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IeQiAnyn

XV magovoa eQyacio magovaliletal 1) oxedlaon evog
OAOKANQWHEVOL OLOTIUATOG AVTOUATIG avayvwLong BAaPwv
(Fault Detection and Identification, “FDI”) kat eA¢yxov magovoia
PAapwv (Fault Tolerant Control, “FTC”), oe éva un emavoowpévo
aggookadog  otalbeprig mrtéouyac. Ta un  emavopwupéva
aEQOOKAPN EXOVV TEOKAAETEL TO €VOLAPEQOV TWV EQEVVNTWV
KOS N aQXIKN ETUTUXIG €PAQUOYT] TOUG YIX OTQATIWTIKOUG
KLEIWG OKOTIOUG €xel deléel TG TEQAOTLEG dUVATOTNTEG TNG
aflomoinong  Tovg  YIX  EUTOQKOVS  OKOTOUG  (OTwg
TNAETUKOWVWVIAKEG  EPAQHOYES,  EQEVVNTIKEG — ATIOOTOAEG,
meQIPaAAovTKr]  emtENOT), AaoPAAelx  OLVOQWYV,  EYKALON
TEOEOTONOT] KAl OULVTOVIOHOG KATAOBEOTS TUOKAYLWY,
HETAPOQA EUTTOQEVHATWY K.&). ATapaltntn meovTdOeon v
TNV EUTIOQLKT] XOT|OT] TWV AEQOOKAPWY AVTWV WOTOOO elval 1)
aoPaATC Kal XwEIg eUTOdX EVOWUATWOT] TOLG OTOV OLeOvT) Kat
e0VIKO a€Ql0 XwWEO, KATL TOL dev elval apeoa ePKTO TOOO
eEartiag ™6 EAAenng OLOOKAT OV TILOTOTIOMONG
(Airworthiness standards) o©co xat kavoviopwv xonons. H
OLVUTIAREN TWV HI] EMAVOQWUEVWY AEQOTKADPWV HE T EVEEWG
XOTNOHOTIOLOVHEVA €MAVOQWMEVA AEQOOKAPT) KL 1] XONOT] TOUG
MTAVW AMO TUKVOKATOLKNUEVESG TEQLOXEC TEOUTIO0ETEL TNV
eTUTEVEN €K HEQOVG TOUG OTNUAVIIKWV ETOOCEWV ATPAAELAG
OUYKQIOLHWV e autd TV emavOpwpévwy aggookadwv. Ot
OTOXOL ALTOL WOTOOO dev elval eVkOAO va emitevxOovv pe TNV
LVTIAQXOVOO TEXVOAOYIX TIOU XOMOLHUOTOLEL 1) AXEQODLAXOTIHLKT
texvoAoyla  €vRéwg OTwg TNV eVAAAAYEHOTNTA  VAKOU
(Hardware redundancy), v xonon ©onAadn moAAamAwv
OLOTNUATWV HE TO OO0 aviikelpevo wg epedoka. O KLELOG
AGYOg elvat OTL Tt U ETMAVOQWHEVA (EQOTKAPT £XOULV
TLEQLOOOTEQOVG TIEQLOQLOMOVG KOOTOVG Kat wPEéALHov poTtiov.
Etvat avtol ot meQloglopol e ovvOvaoud pe TNV avinuévn
VTTOAOYLOTIKT) loxv  mouv  maEéXovv oL  OoLUYXQOVOoL
HIKQOETIEEEQYAOTES TIOV KAOLOTOUV amaQaltnTn kKat duvatr) )
xonon evaAdayEpuotntag  Aoywouwov  (software or  soft
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redundancy), v xoron dnAadr aAyopiOuwv mov Oa eAgéyxouv
™V Agrtovgyla Tov aePooKAPovg kat Oa evtomiCouv EéykatQa Tig
omoteg PAaPec. H éykaion avt) avayvwolon PAaPwv Oa oémet
DLOKA V& CUVODEVETAL ATIO £VAV UTXAVIOUO TIQOOAQHUOYNG TOV
OLOTNUATOS €AEYXOL OTE va elval duvatn 1 dxtriEnomn Tov
OLOTNUATOG O€ eAEYELUN TITNOT] KALT) OLVEXLOT] TNG XTIOOTOAT|G.

H péxot twoa XoNom twv un enavOQWHEVWV AeQOTKAPWV
KatadekvieEL ws KUQLOVG TTARQAYOVTES TIQOKATIONG ATUXTUATWV
MV anwAgwx avtAnng kataotaonc (situation awareness) ek
HEQOVG TWV XEWWOTWV kKol TG PAaBec ota ovotuata
mEOWONOTS  (KLVNTNOAS) KAl OUTOMATOL eA€yxov (TmddAwa,
aLoONTIEEG). LINV OUYKEKQLUEVT eQyaoia €xel doOel Wwaitepn
éudaot omnv teAevtala katnyopia BAaBwv kaL cvykekQLUévVa
otis BAaBes twv mdaAiwv eAéyxov kabwg etval oL TTo KOLoLES
aPovL aAA&CoLVY AEONV T CLUTEQLPOQOA TOV CLOTI|HUATOG KL OEV
elvar evUkOAQ AVTIHETWTIOLHES [e TNV TEOCONKT eTunAéov
VAWKOU OTwg otnv meplnmtwon twv PAaBwv oe aloOntroec.
Ioaypatt n ewoaywyn e texvoloyiag MEMS é€xer kavel
duvat) TNV eVOWUATWON TOAA@WV POV aloOnTrowyv Kat Ty
KOLVN] XONOT) TOUG Héow aAyoplOpwv (sensor fusion). Katt tétolo
dev elvat duvato Y TNV TEPIMTWOT) TV TNOAAlWwV eAgyxoL (av
Kl agQOoKAPN pe TMOAAATAG TNdAAL eAéyxov €xouvv apxloel
va oxedxCovtat). Ot PA&PBec mov e€etdlovtal KaAvTTovV OAEg
tc mbavéc PAABec mnNdOaAiwv OTwg 1 aKLvnTOTIOMOT O€
oowopevn 0Oéomn (Stuck failure), n oAwr] anmwAewx TMdaAlov
(floating actuator) kat 1 douwr) BAaPn mndaAiov.

Ye avtiBeon pe MO vmagxovoes  peAéteg 0N
BPAOYoadia, 1 povieAomoinon twv PAaPwv etvar mMOAV To
oeaAotikn. Ou PAaPec ewoayovratr avtoteAwg oe KaOe
erupavex eAéyyxov (m.x del elevator) kat 60Xt otov ocvvdOLVAOUO
Twv TdaAtwv (el kat aploted elevator ovyxoovwe). Emiong
oL doukéc PA&Pec éxovv mEooopowwOel wg aAAayéc otoug
AXEQODVVAULKOUG OLVTEAEOTEG TNG OVYKEKQUUEVNG ETUPAVELAS
eA&yxov oe ovvdvaoUO pe aAAayEg oe AAAOLG areQOdLVAULKOUG
OUVTEAEOTEG KAL HE TNV EL0XYWYN VEWV OQWV TIOL CUVOEOLV TIG
0TtéG HETAlV twv afovwv (cross-coupling). H ewoaywyn twv
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PAaPwV avtwv yivetar amevOelag 0TO HN-YOAUUIKO HOVTEAO
TOU QAEQOOKADPOUS KAl OXL Of KATOWX YOXUHUIKOTIOUHEVT)
MEOCEYYLON] TOL  YUPWw aTd KATOO OnNuelo  10oEEOTIAG
(equilibrioum point). Emiong oto agpookadoc dev mootiOetat
eTUTMAEOV  €EOTALOMOG  €KTOC  TOL  ovHPaTkoy  (TtX. O&v
nteotAapBavovtal emmAéov atoOntroeg 0€omg Twv MNOaAiwy).
To ocvomua avayvwelong BAaPwv etval pn-yoappko kot
amoteAel TOV OoLVOLAOUO OVO TEXVIKWV: TNG AVAYVWOLONG
nagapétowy (parameter identification) kat Tng  extipmnong
noAAamAwv povtéAwv (Multiple Model Adaptive Estimation). H
tedevtala amoteAeital amo Hx CLOTOLXIA EMAVAATTTTIKWV
Extended Kalman Filters (EKFs) mov avayvwoilet tnv TeQimTwon
KATIOLAG  AKLVNTOTOMMEVTC  eTuPavelng eAEyxov He TNV
epappoyn pag duxdikaoiag probability ratio test ko Tagéxet
dAToapopéVT)  (smoothed)  extipnon Tov  dxvdopaTOg
KATAOTAOTG Kol KURLWS TV YwViakwV taxvtrtwv. H extiunon
TWV  YOVIAKWV  TaxLT)twv  pe  emimedo  OopvPov  ocadwg
HIKQOTEQO ALTOV TIOU  ETUTVYXAVETAL HEOW TWV  XOUNANG
nowdtnTag rate gyros, kdvel OLVATO TOV VTOAOYIOMO WHEOW
KATIOLX TEXVIKNG dAPOQLONG TWV YWVIAKWV ETUTAXVVOEWYV TIOV
XOTOHOTIOLOUVTAL OTOV AAYOQLOHO avaryvwELoTG TTAQAUETOWV.
H avayvoolon magapétowv Yivetat e TQAYHATIKO XQOVO
HEOow evog aAyoplOpov eAaxiotwv tetpaywvawv (Least squares
estimation). H amotoun petaBoAn twv  aeQodLVALLKOV
OLVTEAEOTWV TIOL  avayvwllovtat amoteAel px  PLOIKT)
évoelln  douwknc  PAAPnNc twv  mreQguylwv  eAéyyxov. O
OUVTOVIOMOG KAl 1) emeeQyaoia Twv amoTeAeouATWV TwVv dVO
MAQATIAVW aAY0QOUwWY Yivetal g évav kevtolko aAyoolOpo
emiPAeyng  (supervision module) oOmov Tt evonuata
a&loAoyovvtat pe dxpoovg TEOTOoLS (XE1on otabepwv oplwv
(thresholds) kat acadrn Aoywn) (Fuzzy logic) mowv efaxOel
mAnoodopolar NS avayvwwone  PAAPNS kat v
XAQAKTNEOTIKWV TNG. To avwtépw oOOTNUA avayvwELoTg
PAaPav alloAoynOnke tooo oe avorxtod (open-loop) 600 kal o€
kAewotd Pooyxo (closed-loop), magovoia evog cvoTruatog
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eAéyxov mov Oa pmogovoe va kKQUYPEL TA CUUTITWHATA TWV
PAaPwv.

Me Baon ta evoruata TOU CLOTNHATOS AVAYVWELOTS
PAaPwv, To cvoTNUa eAéyxov oxedlAoTNKE WOTE VA Aettovpyel
1000 o¢ ovvnOouéveg (nominal) 600 kAL oe éxkTakTeg CLVOTKES
ntagovoia PAaPwv. To cvotnua agxkd oxedxotnke pe Baon
neBodo e un-yoappukng dvvapkrg avtoteodpns (Non-linear
Dynamic Inversion, "NDI"). H pébodog avtn pumopet evkoAa va
MEOoaQUOOTEL O TEQIMTWOT PAAPNS pe ™V aAdayn twv
TIAQAUETOWY UE TIG VEEG TOL €XOLV ekTIUNOel 0TV MEQITTWOT)
TV dopkwVv BAaPwv evw otnv meplmtwon mov 1 PAKPN etval
akwnromompévn  emupavelx  eAéyxov, 1 emidoaor] TNg
vToAOYICeTal OTOV VOHO €Aéyxov HeE TOV (00 TEOTIO TIOL
vrmoAoyiCetat n  emidoaon TV  dAPOQWV  HETAPANTOV
KATAOTAOTG KAL 1] ATIALTOVUEVT] €VEQYELX KaTapepiletal 0TS
evamopelvavteg vytelg (healthy) emupaveies. H pébodoc NDI
TaQEXeL TOAAA MAgovekTIHATA otV Teptmtwon tov FTC, Adoyw
MG €UKOATNG TEOOAQUOYTSC TWV OLVTEAECTWV TG (TTOL OTNV
TOAYHATIKOTNTA  Elvatl oL agQoduvapkol ovvteAeoTés TOL
AEQOOKAPOUVC), TOU KATAMEQLOUOV eA€yxov (control allocation)
TIOL PULOIKA EUTTEQLEXEL KAL TNG dUVATOTITAS TIOOCAQMOYNG TNG
eTlOLUNTNG  ATOOO0NC TOL  CLOTIUATOS HECW  YOOAMUULKWV
HeOOdwv otov eEwtepkd Ppoyxo (outer loop). H emidoon tov
ovotuatog  afloAoynOnke  pHéOw  TOOCOUOWDOEWV  OF
oLVAQTNOT] HE EKELVI] TOU CLOTNHATOS AVAYVWELONG PAaBV
apov oe avtiBeon pe dAAec €gevveg ot PPAoyoadia, 1
mtAnjpodopia g PAAPTNC mapéxetal amtevBelag amo to ovoTNUA
AVOYVELONG Kot 1 eTtidO0T TOL VOHOUL EAEY X0V EEETATTNKE KAL
KATta TNV TeQlodo  mMEOoAQHOYNG  ONAadn) T XQOVIKT)
kaBvoTéEnon avayvwolong e PAAPTS kat akELBoUg eKTIUNOTC
TWV TAQAUETEWV TG (transient period). ATO TIC TTOOCOUOLWOELS
ddvnke 0Tl TO OVOTNUA Aavayvwelone PAAPNG pmoeel va
avayvwoloet v Vvmapén PBAapng (Fault Detection) oe moAv
LU0 XOVO (350ms) evaw 1) akQLPT)C EKTIUNOT) TWV TAQAUETOWV
S BAAPNC antartel xpovo too pe 1 second (yix pukoéc PAGPeG).
To ovotnua eAéyxov pmopel va dxtnEr)oel TOV €AgyX0O TOUL
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AEQOOKADOVE KAL VA ETUTUXEL LKAVOTIOUTIKY] TTAQAKOAOVON O
Twv  emuvuntwv  evtoAwv  magovoia  PAaPwv.  TéAog
TIQOKEUEVOL VA AVTIUETWTIOTEL TO HEYAAO HELOVEKTNUA TOV
NDI, onmAadry n avénuévn evawodnola tov ota  Aadn
HOVTEAOTIOMONG (AQA KAL OTIG EKTLHUWHEVES TTAQAUETQOVS TG
PBAGPNC), epapgpootnke px teoToTompévn ekdoxn tov NDI, to
INDI (Incremental Non-linear Dynamic Inversion)
TAQOLOLAOTNKE  Kat afloAoynOnke HéOwW TIQOTOUOLWOEWV
delyvovtag av&npevn avOekTIKOTNTA Ot OPAAUATA TV
EKTLHWHUEVWV TTAQAUETOWV BAXPNG.

Yto kepalaio 1, divetal i eloaxywykn meQLyQadr) tov
eAéyxov magovoila PAaPwV KAl TNG AVAYKNG ePAQHOYNS TOV
OTNV AeQODXCTNUIKT] TEXVOAOYlr TOOO O¢ eMAVOQWHEVA 00O
Kol oe un-emavopwpéva aepookadn. TéAdog meprypadetat o
OKOTIOG TNG HETATITUXLAKNG €QYATLIAG.

Y10 0eVTEQO KEPAAALO, TEQLYQAPETAL AVAAVTIKA TO
HOVTEAO TOU UN-€MAVOQWHEVOL aeQookddovg (Aerobatic UAV
tov mavermotnuiov ETH g Zvoixng). Ileoryoadovtal emiong
T HOVTEAa aloOnmoEwv Kat emeveQyntwv (actuators) mov
xonowonomOnkav otnv mEooouolwon kabwe kat ta HOVTEAX
TwV TeQLBAAAOVTIKWV datagaxwV (turbulance).

1o xkepaAawo 3, yivetar avapoQd oTic OaPOQETIKES
PAaPec mov etval duvatd va TAQOLOLAOTOVV YeEVIKA O &va
OLVAULKO CUOTNHUA KAL €EEWDIKEVETAL O TEOTIOG HOVTEAOTIOMOTG
KAl TQOOOUOLwoT)¢ Toug. TéAog mapovotdletal HEow £VOG ATTAOD
MAEAdeLYHATOG 1 KQLOHOTNTA TV PBAAP@V TWV ETEVEQYNTWV
otV evotafelx TV EAeYXOUEVWV CUOTIHATWV.

Yto kepadawo 4 yivetar pa PPAoyoadkr) avadoour)
otnVv avayvawelon BAaBwv kat otov éAgyxo magovoia PAaPwv.
Ot dddopeg Texvikéc magovolalovtat ovvomTikd Hall e
ePAQUOYES TOUG OTOV TOHEX TWV ETMAVOQWUEVWYV KAL U
AXEQOOKAPV.

Ta kepaAawa 5, 6 amtoteAoVV TO KUQLO HEQOG TNG €QYATIAG
OTIOL TMAQOVLOLALETAL TO CUOTNHA AVAYVWELOTS PAaPOV KAt TO
ovotnua  eAéyxov mTNONG maQovolx PAafPwv. XTO TEWTO,
avaAvetal 1 oxedlaon OV CLOTNHATOS AVAYVWELONGS BAaBWV
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KAl eAéyxetal 1 amodooT] ToV 0 avolXTo Peoyxo (open-loop),
Xwolg TNV magovoia eAgykt. Xto deUtego axoAovOel 1)
oxedlaorn TOL VOHOU EAEYXOL Y TIC dAPOQES TEQLTITWOELS
PAaPOV TV emiPavewv eAEyxov kat aloAoyeital 1 emidoon
0AOKATNP0L TOL CvoTHHatog (closed-loop simulation).

Tédoc 10 «kePaAawo 7 TeQLEXEL MLt CUVOTITIKN
avakepaAalwon g eoyaociag oOmov  magatifevratr T
OUUTIEQAT AT, TIAQATNQONOELS KAL TQOTACELS YIX TEQALTEQW
éoevva.

Yty eoyaocta avt) xonowomomOnke evag aQlOpog

eoyadelwv kal amoteAeopdtwv dAAwv egyacwwv. ' v
HOVTEAOTIOMON TOL AEQOOKAPOLS XN OLHOTIOW)ONKAV dedopéva
mov  avadégovtar oty  avapooa [10]  (novreAomoinon
dvvapewv kat goTtwv). ' Tnv mEooopotlwon xenotporoun)onke
to Flight Dynamics and Control Toolbox (FDC) [11] mov
avantoxOnke oto TU Delf kat duxtiOetar eAevOepa oto internet.
To toolbox mepAauBavel to povtéAo tov aecpookdapovs Beaver
KaL TteoTomomOnke OoNUAVTIKA @OoTE Vo elval duvatn 1)
pnovteAomoinomn tov vTo peAétn UAV kal 1 eloaywyr) dopKwv
PAaPwv pe ToomoTOMOT TWV AEQOOdLVAUIKWY ovvTeAeotwv. Ot
dopkég avtéc BAaPeg umopovv va eloaxbovv oty eTiAeypévn
XQOVIKN] OTLyUr] Kat To €idog g PAAPNS pmopel evkoAa va
teoTtoTIOW O el HETA&V TWV TIQOTOUOLWTEWV.
Emiong mpootebnkav katdAANAa HOVTEAQ €TTEVEQYNTWV KAl
aloONTNowV  Kat avamtuxOnke €Eva  eQyalelo  eloaywyrg
PAaPwv  (duvatot)Ta axwvnToToMOoNG O TLXALES XQOVUKES
oTLyHéC Kat tuxateg Oéoelg, mpooopoiwon floating actuator x.a).

Katormv avantoxOnkav wg sfunctions ta €&t EKFs kat o
aAyoolOpog mov exteAel emavaAnmrtuca probability ratio test
vroAoyiCovtag T oxetikn) Tlavotnta k&be evog ek Twv €EL
oevaplwv (Tévte v PAAPN o0& Evav emeveQYNT KAl £€va TOL
AVTITIQOOWTEVEL TNV PLOOAOYIKN] AettovEYyin). AvamtoxOnke
ermtiong wg sfunction o aAyoplOpog mov exteAel exTiUNOM
TIAQAUETOWY O TIRAYMATIKO XQ0Vo kKabwg xat 1 Aoy Tng
pHovadag emiPAeymc (supervision module). TéAog avamtuxOnie N
Aoyikn) eAéyxov péow anAwv PID eAeyktwv (simulink) kat Non-

A-15



linear Dynamic Inversion (NDI) (sfunction). OAa ta apxelax mov
elvat amagaltnTa yix TG TEOCOUOLWOELS TTEQLAAUPAVOVTAL OTO
ovvnuuévo CD.
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Chapter 1 - Introduction

1.1 Why Fault -Tolerant Control?

Nowadays, control systems are everywhere in our life. They
are all around us, often remaining invisible for the eye of most of
us. They are in our kitchens, in our DVD players and computers.
They are driving the elevators, we have them in our cars, ships,
aircraft and spacecraft. Control systems are present in every
industry, they are used to control chemical reactors, distillation
columns and nuclear power plants. They are constantly and
inexhaustibly working, making our lives more comfortable and
more pleasant...until the system fails.

Faults in technological systems are events that happen
rarely, often at unexpected moments of time. In [1] (Blanke et al.,
2006), the following definition of a fault is made:

“Fault in a dynamical system is an un-permitted deviation
of the system structure or the system parameters from the
nominal situation.”

It is clear from the above definition that a fault is different
than a failure. A system can possibly tolerate a fault, however this
can eventually lead to a complete failure.

Faults are difficult to foresee and prevent. Their further
development into overall system failures may lead to
consequences that take different forms and scales, ranging from
having to spend 50 euros for a new coffee machine to enormous
economical and human losses in safety-critical systems like
aircrafts and nuclear power plants.

The idea of Fault-tolerant control can be stated as follows [1]:

“Fault-Tolerant control /s a collection of techniques and
practices that aim to prevent a fault from causing a failure at
the system level.”

Fault tolerant control is an emerging research field in control
engineering which is trying to design control systems which can
tolerate component malfunctions, while maintaining desirable (or
acceptable) performance and stability properties.



1.2 Motivation for Fault -Tolerant Flight Control

Within the aviation community, especially for commercial
transport aircraft design, all developments focus on ensuring and
improving the required safety levels and reducing the risks that
critical failures occur.

The flight control system has been identified as a safety-
critical system by the aerospace industry in the sense that
catastrophic consequences can result from its failures, such as a
control surface runaway (such as a rudder or horizontal stabilizer),
loss of control on the pitch axis, luck of control after an engine
burst or an oscillatory failure at a frequency critical to the structure.
All these failures must be extremely improbable, i.e with a
probability of less than 10° per flight hour taking under
consideration additional qualitative requirements. Specifically for
flight control systems, it is required that a catastrophic
consequence must not be due to a single failure or a control
surface jam or a pilot control jam. This qualitative requirement is
on top of the probabilistic assessment according to Federal
Aviation Administration Regulations Part 23, 25 and 27 for civil
aircraft.

