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Abstract

This work attempts to extract a viewer’s emotion from the three modalities

of a movie: audio, visual and text. A major obstacle for emotion research

has been the lack of appropriately annotated databases, limiting the po-

tential of supervised algorithms. To that end we develop and present a

database of movie affect, annotated in continuous time, on a continuous

valence-arousal scale. Supervised learning methods are proposed to model

the continuous affective response using hidden Markov Models and low-level

audio-visual features and classify each video frame into one of seven discrete

categories (in each dimension); the discrete-valued curves are then converted

to continuous values via spline interpolation. A variety of audio-visual fea-

tures are investigated and an optimal feature set is selected. The potential

of the method is verified on twelve 30-minute movie clips with good pre-

cision at a macroscopic level. This method proves not suitable to process

subtitle information, so we explore the creation of a textual affective model,

starting with a fully automated algorithm for expanding an affective lexi-

con with new entries. Continuous valence ratings are estimated for unseen

words under the assumption that semantic similarity implies affective sim-

ilarity. Starting from a set of manually annotated words, a linear model is

trained using the least mean squares algorithm. The semantic similarity be-

tween the selected features and the unseen words is computed with various

similarity metrics, and used to compute the valence of unseen words. The

proposed algorithm performs very well on reproducing the valence ratings

of the Affective Norms for English Words (ANEW) and General Inquirer

datasets. We then use three simple fusion schemes to combine lexical va-

lence scores into sentence-level scores, producing state-of-the-art results on

the sentence rating task of the SemEval 2007 corpus.
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Chapter 1

Introduction

1.1 Movie modalities

This thesis details our work on emotion recognition aimed primarily at movies. The

work can be split roughly into two parts. The first part focuses on extracting emotion

from a movie’s audio, with the video and subtitle modalities taking the back seat. To

that end we developed a dataset containing clips from popular movies and annotated

them in the appropriate way. We performed analysis and validation of this dataset and

then performed supervised classification experiments on it. We selected the appropriate

models and features and added video and subtitle features.

The inclusion of subtitle data proved more challenging and the second part of this

work is dedicated to the extraction of affect from lexical units: words and sentences.

Virtually all methods of text affect extraction work hierarchically, creating ratings for

words, then merging them into sentences and beyond that into larger units. This is

also the methodology we pursued: we devised a method of creating word ratings and

combined those ratings into sentence ratings. These methods, though they did achieve

very good results on every other task we applied them to, never worked well enough on

subtitles to warrant the next logical step: exploration of fusion strategies.

1.2 Contribution

Contributions of this work:

1



1. INTRODUCTION

• The first ever movie database with continuous time and scale affective annota-

tions, created as part of a bigger project in collaboration with the CVSP lab at

the National Technical University of Athens.

• The first ever experiments on supervised emotion tracking, using the above database.

• A new and completely general method of affective lexicon expansion.

– No specialized resources (ontologies) or human intervention (seed word selec-

tion) are required: only a starting lexicon and a large corpus (web), making

it infinitely generalizable and particularly well suited to application in lan-

guages other than English.

– It can be adapted so as to be effective regardless of available resources,

corpus nature, type of queries etc.

• An extremely large lexicon containing over 120,000 words, created with the above

method.

1.3 Publications

This work has, so far, resulted in three published conference papers:

1. Nikos Malandrakis, Alexandros Potamianos, Giorgos Evangelopoulos, Athanasia

Zlatintsi, “A supervised approach to movie emotion tracking”, Proceedings of

ICASSP, May 2011

2. Nikos Malandrakis, Alexandros Potamianos, Elias Iosif, Shrikanth Narayanan,

“Kernel models for affective lexicon creation”, Proceedings of Interspeech, August

2011

3. Nikos Malandrakis, Alexandros Potamianos, Elias Iosif, Shrikanth Narayanan,

“EmotiWord: Affective Lexicon Creation with Application to Interaction and Mul-

timedia Data”, MUSCLE International Workshop on Computational Intelligence

for Multimedia Understanding, December 2011

We are also in the process of authoring a journal article.

2



1.4 Outline

1.4 Outline

The organization of this thesis a slightly unconventional: it is structured as two papers,

mostly because it is actually composed of a union and expansion of our published and

future papers.

Chapter 2 details the part of our work that targeted movies specifically, including

all experiments using audio-visual information as well as the initial experiments in

including subtitle information, that confirmed it would require significantly more effort.

