion on the supply and end-user systems 

is outlined in (7).  

4.4.6 Voltage Fluctuations 

Fluctuations in the supply voltage are most often manifested in nuisance varia-

tions in light output from incandescent and discharge lighting sources. A sudden volt-

age decrease of less than 1/2% can cause a noticeable reduction in light output of an 

incandescent lamp and a less noticeable reduction in light output of gaseous discharge 

lighting equipment. Voltage fluctuations less than 7% in magnitude have little effect 

on other types of customer loads (13). 

4.4.7 Power-Frequency Variations 

In general, utilities maintain very close control of the power system frequency. 

Slight variations in frequency on an electric system can cause severe damage to gen-

erator and turbine shafts due to the subsequent large torques developed. In addition, 

cascading system separations can result with even slight deviations infrequency since 

electric systems are closely connected and operate in synchronism. Frequency varia-

tions are more common on customer-owned generation equipment systems. Generator 

over-speed can result in a frequency increase on small systems operating independent 

of utility sources.  

Frequency synchronization errors can sometimes occur on a customer feeder 

that serves large rectifier loads. These loads can cause voltage notching severe enough 

to register extra zero crossing events on electronic loads that count zero crossings of 

the ac voltage to obtain frequency. While these events are recorded as frequency er-

rors by electronic controllers, the fundamental frequency has not changed. 
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5 MEASUREMENT INSTRUMENTS 

Instruments used to monitor electromagnetic phenomena can be as simple as 

an analog voltmeter to an instrument as sophisticated as a spectrum analyzer. Select-

ing and using the correct type of monitor requires the user to understand the capabili-

ties and limitations of the instrument, its responses to power system variations, and 

the specific objectives of the analysis. This clause will focus on the capabilities and 

limitations of various monitoring equipment. 

Instrument features required are dependent on the monitoring location and ob-

jectives. If assessing power quality at the service entrance, for example, the emphasis 

may be only on long-term steady-state conditions and utility-transmitted anomalies. 

The level of detail required – rms voltage stripcharts or high-speed waveform         

captures – is indicated by the type of phenomena likely to be causing problems.  

As can anyone understand there is a very wide range of options regarding the 

final choice of the proper equipment that can satisfy one’s needs to monitor his facil-

ity’s power quality. It is not the purpose of this paper to numerate all the available in-

struments regarding the monitoring of power quality, however a small review, includ-

ing some examples, is useful in order for the reader to acquire a general idea. There-

fore some pictures and specifications of the most representative equipment have been 

gathered and are being presented later on.  

Basically there are three main categories of power quality monitoring equip-

ment: 

 handheld devices 

 portable devices and  

 fixed systems 

All the instruments presented below are manufactured from the same com-

pany, Dranetz-BMI. Of course this has no significance rather than to preserve a conti-

nuity among the instruments. More information regarding power quality monitoring 

equipment from other worthy manufacturing companies is available (27-45). 
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5.1 Handheld Devices 

5.1.1 Analyst 2060 

This clamp-on power quality and harmonics meter from Dranetz-BMI and 

LEM combines the features of a power meter, scope and recorder and moreover has a 

very good shielding that makes it suitable for use in areas with noisy, fast-switching 

power electronics (22). 

 
Figure 15. Analyst 2060 

Specifications for the Analyst 2060 

Voltage Measurements • 600V AC RMS or DC between input terminals. 

Current Measurements 
• 600V AC RMS or DC between uninsulated con-

ductor and ground 

Range 

• Voltage: 4V, 40V, 400V, 750V 

• Current: 40A, 400A, 2000A 

• Watts: 4kW, 40kW, 400kW, 1200kW 

• VA: 4kVA, 40kVA, 400kVA, 1200kVA 

• VAR: 4kVAR, 40kVAR, 400kVAR, 850kVAR 

• PF: 0.3 cap to 0.3 ind 

• kWHr: 4, 40, 400, 4000, 40,000 

Environment 
• 0 - 50C (operating) 

• -20 - 60C (storage) 

Power 
• 6 x AA Alkaline MN1500, LR6 

• Typical 24 Hr operation 

Certifications       ISO 9001 



 39

5.1.2 Analyst Q70 

The single phase Analyst Q70 power quality analyzer from Dranetz-BMI and 

LEM comes equipped with Dran-View software for enhanced data presentation and 

analysis. The Analyst Q70 combines the functionality of an EN50160-compliant 

power quality meter, harmonic spectrum analyzer, oscilloscope and data logger in a 

single handheld instrument (23). 

 
Figure 16. Analyst Q70 

 

Specifications for the Analyst Q70 

Voltage Measurements 
•  600V AC RMS or DC between live terminals, or live 

and ground. 

Current Measurements •  600V AC RMS or DC between live terminals 

Range 

•  Current: 30A, 300A, 3000A 

•  Voltage: 115/230/480 

•  Watts: 3.4kW, 1,440kW 

•  VA: 3.4kVA,1440kA 

•  VAR: 3.4kVAR,1440kAR 

•  PF: 0.3 cap to 0.3ind 

•  WHr: 0 to 10TWHr 

Environment 
•  0C to 50C (operating) 

•  -20C to 60C (storage) 

Certifications ISO9001 
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5.1.3 PowerXplorer PX5-400 

The PowerXplorer integrates the most advanced feature set available in a 

power monitoring instrument, with an easy-to-navigate, color graphical user interface. 

With high-speed sampling and data capture (1 microsecond/channel), this 8-channel 

workhorse simultaneously captures and characterizes thousands of parameters, using a 

range of standard and customizable operating modes. The unique measurement capa-

bilities of the PowerXplorer include capture of low-medium-high frequency transients 

through peak, waveshape, rms duration and adaptive high-speed sampling, as well as 

power measurements to clearly characterize non-sinusoidal and unbalanced systems 

(21). 

 
Figure 17. PowerXplorer PX5-400 

 
Specifications for the PowerXplorer PX5 

Measured Parameters 

• (4) differential inputs, 1-600 Vrms, AC/DC, 0.1% 

rdg, 256 samples/cycle, 16 bit ADC  

• (4) inputs with CTs 0.1-6000 Arms CT-dependent, 

AC/DC, 0.1%rdg + CTs, 256 samples/cycle, 16 bit 

ADC  

• 1 MHz High Speed Sampling, 14 bit ADC, 1%FS  

• Frequency Range, 10m Hz resolution, 45-65 Hz or 

380-420 Hz  

• Phase Lock Loop - Generator tracking  

• Phase Lock Loop - Standard PQ mode 

Power Quality Triggers 

• Cycle-by-cycle analysis  

• 256 samples/cycle; 1/2 cycle RMS steps (1)  

• L-L, L-N, N-G RMS Variations: 
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Sags/swells/interruptions)  

• RMS Recordings V&I (32 pre-fault, 10K post-fault 

cycles)  

• Waveshape Recordings (2/6/2 cycles)  

• Low and Medium Frequent Transients - V&I  

• High Frequency Transients - V&I, 3% FS trigger (1)  

• Harmonics Summary Parameters  

• Cross trigger V & I channels  

• RMS Event Characterization (IEEE or IEC)  

• Transient Event Characterization (1)  

Distortion/Power/Energy 

• W, VA, VAR, TPF, DPF, Demand, Energy, etc.  

• IEEE 1459 Parameters of distorted and unbalanced  

• Harmonics/Interharmonics per IEC 1000-4-7  

• THD/Harmonic Spectrum (V,I,W) to 63rd  

• TID /Interharmonic Spectrum (V,I) to 63rd  

• Flicker per IEC 1000-4-15 (Pst,Plt,Sliding Plt)  

• Crest Factor, K Factor, Transformer Derating Factor, 

Telephone Interference Factor  

• Unbalance (max. rms deviation) & sequencing com-

ponents  

• 5 User Spec Harmonics or Signaling Frequency  

• Vector/Arithmetic/Coincident Parameters  

General Specifications 

• Size (HxWxD): 12" x 2.5" x 8" (30cm x 6.4cm x 20.3 

cm)  

• Weight: 4.2 pounds (1.9 kg)  

• Operating Temperature: 0 -50 (32 to 122 )  

• Storage Temperature: -20 to 55 (4 to 131 F)  

• Humidity: 10 to 90% non-condensing  

• System Time Clock-Crystal controlled-1 second 

resolution  

• Charger /Battery Eliminator: 90-264 VAC 47-63 Hz  

• Display: LCD color touch screen  
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• Memory options (must have one): 32M-128M re-

movable compact flashcard  

5.1.4 PowerGuide 4400 

The PowerGuide 4400 is equipped with 8 independent channels. Automated 

setups provide instant detection of circuits and configurations, ensuring that the in-

strument is ready to successfully collect data. Users can select the length and mode of 

data collection, including troubleshooting, data logging, power quality surveys, en-

ergy and load balancing (26).  

 

 
Figure 18. PowerGuide 4400 

 
Specifications for the PowerGuide 4400 

Measured Parameters 

• (4) differential inputs, 1-600V rms, 

AC/DC, 0.1% rdg , 256 samples/cycle, 

16bit ADC 

• (4) inputs with CTs 0.1-3000A rms, 

AC/DC, 256s/c, 0.1% rdg + CTs, 16 bit 

ADC 

• Frequency range, 10mHx resolution, 45-65 

Hz 

• Phase Lock Loop - Standard PQ mode 

Monitoring/Compliance Modes 

• IEEE 1159 

• IEC 61000-4-30 

• EN50160 
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• Current Inrush / Energization 

• Voltage Fault recording 

• Quality of Supply (EN50160 or annuncia-

tor) 

• Long Term Monitoring 

• Continuous Data Logging w/min/max/avg 

Power Quality Triggers 

• Cycle-by-cycle analysis 

• 256 samples/cycle; 1/2 cycle RMS steps 

• L-L, L-N, N-G RMS Variations: 

Sags/swells/interruptions) 

• RMS Recordings V& I (x/x/x cycles) 

• Waveform Recordings (2/6/2 cycles) 

• Low and Medium Freq Transients - V & I 

• Harmonics Summary Parameters 

• Cross trigger V & I channels 

• RMS Event Characterization (IEEE or 

IEC) 

Distortion/Power/Energy 

• W, VA, VAR, TPF, DPF, Demand, Energy 

• Harmonics/Interharmonics per IEC 1000-

4-7 

• THD/Harmonic Spectrum (V,I,W) to 63rd 

• TID/Interharm. Spectrum (V,I) to 63rd 

• Flicker per IEC 1000-4-15 (Pst,Plt,Sliding 

Plt) 

• CF, KF, TDF, TIF 

• Unbalance (rms dev. & sequencing com-

ponents) 

General Specifications 

• Size (HxWxD): 12" x 2.5" x 8" (30cm x 

6.4cm x 20.3 cm) 

• Weight: 3.8 pounds(1.8 kg) 
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• Operating Temperature: 0 -50 (32 to 122 ) 

• Storage Temperature: -20 to 55 (4 to 131 

F) 

• Humidity: 10 to 90% non-condensing 

• System Time Clock: Crysal controlled, 1 

second resolution 

• Charger /Battery Eliminator: 90-264 VAC 

47-63 Hz 

• Display: LCD color touch screen 

• Memory options (must have one): 32M-

128M removable compact flashcard 

5.1.5 Power Platform PP-4300 

The Power Platform PP-4300 has four differential voltage channels and four 

independent current channels, measures, analyzes and records power quality, harmon-

ics and energy data simultaneously and continuously. Unique to the PP4300 are inter-

changeable TASKCards that expand the capabilities of the instrument within the same 

mainframe. TASKCards can transform the PP4300 from a single-phase troubleshoot-

ing tool into a full three-phase instrument for advanced power quality management or 

specific analysis such as inrush or fault recording (25).  

 
Figure 19. Power Platform PP-4300 

 
Specifications for the Power Platform PP-4300 

Voltage Measure-

ments 

• 4 fully differentiated channels 

• 100-600Vrms; user selected 0.5-20Vrms on one channel 

• Accuracy: ±1% reading ± 0.05% full scale 
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Voltage Transients 

• 50-1000Vpk; user selected 

• 1-30Vpk on one channel 

• 1 microsecond minimum duration 

• Accuracy: ±10% reading ± 1% full scale (requires Task-

Card PQLite) 

Current Measure-

ment 

• 4 fully independent current channels 

• 10 - 200% of full-scale current probe rating 

• Accuracy: ±1% reading ±0.05% full scale 

• (at fundamental, plus current probe accuracy) 

Current Transients 

• 10-300% CT full scale except Chan D 2-200% CT full 

scale 

• 1 microsecond minimum duration 

• Accuracy: ±10% reading ±1% full scale plus probe 

• NOTE: Requires TASKCard PQLite H-T, PQLite H-T-

M or H-T-E-M 

Frequency 

• Fundamental range 35 - 60 Hz 

(For frequencies outside the 50-60Hz range, contact the 

factory before ordering) 

• Accuracy ±0.2% of reading 

Update Rates 
• All parameters updated once per second 

(Harmonic-based parameters updated every 5 seconds) 

Environment 

• 41°F to 113°F 

• +5°C to +45°C 

• Humidity 10% - 90% non-condensing 

Battery 

• 2 hours operation 

• 3 hours full recharge (continuous operation from battery 

eliminator) 

Certifications CE, FCC, ISO-9001 



5.2 Portable Devices 

5.2.1 658 Power Quality Analyzer 

The 658 can be used to monitor power disturbances and harmonics, as well as 

other sources of disruption like temperature, humidity, and radiated RF noise, making 

it the ideal tool for field service and site surveys (29).  

 
Figure 20. 658 Power Quality Analyzer 

 
Specifications for the 658 Power Quality Analyzer 

Voltage & Current Meas-

urement 

4 fully differential channels  

One AC/DC voltage channel and 3 voltage/current 

channels  

0-600Vrms; 0-3000A, depending on current probe 

selected  

Accuracy: ±1% reading ±0.2% full scale 

Impulse Measurement 

2.4 to 6144 Vpeak  

2.4 to 6000 Amps pk  

1 microsecond minimum duration 

Sampling Rate 
7.2kHz/channel for RMS 

1.85MHz/channel for impulse 

Frequency 
Fundamental range 45 - 65 Hz 

Optional Model 658-400 45-65Hz or 310-445 Hz  

Optional Inputs 

8 independent differential channels 

Configurable as voltage or current 

0-10Vdc, 0-20mA DC 

Sampled at 12.5 Hz  

Battery Standard, 5 minutes operation typical 

PC Software Dran-View 
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Certifications 

UL, CE, FCC, ISO-9100  

(CE certification for model 658E, UL listing for 

model 658) 

 

5.2.2 Power Platform PP1 

The PP1 has the capability of changing its functions by inserting a different 

Dranetz-BMI TASKCard each time. TASKCards include PQPlus, 8000 (En-

ergy/Harmonics), Inrush, and TASKCard Flicker (28).  

 
Figure 21. Power Platform PP1 

 
Specifications for the Power Platform PP1 

Voltage Measure-

ments 

4 fully differential channels 

10-600Vrms 

Accuracy: ±1% reading ±0.05% full scale 

Voltage Transients 

50-6000Vpk 

1 microsecond minimum duration 

Accuracy: ±10% reading ±1% full scale 

Requires TASKCard PQPlus 

Current Measurements 

4 fully independent current channels 

10 - 200% of full-scale current probe rating 

Accuracy: ±1% reading ±0.05% full scale 

(at fundamental, plus current probe accuracy)  

Current Transients 

10-300% CT full scale except Chan D 2-200% CT full 

scale 

1 microsecond minimum duration 
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Accuracy: ±10% reading ±1% full scale plus probe 

Requires TASKCard PQPlus 

Frequency 
Fundamental range 30 - 450 Hz 

Accuracy ±0.2% of reading 

Update Rates 
All parameters updated once per second 

(Harmonic-based parameters updated every 5 seconds)  

PC Software Dranview 

5.3 Fixed Systems 

5.3.1 3100 PQ Pager 

The 3100 PQNode is a power quality tool for utility key account programs. It 

has the ability to communicate directly to account executives, managers, and custom-

ers through its built-in voice-mail-like interface. It can also send messages directly to 

up to 4 pagers thereby bypassing the traditional bottleneck of a utility master station 

(17).  

 
Figure 22. 3100 PQ Pager 

 
Specifications for the 3100 PQ Pager 

Voltage Inputs Phase A, B, C, Neutral 

Power Types 

Supported 

Single phase, split single phase, 3-phase 4-wire wye, 3-phase 3-

wire delta 

Measurement 

Range 

0-150 Vrms, ±250Vpk or 0-600 Vrms, ±1000Vpk (user selected) 

50/60 Hz 

Accuracy ±1.0% of reading ±0.5 digit 

Sampling Continuous; 32 samples/cycle 50/60 Hz 

Events Re-

corded 

Sags, swells, interruption, restored, transient, contact clo-

sure(two), min/average/max RMS strip chart Event signatures 
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Pre- and post-samples recorded: 128 RMS samples for RMS 

sags, swells 4 cycles of waveform data for transients 

Contact Clo-

sure Input 

Two inputs for dry contacts; NO or NC (user selected) 

Event Memory Sufficient for at least 32 events, including event signatures, plus 

at least 30 days of strip chart 

Operating En-

vironment 

NEMA 4X, -40΅F to 122΅F -40΅C to +50΅C 

Instrument 

Power 

110V-240V or 220V-480V, user selected 50/60Hz Internal auto-

matically charged 15-minute batteries Memory contents pre-

served for 10 years 

Certifications UL, FCC, CE, and ISO-9001 

5.3.2 7100/7100S 

The 7100 PQNode can be permanently installed at a site, or transported from 

site to site as a portable instrument. 7100 PQNodes can be configured to monitor 

power quality, power flow, or harmonics, depending on site-specific needs (18). 

 
Figure 23. 7100/7100S 

 
Specifications for the 7100/7100S 

Voltage inputs Phase A, B, C, Neutral, and Ground (supports single phase, split 

single phase, 3-phase 4-wire wye, 3-phase 3-wire delta) 

Current inputs Phase A, B, C, and Neutral using optional current probes 

Voltage meas-

urements 

0 - 600 Vrms (±1,000 Vpk), 50/60 Hz 

Accuracy: ±0.5% reading ±0.35% full scale 

Voltage tran-

sients 

100 - 1500 Vpk 

Peak detection: IEEE 587 type A and B 

Accuracy: ±5% reading ±5% full scale 



Current meas-

urements 

4 fully independent current channels 

0 - 3000 Amps rms (depends on probe selected) 

Accuracy: ±1% reading ±1% full scale 

Sampling rate 128 samples per cycle, continuous on all voltage and current 

channels 

Harmonic meas-

urements 

Through 49th harmonic at 50/60 Hz 

User-Selected 

Modes 

Power quality: snapshots,rms strip charts, sags, swells, impulses, 

waveshape faults, kWand kVA demand, harmonic snapshots to 

the 49th, kWh  

Power flow:Vrms, Irms, W, VA, kW and kVA de-

mand,kWh,kVAR,PF,dPF, Vthd,Ithd  

Harmonics triggering: Vthd, Ithd, Vn and In stripcharts, trigger-

ing on individual harmonics to the 49th,1-cycle or 4-cycle FFT's 

Environment Rain-,dust-,ice-resistant enclosure 

-4°F to 113°F (-20°C to +45°C) 

Humidity 0% - 95% non-condensing 

Battery 10 minute UPS built in 

External battery supported 

Software PES 
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5.4 Series 5500 DualNode 

Now that an adequate number of power quality monitoring equipment has 

been presented and the reader has gained a sufficient knowledge it is time to present 

the equipment that has been used on this paper in order to acquire the experimental 

data.  

5.4.1 Signature System 

The Signature System is a new vision for distributed electric power informa-

tion systems. It is based on a few simple premises:  

⇒ Capture all data.  

⇒ Convert the data to information.  

⇒ Manage the information while saving the data.  

⇒ Move the information to those who need it, when they need it.  

⇒ Share the information.  

⇒ Provide answers, not just data.  

⇒ Eliminate installed software.  

⇒ Use the Internet. 

A typical Signature System is built from several DataNodes, plus one or more 

InfoNodes equipped with a selection of Answer Modules. Large Signature Systems-

may also include NodeLink or NodeCenter, a powerful suite of server-based man-

agement analysis tools for enterprise-wide systems.  



 
Figure 24. Signature System Architecture: A Conceptual Illustration 

 
DataNodes gather readings from circuits and processes. Inexpensive, small 

and easy to install, DataNodes have the intelligence to convert raw readings into use-

ful data. They communicate their data to InfoNodes through RS-485 or Ethernet links. 

InfoNodes gather DataNode data, convert the data to information, and manage 

and communicate the information. They form the central component of the whole 

Signature System. InfoNodes are equipped with Answer Modules which convert in-

formation into application-specific answers using patented and proprietary expertise 

developed by Electrotek Concepts, Electric Power Research Institute (EPRI) and Dra-

netz-BMI. These plug-in application-specific answers will cover applications from 

identifying power disturbance origins, to reporting based on evolving standards, to 

predicting maintenance schedules at substations.  

5.4.2 InfoNode: The Central Component 

The InfoNode is the central component of the SignatureSystem, “the System 

that Learns from the Past, to Inform You in the Present, and Prevents Problems in the 

Future.”  The Signature System consists of one or more DataNodes (the data acquisi-

tion modules), connected to an InfoNode (the data storage and analysis module). Op-

tionally, the data and information from multiple InfoNodes can be combined at the 

enterprise level using the NodeLink or NodeCenter software. InfoNodes can be ac-
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cessed through either LAN or modem connections. The InfoNode provides the user 

interface through a self-contained web server. This frees the user from having to load 

software onto the user's PC or laptop. Access is possible from anywhere in the world, 

through the Intranet, Internet, or via a modem, with only a standard web browser (Mi-

crosoft Internet Explorer V5.5 or newer or Netscape Navigator V4.75 ) necessary. 

Access time is dependent primarily on the communication media, with a direct net-

work connection being the fastest. The InfoNode can also provide GPS time synchro-

nization to the DataNodes with the optional GPS module. Some of the most important 

options are the software Answer Modules. These options can be part of the initial pur-

chase or easily added later. Data from one or more DataNodes is analyzed to provide 

such answers as the direction of the PF cap switching transient (upstream or down-

stream), sag directivity, location of faults on radial feeders, reliability-benchmark in-

dices for power quality, and different characterizations of data, such as QOS (Quality 

of Supply), IEEE 1159, EPRI DPQ.  

5.4.3 Signature System InfoNode Graphical User Interface 

The InfoNode user interface consists of a series of tab pages. The pages are 

labeled as follows: Home, Views, Reports, Real-time, and Setup. Each tab page has 

its own tree directory located in the left window pane. The tree can be expanded or 

collapsed. Click on the plus (+) sign to expand the tree and show more options avail-

able. Click on the minus (-) sign to collapse the tree one level backward. A folder is 

empty if it does not display a plus or minus sign. All detailed tab page information is 

found in the right window pane. The InfoNode system provides a direct, no-fuss inter-

face which displays information called out in tab, hyperlink and button format. Each 

tab is provided with a Help option to provide users with immediate, onscreen assis-

tance. Below is a sample screen showing the five main tab pages of the Signature Sys-

tem InfoNode. 
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Figure 25. Main menu tabs of the InfoNode System 

 
The Home page provides basic status information about theInfoNode and 

DataNodes connected, along with easy access to the first, last, and most recent events 

in memory.  