In order to be compliant with Airworthiness requirements for
aircraft certification, aerospace industries have invested in the
implementation of safety integrity analysis methods like those
presented in [2] (Isermann et al. 2002). Safety and reliability are
generally achieved by a combination of

¢ Fault avoidance

¢ Fault removal

¢ Fault tolerance

¢ Fault detection and diagnosis

Fault avoidance and removal has to be accomplished mainly
during the design and testing phase. The effects of faults on the
reliability and safety are investigated based on a range of methods
that include

Reliability analysis

Event tree analysis and fault tree analysis
Failure mode and effect analysis

Hazard analysis

Risk classification



After the faults and their effects are identified, modification of
the system or equipment specifications (e.g reliability
specifications) or system architecture (e.g redundancy) can be
applied to ensure that the possible failures are removed or that the
risk that they impose to the system is reduced to an acceptable
level. The unavoidable failures have to be covered by scheduled
maintenance and online supervision and safety methods during
operation.

Every industry applies its own rules during the design phase
to accomplish safety requirements like the V-cycle applied by
Airbus [3] (Gupil Phillipe, 2009). Generally, fault tolerance is
achieved by:

¢ A stringent development process both for software and
hardware. This development process has to follow
specific guidelines that ensure quality assurance and
tractability. It is accompanied by system safety
assessment to assess the effect of faults and impose
modifications on system architecture (e.g degree of
redundancy)

e Hardware (and software) redundancy. The use of
multiple measurement sensors, actuator devices,
power sources and computers in static or dynamic
redundancy configuration (usually triplex or quadruple)
is common. These redundant components are selected
by voter mechanisms or by monitoring and
reconfiguration mechanisms as shown in figure 1.1 [2].
In this way monitoring of the system components and
automatic  management  following a failure
(reconfiguration) is possible in order to maintain
performance or achieve graceful degradation.
Redundancy is used also for the software with different
software components realizing the control laws and
arranged in different levels of complexity.

e Dissimilarity is also a very important point to ensure
fault tolerance. For example all Airbus aircraft have at
least two types of computer: a primary and a
secondary. Their hardware and software are different
and they are not developed by the same teams.
Moreover, the software components are developed
using different software tools and languages.
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Figure 1.1 Fault-tolerant schemes for electronic hardware [2].

(a) Static redundancy: multiple redundant modules with majority voting and
fault masking, m out of n systems (all modules are active).

(b) Dynamic redundancy: Standby module that is continuously active (hot
standby)

(c) Dynamic redundancy: Standby module that is inactive (cold standby)

¢ Installation segregation: critical components (like
computers) are not physically installed at the same
place on the aircraft, to avoid total loss in the case of
any damage. The same reasoning leads to
segregation of hydraulic and electrical routes.

All these methods are applied in the design stage and a
thorough validation/verification stage follows, ranging from
computer simulation, hardware in the loop tests (“iron bird”) and
SIL (System Level Integration laboratory), to flight tests. Every
industry of course applies its own «golden rules» and a survey of
current fault tolerant flight control systems for both civil and military
aircraft can be found in [4]. Figure 1.2 displays the flight control
system architecture of the Eurofighter Typhoon aircraft which is
typical for other military aircraft (F-16 etc). It uses quad-redundant
processing and sensor modules as well as four independent signal
channels.
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Figure 1.2 Flight Control System Architecture of the Eurofighter Typhoon [4].

Despite the stringent development process, accidents in
aerospace systems are not impossible. On the contrary fatal
accidents of civil aviation alone are more than 20 every year!
Figure 1.3, represents some recent worldwide civil aviation safety
statistics [5] (Civil Aviation Authority of the Netherlands, 2008).
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Figure 1.3 Accidents statistics [5].

The above mentioned study indicates two major categories
of accidents which can be attributed to a common initial event,
“controlled flight into terrain” where an aircraft, despite being fully
controllable and under control, hits terrain due to the loss of the
situation awareness of the crew, counting for as much as 23% of
all the accidents. This percentage is decreasing over the years,
thanks to the enormous international attention with respect to crew
resource management training and the development and
implementation of new systems in the cockpit. The second major
category is “loss of control in flight”, which can be attributed to
mistakes made by the pilot or a technical malfunctioning. This
category counts for 16% of all aircraft accidents and is not
decreasing. Loss of control during flight is one of the motivating
factors towards fault tolerant control: the idea being, to increase
the “fly ability” of the aircraft in the event of faults, failures and
airframe damage.

Learning from previous incidents, where pilots successfully
landed cripped aircraft — such as Flight 232 in Sioux City, lowa
1989", the Kalita Air freighter in Detroit, Michigan, October 2004
(figure 1.5)? and the DHL freighter incident in Baghdad, November

! Flight 232 suffered tail engine failure that caused the total loss of hydraulics [6]
% The freighter shed engine No. 1 but the crew managed to safely land without any casualties

6



2003 (figure 1.4)° — it is evident that in many cases, the damaged
or faulty aircraft is still “flyable”, controllable and some level of
performance still can be achieved, sufficient to allow the pilot to
safely land the aircraft. It is thus believed that a significant part of
that 16% of accidents could have been prevented.

Furthermore, the existing approaches to fault tolerance with
the use of multiple redundant components, imposes a heavy cost
on the design and especially the operation and maintenance of
modern aircrafts. The current trend to civil aviation is the reduction
of weight and the minimization of fuel consumption something that
does not favor multiple hardware redundancy. New methods to
achieve fault tolerance have to be implemented.

Figure 1.4 DHL A300B4 emergency landing after being hit by a missile in
Baghdad, 2003.

® The DHL A300B4 was hit by a missile on its left wing and lost all hydraulics, but landed safely [6]
7



Figure 1.5 Kalila Air emergency landing after losing one engine, 2004.

1.3 Fault -Tolerant Flight Control for UAVs

The increasing need of avoiding the exposure of humans to
“‘dull, dirty and dangerous” missions in conjunction with the
sustained multi-disciplinary technological progress in the past two
decades are the main reasons behind the exponential growth rate
in the development, deployment and operation of unmanned
autonomous systems (UAS) [7], [9].

Unmanned aerial vehicles (UAVs) have been around and in
service since the 1990s and are going to be routinely used for a
wide range of tasks such as:

Sea border searches from the air

Search and rescue

Border patrols, homeland security, law enforcement,
monitoring of drug trafficking

Monitoring and control of road traffic and transportation
Crop yield prediction, drought monitoring, spraying of
pesticides

Inspection of power lines, bridges and barrages
Observation of oil and gas pipelines

Forest monitoring, fire detection, firefighting

Relaying and broadcasting of mobile communication
Tactical reconnaissance and operational support
Environmental and climate research: monitoring of air
quality, meteorological studies and predictions

New generations of UAVs will play increasingly important
role in future military and civil operations. They will be designed to
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achieve their mission not only with increased efficiency, but also
with more safety and security. However there are a number of
significant challenges associated with the development of an
advanced control system for these vehicles [8].

First, because the UAVs will be exploited to perform tasks
that would otherwise risk the safety of flight crews of manned
aircraft, there is an increased probability of damage to the vehicle
resulting from extreme operating conditions, hostile actions, etc.
This underscores the need for a reliable system design that can
accommodate significant changes in system behavior from a wide
variety of sources. Flight control and power/propulsion failures are
dominant failure modes according to accumulated data as shown
in figure 1.6 [7].

O Power/Prop

B Flight Control
0 Comm

O Human/Ground
W Misc

O Power/Prop

B Flight Control
OComm

O Human/Ground
B Misc

(b)
Figure 1.6 Failure sources for UAVs: (a) US military based on 194000 flight
hours and (b) IAl military based on 100000 flight hours.

Furthermore the requirement that the UAV must operate in
close proximity to humans further emphasizes the need for a
reliable system design. As mentioned in [7], there is a trend to
incorporate future UAVs into national and international airspace.
This goal will impose strict requirements to reliability similar to
those of current civil and military aircraft. However in UAVs there
are additional cost, weight and payload constraints that negate the
application of current techniques that rely on multiple hardware



redundancy. As shown in figure 1.7 [7], these constraints lead to
higher mishap rates for smaller (and cheaper) UAVs, while for
bigger ones, reliability is comparable to that of modern military
aircraft. This can be attributed to the lower cost-lower performance
equipment (sensors/actuators) used in lower cost configurations.

Moreover, the lack of a pilot in the cockpit makes very
difficult the handling of UAVs in case of failures. Situation
awareness is not possible or severely reduced and the response of
the ground crew is usually delayed and/or mistaken. This makes
essential the existence of reliable on-board fault detection and
identification system as well as a fast and efficient fault tolerant
control system that could maintain the UAV in flight and report the
failures to the ground crew allowing decision making.
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Figure 1.7 Mishap Rate Comparisons [7].

Second, because many UAV systems are expected to cost
less than manned systems, it is unlikely that developers will have
the resources to collect extensive wind-tunnel and flight test data
of the «caliber typically found during manned flight vehicle
development. Thus, the model available for UAV development will
necessarily contain larger uncertainties, which compels the control
engineer to compromise performance in favor of robustness. The
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same requirement of robustness to the model uncertainties are
imposed to the fault detection and identification system of the UAV
if a model based approach is selected.

Finally, because of the emerging requirements to increase
autonomy, the controller must be augmented with a very
sophisticated guidance and autopilot design that not only cruises,
climbs and changes heading, but is capable of generating
trajectories and perform complex and agile maneuvers that would
normally be performed by a pilot, without the risk of losing control
of the vehicle. The resulting controller should be capable of
adapting to new conditions and restrictions such as actuator and
sensor faults and structural damages.

1.4 Purpose of the thesis

The purpose of this thesis is the development of a fault
tolerant flight control and guidance system for a non-linear fixed
wing air vehicle.

The design and testing is going to be performed in
Matlab/Simulink. A simulation environment for the simulation and
testing of fault tolerant flight control systems will be created. This
environment will be based on Flight Dynamics and Control Toolbox
(FDC) [11] and will include a 6-DOF nonlinear UAV model
developed at ETH Zurich [10] (Figure 1.8).

Our goal is:

e To design a reliable and efficient fault detection system
capable of isolating faults and providing fault estimates
and evaluate its performance and complexity.

e The fault detection and isolation system will be able to
detect and isolate all types of actuator faults (stuck
surfaces and loss of control effectiveness) and will treat
every control surface individually (contrary to the
current literature where loss of effectiveness is treated
on pairs of effectors only).

e To use existing redundancy of the aircraft model to
accommodate any sensor or actuator failure by
designing a fault tolerant controller. The faults that will
be considered are focused on actuator failures (both
stuck or floating actuators and loss of control
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To assess the performance of the hall system and the
added reliability.

The development will focus on:

Robustness of the Fault Detection and Identification
(FDI) system and the controller to modeling
uncertainties

The limitations in hardware/payload due to
weight/costs restrictions. Because of the above, no
extra sensor or actuator is going to be implemented to
increase survivability

The coupling of the controller/FDI systems to a real
time model identification module capable of providing
local updates to the aerodynamic model data if the
robustness to the specific parameter is found to be
critical

Effective accommodation of every single actuator
failure

Effective accommodation of structural failures of a
limited extend

Figure 1.8 Aerobatic UAV developed by ETH Zurich [10].
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Chapter 2 - UAV Simulation Model
2.1 Nonlinear Model of the UAV

This chapter presents the axes, the frames and the non-
linear model of the aircrafts used in this thesis. The axes are
typically used in almost every aerospace application. The
derivation of the model is based on the rigid body equations of
motion and can be considered valid for aircraft as well as fixed
wing UAV aircraft as long as flexible modes are neglected. A more
detailed description of the derivation of the equations can be found
in standard textbooks on aerodynamics and flight control [12], [13].
The detailed modeling of the aerodynamic and propulsion forces
can be found in the Appendix and section 2.5.2 respectively.

2.2 Definition of the Frames
2.2.1 Navigation Frame

The navigation frame is considered an ‘“inertial frame of
reference” (it does not move) and is attached to the earth’s local
tangent plane. Its orientation is North-East-Down (X,, yn, z,). When
the airplane is on the ground before taking off, the origin of the
navigation frame, O,, is initialized by the position of the airplane’s
center of mass.

2.2.2 Body Frame

The body frame is right-handed orthogonal coordinate frame
(Xv, Yb, Zp), attached to the aircraft body and moves with it. The
origin Oy is located at the aircraft's center of the mass. The
positive x axis points forward along the aircraft’s longitudinal axis,
the positive y axis is directed along the right wing and the positive
z axis is normal to the x and y axes pointing downwards.

2.2.3 Euler Angles

In order to relate the various vectors expressed in the two
reference frames described above, three Euler angles are widely
used. As shown in Figs. 2.1 and 2.2, the navigation coordinate
frame is first transformed into the intermediate frame 1 via a
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rotation about the z, axis by the angle w, which defines the
aircraft’'s heading. This is followed by a rotation about the new y;
axis by an angle 6 (pitch angle), which defines the aircraft’s
elevation. Finally, the aircraft bank angle (roll angle), ¢, defines the
rotation about the new x, axis. Figure 2.3 shows a 3D
representation of the Euler angles describing the orientation of the
body frame with respect to the navigation frame.

T, I 9 Iy T, = T
_ Roll angle
& (4 a Y2 = U o
2 il o= w Pitch angle ’l 5
" Yaw angle Tyl 7| (Elevation) 2 %
Navigation (Heading)  Intermediate Intermediate Aireraft’s
frome frame | frame 2 body-fixed frame

Figure 2.1 Euler angles

Figure 2.2 Euler angles and frame transformations
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Yn

Figure 2.3 3D representations of the Euler angles
The attitude transformation matrix (also called direction
cosine matrix) is necessary to transform vectors and point
coordinates from the aircraft's body-fixed frame (b) to the
navigation frame (n) and vice versa. The direction cosine matrix

n
Cb transforms the vector A expressed in the navigation frame A"

into a vector expressed in the aircraft's body-fixed frame A® as
follows:

AszfA” (2.1)
With
1 0 0 |oxfd 0 —snd| asy sny O
G=0 asp sng) 0 1 0O |-sny asy O
0 —sing asp|sind 0 osd| O 0 1

(2.2)

b
In a similar fashion, the direction cosine matrix Cn that

transforms the vector A expressed in the body-fixed frame A® into
a vector expressed in the navigation frame A", is:

i =(C) =(C) 3
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2.2.4 Quaternion representation

Due to certain limitations of the Euler angles representation,
such as the ambiguity at 90° angles, quaternion representation is
often used, especially in highly maneuvering aircraft and
spacecraft systems.

Transformation between representations is possible and
computationally simple. In [12] it is shown how elements of the
quaternion can be expressed in terms of Euler angles and vice

n
versa. Te attitude transformation matrix Cb can be expressed
with a quaternion representation as follows:

1-2(0,°+0,")  2(0, +00%)  2(0,0 —G,) |
C = 200 —00%) 1-2(G°+0")  2(0,0 +0Ch)

, o |(24)
| 200 +00) 200 —%%) 1-2(07+0,) |

2.2.5 Wind frame

The aerodynamic forces are created by the airflow acting on
the airframe. The air flow is described by the airspeed vector V.
Its norm is |v;| and its direction relative to the airframe is defined by

two angles, namely the angle of attack a and the sideslip angle [3.

As shown in figure 2.4, the angle of attack a is the angle
between the projection of the airspeed vector Vr onto the (x,, zp)
plane and the x, axis. The sideslip angle @ is the angle between
the projection of the airspeed vector V+ onto the (x,, z,) plane and
the airspeed vector itself. The wind axes coordinate system is such
that the x,, axis points along the airspeed vector V7.
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Figure 2.4 Angle of attack and sideslip angle definition

The rotation matrix Cg” is necessary to transform vectors
and point coordinates from the body fixed frame (b) to the wind
frame (w) and vice versa according to the following formula:

A" =C)A° or A" =(CH)"A"=C A"  (2.5)

with
cosp sing 0f cosa 0 sina
C,))=|-sing cosp O 0 1 0 (2.6)
0 0 1||-sinae 0 cosa

2.3  Wind Disturbance

The unsteady nature of the atmosphere, affects the motion of
the airplane and its flight path in relation to the ground. Wind
disturbance can seriously impair the fault detection system since it
introduces unknown (and unwanted) input to the system. That is
why in our design and evaluation of fault tolerant control system
the presence of wind will be included.

17



Wind disturbance can be modeled as a mix of a deterministic
and a stochastic component [11]. The deterministic component
can be created based on a constant wind speed and wind direction
with the addition of a vertical wind velocity component. The change
of horizontal wind speed with height has to be taken into account.
The modeling of this component can be based on simple
deterministic equations.

The stochastic component of the wind is known as
turbulence. It is often regarded as a “random” process, although
the evolution of turbulent flows are governed by the general
Navier-Strokes equations (a set of deterministic, nonlinear
coupled, partial differential equations). For simulation purposes it
would be practical to model atmospheric turbulence as white noise
passing through a linear, rational, “forming filter’, as shown in
figure 2.5.

Unfiltered Turbulence velocity
white noise Linear Filter {‘coloured noise’)
(Dryden) >

Figure 2.5 Modeling atmospheric turbulence as filtered white noise

Several wind models have been included into FDC Toolbox
both for the deterministic component of the wind and the turbulent
part. These, as well as a deeper description of wind and
turbulence modeling can be found in [11].

2.4 Rigid Body Equations of Motion

The aircraft equations of motion can be derived from
Newton’s laws, which state the connection between force and
motion. These equations are valid for all aircraft as long as they
can be considered as rigid bodies and their flexible modes are
neglected. Their derivation can be found in a lot of books about
aerodynamics and control [12], [13] and they will be briefly stated
in this section.

To build the nonlinear state-space model we start with the
basic force and moment equations that describe the change in
translational and rotational velocities (i.e. translational and
rotational accelerations)
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The variables V (true airspeed), a (angle of attack), B
(sideslip angle), p (yaw rate), q (pitch rate) and r (roll rate), which
represent the linear and angular velocities of the aircraft, can be
regarded as the state variables for this model. Sometimes the
body-axes velocities components u, v, w are used instead as state
variables. However the use of V, a, 3 is more convenient and more
appropriate as they represent quantities that are usually measured
by sensors on most aircraft. Fy, Fy, F, and L, M, N are the total
forces and moments on the aircraft body. These are the result of
thrust, aerodynamic forces and wind forces. The coefficients of the
last three equations (inertia coefficients) are summarized in table
2.1 while figure 2.6 is a graphical representation of the external
forces and moments and the linear and rotational velocity
components of the airplane in relation to the body-fixed reference
frame.
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Zp-axis

Figure 2.6 Orientation of the linear and angular velocity components,
external forces and moments, angle of attack and sideslip angle in
relation to the body-fixed reference frame of the aircraft.

The attitude of the airplane and its altitude are needed to
determine the gravitational, aerodynamic and propulsive forces
and moments. This means that the model needs to be extended
with the equations of the Euler angles and the altitude. The
aircraft’'s horizontal coordinates are not needed to solve the
equations of motion but they are included for practical purposes.
This yields an additional six state equations:

. gsing+rcosg

~ cosé
0=qcosp—rsing
¢p=p+(gsing+rcosp)tand = p+ysind

(2.8)
X, = {u, cos &+ (v, Sin @ + W, cos p)sin 8} cosy — (v, COS @ — W, sin p)siny
y, = {ue cos &+ (v, Sin @+ W, Cos ) sin 6’}sin w + (v, COS @ — W, Sin @) CoSy

H =u,sin&— (v, sin ¢+ w, cos ¢) cos &

with the new state variables y, 6, @, Xe, Ye, H. These twelve state
variables are combined in the state vector x.

x=[VaBpqryeexeyeH] (2.9)

And the resulting equations are combined in a single vector
equation:
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X = f'(x, Fg (), M, (1)) (2.10)

symbol definition

|I| Ixxlyyfzz — 2]xy]xz]yz - Ixx]yzz - Iyy]xzz - Izz]xyz
I Iyy;{zz - jyzz

12 ]xyfzz == ]yz]xz

IS Ixy]yz =+ Iyy}xz

L_L Ixszz - szz

I5 Ixx]yz + ]xy]xz

Ig Ixxfyy - Ixyz

P L / |I|

P I / |1

P, Is / |1

PPP *(]szZ — ]xy}-rs) / |I|

qu (Ilel _ ]szZ - (Iyy — Ixx)IS) / |I|
Ppr *(]xyll - (Ixx - Izz)IZ — ]szS) / |I|
P@‘? (Iyzfl — ]xyIS) # |I|

qu —((Izz_Iyy)Il _]xyIZ—FIszS) / |I|
PTT _(jyzfl — ]xzfz) / |I|

Qr L / |1

Qo Iy / |I|

Qp Is / |I|
QPP _(szL_l — ]xyIS) / |I|
QPQ‘ (IszZ - ]yle - (Iyy - Ixx)15) / |I|
Qp?' *(Ixylz += (Ixx — j-rzz)j-rﬁl G ]yz15) / |I|
Qqq (Iyz}-rz - ]xy15) 7 |I|

qu _((Izz - yy)IZ - ]xyL_t -+ Isz5) / |I|
Q?‘?’ _(jszZ - ]sz_t) / |I|

Ry Iz / |I|

R Is / |1

Ry Is / |I|
RPP *(Isz5 — ]xy16) / |I|
qu (IszS — ]szS - (Iyy — Ixx)Ié) / |I|
Rpr *(]xyls -+ (Ixx — Izz)IS _ ]sz6) / |I|
qu (IszS T ]xy16) 7 |I|
Rq?" _((IZZ - Iyy)IS - ]xyIS I Isz6) £ |I|
R *(]szS — ]szS) 7 |I|

Table 2.1 Definition of Inertia Coefficients
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Equation (2.10) is a set of nonlinear equations that seem
easy to manipulate, however this is not true. The total forces and
moments, apart from being time dependent, are also state
dependent leading to a strong coupling between the equations.
What’s more, in some cases this forces and moments depend also
on the time-derivative of the state vector (x), which causes the
vector equation to become implicit. Of course this depends on the
way forces and moments can be described, something that is
aircraft depended.

2.5 Model of the Aircraft total forces and moments

2.5.1 Model of the Aerodynamics forces and moments

The forces and moments acting on a complete aircraft are
defined in terms of dimensionless aerodynamic coefficients [12],
[14]. Usually these forces and moments are defined in terms of
wind-axes components. This way we have the following
coefficients:

drag, D =qSC,

lift, L = gSC,

crosswind _ force,C = gSC,

rolling _moment,l, = SbC, (2.11)

pitching _moment, m, = GSCC,,
yawing _moment,l,6 = gSbC,

The aerodynamic coefficients that are included in the above
equations, are in practice specified as functions of the
aerodynamic angles (a, B), Mach and altitude. In addition, control
surface deflections ®s and propulsion system effects cause
changes in the coefficients. Consequently we write the
dependence of an aerodynamic coefficient as:

C()=C, (@B M,h3,T,) (2.12)

Equation (2.12) implies a complicated functional dependence
that has to be modeled as a “look-up table” in a computer. The
vast majority of aircraft however have flight envelopes restricted to
small angles of attack and/or low Mach numbers. For these
aircraft, the functional dependence will be simpler and any given
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coefficient might be broken down into a sum of simpler terms, with
linearity assumed in some terms. This procedure is known as
‘component build-up”. Usually every aerodynamic coefficient
consists of a “baseline” component plus small increments for
control surfaces, gear, etc. These small increments are called
aerodynamic derivatives.

