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Abstract

Data mining is a relatively new field of computerenice with a wide range of applications. The
goal of data mining is to extract knowledge frongéudata sets, like databases, in a human-
understandable structure, like Decision Trees. TMaster of Science thesis presents an
innovative high-performance system level architectfor a state-of-the-art data mining
algorithm on a modern FPGA. This is one of thet faigproaches utilizing the resources of an
FPGA for accelerating certain very CPU intensiveadaining/data-classification schemes and
as the real world results from actual runs on harévdemonstrate that it is a highly promising

problem for reconfigurable technology.

The implemented system achieves performance spegdtgpalmost three orders of magnitude
vs. the execution time of a well known Java platfaf data mining (Weka), which is exectuted
on a state-of-the-art multi-core CPU. Lastly, thisrk proposes a generic reconfigurable
architecture that will be capable of constructing &ind of decision tree model independent to

the input dataset’s nature.
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1. INTRODUCTION

Data mining has attracted a great deal of atteritidhe information industry and in scientific

society in recent years, due to the wide availgbdf huge amounts of data and the imminent
need for turning such data into useful informatiand knowledge. The information and
knowledge, which is gained, can be used for apjitica ranging from market analysis, fraud

detection, and customer retention, to productiortroband science exploration.

Data mining can be viewed as a result of the nawalution of information technology. The
database system industry has witnessed an evduyiopath in the development of the
following functionalities: data collection and dadése creation, data management (including
data storage and retrieval, and database transgotoxessing), and advanced data analysis
(involving data warehousing and data mining). Fwstance, the early development of data
collection and database creation mechanisms sewedprerequisite for later development of
effective mechanisms for data storage and retriewal query and transaction processing. With
numerous database systems offering query and ttmsgprocessing as common practice,

advanced data analysis has naturally become thearget.

Simply stated, data mining refers to extractingroming” knowledge from large amounts of
data. The term is actually a misnomer. Remembetthigamining of gold from rocks or sand is
referred to as gold mining rather than rock or saiing. Thus, data mining should have been
more appropriately named “knowledge mining fromagatvhich is unfortunately somewhat
long. “Knowledge mining,” a shorter term, may neflect the emphasis on mining from large
amounts of data. Nevertheless, mining is a vivithteharacterizing the process that finds a
small set of precious nuggets from a great deabhwaf material. Thus, such a misnomer that
carries both “data” and “mining” became a populanice. Many other terms carry a similar or
slightly different meaning to data mining, suchlka®wledge mining from data, knowledge

extraction, data/pattern analysis, data archaepkyy data dredging.

Many people treat data mining as a synonym for leropopularly used ternrKnowledge
Discovery from Data or KDD. Alternatively, others view data mining sisnply an essential
step in the process of knowledge discovery. Knogédediscovery as a process is depicted in
Figure 1.1 and consists of an iterative sequentleeofollowing steps:
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1. Data cleaning (to remove noise and inconsister)dat
Data integration (where multiple data sources negdmbined).

3. Data selection (where data relevant to the analygsk are retrieved from the
database).

4. Data transformation (where data are transformedcamsolidated into forms
appropriate for mining by performing summary or raggtion operations, for
instance).

5. Data mining (an essential process where intelligeethods are applied in order to
extract data patterns).

6. Pattern evaluation (to identify the truly interagtipatterns representing knowledge
based on some interestingness measures).

7. Knowledge presentation (where visualization and wkadge representation

techniques are used to present the mined knowledipe user).

Steps 1 to 4are different forms of data preprocessing, whieesdata are prepared for mining.

The data mining step may interact with the usea &nowledge base. The interesting patterns
are presented to the user and may be stored aknmwedge in the knowledge base. Note that
according to this depiction, data mining is onlyetep in the entire process, but an essential

one as it uncovers hidden patterns for evaluation.
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Figure 1-1: The knowledge discovery process

Data mining is a step in the knowledge discovencess. However, in industry, in media, and
in the database research field, the term data miisifbecoming more popular than the longer
term of knowledge discovery from data. Therefone, term data mining is chosen and a broad
view of data mining functionality is adopted: datsning is the process of discovering
interesting knowledge from large amounts of dateest in databases, data warehouses, or other

information repositories.

Based on this view, the architecture of a typicatiadmining system may have the following

major components:

> Database, data warehouse, WorldWideWehor otherinformation repository: This

is one or a set of databases, data warehousesdsheets, or other kinds of information
repositories. Data cleaning and data integratiamhrigues may be performed on the data.
Database or data warehouse server: The databatseowarehouse server is responsible for
fetching the relevant data, based on the useramating request.

> Knowledge base:This is the domain knowledge that is used to guide search or

evaluate the interesting resulting patterns. Suntmdedge can include concept hierarchies,
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used to organize attributes or attribute values lifferent levels of abstraction. Knowledge
such as user beliefs, which can be used to assessmteresting pattern based on its
unexpectedness, may also be included. Other exangfldomain knowledge are additional
interesting constraints or thresholds, and metadatg., describing data from multiple
heterogeneous sources).

> Data mining engine:This is essential to the data mining system ardlig consists of

a set of functional modules for tasks such as chamaation, association and correlation
analysis, classification, prediction, cluster anayoutlier analysis, and evolution analysis.

> Pattern evaluation module: This component typically employs interesting measu
and interacts with the data mining modules so dedosthe search toward important patterns.
It may use interesting thresholds to filter outcdigered patterns. Alternatively, the pattern
evaluation module may be integrated with the mimmaglule, depending on the implementation
of the data mining method used. For efficient daiaing, it is highly recommended to push the
evaluation of pattern “value” as deep as possile ihe mining process so as to confine the
search to only the interesting patterns.

> User interface: This module communicates between users and tlendgiaing system,
allowing the user to interact with the system bydfying a data mining query or task,
providing information to help focus the search, gedforming exploratory data mining based
on the intermediate data mining results. In addjtihis component allows the user to browse
database and data warehouse schemas or datarssuetvaluate mined patterns, and visualize

the patterns in different forms.

From a data warehouse perspective, data miningpeafiewed as an advanced stage of on-line
analytical processing (OLAP). However, data mingmes far beyond the narrow scope of
summarization-style analytical processing of datreliouse systems by incorporating more

advanced techniques for data analysis.

Although there are many “data mining systems” anrttarket, not all of them can perform true
data mining. A data analysis system that does andle large amounts of data should be more
appropriately categorized as a machine learnintesysa statistical data analysis tool, or an
experimental system prototype. A system that cdp perform data or information retrieval,
including finding aggregate values, or that perferaeductive query answering in large
databases should be more appropriately categodsed database system, an information
retrieval system, or a deductive database system.
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Data mining involves an integration of techniquesnt multiple disciplines such as database
and data warehouse technology, statistics, macksaming, high-performance computing,
pattern recognition, neural networks, data visadilin, information retrieval, image and signal
processing, and spatial or temporal data analfsis result, emphasis is placededficientand
scalabledata mining techniques. For an algorithm to beadde] its running time should grow
approximately linearly in proportion to the sizetloé data, given the available system resources

such as main memory and disk space.

By performing data mining, interesting knowledgegularities, or high-level information can
be extracted from databases and viewed or browsed €ifferent angles. The discovered
knowledge can be applied to decision making, poestrol, information management, and
query processing. Therefore, data mining is coms@tl®ne of the most important frontiers in
database and information systems and one of thepnamising interdisciplinary developments

in the information technology.

Frequent patterns, as the name suggests, arengattet occur frequently in data. There are

many kinds of frequent patterns, including itemsstbsequences, and substructures.

A frequent itemset typically refers to a set of items that frequendlgpear together in a
transactional data set. A frequently occurring sgbence, such as the pattern that customers
tend to purchase first a PC, followed by a digitamera, and then a memory card, is a
(frequent) sequential pattern. A substructure aferrto different structural forms, such as
graphs, trees, or lattices, which may be combinéth \temsets or subsequences. If a
substructure occurs frequently, it is called adfient) structured pattern. Mining frequent
patterns leads to the discovery of interesting@atons and correlations within data. Thus, the

data mining scientific field can be divided intaieais categories with different characteristics.

The most important categories that will be examimednore details in chapter 2 are the

following:

> Association rule learningis a popular method for discovering interestintatiens
between variables in large databases. Piatetskyi®hl] analyzes and presents strong rules
that are discovered in databases using differemtsares of interest. Based on the concept of
strong rules, Agrawal et al. [2] introduced asstaiarules for discovering regularities between
products in large scale transaction data recordgd pbint-of-sale (POS) systems in

supermarkets.
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> Clustering analyzes data objects without consulting a knolassclabel. In general, the
class labels are not present in the training datalg because they are not known. The objects
are clustered or grouped based on the principlenafimizing the intraclass similarity and
minimizing the interclass similarity. The clust@fsobjects are formed so that objects within a
cluster have high similarity, but they must be vdigsimilar to objects in other clusters. Each
cluster that is formed can be viewed as a classbf#cts, from which rules can be derived.
Clustering can also facilitate taxonomy formatithgt is, the organization of observations into
a hierarchy of classes that group similar evergstteer.

> Classification is the process of finding a model (or functionpttidescribes and
distinguishes data classes or concepts. The gdhkdflassification process is to build a model
that will predict the class of objects whose clas®l is unknown. The derived model is based
on the analysis of a set of training data (i.eta ddjects whose class label is known).

> Regression analysids a statistical methodology that is most ofteedu$or numeric
prediction, although other methods exist, as vigkdiction also encompasses the identification

of distribution trends based on the available data.

The contribution of this work is in presenting an innovative redguafable logic based system
that allows the construction of a Decision Tredata structure that belongs to the classification
method as mentioned above. The main goal of tlesighis to accelerate the execution time of
the decision tree construction method (DTC), as i time demanding procedure that requires
even a few days for large input datasets to prodinee final model. Two different
implementations are presented that offer fastecutian of the BFTree algorithm — a decision
tree construction algorithm proposed in WEKA platfio The speedup of the implemented
systems can reach up to approximately three tirhesagnitude faster than the execution of the
corresponding software on a high end server. Maedased on the BFTree implementation, a
more generic reconfigurable architecture of buidindata mining decision tree is proposed, as

there are only a few characteristics that changengrthe various existing DTC methods.
The rest of this thesis is organized as follows:

Chapter 2 explains the above mentioned terminology in detaihd mainly focuses on the
decision tree construction methods and charadteriathich are the basis of the reconfigurable

system’s implementation.

Chapter 3 briefly describes previous implementations on dataing algorithms and analyzes
their basic characteristics and results.
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Chapter 4 describes the data mining platform that was thse céudy in this thesis and explains

the basic terminology and the algorithmic stepthefimplemented classification decision tree.

Chapter 5 describes the two different architectures of tlaedivare implementation of the
BFTree algorithm and makes a straight comparistndsn them.

Chapter 6 presents the performance results of the archiestuas well as a detailed

comparison of the software runtime with the coroesling reconfiguration implementation

Chapter 7 concludes this thesis and proposes some possiiglestons for future work.
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2. Data Mining and Decision Trees

Data mining, as described in the previous chamensists of six common classes of tasks
anomaly detection, association rule learning, clusting, classification, regressionand
summarization. In a few words, anomaly detection is the idecdifion of unusual data records
or data errors that might be interesting and reqtirther investigation. Association rule
learning is the procedure of searching for relaimps and dependencies between variables.
Clustering is the task of discovering groups amdcstires in the data that are in some way or
another "similar", without using known structures the data. Classification is the task of
generalizing known structure to apply to new d&agression is the process of attempting to
find a function which models the data with the teagor. Finally, summarization is the
provision of a more compact representation of th& det, including visualization and report
generation. In this chapter, the three most importiata mining tasks will be examined;

clustering, association rule learningandclassification

2.1 CLUSTERING

The process of grouping a set of physical or abiswhjects into classes of similar objects is
calledclustering. A cluster is a collection of data objects tha similar to one another within

the same cluster and are dissimilar to the objactgher clusters. A cluster of data objects can
be treated collectively as one group and so magonsidered as a form of data compression.
Although classification is an effective mean fostitiguishing groups or classes of objects, it
requires the often costly collection and labelifgadarge set of training tuples or patterns,
which the classifier uses to model each groups lbften more desirable to proceed in the
reverse direction: first, partition the set of datt groups based on the data similarity (e.g.,
using clustering), and then assign labels to thetively small number of groups. Additional

advantages of such a clustering-based proceshatri is adaptable to changes and it finds out

useful features that distinguish different groups.

Cluster analysis is an important human activityy &itomated clustering, dense and sparse
regions in object space can be identified and,efbes, distribution patterns and interesting
correlations among data attributes can be discdvelkister analysis has been widely used in
numerous scientific areas, including market reseapattern recognition, data analysis, and
image processing. In business, clustering can malgketers discover distinct groups in their

customer bases and characterize customer groupd baspurchasing patterns. In biology, it
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can be used to derive plant and animal taxonomasgorize genes with similar functionality,
and gain insight into structures inherent in popoe. The clustering may also help in the
identification of areas of similar land use in aartk observation database and in the
identification of groups of houses in a city acdéogdto house type, value, and geographic
location, as well as the identification of grougsaatomobile insurance policy holders with a
high average claim cost. It can also be used tp lkkdssify documents on the Web for

information discovery.

The clustering is also called data segmentationsdime applications because clustering
partitions large data sets into groups accordinthéir similarity. Clustering can also be used
for outlier detection, where outliers (values thet “far away” from any cluster) may be more
interesting than common cases. Applications ofi@utetection include the detection of credit

card fraud and the monitoring of criminal activati|@ electronic commerce.

As a data mining function, the cluster analysis loarused as a stand-alone tool to gain insight
into the distribution of data, to observe the chemastics of each cluster, and to focus on a
particular set of clusters for further analysistefthatively, it may serve as a preprocessing step
for other algorithms, such as characterizatioribatte subset selection, and classification,

which would then operate on the detected clustaidtze selected attributes or features.

Data clustering is under vigorous development arubmtributes on many research areas, like
data mining, statistics, machine learning, spat&hbase technology, biology, and marketing.
The cluster analysis has recently become a higttlyeatopic in data mining research due to the

huge amounts of data collected in databases.

As a branch of statistics, the cluster analysis leesn extensively studied for many years,
focusing mainly on distance-based cluster anal@lisster analysis tools based on k-means, k-
medoids, and several other methods have been ibtdltmany statistical analysis software
packages or systems, such as S-Plus [3], SPS%1d],SAS [5]. In machine learning, the
clustering is an example of unsupervised learnibglike classification, clustering and
unsupervised learning do not rely on predefinedsgla and class-labeled training examples. For
this reason, clustering is a form of learning bgatation, rather than learning by examples. In
data mining, efforts have focused on finding methéaor efficient cluster analysis in large
databases. Active themes of research focus on dhkhility of clustering methods, the

effectiveness of methods for clustering complexpsBaand types of data, high-dimensional
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clustering techniques, and methods for clusteringechnumerical and categorical data in large

databases.

Clustering is a challenging field of research inighhits potential applications pose their own
special requirements. The following are the typregjuirements of clustering in data mining:

Scalability: Many clustering algorithms work well on small dats containing fewer than
several hundred data objects; however, a largebastamay contain millions of objects.
Clustering on a sample of a given large data set lewd to biased results. As result, highly
scalable clustering algorithms are needed.

Ability to deal with different types of attributes: Many algorithms are designed to cluster
interval-based (numerical) data. However, appliceti may require clustering other types of

data, such as binary, categorical (nominal), adthal data, or mixtures of these data types.

Discovery of clusters with arbitrary shape: Many clustering algorithms determine clusters
based on Euclidean or Manhattan distance measutenidre algorithms that are based on such
distance measures tend to find spherical clustéts similar size and density. However, a

cluster could be of any shape. It is important évedop algorithms that can detect clusters of
arbitrary shape.

Minimal requirements for domain knowledge to determine input parameters: Many
clustering algorithms require users to input car@arameters in cluster analysis (such as the
number of desired clusters). The clustering restds be quite sensitive to input parameters.
Parameters are often difficult to determine, esglycior data sets containing high-dimensional
objects. This not only burdens users, but it alsskes the quality of clustering difficult to
control.

Ability to deal with noisy data: Most real-world databases contain outliers or imigs
unknown, or erroneous data. Some clustering alguosgtare sensitive to such data and may lead

to clusters of poor quality.

Incremental clustering and insensitivity to the orcer of input records: Some clustering
algorithms cannot incorporate newly inserted ddte.,(database updates) into existing
clustering structures but they determine a newtetimy from scratch. Some clustering
algorithms are sensitive to the order of input dataat is, given a set of data objects, such an

algorithm may return dramatically different clustgs depending on the order of presentation
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of the input objects. It is important to developriemental clustering algorithms and algorithms

that are insensitive to the order of input.

High dimensionality: A database or a data warehouse can contain sedienahsions or

attributes. Many clustering algorithms are goochamdling low-dimensional data, involving
only two to three dimensions. Human eyes are goqeiging the quality of clustering for up to
three dimensions. Finding clusters of data objétthigh dimensional space is challenging,

especially considering that such data can be spaucdighly skewed.

Constraint-based clustering: Real-world applications may need to perform clisteunder
various kinds of constraints. Suppose that youiigab choose the locations for a given number
of new automatic banking machines (ATMs) in a cif. decide upon this, you may cluster
households while considering constraints such a<ity's rivers and highway networks, and
the type and number of customers per cluster. Mleaiging task is to find groups of data with
good clustering behavior that satisfy specifiedstiaints.

Interpretability and usability: Users expect clustering results to be interpretabl
comprehensible, and usable. This is due to thetfettthe clustering may need to be tied to
specific semantic interpretations and applicatidhgs important to study how an application

goal may influence the selection of clusteringdess and methods.

2.1.1 A Categorization of Major Clustering Methods

Many clustering algorithms exist in the literatulteis difficult to provide a crisp categorization
of clustering methods because these categorieowmap, so that a method may have features
from several categories. Nevertheless, it is ugefpkesent a relatively organized picture of the
different clustering methods. In general, the majastering methods can be classified into the
following categories.