Chapter 3 details the part of our work that targeted lexical units, starting from

words, moving on to sentences and finally the subtitles of our movies.

Each chapter is self-contained, with it’s separate sections on prior work, experimen-

tal procedure and analysis.

Chapter 4 brings together the conclusions from both parts of our work and looks

at the future work required to proceed in each aspect individually, as well as merge the

findings into a three-modality model for movie affect.

Finally, the appendices include results from experiments run along the way, includ-

ing the analysis of movie affective annotations, an attempt to identify relations between

cause and effect (event and affect) and some extra (failed) audio-visual experiments.

3
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Chapter 2

Movie Affect∗

2.1 Introduction

Emotion recognition has been a very active field in the past years, since emotional

information is highly valuable in applications ranging from human-computer interac-

tion to automated content delivery. Emotion is of particular interest to content delivery

systems that provide personalized multimedia content, automatically extract highlights

and create automatic summaries or skims. The motivation behind using such technol-

ogy is simple; humans pick content (movies, music) based on its affective characteristics,

therefore a system designed to deliver it should have access to such data. Furthermore,

systems aimed at highlight extraction/summarization require detailed representations

of emotion in a scalable domain, as well as, information of the temporal dynamics of

emotion. The process of extracting such information is usually referred to as emo-

tion tracking and it is, ideally, a continuous-time continuous-scale representation of the

affective content of a movie. A suitable continuous-scale representation is the dimen-

sional representation of valence-arousal, shown in Fig 2.1 This two-dimensional repre-

sentation is becoming increasingly popular due to its flexibility and high descriptive

power, but also because the representation of emotion in a Euclidean space allows for

simpler general-purpose analysis and recognition algorithms. In addition to the two-

dimensional valence-arousal model, the three-dimensional valence-arousal-dominance

model (or valence-arousal-tension for music) is also popular. In the field of affective

multimedia content analysis it has been shown that the two-dimensional model is ade-

∗Parts of this chapter have appeared in [33]

5



2. MOVIE AFFECT
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Figure 2.1: Illustration of the 2-D dimensional effect model.

quate to represent the range of emotions experienced by viewers/listeners [14]. Adding

time as a third dimension, the affective content is represented as two continuous signals,

the combination of which can yield an emotional state at any point within a multimedia

stream.

There has been very little prior work towards emotion tracking in movies [21], with

most researchers instead focusing on the more typical target of classifying large movie

segments to a small number of distinct categories [27]. In all cases research has focused

in narrow domains, such as specific movie genres [59]. To our knowledge, there has never

been an attempt to apply supervised learning techniques to continuous-time emotion

tracking in movies. A variety of models have been used to classify affective content,

including Gaussian Mixture Models (GMMs), Hidden Markov Models (HMMs) and

Neural Networks (NNs). The features used are inspired by the ones used to characterize

the modalities that make up a movie; timbre and rhythm to characterize music [4], color

and motion to characterize video [60], energy, short-time spectral envelope and prosodic

features to characterize speech [55].

One of the most important obstacles facing research in movie emotion and more

particularly emotion tracking is the lack of movie databases annotated in an appropriate

fashion, which probably explains the limited use of supervised techniques. As such,

one of our targets was the creation of such a database, containing emotional responses

6
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2.2 Database

annotated as continuous curves. Section 2.2 describes the creation of such a movie

database of affect. In Section 2.3, we implement supervised learning techniques to train

a classifier based on HMMs in order to perform emotion tracking, using a variety of

audio-visual features. Experimental results are presented in Section 2.4 and conclusions

in Section 2.5.

2.2 Database

Before describing the database, it is important to distinguish between three different

“types” of movie emotion; intended, expected and experienced emotion. Intended emo-

tion describes the emotional response that the movie attempts to evoke in its viewers,

experienced emotion describes the emotion a user actually feels when watching the

movie, while expected emotion is the expected value of experienced emotion in a pop-

ulation. Some prior research has assumed that intended and expected emotion match

[21], however it is easy to see that a movie can be unsuccessful in conveying the desired

effect. In fact the degree of effectiveness with which a movie creates the desired emo-

tion in the viewer is a basic criterion humans use to assess movie quality. Our system

attempts to predict intended emotion, however expected emotion is also desirable, since

it can potentially be used as a basis for personalized predictions of experienced emo-

tion [57]. This distinction is important for movie selection and annotating procedure

definition.