The aerodynamic coefficients can be determined by the use
of CFD computer codes (e.g Advanced Aircraft Analysis version
2.5) or a combination of empirical data and theory built into a
computer program such as the Stability and Control Datcom. The
input data to these programs include a geometrical description of
the aircraft.

The aerodynamic coefficients can be estimated in a wind
tunnel using an aircraft scale-model. This is the most widely used
method to experimentally derive the coefficients. The second
important method is the measurement of these coefficients through
flight tests.

The UAV model [10] is a relatively simple model where every
coefficient is composed of a baseline component and additional
terms linear to state variables like a, B and their powers (up to the
second). Analytical presentation of the modeling of the
aerodynamic forces and moments can be found in Appendix A.

2.5.2 Model of the thrust (engine) forces and moments

The engine force (thrust) for every aircraft is modeled in a
different way. For the simple UAV model used in this thesis it is
assumed that the engine can produce a force only along the
aircraft body’s longitudinal axes. No moments are thus created by
the engine force. The force generated by the engine is dependent
on the propeller slipstream and the angle of attack, while the
coefficients defining the force are constant over the entire flight
envelope.

The thrust force is computed as follows:

F = pn’ D4CFT (J)

Where p is the air density, n the engine speed, D the propeller
diameter and C. (J)is the dimensionless thrust coefficient that is

expressed as a function of the ratio J = E;/Tn :
Vi

The thrust coefficient is expressed as:
Cr (J)=Cq +Cp J+C.,J7
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2.6 Control Vector and Actuators

As can be seen from the above modeling of forces and
moments, these are influenced by the control inputs to the system.
Control inputs are the surface deflections &5 and the throttle setting
(or thrust) for the engine. On a typical aircraft, there are five control
surfaces (five actuators), two elevators, two ailerons and a rudder
(figure 2.4). The elevators and ailerons are moving together
(symmetrically and asymmetrically) making control law calculation
easier.

So u=[sa ¢oe or F.], where, da,oe,or is the aileron,
elevator and rudder deflection scaled such that their range is the
same (6,,6,,6, €[-11])and F; €[0,100]is the engine thrust.

However as will be stated in the next chapter, simulating
individual surface failures requires the effect of each surface to be
taken into account. Also a very easy way to increase redundancy
in the aircraft actuation system without adding hardware is the
individual movement of control surfaces. In this way only the
controller complexity is increasing.

In order to take into account the individual contribution of
every surface, we need to evaluate the effect of symmetrical and
asymmetrical movement of ailerons and elevators. This modeling
can be incorporated into the way aerodynamic forces are
calculated. This means that equation (2-12) will be changed so
that every actuator can contribute individually to the
forces/moments generated. The control vector will be:

u=[oal a2 del oe2 or F] (2.13)

The control inputs are not directly set by the controller.
Actuation devices are used to apply the control surface deflections.
The dynamic properties of these actuators have to be taken into
account during simulation and modeling. The dynamics of the
actuators present nonlinear behaviors and dead zones, however
for controller design it is common to approximate them [12] as:

20.2

$+20.2
202
T 5+20.2

10
G S)=
elevator ( ) S +10

Grudder (S) =

Gaileron (S) (2 - 1 4)
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As can be noticed, actuator dynamics are considerably fast
(poles at -20.2 and -10) so the transfer functions of the actuators
can often be approximated to 1 without losing much accuracy (of
course this depends also on the system poles as well).

2.7 Sensors

In order to measure the state of the aircraft, several sensors
are used. Body-axes linear accelerations can be measured with
accelerometers. These measurements are considered highly
reliable because of their excellent linearity and small bias error.
However there are serious issues involving sensor location since
measurements must be corrected to the aircraft center of gravity
and they can pick up structural response and engine vibrations.
The integration of these quantities can lead to the position
estimation (xe, ye, H) although typically additional sensors are
used (barometric altitude, GPS) and sensor fusion algorithms
(usually Extended Kalman Filters although other more complicated
algorithms like Particle Filters can be used). True airspeed (V) can
be measured by air data sensors (pitot tubes) and angle of attack
(a) can be measured by angle of attack sensors (flow vanes
mounted on the aircraft). All these sensors are available in low
weight/low cost due to MEMS technology. Although they suffer
from low (relatively) accuracy and higher noise than sensors used
in full scale aircraft, their accuracy is adequate. Furthermore it has
been shown that their accuracy can be enhanced by the use of
fusion algorithms and linear acceleration measurements. The
efficiency of these methods and the ability to be run even in very
small RC models has been proved [9],[15].

The only state that cannot be directly measured is sideslip
angle B. The quantity that can indeed be measured with sensors
similar to those of angle of attack, is the flank angle B; which is the
angle between the x body axis and the projection of true airspeed

on the Oxy plane. It is easy to prove that S =tan™(tan 3, cosa). In
the case of small angles g,, a, (a realistic assumption for a UAV
which is usually not being flown aggressively) the above equation
reduces to = S, .

Aircraft angular velocity components (p,q,r) are usually
measured using rate gyros attached to the aircraft and aligned with
the body axis. These sensors are among the most reliable and
accurate of the aircraft instrumentation. Angular accelerations
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(p,g,r) on the other hand, can be measured but the sensors

available have relatively high noise level and/or lags. That's why
they are not usually included in aircraft instrumentation systems.
However as sensor technology evolve, this situation may change.
Finally, integrating gyros or magnetometers can be used to
calculate the Euler angles (o, 6, p).

As stated in [16], the dynamic characteristics of the sensors
are provided by the manufacturer or can be estimated from
dynamic tests in the laboratory. However, because the natural
frequencies of sensors in aircraft and UAV instrumentation
systems are usually very high relative to the frequencies
associated with the quantities being measured, the sensor
dynamics can be approximated by a small time delay or simply
neglected. In this case, the sensors transfer functions can be
assumed to be equal to 1. This approach was used in the current
thesis.

The sensors are usually influenced by noise. This noise is
assumed to be Gaussian zero mean white noise corresponding to
typical specifications of low cost sensors. For the turn rate sensors
the standard deviation is assumed equal

too,,, =5deg/sec=0.0873rad /sec, Wwhich corresponds to a noise

covariance of £ =0.0076xl;[rad’/sec’]. The airspeed sensor noise

has a standard deviation ofs, =1m/s(z, =1m®/sec?). For the airflow

Sensors, the noise standard deviation
iSo,, =2deg =0.0349rad (%, ,, =0.0012x I,[rad?]).
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Chapter 3 - Modeling of Faults on an Aircraft
3.1 Fault-Failure

According to the definitions in chapter 1, a fault corresponds
to an abnormal behavior of the system which may not affect the
overall functioning of the system but may eventually lead to a
failure. For example, consider the temperature of an engine. If this
temperature exceeds a certain accepted limit, say 100 °C, there is
a fault in the system. Although this excessive temperature does
not prevent the engine from working properly for a while, it may
eventually damage components of the engine and possibly lead to
its breaking down. In this thesis, the term fault is used to describe
any abnormal behavior.

Faults/failures are events that take place in different parts of
the controlled system. In the Fault Tolerant Control Systems
(FTCS) literature faults are classified according to their location of
occurrence as (figure 3.1): Actuator, sensor and component faults.
Further, with respect to the way they are modeled, they are
classified as additive and multiplicative. Additive faults are suitable
to represent component faults in the system while sensor and
actuator faults are in practice most often multiplicative in nature.
Faults are also classified according to their time characteristics as
abrupt, incipient or intermittent. Abrupt faults occur instantaneously
often as a result of a hardware damage. Usually they are very
severe as they affect the performance and/or the stability of the
controlled system and as such they require prompt reaction by the
FTCS. Incipient faults represent slow in time parametric failures,
often as a result of aging. They are more difficult to detect due to
their slow characteristics but are also less severe. Finally
intermittent faults appear and disappear repeatedly, for instance
due to partially damaged wiring.

S0 W)

fA.(f) ' l L@ @
v L Y

Control signal Actuation signal Flant Cutputs Measured Guiputs

Plant
) Actuators ———3 | = F——— ) Sensors /——>

u(f) (1) ¥p(8) »@

Figure 3.1 Classification of faults according to location
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3.2 Faults and Failures on an Aircraft System
3.2.1 Sensor Faults/Failures

Sensor faults are less critical than actuator faults because
even though they can seriously affect control system performance
they do not change the dynamics of the system. They do not
influence the controllability of the system although of course they
affect observability.

Typical sensor faults in aircraft systems are described in
figure 3.2. The faults can be classified as:

Bias is a constant offset/error between the actual and
measured signals.

Sensor drift is a condition whereby the measurement errors
increase over time (and might be due to loss of sensitivity of the
sensor).

Loss of accuracy occurs when the measurements never
reflect the true values of the states. In that case, the standard
deviation of the measurements is increased. This fault can be
modeled as an increase of noise added to the measurements.

Freezing of sensor signals indicate that a sensor provides a
constant value instead of the true value.

Finally calibration error is a wrong representation of the
actual physical meaning of the states from the electrical or
electronic signals that come out from the sensor unit itself.

Bias &, Drift

- —=otirad

measirred

tfine Hrxe

Loss of accuracy Freezing

- - - ~
= -

-

Hrnlea Hine

Calibration error

(e ‘ e : R

(a) sensor

Figure 3.2 Types of Sensors faults/failures
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The mathematical representation of the above sensor faults
is as follows [17]:

-

X (t) Absence of _ faults
X ()+h b (t) =0, (t;) = O(Bias)
PISLICEIC Bt =ct, vt (Drift
g x(t)+h () |h(tFi)| <h,h(t) eL", vt >t;(Loss_of _accuracy)
X () vt 21, (Freezing)
| k(D)X vt >t (CalibrationError)

Where I represents the time of failure, k(t) is the
effectiveness and b denotes the accuracy coefficient of the sensor.

Sensor faults/failures can occur due to malfunctions in the
components in the sensor unit, loose mounting of the sensors and
loss of accuracy due to wear and tear. They are milder than
actuator faults and in a manned aircraft the disengagement of
autopilot systems is sufficient to overcome their effects. However,
an unmanned system is much more vulnerable to such failures
due to its dependence on autopilot systems.

3.2.2 Actuator Faults/Failures

In aircraft systems there are a few distinct types of actuator
failures, the three most common are shown in figure 3.3 [17].

Lock in place Failure (LIP) is a failure condition when an
actuator becomes stuck and immovable. This might be caused by
a mechanical jam, due to lack of lubrication for example. This type
of failure occurs in documented incidents like flight 96 (DC-10,
Windson, Ontario, 1972) [6] (where the rudder jammed with an
offset). In these cases, no aerodynamic change happens to the
aircraft, although the asymmetrical movement of the control
surfaces induces unwanted forces and moments that need to be
compensated for.
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Figure 3.3 Types of Actuator faults/failures

Float failure is a failure condition when the control surface
moves freely without providing any moment to the aircraft. An
example of a float failure is the loss of hydraulic fluid in the
elevator’s actuator causing it to move freely in the direction of
angle of attack and therefore cannot produce any effective
moment in the pitch axis. This type of failure occurred in flight DHL
A300B4 (A300, Baghdad, Irak, 2003) [6] (where a total loss of
hydraulics occurred).

Runaway/hardover (HOF) is the most catastrophic type of
failure. A runaway control surface will move to its maximum rate
limit until it reaches its maximum position limit or its blowdown
limit. For example, a rudder runaway can occur when there is an
electronic component failure which causes a (wrong) large signal
to be sent to the actuators causing the rudder to be deflected at its
maximum rate to its maximum deflection at low speed (or its
blowdown limit at high speeds). This type of failure occurred in
flight 85 (B-747, Anchorage, Alaska, 2002).

Loss of effectiveness (LOE) is the reduction of the actuator’'s
efficiency (gain) by some factor. This loss of effectiveness is the
most widely studied case in the literature. It can be assumed to
occur if a part of the control surface is deformed or broken, in such
a way that only negligible change occurs in the aerodynamic
characteristics of the aircraft. For example a small loss (10%) in
the elevator actuator’s surface will not move the center of gravity of
the aircraft or modify its aerodynamic coefficients other than the
coefficients that are directly related to the control surface.
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Different types of actuator failures can be mathematically
represented by:

ul (t) Absence of _ faults
k(ul(t) O<e <k (t)<1Vt>t,(LOE)
u@®=3 0 vt >t (Float)
: (2.15)
Ul (t) V2t (LIP)
\uimin Vv uimin Vt 2 tFi (HOF)

Where U.(t) denotes the actuation signal (or actuator output) from
the ith actuator, ul(t)is the control command signal (or actuator

input) to the ith actuator, t-; denotes the time of fault occurrence
on the ith actuator and « (t)is the actuator effectiveness coefficient

of the ith actuator. U;,;, and Ui are the lower and upper limits on

the actuation level. We can represent the above cases with the
following mathematical model:

uy (t) = S kug (1) + (1- )T, (2.16)
Where 0;=1,k; =1 in the absence of failures, 0;=1,k; =0 in the

presence of LOE and §;=0 in other types of faults with U being the

position at which the actuator locked.

Equations (2.15) and (2.16) were used to inject failures in the
Simulink model.

Actuator faults are really critical for the operation of any
controlled system. Even though they don’t affect system dynamics
of the controlled system itself, they can significantly affect the
dynamics of the closed loop system, and may even affect the
controllability of the system. Figure 3.4 presents a simple example
with a partial 50% actuator fault that results in instability of the
closed-loop system. In this example a system with transfer function
S(s)=1/(s-1) is controlled by a PI controller with transfer function
C(s)=1.5+5/s, so that a sinusoidal reference signal is tracked
under normal operating conditions. At time t=20 sec, a 50% loss of
control effectiveness is introduced and as a result the closed-loop
system stability is lost. This example makes clear that even
«seemingly simple» faults can significantly degrade the
performance and can even destabilize the system.
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Figure 3.4 After an Actuator fault the system may become unstable if
no reconfiguration takes place.

3.2.3 Structural Faults/Failures

Another category of faults present in aircraft systems is the
component or structural faults. These are caused by a structural
damage of the wings, airframe or control surfaces. Structural
damage may change the operating conditions of the aircraft (from
its nominal conditions) due to changes in the aerodynamic
coefficients or a change in the center of gravity. These types of
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failures have been modeled in the FTCS literature in terms of
linear systems as changes to the system and control matrices A,
B. Mathematically, this can be represented as:

X(t) =(A+AA)X(t) +(B+AB)U(t) + &(x, u,t)

It is really difficult to model the aerodynamic changes of an
aircraft under structural damage in the general case. An attempt to
model these changes in the case of control surface damage was
made in [18]. It was assumed that the physical destruction of the
control surface imposed a quantitative alteration in the
aerodynamic modeling. That means that the forces and moments
generated by the control surface after the failure differ from those

before the failure by a proportional factor (S;) affecting the

efficiency parameter.

Another way of modeling aerodynamic changes was made
by Smaili et al. [19] in an attempt to reproduce through simulation
the failure scenario of flight's 1862 accident. The reconstructed
aerodynamic effects were added as contributions to the baseline
aerodynamic coefficient equations of the validated undamaged
aircraft model. The reconstruction methodology allowed an
iterative adjustment of the initial aerodynamic estimates, in an a
priori model structure, that accounts for the overall effect of aircraft
structural damage to obtain a match with the collected data from
the Flight Data Recorder.

A more recent approach was proposed in [20], where the
general equations of motion of a structural damaged aircraft were
derived. The model would be validated through flight tests. It
should be emphasized at this point that both before and after the
failure the movement of the aircraft can be described by the rigid
body model of section 2.4 after the transient effects (due to mass
change etc) die out. The difference is that the two models will have
different masses, moments of inertia and a different center of
gravity. Of course, the aerodynamic forces and moments acting on
the two models will be different also. To derive a general model
from which each of the two models can be derived is an extremely
difficult task.
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3.3 Focus of the thesis

In this thesis we will focus on actuator rather than sensor
failures since these are considered much more critical to handle.
Sensors are much cheaper and lighter than actuators and the
possibility of including hardware redundancy (i.e multiple IMUs or
visual sensors and integrate them through a data fusion algorithm)
is greater. The failures cover every possible actuator failure
scenario.

Control surfaces are treated separately. This means that
both stuck actuator and loss of control effectiveness failure will be
assumed to affect a single control surface. This scenario is much
more realistic than those encountered in the literature where both
surfaces are assumed stuck or having lost their effectiveness. The
loss of a part of the left aileron for example will definitely lead to
reduced rolling moment capability for the same differential
deflection of the two ailerons however it will also induce some
pitching moment although the ailerons will deflect symmetrically. In
order to do that separate modelling of each control surface
effectiveness should be available.
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Chapter 4 - Review on Fault Tolerant Control (FTC) and
Fault Detection and Identification (FDI)

As was stated earlier, the purpose of FTC is to maintain the
system under control even in the presence of faults. FTC is
generally divided into two classes: passive and active [21] (see
figure 4.1).

Passive FTCS are based on robust controller design
techniques and aim at synthesizing one (robust) controller that
makes the closed-loop system insensitive to certain faults. This
approach requires no online detection of the faults, and is
therefore computationally more attractive. However its applicability
is restricted because in order to achieve such robustness a very
restricted subset of faults can be considered while the increased
robustness is only possible at the expense of decreased nominal
performance.

The active approach to the design of FTCS is based on
controller redesign or selection/mixing of pre-designed controllers.
This technique requires a Fault Detection and Isolation scheme
that has the task to detect localize and estimate the magnitude of
the faults that occur in the system. The structure of an active FDI-
based FTCS is presented on figure 4.2 [22].

FTC

[ |
Passive Active

FDI/System ldentification
+

Control Reconfiguration/Restructure

| |
- - Online Controller
| Projection | redesign/adaptation

Figure 4.1 Classification of FTC [21]

| Robust control

Depending on the way the post-fault controller is formed, the
active FTC methods are further subdivided into projection based
methods and on-line redesign methods. The projection based
methods rely on a controller selection from a set of off-line pre-
designed controllers. Usually each controller of the set is designed
for a particular fault situation and they are switched on according
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to the fault diagnosed by the FDI/FDD module. The on-line
redesign methods involve on-line computation of the controller
parameters, referred to as reconfigurable control, or recalculation
of both the structure and the parameters of the controller, called
restructurable control. The on-line redesign methods are superior,
with respect to post-failure performance, to the passive methods
and the off-line projection based methods. However, they are the
computationally most expensive methods as they often boil down
to on-line optimization.

—
Fault Detection
and Diagnosis
(FDD)
Actuator (W System ¥V Sensor
\ \ Faults l , Faults l ,Faults
Command |y [Reconfigurable — R — z
(Reference) = Feedforward Aglugtorsi—{ System [ Sgnsors
Governor Controller - L —
/ 7 /
Reconfiguration
\ Mechanism
Reconfigurable
Feedback
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Figure 4.2 A general structure of Active Fault Tolerant Controller
(AFTC) [22]

It is evident from the above figure that there is a close
relationship between FTC and FDI (sometimes referred to as Fault
Detection and Diagnosis (FDD)). At the same time there is a close
relationship between FTC, FDI and robust control as was identified
in [21]. FTC can be regarded as a complex combination of these
three major research fields (see figure 4.3).

. Supetrvision

"Robust 7 \"::Reconfigurable
control | control

Figure 4.3 Areas of fault tolerant control research [21]
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4.1 Fault Detection and Identification

As was stated earlier, in active FTC, FDI plays a vital role to
provide information on faults/failures in the system and to enable
reconfiguration to take place. Therefore the main function of FDI is
to detect a fault or failure and to find its location and possibly its
magnitude so that corrective action can be made to eliminate or
minimize the effect on the overall system performance.

The FDI process is composed of three steps according to
their «depth» [1]:

o fault detection: determination of the existence of faults
in the system

o fault isolation: determination of the kind and location of
the fault

o fault identification: determination of the size and time-
variant behavior of the fault.

These steps are functions of deferent complexity (and
difficulty) which increases with the number of the step. Thus
detecting that a fault is present is the easier task while isolating the
fault and estimating its magnitude is a rather difficult task. This
explains the limited literature that involves the topics of fault
isolation and identification with respect to that of fault detection.

The main classification of FDI techniques in the literature is
that between model based and Data based methods [23]. An
extensive review of the different methods can be found in the
same source and can be seen in figure 4.4.

Fault Detection and
Diagnosis Methods

Model-based Methods Data-based Methods
Quantitative methods Qualitative methods Quantitative methods ~ Qualitative methods

AR ETIAN

State  Parameter Simultaneous Parity Causal Abstraction Statistical Neural  Expert Qualitative
Estimation Estimation State/Parameter Space Models Hierarchy Networks System Trend

/ Estimation / / \ J Fuzzy Analysis
/ p/ i ] Logic L Frequency &
Observers LS/RLS | Extended State- Slfucn;ral Quahtguve Structural PCA/PLS Stau%tical Pane_m Time-
based Kalman Siikcs Graphs | physics » classifiers Recognition frequency
Kalman . Functional Analysis
. . filter based
filtlers  Regression Two-stage Tnput- Fault
based  analysis Kilisas output trees
filter based

Note: LS/RLS: Least Squares/Recursive Least Squares; PCA: Principal Component Analysis; PLS: Partial Least Squares.

Figure 4.4 Classification of FDI methods [23]
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Model free (or data based) approaches to FDI are applicable
when no explicit dynamical model of the system is available. The
system knowledge boils down to real-time measurements, possibly
completed by process history. With such data two main strategies
could be adopted [24]. In a sense both aim at interpolating the new
measured point based on the available data. The first strategy is
classification. It involves building classes from the database either
in a supervised way (i.e. with the help of an expert) or in an
unsupervised manner (i.e., collecting elements of the database
that are close to one another (clustering)). A classifier is then
trained with respect to these classes to perform the classification
of the newly measured variables as representative of a healthy or
faulty behavior. The second strategy is model building. It builds a
statistical model that uses the redundancy of the process history in
order to predict the values of the new variables and generate
residuals by comparing predictions to measured values. A lot of
methods have been proposed in the literature like neural networks,
trend analysis, kernel machines and Support Vector Machines,
Principal Component analysis (PCA) etc. They can overcome the
lack of an analytical model which is a major problem to complex
industrial systems as well as non-linearity in the system to be
monitored but their main disadvantage is that in order to detect
and isolate faults the process history has to include the faults that
we seek to isolate.