Partitioning methods: Given a database of n objects or data tuples,ritigaing method
constructs k partitions of the data, where eaclitjper represents a cluster andkn. Thus, it

classifies the data into k groups, which togetla¢gisy the following requirements:

» Each group must contain at least one object
» Each object must belong to exactly one group

Given Kk, the number of partitions to construct, artifoning method creates an initial

partitioning. It then uses an iterative relocatitethnique that attempts to improve the
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partitioning by moving objects from one group tootrer. The general criterion of a good
partitioning is that objects in the same cluster ‘alose” or related to each other, whereas
objects of different clusters are “far apart” oryaelifferent. There are various kinds of other
criteria for judging the quality of partitions. Taxhieve global optimality in partitioning-based
clustering would require the exhaustive enumeratiball of the possible partitions. Instead,
most applications adopt one of a few popular hdarimethods, such as (ihe k-means
algorithm [6], where each cluster is represented by the meahre of the objects in the cluster,
and (2) thek-medoids algorithm [7], where each cluster is represented by ondn@fobjects
located near the center of the cluster. These steudlustering methods work well for finding
spherical-shaped clusters in small to medium-siatdbases. The partitioning-based methods
need to be extended in order to find clusters witinplex shapes and for clustering very large

data sets.

Hierarchical methods: A hierarchical method creates a hierarchical dgmsition of the
given set of data objects. A hierarchical methad loa classified as being either agglomerative
or divisive, based on how the hierarchical decoriipms is formed. The agglomerative
approach, also called the bottom-up approachsstdth each object forming a separate group.
It successively merges the objects or groups tieatlase to one another, until all of the groups
are merged into one (the topmost level of the hidsg, or until a termination condition holds.
The divisive approach, also called the top-downreg@gh, starts with all of the objects in the
same cluster. A cluster is split up into smallenstkrs for each successive iteration, until
eventually each object is in one cluster, or umtiérmination condition holds.

Hierarchical methods suffer from the fact that oacgtep (merge or split) is done, it can never
be undone. This rigidity is useful in that it legddssmaller computation costs by not having to
worry about a combinatorial number of different icles. However, such techniques cannot
correct erroneous decisions.

There are two approaches to improving the qualityhierarchical clustering: (1) perform

careful analysis of object “linkages” at each hiehécal partitioning, such as @hameleori8],

or (2) integrate hierarchical agglomeration andepthpproaches by first using a hierarchical
agglomerative algorithm to group objects into mitusters, and then performing

macroclustering on the microclusters using anotbleistering method such as iterative
relocation, as iBBIRCH[9].
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Density-based methods:Most partitioning methods cluster objects basedttmn distance
between objects. Such methods can find only spdlesttaped clusters and encounter difficulty
at discovering clusters of arbitrary shapes. Othegstering methods have been developed based
on the notion of density. Their general idea i€aatinue growing the given cluster as long as
the density (number of objects or data points)him theighborhood” exceeds some threshold;
that is, for each data point within a given clustbe neighborhood of a given radius has to
contain at least a minimum number of points. Suahethod can be used to filter out noise
(outliers) and discover clusters of arbitrary shdpBSCAN[10] and its extensiomrQPTICS
[11], are typical density-based methods that grdusters according to a density-based
connectivity analysidDENCLUE[12] is a method that clusters objects based erattalysis of

the value distributions of density functions.

Grid-based methods: Grid-based methods quantize the object spaceairftnite number of
cells that form a grid structure. All of the clusig operations are performed on the grid
structure (i.e., on the quantized space). The namivantage of this approach is its fast
processing time, which is typically independenttttid number of data objects and dependent
only on the number of cells in each dimension i quantized spac&TING[13] is a typical
example of a grid-based methoWaveCluster[14] applies wavelet transformation for

clustering analysis and is both grid-based anditjebased.

Model-based methodsModel-based methods hypothesize a model for ebttealusters and
find the best fit of the data to the given modelmadel based algorithm may locate clusters by
constructing a density function that reflects tpatil distribution of the data points. It also
leads to a way of automatically determining the banof clusters based on standard statistics,
taking “noise” or outliers into account and thuslgling robust clustering methodsM [15] is

an algorithm that performs expectation-maximizatamalysis based on statistical modeling.
COBWERBJ16] is a conceptual learning algorithm that perfe probability analysis and takes
concepts as a model for cluste8©M[17] (or self-organizing feature map) is a neunetwork-
based algorithm that clusters by mapping high dsimral data into a 2-D or 3-D feature map,

which is also useful for data visualization.

The choice of clustering algorithm depends bothtlom type of data available and on the
particular purpose of the application. If clustealysis is used as a descriptive or exploratory

tool, it is possible to try several algorithms be same data to see what the data may disclose.
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Some clustering algorithms integrate the ideaseseral clustering methods, so that it is
sometimes difficult to classify a given algorithra aniquely belonging to only one clustering
method category. Furthermore, some applications imaag clustering criteria that require the
integration of several clustering techniques. Asidem the above categories of clustering
methods, there are two classes of clustering thsksequire special attention. One is clustering

high-dimensional data, and the other is constia@sied clustering.

Clustering high-dimensional data is a particuldarhportant task in cluster analysis because
many applications require the analysis of objeastaning a large number of features or
dimensions. For example, text documents may corttanisands of terms or keywords as
features, and DNA microarray data may provide mmf@tion on the expression levels of
thousands of genes under hundreds of conditionsst€ing high-dimensional data is

challenging due to the curse of dimensionality.

Many dimensions may not be relevant. As the nurobdimensions increases, the data become
increasingly sparse so that the distance measuteimetwveen pairs of points become
meaningless and the average density of points agngvin the data is likely to be low.

Therefore, a different clustering methodology netedse developed for high-dimensional data.

CLIQUE [18] and PROCLUSJ[19] are two influential subspace clustering mehowhich
search for clusters in subspaces (or subsets daérdiions) of the data, rather than over the
entire data space. Frequent pattern—based clugtenother clustering methodology, extracts
distinct frequent patterns among subsets of dimessthat occur frequently. It uses such
patterns to group objects and generate meaninyfsters. ThegCluster[20] is an example of
frequent pattern—based clustering that groups tsbiEsed on their pattern similarity.

Constraint-based clustering is a clustering appralbat performs clustering by incorporation of
user-specified or application-oriented constraiAtsonstraint expresses a user's expectation or
describes “properties” of the desired clusteringults, and provides an effective means for
communicating with the clustering process. Varikimsls of constraints can be specified, either

by a user or as per application requirements.

In addition, semi-supervisedlustering employs, for example, pairwise constraints (sush a
pairs of instances labeled as belonging to the sandéferent clusters) in order to improve the

quality of the resulting clustering.
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2.2 ASSOCIATION RULE MINING

Frequent patternsare patterns (such as itemsets, subsequencedysbrustures) that appear in

a data set frequently. For example, a set of itemnsh as milk and bread that appear frequently
together in a transaction data set is a frequentset. A subsequence, such as buying first a PC,
then a digital camera, and then a memory card, atcurs frequently in a shopping history
database, is a (frequent) sequential pattern. Ataudiure can refer to different structural forms,
such as subgraphs, subtrees, or sublattices, wmalp be combined with itemsets or
subsequences. If a substructure occurs frequdhtiy,called a (frequent) structured pattern.
Finding such frequent patterns plays an essemialin mining associations, correlations, and
many other interesting relationships among datarelgher, it helps in data classification,
clustering, and other data mining tasks as welusTHrequent pattern mining has become an

important data mining task and a focused themeia ohining research.

Frequent itemset mining leads to the discoveryssbeaiations and correlations among items in
large transactional or relational data sets. Withssive amounts of data continuously being
collected and stored, many industries are becoimtegested in mining such patterns from their
databases. The discovery of interesting correlatiglationships among huge amounts of
business transaction records can help in many essidecision-making processes, such as
catalog design, cross-marketing, and customer shgppehavior analysis. Among all

algorithms that apply the association rule miningdiata mining, Apriori [21] is the most

important and popular one and it will be analyzethie next section.

2.2.1 The Apriori Algorithm: Finding Frequent Itemsets Using Candidate

Generation
Apriori is a seminal algorithm proposed by R. Agadvand R. Srikant in 1994 for mining
frequent itemsets for Boolean association ruleg fidme of the algorithm is based on the fact

that the algorithm uses prior knowledge of frequtamset properties.

Apriori employs an iterative approach known aswelavise search, where k-itemsets are used
to explore (k+1)-itemsets. First, the set of fregukitemsets is found by scanning the database
to accumulate the count for each item, and collgdfiose items that satisfy minimum support.
The resulting set is denoted L1. Next, L1 is usedind L2, the set of frequent 2-itemsets,
which is used to find L3, and so on, until no mfsegjuent k-itemsets can be found. The finding

of each I requires one full scan of the database. An impontaoperty, which is called the

28



Apriori property, presented below, is used to redtle search space in order to improve the

efficiency of the level-wise generation of frequéamnsets,.

Apriori property: All nonempty subsets of a frequent itemset musb de frequent. The

Apriori property is based on the following obseroat By definition, if an itemset | does not
satisfy the minimum support threshold, min supnthis not frequent; that is, P(I) < min sup. If
an item A is added to the itemset |, then the tegpitemset (i.e., | U A) cannot occur more
frequently than I. Therefore, | U A is not frequeither; that is, P(I U A) < min sup.

This property belongs to a special category of ertigs called antimonotone in the sense that if
a set cannot pass a test, all of its supersets faillthe same test as well. It is called

antimonotone because the property is monotoniedrcontext of failing a test.

Many variations of the Apriori algorithm have beproposed that focus on improving the

efficiency of the original algorithm. Several ottle variations are summarized as follows:

Hash-based techniqueA hash-based technique can be used to reducazthef the candidate

k-itemsets, Ck, for k > 1. For example, when scagreach transaction in the database to
generate the frequent 1l-itemsets, L1, from the idamel 1-itemsets in C1, all of the 2-itemsets
can be generated for each transaction, hashednfepped) into the different buckets of a hash

table structure, and therefore, increase the quoreting bucket counts.

A 2-itemset whose corresponding bucket count inhidmeh table is below the support threshold
cannot be frequent and thus should be removed frmmcandidate set. Such a hash-based
technique may substantially reduce the numbereoténdidate k-itemsets examined (especially
when k = 2).

Transaction reduction: A transaction that does not contain any frequeiterksets cannot
contain any frequent (k+1)-itemsets. Thereforehsaidransaction can be marked or removed
from further consideration because subsequent sifahg database for j-itemsets, where j > K,

will not require it.

Partitioning: A partitioning technique can be used that reqyjirsstwo database scans to mine
the frequent itemsets. It consists of two phasesPhase |, the algorithm subdivides the
transactions of D into n non overlapping partitioffsthe minimum support threshold for

transactions in D is min sup, then the minimum swppount for a partition is min sup x the
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number of transactions in that partition. For eaeltition, all frequent itemsets within the

partition are found. These are referred to as Ifvegluent itemsets.

The procedure employs a special data structure fibaeach itemset, records the TIDs of the
transactions containing the items in the itemskis @llows it to find all of the local frequent k-
itemsets, fork =1, 2, ..N , in just one scan of the database. A locajuest itemset may or
may not be frequent with respect to the entire lieta, D. Any itemset that is potentially
frequent with respect to D must occur as a freqitemset in at least one of the partitions.
Therefore, all local frequent itemsets are candidtainsets with respect to D. The collection of

frequent itemsets from all partitions forms thebglbcandidate itemsets with respect to D.

In Phase I, a second scan of D is conducted irthwviiie actual support of each candidate is
assessed in order to determine the global fregtemisets. Partition size and the number of
partitions are set so that each partition camfd imain memory and therefore be read only once

in each phase.

Sampling: The basic idea of the sampling approach is to pickndom sample S of the given
data D, and then search for frequent itemsetsiivstead of D. In this way, we trade off some
degree of accuracy against efficiency. The sampied S is such that the search for frequent
itemsets in S can be done in main memory, and §o@re scan of the transactions in S is
required overall. Because we are searching foruetjitemsets in S rather than in D, it is
possible that we will miss some of the global fregjuitemsets. To lessen this possibility, a
lower support threshold than minimum support isdugefind the frequent itemsets local to S
(denoted LS). The rest of the database is then issedmpute the actual frequencies of each
itemset in LS. A mechanism is used to determinethdreall of the global frequent itemsets are
included in LS. If LS actually contains all of tirequent itemsets in D, then only one scan of D
is required. Otherwise, a second pass can be dopedéer to find the frequent itemsets that
were missed in the first pass. The sampling apprasaespecially beneficial when efficiency is
of utmost importance, such as in computationalligrisive applications that must be run

frequently.

2.2.2 Dynamic itemset counting (adding candidate emsets at different points

during a scan)
A dynamic itemset counting technique was proposedhich the database is partitioned into
blocks marked by start points. In this variatioewncandidate itemsets can be added at any start

point, unlike in Apriori, which determines new cétate itemsets only immediately before each
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complete database scan. The technique is dynamit extimates the support of all of the
itemsets that have been counted so far, addingcaedidate itemsets if all of their subsets are

estimated to be frequent. The resulting algoriteouires fewer database scans than Apriori.

2.2.3 Mining Frequent Itemsets without Candidate Geeration

In many cases the Apriori candidate generate-astdatethod significantly reduces the size of
candidate sets, leading to good performance gaimwelder, it can suffer from two nontrivial
costs: It may need to generate a huge number afidate sets. For example, if there aré 10
frequent 1-itemsets, the Apriori algorithm will meé generate more than “16andidate 2-
itemsets. Moreover, to discover a frequent patbérsize 100, for example, it has to generate at
least 18° candidates in total. It may need to repeatediy $ba database and check a large set
of candidates by pattern matching. It is costlygtoover each transaction in the database to

determine the support of the candidate itemsets.

An interesting method in this attempt is calledyfrent-pattern growth, or simpRP-growth

[22], which adopts a divide-and-conquer strategyolews. First, it compresses the database
representing frequent items into a frequent-patteza, or FP-tree, which retains the itemset
association information. It then divides the comspezl database into a set of conditional
databases (a special kind of projected databasely associated with one frequent item or

“pattern fragment,” and mines each such databgseately.

2.2.4 Mining Frequent Itemsets Using Vertical Datdormat

Both the Apriori and FP-growth methods mine frequesitterns from a set of transactions in
TID-itemset format (that is, {TID : itemset}), wheITID is a transaction-id and itemset is the
set of items bought in transaction TID. This daiarfat is known as horizontal data format.
Alternatively, data can also be presented in itdB-$et format (that is, {item : TID set}),
where item is an item name, and TID set is th@&&tainsaction identifiers containing the item.
This format is known as vertical data format. Thaywhat frequent itemsets can be mined
efficiently using vertical data format is the esserof the ECLAT (Equivalence CLASS
Transformation) algorithm developed by Zaki [23].

2.2.5 Mining Various Kinds of Association Rules

Efficient methods for mining frequent itemsets asdociation rules have been studied. In this
section, additional application requirements aresitered by extending the scope to include
mining multilevel association rules, multidimensabnassociation rules, and quantitative
association rules in transactional and/or relatidatabases and data warehouses.
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Multilevel association rules involve concepts atffedent levels of abstraction.
Multidimensional association rules involve morerttene dimension or predicate (e.g., rules
relating what a customer buys as well as the cumtenage.) Quantitative association rules
involve numeric attributes that have an implicidenng among values.

For many applications, it is difficult to find strg associations among data items at low or
primitive levels of abstraction due to the sparsifydata at those levels. Strong associations
discovered at high levels of abstraction may remresommonsense knowledge. Moreover,
what may represent common sense to one user mayrsael to another. Therefore, the data
mining systems should provide capabilities for mgnassociation rules at multiple levels of
abstraction, with sufficient flexibility for easyaversal among different abstraction spaces. A
few categories for multi-level association rulese anamely the following: Mining
multidimensional association rules from relatiorddtabases and data warehouses, mining
multidimensional association rules using staticcdiization of quantitative attributeand

finally mining quantitative association rules.

2.3 CLASSIFICATION

Data classification is a process that has two bstaps. In the first step, a classifier is built
describing a predetermined set of data classesrarepts. This is the learning step (or training
phase), where a classification algorithm builds dlessifier by analyzing or “learning from” a

training set made up of database tuples and thetrcéated class labels.

A tuple, X, is represented by andimensional attribute vectoX = (X, X, ..., X,), depictingn
measurements made on the tuple frockatabase attributes, respectively, A,, ..., An. Each
tuple, X, is assumed to belong to a predefined class asniieied by another database attribute
called the class label attribute. The class labieibate is discrete-valued and unordered. It is
categoricalin that each value serves as a category or classinfividual tuples making up the
training set are referred to as training tuples aredselected from the database under analysis.
In the context of classification, data tuples canréferred to asamples, examples, instances,

data points orobjects

Because the class label of each training tigofgovided this step is also known as supervised
learning (i.e., the learning of the classifier sipervised” in that it is told to which class each
training tuple belongs). It contrasts with unsujead learning (or clustering), in which the
class label of each training tuple is not knownd #me number or set of classes to be learned

may not be known in advance.
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Thisfirst step of the classification process can also be viewetha learning of a mapping or
function,y = f (X), that can predict the associated class lgloéla given tupleX. In this view,

we wish to learn a mapping or function that separ#te data classes. Typically, this mapping
is represented in the form of classification ruldscision trees, or mathematical formula. The
rules can be used to categorize future data tupkesyell as provide deeper insight into the

database contents. They also provide a comprespegsentation of the data.

In the second stepthe model is used for classification. First, firedictive accuracy of the
classifier is estimated. If we were to use thentrmj set to measure the accuracy of the
classifier, this estimate would likely be optimistbecause the classifier tends to overfit the data
(i.e., during learning it may incorporate some ipatar anomalies of the training data that are
not present in the general data set overall). Tomrea test set is used, made up of test tuples
and their associated class labels. These tuplesadomly selected from the general data set.
They are independent of the training tuples, menitimat they are not used to construct the

classifier.

The accuracy of a classifier on a given test seahéspercentage of test set tuples that are
correctly classified by the classifier. The asswmdaclass label of each test tuple is compared
with the learned classifier's class prediction float tuple. If the accuracy of the classifier is
considered acceptable, the classifier can be wselddsify future data tuples for which the class
label is not known. Such data are also referredntdhe machine learning literature as

“unknown” or “previously unseen'tata.

Data prediction is a two step process, similar to that of datsgifecation. However, for
prediction, we lose the terminology of “class lah#éribute” because the attribute for which
values are being predicted is continuous-valuedefed) rather than categorical (discrete-

valued and unordered). The attribute can be reféasimply as the predicted attribute.