The Views page provides access to three interactive sections: the QOS (Qual-

ity of Supply) Status, Timeline, and Smart Views. The QOS module is designed to 

monitor and report quality of supply compliance as specified by European Standard 

EN50160. QOS Status will appear in InfoNode systems that have QOS data acquisi-

tion modules (5560 DataNode) in it. The Timeline is a two pane browser, with the 

timeplot of selected parameters and channels in the top pane, and the event list and 

details (waveshapes) in the lower pane. The Smart Views include: 3D RMS Mag/Dur 

(Magnitude/ Duration), RMS Mag/Dur, Smart Trends, Event Summary, RMS Varia-

tions, Snapshots, and Transients. 

The Reports page is used to generate reports formatted for direct printing, 

through Smart Reports and Standard Reports. Smart Reports have pre-selected output 

formats and include: DataNode Summary, Voltage Quality, Energy & Demand, Event 

Summary, and Top 10 Events. Standard Reports have output formats that can be cus-

tomized by the user and include: Event Summaries, Top10 Events, Event Statistics, 

Quality of Supply, Waveform Distortion, Energy & Demand, and InfoNode Sum-

mary. The Answer Module is a customized facility which enables you to identify the 

source, cause and time of faults or disturbances like sags and swells. The system is 

able to record and document the source of the problem, whether coming from inside 

your facility or in the supply from your power supplier. 

The Real-time page displays real time metered data in one of three formats: 

Meter Panel, Meter Dial and Scope Mode. Meter Panel shows a textual list of metered 
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parameters for the selected DataNode. Parameters displayed are those configured for 

logging and trending. Meter Dial shows the same information as Meter Panel but in 

an analog meter dial format. Scope Mode shows real time waveforms for all enabled 

channels in an oscilloscope type of display. Note that Scope Mode is not available for 

all DataNode types. 

The Setup page allows the user to configure both the InfoNode and any 

DataNodes connected to it. Additional users and their access permissions and pass-

words are programmed on this page. Additional DataNodes connected to the In-

foNode are also set up on this page. Other parameters which you can view and/or cus-

tomize (depending on your user access privilege) are: Notifications, Communications, 

Answer Module, and DataNodes.  

5.4.4 The EPQ DataNode Series 

Signature System, as mentioned earlier, consists of one or more DataNodes 

(the data acquisition modules) connected to an InfoNode (the data storage, analysis 

module and web server). The EPQ DataNode models are designed with comprehen-

sive and PQ-optimized data acquisition capabilities for power quality related distur-

bances or events. The trigger and capture mechanisms include RMS variations, peak 

transients, waveshapes, steady-state parameter limits, sensitivity changes, harmonics 

and more. From microsecond transients on voltage and current to cold load pick-up 

after a sustained interruption, the EPQ DataNode will provide the data and informa-

tion needed to help determine the cause and severity of the event. In addition, the 

EPQ DataNodes can be set up to collect and trend and trigger on values from a list of 

hundreds of parameters, including power and energy related parameters. EPQ DataN-

odes are available in a wide variety of functions and configurations. 

5.4.5 Series 5500 DualNode: the absolute combination 

Summarizing, the Series 5500 DualNode is the result of the mixture of every-

thing written earlier. Thus it performs the combined functions of the InfoNode and the 

EPQ DataNode. It monitors and acquires power quality data, then converts and man-

ages data into information. The 5590 powerhouse does powerquality monitoring and 

energy management combined with analysis, notification, and web server functions 

all in one.  The InfoNode provides the user interface for the 5590 through a self-

contained web server. 
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Figure 26. A 5590 DualNode 

 
Figure 27. Voltage Modules 

 
Figure 28. Current Modules

 
Features and Highlights of the Series 5500 DualNode: 

 No specialized software or hardware necessary. The5590 DualNode 

visualization and analysis tools, as well as standard or customized re-

ports, are integrated into the InfoNode tab pages accessible through a 

web browser.  

 Advanced triggering and database management capture all critical in-

formation – from submicrosecond transients to long duration inter-

ruptions. 

 Adaptive sampling techniques provide min/max/avg RMS values, 

updated every half cycle, along with up to22 continuous waveform 

cycles of event data. 

 Harmonic, interharmonic, and power parameters are calculated using 

internationally recognized standard algorithms. 

 An internal UPS keeps the 5590 collecting critical data, even when 

power is interrupted due to fault conditions. 

 Options such as GPS time synch and cross triggering can expand the 

functionality of the 5590 into a larger scale system. 

 Data can be permanently archived or uploaded via NodeLink for ad-

ditional analysis in DranView. 



 
Figure 29. DualNode front panel 

 
DataNode 

1. DIAG- Indicator lamp will be on during start-up and periodic health-

check diagnostics. 

2. LINK- Indicator lamp will flash when the unit is responding to net-

work requests.(Except when connected via AUI port.) 

3. POWER- Indicator lamp will flash in a heartbeat fashion when the unit 

is operating normally.  

Note: All three lamps will flash simultaneously when the unit is in Adminis-

trator mode. 

InfoNode 

4. LINK- Indicator lamp will flash when the unit is responding to net-

work requests. 

5. DRIVE- Indicator lamp will flash when the unit’s database is being 

read or written to. 

6. POWER- Indicator lamp will flash in a heartbeat fashion when the unit 

is operating normally.  

Note: All three lamps will flash simultaneously when the unit is in Adminis-

trator mode. 
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Figure 30. DualNode rear panel 

 
1. COM 1- Serial communications port 1. Use for connection to set In-

foNode IP.   

2. COM 2- Serial communications port 2.  

3. Phone Line (RJ-11C) - Allows modem communication via telephone 

line if optional modem is installed. 

4. GPS Antenna - Allows connection of GPS antenna if optional GPS is 

installed. 

5. 10BaseT (RJ-45)- Allows connection to Ethernet. 

6. Cooling fan- Runs continuously while unit is on. 

7. Voltage Pod- Allows connection to voltage pod via interface cable. 

8. Current Pod- Allows connection to current pod via interface cable or 

optional CT adapter (BNCTO55,TRTO55). 

9. Line power.  

1. AC only power version – 90 – 250V ac, 47-63 Hz.  

2. AC/DC power version - 90– 250V ac, 47-63 Hz.  

                                           -105-125V dc, 60W max. 

10. Fuses- Slow blow, 250V ac T2A. 

11. Power switch - Press to turn unit power on or off. Power indicator 

lamp on front panel will glow while unit is on. 

Note: Power indicator lamp will glow for approximately 5 seconds after unit is 

powered off. 

12. RS 485- Not activated at this time.  
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13. COM 3- Serial communications port 3. Use for connection to set 

DataNode IP.  

14. IRDA- Not activated at this time. 

 
Figure 31. Voltage input pod 

 

 
Figure 32. Current input pod 

1. Voltage Pod- Accepts four 5 - 600 Vrms (AC or DC), ±1000 Vpk 

phase A, B, C voltage, plus neutral and ground. Neutral to ground volt-

age range: 0.5 - 20 Vrms (AC or DC). 

2. Current Pod- Accepts four 0.01-5 Arms and up to #10 AWG wires. 

The current tube diameter is 0.215" (5.461mm). Measurement range 

allows 25 Apk with 5532A Pod, 100 Apk with 5533A Pod. 

3. Data cables- Enables connection of measurement pods to the DataN-

ode. Cable length is 3’ (0.9m). 

4. Power type card – Display and set power measurement type: Phase-to-

Phase or Phase-to-Neutral. The power type showing should be the 

power type in use. Front and back of card shown below. 

 
Figure 33. Front of power type card 

 
Figure 34. Back of power type card 

 
Specifications for the 5500Series DualNode 

Configurations  External CT and voltage pods; 1A/5A current with 5x 

overcurrent. 

Measurements 160 parameters, including tru 1/2 cycle RMS sags & 

swells, interruptions, microsecond transients, kVA, 

KW, True PF, DPF, KVAR, kWhr, kVAR and other 

power related parameters, TIF, K-factor, THD, individ-
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ual harmonics through 50th, 45-675 Hz phase locked 

sampling, Up to 22 cycles of waveform per event. 

Voltages 4 channels, accuracy +/- 0.1% of reading, +/- 0.1% FS. 

Currents 4 channels, accuracy +/- 0.1% of reading, +/- 0.1% FS. 

Instrument Power 90-250Vac, 50/60Hz; optional 105-150Vdc; built-in 

UPS with 4-year battery life. 

Enclosure/Environments 17"w x 7"h x 8"d. Rack, desktop, wall mount; 0-60 deg 

C standard. 

Communications Access through Internet, Intranet, dial-up or wireless 

telephone line. 

Additional Features Notification (e-mail, pager, contact closure); remote 

firmware update; cross triggering, 10 msec accuracy 

w/optional GPS, AnswerModules, including Sag Direc-

tion, Radial Fault locator, Capacitor Switching Tran-

sient w/Directivity, Energy Usage and Expense Report-

ing. 

Certifications and design 

standards 

CE, ISO9001, EMC Directive (89/366/EEC), IEC 

61000-4-7, IEC 61000-4-15, EN61010-1 (1993), 

EN61010-1/A2. 
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6 CLASSIFICATION METHODS 

Having read the above information regarding the equipment that is being used 

nowadays, someone can easily understand that the time when power quality monitor-

ing equipment just recorded data and took pictures of raw waveforms has gone. Vari-

ous techniques in signal processing for automatic classification of power quality 

events have been implemented and evolved, thus making the power quality monitor-

ing systems able to identify and classify events automatically in order to solve prob-

lems in electrical network. The purpose of this clause is to present the state of the art 

in power quality monitoring and classification techniques. 

To have a general idea of the state of the art in power quality events classifica-

tion, let’s take a look at the evolution of power quality monitoring in terms of tech-

nology and users. In table 3, a time line has been plotted (The first 30 years of the dia-

gram has been extracted from (49)).  

TECHNOLOGY   

-Voltmeter  -Oscilloscopes 
-Digital signal 

Processing 

-Pattern recog-

nition 

-Paper -Graphics  -Computer -Data Mining 

-Tape  -Mass Storage 
-Decision Mak-

ing 

  -Communications 
-Networking – 

Internet 

70’s 80’s 90’s 2000’s 

-Field Service 

Engineer 

-Field Service 

Engineer 

-Utility Compa-

nies 

-Regulatory 

Agencies 

 
-Power Quality 

Groups 

-Industrial / Plant / 

Facilities 
-ISO 

  
-Engineers / Con-

sultants 
-IPP 

  USERS 
Table 3. Time Line of Power Quality monitoring equipment Evolution  

 
In the 90’s, the technology applied in classification tended to merge power en-

gineering knowledge mainly with signal processing techniques. Recently, pattern rec-
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ognition, data mining, decision-making and networking were incorporated as new 

technologies for automatic classification. This entire advance tends to process raw 

data and extract information to obtain knowledge in order to make decisions (49) and 

(50).        

Moreover, users of power quality events classification have spread, from a few 

field service engineers in the 70’s to hundreds of people in the 2000’s, in power utili-

ties, consultant companies and governmental agencies, working to include power 

quality indexes in power system economic performance.  

6.1 State Of The Art  

A general scheme for automatic classification systems is defined in fig. (35), 

where its application for power quality events’ classification is feasible.    

Block I represents a pre-processing stage. In this block estimation of the signal 

components is performed. Then, an algorithm for signal segmentation in different 

stages is applied, e.g. pre-event, during-event or transition and post-event stages. 

Block II represents a feature extraction stage. Feature extraction can be done 

through Wavelets or Kalman filter. Wavelets are mainly used to quantify features for 

different types of power system events. However, researchers do not fully agree with 

wavelets universal use, due to features obtained with wavelets are highly dependent 

on the type of mother wavelet chosen. Most of the work was done with simulated 

data, which is another drawback. Therefore, type event features and its extraction pro-

cedure using wavelets are still subjective.   

Block III represents the classification stage based on defined rules, e.g. knowl-

edge based expert systems or any logic to discriminate different types of events. 

Finally, block IV represents the decision making stage. In this stage the type 

event is assigned to the current event. In many proposed algorithms, blocks III and IV 

are merged in one process held by neural networks, fuzzy logic, Bayesian or pattern 

recognition techniques.          

 
Figure 35. Automatic Classification Scheme 
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The next section will show a more detailed view of the state of the art devel-

opments on the automatic classification of power quality events.   

6.1.1 State of the Art on the Classification of Power Quality Events   

Expert systems were proposed to identify, classify and diagnose power sys-

tems events successfully for a limited number of events (62), e.g. an expert system for 

classification and analysis of voltage dips using Kalman filter for estimation of the 

amplitude has been shown in (63). Rules based expert system are highly dependant on 

if … then clauses. If many event types or features were analyzed, the expert system 

would become more complicated and the risks of losing selectivity would increase 

(ambiguity). Another drawback is that these systems are not always portable due to 

settings depend mostly on the designer or operator of the systems for a particular set 

of events. 

Under the thesis that energy contents of the non-fundamental components in a 

signal change depending on the type of event, wavelets are widely applied for detec-

tion, quantification and classification of a variety of power quality disturbances, e.g. 

harmonics and transients. In (64), (65) and (66) automatic classification systems based 

on wavelets feature extraction are proposed. However, feature extraction based in 

wavelets transform has some disadvantages, which will be shown later on.  

In recent years, more sophisticated algorithms for automatic classification 

were proposed. An on-line power quality disturbance detector was proposed in (67), 

which was based in wavelet feature extraction. The novel idea of this detector was the 

application of a Bayesian classifier. This algorithm analyses the missing voltage, 

which is decomposed using wavelets, and extracts features regarding the energy con-

tents of the scaled signals with respect to the error signal, which change upon the 

event type. Then, classifies this energy features using Bayesian approach. A drawback 

of using Baye’s formula is that ‘a priori’ probability density function (pdf) of each 

event must be known in advance. Although this kind of classification algorithms 

works well for Gaussian pdfs, its performance in power quality events is observed due 

to the non-Gaussian nature of the event’s pdfs.  

It was suggested before that for voltage sag or swells, time domain analyses 

has shown better results and for automatic classification of fast changes like capacitor 

switching is better to apply frequency methods, another novel algorithm is shown in 

(68), even though, its feature extraction stage is wavelet based.  
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Up to here, all algorithms were applied just to voltage waveforms in a single 

network node.  Finally, another novel algorithm using voltages and currents and ap-

plying non-supervised classification techniques is shown in (69), e.g. clustering and 

K-nearest neighbor.  

6.1.2 Basic tools for signal components estimation 

  Although root mean square (rms) is not an inherent signal processing tech-

nique, is the most used tool. Rms gives a good approximation of the fundamental fre-

quency amplitude profile of a waveform. A great advantage of this algorithm is its 

simplicity, speed of calculation and less requirement of memory, because rms can be 

stored periodically instead of per sample (51). However, its dependency of window 

length is considered as a disadvantage. One cycle window length will give better re-

sults in terms of profile than a half cycle window. Moreover, rms does not distinguish 

fundamental frequency, harmonics or noise components. On the other hand, rms volt-

age profiles are used for event analysis and automatic classification as proposed in 

(52). A great quantity of work has been focused in the estimation of amplitude and 

phase of the fundamental frequency as well as its related harmonics. A primary tool 

for estimation of fundamental amplitude of a signal is the discrete fourier transform 

(DFT) or its computationally efficient implementation called fast fourier transform 

(FFT). FFT transforms the signal from time domain to the frequency domain. Its fast 

computation is considered as an advantage. With this tool is possible to have an esti-

mation of the fundamental amplitude and its harmonics with a reasonable approxima-

tion. However, window dependency resolution is a disadvantage. e.g. longer the sam-

pling window better the frequency resolution. FFT performs well for estimation of 

periodic signals in stationary state; however it doesn’t perform well for detection of 

suddenly or fast changes in waveform e.g. transients or voltages dips. In some cases, 

results of the estimation can be improved with windowing or filtering, e.g. hanning 

window, hamming window, low pass filter or high pass filter.  

A combination of quadrature mirror filters (QMF) arranged in binary trees is 

called filter banks. Filter banks have been used to study in more detail a specific sub 

band of the frequency spectrum. This technique was used in different applications to 

detect rapid changes in the waveform or for estimation of specific sub-band compo-

nents, e.g. harmonic contents between 500 to 1000 Hz, capacitor switching or tran-

sients.   
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6.1.3 More Advance tools for signal components estimation 

  A well-known technique is the so-called Kalman Filter. This technique is de-

fined as a state space model for tracking amplitude and phase of fundamental fre-

quency and its harmonics in real time under noisy environment, which was proposed 

in (53). Since then, many applications have come up, frequency estimation under dis-

torted signals (54), detection of harmonics sources and optimal localization of power 

quality monitors (55). 

In 1994, the use of wavelets was proposed to study power systems non-

stationary harmonics distortion (56). This technique is used to decompose the signal 

in different frequency sub-bands and study separately its characteristics. As described 

in (57) and (58), wavelets performs better with non-periodic signals that contains 

short duration impulse components as is typical in power systems transients. Many 

different types of wavelets have been applied to power systems events, form those, 

Daubechies, Dyadic, Coiflets, Morlet and Symlets wavelets were found more suitable 

for power systems studies. Furthermore, Wavelets based techniques were proposed 

for detection and measuring of power systems disturbances (59) and (60).  

Finally, the short time fourier transform (STFT) is commonly known as a slid-

ing window version of the FFT, which has shown better results in terms of resolution 

and frequency selectivity. However, STFT has a fixed frequency resolution for all 

frequencies, and has shown be more suitable for harmonic analysis of voltage distur-

bances than binary tree filters or wavelets when is applied to study voltage dip (61). 

Let us now take a closer look at some of the most commonly used tools – 

techniques used on power quality monitoring which are those that will be used in this 

paper. 

6.2 Most Used Techniques  

This clause attempts to give a glance at the fundamental signal processing 

tools and techniques used in power quality events classification in order to prepare the 

reader for the techniques that will be used later on in this paper. 

6.2.1 Neural Networks 

The purpose of this clause is not to present Neural Networks in general, be-

sides an action like that would demand a whole new paper if not an entire book! This 
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section will present only the sectors of the Neural Networks that will be used for the 

purposes of this paper and only. Those are the following two:  

 ADALINE (Adaptive Linear Neuron Networks) 

 PNN (Probabilistic Neural Networks) 

6.2.1.1 Adaptive Linear Neuron Networks (ADALINE) 

The ADALINE networks discussed in this section are similar to the, widely 

known and therefore not worth mentioning, perceptron, but their transfer function is 

linear rather than hard-limiting. This allows their outputs to take on any value, 

whereas the perceptron output is limited to either 0 or 1. Both the ADALINE and the 

perceptron can only solve linearly separable problems. However, here we will make 

use of the LMS (Least Mean Squares) learning rule, which is much more powerful 

than the perceptron learning rule. The LMS or Widrow-Hoff learning rule minimizes 

the mean square error and, thus, moves the decision boundaries as far as it can from 

the training patterns. In this clause, we design an adaptive linear system that responds 

to changes in its environment as it is operating. Linear networks that are adjusted at 

each time step based on new input and target vectors can find weights and biases that 

minimize the network’s sum-squared error for recent input and target vectors. Net-

works of this sort are often used in error cancellation, signal processing, and control 

systems. The pioneering work in this field was done by Widrow and Hoff, who gave 

the name ADALINE to adaptive linear elements (70). We also consider the adaptive 

training of self organizing and competitive networks in this section. 

6.2.1.1.1 Linear Neuron Model 

A linear neuron with R inputs is shown below. 

 
Figure 36. Linear Neuron 



This network has the same basic structure as the perceptron. The only differ-

ence is that the linear neuron uses a linear transfer function, which we name purelin.  

 
Figure 37. Linear Transfer Function 

 
The linear transfer function calculates the neuron’s output by simply returning 

the value passed to it. 
a = purelin(n) = purelin(Wp + b)=Wp + b    Equation 1 

This neuron can be trained to learn an affine function of its inputs, or to find a 

linear approximation to a nonlinear function. A linear network cannot, of course, be 

made to perform a nonlinear computation.  

6.2.1.1.2 Adaptive Linear Network Architecture 

The ADALINE network shown below has one layer of S neurons connected to 

R inputs through a matrix of weights W. 

 
Figure 38. ADALINE Network 
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This network is sometimes called a MADALINE for Many ADALINES. Note 

that the figure on the right defines an S-length output vector a. 

The Widrow-Hoff rule can only train single-layer linear networks. This is not 

much of a disadvantage, however, as single-layer linear networks are just as capable 

as multilayer linear networks. For every multilayer linear network, there is an equiva-

lent single-layer linear network. 

6.2.1.1.3 Single ADALINE  

Consider a single ADALINE with two inputs. The diagram for this network is 

shown below. 

 
Figure 39. Single ADALINE 

 
The weight matrix W in this case has only one row. The network output is: 

a = purelin(n) = purelin(Wp + b)=Wp + b  or   Equation 2 

a =w1,1p1 + w1,2p2 + b     Equation 3 

Like the perceptron, the ADALINE has a decision boundary that is determined 

by the input vectors for which the net input n is zero. For n = 0 the equation Wp + b = 

0 specifies such a decision boundary as shown below (71). 
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Figure 40. ADALINE’s Decision Boundary  

 
 Input vectors in the upper right gray area lead to an output greater than 0. In-

put vectors in the lower left white area lead to an output less than 0. Thus, the 

ADALINE can be used to classify objects into two categories. 

6.2.1.1.4 Mean Square Error 

Like the perceptron learning rule, the least mean square error (LMS) algorithm 

is an example of supervised training, in which the learning rule is provided with a set 

of examples of desired network behavior. 

{pB1 B,tB1 B},{pB2 B,tB2 B},…,{pBQB,t BQB} 

Here pBq B, is an input to the network, and tBqB is the corresponding target output. 

As each input is applied to the network, the network output is compared to the target. 

The error is calculated as the difference between the target output and the network 

output. We want to minimize the average of the sum of these errors. 
Q Q

2 2

k 1 k 1

1 1mse e(k) (t(k) a(k))
Q Q= =

= = −∑ ∑   Equation 4 

The LMS algorithm adjusts the weights and biases of the ADALINE so as to 

minimize this mean square error. Fortunately, the mean square error performance in-

dex for the ADALINE network is a quadratic function. Thus, the performance index 

will either have one global minimum, a weak minimum, or no minimum, depending 

on the characteristics of the input vectors. Specifically, the characteristics of the input 

vectors determine whether or not a unique solution exists. More about this topic are 

available in (71). 

 



6.2.1.1.5 LMS Algorithm 

Adaptive networks will use the LMS algorithm, shown in eqs. (5) & (6), or 

Widrow-Hoff learning algorithm based on an approximate steepest descent procedure. 

Here again, adaptive linear networks are trained on examples of correct behavior. 