2.2.1 The data

This emotional database was created as part of a larger project aiming at annotating

movie data with affective, sensory and semantic cues. This is a joint project devel-

oped by the Technical University of Crete and the National Technical University of

Athens, designed to be used by movie summarization systems such as that described in

[17]. The database consists of contiguous thirty-minute video clips from twelve movies,

featuring their visual, aural and textual data (subtitles). The movies selected are the

ten winners of the Academy Award for best picture for the years 1998-2007 and two

award winning animation films, namely; “Shakespeare in Love”, “American Beauty”,

“Gladiator”, “A Beautiful Mind”, “Chicago”, “The Lord of the Rings: The Return

of the King”, “Million Dollar Baby”, “Crash”, “The Departed”, “No Country for Old

7



2. MOVIE AFFECT

Men”, “Ratatouille” and “Finding Nemo”. Using the Academy Award winners list is

one way of ensuring the high quality of the movies by a well-acknowledged criterion.

One expected effect of this perceived quality is the higher correlation between intended

and expected emotion; a high quality movie is expected to be successful in creating the

desired emotional experience.

2.2.2 Annotating Procedure

Annotation was performed on two levels; intended emotion was annotated by experts,

while volunteers annotated their individual experienced emotion, from which we derive

the expected emotion. The annotations were performed using the FEELTRACE [13]

emotion annotation tool. The participants track the annotated emotional response by

moving the mouse pointer on a square two-dimensional area representing the valence-

arousal emotional space, in real-time as they were watching the movie. The user in-

terface is shown in Fig 2.2. So far seven volunteers, 20-30 years old, two female and

five male have performed the annotation of experienced emotion. All annotators eval-

uated all clips, with five (out of seven) performing the entire process twice for intra-

annotator agreement validation. Furthermore, annotators were presented with their

results (curves) and their interpretation in textual terms in order to validate them and

filled a questionnaire (shown in Fig 2.3 ) containing questions regarding their prior

knowledge of the movies, their opinion of the movies and clips in regards to informa-

tiveness and enjoyability, their own annotating performance and their own perception

of some suspected phenomena. Expected emotion is derived from the individual experi-

enced emotion annotations using a correlation-based rejection scheme similar to that in

[20] with particularly uncorrelated annotations being rejected as outliers. An example

of the iterative rejection process is shown in Fig 2.4.

Validation of the database was done via analyzing the disagreement between users

as well as between the users and the intended emotion against the factors suspected of

leading to such disagreement from their answers to our questionnaires.

2.2.3 Annotation Results

The result of each annotation is a pair of curves, one curve for arousal and one for

valence. These curves have values in the range [−1, 1] for each dimension and are

down-sampled to match the video rate of 25 fps. Overall, including duplicates, 144

8



2.2 Database

Figure 2.2: FeelTrace interface.
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• before the annotation

– had you watched the movie? (binary)

– if yes

∗ how many times? (number)

∗ was the last time relatively recently? (binary)

∗ did you recall a lot of details? (such as the order of scenes) (binary)

∗ did you recall at least basic elements? (such as the identity of the hero)

(binary)

∗ did you enjoy it? (binary)

∗ are you bored of it? (binary)

– if not

∗ do you believe the clip familiarized you regarding basic plot elements?

(binary)

• first annotation

– did you experience any difficulty in following the plot? (binary)

– was there significant time delay until you understood what was happening

so you could enter it in feeltrace? (binary)

• second annotation

– how many days passed between the first and second annotations? (number)

– was there a significant change in your opinion of the clip’s contents, now

having a more complete understanding than the first time? (binary)

– did you observe your opinion of some scene to be affected by the knowledge

of what will happen next? (binary)

• overall

– did you enjoy the clip? (binary)

– were you bored by the clip? (binary)

Figure 2.3: The questions answered by our participants

10
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STEP 1

user1 user2 user3 user4 user5

user1 1 0.11 0.63 0.43 -0.28

user2 0.11 1 0.01 0.21 0.36

user3 0.63 0.01 1 0.5 -0.39

user4 0.43 0.21 0.5 1 0.11

user5 -0.28 0.36 -0.39 0.11 1

average 0.22 0.17 0.19 0.31 -0.05

=⇒ user5 rejected

STEP 2

user1 user2 user3 user4

user1 1 0.11 0.63 0.43

user2 0.11 1 0.01 0.21

user3 0.63 0.01 1 0.5

user4 0.43 0.21 0.5 1

average 0.39 0.11 0.38 0.38

=⇒ user2 rejected

STEP 3

user1 user3 user4

user1 1 0.63 0.43

user3 0.63 1 0.5

user4 0.43 0.5 1

average 0.53 0.57 0.47

=⇒ process finished

Figure 2.4: Rejection process example. The tables show pair-wise correlation coefficients

and their averages, which are used to select which will be rejected.
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Figure 2.5: Quantization boundaries.