Prediction can also be viewed as a mapping or iimmcy= f (X), whereX is the input (e.g., a
tuple describing a loan applicant), and the outpist a continuous or ordered value (e.g. the

predicted amount that the bank can safely loamjipdicant).

Prediction and classification also differ in thethwels that are used to build their respective
models. As with classification, the training seedigo build a predictor should not be used to

assess its accuracy. An independent test set sheulded instead. The accuracy of a predictor
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is estimated by computing an error based on tHerdifce between the predicted value and the

actual known value of for each of the test tuplex,

2.3.1 Comparing Classification and Prediction Methds
Classification and prediction methods can be coeghaand evaluated according to the

following criteria:

Accuracy: The accuracy of a classifier refers to the abilifya given classifier to correctly
predict the class label of new or previously unseeata (i.e., tuples without class label
information). Similarly, the accuracy of a predictefers to how well a given predictor can
guess the value of the predicted attribute for mevpreviously unseen data. As long as the
accuracy computed is only an estimate of how well d¢lassifier or predictor will do on new
data tuples, confidence limits can be computecetp auge this estimate.

Speed: This refers to the computational costs involvedgemerating and using the given

classifier or predictor.

Robustness:This is the ability of the classifier or the pretdr to make correct predictions

given noisy data or data with missing values.

Scalability: This refers to the ability to construct the cléissior the predictor efficiently given

large amounts of data.

Interpretability: This refers to the level of understanding andgimsihat is provided by the

classifier or predictor. Interpretability is sulijge and therefore more difficult to assess.

In the next sections, a few approaches on claaifit methods will be presented,
concentrating mainly on the decision tree consitondDTC) methods that are the case study of

this thesis.

2.3.2 Classification by Decision Tree Induction

Decision tree induction is the learning of decistoges from class-labeled training tuples. A
decision tree is a flowchart-like tree structurbeve each internal node (non leaf node) denotes
a test on an attribute, each branch representautmome of the test, and each leaf node (or

terminal node) holds a class label. The topmosernioa tree is the root node.

Given a tupleX, for which the associated class label is unknaiva, attribute values of the
tuple are tested against the decision tree. A gattaced from the root to a leaf node, which
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holds the class prediction for that tuple. Decidi@®s can easily be converted to classification

rules.

The construction of decision tree classifiers does require any domain knowledge or
parameter setting, and therefore is appropriatee¥ptoratory knowledge discovery. Decision
trees can handle high dimensional data. Their semtation of acquired knowledge in tree form
is intuitive and generally easy to assimilate bynhus. The learning and classification steps of
decision tree induction are simple and fast. Inegal decision tree classifiers have good
accuracy. However, successful use may depend oddatzeat hand. Decision tree induction
algorithms have been used for classification in ynapplication areas, such as medicine,
manufacturing and production, financial analysi&ranomy, and molecular biology. Decision

trees are the basis of several commercial ruleciimu systems.

During tree construction, attribute selection measiware used to select the attribute that best
partitions the tuples into distinct classes. WHhenision trees are built, many of the branches
may reflect noise or outliers in the training dateee pruning attempts to identify and remove

such branches, with the goal of improving clasatfam accuracy on unseen data. Tree pruning

is described more analytically in the next chapter.

2.3.2.1 Decision Tree Induction

During the late 1970s and early 1980s, J. Ross IQuira researcher in machine learning,
developed a decision tree algorithm known as ID&rdtive Dichotomiser) [24]. This work
expanded on earlier work amncept learning systemdescribed by E. B. Hunt, J. Marin, and
P. T. Stone [25]. Quinlan later presented C4.5 [@6lsuccessor of ID3), which became a
benchmark to which newer supervised learning algms are often compared.

In 1984, a group of statisticians (L. Breiman, de@fman, R. Olshen, and C. Stone) published
the bookClassification and Regression TreART) [27], which described the generation of
binary decision trees. ID3 and CART were inventatkpendently of one another at around the
same time, yet follow a similar approach for leagndecision trees from training tuples. These

two cornerstone algorithms spawned a flurry of wamkdecision tree induction.

ID3, C4.5, and CART adopt a greedy (i.e., non bracking) approach in which decision trees
are constructed in a top-down recursive divide-emdguer manner. Most algorithms for

decision tree induction also follow such a top-dapproach, which starts with a training set of
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tuples and their associated class labels. Theingaset is recursively partitioned into smaller

subsets as the tree is being built.

The strategy of the algorithm is as follows; thgoaithm is called with three parameteb:
attribute list andAttribute selectioomethod D is referredas a data partition. Initially, it is the
complete set of training tuples and their assodiatass labels. The parametdtribute listis a

list of attributes describing the tuplesiribute selection methaspecifies a heuristic procedure
for selecting the attribute that “best” discrimiestthe given tuples according to class. This
procedure employs an attribute selection measudd as information gain or the gini index.
Whether the tree is strictly binary is generalliven by the attribute selection measure. Some
attribute selection measures, such as the ginixjineeforce the resulting tree to be binary.
Others, like information gain, do not, therein wallog multiway splits (i.e., two or more

branches to be grown from a node).

The tree starts as a single noderepresenting the training tuplestn If the tuples irD are all
of the same class, then noNebecomes a leaf and is labeled with that class. r@tke, the
algorithm calls the correspondiddtribute selection methad determine the splitting criterion.
The splitting criterion tells us which attributetest at nodé&\ by determining the “best” way to

separate or partition the tuplesDrinto individual classes.

The splitting criterion also tells us which branghe grow from nodeN with respect to the
outcomes of the chosen test. More specifically, gpktting criterion indicates the splitting
attribute and may also indicate either a split-poma splitting subset. The splitting criterion is
determined so that, ideally, the resulting pantisi@t each branch are as “pure” as possible. A
partition is pure if all of the tuples in it belong the same class. In other words, if we were to
split up the tuples i according to the mutually exclusive outcomes ofghktting criterion,

we hope for the resulting partitions to be as @msr@ossible.

The nodeN is labeled with the splitting criterion, which sesvas a test at the node. A branch is
grown from nodeN for each of the outcomes of the splitting criteridine tuples irD are

partitioned accordingly.

There are three possible scenarios, as analyzec abetA be the splitting attributed hasv
distinct values, &, &, ..., &}, based on the training data.

» A is discrete-valuedn this case, the outcomes of the test at idderrespond
directly to the known values &. A branch is created for each known vale,
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of A and labeled with that value. Partitid) is the subset of class-labeled
tuples inD having valueg; of A. Because all of the tuples in a given partition
have the same value f@k then A need not be considered in any future
partitioning of the tuples. Therefore, it is remdeom attribute list

» A is continuous-valuedin this case, the test at node has two possible
outcomes, corresponding to the conditidns split pointand A > split point
respectively, whersplit pointis the split-point returned bittribute selection
methodas part of the splitting criterion. (In practichetsplit-point,a, is often
taken as the midpoint of two known adjacent vahfe& and therefore may not
actually be a pre-existing value Affrom the training data.) Two branches are
grown fromN and labeled according to the above outcomes. Tpleguare
partitioned such thdd; holds the subset of class-labeled tupleb ifor which
A< split point while D, holds the rest.

» A is discrete-valuednd abinary treemust be produced (as dictated by the
attribute selection measure or algorithm being JsEde test at noddl is of
the form ‘A ¢ &". Sais the splitting subset fa, returned byAttribute selection
methodas part of the splitting criterion. It is a subskthe known values oA
If a given tuple has valug of A and if g ¢ S, then the test at nod¥ is
satisfied. Two branches are grown frtdinBy convention, the left branch out
of N is labeledyesso thatD1 corresponds to the subset of class-labeled tuples
in D that satisfy the test. The right branch outNofs labeledno so thatD2
corresponds to the subset of class-labeled tupbas D that do not satisfy the
test.

The algorithm uses the same process recursiveigrio a decision tree for the tuples at each
resulting partitionpP;, of D. The recursive partitioning stops only when ang ohthe following

terminating conditions is true:

» All of the tuples in partitioD (represented at nodd belong to the same class

» There are no remaining attributes on which the emipiay be further
partitioned. In this case, majority voting is emy@d. This involves converting
node N into a leaf and labeling it with the most commorassl inD.
Alternatively, the class distribution of the nodgles may be stored.

» There are no tuples for a given branch, that igarition D; is empty. In this

case, a leaf is created with the majority clads.in
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Thus, the resulting decision tree is returned. Thmputational complexity of the algorithm
given training seD is O(n x [D| x log(|D])), wheren is the number of attributes describing the
tuples inD and P| is the number of training tuplesIh This means that the computational cost
of growing a tree grows at mask [D| x log(|D|) with D| tuples.

Incremental versions of decision tree inductionehalso been proposed. When given new
training data, these restructure the decision &agired from learning on previous training
data, rather than relearning a new tree from duarddifferences in decision tree algorithms
include how the attributes are selected in credtiegree and the mechanisms used for pruning.
The basic algorithm described above requires oss pser the training tuples in D for each
level of the tree. This can lead to long trainimgess and lack of available memory when

dealing with large databases.

2.3.3 Bayesian Classification

Bayesian classifiers are statistical classifietseyl can predict class membership probabilities,
such as the probability that a given tuple beldiegs particular class. Bayesian classification is
based on Bayes’' theorem. Studies comparing cleasdn algorithms have found a simple
Bayesian classifier known as the naive Bayesiassifiar to be comparable in performance
with decision tree and selected neural networksdiass. Bayesian classifiers have also

exhibited high accuracy and speed when appliedrteldatabases.

Naive Bayesian classifiers assume that the effé@noattribute value on a given class is
independent of the values of the other attributdss assumption is called class conditional
independence. It is made to simplify the computettimvolved and, in this sense, is considered
“naive.” Bayesian belief networks are graphical eled which unlike naive Bayesian
classifiers, allow the representation of dependen@mong subsets of attributes. Bayesian
belief networks can also be used for classification

2.3.4 Rule-Based Classification
In rule-based classifiers the learned model isasmnted as a set of IF-THEN rules. There are
several ways in which these rules can be generaiber from a decision tree or directly from

the training data using a sequential covering #lgor.

2.3.5 Classification by back propagation
Backpropagation is a neural network learning atbari The field of neural networks was

originally kindled by psychologists and neurobiokty who sought to develop and test
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computational analogues of neurons. Roughly spgakimeural network is a set of connected
input/output units in which each connection haseight associated with it. During the learning
phase, the network learns by adjusting the weigbtas to be able to predict the correct class
label of the input tuples. Neural network learniagalso referred to as connectionist learning
due to the connections between units.

Neural networks involve long training times and #rerefore more suitable for applications
where this is feasible. They require a number ohip&ters that are typically best determined
empirically, such as the network topology or “stawe.” Neural networks have been criticized
for their poor interpretability. For example, itd#ficult for humans to interpret the symbolic
meaning behind the learned weights and of “hiddeitstiin the network. These features

initially made neural networks less desirable fatadmining.

Advantages of neural networks, however, includdr thigh tolerance of noisy data as well as
their ability to classify patterns on which theywbanot been trained. They can be used when
you may have little knowledge of the relationshijgtween attributes and classes. They are
well-suited for continuous-valued inputs and ouspuinlike most decision tree algorithms.
They have been successful on a wide array of redivdata, including handwritten character
recognition, pathology and laboratory medicine, mathing a computer to pronounce English
text. Neural network algorithms are inherently ataparallelization techniques can be used to

speed up the computation process.

In addition, several techniques have recently t@mreloped for the extraction of rules from
trained neural networks. These factors contribateatd the usefulness of neural networks for
classification and prediction in data mining. Thare many different kinds of neural networks
and neural network algorithms. The most popularaienetwork algorithm is back propagation
[28], which gained repute in the 1980s.

2.3.6 Support Vector Machines

Support Vector Machines is a promising new methardtiie classification of both linear and
nonlinear data. In a nutshell, a support vectorhimec(or SVM) is an algorithm that works as
follows. It uses a nonlinear mapping to transfoime riginal training data into a higher
dimension. Within this new dimension, it searchastlie linear optimal separating hyperplane
(that is, a “decision boundary” separating the @apbf one class from another). With an
appropriate nonlinear mapping to a sufficiently thidimension, data from two classes can
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always be separated by a hyperplane. The SVM fihdshyperplane usingupport vectors

(“essential” training tuples) andargins(defined by the support vectors).

The first paper on support vector machines wasepted in 1992 by Vladimir Vapnik and
colleagues Bernhard Boser and Isabelle Guyon @#&jpugh the groundwork for SVMs has
been around since the 1960s (including early workvbpnik and Alexei Chervonenkis on
statistical learning theory [30]). Although theitiag time of even the fastest SVMs can be
extremely slow, they are highly accurate, owingtteir ability to model complex nonlinear
decision boundaries. They are much less prone edfitiing than other methods. The support
vectors found also provide a compact descriptiotheflearned model. SVMs can be used for
prediction as well as classification. They haverbapplied to a number of areas, including
handwritten digit recognition, object recognitioand speaker identification, as well as

benchmark time-series prediction tests.

2.3.7 Associative Classification: Classification bjAssociation Rule Analysis

Frequent patterns and their corresponding associatir correlation rules characterize
interesting relationships between attribute coodg&i and class labels, and thus have been
recently used for effective classification. Assticia rules show strong associations between
attribute-value pairs (dtemg that occur frequently in a given data set. Asstomi rules are
commonly used to analyze the purchasing patterrsustomers in a store. Such analysis is
useful in many decision-making processes, suchradupt placement, catalog design, and

cross-marketing. The discovery of association ridémsed ofrequent itemset mining.

The general idea is that we can search for straspcations between frequent patterns
(conjunctions of attribute-value pairs) and clad®ls. Because association rules explore highly
confident associations among multiple attributbis &pproach may overcome some constraints
introduced by decision-tree induction, which coesidonly one attribute at a time. In many

studies, associative classification has been faontde more accurate than some traditional
classification methods, such as C4.5 [26]. In paldir, there are three main methods: CBA

[31], CMAR [32], and CPAR [33].

2.3.8 Lazy Learners

The classification methods discussed so far in ¢hepter—decision tree induction, Bayesian
classification, rule-based classification, classifion by back propagation, support vector
machines, and classification based on associatiten mining—are all examples aager
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learners.Eager learners, when given a set of training typldsconstruct a generalization (i.e.,

classification) model before receiving new (e.gst) tuples to classify.

Imagine a contrasting lazy approach, in which #errer instead waits until the last minute
before doing any model construction in order t@sify a given test tuple. That is, when given a
training tuple, a lazy learner simply stores it §oes only a little minor processing) and waits
until it is given a test tuple. Only when it sebs test tuple does it perform generalization in
order to classify the tuple based on its similatitythe stored training tuples. Unlike eager
learning methods, lazy learners do less work whamaiaing tuple is presented and more work
when making a classification or prediction. Becalassy learners store the training tuples or
“instances,” they are also referred to as instavased learners, even though all learning is

essentially based on instances.

When making a classification or prediction, lazgrieers can be computationally expensive.
They require efficient storage techniques and agdl-suited to implementation on parallel

hardware. They offer little explanation or insighto the structure of the data. Lazy learners,
however, naturally support incremental learningeytare able to model complex decision
spaces having hyperpolygonal shapes that may nesbeasily describable by other learning
algorithms (such as hyper-rectangular shapes mibdsledecision trees). In this section, we
look at two examples of lazy learneksnearest neighbotlassifiersandcase-based reasoning

classifiers

K-Nearest-Neighbor Classifiers: Nearest-neighbor classifiers are based on learting
analogy, that is, by comparing a given test tupith waining tuples that are similar to it. The
training tuples are described hyattributes. Each tuple represents a point im-@imensional
space. In this way, all of the training tuples ste@red in am-dimensional pattern space. When
given an unknown tuple, knearest neighbor classifier searches the patjgginesfor thek
training tuples that are closest to the unknowretuphesek training tuples are thk “nearest
neighbors” of the unknown tuple.

Case-Based Reasoning Classifier€ase-based reasoning (CBR) classifiers use a dataifa
problem solutions to solve new problems. Unlike rasneighbor classifiers, which store
training tuples as points in Euclidean space, CBiRes the tuples or “cases” for problem
solving as complex symbolic descriptions. Businapglications of CBR include problem
resolution for customer service help desks, wherges describe product-related diagnostic
problems. CBR has also been applied to areas su@mgineering and law, where cases are
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either technical designs or legal rulings, respetti Medical education is another area for
CBR, where patient case histories and treatmemtsuaed to help diagnose and treat new

patients.

2.3.9 Other Classification Methods
Several other classification methods exist, inalgdienetic algorithms, rough set approach, and
fuzzy set approaches. In general, these methodessecommonly used for classification in

commercial data mining systems than the methodsites earlier in this chapter.

2.4 PLATFORMS

There are several software suites for data minitggh are available in the web, and they cover
all the above mentioned algorithmic categoriesthis section, a brief summary of the most
important data mining platforms that are either tmmmercial purpose or free will be

made.The most famous platforms and their charatitesiare the following;

AdvancedMiner(formerly Gornik), a platform for data mining aadalysis, featuring modeling

interface (OOP script, latest GUI design, advandsdalization) and grid computing.

BayesiaLaba complete and powerful data mining tool base@ayesian networks, including
data preparation, missing values imputation, dath \@ariables clustering, unsupervised and

supervised learning.

Data Miner Software Kjta collection of data mining tools, offered in danation with a book:
Predictive Data Mining: A Practical Guide, Weissldndurkhya.

IBM Intelligent Miner Data Mining Suite now fully integrated into the IBM InfoSphere

Warehouse software; includes Data and Text mirootst(based on UIMA).

Nuggets builds models that uncover hidden facts and icglahips, predict for new data, and
find key variables (Windows).

Pentahp an open-source Bl suite, including reporting, lgsig, dashboards, data integration,

and data mining based on Weka.

SAS Enterprise Mineran integrated suite which provides a user-frigralUl front-end to the
SEMMA (Sample, Explore, Modify, Model, Assess) [@ss.
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Statistica Data Mingra comprehensive, integrated statistical datayaisalgraphics, data base

management, and application development system.

Synapse a development environment for neural networks antlder adaptive systems,
supporting the entire development cycle from datgdrt and preprocessing via model
construction and training to evaluation and deplegtn allows deployment as .NET
components.

All the above platforms are commercial and theicgs range from a few hundred to thousand
euros. Some free or shareware data mining platfaneshe following:

AlphaMiner, an open source data mining platform that offeasiows data mining model

building and data cleansing functionality.