W(k+1)=W(k)+2ae(k)pT(k)    Equation 5 

b(k+1)=b(k)+ 2ae(k)     Equation 6 

6.2.1.1.6 Adaptive Filtering 

The ADALINE network, much like the perceptron, can only solve linearly 

separable problems. Nevertheless, the ADALINE has been and is today one of the 

most widely used neural networks found in practical applications. Adaptive filtering is 

one of its major application areas. 

A new component is needed, the tapped delay line, to make full use of the 

ADALINE network. Such a delay line is shown below.  

 
Figure 41. Tapped Delay Line 

 
There the input signal enters from the left, and passes through N-1 delays. The 

output of the tapped delay line (TDL) is an N-dimensional vector, made up of the in-

put signal at the current time, the previous input signal, etc. 

A tapped delay line can be combined with an ADALINE network to create the 

adaptive filter shown below. 
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Figure 42. Adaptive Filter 

 
The output of the filter is given by 

R

1,i
i 1

a(k) purelin(Wp b) w a(k i 1) b
=

= + = − + +∑  TEquation 7T 

The network shown above is referred to the digital signal processing field as a 

finite impulse response (FIR) filter (72). 

6.2.1.1.7 Multiple Neuron Adaptive Filters 

Sometimes the use of  more than one neuron in an adaptive system is wanted  , 

so some additional notation is needed. A tapped delay line can be used with S linear 

neurons as shown below. 



 
Figure 43. Multiple Neuron Adaptive Filter 

 
Alternatively, the same network can be shown in abbreviated form. 

 
Figure 44. Abbreviated Form Of A Multiple Neuron Adaptive Filter 

 
If more of the detail of the tapped delay line is needed to be shown and there 

are not too many delays, we can use the following notation. 
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Figure 45. Abbreviated Notation 

 
Here there is a tapped delay line that sends the current signal, the previous sig-

nal, and the signal delayed before that to the weight matrix. We could have a longer 

list, and some delay values could be omitted if desired. The only requirement is that 

the delays are shown in increasing order as they go from top to bottom 

6.2.1.1.8 Summary 

The ADALINE (Adaptive Linear Neuron networks) networks discussed in 

these clauses are similar to the perceptron, but their transfer function is linear rather 

than hard-limiting. They make use of the LMS (Least Mean Squares) learning rule, 

which is much more powerful than the perceptron learning rule. The LMS or Widrow-

Hoff learning rule minimizes the mean square error and, thus, moves the decision 

boundaries as far as it can from the training patterns. Thus an adaptive linear system 

that responds to changes in its environment as it is operating can be designed. Linear 

networks that are adjusted at each time step based on new input and target vectors can 

find weights and biases that minimize the network’s sum-squared error for recent in-

put and target vectors. 

Adaptive linear filters have many practical applications such as noise cancella-

tion, signal processing, and prediction in control and communication systems.  
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6.2.1.2 Probabilistic Neural Networks (PNN) 

Probabilistic Neural Networks are a variant of Radial Basis Networks, thus in 

order to understand PNN there must first be a small introduction to Radial Basis Net-

works. Radial Basis Networks may require more neurons than standard feed-forward 

backpropagation networks, but they can often be designed in a fraction of the time 

that takes to train standard feed-forward networks. They work best when many train-

ing vectors are available (73). 

6.2.1.2.1 Radial Basis Networks 

A radial basis network with R inputs is represented in the following picture.  

 
Figure 46. Radial Basis Network 

 
Notice that the expression for the net input of a radbas neuron is different from 

that of the most commonly used neurons. Here the net input to the radbas transfer 

function is the vector distance between its weight vector w and the input vector p, 

multiplied by the bias b. (The ||dist|| box in this figure accepts the input vector p and 

the single row input weight matrix, and produces the dot product of the two.) 

The transfer function and its plot, for a radial basis neuron are respectively: 
2nradbas(n) e−=     Equation 8 

 
Figure 47. Transfer Function For A Radial Basis Neuron  



The radial basis function has a maximum of 1 when its input is 0. As the dis-

tance between w and p decreases, the output increases. Thus, a radial basis neuron 

acts as a detector that produces 1 whenever the input p is identical to its weight vector 

p. 

The bias b allows the sensitivity of the radbas neuron to be adjusted. For ex-

ample, if a neuron had a bias of 0.1 it would output 0.5 for any input vector p at vector 

distance of 8.326 (0.8326/b) from its weight vector w. 

Radial basis networks consist of two layers: a hidden radial basis layer of S1 

neurons, and an output linear layer of S2 neurons. 

 
Figure 48. Radial Basis Network Architecture 

 
The ||dist|| box in this figure accepts the input vector p and the input weight 

matrix IW1,1, and produces a vector having S1 elements. The elements are the dis-

tances between the input vector and vectors IW1,1, formed from the rows of the input 

weight matrix. The bias vector b1 and the output of ||dist|| are combined with element-

by-element multiplication.  

We can understand how this network behaves by following an input vector p 

through the network to the output a2. If we present an input vector to such a network, 

each neuron in the radial basis layer will output a value according to how close the 

input vector is to each neuron’s weight vector. Thus, radial basis neurons with weight 

vectors quite different from the input vector p have outputs near zero. These small 

outputs have only a negligible effect on the linear output neurons. In contrast, a radial 

basis neuron with a weight vector close to the input vector p produces a value near 1. 

If a neuron has an output of 1 its output weights in the second layer pass their values 

to the linear neurons in the second layer. In fact, if only one radial basis neuron had an 
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output of 1, and all others had outputs of 0’s (or very close to 0), the output of the lin-

ear layer would be the active neuron’s output weights. This would, however, be an 

extreme case. Typically several neurons are always firing, to varying degrees. 

Now let us look in detail at how the first layer operates. Each neuron's 

weighted input is the distance between the input vector and its weight vector. Each 

neuron's net input is the element-by-element product of its weighted input with its 

bias. Each neuron's output is its net input passed through radbas. If a neuron's weight 

vector is equal to the input vector (transposed), its weighted input is 0, its net input is 

0, and its output is 1. If a neuron's weight vector is a distance of spread from the input 

vector, its weighted input is spread, its net input is √-log(.5) (or 0.8326), therefore its 

output is 0.5. For the exact design of a radial basis network more specific information 

are available in (75). 

6.2.1.2.2 Probabilistic Neural Networks (PNN) 

Probabilistic neural networks can be used for classification problems. When an 

input is presented, the first layer computes distances from the input vector to the train-

ing input vectors, and produces a vector whose elements indicate how close the input 

is to a training input. The second layer sums these contributions for each class of in-

puts to produce as its net output a vector of probabilities. Finally, a compete transfer 

function on the output of the second layer picks the maximum of these probabilities, 

and produces a 1 for that class and a 0 for the other classes. The architecture for this 

system is shown below. 

 
Figure 49. Architecture Of A Probabilistic Neural Network 



It is assumed that there are Q input vector/target vector pairs. Each target vec-

tor has K elements. One of these elements is 1 and the rest is 0. Thus, each input vec-

tor is associated with one of K classes. 

The first-layer input weights, IW1,1 are set to the transpose of the matrix 

formed from the Q training pairs, P'. When an input is presented the ||dist|| box pro-

duces a vector whose elements indicate how close the input is to the vectors of the 

training set. These elements are multiplied, element by element, by the bias and sent 

the radbas transfer function. An input vector close to a training vector is represented 

by a number close to 1 in the output vector a1. If an input is close to several training 

vectors of a single class, it is represented by several elements of a1 that are close to 1. 

The second-layer weights, LW1,2, are set to the matrix T of target vectors. 

Each vector has a 1 only in the row associated with that particular class of input, and 

0’s elsewhere. The multiplication Ta1 sums the elements of a1 due to each of the K 

input classes. Finally, the second-layer transfer function, compete, produces a 1 corre-

sponding to the largest element of n2, and 0’s elsewhere. Thus, the network has classi-

fied the input vector into a specific one of K classes because that class had the maxi-

mum probability of being correct. 

6.2.1.2.3 Summary 

Radial basis networks can be designed very quickly in two different ways. The 

first design method finds an exact solution, by creating radial basis networks with as 

many radial basis neurons as there are input vectors in the training data. The second 

method finds the smallest network that can solve the problem within a given error 

goal. Typically, far fewer neurons are required by making use of the second method. 

However, because the number of radial basis neurons is proportional to the size of the 

input space, and the complexity of the problem, radial basis networks can still be lar-

ger than backpropagation networks. 

Probabilistic neural networks (PNN) can be used for classification problems. 

Their design is straightforward and does not depend on training. A PNN is guaranteed 

to converge to a Bayesian classifier providing it is given enough training data. These 

networks generalize well. PNN have many advantages, but they suffer from one major 

disadvantage. They are slower to operate because they use more computation than 

other kinds of networks to do their function approximation or classification. 
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6.2.2 Fuzzy Networks 

Acting in an exactly similar way as with Neural Networks, the purpose of this 

clause is to present only the sector of Fuzzy Networks which is being used for the 

purposes of this paper and not the presentation of Fuzzy Networks in general. To be 

more precise, this paper makes use of the Fuzzy Networks by means of the ANFIS. 

6.2.2.1 Adaptive Neuro – Fuzzy Inference System ANFIS 

 The acronym ANFIS derives its name from Adaptive Neuro-Fuzzy Inference 

System. The basic idea behind these neuro-adaptive learning techniques is very sim-

ple. These techniques provide a method for the fuzzy modeling procedure to learn in-

formation about a data set, in order to compute the membership function parameters 

that best allow the associated fuzzy inference system to track the given input/output 

data. This learning method works similarly to that of neural networks.  

Using a given input/output data set, a fuzzy inference system (FIS) is con-

structed and it’s membership function parameters are tuned (adjusted) using either a 

back propagation algorithm alone, or in combination with a method of least squares 

type, this is called the hybrid method. This allows fuzzy systems to learn from the 

data they are modeling.  

6.2.2.1.1 FIS Structure and Parameter Adjustment 

A network-type structure similar to that of a neural network, which maps in-

puts through input membership functions and associated parameters, and then through 

output membership functions and associated parameters to outputs, can be used to in-

terpret the input/output map. The parameters associated with the membership func-

tions will change through the learning process. The computation of these parameters 

(or their adjustment) is facilitated by a gradient vector, which provides a measure of 

how well the fuzzy inference system is modeling the input/output data for a given set 

of parameters. Once the gradient vector is obtained, any of several optimization rou-

tines could be applied in order to adjust the parameters so as to reduce some error 

measure (usually defined by the sum of the squared difference between actual and de-

sired outputs). 
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6.2.2.1.2 Familiarity Breeds Validation; Knowledge of the Data 

The modeling approach used is similar to many system identification tech-

niques. First, a parameterized model structure (relating inputs to membership func-

tions to rules to outputs to membership functions, and so on) is hypothesized. Next, 

input/output data are collected in a form that will be usable by the network for train-

ing. Then the FIS model can be trained to emulate the training data presented to it by 

modifying the membership function parameters according to a chosen error criterion. 

In general, this type of modeling works well if the training data presented to the AN-

FIS for training (estimating) membership function parameters is fully representative 

of the features of the data that the trained FIS is intended to model. This is not always 

the case, however. In some cases, data is collected using noisy measurements, and the 

training data cannot be representative of all the features of the data that will be pre-

sented to the model. This is where model validation comes into play.  

Model validation is the process by which the input vectors from input/output 

data sets on which the FIS was not trained, are presented to the trained FIS model, to 

see how well the FIS model predicts the corresponding data set output values. This is 

accomplished with the ANFIS Editor GUI using the so-called testing data set. You 

can also use another type of data set for model validation in ANFIS. This other type of 

validation data set is referred to as the checking data set and this set is used to control 

the potential for the model overfitting the data. When checking data is presented to 

ANFIS as well as training data, the FIS model is selected to have parameters associ-

ated with the minimum checking data model error. One problem with model valida-

tion for models constructed using adaptive techniques is selecting a data set that is 

both representative of the data the trained model is intended to emulate, yet suffi-

ciently distinct from the training data set so as not to render the validation process 

trivial. If a large amount of data is collected, hopefully this data contains all the neces-

sary representative features, so the process of selecting a data set for checking or test-

ing purposes is made easier. However, if noisy measurements are expected to be pre-

senting to the model, it’s possible the training data set does not include all of the rep-

resentative features that are wanted to model. 

The basic idea behind using a checking data set for model validation is that af-

ter a certain point in the training, the model begins overfitting the training data set. In 

principle, the model error for the checking data set tends to decrease as the training 
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takes place up to the point that overfitting begins, and then the model error for the 

checking data suddenly increases.  

6.2.2.1.3 Constraints of ANFIS 

ANFIS is much more complex than the commonly used fuzzy inference sys-

tems, and is not available for all of the fuzzy inference system options. Specifically, 

ANFIS only supports Sugeno-type systems, and these must have the following prop-

erties: 

 Be first or zeroth order Sugeno-type systems. 

 Have a single output, obtained using weighted average defuzzification. All 

output membership functions must be the same type and either be linear or 

constant.  

 Have no rule sharing. Different rules cannot share the same output member-

ship function, namely the number of output membership functions must be 

equal to the number of rules.  

 Have unity weight for each rule.  

An error occurs if your FIS structure does not comply with these constraints. 

Moreover, ANFIS cannot accept all the customization options that basic fuzzy 

inference allows. That is, you cannot make your own membership functions and de-

fuzzification functions; you must use the ones provided. 

6.2.3 WAVELET TRANSFORM 

The wavelet transform is a relatively new concept, which is why there will be 

a comparative wide presentation on it. Later on, basic principles underlying the wave-

let theory are given. The proofs of the theorems and related equations will not be 

given in due to the simple assumption that the intended readers of this paper do not 

need them at this time. However, there are some related references for further and in-

depth information. Let’s begin with a small introduction regarding the Wavelet Trans-

form and then take a closer look. 

The Wavelet transform provides the time-frequency representation. (There are 

other transforms which give this information too, such as short time Fourier trans-

form, Wigner distributions, etc.) 

Often times a particular spectral component occurring at any instant can be of 

particular interest. In these cases it may be very beneficial to know the time intervals 



these particular spectral components occur. For example, in EEGs, the latency of an 

event-related potential is of particular interest (Event-related potential is the response 

of the brain to a specific stimulus like flash-light, the latency of this response is the 

amount of time elapsed between the onset of the stimulus and the response). 

Wavelet transform is capable of providing the time and frequency information 

simultaneously, hence giving a time-frequency representation of the signal. 

To make a real long story short, we pass the time-domain signal from various 

highpass and low pass filters, which filters out either high frequency or low frequency 

portions of the signal. This procedure is repeated, every time some portion of the sig-

nal corresponding to some frequencies being removed from the signal. 

Here is how this works: Suppose we have a signal which has frequencies up to 

1000 Hz. In the first stage we split up the signal in to two parts by passing the signal 

from a highpass and a lowpass filter (filters should satisfy some certain conditions, so-

called admissibility condition) which results in two different versions of the same sig-

nal: portion of the signal corresponding to 0-500 Hz (low pass portion), and 500-1000 

Hz (high pass portion).  

Then, we take either portion (usually low pass portion) or both, and do the 

same thing again. This operation is called decomposition.  

Assuming that we have taken the lowpass portion, we now have 3 sets of data, 

each corresponding to the same signal at frequencies 0-250 Hz, 250-500 Hz, 500-

1000 Hz. 

Then we take the lowpass portion again and pass it through low and high pass 

filters; we now have 4 sets of signals corresponding to 0-125 Hz, 125-250 Hz,250-500 

Hz, and 500-1000 Hz. We continue like this until we have decomposed the signal to a 

pre-defined certain level. Then we have a bunch of signals, which actually represent 

the same signal, but all corresponding to different frequency bands. We know which 

signal corresponds to which frequency band, and if we put all of them together and 

plot them on a 3-D graph, we will have time in one axis, frequency in the second and 

amplitude in the third axis. This will show us which frequencies exist at which time. 

There is an issue, called "uncertainty principle", which states that, we cannot 

exactly know what frequency exists at what time instance, but we can only know what 

frequency bands exist at what time intervals. A brief explanation of this is written bel-

low. 
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The uncertainty principle, originally found and formulated by Heisenberg, 

states that, the momentum and the position of a moving particle cannot be known si-

multaneously. This applies to our subject as follows: 

The frequency and time information of a signal at some certain point in the 

time-frequency plane cannot be known. In other words: We cannot know what spec-

tral component exists at any given time instant. The best we can do is to investigate 

what spectral components exist at any given interval of time. This is a problem of 

resolution, and it is the main reason why researchers have switched to WT from 

STFT. STFT gives a fixed resolution at all times, whereas WT gives a variable resolu-

tion as follows: 

Higher frequencies are better resolved in time, and lower frequencies are bet-

ter resolved in frequency. This means that, a certain high frequency component can be 

located better in time (with less relative error) than a low frequency component. On 

the contrary, a low frequency component can be located better in frequency compared 

to high frequency component. 

Take a look at the following grid: 
     

 f ^ 

   |*******************************************       continuous  

   |*  *  *  *  *  *  *  *  *  *  *  *  *  *  *    wavelet transform 

   |*     *     *     *     *     *     *           

   |*           *           *           *           

   |*                       *  

    --------------------------------------------> time 

  

Interpret the above grid as follows: The top row shows that at higher frequen-

cies we have more samples corresponding to smaller intervals of time. In other words, 

higher frequencies can be resolved better in time. The bottom row however, corre-

sponds to low frequencies, and there is less number of points to characterize the sig-

nal, therefore, low frequencies are not resolved well in time. 
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 ^frequency 

 |      

 | 

 | 

 | ******************************************************* 

 |        

 |     

 |         

 | *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * discrete    

 | *     *     *     *     *     *     *     *     *     *   time  

 | *           *           *           *           *        wavelet  

 | *                       *                       *       transform 

 | 

 |----------------------------------------------------------> time 

   

In discrete time case, the time resolution of the signal works the same as 

above, but now, the frequency information has different resolutions at every stage too. 

Note that, lower frequencies are better resolved in frequency, where as higher fre-

quencies are not. Note how the spacing between subsequent frequency components 

increase as frequency increases.   

Below , are some examples of continuous wavelet transform: Let's take a sinu-

soidal signal, which has two different frequency components at two different times: 

Note the low frequency portion first, and then the high frequency.  

 

Figure 50. A Sinusoidal Signal, Which Has Two Different Frequency Components At Two Dif-

ferent Times 

 
 Note however, the frequency axis in these plots are labeled as scale. The con-

cept of the scale will be made more clear in the subsequent sections, but it should be 
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noted at this time that the scale is inverse of frequency. That is, high scales correspond 

to low frequencies, and low scales correspond to high frequencies. Consequently, the 

little peak in the plot corresponds to the high frequency components in the signal, and 

the large peak corresponds to low frequency components (which appear before the 

high frequency components in time) in the signal. 

There might be a small concern regarding the frequency resolution shown in 

the plot, since it shows good frequency resolution at high frequencies. Note however 

that, it is the good  scale resolution  that looks good at high frequencies (low scales), 

and good scale resolution means poor frequency resolution and vice versa. More 

about this will be written on the next clauses. After this small introduction let’s take a 

closer look on the wavelet transform. 

 

Figure 51. The Continuous Wavelet Transform Of The Above Signal 

 The Continuous Wavelet Transform 
The continuous wavelet transform was developed as an alternative approach to 

the short time Fourier transform to overcome the resolution problem. The wavelet 

analysis is done in a similar way to the STFT analysis, in the sense that the signal is 

multiplied with a function, {\it the wavelet}, similar to the window function in the 

STFT, and the transform is computed separately for different segments of the time-
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domain signal. However, there are two main differences between the STFT and the 

CWT:  

1. The Fourier transforms of the windowed signals are not taken, and therefore 

single peak will be seen corresponding to a sinusoid, i.e., negative frequencies are not 

computed.  

2. The width of the window is changed as the transform is computed for every 

single spectral component, which is probably the most significant characteristic of the 

wavelet transform.  

The continuous wavelet transform is defined as follows: 

1 tCWT ( ,s) ( ,s) x(t) ( )dtx x ss
− τΨ Ψτ = Ψ τ = ψ∫                       Equation 9 

As seen in the above equation , the transformed signal is a function of two 

variables, tau and s, the translation and scale parameters, respectively, psi(t) is the 

transforming function, and it is called the mother wavelet . The term mother wavelet 

gets its name due to two important properties of the wavelet analysis as explained be-

low:  

The term wavelet means a small wave. The smallness refers to the condition 

that this (window) function is of finite length (compactly supported). The wave refers 

to the condition that this function is oscillatory. The term mother implies that the 

functions with different region of support that are used in the transformation process 

are derived from one main function, the mother wavelet. In other words, the mother 

wavelet is a prototype for generating the other window functions.  

The term translation is used in the same sense as it was used in the STFT; it is 

related to the location of the window, as the window is shifted through the signal. This 

term, obviously, corresponds to time information in the transform domain. However, 

we do not have a frequency parameter, as we had before for the STFT. Instead, we 

have scale parameter which is defined as “1/frequency”. The term frequency is re-

served for the STFT.  

The parameter scale in the wavelet analysis is similar to the scale used in 

maps. As in the case of maps, high scales correspond to a non-detailed global view (of 

the signal), and low scales correspond to a detailed view. Similarly, in terms of fre-

quency, low frequencies (high scales) correspond to a global information of a signal 

(that usually spans the entire signal), whereas high frequencies (low scales) corre-



spond to a detailed information of a hidden pattern in the signal (that usually lasts a 

relatively short time). Cosine signals corresponding to various scales are given as ex-

amples in the following figure .  

Fortunately in practical applications, low scales (high frequencies) do not last 

for the entire duration of the signal, unlike those shown in fig. (52), but they usually 

appear from time to time as short bursts, or spikes. High scales (low frequencies) usu-

ally last for the entire duration of the signal.  

Scaling, as a mathematical operation, either dilates or compresses a signal. 

Larger scales correspond to dilated (or stretched out) signals and small scales corre-

spond to compressed signals. All of the signals given in the figure are derived from 

the same cosine signal, i.e., they are dilated or compressed versions of the same func-

tion. In the following figures, s=0.05 is the smallest scale, and s=1 is the largest scale.  

In terms of mathematical functions, if f(t) is a given function f(st) corresponds 

to a contracted (compressed) version of f(t) if s > 1 and to an expanded (dilated) ver-

sion of f(t) if s < 1 .  

 
Figure 52. Cosine signals corresponding to various scales 

However, in the definition of the wavelet transform, the scaling term is used in 

the denominator, and therefore, the opposite of the above statements holds, i.e., scales 

 86



s > 1 dilates the signals whereas scales s < 1 , compresses the signal. This interpreta-

tion of scale will be used throughout this paragraph.  

6.2.3.1 Computation Of The Cwt  

Interpretation of the above equation will be explained in this clause. Let x(t) is 

the signal to be analyzed. The mother wavelet is chosen to serve as a prototype for all 

windows in the process. All the windows that are used are the dilated (or compressed) 

and shifted versions of the mother wavelet. There are a number of functions that are 

used for this purpose. The Morlet wavelet and the Mexican hat function are two can-

didates, and they are used for the wavelet analysis of the examples which are pre-

sented later in this chapter.  

Once the mother wavelet is chosen the computation starts with s=1 and the 

continuous wavelet transform is computed for all values of s , smaller and larger than 

“1”. However, depending on the signal, a complete transform is usually not necessary. 