In the case of a fixed wing UAV an analytical model of the
system is available. The dynamics are quite well studied due to
their resemblance to aircrafts. That means that a model-based
method can be adopted limiting the need to collect extensive
process history data (which are difficult or even impossible to
collect for every faulty situation).

4,1.1 Model Based FDI

When the physics of the process is well known, it becomes
possible to use an explicit knowledge-based dynamical model.
Fault detection then amounts to checking whether the behavior of
the monitored system is inconsistent with that of the model. This is
done by exploiting the structure of the model and the existing
input-output relationships (analytical redundancy). With respect to
the model used, model-based methods are further subdivided to
qualitative and quantitative. Qualitative model based methods are
applied whenever the model of the system is available but the
confidence in its parameters and quantitative outputs are very low.
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The most widely used methods for FDI in aircraft systems
are quantitative model based methods. In this case, a reliable (and
possibly reduced) model of the system is used to reconstruct the
process/system’s behavior online, which associated with the
concept of hardware redundancy is called software redundancy or
analytical redundancy concept. Similar to the hardware
redundancy schemes, in the framework of analytical redundancy
the system model will run in parallel to the system and be driven
by the same inputs. It is reasonable to expect that the
reconstructed system’s variables delivered by the model will well
follow the corresponding real system variables in the fault free
operating states and show an evident derivation by a fault in the
system. In order to receive this information, a comparison of the
measured system variables (output signals) with their estimates
delivered by the model will then be made. The difference between
the measured and estimated variables is called residual.

The process of a model based fault diagnosis system can be
separated into two stages. The first stage involves the process of
creating the estimates of the system outputs and building the
difference between the real outputs and their estimates and is
called residual generation. The second part involves the post-
filtering of the residuals to extract the information about the
presence of the faults, their location and possibly their magnitude
and is called residual evaluation. The complete process of model
based diagnosis is shown in figure 4.5.

procass |nputr process process output "
i | process _ Y | residual E residual . decision | ! .;kncfvgeldge
: model O ; : ’ processing logic i ofrau
| residual generation ____ 1 { residual evaluation . !
Model based fault diagnosis system

Figure 4.5 Schematic description of model based fault diagnosis scheme
[29]
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Quantitative model based methods can be further divided to
observer-based, parity space and parameter identification based
methods.

4.1.1.1 Parameter Estimation based methods

These techniques are suitable when the faults considered
have a direct effect on some characteristic constant of the system
itself. The nominal value of the parameter vector is supposed
known and FDI boils down to estimating on-line the value of the
parameters to generate residuals. The on-line estimation is a
demanding task and usually models that are linear to their
parameters are considered. In the case of aircraft fault detection
the parameters identified are usually the aerodynamic coefficients
which change based on the operating conditions. These
coefficients are usually pre-estimated offline through wind tunnel
and flight tests before being used for controller design. However
during faults/failures (especially structural damage) no accurate
pre-estimate is available and therefore these coefficients need to
be obtained online. Recursive least squares (RLS) and Modified
Sequential Least Squares (MSLS) algorithms have been used and
successfully flight tested [8], [26], [27]. Other researchers
proposed the use of a frequency domain method based on
discrete time fast fourier transform [28]. Extended Kalman Filtering
(EKF) is another option for on-line parameter estimation [29]. A
comparison of different parameter estimation techniques within a
fault tolerant control system was conducted in the framework of
Intelligent Flight Control System (IFCS) F-15 program [30]. More
recently a two step method for estimating the model of a damaged
aircraft on-line for FDI and control reconfiguration was proposed by
researches of TU Delf [31]. This method splits the identification
procedure into two consecutive steps: a non-linear state estimation
step where an EKF can be utilized and a linear, in the
aerodynamic parameters, identification step which is solved by a
recursive least squares algorithm. The main advantage of the
above methods is the fact that the parameter estimates obtained
can be directly used to update the control law via an adaptive
control technique. However the task of identifying all the
aerodynamic parameters of the aircraft can be very challenging
due to cross coupling and insufficient excitation.
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Figure 4.6 Schematic description of the parameter identification scheme [25]

4.1.1.2 Parity Equation based Methods

The basic idea of parity relations approach is to «provide a
proper check of the parity (consistency) of the measurements of
the monitored system» [32]. The following description adopted by
[25] illustrates the basic concept. Consider a system with the state
space description:

x(k +1) = Ax(k) + Bu(k) + E,d (k) + E, f (k) (41, 4-2)
y(k) =Cx(k) + Du(k) + F,d (k) + F, f (k) ’
Combining together the above relations from the time instant
k-s up to k we end up to the following relation which is called parity
relation and describes the input-output relationship in dependence
of the past state variable x(k-s), the disturbance d and the faults f:

y(k—s) X(k—Ss) f(k—s) d(k-s)
k—s+1 X(k—s+1 f(k—s+1 d(k—s+1
y( ;S+) :Ho,sx(k_s)+Hu,s ( ;+) f.s ( : +) +Hd,s ( : +) (4'3)
y(k) x(K) f (k) d(k)
[ ——— [ ——
ys (k) ug (k) ,(k) dq (k)
Where,
C D 0 0
CA CB .
HOS: . ’HUS= . . . '
’ : ’ : . . 0
CA® CA*'B ... CB D
F, o - 0 F, o - 0
CE F : CE F ’ :
CA'E, ... CE, F, CA'E, ... CE, F,

41



The parity relation based residual generator is constructed
by finding the vector (or matrix) V such that:
VH,, =0
and expressing the residual as:
r(k) =V (y,(k)—H,u,(k))
The dynamics of the residual in the fault free case is then
expressed as:
r(k) =V (y,(k)—H, U, (k)) =VH, x(k —s) =0

In the presence of faults and disturbances the dynamics of

the residual are:
r(k)=V(H,  f,(k)+H, d,(k)) =0

The parity space residual generation design procedure is
simple and straight forward since it involves algebraic manipulation
of the system and not the implementation of advanced control
techniques. The method can be extended to provide isolation of
both actuator and sensor faults. However as mentioned in [25]
provides less design flexibility compared to that of observer based
FDI. In fact it has been proved that parity space methods lead to
certain types of observer structures and therefore are structurally
equivalent to the observer based ones though the design
procedures differ.

The most common approach of parity space approach
methods in the aerospace field is based on the redundancy
available in Inertial Measurement Units (IMUs) [33],[34]. Another
approach which belongs to the parity space methods is the so-
called Polynomial method (PM) ([35],[36]). It is strongly dependent
on the use of an input-output polynomial description of the system
under diagnosis. An important aspect of the PM residual generator
design concerns the decoupling properties of the disturbance. This
decoupling is obtained by means of suitable coordinate exchange
of the monitored input-output system. In [36] the methods
effectiveness is tested on a non-linear aircraft simulator model that
takes into account wind gusts.
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4.1.1.3 Observer based Methods

The basic idea underlying observer based (or filter based, in
the stochastic case) approaches to fault detection is to obtain the
estimates of certain measured or unmeasured signals. Then in the
most usual case, the estimates of the measured signals are
compared to their originals, i.e., the difference between the original
signal and its estimate is used to form a residual signal
2(k) = y(k) - §(k) (figure 4.7).

k72 y
»  SYSTEM >
Model i

Observer

Figure 4.7 Principle of Observer-based residual generation [37]

To tackle this problem, many different observers (or filters)
can be employed, e.g., Luenberger observers, Kalman filters, etc.
From the above discussion it is clear that the main objective is the
estimation of system outputs while the estimation of the full state
vector is unnecessary. Since reduced order observers can be
employed, state estimation is significantly facilitated. On the other
hand, to provide an additional freedom to achieve the required
diagnostic performance, the observer order is usually larger than
the minimum one. The wide acceptance of observer based fault
detection schemes is caused by the still increasing popularity of
state-space models as well as the wide usage of observers in
modern control theory and applications. Due to such conditions the
theory of observers (or filters) seems to be well developed
especially for linear systems. This has made a good background
for the development of observer-based FDI schemes.
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As was proved in [25], any residual generator can be
considered as an extension of an output observer based residual
generator. They consist of two parts: an output observer and a
dynamic system. These two parts may take different functions:

e The output observer builds the core of the residual
generator and is used to reconstruct the system behavior
so that the original form of residual signal, z(p)=y(p)-Y(p),
provides us with the information about the variation of the
system operation from its nominal value,

e The dynamic system R(p), acts in fact as a signal filter
and can, by a suitable selection, help us to obtain
significant characteristics of faults thus is also called post-
filter.

In fact all the observer based residual generation
approaches aim in finding a suitable observer gain matrix L and
post filter R(p) applying different mathematical and control
theoretical tools.

The first kind of observer based residual generators was the
Fault Detection Filter (FDF) proposed by Beards and Jones in the
early 70’s. Another form is the diagnostic observer which has a
structure similar to the Luenburger type observer and is designed
under deterministic hypotheses. Luenburger observers have been
applied to autonomous helicopters for fault detection [38].

Kalman filter

The Kalman filter is a widely used algorithm for state
estimation based on indirect, inaccurate and uncertain
observations [39]. It assumes linearity in the dynamics and
Gaussian noise however its success in the industry is caused by
the relative robustness it exhibits to the violations of the above
hypotheses. Kalman filters have been proposed for aircraft
systems FDI in different configurations as well as for other
autonomous vehicles ([40]-[45]).

Disturbance Decoupling Approaches

In the disturbance decoupling approaches, the aim is to
generate the fault indicating signals (residuals) so that they behave
in an orthogonal space of unknown inputs (disturbances, modeling
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errors etc.) whilst maintaining sensitivity to the faults. This scheme
is often called unknown input observer (UIO) [32]. An UIO is a
Luenburger type observer that delivers a state estimate
independent of unknown input d. If H, , H,,and H,.are the

matrices defined in section 4.1.1.2 it can be shown [25] that the
design of an UIO boils down to the choice of matrix V such that
VH, ,#0and V[H,, H,,]=0.

Several signals can be treated as disturbances. For actuator
fault isolation for example, we may consider as disturbances the
other inputs to the system except the one being monitored. Also
modeling errors can be treated as disturbances as long as their
influence on the system is deterministic and known.

Some recent applications of UIOs were reported for the fault
diagnosis of a linear model of an unmanned aerial vehicle
(helicopter) [46] and the monitoring of gyroscopes in a spacecraft
[47]. The concept of unknown input decoupling can be extended
in the stochastic case when the system is influenced by zero
mean, white noise sequences. The UIO derived in this case is
called Unknown Input Filter (UIF) [37]. Such a filter was used for
the IMU and thruster diagnosis of the Mars Express spacecraft
[48].

Norm based approaches

The disturbance perfect decoupling is often not possible. As
mentioned in [25], the restriction for the application of perfect
decoupling may be too strong for the practical use of the
technique. Indeed the existence condition for perfect decoupling is
rank(G,,(p)) <m where m the number of sensors and G,(p)the

transfer function connecting the output and the disturbance
(unknown input) implies that there are enough sensors available,
something that may not be too realistic. Furthermore if
disturbances appear in all directions of the measurement
subspace, the decoupling approaches will fail.

The norm based approaches try to resolve this issue in the
context of a trade-off between the robustness against the
disturbances and the sensitivity to the faults. As a result the
residual signal will also be affected by the disturbances. Generally
there are three different strategies to attack this problem:

e Make use of knowledge for the disturbance (a typical
example is the kalman filter which assumes that the
unknown input is white noise)
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e Approximate the disturbance to output transfer function
with another which satisfies the condition for perfect
decoupling. Then the design of an observer for this
transfer function is possible

e Designing residual generators under a certain
performance index. A lot of performance indexes have
been proposed leading to a variety of designs.

Among the above strategies the third is the most widely
accepted. One of the first contributions to this method was the one
from Hou and Patton [50]. According to this method a structured
residual vector r is structured in following general form:

() = M. y(s)+ M,u(s)— L(s)(y(s)}
Y u(s)
u(s) =k(9)y(s)

The FDD problem consists then of jointly designingM,, M, and L(s)

such as the effects that faults have on r are maximized in the H.-
norm sense, whilst minimizing the influence of unknown inputs and
model uncertainties in the H.-norm sense. Applications of the
method in the aerospace field are numerous ([51]-[53]). Other
performance indexes can be used, like the one proposed by Ding
et. al. [25], [54], which tries to prevent conservatism in the design
and achieve a design that guaranties a minimum False Alarms
Rate (FAR), maximizing the Fault Detection Rate (FDR).

Fault estimation filters

The concept of observers or filters can be extended in the
case of fault estimation. The purpose of the above mentioned
scheme is not only to detect faults but also to estimate their
magnitude. In the case of an actuator loss of effectiveness case for
example, the identification of the post-failure effectiveness factor
could be essential information for the reconfiguration strategy. The
idea of fault estimation is depicted in figure 4.8 and is sometimes
referred to as simultaneous state and parameter estimation.

The two step Kalman filter falls in this category [55],[56]. An
Extended Kalman filter can also be used adding the fault
magnitude as an extra state for estimation.
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Figure 4.8 Fault estimation based FDI

In the context of robustness to disturbances and modeling
errors, in the same manner as norm based observer design, the
H. framework can be used to design robust fault estimator filters
[57]. As shown in figure 4.9 in the case of a system model
following the Linear Fractional Representation (LFT) form, the H.. -
based fault estimation problem is equivalent to the design problem
of a stable filter F such that for all model perturbations
Aela|, <1 fis an optimal estimate in the H. -norm sense, of the
fault signal f. The method was applied for the fault diagnosis of the

X-33 and Hopper RLVs [58] [59] as well as the fault detection and
isolation of a transport aircraft (Boeing 747-100/200) [60].
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Figure 4.9 The H.-based fault estimation problem [4]
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Multiple Model and Interactive Multiple model based FDI

In multiple model based FDI, a bank of models with
anticipated faults/failures is created. The outputs of this bank of
models can be compared with the actual plant output to create
residual error signals [44]. Here the model with the smallest error
is the model which best represents the current faults/failures in the
system. Therefore the faults can be detected and isolated. The
scheme was first implemented using a bank of Kalman filters [40],
[42], [44], [45]. A bank of Extended Kalman Filters was proposed in
[10]. Other observer methods can be used like a bank of UlOs.
The main advantage of multiple model methods is the very fast
fault isolation as well as the accurate reconstruction of the state
estimate as the probability weighted sum of estimates. These
advantages make the method suitable to the FDI of dynamic
systems like aircraft where fast fault isolation is essential for the
prevention of instability. On the other hand the use of multiple
models or observers increases the computational load. Moreover
the expected faults should be able to be hypothesized by a
reasonable number of filters. Structural failures are very difficult to
be addressed due to their great variety.

4.1.1.4 Non linear Systems

The application of fault detection to practical systems is
limited by the nonlinear nature of almost every dynamical system.
A simple method to deal with this problem is the use of
linearization of the system around an operating point. The use of
any linear method is then straight forward. The design of several
filters for different operating points can be easily accomplished and
gain scheduling can be used to cover the hall operating envelope
of the system. Although this method works well for systems that
operate close to the linearization points or systems that are
piecewise linear, it cannot handle highly nonlinear plants. The
performance of the FDI system can also be degraded by modeling
errors and uncertainties induced by the linearization as well as by
coupling of inputs not included in the linear model used for FDI
design. Moreover, the operation of the system away from the
linearization operating points can trigger false alarms. There are
cases thus that necessitate the use of nonlinear techniques for FDI
design. Most nonlinear techniques constitute direct extensions of
the approaches described in sections 4.1.1.1-4.1.1.3 for linear
systems.
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Parameter Estimation

Similarly as in the case of linear in the parameter systems,
the FDI problem boils down to estimating the parameters of the
nonlinear model of the system (Fig. 4.6). The system in this case
can be generally described by:

Yi =94, P+ 0,
where ¢ may contain the previous or current system input uy, the

previous system or model output and the previous prediction error.
The specific approach inherits all the drawbacks and advantages
of its linear counterpart. For complex systems however there is an
additional difficulty: the functiong()is nonlinear in the parameters
so non-linear parameter estimation techniques should be applied.
This may cause serious problems with a fast reaction on faults and
convergence to local minima.

Parity Relations

In exactly the same manner as for linear systems, the first
step for the application of parity relations methods is to express the
state and output equations on a time window [k-S, k]. In order to
check the consistency however, the state variables have to be
eliminated. This elimination step might be quite involved in the
general case of nonlinear systems as was pointed out in [61] while
the obtained relations contain nonlinear terms and are often
implicit in the fault variables which implies limited practical
applicability. In many aerospace applications however, the system
can be expressed as nonlinear input affine (in the faults), leading
to the so-called nonlinear inversion (NLI) methods. One such
application was proposed for a nonlinear aircraft (missile) model in
[62], where the force equations, which contain only measured (or
reliably estimated) state variables and their derivatives, are used to
estimate the control surface deflections of the missile. Since the
commanded deflections can easily be obtained from the control
system, structured residuals can be constructed from the
difference between estimated and commanded deflections. The
practical use of the above method demands the availability of
linear and/or angular acceleration measurements and direct
appearance of control surface deflection on the force and/or
moments equation. The latter is usual to most aircraft/UAV
simplified models, however it is very difficult to obtain the angular
acceleration measurements involved from current sensor
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technology. Even if angular acceleration sensors are available,
their accuracy and cost/weight will be prohibiting compared to the
possibility of direct control surface deflection measurement using
encoders. Linear acceleration sensors, on the other hand, are
widely used but there are a lot of aircraft models where control
surface deflections do not appear explicitly in the force equations.

Observers

Model linearization is a straightforward way of extending the
applicability of linear observer methods to nonlinear systems.
Extended Kalman Filter (EKF) approaches as well as Extended
Luenberger observers and Extended Unknown Input Observers
(EUIO) [37], are based on this concept. Application of the above
observers for aircraft systems were proposed in [10] and [41].
These approaches lead to relatively easy computation however
their main drawback is that they work well only when there is no
large mismatch between the model linearized around the current
state estimate and the nonlinear behavior of the system. It should
however be pointed out that EKF has been proved very reliable in
the case of state estimation for nonlinear systems as well as in
cases when the Gaussian noise assumption is clearly violated and
is in use in many current INS/GPS fusion algorithms in use in
current aircrafts.

Contrary to the previous extentions of the Kalman filter, the
Unscented Kalman Filter (UKF) does not linearize the model. This
technique predicts the system behavior by using evaluations of the
nonlinear model at a set of points approximating a Gaussian
distribution of the state vector [63]. Based on a similar idea but
without being based on a Gaussian belief distribution, sequential
Monte Carlo methods such as Particle Filtering (PF) are a very
promising approach to deal with non-linearity. The basic idea of PF
is to approximate the belief Power Density Function (PDF) at each
instant with the sum of (a large number of) Dirac functions and to
make them evolve at each time instant based on the latest
observed data. Each Dirac function used in the approximation is
called a particle. In the case of fault detection, the PDF that is
approximated is the state of the system as well as the fault mode
of operation. The use of PF for fault diagnosis was presented in
[64] and [65]. In order for the PF method to deliver reliable
estimates, a large number of samples (particles) are required,
increasing the computational burden. Also, since failures are a
rather rare event, the PF methods suffer from degeneracy
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problems and a good re-sampling strategy is needed. What's
more, a reliable statistical model of the system should be available.

Another way of handling nonlinear systems FDI, is the
design of observers for special nonlinear systems like polynomial
or Lipschitz systems [66], or through a nonlinear transformation.
This is the non linear geometric approach proposed initially in [67],
which aims at finding a state and output coordinates
transformation that leads to a new set of observable decoupled
residuals. The method was extended to be able to provide an
estimate of the fault and was applied on a simplified nonlinear
aircraft model in [36], combined with adaptive filtering and particle
filtering. The use of this method for an aircraft however, required
the transformation of the aircraft nonlinear system to an input
affine nonlinear system, something that cannot be done if the
aerodynamic model is too complicated.

Many other observer structures have been proposed, from
the Sliding Mode Observer (SMO) [68], to nonlinear adaptive
observers [36] and high gain observers [70]. SMOs are particularly
interesting for FDD purposes since they are also able to
reconstruct the fault rather than just detect it through a residual
signal and are robust with respect to modeling uncertainties. An
application of SMOs to a civil aircraft was proposed in [70] and
flight tested in a high fidelity simulator. Recently a unified theory of
nonlinear observers is presented [71].

To avoid the complexity of nonlinear observers, some new
and unconventional methods have appeared in the literature
especially for applications of aircraft systems. Examples of these
methods are Linear Parameter Varying (LPV) based FDI and the
use of multiple model strategies.

LPV based FDI is motivated by the problem of copying with a
wide range of operating conditions. Such an FDI system has
inherent performance and stability guarantees for the hall
operating conditions compared to multiple-model or gain-
scheduling based FDI [72]. Of course its application requires
additional modeling efforts.

Similar to the LPV based FDI, the idea of multiple model
representation approaches is to apprehend the global behavior of
the system by a set of local models (linear or affine), each of them
characterizing the behavior of the system in a particular zone of
operation [73]. Then the nonlinear system can be approximated
by a Takagi-Sugeno (T-S) fuzzy model. In this way, one can
design one observer for each of the local models and then
synthesize a global observer by interpolation of the local
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observers. This interpolation is actually obtained through the same
activation functions as the T-S fuzzy model. The specific approach
allows the implementation of well known linear observer design
techniques while can guarantee global convergence. The only
drawback is that it sometimes leads to conservative designs.

4.1.1.5 Residual Evaluation

Once the residuals are generated by one of the residual
generation methods stated above, the residual evaluation logic is
used to detect and isolate any fault occurrence. The residual
processing methods can be based on simple residual geometrical
analysis or comparison with fixed thresholds [32], [36].

In general, in the absence of faults, the residual signals are
approximately zero. In practical situations however, the residual is
never zero, even when no faults occur. This is caused by the
dependence of the residual to the input of the system, by modeling
uncertainties and noise and disturbances that affect the system. A
threshold must then be selected suitably larger than the largest
magnitude of the residual in the fault free case. It is obvious that
the threshold setting is a compromise between the need for fast
fault detection (high fault sensitivity) and the false alarm rate.

The simplest and more widely used residual evaluation
scheme is the selection of a fixed threshold. This threshold can be
selected based on experience or by knowledge of the disturbances
acting on the system. In the latter case, systematic threshold
computation is possible using the well established robust control
theory (norm based residual evaluation) [25].

It is well known that the system input almost always affects
the dynamics of the residual generator. From this point of view, the
input acts as a disturbance however there is a significant
difference: in most cases the input is known exactly. In order to
improve the FDI systems performance this knowledge should be
integrated into FDI system design and operation. This can be done
in the form of an adaptive threshold [75]. The adaptive threshold
concept is essential in order to make the FDI system robust to
disturbances that cannot be suppressed in the residual generation
process. This is the so called passive robust fault detection that
can be applied using interval analysis [76].