ELKI (Environment for DevelLoping KDD-Applications ugported by Index-Structurgsa

framework in Java which includes clustering, outlietection, and other algorithms; allows

user to evaluate the combination of arbitrary athors, data types, and distance functions.

MiningMart, a graphical tool for data preprocessing and mginim relational databases;
supports development, documentation, re-use anidbege of complete KDD processes. Free

for non-commercial purposes.
RapidMiner a leading open-source system for knowledge desgoand data mining.

TANAGRA, offers a GUI interface and methods for data agcswtistics, feature selection,
classification, clustering, visualization, assdoiatand more.

Weka a collection of machine learning algorithms folving real-world data mining problems.
It is written in Java and runs on almost any platfo

2.5 DATASETS

There are several datasets in the web that arkableafor data miners, offering a wide variety
of test case characteristics. Thus, datasets véatfalble number of attributes and instances,
covering a wide range of scientific fields can Isediin order to fully test and observe the data
mining platforms’ performance and correct operatiém indicative example of some data
mining datasets is given below:

KDD Cup centerwith all data, tasks, and results.
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UCI KDD Database Repositorfpr large datasets used in machine learning armivledge

discovery research.

AWS (Amazon Web Services) Public Data Setevides a centralized repository of public data

sets that can be seamlessly integrated into AW&ldbased applications.

Bioassay datadescribed in Virtual screening of bioassay d&a,Amanda Schierz, J. of
Cheminformatics, with 21 Bioassay datasets (Activénactive compounds) available for
download.

Canada Open Datailot project with many government and geospatihbsets.

Data Source Handbopk Guide to Public Data, by Pete Warden, O'Rdilgn 2011).

Data.gov.uk publicly available data from UK (aldeoondon datastorg

DataMarket visualize the world's economy, societies, natargl industries, with 100 million
time series from UN, World Bank, Eurostat and othgrortant data providers.

DataSF.orga clearinghouse of datasets available from thg &iCounty of San Francisco,
CA.

DataFerrett a data mining tool that accesses and manipulEhePataWeb, a collection of

many on-line US Goverment datasets.

EconData thousands of economic time series, produced muraber of US Government

agencies.

Enron Email Datasetlata from about 150 users, mostly senior manageaidnron.

FEDSTATS a comprehensive source of US statistics and more

FIMI repository for frequent itemset miningnplementations and datasets.

Financial Data Finder at OSW large catalog of financial data sets

GEO (GEO Gene Expression Omnihua) gene expression/molecular abundance repository

supporting MIAME compliant data submissions, andcuaated, online resource for gene

expression data browsing, query and retrieval.

GeoDa Centergeographical and spatial data.
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Google ngrams datasetext from millions of books scanned by Google.

Hilary Mason research-quality Big Data setdlection - many text and image datasets.

ICWSM-2009 dataseatontains 44 million blog posts made between Audgssand October 1st,
2008.

Infobiotics PSP (protein structure prediction) datg adjustable real-world family of

benchmarks for testing the scalability of classifion/regression methods.

Infochimps an open catalog and marketplace for data. You steare, sell, curate, and

download data about anything and everything.

MIT Cancer Genomics gene expression datasets dslgtqtions from MIT Whitehead Center

for Genome Research.
ML Data, the data repository of the EU Pascal2 networks.

NASDAQ Data Storgprovides access to market data.

National Government Statistical Web Sjtélata, reports, statistical yearbooks, press seka

and more from about 70 web sites, including coaatfrom Africa, Europe, Asia, and Latin
America.

National Space Science Data CentdSSDC), NASA data sets from planetary exploration

space and solar physics, life sciences, astrophyasic more.

OpenData from Socrgtaaccess to over 10,000 datasets including businedscation,

government, and fun.

PubGene(TM) Gene Database and Togénomic-related publications database

Robert Schiller datan housing, stock market, and more from his bo@ibnal Exuberance.

SMD: Stanford Microarray Databasestores raw and normalized data from microarray

experiments.

SourceForge.net Research Dataludes historic and status statistics on apprately 100,000

projects and over 1 million registered users' &@i at the project management web site.
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Wikipedia User Contribution Datasgtrepared for an ongoing study on user reputadiach

content quality in Wikipedia at UCI.

Wikiposit, a (virtual) amalgamation of (mostly financial) tdafrom many different sites,
allowing users to merge data from different sources

Yahoo Sandbox datasetsanguage, Graph, Ratings, Advertising and MankgtCompetition

datasets.
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3. RELATED WORK

Data mining, as described above, is a suitabld f@l hardware acceleration. Many hardware

implementations on various data mining algorithrasehbeen recently presented. This section
describes some works that implement data miningriltgns on reconfigurable hardware

platforms. As it shown in the following sectionbete are several implementations that solve
different problems of the data mining area and they implemented on various hardware
platforms, such as FPGAs and GPUs. The discrintinatf these works is made according to

the data mining field that they refer to as longtesplatform where they are implemented.

3.1 Association algorithms
In this work made bySun and Zambreno [34], the original scheme introduced in [35]- a
reconfigurable systolic tree architecture for fregupattern mining - is modified by eliminating

the counting nodes, and provide a count mode akgpori

Similar to the FP-growth algorithm, two scans &f thansactional database are required. In the
first scan both the set of frequent items and thgpert count of each frequent item is collected.
This task is implemented in the software compoménhe system as shown in Fig. 4-1. Each
candidate frequent itemset is dictated by the soffwnodule into the systolic tree in order to
mine the frequent itemset. The software module systolic tree communicates through a
Processor Local Bus (PLB). The systolic tree theports the support count of the itemset back
to the software module. The process of producimglickate itemsets is critical to the runtime of
the whole system. When selecting candidate itentsethctate, those itemsets which are not

frequent are discarded.

The software controller is also responsible fongfarming the transactional database onto the
systolic tree. The FPGA-based hardware componettteoembedded platform is responsible

for building the systolic tree while receiving ttransactions sent by the software module, and
extracting the support count of the candidate ismdictated by the software module.
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Figure 3-1: The overall system of [35]

This architecture implements small processing elgsthat map to an FPGA-based embedded
system. Both the hardware space requirement anfigteent pattern mining time are entirely
dependent on the size of the systolic tree. Witkefally selected tree size, the mining time of
systolic tree can be orders of magnitude fasten ttle FP-tree. Due to the structural
characteristic of the proposed systolic tree agchitre, the tree size cannot be very large.

In [36], Baker and Prasannaproposed a highly parallel custom architecturelémgnted on a
reconfigurable computing system for the Apriori alithm. Using a “bitmapped Content
Addressable Memory (CAM),” the time and area regglifor executing the subset operations
fundamental to data mining can be significantlyuest. The bitmapped CAM architecture
implementation on an FPGA-accelerated high perfageavorkstation provides a performance
acceleration of orders of magnitude over softwaseld systems.

The bitmapped CAM utilizes redundancy within thendidate data to efficiently store and
process many subset operations simultaneously.effi@ency of this operation allows 140
units to process about 2,240 subset operations Itgsineously. Using industry-standard
benchmarking databases, the implemented desigrsdafeninimum of 24x time performance

advantage over the fastest software Apriori impletagons.

In [37], Baker and Prasannaalso presented an alternative approach for impiéimg Apriori
algorithm with systolic arrays. In this archite&umore than 500 units are mapped on a single
FPGA device. Their results are based on the plader@ute of the full systolic array design on
a Xilinx Virtex-1l Pro 100 device with 44,000 sliseHardware usage is 70 slices per systolic
unit with resources for up to 16 2-byte item caatidsets. The units are all connected end-to-
end in the form of a linear array. Each unit camtainemory locations to temporarily store the

candidates whose support is being calculated aatiaw for stalling. A unit is composed of the
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candidate memory, an index counter, and a comparatoich allows the output of the

candidate memory to be compared with an incomem.it

The proposed architecture provides a performanpeawement that can be orders of magnitude
faster than the state-of-the-art software implemtéons. The system is scalable and introduces
an efficient systolic injection method for intelligtly reporting unpredictably generated mid-
array results to a controller without any chanceatfision or excessive stalling.

3.2 Clustering

K-means clustering is a very popular clusteringhtégue, which is used in numerous
applications, including data mining. In the k-meamgstering algorithm, each point in the
dataset is assigned to the nearest cluster bylatifgudistances from each point to the cluster
centers. Then, the cluster centers are improveatiadhe error (sum of the square distances) is
minimized. These two steps, referred as iteratom repeated until no improvement of the error
is obtained. The computation of the distances ¥&rg time-consuming task, particularly for
large dataset and large number of clusters. Witlicdéed hardware systems, the performance
of the distance calculations can be accelerateprbgessing them in parallel. However, when
the number of clusters is large, its performana®isenough for real-time applications, because
the distances to all cluster centers cannot beauleaés in parallel with reasonable amount of
hardware resources. In order to reduce the coniputéime, many sophisticated software
algorithms have been proposed to date. Howevés,rnibt easy to implement those techniques

on the hardware systems because of their complexity

In [38], Saegusa and Maruyamaproposed a hardware implementation of k-meangighgo
They showed that real-time k-means clustering @arehlized for large-size color images and
large number of clusters, by generating kd-treesathcally on FPGA, and by reducing the
amount of computation of squared distances usiagkthtrees. By reusing units to calculate
squared distances for generating kd-trees andsfig@ing pixels to one of the K clusters, the
whole circuit can be implemented on one FPGA. Wiith current largest FPGA with DDR
memory interface, it will be possible to improve therformance by processing more pixels in
parallel. The performance of the system is more 8@ fps in average (all images cannot be
processed within 1/30 s), a performance fast endaighideo sequences, when the number of

pixels in an image is not larger than 300 Kb.
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In [39], another implementation of k-means clustgralgorithm was proposed lhygeserand
Szymanski In mapping the k-means algorithm to FPGA hardw#rey examined algorithm
level transforms that dramatically increased theiea@ble parallelism. They applied the k-
means algorithm to multi-spectral and hyper-spédatnages, which have tens to hundreds of
channels per pixel of data.

K-means is a common solution to the segmentatiomuati-dimensional data. The standard
software implementation of k-means uses floatingHparithmetic and Euclidean distances.
Floating point arithmetic and the multiplicationedvy Euclidean distance calculation are fine
on a general purpose processor, but they have #aegeand speed penalties when implemented
on an FPGA. In order to get the best performandemeans on an FPGA, the algorithm needs
to be transformed to eliminate these operationsisTthey examined the effects of using two
other distance measures, Manhattan and Max thahadorequire multipliers. They also
examined the effects of using fixed precision ammhdated bit widths in the algorithm. As a
result of the analysis made in the algorithm, tiplementation exhibits approximately a 200
times speed up over a software implementation arehwdownloaded to an Annapolis Wildstar

board, a speed up of two orders of magnitude dwvesbdftware implementation was achieved.

3.3 Classification

One important problem in data mining is Classifmatwhich is the task of assigning objects to
one of several predefined categories. Among theraésolutions developed, Decision Tree
Classification (DTC) is a popular method that y#eldigh accuracy while handling large
datasets. However, DTC is a computationally intensigorithm, and as data sizes increase, its

running time can stretch to several hours.

In [40], Narayanan and Zambreno proposed a hardware implementation of Decisiore Tre
Classification. They identified the compute inteeskernel (Gini Score computation) in the
algorithm, and developed an architecture, which father optimized by reordering and
simplifying the computations and by using a bitmeghmlata structure. The Gini score is a
mathematical measure of the inequality of a distitim and calculating the Gini value for a

particular split index involves computing the fregay of each class in each of the partitions.

The DTC architecture was implemented on a Xilinxrt&i-Il Pro-based embedded

development platform. The DTC unit was implemerdasda custom peripheral which was fed
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by the PowerPC. The PowerPC read in input datadtor DDR DIMM, initialized the DTC
component, and supplied class ID data at regutanials. The OCM BRAM block stores the

instructions for the PowerPC operation.

While implementing the design, several tradeoffsemeonsidered. The use of floating point
computations complicated the design and increaseditea overhead, hence they decided to
perform the division operations using only fixedsgointeger computations. To verify the
correctness of the assumptions made, they impleademtversion of ScalParC that uses only
fixed point values. It was found that the decisimees generated by both the fixed-point and
floating point versions were identical, thus validg their choice of a divider performing fixed
point computations. The divider output was confaglurto produce 32 integer bits and 16
fractional bits, a choice made keeping in mind dtze of the dataset and precision required to
produce accurate results. The divider was alsdipaztin order to handle multiple input class

IDs at the same time.

The IBM Data Quest Generator was used to genehmtedata used in their performance
measurements. The Gini calculation was also imphaakin software (using C) and ran on the
PowerPC under identical conditions. The speedupiged by hardware was measured in terms
of the ratio of number of cycles taken by the hamienabled design to those taken by the
software implementation. Figure 3 shows the spesdigtained when the DTC module was
tested on the FPGA. The results show significaeedpps over software implementations. As
expected, the speedup increases with the numlk@mbiunits on board, due to the parallelism

offered by additional hardware computation units.

The experimental hardware imposed a size limitatidnl6 Gini units, which achieves a
speedup of B8x. It would be possible to achieve larger speedugiaguhigher-capacity
FPGAs. Given the fraction of execution time tha Gini score calculation takes StalParC
[41, 42], the overall speedup of this particulapiementation of DTC can be estimated to be
15x.
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Figure 3-2: [40] system performance

In [43], Struharik andNovak designed eight Intellectual Property (IP) cores tores (non-
programmable and programmable) for each of the fooposed architectures in [44] and [45].
To be able to serve as a general purpose buildoak for System on Chip (SoC) designs, IP
core implementation of a Decision Tree should naertnge of application requirements. This
fact excludes the usage of hard cores. Therefapoged DT IP cores have been realized as
soft IP cores using a synthesizable RTL descriptiothe design. Every core comes with a set
of parameters offering the opportunity for a desigio address a range of application problems
with differing structural requirements (number aflplem attributes, structure of the DT,
number of DT nodes, depth of the DT, number fornfiatsepresentation of attribute values,
input size and characteristics at each node, alam®mbership values etc.) and performance

requirements (clock period, power dissipation ami

They used the well-known XOR classification problptf] to illustrate how to configure DT
cores. This problem is described by two numerit¢tlbaites and four 2-bit XOR instances,
which must be classified into one of two classegdtimental results obtained on 23 data sets
of standard UCI machine learning repository datatmsgygest that the proposed architecture
based on the sequence of UNs requires on averdgdess hardware resources compared with

architectures [44, 45], while having the same thhqut.
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3.4 GPUs

Modern GPUs offer much computing power at a vendesb cost. Even though CUDA and
other related recent developments are accelerdtiaguse of GPUs for general purpose
applications, several challenges still remain imgoamming the GPUs. Thus, it is clearly
desirable to be able to program GPUs using a hilglvet interface.

In [47], Agrawal and Ma have developed a solution for high-level prograngnof GPUs.
Their proposed solution targets a specific clasapgfiications, which are the data mining and
scientific data analysis applications. They explloé common processing structure, generalized
reductions that fit a large number of popular dataing algorithms in the GeForce 8800GTX
and 9800GX2 graphics cards. In their proposed isoluthe programmers simply need to
specify the sequential reduction loop(s) with s@dditional information about the parameters.
Program analysis and code generation is used to thmampplications to a GPU. Several
additional optimizations (mainly on optimizing memaisage) are also performed to improve

the performance.

The evaluation of the system was made by usingetpapular data mining applications, k-

means clustering, EM clustering, and Principal Congmt Analysis (PCA). The speedup that
each of these applications achieved over a seglé€PBU version ranges between 20 and 50
and the code automatically generated by the systiehmot have any noticeable overheads

compared to hand written codes.

In [48], Fang et al. presented two efficienf\priori implementations of Frequent Itemset
Mining (FIM) that utilize new-generation graphicsropessing units (GPUs). Their
implementations take advantage of the GPU's mdgsimmulti-threaded SIMD (Single
Instruction, Multiple Data) architecture. Both ireplentations employed a bitmap data
structure to exploit the GPU's SIMD parallelism atodaccelerate the frequency counting
operation. One implementation runs entirely on @RU and eliminates intermediate data
transfer between the GPU memory and the CPU menitiy.other implementation employs
both the GPU and the CPU for processing. It reptsséemsets in a trie, and uses the CPU for
trie traversing and incremental maintenance. Ouelimmary results show that both
implementations achieve a speedup of up to tworsrdé magnitude over optimized CPU
Apriori implementations on a PC with an NVIDIA GTX 280 GBEhd a quad-core CPU.
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The GPU-based implementations have larger speedeiptbe CPU-based ones on the dense
dataset than on the sparse dataset. The speedigpeativaried from 1.2 to 130 times faster
than the CPU implementation and it depends on ltperithm selection and the input data’s

nature.

3.5 Support Vector Machines

Support Vector Machines [30] are a powerful machiearning method, providing good
generalization performance for a wide range ofesgjon and classification tasks. In SVMs, a
training dataset, consisting of pairs of input eestand desired outputs, is used to model and
construct the decision function of the system drace, they are considered as an instance of
supervised learning. During the training phase stfstem identifies the Support Vectors (SVs),
which are those data points that can best buikparation model for the classes. Those vectors

are then used to predict the class of any future plaint during the classification phase.

Papadonikolakis and Bouganis[49, 51] proposed a scalable FPGA architecture tfar
acceleration of SVM classification, which exploitee device heterogeneity and the dynamic
range diversities among the dataset attributesth&umore, this work introduced the first
FPGA-oriented cascade SVM classifier scheme, whidknsified the custom-arithmetic
properties of the heterogeneous architecture amstbdahe classification performance even

more.

The rationale behind the design of the SVM classifs the exploitation of the parallel
computational power offered by the FPGA heterogesemsources and the high memory
bandwidth of the FPGA internal memories in the neffitient way, in order to speed up the
decision function. The computation of this functiowolves matrix-vector operations, which
are highly parallelizable. Therefore, the problean doe segmented into smaller ones and

parallel units can be instantiated for the procgssi each sub-problem.

The targeted device for the proposed architectuas tlve Altera’s Stratix Il EP3SE260. The
results can be expanded to other targeted devicehdnging the resource constraints of the
design flow. The architecture is captured in VHDIddhe floating-point modules are generated
by the Altera tools and the Altera floating-poimtnepiler. The targeted operating frequency of
all produced designs ranged between 180-250MHz.
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The implementation results demonstrated the effaieof the heterogeneous architecture,
presenting a speed-up factor of 2-3 orders of ntadej compared to the CPU implementation,

while performing much better other proposed FPGA &PU approaches by more than 7
times.