For all practical purposes, the signals are bandlimited, and therefore, computation of 

the transform for a limited interval of scales is usually adequate. In this study, some 

finite interval of values for s were used, as will be described later in this chapter.  

For convenience, the procedure will be started from scale s=1 and will con-

tinue for the increasing values of s , i.e., the analysis will start from high frequencies 

and proceed towards low frequencies. This first value of s will correspond to the most 

compressed wavelet. As the value of s is increased, the wavelet will dilate.  

The wavelet is placed at the beginning of the signal at the point which corre-

sponds to time=0. The wavelet function at scale “1” is multiplied by the signal and 

then integrated over all times. The result of the integration is then multiplied by the 

constant number 1/sqrt{s}. This multiplication is for energy normalization purposes 

so that the transformed signal will have the same energy at every scale. The final re-

sult is the value of the transformation, i.e., the value of the continuous wavelet trans-

form at time zero and scale s=1. In other words, it is the value that corresponds to the 

point tau =0, s=1 in the time-scale plane. 

The wavelet at scale s=1 is then shifted towards the right by tau amount to the 

location t=tau, and the above equation is computed to get the transform value at t=tau, 

s=1 in the time-frequency plane.  

This procedure is repeated until the wavelet reaches the end of the signal. One 

row of points on the time-scale plane for the scale s=1 is now completed. 
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Then, s is increased by a small value. Note that, this is a continuous transform, 

and therefore, both tau and s must be incremented continuously. However, if this 

transform needs to be computed by a computer, then both parameters are increased by 

a sufficiently small step size. This corresponds to sampling the time-scale plane.  

The above procedure is repeated for every value of s. Every computation for a 

given value of s fills the corresponding single row of the time-scale plane. When the 

process is completed for all desired values of s, the CWT of the signal has been calcu-

lated. Fig. (53) illustrates the entire process step by step.  

In fig. (53), the signal and the wavelet function are shown for four different 

values of tau. The scale value is 1, corresponding to the lowest scale, or highest fre-

quency. Note how compact it is (the blue window). It should be as narrow as the 

highest frequency component that exists in the signal. Four distinct locations of the 

wavelet function are shown in the figure at to=2, to=40, to=90, and to=140. At every 

location, it is multiplied by the signal. Obviously, the product is nonzero only where 

the signal falls in the region of support of the wavelet, and it is zero elsewhere. By 

shifting the wavelet in time, the signal is localized in time, and by changing the value 

of s, the signal is localized in scale (frequency). 
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Figure 53. Calculation of a signal’s CWT (s=1) 

 
If the signal has a spectral component that corresponds to the current value of 

s (which is 1 in this case), the product of the wavelet with the signal at the location 

where this spectral component exists gives a relatively large value. If the spectral 

component that corresponds to the current value of s is not present in the signal, the 

product value will be relatively small, or zero. The signal in fig. (53) has spectral 

components comparable to the window's width at s=1 around t=100 ms. 

The continuous wavelet transform of the signal in fig. (53) will yield large 

values for low scales around time 100 ms, and small values elsewhere. For high 

scales, on the other hand, the continuous wavelet transform will give large values for 

almost the entire duration of the signal, since low frequencies exist at all times. 

Fig. (54) and (55) illustrate the same process for the scales s=5 and s=20, re-

spectively. Note how the window width changes with increasing scale (decreasing 

frequency). As the window width increases, the transform starts picking up the lower 

frequency components. 
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As a result, for every scale and for every time (interval), one point of the time-

scale plane is computed. The computations at one scale construct the rows of the time-

scale plane, and the computations at different scales construct the columns of the 

time-scale plane. 

 
Figure 54. Calculation of a signal’s CWT (s=5) 
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Figure 55. Calculation of a signal’s CWT (s=20) 

 
Now, let's take a look at an example, and see how the wavelet transform really 

looks like. Consider the non-stationary signal in fig. (56). As stated on the figure, the 

signal is composed of four frequency components at 30 Hz, 20 Hz, 10 Hz and 5 Hz.  

Fig. (57) is the continuous wavelet transform (CWT) of this signal. Note that 

the axes are translation and scale, not time and frequency. However, translation is 

strictly related to time, since it indicates where the mother wavelet is located. The 

translation of the mother wavelet can be thought of as the time elapsed since t=0. The 

scale, however, has a whole different story. Remember that the scale parameter s in 

eq. (9) is actually inverse of frequency. In other words, whatever we said about the 

properties of the wavelet transform regarding the frequency resolution, inverse of it 

will appear on the figures showing the WT of the time-domain signal.  

Note that in fig. (40) that smaller scales correspond to higher frequencies, i.e., 

frequency decreases as scale increases, therefore, that portion of the graph with scales 

around zero, actually correspond to highest frequencies in the analysis, and that with 

high scales correspond to lowest frequencies. Remember that the signal had 30 Hz 
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(highest frequency) components first, and this appears at the lowest scale at a transla-

tions of 0 to 30. Then comes the 20 Hz component, second highest frequency, and so 

on. The 5 Hz component appears at the end of the translation axis (as expected), and 

at higher scales (lower frequencies) again as expected.  

 
Figure 56. A Non-Stationary Signal 

 

 
Figure 57. Continuous Wavelet Transform (CWT) Of The Signal 
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Figure 58. Continuous Wavelet Transform (CWT) Of The Signal from another angle 

 
Now, recall these resolution properties: Unlike the STFT which has a constant 

resolution at all times and frequencies, the WT has a good time and poor frequency 

resolution at high frequencies, and good frequency and poor time resolution at low 

frequencies. Fig. (58) shows the same WT in fig. (57) from another angle to better 

illustrate the resolution properties: In fig. (58), lower scales (higher frequencies) have 

better scale resolution (narrower in scale, which means that it is less ambiguous what 

the exact value of the scale) which correspond to poorer frequency resolution. Simi-

larly, higher scales have scale frequency resolution (wider support in scale, which 

means it is more ambitious what the exact value of the scale is), which correspond to 

better frequency resolution of lower frequencies.  

The axes in figs. (57) and (58) are normalized and should be evaluated accord-

ingly. Roughly speaking the 100 points in the translation axis correspond to 1000 ms, 

and the 150 points on the scale axis correspond to a frequency band of 40 Hz (the 

numbers on the translation and scale axis do not correspond to seconds and Hz, re-

spectively , they are just the number of samples in the computation).  
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6.2.3.2 Time And Frequency Resolutions  

In this section we will take a closer look at the resolution properties of the 

wavelet transform. Remember that the resolution problem was the main reason why 

we switched from STFT to WT.  

The illustration in fig. (59) is commonly used to explain how time and fre-

quency resolutions should be interpreted. Every box in fig. (59) corresponds to a value 

of the wavelet transform in the time-frequency plane. Note that boxes have a certain 

non-zero area, which implies that the value of a particular point in the time-frequency 

plane cannot be known. All the points in the time-frequency plane that falls into a box 

is represented by one value of the WT.  

 
Figure 59. Time And Frequency Resolutions On WT   

 
Let's take a closer look at fig. (59): First thing to notice is that although the 

widths and heights of the boxes change, the area is constant. That is each box repre-

sents an equal portion of the time-frequency plane, but giving different proportions to 

time and frequency. Note that at low frequencies, the height of the boxes are shorter 

(which corresponds to better frequency resolutions, since there is less ambiguity re-

garding the value of the exact frequency), but their widths are longer (which corre-

spond to poor time resolution, since there is more ambiguity regarding the value of the 
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exact time). At higher frequencies the width of the boxes decreases, i.e., the time reso-

lution gets better, and the heights of the boxes increase, i.e., the frequency resolution 

gets poorer.  

Before concluding this clause, it is worthwhile to mention how the partition 

looks like in the case of STFT. Recall that in STFT the time and frequency resolutions 

are determined by the width of the analysis window, which is selected once for the 

entire analysis, i.e., both time and frequency resolutions are constant. Therefore the 

time-frequency plane consists of squares in the STFT case.  

Regardless of the dimensions of the boxes, the areas of all boxes, both in 

STFT and WT, are the same and determined by Heisenberg's inequality. As a sum-

mary, the area of a box is fixed for each window function (STFT) or mother wavelet 

(CWT), whereas different windows or mother wavelets can result in different areas. 

However, all areas are lower bounded by 1/4 ·pi . That is, we cannot reduce the areas 

of the boxes as much as we want due to the Heisenberg's uncertainty principle. On the 

other hand, for a given mother wavelet the dimensions of the boxes can be changed, 

while keeping the area the same. This is exactly what wavelet transform does. 

6.2.3.3 The Wavelet Theory: A Mathematical Approach  

This clause describes the main idea of wavelet analysis theory, which can also 

be considered to be the underlying concept of most of the signal analysis techniques. 

The FT defined by Fourier use basis functions to analyze and reconstruct a function. 

Every vector in a vector space can be written as a linear combination of the basis vec-

tors in that vector space , i.e., by multiplying the vectors by some constant numbers, 

and then by taking the summation of the products. The analysis of the signal involves 

the estimation of these constant numbers (transform coefficients, or Fourier coeffi-

cients, wavelet coefficients, etc). The synthesis, or the reconstruction, corresponds to 

computing the linear combination equation.  

All the definitions and theorems related to this subject can be found in Keiser's 

book, A Friendly Guide to Wavelets but an introductory level knowledge of how basis 

functions work is necessary to understand the underlying principles of the wavelet 

theory. Therefore, this information will be presented in this section. 
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6.2.3.4 Basis Vectors  

A basis of a vector space V is a set of linearly independent vectors, such that 

any vector v in V can be written as a linear combination of these basis vectors. There 

may be more than one basis for a vector space. However, all of them have the same 

number of vectors, and this number is known as the dimension of the vector space. 

For example in two-dimensional space, the basis will have two vectors. 
k

k
k

v u b= ⋅∑                                           TEquation 10T 

Eq. (10) shows how any vector v can be written as a linear combination of the 

basis vectors bBkB and  the corresponding coefficients uP

k
P . 

This concept, given in terms of vectors, can easily be generalized to functions, 

by replacing the basis vectors bBkB with basis functions φBk B(t), and the vector v with a 

function f(t). Eq. (10) then becomes  

k k
k

f (t) (t)= µ φ∑     TEquation 11T 

The complex exponential (sines and cosines) functions are the basis functions 

for the FT. Furthermore, they are orthogonal functions, which provide some desirable 

properties for reconstruction. 

Let f(t) and g(t) be two functions in LP

2
P [a,b]. (LP

2
P [a,b] denotes the set of square 

integrable functions in the interval [a,b]). The inner product of two functions is de-

fined by Eq. (12):  
b

*

a

f (t),g(t) f (t) g (t)dt< >= ⋅∫    TEquation 12T 

According to the above definition of the inner product, the CWT can be 

thought of as the inner product of the test signal with the basis functions Ψ Bτ,s B(t): 

x x ,sCWT ( ,s) ( , s) x(t) (t)dtψ ψ
ττ = Ψ τ = ⋅ψ∫    TEquation 13T 

where,  

 

,s
1 t( )

ssτ
− τ

ψ = ψ    Equation 14 

This definition of the CWT shows that the wavelet analysis is a measure of 

similarity between the basis functions (wavelets) and the signal itself. Here the simi-

larity is in the sense of similar frequency content. The calculated CWT coefficients 

refer to the closeness of the signal to the wavelet at the current scale .  
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This further clarifies the previous discussion on the correlation of the signal 

with the wavelet at a certain scale. If the signal has a major component of the fre-

quency corresponding to the current scale, then the wavelet (the basis function) at the 

current scale will be similar or close to the signal at the particular location where this 

frequency component occurs. Therefore, the CWT coefficient computed at this point 

in the time-scale plane will be a relatively large number. 

6.2.3.5 Inner Products, Orthogonality, and Orthonormality  

Two vectors v , w are said to be orthogonal if their inner product equals zero: 
*

n n
n

v, w v w 0< >= ⋅ =∑    TEquation 15T 

Similarly, two functions f and g are said to be orthogonal to each other if their 

inner product is zero:  
b

*

a

f (t), g(t) f (t) g (t)dt 0< >= ⋅ =∫   TEquation 16T 

A set of vectors {vB1 B, v B2 B, ....,vBn B} is said to be orthonormal , if they are pairwise 

orthogonal to each other, and all have length “1”. This can be expressed as: 

m n mnv , v< >= δ    TEquation 17T 

Similarly, a set of functions {φBk B(t)}, k=1,2,3,..., is said to be orthonormal if  
b

*
l

a

(t) (t)dt 0 k l (orthogonality condition)κφ ⋅φ = ≠∫  TEquation 18T 

and  

{ }
2b

a

(t) dt lκφ =∫    TEquation 19T 

or equivalently  
b

*
l kl

a

(t) (t)dtκφ ⋅φ = δ∫    TEquation 20T 

where, δBklB is the Kronecker delta function, defined as:  

kl

1 if k = l
0 if k l
⎧

δ = ⎨ ≠⎩
   TEquation 21T 

As stated above, there may be more than one set of basis functions (or vec-

tors). Among them, the orthonormal basis functions (or vectors) are of particular im-

portance because of the nice properties they provide in finding these analysis coeffi-
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cients. The orthonormal bases allow computation of these coefficients in a very sim-

ple and straightforward way using the orthonormality property. 

For orthonormal bases, the coefficients, µBkB, can be calculated as  

k

*
k kf , f (t) (t)dtµ =< φ >= ⋅φ∫   TEquation 22T 

and the function f(t) can then be reconstructed by eq. (11) by substituting the 

µBk B  coefficients. This yields to  

k k k k
k k

f (t) (t) f , (t)= µ φ = < φ >φ∑ ∑   TEquation 23T 

Orthonormal bases may not be available for every type of application where a 

generalized version, biorthogonal bases can be used. The term “biorthogonal” refers 

to two different bases which are orthogonal to each other, but each do not form an or-

thogonal set. 

In some applications, however, biorthogonal bases also may not be available 

in which case frames can be used. Frames constitute an important part of wavelet the-

ory, and interested readers are referred to Kaiser's book mentioned earlier. 

Some examples of continuous wavelet transform are presented next. The fig-

ures given in the examples were generated by a program written to compute the CWT.  

Before we close this clause, it would be helpful to include two mother wave-

lets commonly used in wavelet analysis. The Mexican Hat wavelet is defined as the 

second derivative of the Gaussian function:  
2

2
t

21w(t) e
2

−
σ=

πσ
   TEquation 24T 

which is  
2

2
t 2

2
23

1 t(t) (e ( 1))
2

−
σψ = ⋅ −

σπσ
   TEquation 25T 

The Morlet wavelet is defined as 
2t

i t 2w(t) e e
−α σ= ⋅    TEquation 26T 

where a is a modulation parameter, and σ is the scaling parameter that affects 

the width of the window.  

 



6.2.3.6 Examples 

All of the examples that are given below correspond to real-life non-stationary 

signals. These signals are drawn from a database signals that includes event related 

potentials of normal people, and patients with Alzheimer's disease. Since these are not 

test signals like simple sinusoids, it is not as easy to interpret them. They are shown 

here only to give an idea of how real-life CWTs look like.  

The following signal shown in fig. (60) belongs to a normal person and the 

following is its CWT. The numbers on the axes are of no importance to us. Those 

numbers simply show that the CWT was computed at 350 translation and 60 scale lo-

cations on the translation-scale plane. The important point to note here is the fact that 

the computation is not a true continuous WT, as it is apparent from the computation at 

finite number of locations. This is only a discretized version of the CWT, which is 

explained later on this page. Note, however, that this is NOT discrete wavelet trans-

form (DWT) which is the topic of the clause that follows next.  

 
Figure 60. Event Related Potential Of Normal People 

 

 
Figure 61. CWT Of An Event Related Potential Of Normal People 
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and the fig. (62) plots the same transform from a different angle for better visualiza-

tion.  

 
Figure 62. CWT Of An Event Related Potential Of Normal People from another angle 

 
Fig. (63) plots an event related potential of a patient diagnosed with Alz-

heimer's disease  

 
Figure 63. Event Related Potential Of A Patient Diagnosed With Alzheimer's Disease 

 
and fig. (64) and (65) illustrates its CWT from two different angles:  

 
Figure 64. CWT Of An Event Related Potential Of A Patient Diagnosed With Alzheimer's Dis-

ease 
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Figure 65. CWT Of An Event Related Potential Of A Patient Diagnosed With Alzheimer's Dis-

ease from another angle 

 

6.2.3.7 The Wavelet Synthesis 

The continuous wavelet transform is a reversible transform, provided that eq. 

(28) is satisfied. Fortunately, this is a very non-restrictive requirement. The continu-

ous wavelet transform is reversible if eq. (28) is satisfied, even though the basis func-

tions are in general may not be orthonormal. The reconstruction is possible by using 

the following reconstruction formula:  

x2 2
s

1 1 tx(t) ( ,s) ( )dtds
c s s

ψ

ψ τ

− τ
= Ψ τ ψ∫ ∫   TEquation 27T 

 Inverse Wavelet Transform 

where cBψB is a constant that depends on the wavelet used. The success of the re-

construction depends on this constant called, the admissibility constant, to satisfy the 

following admissibility condition:  
1

2 2^
( )

c 2 d
∝

ψ
−∝

⎧ ⎫
ψ ξ⎪ ⎪⎪ ⎪= π ξ <∝⎨ ⎬ξ⎪ ⎪

⎪ ⎪⎩ ⎭

∫    TEquation 28 

Admissibility Condition 

where 
^

( )ψ ξ is the FT of ψ(t). Eq. (28) implies that 
^

(0)ψ  = 0, which is  

(t)dt 0ψ =∫     Equation 29 

As stated above, eq. (29) is not a very restrictive requirement since many 

wavelet functions can be found whose integral is zero. For eq. (29) to be satisfied, the 

wavelet must be oscillatory.  
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6.2.3.8 Discretization of the Continuous Wavelet Transform: The Wavelet 

Series  

In today's world, computers are used to do most computations (well,...ok... al-

most all computations). It is apparent that neither the FT, nor the STFT, nor the CWT 

can be practically computed by using analytical equations, integrals, etc. It is therefore 

necessary to discretize the transforms. As in the FT and STFT, the most intuitive way 

of doing this is simply sampling the time-frequency (scale) plane. Again intuitively, 

sampling the plane with a uniform sampling rate sounds like the most natural choice. 

However, in the case of WT, the scale change can be used to reduce the sampling rate.  

At higher scales (lower frequencies), the sampling rate can be decreased, ac-

cording to Nyquist's rule. In other words, if the time-scale plane needs to be sampled 

with a sampling rate of NB1 B at scale sB1 B, the same plane can be sampled with a sampling 

rate of NB2 B , at scale sB2 B , where, s B1B < s B2B (corresponding to frequencies f1>f2 ) and NB2 B < 

NB1 B  . The actual relationship between NB1 B and NB2 B is 

1
2 1

2

sN N
s

=     Equation 30 

or  

1
2 1

2

fN N
f

=     Equation 31 

In other words, at lower frequencies the sampling rate can be decreased which 

will save a considerable amount of computation time.  

It should be noted at this time, however, that the discretization can be done in 

any way without any restriction as far as the analysis of the signal is concerned. If 

synthesis is not required, even the Nyquist criteria does not need to be satisfied. The 

restrictions on the discretization and the sampling rate become important if, and only 

if, the signal reconstruction is desired. Nyquist's sampling rate is the minimum sam-

pling rate that allows the original continuous time signal to be reconstructed from its 

discrete samples. The basis vectors that are mentioned earlier are of particular impor-

tance for this reason.  

As mentioned earlier, the wavelet ψ(τ,s) satisfying eq. (28), allows reconstruc-

tion of the signal by eq. (27). However, this is true for the continuous transform. The 

question is: can we still reconstruct the signal if we discretize the time and scale pa-

rameters? The answer is ``yes'', under certain conditions. 



The scale parameter s is discretized first on a logarithmic grid. The time pa-

rameter is then discretized with respect to the scale parameter, i.e., a different sam-

pling rate is used for every scale. In other words, the sampling is done on the dyadic 

sampling grid shown in fig. (66).  

 
Figure 66. Dyadic Sampling Grid 

Think of the area covered by the axes as the entire time-scale plane. The CWT 

assigns a value to the continuum of points on this plane. Therefore, there are an infi-

nite number of CWT coefficients. First consider the discretization of the scale axis. 

Among that infinite number of points, only a finite number are taken, using a loga-

rithmic rule. The base of the logarithm depends on the user. The most common value 

is 2 because of its convenience. If 2 is chosen, only the scales 2, 4, 8, 16, 32, 64...etc. 

are computed. If the value was 3, the scales 3, 9, 27, 81, 243...etc. would have been 

computed. The time axis is then discretized according to the discretization of the scale 

axis. Since the discrete scale changes by factors of 2, the sampling rate is reduced for 

the time axis by a factor of 2 at every scale.  

Note that at the lowest scale (s=2), only 32 points of the time axis are sampled 

(for the particular case given in fig. (66)). At the next scale value, s=4, the sampling 

rate of time axis is reduced by a factor of 2 since the scale is increased by a factor of 

2, and therefore, only 16 samples are taken. At the next step, s=8 and 8 samples are 

taken in time, and so on.  

Although it is called the time-scale plane, it is more accurate to call it the 

translation-scale plane, because “time” in the transform domain actually corresponds 

 103



 104

to the shifting of the wavelet in time. For the wavelet series, the actual time is still 

continuous.  

Similar to the relationship between continuous Fourier transform, Fourier se-

ries and the discrete Fourier transform, there is a continuous wavelet transform, a 

semi-discrete wavelet transform (also known as wavelet series) and a discrete wavelet 

transform.  

Expressing the above discretization procedure in mathematical terms, the scale 

discretization is s = j
0s , and translation discretization is τ=k· j

0s ·τB0 B where sB0 B>1 and 

τB0 B>0. Note, how the translation discretization is dependent on scale discretization with  

s B0B.  

The continuous wavelet function 

,s
1 t( )

ssτ
− τ

ψ = ψ                    Equation 32 

0

j
j2

j,k 0 0s (s t k )
− −ψ = ψ − τ               Equation 33 

by inserting s =
0

js , and τ= k·
0

js τB0 B .  

If { j,kψ } constitutes an orthonormal basis, the wavelet series transform be-

comes  

j,k
*

x j,k
x(t) (t)dtψΨ = ψ∫    Equation 34 

or  
j,k

x j,k
J k

x(t) c (t)ψ
ψ= Ψ ψ∑∑   Equation 35 

A wavelet series requires that {ψB(j,k)B} are either orthonormal, biorthogonal, or 

frame. If {ψ B(j,k)B} are not orthonormal, eq. (34) becomes  

j,k
^

*
x j,kx(t) (t)dtψΨ = ψ∫    Equation 36 

where {
^

*
j,k (t)ψ } , is either the dual biorthogonal basis or dual frame (Note that 

* denotes the conjugate).  