Another way to treat the residual is by statistical testing. The
residual is treated in this case as a stochastic variable with mean
and variance. These properties change due to faults and
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techniques of change detection such as a likelihood ratio test,
generalized likelihood ratio test, Neyman Pearson test, Sequential
propability ratio test (SPRT) etc is commonly used [77].

4.1.1.6 On Fault Isolation

Fault isolation is one of the central tasks of a fault diagnosis
system, a task that can become, by many practical applications, a
real challenge for the system designer. Generally speaking fault
isolation is a signal processing process aiming at gaining
information about the locations of the faults occurred in the
process under consideration. It is evident that fault isolation is
necessary when any action needs to be applied to counteract the
faults consequences (apart from cutting down the system). In order
for fault isolation to be possible, the effects of the different faults on
the residuals should be distinguishable. The main strategies to
accomplish fault isolation are:

Directional Residuals

In this approach, the residual generation problem is
addressed within a geometric framework. The idea is to design a
directional residual vector that lies in a fixed and fault-specific
direction (or subspace) in the residual space in response to that
particular fault. The Fault Detection Filter, proposed by Beard and
Jones since the 70’s, is one of the pioneering methods and has
actually inspired the directional residual concept, while a recent
work on the same framework is [67].

Although directional residuals are simpler to implement and
can also provide more reliable fault isolation under ideal
conditions, it is really difficult to make them robust against various
sources of uncertainties, especially modeling errors and system
disturbances. Also after the design objectives have been met for
fault isolation, no more design freedom is left for other goals to be
accomplished by the residuals (i.e. speed of the response).
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Structured Residuals

In this case, which is the most common, each residual is
designed to be sensitive to a number of faults, while remaining
insensitive to the remaining ones. The design procedure consists
of two steps: the first step is to specify the sensitivity and
insensitivity relationships between residuals and faults according
to the assigned isolation task and the second is to design a set of
residual generators according to the desired sensitivity and
insensitivity relationships [32]. The structured residuals can be
designed in two conceptually different ways, namely dedicated
residual set and generalized residual set. The two schemes are
shown in figure 4.10 for an example of isolating three faults [f,, o,

fa].
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Figure 4.10 Two schemes of structured residual sets for the isolation of
three faults: (a) Dedicated scheme and (b) Generalized residual scheme.

In the dedicated scheme every residual is designed to be
sensitive to one and only fault and a simple logic can be used
about the appearance of a specific fault. Various fault isolation
techniques have been developed in the literature under the
dedicated scheme like the dedicated observer scheme (DOS) [74].
Another very important group of fault isolation methods that
essentially fall under the dedicated scheme are the multiple model
(MM) approaches. Such approaches have been applied to aircraft
FDI [42]-[45].

In the generalized scheme, each residual is sensitive to all
faults but one. This means that a more complicated logic must be
applied for fault isolation. If a bank of observers is used for
generation of all residuals in the generalized residual set the
structure is known as Generalized Observer Scheme (GOS). The
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GOS-based FDI is more robust than DOS with respect to
parameter uncertainties and measurement noise. This is mainly
due to the fact that more than one output (and thus more
information) is fed to each observer.

4.1.1.7 On Fault Identification

Despite its undeniable importance, model based fault
identification has received less attention from the research
community as compared to model based FDI. This is especially
true for nonlinear systems. Nevertheless, knowledge of the faults
severity is essential if any action of reconfiguration is to be taken
other than shutting down the process or switching to a different
component.

One way to deal with the problem is to treat the fault
magnitude as a parameter and estimate it using a suitable
parameter estimation technique. This approach was proposed by
Isermann [78] and developed for linear systems. More recently,
Tan and Edwards [79], applied the concept of “equivalent output
estimation error injection” to reconstruct faults for linear and a
class of nonlinear systems using sliding mode observers. One may
also use multiple-model approach for fault identification where
every model in the bank corresponds to a different fault severity,
however this will introduce an inevitable quantization error in fault
estimation. Zhang and Jiang [80] have also developed a two-stage
adaptive Kalman filter for simultaneous state and fault parameter
estimation which is applicable to identification of only actuator (not
component) faults.
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Method Space Estimation  Single Observers Kalman Stage Kalman Model Mode Observers
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Structure Fault + Vi + + v v v v v v
Speed of v ’ v v v v v v v '
Detection
Isolability v v * v v v v v v v
dentifiability ~ * V X X * i i : v vi
Suitability for ~ x v X + * v v v Vv v
FTC
Nonlinear * + X + + v Vv v i i
Systems
Robustness v + - * * + + * v i
Low _ v v v v v v v X i ’
Conservatism
Computational ~ / v v * * v * Vv v *
Complexity

Note: (v/) favorable, (*) less favorable, (x) not favorable, (+) applicable but with limitations, (-) not
applicable.

Table 4.1 Comparison of different FDI methods and their properties (partially taken from [22]).
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4.2 Fault Tolerant Control (FTC)

Fault tolerant control is an active field of research and there
are numerous publications in the literature referring to this subject
([4] and [22] are excellent surveys). Aircrafts, as safety critical
systems, are among the most cited applications of FTC. Over the
last 20 years, several research projects have explored the
application of FTC on aircraft systems. The earliest results on FTC
for aircraft were accomplished during the Self-Repairing Flight
Control Systems (SRFCS) program sponsored by the US Air Force
Wright Research and Development Center in 1984. The program
led to successful flight tests on F-15 aircraft performed by NASA in
1989 and 1990 [84]. The Propulsion Control Aircraft (PCA) was
also developed by NASA Dryden Center following the Sioux City
accident and was successfully flight tested on several aircrafts in
1990s. Within the 1999-2004 Intelligent Flight Control System
(IFCS) F-15 program, sponsored by NASA Dryden, pre-trained
and on-line learning neural networks were flight tested on the
NASA IFCS F-15 testbed. Other programs like the RESTORE
program conducted by USAF, made significant advances towards
the application of FTC for a tailess aircraft. A good survey paper
for these programs is [85]. Recently, the GARTEUR Flight
Mechanics Action Group FM-AG(16) on Fault Tolerant Flight
Control, brought together well known universities and industries for
the exploration of the applicability of FTC on civil aircrafts. The
proposed methods were evaluated on SIMONA high fidelity flight
simulator available at Delf Technical University [4].

An up to date classification of FTC methods (both passive
and active) along with some of their applications on aircraft or fixed
wing UAV systems is shown in figure 4.11.

Despite the above mentioned programs, FTC is for the most
part still in academic notion and there are very few controllers
implemented on physical systems (none on civil aircraft). The main
reason for this resides in the fact that FTC involves an authority
restriction for the pilot something that both the industry and the
public are reluctant to accept. What’'s more, FTC methods are not
mature enough to prove their applicability. Low cost and risk
systems like UAVs, are a good candidate for FTC systems since
the absence of a pilot makes the need for such systems even
greater and their implementation does not involve increased risk
for human lives.
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Figure 4.11 Classification of Fault-Tolerant Flight Control Methods with recent
examples

The bibliographic review shows a trent from the well-known
but difficult to apply on real (non-linear) systems linear control
methods, to non-linear techniques for FTC. This is mainly caused
by the fact that in real life every system has non-linearities and
even though if it can be treated as piecewise linear, the
introduction of faults lead to highly non-linear behavior. This is
particularly true for aircraft systems. They have been traditionally
treated as linear systems around equilibrium points and the widely
applied method for flight control design in the industry is still gain
scheduling. However even in the presence of simple faults (like a
stuck actuator), the linearity assumption breaks and strong cross-
coupling terms appear. In this thesis a non-linear technique for
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FTC was implemented and its merits and disadvantages were
examined when used in conjuction with an FDI system.

4.3 Discussion on FDI-FTC method for UAVs

Features of the existing quantitative model based
approaches to FDI are summarized in Table 4.1 (partially taken
from [22]). It should be noted that not many comparative studies
are published in the literature. A UAV is a nonlinear system
although its missions (primarily surveillance) allow it to remain
close to steady state for long times. This means that linear
techniques could be applied. One approach is the design of
several FDI systems in several operating conditions and then the
interpolation of the designs to cover the hall flight envelope. This is
actually the industrial practice for almost every aircraft system to
date for control system design. The drawback of this approach is
the risk of increased false alarms between transitions and during
maneuvers that take the aircraft away from the design operating
points. Also the design operating points must be chosen carefully
and a gain scheduling policy should be found by intuition. The
main advantage on the other hand is the use of well developed
linear techniques as well as the possibility of introducing
robustness in the FDI design by the use of norm optimization
methods (i.e H.. ). Such an approach could be selected if the UAV
would be utilized for non-aggressive maneuvering.

Another promising approach is the design of LPV or multiple
model observers to cover the hall flight envelope in the FDI design.
In this case convergence of the FDI scheme is guaranteed and no
gain scheduling is needed but conservativeness is inevitably
introduced in the design. Furthermore, additional modeling efforts
are required in order to obtain an LPV or multiple model
representation of the system.

The use of a linearization method like Extented Kalman
Filtering (EKF) or Extended Unknown Input Observers (EUIO) is
another approach. Provided no big mismatch exist between
nonlinear and linearized dynamics such techniques could provide
an alternative solution to the need for gain scheduling. A drawback
is that any disturbances should be modeled in order to apply
EUIOs while EKF assumes white Gaussian noise in the model.
Both approaches suffer from un-modeled dynamics and parameter
uncertainties.
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As far as robustness is concerned, any UAV will experience
external disturbances due to air gusts and turbulence. As we will
see, these disturbances enter the model in a state dependent
manner constant for a specific operating condition. Also there will
always be uncertainty in the aerodynamic parameters. These
parameters are identified in a wind tunnel or in-flight for every
aerospace vehicle as we saw in Chapter 2, however for a UAV
(due mainly to reduced funding) no detailed modeling is attempted.
It is logical to assume therefore that parameter uncertainties that
are bounded exist in the UAV model. These uncertainties can
cause significant problems in the FDI module and should be taken
into account.

From the point of view of fault tolerant control requirements it
is obvious that the speed of detection is of vital importance due to
fact that the aircraft is a very fast dynamic system that cannot
(unfortunately) be shut down. Missed detection is unacceptable
and thus the FDI systems sensitivity even of small faults or of
faults that do not affect the present operating condition (close to
steady state) should be high since these faults can become lethal
in a different maneuver. On the other hand some false alarms may
be acceptable as long as reconfiguration is fast and the
performance of the aircraft is not degraded too much. In order to
design a simple and reliable fault tolerant control scheme fault
isolation is essential while fault identification is useful. Finally the
computational burden should be acceptable since due to reduced
payload the computational power onboard is limited. Furthermore
these resources will have to be split to other function like the FTC
algorithm itself. Summarizing an FDI scheme for a UAV should
have the following properties:

a)Promptness of detection
b)Sensitivity to small or slowly developing faults
c)No missed fault detection
d)Low false alarm rate

e)Accurate fault isolation and preferably identification
f) Robustness

g)Low computational burden

The design of a FTC system has to be based on the
information provided by the FDI module. Although a passive
approach on FTC can be selected so that an FDI module is not
needed, the faults that can be treated by such an approach are
limited and a compromise exists between the faults that can be
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tolerated and the performance of the control system. An active
FTC system is usually a viable approach. In this case, the overall
performance of the system should be assessed since the
performance of the fault tolerant controller depends on the
promptness and the accuracy of the information it receives from
the FDI system. A joint design approach, based on a stochastic
analysis of the performance of FDI was proposed in [107] for linear
systems. Another issue is the reduction in acceptable performance
after a failure, an issue not well-studied so far [108]-[110]. The
treatment of the initial period during which a fault is detected but
not isolated (or identified) is another important issue that deserves
further research [111]. Summarizing an FTC scheme for a UAV
should have the following properties:

(a)Non-linear system applicability

(b)False alarm handling

(c)Robustness to initial low information period immediately
after the fault

(d)Robustness to system miss-modeling and disturbances

(e)Low computational burden

(f) Possibility of being added to the nominal controller of the
system (any flight control system that will have to be re-
designed from scratch during the fault's occurrence will
probably be treated by skepticism, since a simple flight
control system design is an iterative procedure that
demands a lot of engineering judgment).

A comparison of FTC methods as evaluated in the
GARTEUR AM(16) Action Group is provided in [4] and presented
in Table 4-2 below.

Method Failures |R0bus1 Adaptive| Fault Model |Constraints| Model Type
Aclualur|Slruclu ral| FDI|,"\SSU med Lincur[Nunlincur

Multiple Model Switching and Tuning 1‘MMS’1“:] ® . .
Interacting Multiple Model (IMM) . ® ° o °
Propulsion Controlled Aircraft (PCA) . 0 ° . @
Control Allocation (CA)* ° 3 )
Feedback Linearization ® ® . ° .
Sliding Mode Control (SMC)* o' . o’ . .
Eigenstructure Assignment (EA) . ° )
Pseudo Inverse Method (PIM) . ® °
Model Reference Adaptive Control (MRAC)* . @ * o
Model Predictive Control (MPC)* [ e B c . . . B
Comparison of reconfigurable control methods
* Bvaluated in this Action Group

1: Can handle partial loss of effectiveness of actuators, but not complete loss
2: Assumes robust control can handle all forms of structural failures

Table 4.2. Comparison of FTC techniques and their properties [4]

61



Chapter 5 - Nonlinear Fault Detection and Identification System
based on a two step method.

The UAV system is a nonlinear system. Although there are
missions during which the behavior of a UAV can be considered
linear and be kept close to some predefined operating condition,
there are situations where high maneuverability is desired. Also
there are phases of the flight (i.e. during take-off and landing)
when the nonlinear behavior dominates. An FDI system based on
the interpolation (gain scheduling) of linear FDI routines could
experience high false alarm rates. Moreover the gain scheduling is
a tedious task involving a lot of engineering judgment.

In this thesis a nonlinear FDI technique is used to detect,
isolate and estimate actuator failures. This is a two step procedure:
In the first step, a multiple model adaptive estimation method
based on Extended Kalman Filters is used to detect stuck
actuators and to provide filtered estimates of the angular rates of
the UAV. Possible biases in the measured quantities can be
corrected in this step. As long as no stuck failure is detected, the
filtered angular rates along with the commanded deflections from
the control system are used to provide estimates of the
aerodynamic derivatives including the effectiveness of the control
surfaces using a linear parameter estimation method.

5.1 Multiple Model Adaptive Estimation (MMAE)

As mentioned in chapter 4, in MMAE method, a bank of
Kalman Filters (KFs) are used running in parallel, each of which is
matching a particular fault status of the system. A hypothesis
testing algorithm uses the residuals from each Kalman Filter to
assign a conditional probability to each fault hypothesis. The use
of Kalman Filters requires a linear system. What's more a Kalman
Filter can be used to monitor a specific failure (a specific value of
control effectiveness for example or a particular angle of stuck
surface). This leads to an enormous number of KFs required in
order to span the range of possible fault scenarios, which is limited
by the computational load.

These limitations can be avoided by the use of Extended
Kalman Filters (EKFs). One such filter can monitor the health
status of one actuator and also provide an estimate of the stuck
failure at the same time. One additional EKF is required to
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represent the no-fault scenario. This arrangement is presented in
figure 5.1.

EKF based Enf
y on No Failure

e ol 11

EKF based >
on Failure 1

-> EKF based

on Failure 1

V* YY

Hypothesis Conditional
Probability Computation | 21
pnf

Figure 5.1 MMAE with Extended Kalman Filtering. Each Filter
monitors its assigned actuator.

The above arrangement implies that the use of six EKFs
running in parallel is adequate for the monitoring of the actuators
since there are five control surfaces (two ailerons, two elevators
and a rudder). Although the computational load of the above
scheme is important its implementation is feasible due to the
increased power of modern multi-thread computers and the
possibility to implement these filters in different computer boards
running in parallel.

5.2 Design of the Extended Kalman Filters

The EKFs are designed based on a set of continuous
differential equations that describe the plant under consideration:
Xx=f(x,u)+w (5-1)
y=h(x)+Vv (5-2)
where x is the state vector, u the input vector, y the output vector,
f(x,u) the set of nonlinear functions of the state and control, h a set
of (possible) nonlinear functions of the state, w is the random zero
mean Gaussian process noise vector with covariance matrix Q
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(E{wa}) and v the random zero mean Gaussian measurement
noise vector with covariance matrix R (E{va} )-

In our case the state vector is x=[p g r a b] and the

control vector is u=[sal sa2 del se2 or] . The set of nonlinear

state equations are those described in equation (2-7) while it is
assumed that the states are measured directly (something that is a
logical assumption for even the smallest UAVs containing a simple
pitot tube and an IMU unit). The dynamics of the measurement
sensors are neglected.

According to standard textbooks [39], [81], EKFs are similar
to the linear Kalman Filters with the state and measurement
equations being linearized along the estimated trajectory. The
implementation equations are the same, however because the
system and measurement equations are nonlinear, a first-order
approximation is used in the continuous Riccati equations for the
systems dynamics matrix F and the measurement matrix H. The
matrices are related to the nonlinear system and measurement
equations according to:

of (x,u)

F(k) ) OX X=R ,u=Uy (5-3)
H0="7 (5-4)

The discrete transition matrix is  approximated
asg(k) =1 +F(K)T, , where Ts is the sampling time.

The method can be considered as consisting of two steps.
The state propagation step and the measurement update. The
computation steps are:

A. State Propagation Step:

1. The state is propagated forward according to the
state equations. This can be accomplished either using the
transition matrix or by integrating the actual nonlinear differential
equations forward at each sampling interval. The latter is more
accurate and a simple Euler integration technique is used in this
thesis:

A~

X1 = f ()A(k_w uk—l) (5'5)

X =Xt Xk—lTs
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2. The state error covariance matrix is propagated
forward using the discrete transition matrix and the process noise
covariance matrix:

F_)k - ¢k-1Pk—1¢k-1T + Qk—l (5-6)

Where Q.. = [#(:)Qd(r)' dr =6,Q6] 6, =T, 228 (5.7)

Vi

B. Measurement Update Step:

1. The Kalman Gain matrix is computed:
K.=PH/[HPRH; +R]" (5-8)

2. The Kalman Gain is used to correct the state and
the state error covariance matrix:
X, =X + K[y, —h(X)] (5-9)
Isk:[l _Kka]ISk (5'10)
To avoid numerical problems during filter operation, equation (5-

10) was replaced by the Joseph form for the state error covariance
measurement update:

R =[1-KH, IRl -KH,T +KRK,(5-11)

The filter representing the no fault scenario is fed by all
inputs and outputs. The matrices F, H and G can be evaluated
analytically from the equations (2-7) and (5-3),(5-4) and (5-7). The
other filters that monitor one actuator each, need some
modification. In order to estimate the deflection of the failed
actuator, this deflection is going to augment the state of these
filters. Therefore the state vector for each filter i, is:

z.{;}, where ¢ is the faulty control signal
caused by the jammed or floating actuator. The augmentation of
the state vector leads to the following state space equations for
each filter:

z,(k+1) = f, (2,(K), 5(K)) +w,

y; (k) =h(z,(k)) +v, (5-12)

where
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f(z(k),o(k
fzi(Zi(k),5(k))={ (ZISS_.()k)( »} (5-13)

The matrices F, H and G are obtained by differentiation so
that the linearized system evaluated at each sampling time can be

written as:
X(k +1) _ F(k) G'(k) | x(k) N GOV (k) 5()
5, (k +1) 0 1 ||6(k) 0

k
()= [H O]{g((kﬂ

(5-14)

The matrices G'(k), G°’(k) are evaluated from the input
matrix G (equation 5-7). G'(k) represents the ith column of G while
GY(k) is matrix G with its ith column set to zero. By &(k)we

represent the input vector u. A critical design parameter for the
EKFs is the selection of the process and measurement noise
covariance matrices Q, R. These were selected by a trial and error
procedure as follows: Q=0.002x1, and R=diag[0.1x1, 0.02x1,].

The EKFs are implemented as Matlab function blocks in the
simulation and the source code for each filter is included in the CD
that accompanies the thesis.

53 Design of the Hypothesis Conditional Probability
Computation Module

When Kalman filters are used for MMAE, the residuals and
the state error covariance matrices from the filters can be used to
assign a conditional probability to each fault scenario. These
probabilities will be used for fault detection. Moreover the
computed probabilities can be used to estimate the state vector of
the system according to the formula:

R(k) = 2% (k) py (K) (5-15)

In the above formula % (k)is the state estimate computed by
the EKF that assumes the fault scenario i and p(k)is the
probability assigned in the specific fault scenario.
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The on-line computation of the probability p,(k)is possible by

the Bayes’ law, and can be done analytically assuming that the
probability densities are Gaussian functions, or the residuals of the
EKFs are Gaussian distributed. As long as the linearization
procedure of the EKFs is efficiently representing the system and
the dynamics of flight are not rapidly changing this assumption is a
logical one. It can be shown that the fault probability can be
evaluated at each time step k as:

. (k) = Np[y=yk|(fault=lek1)]|0i(k—1) (5-16)
Z ply = y|(fault = j,Y, ,)]p;(k-1)
j=0
Where
ip[y:yk|(fault:j,Yk_l)]pj(k—l)iS the sum of all scenarios
j=0

probabilities such that the fault probabilities add up to one, p,(k-1) is

the probability of the fault scenario i at the previous time step and
ply = .| (fault =i,Y, ;)] can be shown to be given by:

. 1 -6 (k)T % (k) (k)
oy = ol =14, )= e % (5-17)

In the equation (5-17), m is the number of measurements, F (k)
and x (k)are the residual and the residuals covariance matrix

calculated at time step k from the ith EKF.

By examining the probabilities we can determine the
“health status” of the system. An actuator fault is declared valid if
the corresponding fault probability exceeds 80% for a certain
amount of time. A fault can be declared removed when the
corresponding fault probability drops below 5% for a certain
amount of time. This method that uses probabilities for fault
isolation is sometimes called a Bayes classifier [1].

The prior probabilities used by the recursive algorithm can be
chosen equal or according to MTBF (Mean Time Between
Failures) data available for the actuators. In practice the
probabilities should not be allowed to reach zero as they will stay
to zero ever after, so a lower bound for each probability is set to
0.001.