As it is shown from the previously mentioned retat@ork, the field of data mining is
promising in terms of reconfigurable logic implertegion. The main reason is that the data
mining algorithms can be easily parallelized, & that can be fully exploited by the FPGA'’s
characteristics and can lead to significant redatdhe execution time compared to the
corresponding software running time. However, aswshbefore, a few approaches were made
on this field and especially on decision tree dfmsdion, giving us a motivation to study
classification algorithms in this thesis in ordeiatccelerate them.
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4. SW ANALYSIS

This section describes WEKA, the open source sofiviava platform that was used in this

work and analyzes the basic steps of the BFTressifilzation algorithm which was the case

study in this thesis.

4.1 WEKA tool

Applications

'WEKA | eves

The University -

of Waikato Experimenter
‘Waikato Environment for Knowledge Analysis KnowledgeFlow
Version 3.6.4
(c) 1993 - 2010
The University of Waikato Simple CLT
Hamitton, Mewr Zealand

Figure 4-1: Weka's startup screen

The Waikato Environment for Knowledge Analysis (Vilgks a comprehensive suite of Java
class libraries that implement many state-of-thefmachine learning and data mining

algorithms.

Weka is freely available on the World-Wide Web augompanies a text on data mining [52]
which documents and fully explains all the algorithit contains. Applications written using
the Weka class libraries can be run on any compwidr a java runtime environment
capability; this allows users to apply machine mé@g techniques to their own data regardless

of computer platform.

Tools are provided for pre-processing data, feedinigto a variety of learning schemes, and
analyzing the resulting classifiers and their pgrfance. An important resource for navigating
through Weka is its java documentation (javadod)ictv is automatically generated from the
source code. The primary learning methods in We&ddassifiers”, and they induce a rule set
or decision tree that models the data. Weka alsludes algorithms for learning association

rules and clustering data. All implementations sup@ uniform command-line or a Graphic
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User Interface (GUI). A common evaluation moduleamges the relative performance of

several learning algorithms over a given data set.

Tools for pre-processing the data, or “filters,& @nother important resource. Like the learning
schemes, filters have a standardized commandiesface with a set of common command-
line options.

The Weka software is written entirely in Java toilfeate the availability of data mining tools
regardless of computer platform. The system issum, a suite of Java packages, each
documented to provide developers with state-ofattdacilities.

4.1.1 Javadoc and the class library

One advantage of developing a system in Java iautsmatic support for documentation.
Descriptions of each of the class libraries arematically compiled into HTML, providing an
invaluable resource for programmers and applicadiewelopers alike. The Java class libraries
are organized into logical packages - director@#aining a collection of related classes. These
packages provide interfaces to pre-processingmesiincluding feature selection, classifiers for
both nominal and numeric learning tasks, meta ifiess for enhancing the performance of
classifiers (for example, boosting and baggingpleation according to different criteria (for
example, accuracy, entropy, root-squared mean,ecomt-sensitive classification, etc.) and
experimental support for verifying the robustne$smmdels (cross-validation, bias-variance
decomposition, and calculation of the margin).

4.1.2 Weka's core

Thecorepackage contains classes that are accessed frapstadirery other class in Weka. The
most important classes in it afdtribute Instance andinstances An object of class Attribute
represents an attribute - it contains the attrisuteme, its type, and, in case of a nominal
attribute its possible values. An object of classtdnce contains the attribute values of a
particular instance; and an object of class Ingarmontains an ordered set of instances—in
other words, a dataset. Figure 4.2 shows a sinyaimple of a Weka's dataset, which follows
the previously mentioned structure rules. More itletabout the dataset’s structure will be

discussed in the next section.
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@relation weather.symbolic

@attribute outlook {sunny, overcast, rainy}
@attribute temperature {hot, mild, cool}
@attribute humidity {high, normal}
@attribute windy {TRUE, FALSE}
@attribute play {yes, no, maybe}

@data
sunny,hot,high,FALSE,no
sunny,hot,high, TRUE,no
overcast,hot,high,FALSE,yes
rainy,mild,high,FALSE,yes
rainy,cool,normal,FALSE,yes
rainy,cool,normal, TRUE,no

Figure 4-2: An example of a Weka's dataset

4.1.2.1 Pre-processing utilities

Real databases invariably contain large quantifesformation that must be greatly reduced
before processing. Most machine learning schembsvaork on comparatively impoverished
two-dimensional “flat-file” views of the data. Thusonsiderable manipulation of a database is
invariably necessary before any information canphmcessed by WEKA. This effort ranges
from performing SQL queries on relational databagesugh writing macros for spreadsheets,
to the invocation of pattern matching scripts togasss text files.

The dataset resulting from these operations is phecessed on WEKA as follows (fig. 4-3):
* A data file is selected from tl@pen File menu

« Statistical characteristics of the data are viibwsing XLISPSTAT [53]

 Important attributes of the data are selected

» Aggregates of existing attributes are createdgiie spreadsheet

* A machine learning scheme is selected fromntlemu (Classify, Cluster and Associate tabs
from menu)

 The results are viewed as trees, text or thneedsional plots (Visualize tab)
« Attribute/aggregate selections are revised

* The scheme is re-run on the revised data
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+ Weka Explorer i (o [ 0

Preprocess | Classify | Cluster | Assodate | Select attributes | Visualize |

[ openfie.. |[ openurL.. |[ openpB.. |[ Generate.. Unda [ Edit... | [ Save... ]

Filter
| choose  |None Apply

|| currentrelation Selected attribute

Relation: weather.symbolic Name: outiook Type: Nominal
Instances: 14 Attributes: 5 Missing: 0 (09%) Distinct: 3 Unique: O (0%)

| Attributes Mo, Label Count

[ Al ] Mone ] [ Invert | [ Pattern

Class: play {Mom) * | wisualize Al |

It it
(| [
4
U
Remove

Figure 4-3: An example of a Weka's dataset

In order to maintain format independence, dateoisverted to an intermediate representation
called ARFF (Attribute Relation File Format). Figud-2 shows an example ARFF file
containing data describing instances of weatheditons and whether or not to play golf.
ARFF files contain blocks describing relations afiir attributes, together with all the
instances of the relation - and there are oftey weany of these, as the instances number can
reach up to a few thousand. They are stored as f@si for ease of manipulation. Relations are
simply a single word or string naming the concepbé¢ learned. Each attribute has a name, a
data type (which must be one of enumerated, reaiteger) and a value range (enumerations
for nominal data, intervals for numeric data). Tigtances of the relation simplify interaction

with spreadsheets and databases. Missing or unkwaluas are specified by the ‘?’ character.

When a machine learning scheme is invoked, the datais converted to an input form,
appropriate for that scheme by using a customifest.fThe input as well as the output is
converted individually for each scheme, so th# itot necessary to rewrite a machine learning
scheme in order to incorporate it into the worklterithese applicable filters are categorized
depending on the target structure, either in ttsdamce or in the attribute. An indicative
example of the filters that can be used for thevegsion of the initial input is shown below:
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Attribute Filters:

Add

Discretize
MergeTwoValues
RemoveUseless
Reorder
Standardize

StringToNominal

vV V V VYV V VYV V V

SwapValues
Instance filters:

Normalize
Randomize
RemoveFrequentValues

RemoveRange

vV V V V VY

Resample

In addition to the filters that are customized fieeichine learning schemes, a range of filters is
available for converting new files to the ARFF famFor many applications, it is necessary to
construct new ARFF files from existing ones. Marfytlie schemes produce results which
inform the user that certain attributes do not gbate towards classification, and a user may

wish to remove these irrelevant attributes.

A vital requirement, which was discovered only afigamining very large data sets [54], is the
ability to compute aggregates of attributes. Theften lead to a far more satisfactory
classification than that obtained with the origimfributes. They are typically averages of
existing attributes, or differences from an atttédsl mean value. They can only sensibly be
suggested by people who understand the data (inglaechere and how it came into existence).
It is, therefore, imperative to provide within tkeavironment tools for data analysis such as
spreadsheets, and basic statistical display t&EKA has a built-in spreadsheet capable of
generating new ARFF files from existing ones; meezp it invokes a statistical package
(XLISPSTAT [53]) to display histograms of attribwalues, scatterplots, boxplots, and three-

dimensional views of the data.
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-
| £ weka.gui.GenericObjectEditor l&J

weka,datagenerators. dassifiers. dassification, BayesMet
About

Generates random instances based on a Bayes nelwork. More

cardinality |100
debug |False =
numéres |20
numAttributes |32
numExamples | 1000
relationName

seed |1

Open... | | Save.. | | [s]4 | ‘ Cancel

Figure 4-4: Data Generator Tool

Another important feature that Weka offers is thditg to generate a random ARFF file from
the DataGenerator tool. Thus, the user can easHigte his own input dataset by choosing
among several distributions such as Agrawal, BaggsRandomRBF and RDG1 by simply
selecting the number of the desirable instances,ntimber of the attributes as well as the
possible values of each attribute (figure 4-4).UBing this feature, it was possible to generate
several testbenches that gave us the ability totlesalgorithm’s implementation in extreme

cases without having to search the web for thelgtinput.

4.1.2.2 Post-processing utilities

In an environment where many different learningessls are available, it is important to be
able to evaluate and compare the results produgeéabh one. WEKA provides cross-
validation studies to be performed, and incorparateew method for comparing classifications
and rule sets [55]. This method evaluates clasgifins by analyzing rule sets geometrically.
Rules are represented as objectsnidimensional space, and the similarity of classes i
computed from the overlap of the geometric clasegtions.

The system produces a correlation matrix that atdic the degree of similarity between pairs of
classes. For applications with only a few attrisuthe way in which different rule sets cover
the data they were inferred from can be viewedcmdpared.
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4.2 Supported classifier trees

The Weka tool supports a vast amount of classifinanethods and especially tree classifiers,
which are the case study of this MSc thesis. Tladlahle classification trees are the following:

> ADTree
> BFTree
» DecisionStump
> 1d3
> J48
» LADTree
> LMT
> NBTree
> LMT
» RandomFOrest
» RandomTree
> REPTree
» Custom User Classifier
[ e e T =)
weka. dassifiers, trees.BFTree
About
Class for building a best-first decision tree classifier Mare
Capabilities |
debug |False -
heuristic False v
minMumObj |2
numFoldsPruning |5
pruningStrategy | Un-pruned -
seed |1
sizePer 1.0
useErrorRate | True -
useGini | True -
useCneSE | False -
l Open... I l Save... ] l Ok ] I Cancel

Figure 4-5: The available options for tree classiérs
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In Figure 4-5 there is a class for building deaisiee classifier. This class uses binary split for
both nominal and numeric attributes. For missinges, the method of “fractional” instances is

used.
The possible options for the classifier are sumpeakias follows:

> Debug: If set to true, classifier may output addiél info to the console.

» Heuristic: If heuristic search is used for bingplitfor nominal attributes

» MinNumObj: Set minimal number of instances at theminal nodes. Thus, if
for an example of MinNumODbj = 2, if the remainingstiances to be examined
are equal to 2, no further algorithmic calculatioms$l take place and the
remaining dataset is considered to be a leaf node.

» NumFoldsPruning: Number of folds in internal crasdidation.

» PruningStrategy: Sets the pruning strategy. Theiladbla options are an
unpruned, post-pruned or a pre-pruned tree.

» Seed: The random number seed to be used.

» SizePer: The percentage of the training set siZe (Onot included).

» UseErrorRate: If error rate is used as error esémfnot, root mean squared
error is used.

» UseGini: If true the Gini index is used for splitii criterion, otherwise the
information gain is used.

» UseOneSE: Use the 1SE rule to make a pruning decisi

Figure 4-6 shows a typical run of a tree classidied its output results that are printed in the
java console. The output starts with the desciptib the examined instances; the testcases’s
name, the number of the examined instances andexisting attributes. Afterwards, the
Decision Tree is printed with the splitting attribs and their corresponding splitting value of
each tree node. The resulted tree is better shovid depiction in figure 4-7. Finally, the time
to build the model is shown, as well as some siegiand error analyses of the input data set.
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=== Run information ===

Scheme: weka.classifiers.trees.BFTree -S1-M 2 -N 5 -H -C 1.0 -P UNPRUNED
Relation:  weather.symbolic
Instances: 14
Attributes: 5
outlook
temperature
humidity
windy
play
Test mode: evaluate on training data

=== Classifier model (full training set) ===
Best-First Decision Tree
outlook=(overcast): yes(4.0/0.0)
outlook!=(overcast)

| humidity=(normal)

| | windy=(FALSE): yes(3.0/0.0)
| | windy!=(FALSE): yes(1.0/1.0)
| humidity!=(normal)

| | outlook=(rainy): yes(1.0/1.0)

| | outlook!=(rainy): no(3.0/0.0)
Size of the Tree: 9

Number of Leaf Nodes: 5

Time taken to build model: 0.01 seconds

=== Evaluation on training set ===

=== Summary ===

Correctly Classified Instances 12 85.7143 %
Incorrectly Classified Instances 2 14.2857 %
Kappa statistic 0.6585

Mean absolute error 0.0952

Root mean squared error 0.2182

Relative absolute error 28.8136 %

Root relative squared error 55.389 %

Total Number of Instances 14

Figure 4-6: A typical run of a tree classifier
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Class Variable : Play golf

overcast

normal Inormal

humidity

Figure 4-7: The resulted tree classifier of the exaple

4.3 BFTree decision tree learning

In this MSc thesis, our case study is the Best Finse (BFTree) algorithm, which is one of the
previously mentioned classification methods forisiea trees. In the following sections, the
basic terminology of the decision trees’ charasti®s will be described, as long as the basic
steps of the BFTree algorithm, some of which westeted to be implemented in
reconfigurable logic (chapter 5).

Trees generated by best-first decision tree legrhave all properties described in the previous
chapter. The only difference is that, standardgiecitree learning expands nodes in depth-first
order, while best-first decision tree learning engim the “best” node first. Standard decision
tree learning and best-first decision tree learrgegerate the same fully-expanded tree for a
given data. However, if the number of expansionspiscified in advance, the generated trees
are different in most cases.

For example, Figure 4-8 shows a hypothetical stahdacision tree and a hypothetical best-
first decision tree with three expansions on thaesdata. The first tree in the figure is the fully

expanded tree generated by best-first decisionlé@ming and the second tree is the fully-
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expanded tree generated by standard decision geggrihg. In this example, considering the
fully expanded best-first decision tree the benefiexpanding node N2 is greater than the

benefit of expanding N3.

ORO ORO.
ﬁ : OO
O OO O © @
ONO.
Figure 4-8: (a) The fully-expanded best-first decisn tree; (b) the fully-expanded standard decisiotree; (c)

the best-first decision tree with three expansionsom (a); (d) the standard decision tree with threeexpansions
from (b)

4.3.1 Splitting criteria

In order to find the “best” node to split at eatdpsof a best-first decision tree, splitting ciieer
must be addressed. There are many criteria fosidecirees and two of them are most widely
used, the information and the Gini index. For exiemghe information is used in ID3 [24] and
C4.5 [26] and the Gini index is used in the CARStey [27].

The Best-first decision trees can also use thesectiteria. Splitting criteria are designed to
measure node impurity. The node impurity is basedhe distribution of classes. The main
objective of decision tree learning is to obtainwmate and small models. Thus, when splitting a
node, a pure successor node should be found gsasgpbssible. In other words, the goal of the
splitting is to find the maximal decrease of imput each node. The decrease of impurity is
calculated by subtracting the impurity values afcassor nodes from the impurity of the node.
When the subtraction is performed, the impurityueal of the successor nodes are weighted by
the size of each node: the number instances rapelioh node. If the splitting criterion is the
information, the decrease in impurity is measurgdhe information gain. Similarly, if the

splitting criterion is the Gini index, the decre@sémpurity is measured by the Gini gain.
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Gini index is another criterion to measure the impurity afagle, which is used in the CART
system (Breiman et al., 1984). lfgtands for the probability that an instance islass i and p
is the probability that the instance is in clasthg Gini index has the form (Breiman et al.,
1984):

gini(p1, Dz, Pp) = z Pip;
JES
The Gini index has an interesting interpretatiortearms of sample variances (Breiman et al.,
1984). If all instances at a node that are in cjaagse assigned the value 1 and the other
instances are assigned the value 0, the sampkneardf these valuesps(1 — p;) . Repeating
this for all classes and summing the variancethesum of the;ver all classes is 1, it can be

shown that the Gini index can be written as follows
gini(py, vz, rpn) =1 - Z Py
Jj

Note: When only two classes are presented, the Ginkieda be simplified to 2p,.

4.3.2 Splitting rules

The goal of decision tree learning is to find aaterand small models. To get the smallest trees,
heuristically, all attributes need to be tested #reh, the purest nodes to split at each step
should be chosen. In other words, the goal of tsmlitrules is to find the split value and
attribute which maximally reduces the impurity. Shif the information or the Gini index is
used as the splitting criterion, the task of dplittrules is to find the split which leads to
maximal information gain or Gini gain. In fact, diimg the maximal Gini gain or information
gain for a split at a node is to find the minimalues of the weighted sum of the information
values or the Gini index values of its successaieso

This section describes splitting rules for numetitibutes and nominal attributes in best-first
decision trees. For numeric attributes, the spfittiule is the same as the one used in C4.5 [26]
and the CART system [27]. For nominal attributesniulti-class problems both exhaustive
search and heuristic search are discussed. Thaigiklgasearch used is the same as in the
CART system. The computation time of the exhausii@rch is exponential in the number of

values of a nominal attribute. Heuristic searcheatuce the search time to linear. It is obvious

67



that for an attribute that has many values hearisdarch is the better choice because it can

reduce computation time significantly.

4.3.2.1 Numeric attributes

A numeric attribute can be viewed as a sequenaegddred values. Thus, there can be many
potential split points to divide training instande® two subsets, one for each pair of adjacent
values. The reduction of impurity must be computedeach split point. When choosing split
points, all the numeric values of training instanéar the attribute concerned are first sorted in
ascending order. Then the split points are seteéanidpoints of two different adjacent values.
The goal of the splitting rule for the numeric ittite is to find the midpoint that leads to the
maximal reduction of impurity. No further details numeric attributes will be discussed, as our
case study is restricted to the nominal attribuldee summary of the assumptions and the

conventions made in this MSc thesis are summaiizdte last section of this chapter.