If {ψB(j,k)B} are orthonormal or biorthogonal, the transform will be non-

redundant, where as if they form a frame, the transform will be redundant. On the 

other hand, it is much easier to find frames than it is to find orthonormal or biorthogo-

nal bases.  
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The following analogy may clear this concept. Consider the whole process as 

looking at a particular object. The human eyes first determine the coarse view which 

depends on the distance of the eyes to the object. This corresponds to adjusting the 

scale parameter 
0

js− . When looking at a very close object, with great detail, j is nega-

tive and large (low scale, high frequency, analyses the detail in the signal). Moving 

the head (or eyes) very slowly and with very small increments (of angle, of distance, 

depending on the object that is being viewed), corresponds to small values of τ= 

k·
0

js τB0 B . Note that when j is negative and large, it corresponds to small changes in 

time, tau , (high sampling rate) and large changes in 
0

js−  (low scale, high frequencies, 

where the sampling rate is high). The scale parameter can be thought of as magnifica-

tion too.  

How low can the sampling rate be and still allow reconstruction of the signal? 

This is the main question to be answered to optimize the procedure. The most conven-

ient value (in terms of programming) is found to be “2” for sB0B and “1” for τ. Obvi-

ously, when the sampling rate is forced to be as low as possible, the number of avail-

able orthonormal wavelets is also reduced.  

The continuous wavelet transform examples that were given in this chapter 

were actually the wavelet series of the given signals. The parameters were chosen de-

pending on the signal. Since the reconstruction was not needed, the sampling rates 

were sometimes far below the critical value where sB0 B varied from 2 to 10, and τB0 B var-

ied from 2 to 8, for different examples.  

This concludes the basic theory on the Wavelet Transform, however there is 

one thing left to be discussed. Even though the discretized wavelet transform can be 

computed on a computer, this computation may take anywhere from a couple seconds 

to couple hours depending on your signal size and the resolution you want. An amaz-

ingly fast algorithm is actually available to compute the wavelet transform of a signal. 

The discrete wavelet transform (DWT) is introduced in the next and final clause of 

this section. 

6.2.3.9 Discrete Wavelet Transform 

Although the discretized continuous wavelet transform enables the computa-

tion of the continuous wavelet transform by computers, it is not a true discrete trans-

form. As a matter of fact, the wavelet series is simply a sampled version of the CWT, 



and the information it provides is highly redundant as far as the reconstruction of the 

signal is concerned. This redundancy, on the other hand, requires a significant amount 

of computation time and resources. The discrete wavelet transform (DWT), on the 

other hand, provides sufficient information both for analysis and synthesis of the 

original signal, with a significant reduction in the computation time. 

The DWT is considerably easier to implement when compared to the CWT. 

The basic concepts of the DWT will be introduced in this section along with its prop-

erties and the algorithms used to compute it. As in the previous chapters, examples are 

provided to aid in the interpretation of the DWT. 

 The foundations of the DWT go back to 1976 when Croiser, Esteban, and 

Galand devised a technique to decompose discrete time signals. Crochiere, Weber, 

and Flanagan did a similar work on coding of speech signals in the same year. They 

named their analysis scheme as subband coding. In 1983, Burt defined a technique 

very similar to subband coding and named it pyramidal coding which is also known as 

multiresolution analysis. Later in 1989, Vetterli and Le Gall made some improve-

ments to the subband coding scheme, removing the existing redundancy in the py-

ramidal coding scheme. Subband coding is explained below. A detailed coverage of 

the discrete wavelet transform and theory of multiresolution analysis can be found in a 

number of articles and books that are available on this topic, and it is beyond the 

scope of this paper.  

6.2.3.10 The Subband Coding and The Multiresolution Analysis  

The main idea is the same as it is in the CWT. A time-scale representation of a 

digital signal is obtained using digital filtering techniques. Recall that the CWT is a 

correlation between a wavelet at different scales and the signal with the scale (or the 

frequency) being used as a measure of similarity. The continuous wavelet transform 

was computed by changing the scale of the analysis window, shifting the window in 

time, multiplying by the signal, and integrating over all times. In the discrete case, 

filters of different cutoff frequencies are used to analyze the signal at different scales. 

The signal is passed through a series of high pass filters to analyze the high frequen-

cies, and it is passed through a series of low pass filters to analyze the low frequen-

cies. 

The resolution of the signal, which is a measure of the amount of detail infor-

mation in the signal, is changed by the filtering operations, and the scale is changed 
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by upsampling and downsampling (subsampling) operations. Subsampling a signal 

corresponds to reducing the sampling rate, or removing some of the samples of the 

signal. For example, subsampling by two refers to dropping every other sample of the 

signal. Subsampling by a factor n reduces the number of samples in the signal n times. 

Upsampling a signal corresponds to increasing the sampling rate of a signal by 

adding new samples to the signal. For example, upsampling by two refers to adding a 

new sample, usually a zero or an interpolated value, between every two samples of the 

signal. Upsampling a signal by a factor of n increases the number of samples in the 

signal by a factor of n. 

Although it is not the only possible choice, DWT coefficients are usually sam-

pled from the CWT on a dyadic grid, i.e., s B0 B = 2 and τ B0 B = 1, yielding s=2 P

j
P and τ =k·2P

j
P, 

as described in the previous clause. Since the signal is a discrete time function, the 

terms function and sequence will be used interchangeably in the following discussion. 

This sequence will be denoted by x[n], where n is an integer. 

The procedure starts with passing this signal (sequence) through a half band 

digital lowpass filter with impulse response h(n). Filtering a signal corresponds to the 

mathematical operation of convolution of the signal with the impulse response of the 

filter. The convolution operation in discrete time is defined as follows: 

k
x(n) h(n) x(k) h(n k)

∝

=−∝

∗ = ⋅ −∑       Equation 37 

A half band lowpass filter removes all frequencies that are above half of the 

highest frequency in the signal. For example, if a signal has a maximum of 1000 Hz 

component, then half band lowpass filtering removes all the frequencies above 500 

Hz.  

The unit of frequency is of particular importance at this time. In discrete sig-

nals, frequency is expressed in terms of radians. Accordingly, the sampling frequency 

of the signal is equal to 2π radians in terms of radial frequency. Therefore, the highest 

frequency component that exists in a signal will be π radians, if the signal is sampled 

at Nyquist’s rate (which is twice the maximum frequency that exists in the signal); 

that is, the Nyquist’s rate corresponds to π rad/s in the discrete frequency domain. 

Therefore using Hz is not appropriate for discrete signals. However, Hz is used when-

ever it is needed to clarify a discussion, since it is very common to think of frequency 
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in terms of Hz. It should always be remembered that the unit of frequency for discrete 

time signals is radians. 

After passing the signal through a half band lowpass filter, half of the samples 

can be eliminated according to the Nyquist’s rule, since the signal now has a highest 

frequency of π/2 radians instead of π radians. Simply discarding every other sample 

will subsample the signal by two, and the signal will then have half the number of 

points. The scale of the signal is now doubled. Note that the lowpass filtering removes 

the high frequency information, but leaves the scale unchanged. Only the subsampling 

process changes the scale. Resolution, on the other hand, is related to the amount of 

information in the signal, and therefore, it is affected by the filtering operations. Half 

band lowpass filtering removes half of the frequencies, which can be interpreted as 

losing half of the information. Therefore, the resolution is halved after the filtering 

operation. Note, however, the subsampling operation after filtering does not affect the 

resolution, since removing half of the spectral components from the signal makes half 

the number of samples redundant anyway. Half the samples can be discarded without 

any loss of information. In summary, the lowpass filtering halves the resolution, but 

leaves the scale unchanged. The signal is then subsampled by 2 since half of the num-

ber of samples are redundant. This doubles the scale.  

This procedure can mathematically be expressed as 

k
y(n) h(k) x(2n k)

∝

=−∝

= ⋅ −∑    Equation 38 

Having said that, we now look how the DWT is actually computed: The DWT 

analyzes the signal at different frequency bands with different resolutions by decom-

posing the signal into a coarse approximation and detail information. DWT employs 

two sets of functions, called scaling functions and wavelet functions, which are asso-

ciated with low pass and highpass filters, respectively. The decomposition of the sig-

nal into different frequency bands is simply obtained by successive highpass and low-

pass filtering of the time domain signal. The original signal x(n) is first passed 

through a halfband highpass filter g(n) and a lowpass filter h(n). After the filtering, 

half of the samples can be eliminated according to the Nyquist’s rule, since the signal 

now has a highest frequency of π /2 radians instead of π. The signal can therefore be 

subsampled by 2, simply by discarding every other sample. This constitutes one level 

of decomposition and can mathematically be expressed as follows:  
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high
n

y (k) x(n) g(2k n)= ⋅ −∑    Equation 39 

low
n

y (k) x(n) h(2k n)= ⋅ −∑    Equation 40 

where yBhighB(k) and yBlowB(k) are the outputs of the highpass and lowpass filters, 

respectively, after subsampling by 2.  

 
Figure 67. The Subband Coding Algorithm 

 
This decomposition halves the time resolution since only half the number of 

samples now characterizes the entire signal. However, this operation doubles the fre-

quency resolution, since the frequency band of the signal now spans only half the pre-

vious frequency band, effectively reducing the uncertainty in the frequency by half. 

The above procedure, which is also known as the subband coding, can be repeated for 

further decomposition. At every level, the filtering and subsampling will result in half 
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the number of samples (and hence half the time resolution) and half the frequency 

band spanned (and hence double the frequency resolution). Fig. (67) illustrates this 

procedure, where x(n) is the original signal to be decomposed, and h(n) and g(n) are 

lowpass and highpass filters, respectively. The bandwidth of the signal at every level 

is marked on the figure as “f”.  

As an example, suppose that the original signal x(n) has 512 sample points, 

spanning a frequency band of zero to π rad/s. At the first decomposition level, the sig-

nal is passed through the highpass and lowpass filters, followed by subsampling by 2. 

The output of the highpass filter has 256 points (hence half the time resolution), but it 

only spans the frequencies π/2 to π rad/s (hence double the frequency resolution). 

These 256 samples constitute the first level of DWT coefficients. The output of the 

lowpass filter also has 256 samples, but it spans the other half of the frequency band, 

frequencies from 0 to π/2 rad/s. This signal is then passed through the same lowpass 

and highpass filters for further decomposition. The output of the second lowpass filter 

followed by subsampling has 128 samples spanning a frequency band of 0 to π/4 

rad/s, and the output of the second highpass filter followed by subsampling has 128 

samples spanning a frequency band of π/4 to π/2 rad/s. The second highpass filtered 

signal constitutes the second level of DWT coefficients. This signal has half the time 

resolution, but twice the frequency resolution of the first level signal. In other words, 

time resolution has decreased by a factor of 4, and frequency resolution has increased 

by a factor of 4 compared to the original signal. The lowpass filter output is then fil-

tered once again for further decomposition. This process continues until two samples 

are left. For this specific example there would be 8 levels of decomposition, each hav-

ing half the number of samples of the previous level. The DWT of the original signal 

is then obtained by concatenating all coefficients starting from the last level of de-

composition (remaining two samples, in this case). The DWT will then have the same 

number of coefficients as the original signal.  

The frequencies that are most prominent in the original signal will appear as 

high amplitudes in that region of the DWT signal that includes those particular fre-

quencies. The difference of this transform from the Fourier transform is that the time 

localization of these frequencies will not be lost. However, the time localization will 

have a resolution that depends on which level they appear. If the main information of 

the signal lies in the high frequencies, as happens most often, the time localization of 



these frequencies will be more precise, since they are characterized by more number 

of samples. If the main information lies only at very low frequencies, the time local-

ization will not be very precise, since few samples are used to express signal at these 

frequencies. This procedure in effect offers a good time resolution at high frequencies, 

and good frequency resolution at low frequencies. Most practical signals encountered 

are of this type.  

The frequency bands that are not very prominent in the original signal will 

have very low amplitudes, and that part of the DWT signal can be discarded without 

any major loss of information, allowing data reduction. Fig. (68) illustrates an exam-

ple of how DWT signals look like and how data reduction is provided. Fig. (68.a) 

shows a typical 512-sample signal that is normalized to unit amplitude. The horizontal 

axis is the number of samples, whereas the vertical axis is the normalized amplitude. 

Fig. (68.b) shows the 8 level DWT of the signal in fig. (68.a.) The last 256 samples in 

this signal correspond to the highest frequency band in the signal, the previous 128 

samples correspond to the second highest frequency band and so on. It should be 

noted that only the first 64 samples, which correspond to lower frequencies of the 

analysis, carry relevant information and the rest of this signal has virtually no infor-

mation. Therefore, all but the first 64 samples can be discarded without any loss of 

information. This is how DWT provides a very effective data reduction scheme. 
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Figure 68.a,b  Example of a DWT 

 
We will revisit this example, since it provides important insight to how DWT 

should be interpreted. Before that, however, we need to conclude our mathematical 

analysis of the DWT.  

One important property of the discrete wavelet transform is the relationship 

between the impulse responses of the highpass and lowpass filters. The highpass and 

lowpass filters are not independent of each other, and they are related by  

g(L-1-n)=(-1) P

n
P·h(n)   Equation 41 

where g(n) is the highpass, h(n) is the lowpass filter, and L is the filter length 

(in number of points). Note that the two filters are odd index alternated reversed ver-

sions of each other. Lowpass to highpass conversion is provided by the (-1)P

n
P term. Fil-

ters satisfying this condition are commonly used in signal processing, and they are 

known as the Quadrature Mirror Filters (QMF). The two filtering and subsampling 

operations can be expressed by  

high
n

y (k) x(n) g( n 2k)= ⋅ − +∑   Equation 42 

low
n

y (k) x(n) g( n 2k)= ⋅ − +∑     Equation 43 
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The reconstruction in this case is very easy since halfband filters form or-

thonormal bases. The above procedure is followed in reverse order for the reconstruc-

tion. The signals at every level are upsampled by two, passed through the synthesis 

filters g’(n), and h’(n) (highpass and lowpass, respectively), and then added. The in-

teresting point here is that the analysis and synthesis filters are identical to each other, 

except for a time reversal. Therefore, the reconstruction formula becomes (for each 

layer) 

high low
k

x(n) (y (k) g( n 2k) y (k) h( n 2k))
∝

=−∝

= ⋅ − + + ⋅ − +∑  Equation 44 

However, if the filters are not ideal halfband, then perfect reconstruction can-

not be achieved. Although it is not possible to realize ideal filters, under certain condi-

tions it is possible to find filters that provide perfect reconstruction. The most famous 

ones are the ones developed by Ingrid Daubechies, and they are known as Daube-

chies’ wavelets, which by the way are used on the mathematical examples of this pa-

per.  

Note that due to successive subsampling by 2, the signal length must be a 

power of 2, or at least a multiple of power of 2, in order this scheme to be efficient. 

The length of the signal determines the number of levels that the signal can be de-

composed to. For example, if the signal length is 1024, ten levels of decomposition 

are possible.  

Interpreting the DWT coefficients can sometimes be rather difficult because 

the way DWT coefficients are presented is rather peculiar. To make a real long story 

real short, DWT coefficients of each level are concatenated, starting with the last 

level. An example is in order to make this concept clear:  

Suppose we have a 256-sample long signal sampled at 10 MHZ and we wish 

to obtain its DWT coefficients. Since the signal is sampled at 10 MHz, the highest 

frequency component that exists in the signal is 5 MHz. At the first level, the signal is 

passed through the lowpass filter h(n), and the highpass filter g(n), the outputs of 

which are subsampled by two. The highpass filter output is the first level DWT coef-

ficients. There are 128 of them, and they represent the signal in the [2.5 5] MHz 

range. These 128 samples are the last 128 samples plotted. The lowpass filter output, 

which also has 128 samples, but spanning the frequency band of [0 2.5] MHz, are fur-

ther decomposed by passing them through the same h(n) and g(n). The output of the 

second highpass filter is the level 2 DWT coefficients and these 64 samples precede 



the 128 level 1 coefficients in the plot. The output of the second lowpass filter is fur-

ther decomposed, once again by passing it through the filters h(n) and g(n). The out-

put of the third highpass filter is the level 3 DWT coefficiets. These 32 samples pre-

cede the level 2 DWT coefficients in the plot.  

The procedure continues until only 1 DWT coefficient can be computed at 

level 9. This one coefficient is the first to be plotted in the DWT plot. This is followed 

by 2 level 8 coefficients, 4 level 7 coefficients, 8 level 6 coefficients, 16 level 5 coef-

ficients, 32 level 4 coefficients, 64 level 3 coefficients, 128 level 2 coefficients and 

finally 256 level 1 coefficients. Note that less and less number of samples is used at 

lower frequencies, therefore, the time resolution decreases as frequency decreases, but 

since the frequency interval also decreases at low frequencies, the frequency resolu-

tion increases. Obviously, the first few coefficients would not carry a whole lot of in-

formation, simply due to greatly reduced time resolution. To illustrate this richly bi-

zarre DWT representation let us take a look at a real world signal. Our original signal 

is a 256-sample long ultrasonic signal, which was sampled at 25 MHz. This signal 

was originally generated by using a 2.25 MHz transducer, therefore the main spectral 

component of the signal is at 2.25 MHz. The last 128 samples correspond to [6.25 

12.5] MHz range. As seen from the plot, no information is available here, hence these 

samples can be discarded without any loss of information. The preceding 64 samples 

represent the signal in the [3.12 6.25] MHz range, which also does not carry any sig-

nificant information. The little glitches probably correspond to the high frequency 

noise in the signal. The preceding 32 samples represent the signal in the [1.5 3.1] 

MHz range. As you can see, the majority of the signal’s energy is focused in these 32 

samples, as we expected to see. The previous 16 samples correspond to [0.75 1.5] 

MHz and the peaks that are seen at this level probably represent the lower frequency 

envelope of the signal. The previous samples probably do not carry any other signifi-

cant information. It is safe to say that we can get by with the 3rd and 4th level coeffi-

cients, that is we can represent this 256 sample long signal with 16+32=48 samples, a 

significant data reduction which would make your computer quite happy.   

One area that has benefited the most from this particular property of the wave-

let transforms is image processing. As you may well know, images, particularly high-

resolution images, claim a lot of disk space. As a matter of fact, if a web page is tak-

ing a long time to download, that is mostly because of the images. DWT can be used 

to reduce the image size without losing much of the resolution. Here is how:  
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For a given image, you can compute the DWT of, say each row, and discard 

all values in the DWT that are less then a certain threshold. We then save only those 

DWT coefficients that are above the threshold for each row, and when we need to re-

construct the original image, we simply pad each row with as many zeros as the num-

ber of discarded coefficients, and use the inverse DWT to reconstruct each row of the 

original image. We can also analyze the image at different frequency bands, and re-

construct the original image by using only the coefficients that are of a particular 

band. I will try to put sample images hopefully soon, to illustrate this point. 
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7 Application and Results  

The purpose of this thesis, as written in the beginning, was to find, present and 

test three power quality monitoring algorithms on real signals. By real signals it is 

meant signals that are taken from a real power system, to be precise from the Power 

Supply Station in Katsampas at Heraklion, Crete, via the 5500 Series DualNode, and 

not artificially implemented in the lab by a simulation program. As it will be distinct 

on the graphs taken from the capacitors’ 13.8kV busbar of the facility that will be pre-

sented later on, there is a great difference between a simulated signal and a real one. 

The reason is that the simulated signal is pure and any disturbance can be easily be 

detected by most of the classification methods, even the less sophisticated ones. 

Moreover, if there is any noise inserted in the signal in order to lose its purity, it can 

easily be detected and isolated as it is created by an algorithm with a logical, mathe-

matical, way that can be localized by the classification algorithm. However, if the sig-

nal has random noise by its own, like notching for example, that has been inserted to 

it by the Power System itself then it is very difficult, and in some case even more im-

possible, to “purify” it in order to detect the disturbance and only the disturbance. 

Thus more effective and robust algorithms need to be mobilized in order to be able to 

separate, in the monitored signal, the disturbance from the noise that even though it 

exists in the signal, it fluctuates in such low levels that does not allow it to be charac-

terised as a disturbance.  

The three algorithms that were finally selected and implemented are:  

 “Adaline”, which, as presented earlier is a neural network structure 

 “Wavelet-Based PNN, Probabilistic Neural Network”, which is also a neural 

network structure, and finally the 

 “Wavelet-Based ANFIS, Adaptive Neuro-Fuzzy Inference System” which is a 

fuzzy network structure.  

The criteria based on which those algorithms were selected, were firstly that 

they should be relatively recent. It is obvious that the use of algorithms that are out-

of-date, is, if nothing else, useless. Another criterion was that the algorithms should be 

as fast as possible, at least during the laboratory experiments. That was because it is 

essential to detect and point out the disturbance during its occurrence, so if any ac-

tions were to be made, they would be made instantly.  Finally, the algorithms should 



be flexible enough in order to be able to distinguish the noise in the signal, which is 

inserted by the Power System itself and is not a disturbance, from a small disturbance 

when it happens.  

Let’s see now how those techniques are being utilized in the service of power 

quality monitoring. 

7.1.1 Power Quality Event Detection Using Adaline 

The purpose of this chapter is to introduce a simple, yet rigorous Adaline 

technique as a tool for power quality event detection. The simplicity introduced by 

this technique is due to the ease in calculations that facilitates its hardware implemen-

tation. The simplicity of the Adaline makes it a very competitive choice for the algo-

rithms currently used in power quality instrumentation.  

7.1.1.1 Adaline architecture 

Artificial neural networks have been extensively used in power system appli-

cations including classification of different power quality phenomena (76) and moni-

toring of power system operation (77). The Adaline can be thought of as the smallest, 

linear building block of the artificial neural networks. Adaline had been applied suc-

cessfully in many power applications, including harmonic estimation (78), frequency 

deviation estimation (79) and feature extraction (80, 81). In this section, Adaline is 

introduced as an efficient tool for disturbance detection. An Adaline is a p-input, sin-

gle-output, signal-processing element, which can be thought of as a simple model of a 

non-branching biological neuron. Graphically, an artificial neuron is represented by 

the construction shown in fig. (69), where y is the Adaline output, W is the weight 

matrix and X is the Adaline input matrix.  

 
Figure 69. Adaline Construction 
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7.1.1.2 Adaline training 

Training is the process of tuning the weights of the Adaline so that its output 

matches a desired outcome. The main advantage of the Adaline architecture is the 

ability of the Adaline to be trained on-line, eliminating the need for repetitive off-line 

training. Although most neural networks have the ability of on-line training, the 

Adaline is superior because of its simple structure and speed. The training process is 

carried out by minimizing a performance criterion J(w), which represents the sum of 

the squared error over the whole training patterns N. Mathematically J(w) is expressed 

as:  

2 T

N

1 1J(w) E(k) e e
N 2N

= = ⋅∑  Equation 45 

where the output error is given as: 
^

e(k) y(k) y(k)= −    Equation 46 

After a brief mathematical operation, eq. (45) could be simplified in the fol-

lowing form:  
2

T T1 || D ||J(w) ( 2qw wRw )
2 N

= − +   Equation 47 

where q=/(D·/XP

T
P)/N, the 1 x /p cross-correlation vector and  R=/(X ·//XP

T
P)/N, the 

p x /p input correlation matrix. In order to find the optimal weight vector which mini-

mizes the mean-squared error, J(w), the gradient of J with respect to w should be cal-

culated as:  

1 P

J JJ(w) J q wR
w w w

⎡ ⎤∂ ∂ ∂
∇ = = ⋅⋅⋅ = − +⎢ ⎥∂ ∂ ∂⎣ ⎦

  Equation 48 

Setting the gradient of mean square error equal to zero, then: 

opt0 q w R= − +     Equation 49 

where wBoptB is the optimum weight matrix. Calculation of the optimal weights, 

which minimize the performance index, J(w), is mathematically demanding because 

of the calculation of the correlation matrices, q and R in addition to the inversion of 

the input correlation matrix. In order to avoid matrix inversion, the optimal weight  

vector for which performance index, J(w), attains a minimum value should be found. 