The method was tested in a simple scenario: The UAV is
flying close to a trim condition (straight and level flight) and the
faulty actuator is stuck with a deflection close to the trim value,
making the detection of a fault difficult. The simulation is performed
in open loop with no controller included. The fault is injected at the
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left aileron whose deflection is fixed at time equal to 35s to 0.02 or
0.5 degrees (from a trim value of 0) The results of the simulation
are presented in figure 5.2:
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Figure 5.2. Aileron 1 fault detection
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We can see that the detection is almost immediate (1s)
although there is a false probability rising for the healthy right
aileron which quickly drops to zero. In figure 5.3 we can see the
estimation of the faulty aileron deflection. The estimation is valid
after the declaration of the fault and we can see that the estimated
deflection closely follows the true faulty one immediately after the
failure.
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Figure 5.3. Aileron 1 faulty deflection estimation
(Stuck failure at 0.02)

In the case of a floating actuator, the results are similar as
can be seen in figure 5.4 for the left aileron, however in this case
the detection time is longer (approximately 5s), caused by the low
excitation of the system due to the failure in the specific flight
condition. When a control surface is floating its contribution is zero
and so the commanded faulty surface deflection is equal to zero.
The MMAE method can efficiently isolate and identify a floating
actuator. The correct estimation of the failure is demonstrated in
figure 5.5. Similar results were obtained for the other control
surfaces and were omitted for brevity. It should be emphasized
that for the particular flight condition, the time of detection in the
case of the floating aileron actuator (5s), was the worst observed,
since floating failures in other control surfaces (elevator, rudder)
was much faster (1.2s-3s).
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The introduced system is capable of detecting and identifying
a stuck or floating failure in the actuators however in a UAV,
especially when it is operated in a harsh environment, there is a
possibility of a structural failure. The identification of major
structural failure in a control surface (i.e loss of a part of the
surface) can be modeled as a loss of control effectiveness of the
specific surface. In the literature usually linear time invariant
systems are treated where the loss of control effectiveness is
treated as a loss parameter included in the control matrix B
multiplied with the control deflection (i.e da where da is the
combined symmetrical movement of the ailerons). This approach
is limited by the fact that a structural damage is likely to occur in a
non-uniform manner for a pair of control surfaces (i.e the left
aileron can be damaged only or the damages can be different for
the two surfaces). In this case, apart from the reduction in control
surface effectiveness, the symmetrical movement of the control
surfaces can lead to the induction of moments on the other axes
as well. For example a loss of a part of the left elevator will lead to
a loss of pitch control effectiveness but due to the different lift
produced by the two elevators its symmetrical deflection will
induce a roll moment as well.

In order to identify such failures the MMAE method
introduced so far should be extended. An obvious approach would
have been to include more EKFs to represent this kind of failures.
The failure can be modeled as a loss factor multiplying the surface
effectiveness aerodynamic derivative in the force and moments
equations of the UAV. However, a control surface damage is in
practice a much more complicated case [18], [19], [20] and [31]
and apart from the aerodynamic derivative of the control surface
itself, other aerodynamic derivatives are affected as well. It is felt
that in order to detect, isolate and identify this kind of failures a
more general approach should be used.
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5.4 Parameter Estimation method for control surface damage
Fault Detection and Isolation

Since a structural damage affects the forces and moments
modeling, a parameter estimation method could be used to identify
these changes. A major structural damage can alter the way these
forces and moments can be modeled. What's more, it alters the
center of gravity of the aircraft as well as the matrix of inertia. In
this case, a complete re-identification of the system with unknown
structure is extremely difficult especially in the limited time the
control system has in order to prevent a potential crash. In the
case of control surface damage, when a part of a control surface is
missing, it is logical to assume that the structure of the
aerodynamic model does not change. Also it is unlikely that the
other properties of the aircraft will be affected. There are only
changes in the aerodynamic derivatives (mainly those of the
control surface but also other derivatives concerning aircraft states
might be affected as well) and these changes could be identified.

Parameter identification is commonly applied to aircraft
especially during wind tunnel development and flight testing [16].
The most commonly used method is the maximum likelihood
parameter estimation which is not applicable on-line as it iterates
through all the data gathered (batch method) and is a nonlinear
parameter estimation technique. One of the few methods that can
be implemented in real time is the so-called filtering error method
developed at DLR [29]. This is a joint state and parameter
estimation algorithm which is very complex. Other algorithms are
the EKF for both state and parameter estimation, which is easy to
implement but due to the correlation of the parameter and state
estimates the accuracy of the former can be decreased especially
if the number of the identified parameters becomes large. The two-
step method [4] can be used to decouple the state and parameter
estimation. In the first step the data from all on-board sensors is
used to estimate accurately the state as well as biases in the
measurements in a nonlinear state estimation problem. An EKF or
other fusion algorithm like particle filtering can be used in this
stage. In the second step the states are used to identify the
aerodynamic parameters in a linear parameter estimation problem.
A least squares algorithm like Recursive Least Squares (RLS),
Exponentially Weighted Least Squares (WLS) or Sequencial Least
Squares (SLS) can be used in this step. Alternatively a frequency
based method can be used [28].
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In our case the state of the system (in fact mainly the angular
rates are of interest) can be estimated by the MMAE algorithm
presented in previous sections. The deflections of the control
surfaces are not measured directly but can be supplied by the
controller. Assuming that no stuck failure is identified these
commands can be safely assumed to be the actual deflections of
the actuators. In practice however the dynamics of the actuators
should be taken under consideration as well. If these dynamics are
fast enough they can be neglected. The equations used from the
parameter estimation algorithm are those of the moment
coefficients:

C}n=%[Iyq+(lx—Iz)pr+|ﬂ(p2—r2)}=C%a+C}Thq+ G, 5 +G, #+G,

_1
b5

G :a%)[lzr—lxz(p—qr)ﬂly—Ix)m}:qﬂﬂ+QfF+Cq?5r+ G, R

G = P ()l —1,)ar |=G 4G F+G 4G, 84{C 4G, o] 5 4

The main difficulty using equations (5-18) is the accurate
estimation of the angular rate derivatives. Angular acceleration
sensors are not included in the standard aircraft instrumentation
system and are very expensive. They are characterized by a
relatively high noise levels and/or lags. This is why numerical
differentiation of the angular rate measurements is usually used.
Differentiation however amplifies the noise in the measurements
and thus very accurate rate sensors should be used for the
angular rates. A standard deviation of 0.001deg/s that is common
to current high accuracy aerospace sensors permits this procedure
[4]. In a case of a small UAV however, the standard deviation of
the noise in low accuracy turn rate sensors is a number of orders
higher (5 deg/s) and the differentiation of the measurements is not
applicable directly. This problem can be solved by the use of
higher accuracy sensors for the turn rates and the filtering of the
measurements from the MMAE scheme. In the following figures
we can see the effects of the filter to the turn rate measurements.
It can be seen that the estimated values are much closer to the
true values and the noise in the measurements is eliminated. As
outlined in [16], the angular accelerations are obtained by
smoothed numerical differentiation of the turn rates. An algorithm
for effective and accurate calculation of the derivatives was used
contained in the SIDPAC package (chapter 11 of [16]).
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After the angular accelerations are computed, a linear
regression technique, like the recursive least squares algorithm
(RLS), can be used to estimate the non-dimensional aerodynamic
coefficients. A separate linear regression problem is formulated
and solved independently for the three equations of (5-18).

In order to identify a structural failure in the control surfaces
a change in the computed coefficients with respect to their nominal
values should be detected. There are two strategies to accomplish
that. One is to rely on a weighting factor A, in the recursive least
squares procedure (Exponentially Weighted Least Squares) and
the other is to incorporate a trigger for re-identification. The former
has the disadvantage that during long periods of stationary flight
with no control inputs, like cruise, the model is likely to become
unstable due to the lack of significant excitations. A remedy to this
problem could be the use of the Modified Sequential Least
Squares (MSLS) algorithm [16], [82], which uses regularization
terms and can guarantee that regardless of the amount of
excitation the model parameters drift will be constrained. This is an
important issue since cruise flight conditions constitute the largest
part of a typical flight profile. This is why the trigger to re-
identification was chosen.

Since a trigger is going to be used for the re-identification, a
measure should be chosen that characterizes the quality of the
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model. In [41], the authors describe a procedure to use the
innovation (the difference between the model prediction and the
actual behavior of the aircraft) as a measure for the quality of the
model. However the absolute value of the innovation does not only
depend on the model quality, but also on the noise in the input
channels, which makes it unsuitable for quality determination.
Instead, the whiteness of the innovation could be used as a quality
measure, since a perfect model would have a residual comparable
to the noise present in the input signals. The residual (innovation)
of the estimated aerodynamic model can be calculated as follows:
A(k) = z(k) = X (k) Frys () (5-19)

where A(k)the innovation at time step k, z(k)the aircraft states
measurements, X(k)is the data (regressor) matrix and 3, (k) the

vector of estimated parameters.

Several criteria for the whiteness of the innovation calculated
by (5-19) can be used, like the autocorrelation criterion and the
innovation average value. Also if the characteristic of the noise
was known, the covariance matrix could be used as well [41]. The
average of the innovation however is more general and simple
computationally so it was chosen as a measure of model quality.
The computation of the average value of the innovation A(k) is

performed by using the relation:

1
N

S Atk i) (5-20)

av i=0

Ak) =

The average is taken over a period of time (number of samples
Nav) and this number is a design parameter that must be tuned
carefully to avoid false alarms. Also for the triggering of the re-
identification a threshold must be chosen to indicate the deviation
of the innovation average from zero. This threshold should also be
carefully chosen based on several flights with and without a failure.
It should however be stressed that the trigger itself won’t produce
a false alarm but will just start the re-identification procedure. A
value of 100 was selected (1s) for N,, to ensure that the innovation
average will be close to zero (whiteness of the residuals). If a
failure is present the whiteness criterion will detect that the model
quality is poor and therefore a re-identification will be triggered.
Since there are three dimensionless moments and each has
a separate innovation channel, the reconfiguration can be focused
on the specific parameter or parameters that triggered the re-
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identification. This prevents unnecessary destabilizing of the
aircraft model parts that are used in the control system.

It is important to understand that for the fault detection and
identification procedure, the absolute value of the estimates has
less significance than its change compared to the initial value. The
main advantage of the technique is the physical insight it provides
since a good understanding of aircraft aerodynamics during
failures can enhance the identification process. This understanding
can be enriched by wind tunnel tests and the accumulated
knowledge can be incorporated into the fault identification
procedure by a fuzzy decision system which uses the values of the
deviations of the parameters from their initial value to declare a
structural failure. In this way the cross coupling introduced by the
failures could be exploited in order to identify the failure.

In this thesis simple structural failure of the control surfaces
is studied but more complicated failures could be handled as well.
Structural failures at the control surfaces affect especially the

control effectiveness parameters (Cy . Cixzm, Crim, ) but
other minor changes in aerodynamics (Cy iny,,.. ' Cix.zmy.,) are
observed as well. Also cross couplings are likely to develop like
C.de for example in case of elevator structural failure. It is important

to realize that in order for the identification to work as expected the
modeling of the forces and moments must be representative to the
one after failure. The identification algorithm does not try to
estimate separately all the control surfaces effectiveness
coefficients but it takes under consideration the conventional way
the surfaces are controlled:
oal=-¢a2
oel=oe2
It also takes under consideration the different cross-coupling terms
that are injected into the equations (5-18). Under normal conditions
these terms are equal (or close) to zero. Here only cross-coupling
terms related to the control surfaces were added but more
thorough modeling based on wind tunnel tests can reveal that
more terms should be added. In any case the identification
procedure will not change.

The above procedure was again tested in open loop
simulation of the non-linear aircraft model. The scenario assumes
a straight and level flight maneuver with the left elevator losing one
third of its total surface. The aerodynamic control surface
coefficient of the left elevator for the roll and pitch moments is
decreased by one third. The fault is injected at time 35s by

(5-21)
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changing the aerodynamic coefficients of the model in the
simulation. In particular, it is assumed that due to the failure there
is a loss of effectiveness of the left elevator to contribute to the roll

((3.5el ) and pitch moments Cmgel (30%) accompanied by a change in
aerodynamic coefficients for pitch rate Cmq (20%) and the baseline

pitch term C, (10%). The results are shown in figure 5.9. The

whiteness criterion is shown to be able to identify that a failure
model is present at the pitch axis very quickly (less than 350ms)
depending on the threshold chosen. Also the MMAE filter does not
flag an alarm for this kind of failure (figure 5.10). Finally in the
absence of a failure the whiteness criterion seems to be insensitive
to the excitation of the control surfaces as shown in figure 5.11 for
a significant excitation of all surfaces.
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Figure 5.9. Average Residuals computed during an elevator structural
failure at t=35s (3500 time sample)
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Figure 5.11. Average Residuals computed during no failure conditions with
significant excitation of control surfaces

After the re-identification trigger is issued, the linear
regression parameter estimation is initiated. The convergence of
the parameters is fast, especially that of the elevator effectiveness
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which converges only after three time samples (0.03 sec). All the
parameters are efficiently and accurately estimated as shown in
figure 5.12 for the case of pitch moment coefficients.
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It is clear that the reduction in control effectiveness can be
accurately estimated as a 30% difference in the pitching moment
capability of the aircraft. However since no individual surface
effectiveness was identified, we cannot determine which elevator
is damaged. A way to identify the failure would be to estimate the
elevator effectiveness to produce roll. However, this coefficient is
very small and it is difficult to identify its contribution accurately
and fast. A more efficient way to handle this problem is to perform
a linear regression on rolling moment estimating the sign of the
elevators contribution on rolling moment. If it is negative, the
damaged surface is the right one and if positive the left one. In the
following figure, we can compare the estimates of elevator
contribution on rolling moment for a right (blue) and a left (red)
elevator failure. It is clear that an identification decision can be
reached within 3 time samples (0.03 sec) from the identification
trigger.
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Figure 5.13 Estimation of elevator effectiveness for rolling moment
(Clde) coefficient in the case of a left (red) and right (blue) elevator
failures.
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The above method can be used if damage is expected to
occur on one surface at a time. In a different situation, in order to
efficiently identify the failures on both surfaces, the regression
problem for the rolling moment coefficient can be solved using the
difference of the two elevators deflections. In order to do so,
independent excitation of the elevators should be used. The
resulting estimated coefficient expresses the combined capability
of the elevators to produce rolling moment. Assuming that the
failure has the same effect on pitching and rolling moment
capability, the magnitude of the fault on both surfaces can be
identified. However in this thesis we assume that the most
common situation would be the damage of one control surface
only.

The estimation of moment coefficients in real time is a
stochastic procedure that can be affected by noise or insufficient
excitation, the parameter estimation module can be used in
conjunction with a fuzzy logic based inference system, which will
be able to use the engineer's expertise for decision making
purposes. Such a module was designed in this case to identify the
elevator failures but could be easily extended to handle more
complicated failures.

The fuzzy inference system has four inputs and two outputs.
In order to identify an elevator failure, the estimated

parameters Cp, |, C.,. Cr, and G, are the inputs to the system.

These are fuzzified taking under consideration the uncertainty in
the estimation procedure. An example is shown in figure 5.14 for

the parameter Cmﬁe . Figure 5.15 represents the fuzzification of the

parameter C, . The fuzzy rules have the form: “IF Cmde is S and

Clde is Negative then FaultEstimation is MF and FailedSurface is
Left”. This system can handle noise and can use wind tunnel test
data to encode the failures symptoms on aerodynamic derivatives.
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5.5 The need for a supervision system

It is evident that the model quality will be influenced not only
by structural failures but also by any stuck or floating actuators.
This “correlation” of the failures is caused by the lack of control
surfaces position measurements. Thus any stuck actuator failure
could be identified by the whiteness criterion and a re-identification
could be triggered. This would be undesirable since the inaccuracy
of the control surface measurements could cause faulty model
identification. This problem can be handled by delaying the trigger
for the identification an amount of time capable for the MMAE filter
to identify the stuck surface failure. Unfortunately this means that
the structural failures will have a longer delay of detection by at
least 1 sec. In the figure 5.17 we can see how sensitive the
whiteness criterion is in the case of a stuck failure. The detection is
almost immediate (almost 350 ms). This sensitivity is similar to the
sensitivity in structural failures. This means that the whiteness
criterion can be used by a supervision system as an early fault
detection mechanism, before an identification of the fault is
possible.
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Figure 5.17. Average Residuals computed during a stuck elevator at last
position failure conditions
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The supervision system will provide command limiting to the
navigation system to prevent instability for the period of time
required by the FDI system to identify the failure and the control
system to be reconfigured. If necessary it will also issue
commands to make the identification of the fault easier. This is
critical since minimum excitation is necessary both for the MMAE
filter and the parameter estimation procedure. This supervision
system is fed by signals from the MMAE filter and the whiteness
criterion detection subsystem and is responsible for the fault
information management.

After the early detection of the fault, the supervision system
waits for 1 second for a fault isolation of a stuck or floating failure
from the MMAE filter. In figure 5.18 we can see the response of
the MMAE filter to the above stuck elevator failure. We can see
that the correct control surface failure is identified in 1s. Also the
magnitude of the fault is estimated correctly at the same time
(Figure 5.19). The supervision system inhibits the trigger for re-
identification until the MMAE filter identifies the fault.
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Figure 5.18. MMAE Filter probabilities computed during a stuck elevator at
last position failure conditions
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In the case of a structural failure of a control surface, the
supervision system waits 1s limiting the commands from the pilot
or the navigation system and issuing commands for identification.
After 1s it checks the probabilities calculated by the MMAE filter. If
these probabilities do not exceed 80%, a re-identification is
triggered. If on the other hand there is a fault probability that does
exceed 80%, the estimated deflection is checked and if the
estimated value is constant, a stuck surface failure is declared.

On the other hand a loss of control effectiveness could be
identified by the MMAE. This can happen if an EKF efficiently
tracks an input in such a way that the structural damage can be
“‘explained” by the failure scenario. In this case however, it is easy
to reject the false alarm by efficient excitation and by comparing
the commanded deflection with the estimated one. If the estimated
deflection changes in a way similar to the command, then no stuck
or floating actuator has happened. In order to handle these cases,
a more complicated logic should be implemented. The simulations
performed did not reveal such a case, that is why not such logic
was implemented.

The overall fault detection system is shown in Figure 5.21.
The supervision logic is presented in Figure 5.20. We can see that
the system is hierarchical: The whiteness criterion is first flagged in
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the case of a fault (within 350ms from failure occurrence). It is this
signal that enables control surface excitation for parameter
estimation (MMAE filter is benefited by that also). A null space
injection policy can be used [83] or any other excitation method for
active fault detection. The early detection of a fault can also be
used so that extreme maneuvers can be inhibited by a governor.
The supervision module initiates a 1 second timer and if a stuck
surface failure is not detected by the MMAE filter, a re-
identification is triggered. The system can identify a stuck surface
deflection within one second after occurrence, along with a valid
estimate of the stuck surface deflection. In the case of a damaged
surface, due to the delayed trigger, a minimum of 1.03 seconds is
required for failure detection and isolation. At the same time a valid
estimate of the damaged surface effectiveness coefficient can be
obtained. The other parameters of the model require slightly longer

estimation times (i.e reliable C,, and C,, estimates are available at

2 seconds after failure since their estimation requires one second
since identification trigger).
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Chapter 6 - Nonlinear Fault Tolerant Flight Control System

In this chapter, a fault tolerant flight control system is going
to be developed for the ETH Zurich UAV. Although there are a lot
of linear control system design methods in the literature, we will
concentrate on a non-linear control method, since the introduction
of faults along with the delay of detection, can lead to highly cross-
coupling and non-linear behavior and can make the system
deviate considerably from its equilibrium point before the
reconfigurable law is implemented.

According to table 4.2, some methods suitable for non-linear
FTC are Model Predictive Control (MPC), Sliding Mode Control
(SMC), Adaptive Control and Feedback Linearization (FBL). The
former has a lot of merits, especially the capability to physically
include constrains (i.e. in actuator limits) and the simple
reconfiguration procedure, since it only involves the replacement of
the nominal model with the identified faulty one. However MPC is
computationally demanding and its application is thus prohibited
especially for non-linear systems. An interesting application was
reported in [112], where MPC was combined with Feedback
Linearization (FBL). Even in this case however, as reported by the
authors, the complexity of the control law was quite high and a
selection of a prediction horizon greater than two, led to a
controller that could not be evaluated in real time onboard a large
civil aircraft. This issue is even greater on a small UAV. What's
more, the application of FBL requires very accurate knowledge of
the system both before and after a failure, something that can be
problematic. On the other hand SMC is a very promising
technique, as reported in [113], [114]. However, it cannot explicitly
handle complete actuator failures and special attention has to be
given on the discontinuity in control law that can lead to chattering.
Adaptive control is another option [115], however the adaptation of
the parameters is an issue for fast changing dynamics like these
experienced after a fault. Finally, FBL or Non-linear Dynamic
Inversion (NDI) based adaptive controller was proposed in [106],
with the parameters of the NDI module being identified by a
parameter estimation procedure. However in this paper it was
assumed that the estimates were accurate immediately after the
fault’s occurrence something really optimistic and no assessment
was made for the transient period. What's more, reduced actuator
effectiveness was only considered and no complete loss of an
actuator and the control surface failures were treated as pairs.
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Here, an NDI based technique will be used like the one in
[106], since the FDI module designed in Chapter 5 has the
capability to estimate the faulty characteristics of the system,
namely the faulty deflection (for the stuck actuator case) and the
parameters of the faulty system (for the control effectors structural
failure). However, contrary to [106], we will treat the complete loss
of actuator case as well as assess the controller’s effectiveness
during the period of parameter estimation.

6.1 Non-linear Dynamic Inversion based controller
6.1.1 Derivation of a Dynamic Inversion Controller

Let the plant be described by a set of non-linear affine in the
input differential equations of the form
x(t) = f () +g(x)u,
y(t) =h(x),
where the state vector is x(t)eR", the measurement vector is
y(t)eR"and the control input vector u(t)eR®. Differentiating the

output y with respect to time we obtain
oh ohox oh
y(t) = oox ot x f(x )+—9(X)U F(X)+G(x)u (6-2)

(6-1)

In order to force the output of the plant y(t) follow a desired
trajectory the signal of the desired output dynamics vy, (t)needs to

be constructed. Then (6-2) can be easily used in order to find the
appropriate control input:

Uy (1) = G (X) (Vaes (1) = F (X)) (6-3)

The control design task is then to build a suitable control
signal for the desired output dynamics vy, (t). This signal can be

constructed based on the error signal defined by:

€(1) = Ve (1) = Yineas (1) = €(1) = Ve (1) = Vineas (1) -
= Vimeas (1) = Y (1) —€(1)
where vy__ (t)is the measured output and vy, (t)is the command
signal. In the case of perfect tracking we should have y__ (t)=vy,.(t)

and ¢(t)should be driven to zero by selecting a controller K such
that:

(6-4)
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é(t) = —Ke(t) (6-5)
From (6-5) and (6-4) we get that:

ydes (t) = yc (t) + Ke(t) (6-6)

Usually however, the desired dynamics signal is constructed by
selecting a suitable PID controller. This technique will be used in
this thesis. The overall structure of the NDI scheme is shown in the
following figure.
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3 Controller Ydes (t) u. (t) Aircraft $<t)
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kil Medel Yimeas (t)
Outer Tracking Loop

Figure 6.1. Non-linear Dynamic Inversion general scheme

6.1.2 NDI applied on a UAV

It is obvious that in order to achieve tracking control for some
parameters, the availability of at least as many control inputs are
required. In the case of our fixed wing UAV, there are three
aerodynamic inputs and a thrust force. The three inputs are the
ailerons, the elevators and the rudder. This means that three
quantities can be controlled. However, in the case of any fixed
wing aircraft, the time scale separation (TSS) technique can be
applied. The technique is based on the different levels of control
effectiveness that can be seen as the effect on a controlled
parameter due to unity change of the controlling parameter. Based
on the control effectiveness, we can make a distinction between
slow dynamics and fast dynamics. Slow dynamics means that the
control effectiveness of a certain parameter is low. Fast dynamics
means that the control effectiveness is high. Time scale separation
means that we can split the fast and the slow dynamics. The fast
dynamics can then be seen as the inner loop, while the slow
dynamics make the outer loop. For every part, dynamic inversion
is applied separately.