4.3.2.2 Nominal attributes

The splitting rule for nominal attributes is qudéferent from the one for numeric attributes.
The goal of the splitting rule for a nominal attrib is to find a subset of attribute values that
can maximally reduce impurity. When separatingainses into two branches, if the value of an
instance at the attribute is in the subset of \gltiee instance is placed into the left subset.
Otherwise, it is placed into the right subset. Siggpthat the nominal attribute A takes a set of
values {a, &, . . ., a} at a node, where n is the number of attributaugal The goal of the

splitting rule is to search for a subset of value:

A*={aj,..} © {al,az_m,an},

where the split based on this subset can maximadlyice impurity. Note that this subset can be
more than one due to ties. To find such subs&t;12subsets need to be looked in the
exhaustive search case as there is no differengla@émg a set of values into the left branch or
the right branch in a binary tree. The rest of fastion introduces two search methods that can
reduce the search space to linear. One is for tags@roblems and the other is for multi-class

problems.

4.3.3 The two-class problem
In a two-class problem, Breiman et al. (1984) idtroed a search method that can reduce the

binary search space fromi 21 to n-1. The principle is as follows. If the paddility of being in
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class 1 for a given single valugaa a node is denoted p(1|x ¥ &or all single attribute values

we sorted their class probabilities for class 1 as:
pAlx = ay) <p(llx = a;; < - < p(llx = a;)

Then, it can be shown that one of the subsets {a, an} (m=1,. . ., n — 1) is the subset that

maximally reduces the impurity if the Gini indexused as impurity measure. This strategy is
also used for the information gain. The underlyiohgn is that the best split should put all those
attribute values leading to high probabilities lass 1 into one branch and the attribute values

leading to low probabilities in class 1 into anatheanch.

4.3.4 The multi-class problem

In a multi-class problem, Coppersmith et al [56fdduced a heuristic search method that

achieves a compromise between reduction of impuaitg search speed. For the optimal

reduction of impurity, the method searches for ditian based on a separating hyperplane in

the class probability space. For search speedsigjias a scalar value to each attribute value and
forms a sequence of sorted attribute values tt spli

According to [56], this procedure usually finds #@itting subset which achieves an optimal
split or a split very near to the optimal split. Wkver, it only requires n-1 total impurity

evaluation time instead of2-1.

4.3.5 The selection of attributes

The splitting criteria and splitting rules have beescribed above. The next thing is to find the
“best” attribute among all attributes to split draanode. The “best” attribute is the attributet tha
leads to the split of maximal reduction of impurityote that this attribute is sometimes not

unique.

4.4 Best-first decision trees

Like standard decision trees, best-first decisiers are constructed in the divide and conquer
fashion. Each non terminal node in a best-firsiglec tree tests an attribute and each terminal
node is assigned a classification. During the m®aef construction, three important things
must be considered.

The first one is to find the best attribute totspfi at each node. The second one is to find which
node in the node list (i.e. all nodes that are whaids for splitting) is to be expanded next. The

third one is to make the decision when to stop grgurees. The selection of the best attribute
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and the corresponding splitting value at a nodebags discussed in Section 4.3: the attribute

that leads to the maximal reduction of impuritgli®sen to split on among all attributes.

For a numeric attribute, the splitting point thahi@ves maximal reduction of impurity is the
splitting point of the attribute, and the corresgioig reduction of impurity is the reduction of
impurity of the attribute. For a nominal attributbe subset of attribute values that leads to the
maximal reduction of impurity is the splitting seb<f the attribute, and the corresponding
reduction of impurity is the reduction of impuribf the attribute. Best-first decision tree
learning chooses the “best” node to split at eaep. SThe “best” node is the node that has the
maximal reduction of impurity among all nodes ie tiode list. This node can be any one in the
list while it is always the same one in standardisien tree learning (as determined by the

depth-first search order).

To save searching time, it is a good idea to shbrh@des in the list in descending order
according to Gini gain or information gain (i.e.keep a priority queue). After sorting, the first
node in the list is always the one to be expanded. if the reduction of impurity of the first

node is zero, the reduction of all nodes in thiedizero and all nodes cannot be split any more.

Regarding the stopping criteria, standard decisiea learning stops expanding a tree when all
nodes are pure or the impurity of all nodes catweoteduced by further splitting. Sometimes a
minimal number of instances is required. Howevesidies these stopping criteria, in best-first
decision tree learning, a fixed number of exparsicould be specified. A tree stops expanding
when a fixed humber of expansions is reached.dndstrd decision tree learning, specifying a
number of expansions is not meaningful as the ooflerode splitting is fixed. This stopping

criterion enables the investigation of pre-prunamg post-pruning methods by choosing the

fixed number of expansions based on cross-validatio

4.4.1 The best-first decision tree learning algoritm

Figure 4.9 presents the best-first decision traeniag algorithm examined in this thesis. Given
a set of training instances E, its set of attribue the fixed number of expansions N and the
fixed minimal number of instances at a terminalentl the algorithm can be divided into two

stages.

In thefirst stage, the algorithm starts at the root node RN andsfitite best splitting attribute
Apin A according to the reduction of impurity. E afdglare kept in RN. Then, RN is added into
the empty node list NL.
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In the second stagethe first node FN in NL, and its correspondingtb&plitting attribute A
and the instances reaching the node E are retriingedlf the reduction of impurity of FN is 0

or N is reached, all nodes in the list NL are maute terminal nodes and the process of
constructing the best-first decision tree is fiedhOtherwise, if the split of FN on,Avould
lead to a successor node with fewer than M ins&riel should not be split and it is removed
from NL. Then, the algorithm executes this stageiragvith the new node list NL. If the split
does not leads to this circumstance, FN is sptit iwo successor nodes Sahd SN (i.e.
branches) based on its best splitting attributeaid its training instances E are separated into
two corresponding subsetgsdhd E, one for each branch.

Then, the best reduction of impurity for SBind SN, and the corresponding best splitting
attributes A;and Ay, are calculated. In the next stepStith Ap;and B, and SNwith Ay,and

E,are added into NL according to the reduction ofunity (i.e. NL is kept in sorted order). The
number of expansions of the tree is incrementednay Next, FN is removed from NL. Finally,

this stage is repeated with the new node list Nju(e 4.9).

When building decision trees, for a numeric attighut is a good idea to sort the training
instances by the values of the attribute at thé mode and then every descendant node can use
the sort order from its parent node. The reasdha for a very large dataset, if the sorting of
instances takes place at each node, the sortirgisirmery expensive. To achieve the goal, the
only thing that needs to be done is to keep théeddndexes of the parent node, and the
successor nodes can then derive the indexes freipatent node. The time of the derivation is
linear in the number of instances while the timere®orting instances is log-linear. For a
nominal attribute, as mentioned before, if exhaestearch is used, the computation time is
exponential in the number of values of the attebullt heuristic search is used, the computation

time grows linearly in the number of the attribugdues.
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fumetion BFTree | A: a set of attributes,
E: the training instances,
N: the number of expansions,
M: the minimal mumber of instances at a terminal node
) return a decision trae
herin
If F is empty, return failure;
Calculate the reduction of impurity for each attribute
in A on E at the root node RIV;
Find the best attribute A4y in A;
Initizlise an empty list VL to store nodes;
Add RN (with E and Ap) into N L;
expand Tree(NL N M);
return a tree with the root BNV,
end

expandTres(NL, N, M)
herin

If VL is empty, return;

Get the frst node FN from NL;

Retrieve training instanees K and the best splitting attribute 4y of FIN;

If F is empty. return failure;

If the reduction of impurity of FN is 0 or N is reached.
Make all nocdes in VL into terminal nodes;
reiurn:

If the split of FN on Ay would resnlt in a sueesssor node

with less than W mstances,

Make FN intc the terminal node;
Remove N from VL:
expandTree(NL. N, M);

Let SNy and SN> be the successor nodes generakted by
splitting FIW on Ay on E;

Ineremnent the number of exparsions by one;

Let By and Es be the subsetz of instaneces corresponding to
SN and SNo;

Find the corresponding best atiributes 43, for SNy;

Find the corresponding best atiributes A;, for SNa;

Put §Ny (with Fq and Ap, ) and SN (with Fa and Ap,)
into N L according to the reduetion of impurity,

Remove FIN from VI

expandTree(NL, N, M);

end

Figure 4-9: BFTree’s algorithm basic steps in pseuatode

72



4.4.2 Missing values

Missing values are endemic in real world datasatsfasons such as malfunctioning equipment
or missing measurements. One way of dealing with pihoblem is to simply treat them as
another possible value of the attribute, which isstmapplicable if the fact that a value is
missing plays a significant role in the decisioroviver, often the fact is that a value missing
has no special significance. Under these circuras@ninstances with missing values are
similar to other instances. Witten and Frank [Siflined a solution by splitting instances into

pieces, using a numeric weighting scheme.

4.4.3 Pruning

As in standard decision trees, using an unpruneiside tree for classification potentially
overfits the training data because of noise andhbdity in the data. Figure 4.10 shows the
number of expansions and the corresponding accupasgd on ten-times ten-fold cross-
validation for best-first decision tree learning the iris dataset. Note that the minimal number
of instances at a terminal node has been set tonaités case. The figure illustrates that, first,
the accuracy increases when the expansions skemm, The accuracy peaks when the number of
expansions reaches three and further expansionstdmprove performance. Thus, they should
not be performed (i.e. pre-pruning) or they shdmtddeleted if they have already performed

(i.e. post-pruning).

The goal of pruning is to only retain those palntst truly reflect the underlying information in
the data and remove the others. The pruning metltioals are supported in the BFTree
implementation are, namely, best-first-based ptaipg and post-pruning, which try to find the
appropriate number of expansions for best-firstisiec trees. The tree size is decided

according to the error estimate obtained from arefnal) cross-validation.

100 F
80 F /

60 /
40 /

20 F

SO HE00E

1 2 5 4 5 6 7 5

Number of expansions

Figure 4-10: The accuracy for each number of expaimns of best-first decision tree learning on an exaple
dataset.
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4.4.3.1 Best-first-based pre-pruning

Like in standard decision trees, pre-pruning intfiest decision trees stops expanding a tree
early when further splitting step appears to inseearror estimate (i.e. the error rate or the root
mean squared error in this thesis). The bestdfiased pre-pruning method considered here is
based on cross-validation. To this end, the treessihall training folds are constructed in a
parallel fashion (e.g. ten trees for a ten-foldssrgalidation). For each number of expansions,
the average error estimate is calculated based@remporary trees in all folds. Best-first-
based pre-pruning stops growing the trees whemdursplitting increases the average error
estimate and the previous number of expansiondserhas the final number of expansions.

Then, the final tree is built according to the admsumber of expansions on all the data. In all
folds, each best-first tree expands a node at a. thhote that in each fold, when expanding a
tree, no tree regeneration is required. The onhgtthat has to be done is to keep the previous
tree and select the next “best” node from the nligteto split. This can significantly save

computation time. Like in pre-pruning methods fearslard decision trees, the pre-pruning
algorithm also suffers from the problem that thecpiss may stop too early, and further splitting

may decrease the error estimate again.

4.4.3.2 Best-first-based post-pruning

For best-first-based post-pruning, trees in alintrg folds are also constructed in a parallel
fashion. For each number of expansions, the avezage estimate is calculated based on the
temporary trees in all folds. This step is repeatetd the trees cannot be expanded any more.
Then, a sequence of the number of expansions airdctirresponding error estimates based on
the cross-validation can be calculated. The nurobexpansions whose average error estimate
is minimal is chosen as the final number of expamsi The final tree is then built according to
the chosen number of expansions on all the dake i best-first-based pre-pruning, in each
fold, when expanding a tree, only the previous trag to be kept and then the next “best” node
from the node list to split is selected in orderstwve computation time. Best-first-based post-
pruning does not suffer from the problem descriliedbest-first-based pre-pruning as it
considers all possible expansions regardless whathexpansion increases the error estimate
or not.
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4.4.4 Complexity of best-first decision tree inducbn

The best-first decision tree learning algorithm &mel two new pruning algorithms have been
discussed. Now, let us consider their computatieoahplexity using the big O notation. The
method used here is similar to the one used ineWiind Frank [57]: O(n) stands for a quantity
that grows at most linearly with n and G)(rstands for a quantity that grows at most
quadratically with n. Assume that a tree is builtaodataset which has n training instances and
m attributes, and the depth of the tree is on tideroof O(logn). In the building process, each
node requires effort that is linear in the numbérinstances, as all instances need to be
considered at each level, the amount of work fa attribute is O(nlogn). Also, at each node,
all attributes are considered, so the time comple{ibuilding the tree is O(mn x logn).

There is a difference between the time complexityuomeric attributes and nominal attributes.
In the case of all numeric attributes, the compyesl sorting instances for an attribute at the
root node is O(nlogn). If descendant nodes dellie Sorting order from the root node, the

complexity is still O(mn x logn).

In the case of all nominal attributes, at each rnibeebest subset of an attribute values to split
has to be found. Assume the number of values attibute is k. In the exhaustive search case,
the computation time for the best subset searchriattribute is'?* - 1 and in big O notation
this is O(2). As the tree is binary, the number of nodes is-Znat most and in big O notation
this is O(n), so the worst-case time complexitydarominal attribute is Ofg&). Thus, the time
complexity for building the tree is O(rfi9). In the heuristic search case, as the time redidor

the best subset search for an attribute becomés tbéktime complexity for building the tree is
O(kmn).

Let F be the number of folds. Let O(X) (where Xemsfto one of the three possible time
complexities described above) be the time compldgit building a tree. If best-first-based pre-
pruning or post-pruning are applied, as in eactt fotree needs to be built, the time complexity
for building trees in all folds would be FX andbig O notation it is O(X) because F is a small
constant compared to n. In each fold, an erromesé is computed for every node. In the worst
case, the number of nodes is 2n — 1 and in bigt@tina this is O(n). Thus the time complexity
for the estimates for all folds is F(2n — 1) andig O notation this is O(n). Obviously, there is
no difference between best-first-based pre-pruaimg) post-pruning because in the worst case
best-first-based pre-pruning needs to fully expdmtree. Thus, the computation time of the
whole process is O(X)+0O(n), which is O(X).

75



4.5 Thesis’ implementation conventions

After profiling the Java Weka code for a BF-Trea,rthe timing results showed that the most
time consuming operation was the calculation ofgplting criterion for the DT tree nodes.

These calculations are shown in figure 4.9 and #pmroximately consume the 99% of the total
BF-Tree algorithm runtime. Thus, the reconfiguradjstem implements the previous functions,

while the rest of the BF-Tree algorithm will stilin on software.
The conventions made in this MSc thesis are tHeviohg:

> While the processing of the nominal attributes den®(2n) time and the
numeric attributes O(nlogn) time, it is obvious tthhe calculation of the
splitting criteria for the nominal attributes is aflumore time consuming. Thus,
the hardware implementation is designed to exartfieenominal attributes,
while the numeric ones are left on software. Fdurel work and with a few
changes in the architecture, both nominal and nigmattributes can be
examined by the reconfigurable system.

» The goal of this dissertation is to compare thecetiens times of the original
software and the corresponding hardware implementafAs a result, some
available features of the BF-Tree construction meétlvere not taken into
consideration, although they can be considereduimre work in the initial
HW implementation. To be more specific:

» The pruning methods (post and pre-pruning) were ingplemented in
reconfigurable logic, as the software can easibcess the input data (for pre-
pruning) or the output decision tree (for the pmsiing feature) without any
significant overhead added.

» The examination of the nominal attributes followie £xhaustive search rules
in order to have a more precise decision tree ogetgin. Thus, the previously
referred heuristic functions were not implemented.

» The metric value to measure the impurity decrease @pecific node is
considered to be the gini gain. The informatiomgaan also be implemented
instead with minimal alterations to the originalpilemented architecture.
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5. Architecture

This section presents the FPGA-based first ardiitecof the Best First Tree construction
method. The architecture was implemented on a XWintex 5 FPGA Family Member Device.

The goal of the system is to compute the best (minm) Gini gain for all the possible values of
the examined attributes in order to find th&” Nplitting point and the splitting value of each
tree node. The proposed system also implementargaropattern architecture which computes
the frequency of the instances according to thkisscvalue that is used for the Gini gain

computation.

5.1 First system’s architecture

Figure 5-1 shows the overall proposed architectiira single BF-Tree construction system,

which consists of three subsystems.

1° top level gini
module

2" top level

Shift gini module
Register

PC |Gigabit Ethernet /O] | input_data

ini_gain
SubSystem gnLg

INVYH-290[d

I
U9 UliA putd

64" top level
gini module

—

Overall system architecture

Figure 5-1: The architecture of the FPGA-based BF-flee construction system

5.1.1 UDP/IP Core

The first subsystem is an efficient UDP/IP core REZ-FPGA communication. The Internet
Protocol version 4 (IPv4) is the most widely usetetnet Layer protocol and together with
IPv6 is at the core of standard-based internetwgrknethods of the Internet. Even in 2011,
IPv4 is still by far the most widely deployed Imtet Layer protocol, as IPv6 deployment is still
in its infancy. The combination of IPv4 with thedddatagram Protocol (UDP), represents the
optimal solution in terms of hardware resource memoents for data transmission between a
host PC and an FPGA board. Because of the compasaimall protocol overhead, UDP
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offers high transmission rates while—at the samme+i-requiring low programming overhead
on the PC side. Also, the programming interfacesUfbP are well documented and readily

available for all common operating systems.

Most modern FPGAs contain EMAC (Ethernet Media Asc€ontroller) blocks that offer
direct access to external physical layer (PHY) dewvion the board. A PHY is required for the
EMAC to connect to an external device, for exanmleetwork, a host PC, or another FPGA.
For example, one can deploy the Xilinx Core gemer&d configure and generate EMAC
wrapper files that contain a user configurable EtbeMAC physical interface, e.g., Mll, GMII
and SGMII in our case, and to instantiate Rocket&@al transceivers, clock buffers, DCMs
and generally all the necessary components. Xdisg provides an optimized clocking scheme
for the physical interface as well as a simple FIB@back example design which is connected
to the EMAC client interface.