This task is achieved through an iterative modification of the weight vector for each 

training example in the direction opposite to the gradient of the performance index, 

J(w). This procedure is known as the steepest decent method (82,83). Once the weight 



 119

vector attains the optimal value for which the gradient is zero, the iteration process is 

terminated. More precisely, the iterations are specified as: 

w(k 1) w(k) w(k)+ = + ∆    Equation 50 

where the weight adjustment, ∆w(n) is proportional to the gradient of the 

mean-squared error: 

w(k) n J(w(k))= − ∇    Equation 51 

where n is the learning rate of the Adaline. 

In order to further simplify the calculations, the least mean- square learning 

law (LMS) replaces the gradient of the mean-squared error in eq. (51) with the gradi-

ent update is driven in the following form: 
Tw(k 1) w(k) ne(k)x (k)+ = +   Equation 52 

7.1.1.3 Power Quality Event Detection Using Adaline 

The idea behind using the Adaline in detection of power quality disturbances 

is to represent the Adaline as an adaptive signal predictor. The input to this predictor 

is time-delayed samples of the signal and the output of the Adaline is the predicted 

value of the signal. The Adaline algorithm possesses a highly tracking capability. Yet 

when a power quality disturbance occurs, the abrupt change in the signal gives rise to 

the error signal generated by the Adaline and the weight values experience variation 

until it settles down to the new values. Both the alterations in the error signal and the 

sum of the variation of the weight values can aid in the detection of power quality 

events. This algorithm is described in fig. 70.  



 
Figure 70. Adaline Based Detection Scheme 

The following section demonstrates the capability of the Adaline in detecting 

power quality disturbances. In order to accomplish this task, different power quality 

events has been simulated using Matlab 6.0 software. Initially, the number of inputs to 

the Adaline P was chosen to be four. These inputs represent the most recent samples 

of the voltage. The Adaline learning rate n was chosen to be equal to 0.4. It was found 

that the performance of the Adaline is highly dependent on the chosen number of in-

puts and learning rate. Therefore, the rule of choosing an appropriate value for those 

two variables is investigated in a later section. The sampling frequency was chosen to 

be equal to f = /60 sample per cycle during all numerical examples.  

7.1.1.4 Numerical examples 

 In order to obtain representative signals for the most common power quality 

events to serve the purpose of testing the Adaline detector, power quality event simu-

lations were created mathematically. Five categories of events have been simulated, 

namely, sudden sag, sudden swell, harmonics, oscillatory transient and interruptions. 

These waveforms have been generated at a sampling rate of 7680 Hz. In order to cre-

ate different waveforms for each disturbance category, some unique parameters for 

each disturbance type have been introduced. Parameters, such as magnitude, duration, 

frequency and damping, were implemented.  
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7.1.1.4.1 Voltage sag 

According to IEEE 1159-1995 standards, voltage sag is a sudden reduction 

(between 10 and 90%) of the voltage magnitude at a point in the electric system and 

lasting from 0.5 cycles to a few seconds. Either switching operations or any type of 

fault as well as fault clearing process can cause a voltage dip. 

 
Figure 71. Voltage Sag Event (a) Input Voltage Signal, (b) Predicted Signal, (c) Error Signal, (d) 

Square Root Of Absolute Error 

Fig. (71a, b) shows the input voltage and the predicted signal waveforms for 

typical sag. The corresponding error signal (difference between the actual and pre-

dicted signals) and the square root of it are shown in fig. (71.c, d), respectively. The 

square root of the error signal is added just to magnify the effect and make it visual. 

As shown in fig. (71.d), there are two large spikes associated with the sag start and 

end. In actual power system, this separation should be clustered most of the time 

around the time of the operation of protective relays.   

7.1.1.4.2 Voltage swell 
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According to IEEE 1159-1995 standards, voltage swells are defined as an in-

crease of the supply voltage between 1.1 and 1.8 from its normal rated rms value. The 

duration of any voltage swell is typically between 0.5 cycles up to 1 min. Voltage 

swell may appear due to switching off large loads or large capacitor energizing. 

Moreover, during single line to ground faults, the unfaulted phases may experience a 

voltage swell. Voltage swell may cause damage to electronic equipment and may 

cause redundant protective relays operation. 

 
Figure 72. Voltage Swell Event (a) Input Voltage Signal, (b) Predicted Signal, (c) Error Signal, 

(d) Square Root Of Absolute Error 

Fig. (72.a, b) shows the input voltage and the predicted signal waveforms for a 

typical swell. The corresponding error signal and the square root of the error signal 

are shown in fig. (72.c, d), respectively. Fig. (72) offers a precise determination of the 

start and the end of the voltage swell using the square root of the absolute value of the 

prediction error generated from Adaline.  

7.1.1.4.3 Momentary interruptions 
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According to IEEE 1159-1195 standards, a momentary interruption belongs to 

short duration voltage variation. During momentary interruptions, the supply voltage 

reaches a value <10% of its normal rated rms value. Momentary interruptions may 

occur due to power system faults or equipment breakdown. As in the case of swell 

and sag, interruption is associated with two spikes denoting the start and end instant , 

as shown in fig. (73).  

 
Figure 73. Voltge Momentary Interruption Event (a) Input Voltage Signal, (b) Predicted Signal, 

(c) Error Signal, (d) Square Root Of Absolute Error 

7.1.1.4.4 Harmonics 

Harmonics are sinusoidal voltages or currents having frequencies that are mul-

tiple of the fundamental system frequency. Distorted waveforms could be decom-

posed into a sum of fundamental frequency and harmonics. Harmonic distortion 

originates from the nonlinear characteristics of devices and loads on the power sys-

tem. Harmonic distortion levels are described by the complete harmonic spectrum 

with magnitudes and phase angle of each harmonic component. Fig. (74) shows the 

input and the predicted voltage waveforms for a typical signal contaminated with 

harmonic distortion. In addition, fig. (74) offers the corresponding error signal and the 
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square root of the error signal. The presence of the harmonics in the waveform re-

sulted in sustained oscillations, as shown in fig. (74.d). 

 
Figure 74. Voltge Harmonic Event (a) Input Voltage Signal, (b) Predicted Signal, (c) Error Sig-

nal, (d) Square Root Of Absolute Error 

7.1.1.4.5 Transient 

Transients are one of the most important and severe power quality events that 

lead to malfunction of electronic equipment. Transients can be originated from surges, 

huge motors starting or utility capacitor switching. These transients can be detected by 

the presence of large spikes on the square root of the error signal produced by the 

Adaline, as shown in fig. (75).  

 

 

 

 

  

 124



 
Figure 75. Voltge Transient Event (a) Input Voltage Signal, (b) Predicted Signal, (c) Error Signal, 

(d) Square Root Of Absolute Error 

7.1.1.4.6 Combined Events 

In this clause, a combined scenario is assumed to validate the continuous op-

eration of the Adaline. Figure 76 shows a voltage waveform, which is contaminated 

with harmonics and is subjected to transient and interruption events. The correspond-

ing prediction error signal is given in figure 76(c, d). The variation of the square root 

of the error signal represents a good indication to detect different power quality phe-

nomena, as shown in fig. (76). 
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Figure 76. Combined Disturbance Events (a) Input Voltage Signal, (b) Predicted Signal, (c) Error 

Signal, (d) Square Root Of Absolute Error 

7.1.1.5 Sensitivity analysis 

There are two major variables which controls the Adaline performance in de-

tecting power quality events. These factors are the learning rate h and the number of 

inputs P introduced to the Adaline. The following section is dictated to explore the 

effect of changing both h and P on the Adaline accuracy in detecting the power qual-

ity disturbances. 

7.1.1.5.1 Effect of learning rate (h) 

Changing of the learning rate has a direct effect on the detection process. 

Small learning rates will lead to small error signal and a small variation of the sum of 

the weight when an abrupt change occurs to the system. This might lead to an error 

signal appearing in normal operation of power distribution system. On the other hand, 

large learning rates produce a large error signal and large variation of sum of the 

weight. Yet, caution should be taken because this may lead the Adaline to lose its 

ability to track the signal if the learning rate is chosen too high. It was found that a 
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learning rate h falling between 0.3 and 0.6 yields the most accurate results for detec-

tion of power quality events. In order to study the effect of the learning rate on the 

Adaline performance, a voltage signal contaminated with harmonic distortion was 

utilized. The learning rate is varied while keeping the number of inputs to the Adaline 

constant.  

 
Figure 77. Effect Of Learning Rate On Adaline Operation 

Fig. (77) shows the effect of changing the learning rate on the error signal. As 

can be observed from the graphs, learning rate around 0.4 is the most suitable to 

achieve the desired detection task with the highest accuracy. It should be noted that at 

n=/0.7, a large spike occurs in the error signal indicating an unstable system operation. 

Consequently, the Adaline will fail to track the dynamics of the system.  

7.1.1.5.2 Effect of choosing P 

The effect of changing the number of inputs to the Adaline P on the Adaline 

performance is carried out while keeping the learning rate constant at 0.4. The value 

of P is allowed to vary between 2 and 10. It was found that a small value of P, such as 

2, would result in a negligible and unnoticeable error signal due to the lack of interac-

tion with the change in the power signal. This will lead to poor identification process. 
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On the other hand, utilizing large number of inputs might lead to model over fitting 

resulting in poor results. A reasonable range of inputs was found to range between 3 

and 6. Fig. (78) presents the results for Adaline inputs of 2, 4, 6, 8 and 10, respec-

tively. 

 
Figure 78. Effect Of Chosing Number Of Inputs On Adaline Operation 

 

7.1.1.6 Testing 

The algorithm was rigorously tested utilizing the Series 5500 DualNode on the 

Public Power Constitution at Katsampas at Heraklion, Crete. The DataNode was con-

nected at the capacitors’ 13.8kV busbar of the facility, via the current and voltage 

pods, the set up of the InfoNode was made according to the IEEE standards, described 

earlier regarding all the disturbance events, the data were obtained by the use of the 

program Dranview and were finally processed on Matlab 6.5v. Unfortunately due to 

technical difficulties, regarding the time of its use, the only disturbances that were re-

corded and afterwards processed involved swells, sags and transients. That is the rea-

son why the experimental results, presented later on relate only to these three catego-

ries of power disturbance events.  
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7.1.1.6.1 Sag detection in harmonic contaminated signal 

The first study carried out on this system was to detect the occurrence of volt-

age sag. The sag is created on the distribution system by initiating several short cir-

cuits with different durations and types on the busbar. The corresponding voltage sig-

nals, which are contaminated with harmonics, are measured and recorded at the bus. 

The Adaline algorithm was then utilized to detect the start and end of the sag. A sam-

ple result is shown in fig. (79). It is clear from fig. (79) that the Adaline succeeded in 

detecting the start and end of the sag. Moreover, the presence of the harmonics is also 

noticeable by the sustained oscillations in the error signal. 

 
Figure 79. Voltage Sag Event in a signal contaminated with Harmonics (a) Input Voltage Signal, 

(b) Predicted Signal, (c) Error Signal, (d) Square Root Of Absolute Of Error 

7.1.1.6.2 Swell detection in harmonic contaminated signal 

The second study carried out on this system was to detect the occurrence of 

voltage swell. The swell is created on the distribution system as the result of load 

switching (e.g., switching off a large load), or variations in the reactive compensation 

on the system (e.g., switching on a capacitor bank). Poor system voltage regulation 

capabilities or controls result in swells. Incorrect tap settings on transformers can also 

result in system swells. The Adaline algorithm was then, again, utilized to detect the 

start and end of the swell. A sample result is shown in fig. (80). It is clear from fig. 
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(80) that the Adaline succeeded in detecting the start and end of the swell. Moreover, 

the presence of the harmonics is also noticeable by the sustained oscillations in the 

error signal. 

 
Figure 80. Voltage Swell Event in a signal contaminated with Harmonics (a) Input Voltage Sig-

nal, (b) Predicted Signal, (c) Error Signal, (d) Square Root Of Absolute Error 

7.1.1.6.3 Transient detection in harmonic contaminated signal 

The third and last study on the industrial distribution system was carried out to 

investigate the presence of transients in a harmonic contaminated voltage signal. The 

transients were created by switching several capacitors at different locations and re-

cording the voltage at the busbar. The Adaline was used to detect the presence of 

these oscillatory transient due to switching the capacitors on and off. A test from the 

results is shown in fig. (81). The Adaline, once again, succeed in detecting the tran-

sient and it also identified the presence the harmonic contamination of the signal re-

sulting from the non-linear loads of the system. 
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Figure 81. Voltage Transient Event in a signal contaminated with Harmonics (a) Input Voltage 

Signal, (b) Predicted Signal, (c) Error Signal, (d) Square Root Of Absolute Error 

7.1.2 Power Quality Event Recognition and Classification Using a Wavelet-

Based Neural Network  

In this section, a wavelet-based neural network classifier for recognizing 

power-quality disturbances is implemented and tested under various power quality 

disturbance events. This novel classifier is constructed with the combined use of the 

discrete wavelet transform (DWT) technique and the probabilistic neural-network 

(PNN) model. First, the multiresolution-analysis technique of DWT and the 

Parseval’s theorem are employed to extract the energy distribution features of the dis-

torted signal at different resolution levels. Then, the PNN is employed to classify dis-

turbance types according to the detailed energy distribution. Since the proposed meth-

odology can reduce a great quantity of the distorted signal features without losing its 

original property, by means of the Parseval’s theorem, less memory space is required. 

Moreover, because of the very fast learning efficiency of the PNN, less computing 

time is required, thus making the proposed algorithm suitable for real-time operation 

for fault diagnosis and signal classification problems. 
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7.1.2.1 Wavelet Transform 

The wavelet analysis block transforms the distorted signal into different time-

frequency scales. The wavelet transform (WT) uses the wavelet function φ and scal-

ing function ф to perform simultaneously the multiresolution analysis (MRA) decom-

position and reconstruction of the measured signal. The wavelet function φ will gen-

erate the detailed version (high-frequency components) of the decomposed signal and 

the scaling function ф will generate the approximated version (low-frequency compo-

nents) of the decomposed signal. The wavelet transform is a well-suited tool for ana-

lyzing high-frequency transients in the presence of low-frequency components such as 

nonstationary and nonperiodic wideband signals [85]. 

7.1.2.1.1  Multiresolution Analysis (MRA) and Decomposition  

The first main characteristic in WT is the MRA technique that can decompose 

the original signal into several other signals with different levels (scales) of resolution. 

From these decomposed signals, the original time-domain signal can be recovered 

without losing any information.  

The recursive mathematical representation of the MRA is as follows: 

J J 1 J 1 J 1 J 2 J n nV W V W W ...W V+ + + + += ⊕ = ⊕ ⊕ ⊕               Equation 53 

where 

VBj+1 B is the approximated version of the given signal at scale j+1 

WBj+1 B is the detailed version that displays all transient phenomena of the  

given signal at scale j+1 

⊕ denotes a summation of two decomposed signals 

N is the decomposition level. 

 

7.1.2.1.2  Mathematical Model of DWT 

Before the WT is performed, the wavelet function φ(t) and scaling function 

ф(t) must be defined. The wavelet function serving as a highpass filter can generate 

the detailed version of the distorted signal, while the scaling function can generate the 

approximated version of the distorted signal. In general, the discrete φ(t) and ф(t) can 

be defined as follows: 
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j
j2

j,n j,n
n

[t] 2 c [2 t n]φ = φ −∑    Equation 54 

j
j2

j,n j,n
n

[t] 2 d [2 t n]ϕ = ϕ −∑    Equation 55 

Where cBj B is the scaling coefficient at scale j, and dBj B is the wavelet coefficient at 

scale j. 

 

 

 

Simultaneously, the two functions must be orthonormal and satisfy the proper-

ties as follows: 

j

j

1
2
1
2
0

⎧ φ⋅φ =⎪
⎪
⎪ ϕ⋅ϕ =⎨
⎪
⎪ φ⋅ϕ =
⎪⎩

     Equation 56 

Assuming the original signal xBj B[t] at scale j is sampled at constant time inter-

vals, thus xBj B[t]=(uB0 B,uB1B,…,uBN-1 B), the sampling number is N=2P

j
P. J is an integer number. 

For xBj B[t] , its DWT mathematical recursive equation (as) is presented as follows: 

J J 1 J 1V W V+ += ⊕    Equation 57 

 

DWT(xBJ B[t])= 

 

J J j,k
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DWT(x [t])= x [t] [t]
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+ +

φ =

= φ − + ϕ −

≤ ≤ −

∑

∑ ∑   Equation 58 

where  
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j 1,n j,k j,k 2n j
k

Nu c u ,     0 k 1
2+ += ≤ ≤ −∑    Equation 59 

j 1,n j,k j,k 2n j
k

Nw d u ,     0 k 1
2+ += ≤ ≤ −∑   Equation 60 

k
k 2p 1 k j

Nd ( 1) c ,    p
2− −= − =     Equation 61 

where  

uBj+1,n B  is the approximated version at scale j+1, 

wBj+1,n B is the detailed version at scale j+1 and  

j is the translation coefficient. 

According to the orthonormal wavelet functions and eq.(58), the signal xBj B(t) 

can be reconstructed from both uBj+1 B and wBj+1 B coefficients using the inverse discrete 

wavelet transform IDWT, as j 1 j 1 jV W V+ +⊕ = . 

Fig. (82) illustrates the three decomposed/reconstructed levels of the DWT al-

gorithm. At each decomposition level, the length of the decomposed signals (e.g., uB1 B 

and wB1 B ) is half that of the signals (xB0 B) in the previous stage. 

 
Figure 82. Three decomposed/reconstructed levels of DWT 

 

7.1.2.2 Parseval’s Theorem In DWT Application 

In Parseval’s theorem, assuming a discrete signal x[n] is the current that flows 

through the 1- Ω resistance, then the consumptive energy of the resistance is equal to 

the square sum of the spectrum coefficients of the Fourier transform in the frequency 

domain  
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2 2
k

n N k N

1 x[n] a
N =< > =< >

=∑ ∑     Equation 62 

Where Ν is the sampling period, and α BkB is the spectrum coefficients of the 

Fourier transform. 

To apply the theorem to the DWT, we use eq.(58) and eq.(61) to obtain 

eq.(62) which is the Parseval’s theorem in the DWT application 
J2 22

J,k J,k
t k j 1 kJ j

1 1 1x[t] u ( w )
N N N=

= +∑ ∑ ∑ ∑  Equation 63 

Hence, through the DWT decomposition, the energy of the distorted signal is 

shown by eq.(63). The first term on the right of eq.(63) denotes the average power of 

the approximated version of the decomposed signal, while the second term denotes 

that of the detailed version of the decomposed signal. The second term giving the en-

ergy distribution features of the detailed version of distorted signal will be employed 

to extract the features of power disturbance. 

7.1.2.3 Feature Extraction, Recognition And Classification 

7.1.2.3.1 Feature Extraction 

Detailed Energy Distribution: As seen in eq.(63), the energy of the distorted 

signal can be partitioned at different resolution levels in different ways depending on 

the power-quality problem. Therefore, we will examine the coefficient w of the de-

tailed version at each resolution level to extract the features of the distorted signal for 

classifying different power-quality problems. The process can be represented mathe-

matically as followed 
2

2 j
j j,k

kj j

w1P w
N N

= =∑     Equation 64 

where jw  is the norm of the expansion coefficient wBj B. 

Four special properties in eq.(64) need further explanation. 

 The Daubanchie “db4” wavelet function was adopted to perform the DWT, 

thus resulting in the larger energy distributions of the decomposition levels 6, 

7, and 8. However, using different wavelet functions will generate different re-

sults. 

 The energy distribution remains unaffected by the time of disturbance occur-

rence.  
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 The outline of energy distribution remains the same despite variations in the 

vibration amplitude of the same disturbance type. 

 The low-level energy distribution will show obvious variations when the dis-

torted signal contains high-frequency elements. On the contrary, the high-level 

energy distribution will show obvious variations when the distorted signal 

contains low-frequency elements.  

To display clearly the characteristics of the above properties, 

we normalize eq.(64) by eq.(65) 

                                
1

D 2
j jP (P )=     Equation 65 

For example, Fig. 83(a) shows a voltage sag disturbance in a simulation power 

system (frequency = 50 Hz, amplitude = 1 p.u.) with three different times of occur-

rence. Employing eq.(64) and eq.(65) to analyze the three distorted signals (sampling 

rate is 256 points/per cycle) shows that when the disturbance intervals are the same 

(five cycles), the detailed energy distributions ( D
1P ~ D

13P ) of the given signals are also 

the same as shown in Fig. 83(b). Similarly, when the amplitude of vibration (0.8 p.u., 

0.5 p.u., and 0.2 p.u.) of the sag disturbances are changed as seen in Fig. 84(a), the 

detailed energy distributions ( D
1P ~ D

13P ) are the same as shown in Fig. 84(b). The en-

ergy distribution of the distorted signal with low-frequency elements is shown in Fig. 

85, while that with high-frequency elements is shown in Fig. 86. These experimental 

results depict clearly the properties of energy distribution of Parseval’s theorem in 

DWT applications. 



 
Figure 83. Voltage sag with different times of disturbance occurrence. (a) Different times of dis-

turbance occurrence. (b) Energy distribution diagram. 
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Figure 84. Voltage sag with different times amplitude magnitudes. (a) Different amplitude magni-

tude. (b) Energy distribution diagram. 

 

 
Figure 85. Voltage fluctuation with low-frequency  elements. 
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Figure 86. Distorted voltage with high-frequency elements. 

7.1.2.3.2 Probabilistic Neural Network (PNN) 

The probabilistic neural-network (PNN) model is one of the supervised learn-

ing networks, and has the following features distinct from those of other networks in 

the learning processes [86]. 

 It is implemented using the probabilistic model, such as Bayesian classifi-

ers. 

 A PNN is guaranteed to converge to a Bayesian classifier provided that it 

is given enough training data. 

 No learning processes are required. 

 No need to set the initial weights of the network. 

 No relationship between learning processes and recalling processes. 

 The differences between the inference vector and the target vector are not 

used to modify the weights of the network. 