A typical distinction is that of attitude angles (slow dynamics)
and rates (fast dynamics). The inner loop consists then of the three
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angle rates (pitch, roll and yaw rate), having as output the desired
deflection of the control surfaces. The outer loop, consists of the
aerodynamic angles (¢ roll, 8 pitch and B sideslip) having as
output a reference to be tracked by the inner loop. The design can
be done in six steps:

1. We start with the reference flight angles (¢ roll, 6 pitch
and [3 sideslip) and we derive the reference flight angle derivatives
(4,6and p) using a PID controller like:

¢ ¢ ¢ ¢ ¢ g ¢ ¢
0| =ki||0| - +k J||o] -|o tho | 0] - (6-7)
ﬁ ref 'B ref ﬂ act 'B ref ﬂ act ﬂ ref ﬂ act

2. From the derivatives, the rotational rates of the UAV
should be derived. We can use the following equations relating the
time derivatives of the aerodynamic angles with angle rates [16]:

q}:%:p+(qsin¢+rcos¢)tan0:
p (6-8)
¢=[1 singtand cosgtand] q
.
Y
6=qcosg-rsing=[0 cos¢g -sing]| q (6-9)
r
and

Y
f =arcsin—=
\Y

1
V2 —y?

= ! [A +gcosfsing+ pw—ru] (6-10)

NAVERSYL

Vv

B=

1

p
. W —u
o 0
NS LA+ gcossing]+ NARTE VVZ_VZ}{?}

Where A is the lateral specific force. The rotational rates of
the UAV can be derived using the matrix equation:
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_ s _ _
p 1  singtand cosgtand| || 0
q| = O cos¢ —sing 0| - 0 (6-11)
r ref w 0 —u ﬂ of 1 [ n .
r gcosésing
B vl B Yo |

3. Having the desired rotational rates, we can find the
desired rotational accelerations of the aircraft using a PID
controller:

p p p p p p
q :kP2 q -1 d +klzj q -1 4 +sz§ q -1 4 (6'12)
r r r r r r r

ref ref act ref act ref act

4.  To find the required moments we can use the equation:

L p p p
M| =I1|q| +|q| xI|q (6-13)
N f r r

req ref act act

5. The required moments should then be normalized to
calculate the moment coefficients:

Lreq

“u =T o VS’ Cn. p\r/eqSC pV 1/ v2sh
2

And the contribution of the states should be subtracted in
order to calculate the required contribution of the control
deflections. This step depends of course on the modeling of the
moment coefficients which is unique for every UAV:

(6-14)

Idelta

(6-15)

Mdelta

I
O 0
|
O

N dreq C

Ngelta req es _lact

6. The final step is to calculate the required deflections of
the control surfaces (control allocation step). In a typical UAV with
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conventional movement of the control surfaces, the equation used
in this step is:

-1

0, C.Je Is, C'a‘, Ly
6, =|C, Cn Ci, - (6-16)
I lreq Cn(; C C

Ns, Ns, Neta | req

The NDI method described above has a big known
downside: To apply it, the model of the system has to be known
quite accurately. However, the modeling of a UAV can contain
non-modeled terms and what's more, during a failure the
estimated parameters may not be accurate enough. A possible
solution to the above problems is the use of an incremental form of
NDI (INDI). This technique does not give the required input to
control the system but the required change in the input. The design
technique could be similar to the steps 1-4 of the NDI technique,
however there would be changes in the two last steps:

¢ |n step 5 of the technique, the measured states and the
control deflections could be used to compute the whole
aerodynamic coefficients:

C Co
—lc | -lc (6-17)

Mgeita m Meomputed

Idelta

n
Ndelta req req ncomputed act

¢ In the final step, the required change in control surface
deflections could be computed as:

-1

A5e C',ye C'o‘a Clo‘r Cldelta
A5&1 = Cm5 Cmﬁ Cma Cmdelta (6- 1 8)
A9,

r
req N, Ns, Ns, Ngeita I req

One could see that the difference between the required and
the computed coefficients (if those coefficients were exact), would
be the same as the difference between the required and actual
angular rate derivatives. The INDI technique thus replaces
equation (6-17 and 6-18) with equation 6-19:
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A5e CLse C'a'a C's, p p
As,| =|C, C, C,. q| —|q (6-19)
A §f req Cn5 C ns, C“a, r des r meas

In order to apply the INDI method we need to measure the
angular rate derivatives. As we explained in section 5.4 the
angular rate derivatives are needed for parameter estimation
purposes as well, and they can be computed by a differentiation
method from the smoothed angular rate estimates provided by the
MMAE filter. The INDI is much more robust to parameter
uncertainties (especially uncertainties in the parameters related to
the states) and un-modeled effects and the price to pay for this is
the need to use the angular derivatives as measurements. The
method does depend strongly however to the accuracy of control
surface effectiveness parameters as well as the matrix of inertia.
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6.1.3 Fault Tolerance in an NDI control system

In order to make the above control system fault tolerant, we
need to update the controller after the failure. There are different
ways to do so, depending on the specific failure experienced by
the system:

(@) In the case of a damaged control surface, an
adaptive NDI could be used. The FDI system
should provide the new estimates of the
coefficients in order to apply the new control law.
The coefficients should enter the model after the
detection of the failure and the trigger of the re-
identification process. Both equations (6-16) and
(6-15) should be updated. The procedure was
proposed in [106] but accurate knowledge of the
coefficients after failure was assumed. Also, no
evaluation was conducted for the transient period
before the convergence of the estimated
parameters.

(b) In the case of a stuck surface on the other hand,
we need to change the last step of the control
law only, the control allocation step. There are a
lot of algorithms for that, ranging from optimal
allocation to simple and computationally efficient
methods. It seems that the blending of control
allocation and NDI is a straight forward approach.
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6.1.3.1 Damaged Control Surface Case

In this section the capability of the controller to handle
damaged control surface failures will be evaluated. The failure
considered is the 30% reduction of the right elevator control
surface, considered during the FDI design.

The reconfiguration will be evaluated based on the inner NDI
loop, so the assessment of the control system will be based on its
capability to track rate commands (pitch rate commands for the
failure considered). Figure 6.2 below shows the capability of the
simple NDI technique to handle the elevator failure.
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Disturbancies due to Rate

0.08 E?rruar;neter esfimation Bafaianis

» Input
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0oz - B

0 .Mﬂlﬂh \'lw;flnhﬁv T LI -
H TV ey

002k Failure Injection 4
at 35s

004 .

-0.06

1 1 | | |
0 2000 4000 B000 aooo 10000 12000

Figure 6.2. Adaptive NDI based fault tolerant controller capability to track
pitch rate step commands after right elevator failure.

Although the controller can follow the reference input even
after the failure, its performance is poor as can be observed by the
disturbances (spikes) present. The poor performance of the NDI
method to compensate for the failure is caused by the poor
accuracy of the identified parameters. Indeed, the low excitation
and the closed loop identification procedure lead to inaccuracies in
all parameters, including the control effectiveness parameters.
However, this inaccuracy is far greater for the state dependent
parameters like C ., (figure 6-3).
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Figure 6.3. Estimated versus true Cma parameter (closed loop identification)

Contrary to simple NDI, the INDI technique is much more
robust. As can be seen in figure 6-4, the controller is capable of
tracking pitch rate step commands even after the failure. There are
however still some disturbances in pitch rate caused by the

inaccurate parameter

damaged elevator effectiveness).

estimation procedure (related to the
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Figure 6.4. Adaptive INDI based fault tolerant controller capability to
track pitch rate step commands after right elevator failure.
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A possible solution to the above problem, is the incorporation
of an elevator doublet initiated by the supervision subsystem. The
excitation enhances the parameter estimation effectiveness and
the capability of the controller for pitch rate command tracking is
enhanced also (figure 6-5). However, as the identification
procedure is continuous after the failure, the lack of excitation
causes the deterioration of the estimates. This is especially true for
the parameters affecting the states. Although the INDI technique
can handle this issue, a stopping rule for the identification
procedure can be incorporated also after the post-failure
parameters are identified.
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Rate
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Input
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001 at 355 \ Il

Pitch Rate disturhance disturbances due to parameter

-0.02 - due to elevator doublet estimates deterioration -

00 1 1 ! ! I
0 2000 4000 E000 ao0a0 10000 12000

Figure 6.5. Adaptive INDI based fault tolerant controller capability to
track pitch rate step commands after right elevator failure with elevator
doublet applied for identification purposes after the failure.

Finally the INDI controller (with elevator doublet excitation
command after the failure) is evaluated for the case of small to
moderate wind conditions and different reference inputs. The
following figures (figure 6-6 to 6-8) display the results, showing that
the controller is capable to compensate for the elevator fault and
track the reference input perfectly with no steady state error. The
other angular rates (roll and yaw rates) are kept to zero.
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Figure 6.6. Adaptive INDI based fault tolerant controller capability to track
pitch rate step commands after right elevator failure
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Figure 6.7. Adaptive INDI based fault tolerant controller capability to track
pitch rate step commands after right elevator failure
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Figure 6.8. Adaptive INDI based fault tolerant controller capability to track
pitch rate step commands after right elevator failure

6.1.3.2 Stuck Control Surface Case

In this section the capability of the controller to compensate
stuck control surface failures will be evaluated. In fact the structure
of the NDI controller will remain the same with a modification in the
final (control allocation step). There are a lot of methods to do so
like the pseudo-inverse method or optimal control allocation [105].
Also, a simple control allocation algorithm was proposed in [10],
where in the case of a stuck control surface and depending on the
failure mode, simple rules are used to drive the other actuators.

In this thesis, the information provided by the FDI module, in
particular the failure detection signal and the estimated deflection
of the stuck control surface are used by the controller to calculate
the necessary deflections of the other actuators. The stuck control
surface deflection will be treated as a state in equation (6-17) while
the commanded deflections will be calculated similarly to equation
(6-16) (simple NDI) or (6-18) (Incremental NDI) by using the
healthy control surface only:
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The efficiency of the control system will be evaluated based
on the right elevator stuck control surface failure used for the FDI
design. The failure is assumed to be injected at 35 seconds of
flight and the right elevator gets stuck at 0.25 degrees from trim.
Figure 6.9 shows the failure detection from the MMAE filter of the
FDI module. It can be seen that the detection and isolation of the
failure is fast (around 1s) and the estimation of the fault deflection

e I5e
O = Cm(;

r req Cnﬁe
A 56 CI(‘e
Ady | =|C,,
Ao, req Cn(;e

|5a1
My

Nsap

|5r Ideha

Mg, Mgelta (6 - 1 9 )
ns Ngeita | req
-1
|5r Idella
Ms, Meelta (6-20)
ns, Ngetta _|req

has converged at the same time (Figure 6.10).
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Figure 6.9. Fault probabilities calculated from the MMAE algorithm of the
FDI subsystem (closed loop). The detection and isolation is achieved in 1

second.
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Figure 6.10. Estimated versus real right elevator deflection. The estimated
values are valid only after the failure injection.

The controller is able to compensate for the failure, although
due to low excitation, the estimation of the stuck deflection does
exhibit fluctuations that cause the same disturbances in the
controlled angular rates after the failure (Figure 6-11).
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Figure 6.11. Adaptive NDI based fault tolerant controller capability to track
pitch rate step commands after right elevator stuck failure at 0.25 deg from
trim.
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One could note that there is a large spike at fault occurrence
caused by the fault detection delay of one second. The fault
however cannot destabilize the system. Similar results were
obtained by exciting the system at fault occurrence (Figure 6-12).
The UAV is kept under control and is capable to suppress the
transient response and follow the reference input accurately.
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Figure 6.12. Adaptive NDI based fault tolerant controller capability to track
pitch rate step commands after right elevator stuck failure at 0.25 deg from
trim. The failure is injected during excitation of the system.
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In the case of a more severe failure, the transient response
will be worst, however, the detection delay will also be reduced. In
the following simulations a more severe failure was addressed (the
right elevator gets stuck at 5 degrees from trim (almost one fifth of
the maximum deflection of the control surface). The detection
delay is reduced to less than 0.5 seconds as it can be seen from
figure 6-13.
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Figure 6.13. Fault probabilities calculated from the MMAE algorithm of the
FDI subsystem (closed loop). The detection and isolation is achieved in 0.6
second.

The controller is able to track the reference input with no
steady state error after the initial transient response. The pitch rate
achieved can be seen in figure 6-14. The controller can
compensate for the fault by commanding the left elevator to the
opposite direction as shown in figure 6-15. The commanded
deflection does not exceed the maximum limits even during the
transient response period.
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Figure 6.14. Adaptive NDI based fault tolerant controller capability to track
pitch rate step commands after right elevator stuck failure at 5 deg from trim.
The failure is injected during excitation of the system.
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Figure 6.15. Adaptive NDI based fault tolerant controller commanded
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The controller performance is influenced by the small
fluctuations in the estimated value of the stuck control surface
deflection. In order to copy with this issue, a more robust technique
can be used. The estimated value of the stuck control surface
does not need to be estimated continuously since a stuck actuator
does not move. We can then “freeze” the estimate at some mean
value at the initial face of fault identification. The use of
Incremental NDI (INDI) using the stuck control surface deflection
as another state, can eliminate unwanted fluctuations and still
achieve perfect tracking of the reference input even in the
presence of errors in the estimated faulty deflection. The results
from the implementation of this technique is shown in figure 6.16
below, for the case of a right elevator stuck at 5 degrees from trim.
A comparison with the results obtained from the simple NDI
technique (figure 6.15) are evident. It should be noted that in this
particular case, the error in estimation of the stuck control surface
deflection was almost 20%.
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Figure 6.16. INDI based fault tolerant controller capability to track pitch rate
step commands after right elevator stuck failure at 5 deg from trim. The failure
is injected during excitation of the system

The above technique is very robust to the estimated faulty
deflection. This makes easier the implementation of the method,
since it is not critical to accurately estimate the faulty deflection. In
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figure 6.17 below, we can see that even if the stuck control surface
deflection is estimated with an error equal to 50% of the real value,
the controller is able to track the reference input with great
accuracy.
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Figure 6.17. INDI based fault tolerant controller capability to track pitch rate
step commands after right elevator stuck failure at 5 deg from trim. The failure
is injected during excitation of the system. The estimated fault deflection
accuracy was chosen 50% away from true value.

It is obvious that the above technique can be used in the
case of the adaptive NDI presented in the previous section. The
estimated parameters can also freeze to values with a certain
accuracy and the INDI controller will compensate for the fault as
well as the inaccuracies in the estimated parameters.
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Chapter 7. Summary and conclusions

In this thesis, a complete active fault tolerant control system
was presented and designed for a fixed wing UAV. Both the FDI
and the FTC part of the controller were implemented without any
assumption of ideal operation. Each module was developed
separately but all modules were tested together. The main design
objective was the implementation with no hardware redundancy
added something that led to the implementation of a more
complicated supervision logic module to differentiate between
failures. It should be noted that if position sensors of the control
surface deflections were added, the MMAE algorithm would be
unnecessary and the FDI module would be much simpler.

The FDI module was developed by mixing two different
methodologies: Multiple Model Adaptive Estimation (MMAE) and
parameter identification. A supervision module was also developed
to make detection of different failures possible. The FDI module
was proved to provide accurate identification of all actuator failures
with a detection delay of around 1 second (for small failures). The
main drawback in this FDI module is the assumption of Gaussian
noise used in the EKFs that are part of the MMAE filter. The EKFs
need to be tuned in a real life application, however their
implementation, up to now, shows that deviations from this
assumption can be tolerated by the filter. Another restriction is
caused by the false alarms that can be caused by miss-modeling
and especially by noise (such as wind). To avoid false alarms and
help the FDI module to provide accurate estimates in the case of a
structural damage, significant excitation is needed. This issue is
common to many FDI algorithms and there are a lot of publications
in the literature that deal with it (e.g. [9],[83]). A careful selection of
input signals can provide the needed excitation without risking the
stability of the system.

The fault tolerant controller developed in chapter 6, is based
on non-linear dynamic inversion (NDI). The controller based on the
information provided by the FDI system was proved to be able to
track rate commands in the presence of control surface failures
(both stuck and damaged surfaces). The controller is updated in
real time by the new estimated coefficients of the aerodynamic
model or the estimated stuck control surface deflection. The
control allocation part inherent in an NDI controller helps the re-
distribution of control energy to other actuators as long as such
redundancy exists. The basic drawback of an NDI controller, its
sensitivity to un-modeled dynamics can in this case be resolved by

110



the re-identification of the model whenever such miss-modeling is
detected.

Although model uncertainties were addressed for the FTC
design, their influence to the FDI module was not treated in detail.
EKFs are known to be sensitive to modeling uncertainties and their
performance is expected to be degraded. What's more, the
parameter estimation module is also dependent on the MMAE filter
performance since it relays on the state estimates provided by the
filter. The capability of the FDI method to be insensitive to
modeling uncertainties is based on the performance of the fuzzy
inference system in the supervision logic. However a detailed
assessment of the performance of this scheme is left as a subject
of a future research.

Also, in this thesis only the inner control loop was treated,
however the fault tolerant capability is strongly related to flight
envelope adaptation. It is essential for any successful
implementation of FTC algorithms to restrict the flight envelope
after failure in order to keep the system under control. Also,
performance degradation needs to be applied, permitting slower
response of the aircraft after failure in order to continue its mission.

Finally, a more complete simulation in order to assess the
performance of the system in a real life scenario is needed. In
order to do so, the control system, needs to be completed (outer
loop should be designed also) and a navigation algorithm should
be designed to generate commands to the control system for
trajectory tracking.

Finally, it should be pointed out that the FDI/FTC method
presented, like almost any other method found in the literature
cannot provide a complete solution to the reliability improvement
problem for UAVs. These methods focus on increasing fault
tolerance for a given degree of redundancy and, thus, they are
limited to the degree of redundancy selected. On the other hand,
reliability improvement is a multi-objective optimization problem
that involves reliability specifications, redundancy, fault-tolerance
evaluation and cost. A schematic representation of a possible
design cycle is shown in Figure 7.1.

111



Cost Constraints

I

Weight Constraints

Initial Design

(Structure-Equipment

Selection)

Y

Reliability-Survivability
Specifications
(Faults to be handled,
False Alarm Rate,
Probability of
Detection/

compensation etc)

Failure and Effect

.| Analysis, Failure

Increased
Hardware
Redundancy or
increase reliability

of equipment used

"1 Modes, Reliability

Analysis (MTBF)

Y

Model of the
systems and
Faults

A 4

FDI/FTC Design,
Compensation
Strategies

A 4

Simulation-Based
FDI/FTC System

evaluation

Final Design

Figure 7.1 Design cycle for reliability improvement of UAVs

112



BIBLIOGRAPHY

[1] M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki.
“Diagnosis and Fault Tolerant Control”. Spinger-Verlag, second
edition, 2006.

[2] R.Isermann, R. Schwarz and S. Stolzl. “Fault tolerant drive-
by-wire systems”. I[EEE Control Systems Magazine, Volume 22,
pages 64-81, 2002.

[3] Goupil Phillipe. "Airbus state of the art and practices on FDI
and FTC”, 7" IFAC Symposium on Fault Detection, Supervision
and Safety of Technical Processes, Barcelona, Spain, 30 June — 3
July 2009.

[4] C. Edwards, T. Lombaerts and H. Smaili. “Fault Tolerant
Flight Control-A Benchmark Challenge”. Spinger-Verlag, 2010.

[5] Anonymous. Civil aviation safety data 1993-2007. Technical
Report, Civil Aviation Authority of the Netherlands, CAA-NL, 2008.

[6] F.W Burcham, C. G. Fullerton and T. A. Maine. “Manual
Manipulation of engine throttles for emergency flight control”.
Technical Report NASA/TM-2004-212045, NASA, 2004.

[7] Anonymous. Unmanned Aircraft Systems Roadmap 2005-
2030, Office of the Secretary of Defence, Washington, D.C, 2005.

[8] D.G Ward, et al. “Intelligent Control of Unmanned Air
Vehicles: Program summary and representative results”. AIAA-
2003-6641, 2™ AIAA  “Unmanned  Unlimited” Systems,
Technologies and Operations, San Diego, California, 15-18
September 2003.

[9] K. Valavanis. “Advances in Unmanned Aerila Vehicles. State
of the Art and the Road to Autonomy”. Spinger-Verlag, 2007.

[10] G. Ducard. “Fault-tolerant Flight Control and Guidance
Systems”. Spinger-Verlag, 2009.

[11] Mack Rauw, “FDC 1.4- A Simulink Toolbox for Flight
Dynamics and Control Analysis”. http//www.dutchroll.com, 2005.

113



[12] B. Stevens and F. Lewis. “Aircraft Control and Simulation”,
second edition. Wiley, New York, 2003.

[13] R.C Nelson, “Flight Stability and Automatic Control”, second
edition. McGraw-Hill 1998.

[14] T. Nguyen et al. “Simulator Study of Stall/Post-stall
Characteristics of a fighter Airplane with Relaxed Longitudinal
Static Stability”, NASA Technical Paper 1536, 1979.

[15] D. Jung and P. Tsiotras. “Modeling and Hardware in the
Loop Simulation for Small Unmanned Aerial Vehicle”, AIAA, 2007.

[16] V. Klein and E. Morelli. “Aircraft System Identification-Theory
and Practice”. AIAA Education Series, 2006.

[17] Halim Alwi. “Fault Tolerant Sliding Mode Control Schemes
with Aerospace Applications”. PhD Thesis, Control and
Instrumentation Research Group, University of Leister, 2008.

[18] Perhinschi M.G et al. “Modeling and Simulation of Failures
for Primary Control Surfaces”. AIAA Modeling and Simulation
Conference, 5-8 August 2002, Monterey, California, AIAA 2002-
4786.

[19] Smaili M.H. “Flight data reconstruction and simulation of El
Al Flight 1862". Final Thesis, Delf University of Technology,
Faculty of Aerospace Engineering, Delf, The Netherlands, 1997.

[20] Johnson E.N., Calise A.J. and Blauwe. “In Flight Validation of
Adaptive Flight Control Methods”. AIAA Guidance, Navigation and
Control Conference, 18-21 August 2008, Honolulu, Hawaii, AIAA
2008-6989.