Although the EMAC wrapper files greatly simplifyehusage of the EMAC, extra logic is
required to create packets that comply with Trarnspayer protocols and that will be accepted
by the Linux kernel, which is necessary for theiobmmunication between the FPGA and the
host PC. The Packet Transmitter Unit (PTU) can drenected directly to the EMAC client
interface, and also it allows the encapsulatiobBP packets within IPv4 packets (UDP/IP) by
using a very small fraction of hardware resour@s.an average-sized FPGA like the Virtex 5
LX110T, the UDP/IP core occupies less than 1% ef dlvailable slices and can operate at
frequency exceeding 125MHz, which is a prerequisitéchieving Gigabit speed. The UDP/IP
core is presented in [58] and it is available asromource code for download at:

http://wwwkramer.in.tum.de/exelixis/countlPv4.phghe implemented UDP achieves an

approximate measured 112 MB/s reception and semdiag

The UDP/IP core is used for the FPGA Block RAMstialization with the input dataset. The
convention made for this architecture is that theber of instances of each dataset is restricted
by the FPGA’s BRAM capacity. The memory's structifigure 5-2) is determined by the
following rules:

» Each examined instance consists of a maximum nuofl@&t nominal attributes plus a
class attribute, making a total of 32 attributesipstance.
» Each nominal attribute can take up to 64 possialees.

» The class attribute can take up to 8 possible galue
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Figure 5-2: The Block RAM'’s structure

5.1.3 Top level gini module

The second subsystem counts the items’ frequeani@galculates the Gini gain for each one of
the attributes’ values. The total architecture &insof 64 parallel machines that compute the
Gini gain for a given attribute value, in orderihcrease the throughput of the system and to
fully exploit the capabilities of the FPGA devicehus, in this architecture the parallelization is
accomplished in the examined values of a giverbatt, as 64 parallel machines produce

simultaneously the gini gains of th& tnaximum possible attributes’ value combinations.

The Top level gini module subsystem, as shown guife 5-3, consists of two main sub-
modules, the counter pattern module and the Gitm @edule. It takes as input the instances
value (attribute value + class value), the numkbemstances that will be examined and it

outputs the gini gain calculated by each attrilvatee combination.

Pri
Count Pattern |_s= Gini Gain Gini Gain
Module Pr Module

pat]

instance_value

lexamined_values]

Enable Counter
Pattern Module

attr_pos_value

. ContrOI Enable Gini Gain Module
num_instances N il

N top-level gini module

Figure 5-3: The implemented architecture for the Gini module

79



5.1.4 Counter pattern module

The counter pattern module, as shown in Figure éefhputes the instances’ frequencies in the
input dataset. It takes as input the instancegbate value as well as the corresponding class
value. The control unit, Figure 5-3, takes as infi& number of the possible values of the
examined attribute and it outputs all the possddmbinations of the attribute value that are
equal to gossible values

A simple way to calculate all the possible valuesmbinations of a given attribute is to
initialize a 64-bit counter (the maximum numbervafues per attribute) with ones and each

time the counter is decremented by one until the zelue is reached.

For example, in figure 5-4 the control unit hasduoed a combination of the attribute values 1,
4, 5, which will then be compared with the instdsestribute value.

64 bits

A

( L
0000000000....11001

attribute value 5 / \

attribute value 4 attribute value 1

Figure 5-4: An example of the control unit output

In case the outcome of the logic AND between tlstaimces’ attribute values and the examined
attribute values’ combination is greater than z¢he, R class value memory, Figure 5-5, is
written in one of the eight positions that the slaalue dictates. In the other case, thelass
value memory is written accordingly. Hence, in eachmory position, the written data are
equal to the number of times the class value ekistdl instances. After all the input data are
read — the total number of instances is equal ¢oetkamined instances (control unit) — the
values of each memory are added and multiplied adtth other in order to calculate the final

output of the module, according to eq. (2) — (5) :

i<num_ classes 4 num classes i<num_ classes <4 num classes

R@, X LG [] RO [] +6

i=0 i=0
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Figure 5-5: The implemented sub-system for the Couer pattern module

As shown in figure 5-6, the;Rnemory (and the;lcorrespondingly) holds the values of the R

times that the attribute’s examined value belomgthe examined values that came from the

control unit.
32 bits
( - 1

Ro
Ry

counting frequency

that class value i R;

oceurs

R7

Figure 5-6: Structure of the Ri memory

5.1.5 Gini gain module

The gini gain module, Figure 5-7, is responsibledalculating the gini gain for each sequence
of the corresponding four outputs (Equations (3)-ffom the counter pattern module. The
equation according to which the gini gain is cadtedl is given in Eq. (6). In order to simplify

the mathematical operations, the BFTree’s init@guation (section 4.3.1) was modified, so as
the minimum gini gain is kept each time, while e tsoftware version, the maximum gini gain

is the number that gives the splitting criterioreath tree node.
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Figure 5-7: The Gini gain module’s architecture

5.1.6 Find mini gini module

The final subsystem, Find Mini Gini module, Fig&, is a tree of comparators that takes as
input the Gini gains computed by the Gini modulé &inds the best Gini index for the®X
node’s splitting point. As referred above, the bgisti gain of this implementation is the
minimum calculated number, except for zero valuee Do the 64 parallel machines, the
number of comparators that are required in orddimtb the minimum number of the 64 gini
gains that occur from the corresponding calculateducts and sums is equal to 64 — 1= 63.
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Figure 5-8: The Find Min Gini module’s architecture

5.1.7 Implementation details
The mathematical operations made in this implentiemavere made with the FPGA'’s Digital

Signal Processors (DSPs).

A DSP is an onboard processing unit that providdsa-fast instruction sequences
(mathematical operations, comparisons), which amnsonly used in math-intensive signal
processing applications. The DSP units are widebdun a large number of devices, including
cell phones, sound cards, modems, hard disks ayildTVs. Single precision floating point
arithmetic(IEEE Standard 754) was used in thefthés architecture. The main reason that the
floating point arithmetic was used, was to keeghitlge accuracy of the operations needed in
the gini gain module calculation, as the final lestthe min gini gain computed — may change

with a possible loss in precision.

The latency for all the DSPs was the maximum pdessils well as their usage in the FPGA
board. Table 5-1 summarizes the latencies for treesponding mathematical operations and
the DSPs that each operation occupies. Both Virteod@rds, LX110T and SX240T that were
available to us, do not support the division operaind the conversion from integer to floating
point with the DSP units, so the FPGAs logic wasdu®r this reason.
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Table 5-1: Latency and DSP usage for arithmetic opations

The FPGA'’s Block RAMs (BRAMSs) were used in orderstore the BFTree’s implementation
input that comes from the UDP/IP core and the glapgioducts, sums and frequency counts.
The BRAM blocks in structural HDL are configuralmeemory modules that attach to a variety
of BRAM Interface Controllers and their utilizatioloes not require the board’s logic blocks, as
there are several Block RAMs embedded in each boahgre the total size varies from
0.65MB in the LX110T board to 2.26 MB in the SX246dard.

5.2 UDPI/IP architecture

In order to connect the hardware implementationctvhincludes both the BFTree and the

UDP/IP core implementation with the host PC viaHtleernet cable, a few changes were made
to the initial UDP/IP open source code. The ovdskdtk diagram of the full implementation is

shown in Figure 5-9. For the input/output of theéad@/from the FPGA, there are four modes
depending on the desirable data width. The offeedd width types are 8, 16, 32 and 64 bits for
a character, short integer, integer/single pregigioat number and a double precision float
number, respectively. In this architecture the B2laita width was used so as to fully cover

every input case.
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Figure 5-9: Overall system architecture

The basic changes to the initial UDP/IP core im@atation were made in the Ethernet control
unit. As mentioned above, the BFTree architectunesists of 64 parallel machines each of
which is responsible for examining the possibleigalof input attributes. The Ethernet control
unit waits for the Host PC to send a valid datg flaorder to receive the 32hit input. In order to
‘feed’ all the parallel machines with the approtwiaput, there are 64 states in the control unit,
Figure 5-11, that are responsible to send the veddnput to the R BFTree implementation.
At this point, it should be mentioned that in terofisecure synchronization, each one of the 64
states write the input data to FPGA BRAMSs and tihés read from the BFTree machine (fig.
5-10). Thus, 64 BRAMs are allocated in the FPGArtdar this scope. When all the input data
are sent, the host PC sends to the FPGA an endchmdniission signal and the processing
procedure starts.
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Figure 5-10: Overall system architecture

The processing includes the BRAM read of the apwading parallel machines and, of course,
the previously described procedures for the ginin galculation. When all the values are

examined, the BFTree machine sends to the Etheomtol (fig. 5-11) a finish signal and the

transmission process from the FPGA to the PC begins

The length of the transmission packet to the P&gjisal to 1400 bytes, whereas the length of the
receive packet from the FPGA is 200 bytes. The ifaitecontroller can handle packets up to
1470 bytes, but in order to reassure that the tdatamission is lossless, the number is reduced
by a few bytes. Moreover, the receive packet lenmgtielatively low, as the only information
that the host PC needs is the splitting attributel dhe corresponding attribute value

combination.
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Figure 5-11: Ethernet control module architecture

It should be mentioned that in case of fewer aitdb N than the maximum allowed number
from the implementation (64 in our case), the Hibercontrol module reassures the proper
reception of the input data by the FPGA. While Khgreceive state is reached, the control flow

continues to the processing states, while it bygmtse remaining 64 — N receive states.

The conversion of the software’s implementatioruinio a binary sequence that can be sent to
the BFTree’s architecture via the UDP/IP core, wade through a python script. The final
input data format is shown in Figure 5-12. Theiladte’s values as well as the class values are
concatenated to a single 32bit number in ordeedioice the transmission overhead. To be more
specific, as the class and the attribute valuehzase a maximum of 64 possible values, 6 bits
for each representation is adequate. The reasba 8#bit number is held instead of a 16-bit is
that for future expansion of the architecture, 32 floating point numbers could be sent,
representing an integer/real attribute value. Bin#the Ethernet controller sends the input data
to the FPGA until an FFFFFFFF value is met andiefioee, the transmission finishes and the

processing of the data by the BFTree machinesstart
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32 bits

#attributes
#instaces

#attributes <

#instaces
#class values

I

#attributes <

#class values
attribute’s possible value

I

#attributes <

attribute’s possible value
attribute id

[

#attributes

attribute id
attribute + class value
(1% bftree module)

attribute + class value
(last bftree module)

FFFFFFFF

Figure 5-12: Input data format

5.3 Second architecture

This section presents the FPGA-based second atthigéeof the Best First Tree construction
method. The architecture was implemented on twinXiVirtex 5 FPGA Family Member
Devices, the LX110T and the SX240T. The goal ofithplemented system is to compute the
best, the maximum in this occasion, Gini gain firtle possible values of the examined
attributes in order to find the® splitting point and the splitting value of eackeémode. The
proposed system is implemented in a different ggchire than the previously mentioned one,
as it exploits some characteristics of the BFTiensre implementation in order to have less
I/O demands, which adds a significant overheadhi dlgorithm’s execution time. In the

following sections, the implementation details vodl described.
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5.3.1 System’s architecture

Figure 5-13 shows the overall proposed architeatfira single BF-Tree construction system,
which consists of three main subsystems; Gigalieibiet I/O SubSystem, BFTree_8_attributes
and Find Max Gini module. The main differentiatiorade on this architecture vs. the first
architecture, is spotted on the BFTree_8_attribotedule, whose implementation details will

be described below.

@© 1St
S
— 3 BFTree_8_attributes
z module
—
>
PC |Gigabit Ethernet I/0 5l 2" o
— a ini_gain
SubSystem o} BFTree_8_attributes < gn-9
g > Q)
g z module <
g [0)
=
% 100
- BFTree_8_attributes
z module

Figure 5-13: The architecture of the FPGA-based BH+ee construction system

5.3.2 BFTree_8_ attributes module architecture

The BFTree_8 attributes module (fig. 5-14) consisfs two basic sub-modules; the
BFTree_1_attribute and the gini gain calculationdmie. In order to reduce the resources
needed for the basic BFTree module, the gini galoutation unit was extracted from the basic
BFTree machine, as it approximately occupies th# ™ the total resources needed. Thus,
each gini gain calculation unit corresponds to ERffiTree modules, allowing us to have a total
of 80 parallel machines in the overall architectuiithe algorithm’s parallelization is
accomplished by examining one attribute per BFmeelule, achieving a parallelization level
of 80 simultaneously examined attributes.
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As shown in Figure 5-14, four 8-1 multiplexer isspensible for ‘feeding’ the gini gain
calculation module with the proper correspondiruinvalues. The BFTree_1_attribute module
has a throughput greater than 8 cycles for produitie gini gain calculation module inputs, so

no synchronization problems will occur and no inpaitues will be lost.

mux control unit

1% BF Tree_1_attribute
module

2" BFTree_1_attribute
module L . L
) gini gain computation ginigain
module
1 BFTree_1_attribute module
8m BFTree_1—attribUte 2" BFTree_1_attribute module| &
module —_—
=2
=
%

8™ BFTree_1_attribute module

mux sel

BFTree_8_attributes module

Figure 5-14: The architecture of the BFTree_8_attthutes_module module

5.3.3 Gini gain computation module

In the second architecture, the gini gain inputgehghanged due to inaccurate results in case of
a zero input value. To be more specific, obsertregequation (6), it is obvious that with an R
and L class value equal to zero, the calculated gim gmialso equal to zero, which produces
divergent results and consequently a different BETwhen compared to the respective
software implementation. Thus, the new gini gaiat tbccurred after analyzing the original

software’s gini equation, (section 4.3.1), is eqoal

i<num_attributes i<num_attributes
2 2
64R > 64l
Ho H— i=0 i=0 —
= - - + — -
Glnl Galn i<num_attributes i<num_attributes
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o
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Ri_sum
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total_square_sum

total_sum

Gini Gain basic module

Figure 5-15: Gini gain basic module architecture

It should be mentioned that the software implenterichas been altered according to the new
gini equation in order to be fully compatible withe hardware implementation and the final
results (maximum gini gain, splitting criterion aatribute value combination) were identical

to the initial ones.

5.3.4 BFTree_1_attribute module
The BFTree_1 attribute module, Figure 5-15, cossist two main subsystems; control
memories and memories_plus_sum_products. The bgsits and the outputs of this module

are the following:

» Inputs:
» Start signal: This signal triggers the BFTree medul start the processing of

the input data. It comes from the Ethernet contnodule and it is activated
when the FPGA has received all the required inpfarination from the host
PC.
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New_data signal: This signal is activated when l&dv@2 bit input was read
from the UDP/IP core. It comes from the Ethernettadl module and it is used

in order to reassure the correct data receiving.

» Outputs:

start

i<num_attributes

Total_sum signal: This 32 bit signal holds the eaddi (L+R)(®),

™

1
o

whose calculation details will be discussed inftllewing section.

Total_square_sum signal: This signal holds the evaluof

i<num_attributes

Y, (645 +64R°)(9)

i=0

i<num_attributes

64R2 (20)
Square_sum signal: This signal is equal to i=0
i<num_attributes
> R@
Partial_sum signal: This signal holds the value of i=0 and

combined with the first three outputs, they conogtitthe gini gain module
inputs.

Done signal: This signal is triggered when the whalgorithm - including the
calculation of the last gini gain — finishes itseetion. It also informs the
Ethernet control unit to start the transmissiorthef calculated maximum gini

gain, the splitting attribute and the attributesdue corresponding combination.

LdEnt num instances

data_in

new_data

LdEn2 num classes

data_in
control memories LdEn3 possible values per atiribute total_sum
module data_in

data_in(32)

LdEn4
attribute id partial_sum
data_in

start

memories_plus_sum_products total_square_sum,
square_sum
done

wren_memories

BFTree_1_attribute module

Figure 5-16: BFTree_1_attribute module architecture
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5.3.5 Memories_plus_sum_products
The memories_plus_sum_products module (fig. 5-18nsists of six sub modules;
mem_4096_32, mem_64_32, square_sum_mem, squaremsaime, add_module and address

generator module.

When the start signal from the previously mentionashtrol unit is equal to 1, the
memories_plus_sum_products core starts to countfrbguency of each attribute value
(mem_64_32) and each attribute value with a specifiss value (mem_4096_32). Figure 5-17
shows the structure of the memories and their otsitdhe input data are the attribute value
concatenated with the corresponding class valuetheg come from the BRAMSs that are
initialized by the UDP/IP core, as described intisec5.2.

32 bits
[ i |
B sum class value 1 )
sum class value 2 32 bits
attribute1 : [ A
L sum clas.s value 64 =
'_ sum class value 1 Sum attr!bute 1
sum attribute 2
sum class value 2 -
attribute2 4 ’ sum attribute 3
L_ sum class value 64 64 attributes x 64

L classes = 4096
positions

sum attribute 64

sum class value 1

attribute64

sum class value 64

Figure 5-17: Mem_4096_32 and mem_64_32 structure

When the data transmissions has finished and alti#tta have been written in the two above
memories, the input data are read, the square sodulm and the add module calculate the
total_square_sum_signal, the square_sum_signal9e@0), the total sum_signal and the
partial_sum_signal (eq. 8, 11) respectively. Thais,the required inputs for the gini gain

calculation module will be generated accordinglttha attribute value combinations that come

from the address generator module as describdifollowing section.
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Figure 5-18: Memories plus sum products module streture

5.3.6 Address generator module

The Address generator module (Figure 5-19) is nesipte for generating all the possible value

combinations of a specific attribute. It takes rgsut the number of the possible values of each
attribute and it outputs the attribute value corabom, equal to 64 bits, one for each attribute
value and the square sum memory’s read addressvahéhat the described module generates

all the possible combinations is the following:

Generate Attribute
Combination Signal
(ACS)

wait for 70 cycles

start =1

Idle state

If LSB of tmp =1,
read the memory
address

Shift right tmp by
one position

address generator module

Figure 5-19: Address generator module architecture

A 64bit vector, the attribute_combination_signainialized with the N last bits equal to ‘1’,

regarding that the examined attribute has N passiblues.

Each bit position of the attribute_combination_sigoorresponds to the read address of the
square sum memory. Thus, with N right shifts to 8dbit signal, all the read addresses for a

specific  attribute value combination will be acgdr For example if the
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attribute_combination_signal holds the 000000....011¢alue, then the square sum memory
will read the positions 0, 2, 3 and 4 and its cgonding outputs will be multiplied
(square_sum_module) in order to produce the figaase _sum value, which is the gini gain

module’s input.

The attribute_combination_signal is decreased leyasmd the above procedure continues until it
reaches the zero value, which means that all thesilpe gini gain module inputs were

generated.