The learning speed of the PNN model is very fast, making it suitable for fault 

diagnosis and signal classification problems in real time. Fig. 87 shows the architec-

ture of a PNN model that is composed of the radial basis layer and the competitive 

layer.  
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Figure 87. Architecture of a PNN 

 
In the signal classification application, the training examples are classified ac-

cording to their distribution values of probabilistic density function (PDF), which is 

the basic principle of the PNN. A simple PDF is defined as follows: 

kN
kj

k 2
j 1k

X X1f exp( )
N 2=

−
= −

σ∑    Equation 66 

Modifying and applying eq. (66) to the output vector H of the hidden layer in 

the PNN is as below 
xh 2

i ih
i

h 2

(X W )
H exp

2

⎛ ⎞− −
⎜ ⎟= ⎜ ⎟σ⎜ ⎟
⎝ ⎠

∑
          Equation 67 

The algorithm of the inference output vector in the PNN is as follows 

hy hy
j hj h j hj

h hj

j k j jk

1net W H  and N W ,
N

if net max(net ) then Y =1, else Y =0

= ⋅ =

=

∑ ∑
  Equation 68 

where 

i  number of input layers 

h  number of hidden layers 

j  number of output layers 

k  number of training examples 

NBk B  number of classifications (clusters) 
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σ smoothing parameter (standard deviation), 0,1<σ<1. In general, 

σ is set to be 0.5 

X  input vector 

kjX X−  Euclidean distance between the vectors X and XBjk B, i.e. 

kjX X− =ΣBi B(XBi B-XBjk B) P

2 

xh
ihW   connection weight between the input layer and the hidden layer  

hy
hjW  is the connection weight between the hidden layer and the out-

put layer . 

The learning and recalling processes of the PNN for classification problems 

can be found in [86]. 

7.1.2.3.3 Classification of Transient Signals Using PNN Model 

Though the PNN has some disadvantages, such as a large memory require-

ment and the recalling time being proportional to the quantity of training samples, we 

can overcome these drawbacks by employing Parseval’s theorem to reduce the train-

ing inputs.  

In this paper, we will perform a 13-level decomposition of each discrete dis-

torted signal to obtain the detailed version coefficients (wB1B~wB3 B). Using eq. (64) and 

eq. (65), we can obtain each detailed energy distribution ( D D
1 13P ~ P ). These features 

would be applied to the PNN for recognizing and classifying the distorted signals. The 

calculation procedures of the proposed classifier are shown in fig. (88). 



 

 
Figure 88.  Diagram Of The Proposed Classifier 

7.1.2.4 Applications And Results 

7.1.2.4.1 Testing of The Classifier By Laboratory Simulation 

To verify the feasibility of the proposed method, we used the Power System 

Blockset Toolbox in Matlab to generate one pure sine-wave signal (frequency = 50 

Hz, amplitude = 1 p.u.) and six sample transient distorted signals. These distorted sig-

nals included momentary interruption, transient due to capacitor switching, voltage 

sag/swell, harmonic distortion, and flicker. The sampling rate of the digital recorder 

was 256 points/per cycle. The Daubanchie “db4” wavelet was adopted to perform the 

DWT.  

The PNN model was provided by the Neural Network Toolbox in Matlab. The 

proposed method was written in Matlab language and executed on a Pentium III 550 

personal computer with 256-MB RAM.  

Fig. 89 shows the detailed version of a three-level decomposition (w1~w3) and 

the detailed energy distribution ( ) of a pure sine wave. The X-axis is the sam-

pled signal points and the Y-axis is the magnitude in Fig.  89(a). The X-axis is the de-

D
1 1P ~ PD

3
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composition level and the Y-axis is the energy in Fig. 89(b). Figs. 90–95 show the 

detailed version of a three-level decomposition (w1~w3) and the detailed energy dis-

tribution ( ) of each given distorted signal. The simulation results are summa-

rized in Table 4. 

D
1P ~ PD

13

 
Figure 89. MRA Decomposition And The Detailed Energy Distribution Of A Pure Sine Wave 
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Figure 90. Detailed Energy Distribution Of A Momentary Interruption 
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Figure 91. Detailed Energy Distribution Of A Voltage Sag 
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Figure 92. Detailed Energy Distribution Of A Voltage Swell 

 

 146



 
Figure 93. Detailed Energy Distribution Of A Transient Due To Capacitor Switching 
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Figure 94. Detailed Energy Distribution Of A Harmonic Distortion 
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Figure 95. Energy Distribution Of A Flicker 

 

 
Table 4.  Energy Features Of Distorted Signals 
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From Figs. 89–95 and Table 4, we can categorize three properties of energy 

distribution of the given distorted signals. These properties become the foundations 

for classifying the disturbance type. 

 When a sag or swell or interrupt occurs, D
6P , D

7P  and D
8P  will show 

great variations. 

 When the voltage suffers a transient disturbance of the high-frequency 

elements such as capacitor switching and harmonic distortion, D
3P , D

4P  

and D
5P will show obvious variations. 

 When the voltage suffers a transient disturbance of the low-frequency 

elements such as flicker, D
9P , D

10P  and D
11P  will show obvious variations. 

Fig. 96 shows orderly the energy distributions of seven signals on the same 

three-dimensional (3-D) coordinate axis (using piecewise plot style). Thus, we can 

clearly observe the differences in energy distribution between different signals. 

 

 
Figure 96. Differences In Energy Distribution Of All Signals 

7.1.2.4.2 Application Of The Classifier On A Power System 

All the above results were obtained by making use of the Matlab in order to 

create both the pure sine wave and the distorted signals as well. Let’s have a look at 

the results that were obtained by utilizing the Series 5500 DualNode on the Public 

Power Constitution at Katsampas at Heraklion, Crete. The DataNode was connected 

at the capacitors’ 13.8kV busbar of the facility, via the current and voltage pods, the 

set up of the InfoNode was made according to the IEEE standards, described earlier 



regarding all the disturbance events, the data were obtained by the use of the program 

Dranview and were finally processed on Matlab 6.5v. Unfortunately due to technical 

difficulties, regarding the time and duration of its use, the only disturbances that were 

recorded and afterwards processed involved swells, sags and transients. That is the 

reason why the experimental results, presented later on relate only to these three cate-

gories of power disturbance events.  

As it will be shown at the figures presented later on, fig. (97-99), the waves 

that were received from the facility’s busbar weren’t so “pure” as those that were cre-

ated at the laboratory. That was mainly because of the intense harmonic distortion of 

the signal, which may not exceeded the IEEE limits but however altered the signal, 

and moreover from the electromagnetic insertions of the facility’s power instruments. 

That is the reason that during the training and the testing of the PNN network the fol-

lowing algorithm was chosen: for each group of distorted signals we created a loop. 

From the beginning till the end of that loop in each circle that was made one signal 

was set as the testing one while all the others were set as the training examples. That 

means that in each circle the signal that was previously set as testing example was 

now set as training example while the following signal that was previously set as 

training example was now set as testing and so on till the end of the signals. That al-

gorithm led to the results presented on fig. (100-103) and Table 5. 

 

 

 

 151



 

 
a) 

 

b) 
Figure 97. Detailed Energy Distribution Of A Voltage Sag 
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a) 

 
b) 

Figure 98. . Detailed Energy Distribution Of A Voltage Swell 
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a) 

 
b) 

Figure 99. Detailed Energy Distribution Of A Transient 
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Figure 100. Testing Results Of The PNN Algorithm On The Power System Using Only One Third 

Of The Training Examples 

 

 

 
Figure 101. Testing Results Of The PNN Algorithm On The Power System Using Only Half Of 

The Training Examples 
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Figure 102. Testing Results Of The PNN Algorithm On The Power System Using Only Two 

Thirds Of The Training Examples 

 

 
Figure 103. Testing Results Of The PNN Algorithm On The Power System Using All The Train-

ing Examples  
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Transients 9 14 18 27 

Sags 3 4 5 7 

Swells 6 10 13 20 

Number of training ex-

amples 

Total 18 28 36 54 

Number of testing examples 1 1 1 1 

Learning time (sec.) 0.00599 0.0608 0.0611 0.0616 

Classification time of a new signal (sec.) 0.0061 0.0056 0.0057 0.0061 

Accuracy rate 55.556% 78.571% 80.556% 87.037%

Table 5. Test Results Of The PNN Algorithm On The Power System 

As it’s obvious from the above table the more training examples we have, the 

better results we obtain. That was expected, because the classification skills of the 

PNN are directly connected to the number of its training samples, thus the increase of 

the training samples help the network to adjust its parameters better so that its accu-

racy of classification gets even higher. However a large number of training samples 

could complicate the structure of the network in such a way that it could take longer 

to classify the sample. Therefore it is important for the user to specify if it’s of greater 

importance for him to have a fast algorithm with a satisfying accuracy or a little 

slower algorithm with an even more satisfying accuracy! 

7.1.3 Power Quality Event Recognition and Classification Using a Wavelet-

Based Adaptive Neuro-Fuzzy Inference System  

In this section, a wavelet-based adaptive neuro-fuzzy inference system is being 

used instead of the neural based classifier that was used in the above section. The 

main idea of the algorithm remains the same, only the classifying mean changes. That 

means that once again the multiresolution-analysis technique of DWT and the 

Parseval’s theorem are employed to extract the energy distribution features of the dis-

torted signal at different resolution levels, however this time ANFIS is employed to 

classify disturbance types according to the detailed energy distribution. 

7.1.3.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The purpose of this clause is to present a novel architecture called Adaptive-

Network-Based Fuzzy Inference Systems, or simply ANFIS, which can serve as a ba-

sis for constructing a set of fuzzy if-then rules with appropriate membership functions 

to generate the stipulated input-output pairs.  
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7.1.3.1.1 Fuzzy If-Then Rules And Fuzzy Inference Systems 

7.1.3.1.1.1 Fuzzy If-Then Rules 

Fuzzy if-then rules or fuzzy conditional statements are expressions of the form 

IF A THEN B, where A and B are labels or fuzzy sets characterized by appropriate 

membership functions. Due to their concise form, fuzzy if-then rules are often em-

ployed to capture the imprecise modes of reasoning that play an essential role in the 

human ability to make decisions in an environment of uncertainty and imprecision. 

An example that describes a simple fact is 

If pressure is high, then volume is small 

where volume and pressure are linguistic variables [98], high and small are 

linguistic values or labels that are characterized by membership functions. 

Another form of fuzzy if-then rule, proposed from Takagi-Sugeno [99], has 

sets involved only in the premise part. By using Takagi and Sugeno’s fuzzy if-then 

rule, the resistant force on a moving object can be described as follows: 

If velocity is high, then force =k*velocity2

where, again, high in the premise part is a linguistic label characterized by an 

appropriate membership function. However, the consequent part is described by a 

nonfuzzy equation of the input variable, velocity. 

Both types of fuzzy if-then rules have been used extensively in both modelling 

and control. Through the use of linguistic labels and membership functions, a fuzzy if-

then rule can easily capture the spirit of a “rule of thumb” used by humans. From an-

other angle, due to the qualifiers on the premise parts, each fuzzy if-then rule can be 

viewed as a local description of the system under consideration. Fuzzy if-then rules 

form a core part of the of the fuzzy inference system to be introduced below.  

7.1.3.1.1.2 Fuzzy Inference systems 

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy 

models, fuzzy associative memories (FAM), or fuzzy controllers when used as control-

lers. Basically a fuzzy inference system is composed of five functional blocks, as pre-

sented at the following figure. 
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Figure 104. Fuzzy Inference System 

i) a rule base containing a number of fuzzy if-then rules, 

ii) a database which defines the membership functions of the fuzzy sets 

used in the fuzzy rules, 

iii) a decision-making unit which performs the inference operations on 

the rules, 

iv) a fuzzification interface which transforms the crisp inputs into de-

grees of match with linguistic values, 

v) a defuzzification interface which transform the fuzzy results of the in-

ference into a crisp output. 

Usually, the rule base and the database are jointly reffered to as the knowledge 

base.  

The steps of fuzzy reasoning (inference operations upon fuzzy if then rules) 

performed by fuzzy inference systems are: 

1. Compare the input variables with the membership functions on 

the premise part to obtain the membership values (or compatibil-

ity measures) of each linguistic label. This step is often called 

fuzzification. 

2. Combine (through a specific T-norm operator, usually multipli-

cation or min) the membership values on the premise part to get 

firing strength (weight) of each rule. 

3. Generate the qualified consequent (either fuzzy or crisp) of each 

rule depending on the firing strength. 

4. Aggregate the qualified consequents to produce a crisp output. 

This step is called defuzzification. 
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Several types of fuzzy reasoning [100,101] have been proposed in the litera-

ture. Depending on the types of fuzzy reasoning and fuzzy if-then rules employed, 

most fuzzy inference systems can be classified in three types, as presented.  

 
Figure 105. Commonly used fuzzy if-then rules and fuzzy reasoning mechanisms 

Type 1: The overall output is the weighted average of each rule’s crisp output 

induced by the rule’s firing strength and output membership functions. 

The output membership functions used in this scheme must be mono-

tonically non-decreasing [102]. 

Type 2: The overall fuzzy output is derived by applying “max” operation to 

the qualified fuzzy outputs, each of which is equal to the minimum of fir-

ing strength and the output membership function of each rule. Various 

schemes have been prposed to choose the final crisp output based on the 

overall fuzzy output; some of them are center of area, bisector of area, 

mean of maxima, maximum criterion etc [100,101]. 

Type 3: Takagi and Sugeno’s fuzzy if-then rules are used [103]. The output of 

each rule is a linear combination of input variables plus a constant term, 

and the final output is the weighted average of each rule’s output. 

Fig. (105) utilizes a two-rule two-input fuzzy inference system to show differ-

ent types of fuzzy rules and fuzzy reasoning mentioned above. Be aware that most of 

the differences come from the specification of the consequent part (monotonically 

non-decreasing or bell-shaped membership functions or crisp function) and thus the 

defuzzification schemes (weighted average, centroid of area, etc) are also different.  
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7.1.3.1.2 Adaptive Networks: Architectures And Learning Algorithms 

This clause introduces the architecture and learning procedure of the adaptive 

network is in fact a superset of all kinds of feedforward neural networks with super-

vised learning capability. An adaptive network, as its name implies, is a network 

structure consisting of nodes and directional links through which the nodes are con-

nected. Moreover, part or all of the nodes are adaptive, which means each output of 

these nodes depends on the parameter(s) pertaining to this node, and the learning rule 

specifies how these parameters should be changed to minimize a prescribed error 

measure. 

The basic learning rule of adaptive networks is based on the gradient descent 

and the chain rule, which was proposed by Werbos [104] in the 1970’s. However, due 

to the state of artificial neural network research at that time, Werbos’ early work 

failed to receive the attention it deserved. In the following presentation, the derivation 

is based on the author’s work [105, 106] which generalises the formulas in [107]. 

Since the basic learning rule is based on the gradient method which is notori-

ous for its slowness and tendency to become trapped in local minima, here we propose 

a hybrid learning rule which can speed up the learning process substantially. Both the 

batch learning and the pattern learning of the proposed hybrid learning rule is dis-

cussed below.  

7.1.3.1.2.1 Architecture And Basic Learning Rule 

An adaptive network, fig. 106, is a multi-layer feedforward network in which 

each node performs a particular function (node function) on incoming signals as well 

as a set of parameters pertaining to this node. The nature of the node functions may 

vary from node to node, and the choice of each node function depends on the overall 

input-output function which the adaptive network is required to carry out. Note that 

the links in an adaptive network only indicate the flow direction of signals between 

nodes and no weights are associated with the links. 

To reflect different adaptive capabilities, both square and circle nodes are used 

in an adaptive network. A square node, adaptive node, has parameters while a circle 

node, fixed node, has none. The parameter set of an adaptive network is the union of 

the parameter set of each adaptive node. In order to achieve a desired input-output 

mapping, these parameters are updated according to given training data and a gradi-

ent-based learning procedure described below. 
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Figure 106. An Adaptive Network 

Suppose that a given adaptive network has L layers and the k-th layer has #(k) 

nodes. We can denote the node in the i-th position of the k-th layer by (k,i) and its 

node function, or node output, by k
iO . Since a node output depends on its incoming 

signals and its parameter set, there is 
1

#( 1)( ,... , , , ,...)k k k k
i i i kO O O O a b c−

−=    Equation 69 

where a, b, c, etc. are are the parameters pertaining to this node. Note that k
iO  is used 

both as node function and output. 

Assuming the given training data set has P entries, the error measure (or en-

ergy function) for the p-th (1≤p≤P) entry of training data entry can be defined as the 

sum of squared errors: 
#( )

2
, ,

1
( )

L
L

p m p m p
m

E T O
=

= −∑    Equation 70 

where TBm,p B is the m-th component of p-th target output vector, and ,
L
m pO  is the m-th 

component of actual output vector produced by the presentation of the p-th input vec-

tor. Hence the overall error measure is  

1

P

p
p

E E
=

=∑          Equation 71 

In order to develop a learning procedure that implements gradient descent in E 

over the parameter space, first the error rate pE
O

∂

∂
 for p-th training data and for each 

node output O must be calculated. The error rate for the output node at (L,i) can be 

calculated readily from eq. (70): 
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∂

    Equation 72 

For the internal node at (k,i) the error rate can be derived by the chain rule: 
1#( 1)

,
1

1, , ,

kk
p p m p
L k k

mi p m p i p

E E O
O O O

++

+
=

∂ ∂ ∂
=

∂ ∂ ∂∑                   Equation 73 

where 1≤k≤L-1. That is, the error rate of an internal node can be expressed as a linear 

combination of the error rates of the nodes in the next layer. Therefore for all 1≤k≤L 

and 1≤i≤#(k), 
,

p
k
i p

E
O
∂

∂
 can be found by eq. (72) and eq. (73). 

Now, if α is a parameter of the given adaptive network, there is  
*

*
*

p p

O S

E E O
O aα ∈

∂ ∂ ∂
=

∂ ∂ ∂∑     Equation 74 

where S is the set of nodes whose outputs depend on α. Then the derivative of the 

overall error measure E with respect to α is  

1

P
p

p

EE
α α=

∂∂
=

∂ ∂∑           Equation 75 

 Accordingly, the update formula for the generic parameter α is  

Ea η
α

∂
∆ = −

∂
         Equation 76 

in which η is a learning rate which can be further expressed as  

2

a

k

E
a

η =
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
∑

          Equation 77 

where k is the step size, the length of each gradient transition in the parameter space. 

Usually, the value of k can be changed to vary the speed of convergence. 

Actually there are two learning paradigms for adaptive networks. With the 

batch learning (or off-line training), the update formula for parameter is based on eq. 

(75) and the update action takes place only after the whole training data set has been 

presented., i.e., only after each epoch or sweep. On the other hand, if there is needed 

for the parameters to be updated immediately after each input-output has been pre-

sented, then the update formula is based on eq. (74) and it is refered to as the pattern 
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learning (or on-line learning). In the following paragraphs there will be presented a 

faster hybrid learning rule and both of its learning paradigms.  

7.1.3.1.3 Hybrid Learning Rule: Batch (Off-Line) Learning  

Here, a hybrid learning rule [88] is proposed which combines the gradient 

method and the least squares estimate (LSE) to identify parameters. 

For simplicity, assume that the adaptive network under consideration has only 

one output 

output F(I,S)=
r

   Equation 78 

where 
r
I is the set of input variables and S is the set of parameters. If there ex-

ists a function H ◦ F is linear in some of the elements of S, then these elements can be 

identified by the least squares method. More formally, if the parameter set S can be 

decomposed into two sets  

S S1 S2= ⊕           Equation 79 

 (where ⊕ represents direct sum) such that H ◦ F is linear in the elements in 

SB2 B, then upon applying H to eq. (78) we have  

H(output) H F(I,S)=
r

o    Equation 80 

which is linear in the elements in SB2 B. Now given values of elements of SB1 B, P 

training data can be plugged into eq. (80) and a matrix equation can be obtained: 

AX B=     Equation 81 

where X is an unknown vector whose elements are parameters in SB2 B. Let 

|SB2 B|=M, then the dimensions of A, X and B are P×M, M× 1 and P× 1, respectively. 

Since P (number of training data pairs) is usually greater than M (number of linear 

parameters), this is an overdetermined problem and generally there is no exact solu-

tion to eq. (81).  Instead a least squares estimate (LSE) of X, XP

*
P, is required to mini-

mize the squared error ||AX-B||P

2
P. This is a standard problem that forms the grounds for 

linear regression, adaptive filtering and signal processing. The most well-known for-

mula for XP

*
P uses the pseudo-inverse of X 

* T 1 TX (A A) A B−=     Equation 82 

where AP

T
P is the transpose of A, and (AP

T
P A) P

-1
P AP

T
P  is the pseudo-inverse of A if AP

T
P 

A is non singular. While eq. (82) is concise in notation, it is expensive in computation 

when dealing with the matrix inverse and, moreover, it becomes ill-defined if AP

T
P A is 

singular. As a result, sequential formulas are employed to compute the LSE of X. this 
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sequential method of LSE is more efficient (especially when M is small) and can be 

easily modified to an –online version, as it will be  presented below, for systems with 

changing characteristics. Specifically, let the ith row vector of matrix A defined in eq. 

(82) be T
ia and the ith element of B be T

ib , then X can be calculated iteratively using 

the sequential formulas widely adopted in the literature [89, 90, 91, 92] 

T
i i 1 i 1 i

T
i 1 i i 1

T T
i 1 i i 1 i 1 i 1 i 1 i

S a a S
i 1 i 1 a S a

X X S a (b a X )

S S , i 0,1,..., P 1+ +

+ +

+ + + + +

+ +

⎫= + − ⎪
⎬

= − = − ⎪⎭
   Equation 83 

 where S Bi B is often called the covariance matrix and the least squares estimate 

XP

*
P is equal to XBpB. The initial conditions to bootstrap eq. (83) are XB0 B=0 and SB0 B=γI, 

where γ is a positive large number and I is the identity matrix of dimension M×M. 

When dealing with multi-output adaptive networks (output in eq. (78) is a column 

vector), eq. (83) still applies except that T
ib  is the i-th row of matrix B.   

Now the gradient method can be combined and the least squares estimate to 

update the parameters in an adaptive network. Each epoch of this hybrid learning pro-

cedure is composed of a forward pass and a backward pass. In the forward pass, input 

data are supplied and functional signals go forward to calculate each node output until 

the matrices A and B in eq. (81) are obtained, and the parameters in SB2 B are identified 

by the sequential least squares formulas in eq. (83). After identifying parameters in SB2 B, 

the functional signals keep going forward till the error measure is calculated. In the 

backward pass, the error rates (the derivative of the error measure w.r.t. each node 

output) propagate from the output end toward the input end, and the parameters in SB1 B 

are updated by the gradient method in equation  
P

p

p 1

EE
a a=

∂∂
=

∂ ∂∑      Equation 84 

where,  

E is the overall error measure 
P

p
p 1

E E
=

=∑ ,                Equation 85 

P is the number of the entries of the training data sets and  

a is the parameter pertaining to the nodes of the network 

 

For given fixed values of parameters in SB1B, the parameters in SB2 B found are 

guaranteed to be the global optimum point in the SB2 B parameter space due to the choice 

of the squared error measure. Not only can this hybrid learning rule decrease the di-
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mension of the search space in the gradient method, but, in general, it will also cut 

down substantially the convergence time. 