[21] Patton J. Ron. “Fault-Tolerant Control Systems: The 1997
Situation”. Proceedings of the 3rd IFAC symposium on fault
detection, supervision and safety of technical processes (pp 1033-
1055), August 1997.

[22] Zhang Y. and Jiang J. “Bibliographical review on
reconfigurable fault-tolerant control systems”. Annual Reviews in
Control vol 32 (pp 229-252), 2008.

114



[23] Venkatasubramanian k. et .al. “A review of process fault
detection and diagnosis Part | (Quantitative model-based mathods)
, Part Il (Qualitative models and search strategies, Part Il (Process
history based methods)”. Computers and Chemical Engineering
vol 27 (pp 293-346), 2003.

[24] Marzat J. Et. al. “Autonomous Fault Diagnosis: State of the
Art and Aeronautical Benchmark”. 3rd European Conference for
Aero-Space Sciences EUCASS, Versailles, France, 2009.

[25] S.X Ding. “Model-Based Fault Diagnosis Techniques: Design
Schemes, Algorithms and Tools”. Springer-Verlag, 2008.

[26] Ward D.G., Monaco J.F. and Bodson M. “Development and
Flight Testing of a Parameter Identification Algorithm for
Reconfigurable control”. AIAA Journal of Guidance, Control and
Dynamics, vol. 21, pp. 948-956, November-December 1998.

[27] Shore D. and Bodson M. “Flight Testing of a Reconfigurable
Control System on an Unmanned Aircraft”. AIAA Journal of
Guidance, Control and Dynamics, vol. 28, pp. 698-707, July-
August 2005.

[28] Morelli E.A. “Real Time Parameter Estimation in the
Frequency Domain”. Proceedings of the 1999 AIAA Atmospheric
Flight Mechanics Conference, AIAA paper 99-4043, Portland,
August 1999.

[29] Raol J.R., Girija G. and Singh J. “Modelling and Parameter
Estimation of Dynamic Systems”. IEE Control Series vol. 65, 2004.

[30] Song Y., Campa G., Napolitano M., Seanor B. and
Perhinschi M.G. “Comparison of On-Line Parameter Estimation
Techniques within a Fault Tolerant Flight Control System”. AIAA
Journal of Guidance, Control and Dynamics, vol. 25(3), pp. 528-
537, May-June 2002.

[31] Lombaerts T.J.J., et. al. “Real time damaged aircraft model
identification for reconfigurable control”. Proceedings of the AIAA
Atmospheric Flight Mechanics Conference, AIAA paper 2007-
6717, Hilton Head, SC, August 2007.

115



[32] Chen W. and Patton R.J. “Robust model-based Fault
Diagnosis for Dynamic Systems”. Kluwer Academic Publishers,
1999.

[33] Shim D.S. and Yang C.K. “Geometric FDI based on SVD for
redundant inertial sensor systems”. Proceedings of the 5" Asian
Control Conference, vol.29, pp.1093-1099, Melbourne, Australia,
2004.

[34] Yang C.K. and Shim D.S. “Double Faults isolation based on
the reduced order parity vectors in redundant sensor
configuration”. International Journal of Control, Automation and
Systems, 5(2), pp. 155-160, 2007.

[35] Castaldi P. et al. “Design of residual generators and adaptive
filters for the FDI of aircraft model sensors”. Control Engineering
Practice, vol. 18(5), pp. 449-459, May 2010.

[36] Benini M., Castaldi P. and Simani S. “Fault Diagnosis for
Aircraft Systems Models”. VDM Verlag, 2009.

[37] Witczak M. “Modelling and Estimation Strategies for Fault
Diagnosis of Non-Linear Systems. From Analytical to Soft
Computing Techniques”. Springer-Verlag, 2007.

[38] Heredia G., Ollero A., Mahtani R. and Bejar M. “Detection of
Sensor Faults in Autonomous Helicopters”. Proceeding of the 2005
IEEE International Conference on Robotics and Automation, (ICRA
2005), pp.2229-2234, Barcelona, Spain, 2005.

[39] Grewal M.S. and Andrews A.P. “Kalman Filtering. Theory
and Practice Using MATLAB”. John Wiley and Sons, Second
Edition, 2001.

[40] Ni L. “Fault-Tolerant Control of Unmanned Underwater
Vehicles”. PhD Thesis, VA Tech. University, Blacksburg, VA, 2001.

[41] Hajiyev C. and Caliskan F. “Fault Diagnosis and

Reconfiguration in Flight Control Systems”. Kluwer Academic
Publishers, 2003.

116



[42] Meybeck P.S. “Multiple-Model Adaptive Algorithms for
Detecting and Compensating Sensor and Actuator/Surface
Failures in Aircraft Flight Control Systems”. International Journal of
Robust and Nonlinear Control, vol. 9(14), pp.1051-1070, 1999.

[43] Kobayashi T. “Aircraft Engine Sensor/Actuator/Component
Fault Diagnosis Using a Bank of Kalman Filters”. Technical Report
NASA/CR 2003-212298, 2003.

[44] Zhang Y. and Li X.R. “Detection and Diagnosis of Sensor
and Actuator Failures Using IMM Estimator”. IEEE Transactions on
Aerospace and Engineering Systems, vol. 34(4) pp.1293-1313,
1998.

[45] Fisher K.A. and Maybeck P.S. “Multiple-Model Adaptive
Estimation with Filter Spawning”. IEEE Transactions on Aerospace
and Engineering Systems, vol. 38(3) pp.755-768, 2002.

[46] Freddi A., Longhi S. and Monteriu A. “A model-based fault
diagnosis system for unmanned aerial vehicles”. Proceedings of
the 7" IFAC Symposium on Fault Detection, Supervision and
Safety of Technical Processes, pp. 71-76, Barcelona, Spain, June
30-July 3, 20009.

[47] Venkateswaran N. et. al. “Analytical Redundancy-based fault
detection of gyroscopes in spacecraft applications”. Acta
Austronautica vol. 50(9), pp. 535-545, 2002.

[48] Patton R.J., Uppal F.J., Simani S. and Polle B. “Robust FDI
applied to thruster faults of a satellite system”. Control Engineering
Practice, vol. 18, pp. 1093-1109, 2010.

[49] Caliskan F., Zhang Y., Wu N.E. and Shin J.Y. “Estimation of
Actuator fault parameters in a nonlinear Boeing 747 model using a
linear two-stage Kalman filter”. Proceedings of the 7" IFAC
Symposium on Fault Detection, Supervision and Safety of
Technical Processes, pp. 71-76, Barcelona, Spain, June 30-July 3,
2009.

[50] Hou M. and Patton R.J. “An LMI approach to H./H. fault

detection observers”. Proceedings of the UKACC International
Conference, vol. 1, pp. 305-310, 1996.

117



[51] Henry D., Zolghadri A., Castang F. and Monsion M. “A new
Multi-Objective  Filter Design for Guaranteed Robust FDI
performance”. Proceedings of the 40" IEEE Conference on
Decision and Control, Orlando, Florida, pp. 173-178, USA, 2001.

[52] Henry D. and Zolghadri A. “Design of fault diagnosis filters: A
multi-objective approach”. Journal of the Franklin Institute, vol.
342, pp. 421-446, 2005.

[53] Henry D. and Zolghadri A. “Design and analysis of robust
residual generators for systems under feedback control”.
Automatica, vol. 41, pp. 251-264, 2005.

[54] Ding S.X, Jeinsch T., Frank P.M. and Ding E.L. “A unified
approach to the optimization of fault detection systems”.
International Journal of Adaptive Control and Signal Processing,
vol. 14, pp. 725-745, 2000.

[55] Keller J.K. and Darouach M. “Optimal two-stage Kalman filter
in the presence of random bias”. Automatica, vol. 33(9), pp. 1745-
1748, 1997.

[56] Wu N.E., Zhang Y. and Zhou K. “Detection, Estimation and
accommodation of loss of control effectiveness”, International
Journal of Adaptive Control and Signal Processing, vol. 14, pp.
775-795, 2000.

[57] Mangoubi R.S. “Robust Estimation and Failure Detection. A
concise Treatment”. Springer-Verlag, 1998.

[68] Castro H., Bennani S. and Marcos A. ‘“Integrated vs
Decoupled Fault Detection Filter & Flight Control Law Designs for
a Re-entry Vehicle”, Proceedings of the I|IEEE International
Conference on Control Applications, pp.3295-3300, Munich,
Germany, October 4-6, 2006.

[59] Kerr M.L., Marcos A., Penin L.F. and Bornschlelg E. “Gain-
scheduled fdi for a re-entry vehicle”. AIAA Guidance, Navigation
and Control Conferences and Exhibit, AIAA-2008-7266, Honolulu,
Hawaii, 18-21 August, 2008.

118



[60] Marcos A., Ganguli S. and Balas G. “An application of H.
fault detection and isolation to a transport aircraft”, Control
Engineering Practice, vol. 13, pp. 105-119, 2005.

[61] Bokor J. And Szabo Z. “Fault detection and isolation in
nonlinear systems”, Annual Reviews in Control, vol. 33, pp.113-
123, 2009.

[62] Marzat J., Piet-Lahanier H., Damongeot F. and Walter E.
“Fault diagnosis for nonlinear aircraft based on control-induced
redundancy”, IEEE Conference on Control and Fault-Tolerant
Systems, Nice, France, 1-24 Sep. 2010.

[63] Cork L. and Walker R. “Sensor Fault detection for UAVs
using a nonlinear dynamic model and the IMM-UKF algorithm.
Information, Decision and Control, Aalborg, pp. 230-235, 2007.

[64] Verma V., Gordon G., Simmons R. and Thrun S. “Real-time
fault diagnosis”, IEEE Robotics & Automation Magazine, vol 11(2),
pp. 56-66, 2004.

[65] Zhang Q., Camplillo F., Cerou F. and LeGland F. “Nonlinear
system fault detection and isolation based on bootstrap particle
filters”, 44th IEEE Conference on Decision and Control, pp. 3821-
3826, Seville, Spain, 12-15 December, 2005.

[66] Korbricz J., Witczak M. and Puig V. “LMI-based strategies for
designing observers for non-linear discrete time systems”, Bouletin
of the Polish Academy of Sciences, vol 55(1), pp. 31-42, 2007.

[67] De Persis C. and Isidori A. “A Geometric Approach to
Nonlinear Fault Detection and lIsolation”, IEEE Transactions on
Automatic Control, vol 46(6), pp. 853-865, 2001.

[68] Edwards C., Spurgeon S. and Patton R.J. “Sliding mode
observers for fault detection and isolation”, Automatica, vol 36(1),
pp. 541-553, 2000.

[69] Busvelle E. and Gauthier J.P. “High-gain and non-high-gain

observers for nonlinear systems”, Contemporary Trends on
Nonlinear Geometric Control Theory, pp. 257-286, 2002.

119



[70] Alwi H. and Edwards C. “Fault detection and fault-tolerant
control of a civil aircraft using sliding mode based scheme”, IEEE
Transactions on Control Systems Technology, vol 16(3), pp. 499-
510, 2008.

[71] Andrieu V. and Praly L. “On the existence of a Kazantzis-
Kravaris/Leunberger observer”, SIAM Journal on Control and
Optimization, vol 45(2), pp. 432-456, 2007.

[72] Szaszi 1., Marcos A., Balas G.J. and Bokor J. “Linear
parameter-varying detection filter design for a Boeing 747-100/200
aircraft”, Journal of Guidance, Control and Dynamics, vol 28, pp.
461-470, 2005.

[73] Akhenak A., Chadli M., Ragot J. and Maquin D. “Design of
observers for Tagaki-Sugeno fuzzy models for fault detection and
isolation”, Proceedings of the 7" IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes, pp. 71-
76, Barcelona, Spain, June 30-July 3, 2009.

[74] Clark R.N.“Instrument fault detection”, IEEE Transaction on
Aerospace and Electronics, vol. AES-14(2), pp. 456-465, 1978.

[75] Ortiz A. and Neogi N. “A Dynamic threshold approach to fault
detection in uninhabited aerial vehicles”, AIAA Guidance,
Navigation and Control Conference, pp. 1-18, Honolulu, Hawaii,
August 18-21, 2008 (AIAA 2008-7420).

[76] Puig V., Stancu A., Escobet T., Nejjari F., Quevedo J. and
Patton R.J. “Passive robust fault detection using interval
observers: Application to the DAMADICS benchmark problem”,
Control Engineering Practice, vol 14, pp. 621-633, 2006.

[77] Pouliezos A.D. and Stavrakakis G.S. “Real-Time Fault
Monitoring of Industrial Processes”, Kluwer Academic Publishers,
1994.

[78] Isermann R. “Fault diagnosis via parameter estimation and
knowledge processing”, Automatica, vol. 29(4), pp. 815-835, 1994.

120



[79] Tan C. and Edwards C. “Sliding mode observers for
reconstruction of simultaneously actuator and sensor faults”, in
Proceedings of the Conference on Decision and Control, pp. 1455-
1460, 2003.

[80] Zhang Y.M. and Jiang J. “Active fault-tolerant control system
against partial actuator failures”, IEE Proceedings on Control
Theory Applications, vol. 149(1), pp. 815-835, 2002.

[81] Zarchan P. and Musoff H. “Fundamentals of Kalman
Filtering: A Practical Approach”, Second Edition, Volume 208,
Progress in Aeronautics and Astronautics, AIAA Inc, Reston, VA,
USA, 2005.

[82] Monaco F.J, Ward D.G. and Bateman A.J.D. “A Retrofit
Architecture for Model-Based Adaptive Flight Control”, AIAA 15t
Intelligent Systems Technical Conference, pp. 1-18, Chicago,
lllinois, September 19-22, 2004 (AIAA 2004-6281).

[83] Oppenheimer M.W. and Doman David B. “Efficient
Reconfiguration and Recovery from Damage of Air Vehicles”. AIAA
Guidance, Navigation and Control Conference and Excibit, pp. 1-
29, Keystone, Colorado, August 21-24, 2006 (AIAA 2006-6552).

[84] Tomayko James “Story of Self-Repairing Flight Control
Systems”. NASA Dryden Flight Research Center, 2003.

[85] Steinberg Marc “A Historical Overview of Research in
Reconfigurable Flight Control”
(http://acgsc.org/Meetings/Meeting 95/Subcommitte%20E/5.4.pdf)

[86] Zhou K. and Ren Z. “A new controller architecture for high
performance, robust and fault tolerant control”. IEEE Transactions
on Automatic Control, Vol. 46, pp. 1613-1618.

[87] Ye S., Zhang Y., Li Y., Wang X. and Rabbath C-A. “Robust
Fault-Tolerant Tracking Control with Application to Flight Control
Systems with Uncertainties”. Proceedings of the 10" IASTED
International Conference on Control and Applications, 2008.

[88] Hess R.A. and Wells S.R. “Sliding Mode Control applied to
Reconfigurable Flight Control Design”. AIAA Journal of Guidance,
Control and Dynamics, Vol. 26, pp. 452-462, 2003.

121


http://acgsc.org/Meetings/Meeting_95/Subcommitte%20E/5.4.pdf

[89] Alwi H. and Edwards C. “Fault Detection and Fault Tolerant
Control of a Civil Aircraft using a Sliding-Mode-Based Scheme”.
IEEE Transactions on Control Systems Technology, Vol. 16(3),
pp.499-510, 2008.

[90] Boscovic J.D. and Mehra R.K. “A Multiple-Model-based
Reconfigurable Flight Control System Design”. Proceedings of the
37" IEEE Conference on Decision and Control, pp. 4503-4508,
Tampa, Florida, December 1998.

[91] Aravena J., Zhou K., Li X.R. and Chowdhury F. “Fault
tolerant safe flight controller bank”. Proceedings of the IFAC
Symposium SAFEPROCESS °06, Beinjing, pp. 8908-8912, 2006.

[92] Harefors M. and Bates D.G. “Integrated propulsion-based
flight control system design for a civil transport aircraft”.
Proceedings of the 2002 IEEE International Conference on Control
Applications, pp. 132-137, 2002.

[93] Burcham F.W., Fullerton C.G. and Maine T.A. “Manual
manipulation of engine throttles for emergency flight control.
Technical Report NASA/TM-2004-212045, NASA, 2004.

[94] Tucker T. “Touchdown: the development of propulsion
controlled aircraft at NASA Dryden. Monographs in Aerospace
History, 1999.

[95] Rago C., Prasanth R., Mehra R.K. and Fortenbaugh R.
“Failure detection and identification and fault tolerant control using
the IMM-KF with applications to the Eagle-Eye UAV. Proceedings
of the 37™ IEEE Conference on Decision and Control, pp. 4503-
4508, Tampa, FL, December 1998.

[96] Zhang Y. and Jiang J. “Integrated active fault-tolerant
control using IMM approach. IEEE Transactions on Aerospace and
Electronic Systems, Vol. 37, pp. 1221-1235, 2001.

[97] Shin J-Y and Gregory |. “Robust Gain-Scheduled Fault
Tolerant Control for a Transport Aircraft’, Proceedings of the 16th
IEEE Conference on Control Applications (CCA 2007), 1-3 Oct.
2007.

122



[98] Ganguili S., Marcos A. and Balas G.J. “Reconfigurable LPV
control design for Boeing 747-100/200 longitudinal axis”,
Proceedings of the American Control Conference, pp. 3612-3617,
2002.

[99] Maciejowski J.M. and Jones C.N. “MPC fault-tolerant
control case study: flight 1862. Proceedings of the IFAC
Symposium SAFEPROCESS ‘03, Washington, USA, pp. 119-124,
2003.

[100] Campell M.E., Lee J.W., Scholte E. and Rathbun D.
“‘Simulation and Flight Test of Autonomous Aircraft Estimation,
Planning and Control Algorithms. AIAA Journal of Guidance,
Control and Dynamics, Vol. 30(6), pp. 1597-1609, Nov.-Dec.
2007.

[101] Shin Y., Calise A. J. and Johnson M.D. “Adaptive control
of advanced fighter aircraft in nonlinear flight regimes”. AIAA
Journal of Guidance, Control and Dynamics, Vol. 31(5), pp. 1464-
1477, Sep.-Oct. 2008.

[102] Tao G., Chen S., Tang X. and Joshi S.M. “Adaptive
Control of Systems with Actuator Failures”. Springer-Verlag,
London Berlin Heidelberg, 2004.

[103] Shore D. and Bodson M. “Flight Testing of a
Reconfigurable Control System on an Unmanned Aircraft”. AIAA
Journal of Guidance, Control and Dynamics, Vol. 28(4), pp. 698-
707, July-August 2005.

[104] Fekri S., Athans M. and Pascoal A. “Issues, Progress and
New Results in Robust Adaptive Control”. International Journal of
Adaptive Control and Signal Processing, Vol 20(10), pp. 519-579,
2006.

[105] Zhong Y., Yang L. and Shen G. “Control Allocation Based
Reconfigurable Flight Control for Aircraft with Multiple Control
Effectors”, 47" AIAA Aerospace Sciences Meeting, pp. 1-12,
Orlando, Florida, January 5-8, 2009 (AIAA 2009-58).

123



[106] Lombaerts T.J.J., Huisman H.O., Chu Q.P., Mulder J.A.
and Joosten D.A. “Flight Control Reconfiguration based on Online
Physical Model Identification and Nonlinear Dynamic Inversion”.
Proceedings of the AIAA Guidance, Navigation and Control
Conference, 18-21 August 2008, Honolulu, Hawaii, USA (AIAA
2008-7435 pp. 1-24).

[107] Mahmoud M., Jiang J. and Zhang Y.M. “Active Fault
tolerant control systems: Stochastic analysis and synthesis”.
Lecture notes in Control and Information Sciences, Volume 287,
Berlin, Germany, Springer, 2003.

[108] Zhang Y.M. and Jiang J. “Fault tolerant control system
design with explicit consideration of performance degradation”,
IEEE Transactions on Aerospace and Electronic Systems, Vol.
39(3), pp. 838-848, 2003.

[109] Jiang J. and Zhang Y.M. “Accepting performance
degradation in fault tolerant control system design”, IEEE
Transactions on Control Systems Technology, Vol. 24(2), pp. 284-
292, 2006.

[110] Thelliol D., Join C. and Zhang Y. “Actuator Fault-Tolerant
Control Design based on Reconfigurable Reference Input’,
International Journal of Applied Mathematics and Computer
Sciences, Vol. 18(4), pp. 553-560, 2008

[111] Staroswieski M., Yang H. and Jiang B. “Progressive
accommodation of parametric faults in linear quadratic control”,
Automatica, Vol. 43, pp. 2070-2076, 2007.

[112] Joosten D.A., Van den Boom T.J.J. and Lombaerts T.J.J.
‘Fault-tolerant control using dynamic inversion and model-
predictive control applied to an aerospace benchmark”,
Proceedings of the 17" World Congress of the International
Federation of Automatic Control, pp. 12030-12035, Seoul, Korea,
July 6-11, 2008.

[113] Xu Y., Jiang B., Gao Z. and Zhang K. “Fault tolerant
control for near space vehicle: a survey and some new results”,
Journal of Systems Engineering and Electronics, Vol. 22(1), pp.
88-94, 2011.

124



[114] Ahn C., Kim Y. and Kim H.J. “Adaptive sliding mode
controller design for fault tolerant flight control system”,
Proceedings of AIAA Guidance, Navigation and Control
Conference, pp. 1-8, 2006.

[115] Tang X.T., Tao G. and Joshi S.M. “Adaptive actuator
failure compensation for parametric strict feedback systems and
an aircraft application”, Automatica, Vol. 39(11), pp. 1975-1982,
2003.

125



APPENDIX
«Aerodynamic Modeling of the ETH Zurich Aerobatic UAV»

The modeling of the ETH Zurich aerobatic UAV aerodynamic
forces and moments are presented below [9].

Lift Force: z"=gsC,(a), C,(a)=C, +C, a
Lateral Force: Y" =gsC, (5), C,(p)=C,
Drag Force: X" =asC,(a, /), C(a,8)=C, +Cy a+C, a’ +Cx/}2ﬂ2
Roll Torque: L° =gShC, (5a, B, p, F),
C (5,8, p,1)=C_0a+C B+C,p+C,f
Pitch Torque: M® =gscC,, (se,a,q),
Cy(de,a,q)=C,, de+C_a+Cq
Yaw Torque: N° =gsbC, (dr,T, 5),
Cy(or,F,B)=Cy, or+Cy f+C, T

In the above equations, the superscript «w» indicates the
wind axis system and «b» the body axis.
The other symbols indicate:

e S: wing surface, b:wing span, ¢: mean aerodynamic

chord

e {: dynamic pressure, a: angle of attack, g: sideslip
angle,

e oa,oe or: deflection of aileron, elevator and rudder
surfaces

e p, q, P dimensionless angular rates
(p=2P q=T0 r- D0

2V, VAR VA
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