Finally, a few clock cycles after the last gini mdhput combinations, the done signal is
triggered and the Ethernet controller starts tasnait the BFTree’s implementation results to
the host PC.

5.4 Comparison of the two architectures

The two architectures described in sections 5.158dmplement the basic and the most time
consuming function of the BFTree algorithm; thersbimg of the best splitting criterion and its

corresponding splitting value. By finding this s$iatig criterion, the software can easily and
obviously in much less time, build the whole cléisation tree. There are a few differences

between these architectures that will be summairizéuis section.

As far as the total size of the input data is comed, the first architecture is restricted to a few
MBs, depending on the FPGA board. This happenstadke fact that all the instances to be
examined are initially stored in the BRAMs and thread from the BFTree control. On the
other hand, the second architecture has no réstriclver the input’s size, as when the total
number of the instances exceeds the memory’s #ieeBFTree controller reads the BRAM's

data and the same procedure continues until alh#tances are read.

Regarding the parallelization level of the algariththe first architecture has 64 parallel
machines that are processing the different ateibutalue combinations of the same attribute.
Thus, for each possible combination, the whole tinpemory should be scanned, adding a
significant overhead to the algorithm’s running ¢inThe second architecture has 80 parallel
machines and each machine calculates the giniafanspecific attribute by calculating all its
possible value combinations. This is feasible dug¢he information stored in the square sum
memory and the alterations made in the gini gailtutation equation. The above two

differentiations make the gini gain calculation gible without having to read the input data
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more than one time. As a result, for input datatws have a large number of attributes, the
second architecture has less processing time.

The above mentioned differences plus a few moréeimentation alterations are summarized in
table 5-2.

_ 1% architecture 2" architecture

#Parallel machines 64 80

Parallelization Attribute value Attribute
method combination

#Class values 8 64

#Attribute values 64 64

Table 5-2: Summary of the architectures’ basic chaacteristics
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6. Systems Performance

This chapter presents the performance of the sgstarhich are described in the previous
chapter, and compares them with the correspondifigvare implementation in the WEKA
platform. Moreover, a few more implementation dstaire discussed, such as the resource
utilization and the validation of the systems ie #PGA device. Finally, a straight comparison
between the two reconfigurable logic architectisemade in order to find the most suitable

system to be used.

6.1 Resource utilization

This section presents the resources’ utilizatiotath hardware implementations according to
the Place and Route report of the Xilinx ISE 1@dl.t The target board is a Virtex 5 SX240T
device and the package is FF1738. Table 6-1 surmesatiie resources that are utilized by these
architectures. Both architectures include the UBR#Are, implemented in [58].

1% architecture 2" architecture
Resource : : UDP/IP core
(64 parallel machines)| (80 parallel machines)
140,768/149,76
Slice Registers 138,542/149,760 (93%) 2,151/149,760 (1%)
(94%)
147,253/149,76
Slice LUTs (98%) 141,598/149,760 (95%) 1,899/149,760 (1%)
0

1,024/1,056 (97 620/1,056 (59% 0/1,056 (0%

BRAMs 41516 (1%) 72/516 (14% 21/516 (4%

Table 6-1: HW architectures’ resource utilization (*without taken into consideration the BRAMs utilization)

As shown in Table 6-1, the critical resource fa finst architecture is the slice logic utilization
It should be mentioned that the input dataset's $& not taken into consideration in the
BRAMSs utilization. Thus, a dataset of 2.30 MB is tiipper limit for the input’s size.

In the second architecture, where 80 parallel nmeshiare mapped in the FPGA device, the
critical resource is the logic that is used. Asvis explained in the previous chapter, this
architecture has no limitation on the input's sibe.both architectures, the UDP/IP core

resources, Table 6-1 in the last column, are rodtided.
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6.2 Architectures’ validation

In both architectures, several test cases were sbedvn in Table 6-2, in order to validate the
correct operation of the implemented systems. Tarioee specific, some of the examined
inputs were taken by the Weka's official site [5&hile the others were generated by the Weka
tool generator in order to have a more detailedagmh of the systems’ characteristics. For the
datasets that were generated by the Weka tooBdlyes distribution was used for the random
values that were assigned to each instance. A TaRBI presents, the datasets that were used
have a wide range of input variables (number ofamses, number of attributes, number of
possible values /attribute) and thus a safe estimaf the systems’ performance can be made.

. : #possible values
#instances #attributes .
attribute
9 4

Nursery 12960

Mushrooms 8124 23 8
Car 1728 17 2
Bayes_200_4_ 16 200 4 16
Bayes 200 8 16 200 8 16
Bayes 200 16 16 200 16 16
Bayes 200 32 16 200 32 16
Bayes 200 64 16 200 64 16
Bayes 100 4 4 200

Bayes 100 4 8 200

Bayes 100 4 16 200 4 16
Bayes 100 4 32 200 4 32
Bayes_100_32_16 100 32 16
Bayes_200_32_16 200 32 16
Bayes 500 32 16 500 32 16
Bayes_1000_32_16 [Kelee] 32 16
Bayes_5000 32 16 [esielele) 32 16
Bayes_10000_32_16 jKele/e[o] 32 16
Bayes 100 4 4 100 4 4
Bayes 250 8 8 250

Bayes 500 16 16 500 16 16

Datasets

Table 6-2: Input datasets and their characteristics
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In all the datasets used, the splitting values Iiodlh systems produced wadentical to those
of the java software implementation and as a reheltresulted decision tree was the same as
the one produced by the Weka tool.

6.3 Performance of the implemented hardware archittures

In this section, the performance of both previoudlgscribed architectures is analyzed.
Moreover, a straight comparison between the javchthe hardware implementation running
times is made, as long as a comparison of the ésonfigurable systems’ running times.

All the times that are mentioned in the tablestheemeasured performance on actual designs,
completed and downloaded in the respective FPG#opia, and with 1/O accounted for. The
Weka Java code for the BF-tree construction code exacuted on a 4-core Intel Xeon E5430
server with 12 GB RAM and Ubuntu 8.1 OS. The preu®s system, including the Gigabit
Ethernet I/O subsystem is clocked at 102 MHz arfiNIRiz for the ¥ and the ' architecture
respectively.

Measured HW I/O Measured HW 1/O
HW time overhead HW time overhead

SW

Datasets execution . . . .
1%t arch. 1% arch. 2" arch. 2" arch.

time (sec)
(sec) (C=9) (CE9) (C=9)

Nursery 1.050 0.241 0.024 1.532 0.096 0.265 1.628
Mushrooms 1.220 0.872 0.026 2431 0.104 0.898 2.535
Car 0.140 0.001 0.002 0.592 0.080 0.003 0.672
Table 6-3: Performance of BFTree systems on datasefrom [52]
After running the datasets taken from [52], thecei®n time results showed that for the first
architecture a speedup of 1.3 to 46.6 times wasewaeth, while in the second architecture the
running time was increased from 1.5 to 5 timesweler, the above datasets are not indicative
as the original data mining datasets, as theyatreestricted to a size of just a few bytes.
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Figure 6-1: Speedup of BFTree systems on dataseterh [52]

The software performance is dependent on three astors; the number of instances, the
number of variables and the number of possibleegper each variable of the input dataset.
Therefore three different types of real time tdstsk place and an additional one with three
variables (number of attributes, number of possilslieies, number of instances), showing the

performance of the BFTree systems on different expsatal cases.

Measured | HW I/O Measured | HW I/O

SW
HW time overhead [ HW time overhead

Datasets execution

1%t arch. 1% arch. 2 arch. | 2™ arch.

(sec) (sec) (sec) (sec)

time (sec)

Bayes_100_32_16 [l 4.760 0.001 1.478 0.003 4.761 1.481
Bayes 200 32 16 [REIENY 10.614 0.002 2.891 0.008  10.616  2.899
Bayes 500 32 16 | kbl 26.554 0.005 6.683 0.019 26559  6.702
SRV 1574.30  76.305 0.011 12.997 0.047  76.316  13.044
SRV | 10765.32 | 358.185  0.071 61.996 0.285  358.256  62.281
SRV 2532358 788.530  0.149 120.668  0.596  788.679 121.246

Table 6-4: Performance of BFTree systems (variableium of instances)

Table 6-4 shows theeal time measurementdor those test cases that the number of instances
increases while the other two “variables” retainb&. The performance speedup that the
BFTree systems achieve vs. the software implementaaries from 16.8x to 32.1x for the first
architecture and 54.1x to 208.8x for the secontitcture, as shown in Figure 6-2.
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Figure 6-2: Performance of BFTree systems (variablewum of instances)

Measured [ HW I/O Measured | HW I/O : .
SW : . Total time | Total time
. HW time | overhead| HW time | overhead . ’
Datasets execution . . . 1% arch. 2" arch.
: 1% arch. 2" arch. | 2" arch.
time (sec) (sec) (sec)
(sec) (C=9) (C=9)

Bayes_100_4 A8 N0 3.0x10°  3.8x10° 1.1x10° 1.5x10° 6.8x10° 2.6x10°
Bayes_100_4 SEEENI 6.1x10*  3.8x10° 5.1x10° 1.5x10° 6.4 x10° 5.2 x10°
Bayes_100_4_14 XLkl 2710  3.8x10° 3.424 1.5x10" 2.710 3424.00
SV TE 90729.000 12976 3.8x10°  211106.000 1.5x10"  12976.00 211106.00

Table 6-5: Performance of BFTree systems (variablenum of possible values)

Table 6-5 shows the performance of the implemestiedem when the number of possible

values per variable increases. The reduction oke#geution time can be increased by 7 times
(1*' architecture) for a dataset that its software etie@c takes more than 25 hours. On the other
hand, for the second architecture, the system’siingntime is increased due to the small

number of instances that are used in these datasets

The reason for the performance decrease in thendesr@hitecture is that it is independent of
the number of instances that are examined, and tbuglatasets with a few instances the
performance drops significantly when compared édbrresponding software implementation.
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Figure 6-3: Speedup of BFTree systems (variable: muof possible values)

Measured Measured | HW 1/O
HW time | overhead| HW time | overhead
1%t arch. 2" arch.

(sec) (sec)

Datasets execution

time (sec)

Bayes_200_4 16 " GHeE0) 0.404 1.1x10° 3.241 4.4x10° 0.404
Bayes_200_8_16 [WLE:N] 0.994 2.8x10* 3.245 1.1x10° 0.994 3.246
Bayes 200_16_16 i h=KD) 3.012 7.5x10° 3.252 3.0x10°  3.013 3.255
EEVCZO 7R 203.00 10.614  1.9x10° 3.252 7.6x10°  10.616  3.260
Bayes_200_64_16 i L:Hi) 34.114  3.5x10° 3.260 0.014  34.118 3.274

Table 6-6: Performance of BFTree systems (variableum of attributes)
Table 6-6 shows the performance of the BFTree systevhen the number of attributes
increases and the other two “variables” remain Istalbhe performance speedup of both
architectures can reach up to 26 times for thedingl 91 times for the second architecture faster
than the official software implementation. It shbble mentioned that th&“Zrchitecture offers
parallelism in the attributes, as up to 80 attelsutan run simultaneously, offering a significant
improvement in the system’s performance. As a teslé running time of the all the five
datasets in table 6-6 remains stable regardleg® @fttributes’ number.
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Figure 6-4: Speedup of BFTree systems (variable: mu of attributes)

Measured | HW I/O | Measured| HW I/O
HW time | overhead| HW time | overhead

SW

Datasets execution . . . .
I*arch. | 1*arch. | 2™ arch. | 2" arch.

(sec) (sec) (C=9) (sec)

Bayes_100 4 4 0.060 3.0x10°  4.0x10° 1.1x10*  1.5x10* 7.0x10° 2.6 x10’
Bayes_250_8_8 0.790 0.005 0.001 0.009 0.002 0.006 0.011
Bayes_500_16_16J k<L) 7.973 0.003 6.918 0.009 7.976 6.927

Vs el el 1574.300 76.305 0.011 12.997 0.047 76.316 13.044

Vs sllele e il 10765.320 358.185 0.071 61.996 0.285 358.256  62.281
=RV elelelee il 25323.580  788.530 0.149 120.668 0.596 788.679  121.246

Table 6-7: Performance of BFTree systems (variablenum of attributes, num of possible values)

time (sec)

Table 6-7 shows that when all the dataset varialegradually increased, a speed up from 20-
857 times can be achieved in the first architectwtdle in the second a speed up from 36 to
230 times. For the dataset with 10000 instances,stétond architecture offers a significant
running time drop fronY hours in software to the impressive 2 minutes the reconfigurable

system.
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Figure 6-5: Speedup of BFTree systems (variable: mu of attributes, num of possible values)

As Tables 6-4 — 6-7 show, the total time for theGRFbased implemented system, including
the 1/0 overhead, ranges from 6.8X1€kconds to 3.6 hours for th& drchitecture and 2.6xT0
seconds to 59 hours for th& Architecture, while the software execution timeges from 0.06
seconds to 25 hours. The main factor that afféesunning time of the systems is the increase
of the number of input instances being examinedthadorresponding number of attributes of
each instance. Furthermore, the increase of thsilpesvalues of each attribute significantly
affects the software running time, as the numbeétestions executed in order to calculate all

the possible values is exponentially augmented.

6.4 Quality performance evaluation of the two implenented systems

In this section, a final evaluation of the two implented systems will be made, as well as an

examination of the test case scenarios that bédbseach system.
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Figure 6-6: Speedup of the 2nd BFTree system wheompared with the 1st architecture (the datasets are
placed in ascending order as far as their SW exedah time)

The performance speedup that the BFTree systemachieve vs. the official software

implementation varies from one order of magnitudeaialmost three orders of magnitude for
the real time measurements on different naturesdegalt is important to mention that the
above Tables show that the implemented systemdreamnatically reduce the execution time of
building the decision tree model from one day teo8rs. Finally, as figure 6-6 shows, the first

architecture is proposed for datasets with a festaimces (up to 100) or for datasets with
possible values per attribute up to four.

On the other hand, for datasets with a large nurabestances, combined with possible values
per attribute more than four, the second architect@n achieve significantly better running

times when compared to both the software implentiemtaand even to the first architecture.

Thus, taking into consideration the above obsemaati adynamically reconfigurable system

which utilizesthe first architecture whethe number of instances or the possible values per

attribute is minimaland thesecond architecture for cases with huge datasetfansas the
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number of instances, or high dimensional datasethh offer an optimal performance in the

construction of the decision tree.
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Figure 6- 7: Quality performance evaluation of thewo architectures (variable: num of parallel machires)

As figure 6-7 shows, the performance of both aethitresincreases linearlyaccording to the
number of parallel machines. Thus, suppose havimgpad that can map 400 parallel machines,
the second architecture can offer double speedgmwbmpared to the first architecture, while
simultaneously it can offer a speedup of approxiya® times when compared to the already
implemented architecture that maps 80 parallel imash

In the previous section, the performance of the implemented systems was examined by
altering one of the three input variables — nundfénstances, number of attributes and possible
values per attribute — while keeping stable theeithRegarding the number of attributes and
the number of possible values, all the possible@tes were taken into consideration as long
as the systems can handle up to 64 possible valug$4 attributes. On the other hand, the
systems’ behavior while increasing the number sfances was not examined, as the datasets
that ran on the FPGA device were up to 10,000 imsts. Figure 6-8 makes a projection of the
performance of both systems regarding the numbemstinces, based on the real time
measurements that were made from the above medtiaiasets.
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Figure 6- 8: Quality performance evaluation of thewo architectures (variable: num of instances)

As figure 6-8 shows, for very large datasets, #wmed architecture offers a significant speedup
increase of the measured running time that canhragr to 8 times greater than the
corresponding speedup offered by the first architec
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7. Conclusions and Future work

Concluding, this Master of Science thesis workedaonelerating the construction of DTC
models using reconfigurable logic. It should be tioered that decision trees can be used in
many different disciplines including medical diagi® cognitive science, artificial intelligence,
game theory, engineering, and of course data miiagexample, in medical decision making
(classification, diagnosing, etc.) there are maityations where decisions must be made
effectively and reliably. Conceptual simple deaisimaking models with the possibility of
automatic learning are the most appropriate forfopeing such tasks. Generally, decision

learning is ubiquitous in:

medical diagnosisdentify new disorders from observations

loan applicationspredict risk of default

- prediction: climate, stocks, etc.) predict future from currentl past data

speech/object recognitiofrom examples, generalize to others

Decision trees are a reliable and effective degisioaking technique that provide high
classification accuracy with a simple representatid gathered knowledge and are used in
different areas of decision making. Thus, this weak be expanded into the above mentioned

fields and therefore effectively accelerate varidasision tree construction based applications.

This Master of Science thesis presents two FPG&damplementations of the widely-used
Best First Decision Tree (BF-Tree) classificationethod. As described above, the
implementations offer a performance speedup thatreach up to three orders of magnitude
when compared to WEKA's Java code execution timeacstate-of-the-art multi-core CPU.

Moreover, the implemented system is at least twimtio times faster than previous works that
solve the same problem for input datasets that ddrhage execution times. It is important to
mention that the proposed architectures can oftetnihigher performance vs. official software

for higher dimension input datasets that are maisbd in common data mining applications.
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This project is almost a complete work whereasettage some points that can be extended in
order to achieve better results and performancdéovBe¢here are some ideas that can be
proposed to extend the subject of this work; fitlsg replacement of the UDP/IP core with a
core (i.e. PCI-Express) that offers higher transiais I/O rates to and from the FPGA would

offer an improvement in the system'’s performance.

Moreover, in this work the inputs with nominal vatuare processed by the implemented
system, while the numeric values from the existjaga software implementation. An
implementation extension to handle the numeric eslin reconfigurable logic would offer a

more integrated and less time consuming system.

The main goal of this thesis was to study and memmore generic decision tree construction
method and not to simply implement a decision ffdelis, as a result, a few capabilities that the
DTC method offers were not taken into considerati@onsequently, a pre/post pruning
processing of the decision tree or a more efficireahagement of the missing values that may
occur in the input dataset, would have also offeaednore complete system. Also, the
implementation of the whole tree in the reconfigpuedogic, without having the interference of
the software, would have resulted in a more efficeembedded system. Finally, after studying
and analyzing both implemented architectures, ahifify of dynamically reconfiguring the
FPGA device to swap between the two architectusggniding on the input datasets, would
have resulted in much less running time from thedware, thus totally outperforming the

existing software implementation.
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