Take for example an one-hidden-layer back-propagation neural network with 

sigmoid activation functions. If this neural network has p output units, then the output 

in eq. (78) is a column vector. Let H(·) be the inverse sigmoid function 

xH(x) ln( )
1 x

=
−

    Equation 86 

Then eq. (80) becomes a linear (vector) function such that each element of 

H(output) is a linear combination of the parameters (weights and thresholds) pertain-

ing to layer 2. In other words, 

SB1 B = weights and threshold of hidden layer,  

SB2 B = weights and threshold of output layer 

Therefore the back-propagation learning rule can be applied to tune the pa-

rameters in the hidden layer, and the parameters in the output layer can be identified 

by the least squares method. However, it should be kept in mind that by using the 

least squares method on the data transformed by H(·), the obtained parameters are op-

timal in terms of the transformed squared error measure instead of the original one. 

Usually this will not cause practical problem as long as H(·) is monotonically increas-

ing.  

7.1.3.1.4 Hybrid Learning Rule: Pattern (On-Line) Learning  

If the parameters are updated after each data presentation, we have the pattern 

learning or on-line learning paradigm. This learning paradigm is vital to the on-line 

parameter identification for systems with changing characteristics. To modify the 

batch learning rule to its on-line version, it is obvious that that the gradient descent 

should be based on Ep instead of E (see eq. (85)). Strictly speaking, this is not a truly 

gradient search procedure to minimize E, yet it will approximate to one if the learning 

rate is small. 

For the sequential least squares formulas to account for the time varying char-

acteristics of the incoming data, the effects of the old data pairs need to be decayed as 

new data pairs become available. Again, this problem is well studied in the adaptive 

control and system identification literature and a number of solutions are available 

[90]. One simple method is to formulate the squared error measure as weighted ver-
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sion that gives higher weighting factors to more recent data pairs. This amounts to the 

addition of a forgetting factor λ to the original sequential formula.  

T
i i 1 i 1 i

T
i 1 i i 1

T T
i 1 i i 1 i 1 i 1 i 1 i

S a a S
i 1 i 1 a S a

X X S a (b a X )
1S [S ]+ +

+ +

+ + + + +

+ +

⎫= + −
⎪
⎬

= − ⎪λ ⎭

     Equation 87 

where the value of λ is between of 0 and 1. The smaller λ is, the faster the ef-

fects of old data decay. But a small λ sometimes causes numerical instability and 

should be avoided.  

7.1.3.1.5 ANFIS: Adaptive-Network-Based Fuzzy Inference System 

The architecture and learning rules of adaptive networks have been described 

in the previous section. Functionally, there are almost no constraints on the node func-

tions of an adaptive network except piecewise differentiability. Structurally, the only 

limitation of network configuration is that it should be of feedforward type. Due to 

these minimal restrictions, the adaptive network’s applications are immediate and 

immense in various areas. In this clause, a class of adaptive networks is proposed 

which are functionally equivalent to fuzzy inference systems. The proposed architec-

ture is refered to as ANFIS, standing for Adaptive-Network-based Fuzzy Inference 

System. The decomposition of the parameter set is described in order to apply the hy-

brid learning rule.  

7.1.3.1.5.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) Architecture 

For simplicity it is assumed that the fuzzy inference system under considera-

tion has two inputs x and y one output z. Suppose that that the rule base contains two 

fuzzy if-then rules of Takagi and Sugeno’s (87) type: 

Rule 1: If x is AB1 B and y is BB1 B then fB1B=pB1 Bx + qB1 By+r B1 B 

Rule 2: If x is AB2 B and y is BB2 B then fB2B=pB2 Bx + qB2 By+r B2 B 

then the type-3 fuzzy reasoning is illustrated in fig. (107.a) and the corre-

sponding equivalent ANFIS architecture is shown in fig. (107.b).  
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Figure 107. (a) Type-3 Fuzzy Reasoning, (b) Equivalent ANFIS (type-3 ANFIS) 

 

The node functions in the same layer are of the same function family as de-

scribed below: 

Layer 1: Every node i in this layer is a square node with a node function 

1

1
i AO (x)= µ     Equation 88 

where x is the input to node i and ABi B is the linguistic label associated with this 

node function. In other words 1
iO  is the membership function of ABi B and it specifies the 

degree to which the given x satisfies the quantifier ABi B. Usually 
1A (x)µ  is chosen to be 

bell-shaped with maximum equal to 1 and minimum equal to 0 such us the general-

ized bell-function 

1 iA b
2i

i

1(x)
x c1 ( )

a

µ =
⎡ ⎤−

+ ⎢ ⎥
⎣ ⎦

   Equation 89 

or the Gaussian function                                        
i

1

b
2i

A
i

x c(x) exp{ ( ) }
a

⎡ ⎤−
µ = − ⎢ ⎥

⎣ ⎦
                        Equation 90 

where {aBi B, bBi B, c Bi B} is the parameter set. As the values of these parameter set 

change, the bell functions vary accordingly, thus exhibiting various forms of member-
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ship functions on linguistic label AB1B. In fact, any continuous and piecewise differenti-

able functions, such as commonly used trapezoidal or triangular-shaped functions, are 

also qualified candidates for node functions in this layer. Parameters in this layer are 

referred to as premise parameters.  

Layer 2: every node in this layer is a circle node labeled Π which multiplies 

the incoming signals and sends the product out. For instance, 

i ii A bw (x) (y),   i 1, 2.= µ ×µ =    Equation 91 

Each node output represents the firing strength of a rule. (in fact, other T-norm  

operators that perform generalized AND can be used as the node function in this 

layer) 

Layer 3: every node in this layer is a circle node labeled N. The i-th node cal-

culates the ratio of the i-th rule’s firing strength to the sum of all rule’s strengths: 

i
i

1 2

ww ,   i 1, 2.
w w

= =
+

    Equation 92 

For convenience, outputs of this layer will be called normalized firing 

strengths. 

Layer 4: Every node i in this layer is a square node with a node function 
4
i i i i i i iO w f w (p x q y r )= = + +    Equation 93 

where iw is the output of layer 3, and {p Bi B, qBi B, r Bi B} is the parameter set. Parame-

ters in this layer will be referred to as consequent parameters. 

Layer 5: The single node in this layer is a circle node labeled Σ that computes 

the overall output as the summation of all incoming signals i.e., 

i i5 i
i i i

i ii

w f
O overal output = w f

w
= = ∑∑ ∑

   Equation 94 



 
Figure 108. (a) Type-1 fuzzy reasoning, (b) equivalent ANFIS (type-1 ANFIS) 

Thus an adaptive network has been constructed which is functionally equiva-

lent to a type-3 fuzzy inference system. For type-1 fuzzy inference systems, the exten-

sion is quite straightforward and the type-1 ANFIS is shown in fig. 108 where the 

output of each rule is induced jointly by the output membership function and the fir-

ing strength.   

Fig. 109 shows a 2-input, type-3 ANFIS with 9 rules. Three membership func-

tions are associated with each input, so the input space is portioned into 9 fuzzy sub-

spaces, each of which is governed by a fuzzy if-then rule. The premise part of a rule 

delineates a fuzzy subspace, while the consequent part specifies the output within this 

fuzzy subspace. 

 170
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Figure 109. a)2-Input Type-3 ANFIS With 9 Rules, b) Corresponding Fuzzy Subspaces 

7.1.3.1.5.2 Hybrid Learning Algorithm 

From the proposed type-3 ANFIS architecture, Fig. 109, it is observed that 

given the values of premise parameters, the overall output can be expressed as linear 

combinations of the consequent parameters. More precisely, the output f in Fig. 109 

can be rewritten as  

1 2
1 2

1 2 1 2

1 1 2 2

1 1 1 1 1 1 2 2 2 2 2 2

w wf   f f
w w w w

    w f w f

    (w x)p (w y)q (w )r (w x)p (w y)q (w )r ,

= +
+ +

= +

= + + + + +

 Equation 95 

which is linear in the consequent parameters (pB1 B, qB1 B, r B1B, pB2 B,qB2 B and r B2 B). As a re-

sult we have in eq. (77). 

S  = set of total parameters, 

SB1 B= set of premise parameters, 

SB2 B= set of consequent parameters, 

H(·) and F(·) in eq. (80) are the identity function and the function of the fuzzy 

inference system, respectively. Therefore the hybrid learning algorithm developed in 

the previous paragraphs can be applied directly. More specifically, in the forward 

pass, the error rates propagate backward and the premise parameters are updated by 

the gradient descent. Table 6 summarizes the activities in each pass.  

As mentioned earlier, the consequent parameters thus identified are optimal (in 

the consequent parameter space) under the condition that the premise parameters are 

fixed. Accordingly the hybrid approach is much faster than the strict gradient descent 



and it is worthwhile to look for the possibility of decomposing in the manner of eq. 

(79). For type-1 ANFIS, this can be achieved if the membership function on the con-

sequent part of each rule is replaced by a piecewise linear approximation with two 

consequent parameters fig. (110). In this case, again, the consequent parameters con-

stitute set S2 and the hybrid learning rule can be employed directly. 

 
Figure 110. Piecewise Linear Approximation Of Membership Functions On The Consequent Part 

Of Type-1 ANFIS 

 
However, it should be noted that the computation complexity of the least 

squares estimate is higher than that of the gradient descent. In fact, there are four 

methods to update the parameters, as listed below according to the computation com-

plexities: 

1. Gradient descent only: all parameters are updated by the gradient de-

scent 

2. Gradient descent and one pass of LSE: the LSE is applied only once at 

the very beginning to get the initial values of the consequent parame-

ters and then the gradient descent takes over to update all parameters 

3. Gradient descent and LSE: this is the proposed hybrid learning rule 

4. Sequential LSE only: the ANFIS is linearized w.r.t. all parameters and 

the extended kalman filter algorithm is employed to ypdate all parame-

ters. This has been proposed in the neutral network literature [93, 94]. 

The choice of above methods should be based on the trade-off between com-

plexity and resulting performance.  

- Forward pass Backward pass 

premise parameters fixed gradient descent 

consequent parameters least squares estimate fixed 

signals node outputs error rates 

Table 6.  Two Passes In The Hybrid Learning Procedure Of ANFIS 
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Because the update formulas of the premise and consequent parameters are 

decoupled in the hybrid learning rule, as seen in Table 6, further speed up of learning 

is possible by using other versions of the gradient method on the premise parameters, 

such as conjugate gradient descent, second-order back-propagation [95], quick propa-

gation [96], nonlinear optimization[97] and many others. 

7.1.3.1.6 Application Of The Classifier On A Power System 

The proposed classifier was tested on data that were obtained by utilizing the 

Series 5500 DualNode on the Public Power Constitution at Katsampas at Heraklion, 

Crete. The DataNode was connected at the capacitors’ 13.8kV busbar of the facility, 

via the current and voltage pods, the set up of the InfoNode was made according to 

the IEEE standards, described earlier regarding all the disturbance events, the data 

were obtained by the use of the program Dranview and were finally processed on 

Matlab 6.5v. Unfortunately due to technical difficulties, regarding the time and dura-

tion of its use, the only disturbances that were recorded and afterwards processed in-

volved swells, sags and transients. That is the reason why the experimental results, 

presented later on relate only to these three categories of power disturbance events.  

As it was shown at the figures presented earlier, fig. (97-99), the waves that 

were received from the facility’s busbar weren’t so “pure” as those that were created 

at the laboratory. That was mainly because of the intense harmonic distortion of the 

signal, which may not exceeded the IEEE limits but however altered the signal, and 

moreover from the electromagnetic insertions of the facility’s power instruments. That 

is the reason that during the training and the testing of the ANFIS network the follow-

ing algorithm was chosen: for each group of distorted signals we created a loop. From 

the beginning till the end of that loop in each circle that was made one signal was set 

as the testing one while all the others were set as the training examples. That means 

that in each circle the signal that was previously set as testing example was now set as 

training example while the following signal that was previously set as training exam-

ple was now set as testing and so on till the end of the signals. That algorithm led to 

the results presented on fig. (111-114) and Table 7. 
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Figure 111. . Testing Results Of The ANFIS Algorithm On The Power System Using Only One 

Third Of The Training Examples 

 

 

 
Figure 112. Testing Results Of The ANFIS Algorithm On The Power System Using Only Half Of 

The Training Examples 
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Figure 113. Testing Results Of The ANFIS Algorithm On The Power System Using Only Two 

Thirds Of The Training Examples 

 

 

 
Figure 114. Testing Results Of The ANFIS Algorithm On The Power System Using All The 

Training Examples 
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Transients 9 14 18 27 

Sags 3 4 5 7 

Swells 6 10 13 20 

Number of training ex-

amples 

Total 18 28 36 54 

Number of testing examples 1 1 1 1 

Learning time (sec.) 27.903 32.134 35.296 46.339 

Classification time of a new signal (sec.) 0.0547 0.0413 0.0467 0.0489 

Accuracy rate 77.7778% 67.8571% 75.0000% 74.0741%

Table 7. Test Results Of The ANFIS Algorithm On The Power System 

As it’s obvious from the above table the ANFIS classifier does not work as 

well as the PNN one. It can easily be seen that its accuracy rate does not rise as the 

number of the training samples grows. That happens, as it will be graphically pre-

sented later on in the next section, because the increase of the number of the training 

samples causes the increase of the complexity of the network’s structure as well. That 

means that the network becomes mathematically “too heavy” and also easy to be dis-

oriented. That is also why both learning and classification time rise as the number of 

the training samples grows.  
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8 Conclusions 

After having read the theoretical background regarding the three above algo-

rithms on power quality monitoring, applied them on the Public Power Constitution at 

Katsampas at Heraklion, Crete by utilizing the Series 5500 DualNode, in order to ac-

quire the distorted signals, and implementing the program on a PC, by the use of Mat-

lab the following conclusions came out.  

8.1 Power Quality Event Detection Using Adaline 

The simplicity introduced by this technique is due to the ease in calculations 

that facilitates its hardware implementation. The fact of being easy to execute makes 

the Adaline a very competitive choice for the algorithms currently used in power qual-

ity instrumentation. 

The main advantage of the Adaline architecture is the ability of the Adaline to 

be trained on-line, eliminating the need for repetitive off-line training. Although most 

neural networks have the ability of on-line training, the Adaline is superior because of 

its simple structure and thus its high speed. 

The Adaline succeed in fast and relatively accurate detection of the most 

common power quality disturbances. It was found that Adaline is sensitive for both 

number of delayed input and the value of learning rate. Small learning rate may lead 

to slow converge time, while large learning rate may cause Adaline to lose the ability 

of tracking power signal. In addition, large numbers of input may worsen the opera-

tion of Adaline. Typical values of learning rate and number of inputs were found to 

vary from 0.2 to 0.5 and from 4 to 6, respectively. The proposed algorithm was tested 

utilizing generated signals using Matlab as well as with actual bus industrial distribu-

tion system loaded with different types of linear and non-linear loads. In both cases, 

the Adaline yields a satisfactory detection result of different power quality events.  

However, the Adaline may detect all kinds of power quality event disturbances 

but it can’t classify them. In all the graphs that were presented, at the corresponding 

chapter, the Adaline, as it is easily noticed, indicates whenever there is a disturbance 

in the network but it doesn’t clarify what kind of disturbance has occurred.  

That yields the need of an algorithm that should both detect and classify a 

power quality disturbance at the network that is being monitored. That means that 

whenever there would be an anomaly in the signal, the algorithm should provide the 
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specific time of occurrence of the disturbance and moreover the category in which the 

disturbance lies within.  

Two different algorithms that fulfill these conditions were presented later on at 

the following sections: “Power Quality Event Recognition and Classification Using a 

Wavelet-Based Neural Network” and “Power Quality Event Recognition and Classifi-

cation Using a Wavelet-Based Adaptive Neuro-Fuzzy Inference System”. 

8.2 Power Quality Event Recognition and Classification Using a Wavelet-

Based Neural Network 

This technique proposes a prototype of wavelet-based neural-network classifi-

ers for power disturbance recognition and classification. That means that on the con-

trary to the Adaline algorithm this one fills in the lack of the classification problem. 

Though someone would believe that this advantage of the new algorithm would create 

a disadvantage, regarding its duration, experimental results showed the apposite! Thus 

not only did it not increase its duration but even more it can reduce as well. This hap-

pens because a completely different methodology is used which doesn’t first predict 

the signal and then compares it with the measured one but instead uses the properties 

of the distorted ones as a comparison to decide weather the measured one is distorted 

as well or not.   

 The proposed method can reduce the quantity of extracted features of dis-

torted signal without losing its property, thus requiring less memory space and com-

puting time for proper classification of disturbance types. The experimental results 

showed that the proposed method has the ability of recognizing and classifying differ-

ent power disturbance types efficiently, and it has the potential to enhance the per-

formance of the power transient recorder with real-time processing capability.  

Moreover, as it can easily be seen from Table 6 the proposed algorithm re-

sponds better as the number of the training examples increases, as it was expected. 

However, the learning time of the system as well as the classification time of a new 

signal also increases with the number of the training samples, as it was also expected. 

Thus, there is a fragile balance between the number of the samples that are selected to 

train the system and the time that is afterwards needed from the system to classify a 

new one. A suggestion of a way to partially resolve this problem would be to select a 

small number of representative samples of each category of distorted signals to be the 

training ones. In addition, whenever a new known distorted signal would come up 
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whose variation from the training group was significant then the algorithm by its own 

would list it to the training samples. 

Comparing the algorithm’s theoretical results, the results that came up when 

the classifier was given artificially distorted signals, created in the laboratory with a 

PC, with the real ones, the results that came up when the classifier was really tested 

on the Public Power Constitution, it can easily be said that the resulting deviation, re-

garding the efficiency of the algorithm, was not negligible. This leads us to the con-

clusion that the proposed algorithm has a drawback· the lack of robustness which is 

especially needed in combined events, which in our case is the most used scenario. 

This could be solved by the use of carefully designed filters, in order to isolate the dis-

torted signal. Carefully though, because from one hand the signal should be “clean” 

from external interferences but on the other hand not too “clean” because there is the 

risk of influencing the distortion in such a way that it would be unnoticeable! 

8.3 Power Quality Event Recognition and Classification Using a Wavelet-

Based Adaptive Neuro-Fuzzy Inference System 

This technique also proposes a prototype of wavelet-based neuro-fuzzy system 

for power disturbance recognition and classification. This algorithm works in a simi-

lar way to the previous one, thus also giving the advantage of classification, over 

against the Adaline algorithm. 

The proposed method can also, as it was seen with the wavelet-based neural 

network algorithm, reduce the quantity of extracted features of distorted signal with-

out losing its property, thus requiring less memory space and computing time for 

proper classification of disturbance types. 

The motive for the creation of the specific algorithm was the lack of robust-

ness of the wavelet-based neural method, which by definition of the fuzzy networks 

would be, if not extinguished, at least constrained. However, as the results on Table 7 

showed, that wasn’t confirmed, or at least not in all cases.  

So, as it was proven the fuzzy algorithm, comparing to the neural algorithm, 

responded better, regarding the efficiency, but only where there weren’t many training 

samples and that was unfortunately the only case where fuzzy networks showed their 

flexibility.  

As the number of the samples increased though, the algorithm initially became 

unstable requiring more time to carry out its processes and moreover did not came out 



more precise, as it was expected. The cause of this unbalance could be the compli-

cated structure of the network that came with the increased number of inputs, due to 

the fact that the algorithm is dealing with combined events. In figs. 115-117 is pre-

sented the increase of the complication of the structure of an AFIS model as the num-

ber of its inputs grows. So, a proposed way to enhance the algorithm would be to 

“lighten” the network, by reducing its inputs or similarly to the previous case to filter 

the signals in such a way that the features of each category of the distorted signals 

would be more extinctive. However, once again, attention should be paid in order to 

maintain the features of the distorted signals. 

 
Figure 115. Example Of Anfis Model Structure With 4 Inputs 

 
Figure 116. Example Of Anfis Model Structure With 8 Inputs 
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Figure 117. Structure Of The Anfis Model Used on This Paper, With 13 Inputs 

 

To sum up, while one might expect that the ANFIS classification algorithm 

would behave better than the PNN classification algorithm, due to the increased ro-

bustness and flexibility that characterizes it, which by the way has been proven more 

than once in other applications, that didn’t happen. Fig. 118 shows a graphical com-

parison between those two classifiers which denotes that for the specific application 

the ANFIS algorithm is not recommended. 
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Figure 118. Comparison Between PNN – ANFIS Regarding The Training Time, Checking Time 

And The Efficiency 
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9 Future Work 

 Hereto, a state of the art techniques oriented to automatic classification of 

power systems events has been shown. More work has to be done to get a better un-

derstanding of voltages and currents behavior under different event conditions. Addi-

tionally, a better understanding of relations between voltage and currents in different 

voltage levels and its propagation in the network is still required. 

Moreover, feature definition and extraction have to be enhanced in order to 

improve classification algorithms. As a result of this work, a universal set of accepted 

features for each type of event could be drawn. Although, the work done in the defini-

tion and proposition of classifiers based on power system techniques is still immature, 

statistical approach for classification algorithms showed interesting results.  

Finally, advances in automatic classification in power quality events should in-

fluence or change the way that hardware for power quality is currently defined which 

is discussed in the following paragraphs.  

The scheme of a power quality monitoring equipment hasn’t changed during 

all these years. A basic power quality monitor could be defined as shown in fig. (119). 

 
Figure 119. Power Quality Monitoring Equipment Scheme 

 In stage I, the electrical phenomenon occurs in the network (e.g. fault, capaci-

tor switching), high voltage and current transformers (PT and CT) convert these three 

phase signals to an intermediate voltage or current level.  

Then, in stage II, transducers or signal conditioning devices convert interme-

diate signals to low-level voltages. 

Up to here, signals are still analog or in the continuous time domain. In stage 

III, signals are discretized by an analog to digital (A/D) converter. This device usually 

works with low voltage levels ± 2-10 pp Vac and has a limited resolution in function 

of 2-b (LSB), where b is the number of bits to represent the signal. Nowadays, A/D 
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converters up to 24 bits, 8 channels and high sampling frequencies are available. At 

least 6 channels are required for power quality monitoring purposes in a 3-phase 

power system. 

Once the signal is converted from the continuous time domain to the discrete 

time domain by a digital signal processor (DSP) or digital computer, the data obtained 

can be stored in a mass storage device or sent through any communication device to a 

central station. 

Note that once data acquisition is made, signals are band limited, which means 

that the information contained in the signal is trustable until the Nyquist frequency 

(half the sampling frequency), e.g. if the sampling frequency is 3600 Hz, the higher 

frequency component of the signal is 1800 Hz. Higher frequency transients and travel-

ing waves can hardly be studied from these signals. 

On the other hand, hardware for power quality monitoring is not a problem 

anymore, unless, high frequency phenomenon studies were required. In this case, the 

scheme shown in fig. 119 will require some modifications. PT and CT transformers 

are working as low or high pass filters, mapping of its frequency response should re-

quired. 

Power quality equipments are still working as photographic cameras recording 

events sample per sample and producing enormous quantity of data. Nowadays, with 

the software and hardware technologies available, on-site processing of the informa-

tion and analysis could be performed. 

Instead of centralizing all the information events of a power network in a cen-

tral station and store recordings sample by sample in huge databases, the analysis of 

the event could be distributed between all the monitors located in the nodes involved 

in the event. So that, this distributed system could give the diagnostics of the event or 

even better forecasting the next event. It’s believed that the next generation of power 

quality monitoring equipment is becoming a reality. 
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