annotations of the experienced emotion and 36 annotations of intended emotion were

produced, from which twelve annotations of expected emotion and twelve annotations

of intended emotion, one of each per movie clip, were created. Fig 2.6 shows two-

dimensional histograms of our annotations for intended and expected emotion. The “V”

shape is very similar to that shown in [14] and [21] regarding the response to emotional

media, which is reasonable given the similar context. Fig 2.7 shows some sample frames

taken from the extremes of the two emotional dimensions. Table 2.1 shows agreement

statistics in the annotations of experienced emotion. The low agreement is expected,

since the participants annotate their own, very subjective, affective response. It is worth

comparing these statistics between the two dimensions; distance metrics score higher

for valence, while correlation is higher for arousal. That means that agreement in rough

terms (“positive”, “exciting”) is higher for valence than arousal, yet perception of the

dynamics (“more”, “less”) is more uniform for arousal. Factors expressing the viewer’s

opinion alter agreement as expected; for example, users that like a particular movie

agree more with each other and with the intended emotion. Expected and intended

emotion end up being highly similar, with correlation coefficients of 0.74 for arousal

and 0.70 for valence. Before using for classification, the expected and intended emotion
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Figure 2.6: Joint valence-arousal histograms for (a) intended and (b) expected emotion

(darker signifies higher value).

Table 2.1: Inter-annotator agreement.

metric valence arousal

correlation 0.293 0.409

difference of means 0.288 0.411

mean abs. difference 0.445 0.513

Krippendoff’s α ordinal (7 levels) 0.308 0.152

Cohen’s k (7 levels) 0.035 0.029

curves are quantized into seven equi-probable bins, using the cumulative distribution

function estimated via Parzen windows. The category boundaries are shown in Fig 2.5.

While the 7 levels per dimension are equi-probable, the 7× 7 = 49 areas are not.

2.3 System Design

Emotion is a dynamic process that evolves rapidly through time. In order to capture the

dynamic nature of emotion, we choose to use hidden Markov models that are popular

in time series modeling and have been shown to work to model emotion [27]. The next

important modeling issue is how to handle the two affective dimensions. As shown in

Fig 2.2, arousal and valence are correlated. A way to exploit this relation would be

either to model arousal and valence jointly, e.g., using 2-D HMMs, or to use a series

of classifiers, e.g., the output of the arousal classifier being (one of) the input(s) of the

13
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(a) (b)

(c) (d)

Figure 2.7: Sample frames for: (a) Low arousal, (b) High arousal, (c) Very negative

valence, (d) Very positive valence.

valence classifier. In this paper, we choose to use independent classifiers, one for each

dimension, which are also evaluated separately.

HMMs using various numbers of states and Gaussian components were evaluated.

We found that increasing the number of states is more beneficial than increasing the

number of Gaussian components, particularly when using short-time spectral envelope

audio features, e.g. Mel Frequency Cepstral Coefficients (MFCCs), presumably because

longer models better capture complex temporal interactions between low level features

and emotion. Results are presented next for recognizers that model each affective cate-

gory with a left-to-right HMM with 32 hidden states and a single Gaussian distribution

per state. Inter-category transitions are modeled with a bigram language model that

only allows transitions between adjacent categories. Humans don’t change affective

levels very fast and the language model probabilities are assigned a large exponential

weight (40) compared to the acoustic-visual features (1). This weighting results also

in smoother curves. The models are trained using the Baum-Welch algorithm and

classification is achieved via the Viterbi algorithm (using the HTK speech recognition

package).

2.3.1 Audio features

A variety of features have been investigated broadly separated into three categories

(modalities): audio, music and visual features. The low level audio features tested

were: fundamental frequency (F0), intensity, log energy, signal zero crossings rate,

14
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Table 2.2: The effect of number of states and number of Gaussian components on the

performance of arousal and valence prediction. The metrics are: accuracy, accuracy±1 and

correlation of the discrete curve and Mean square error and correlation of the continuous

curve.

arousal

states Gaussians ACC ACC±1 D.CORR MSQE C.CORR

3 3 0.22 0.53 0.34 0.20 0.46

1 1 0.19 0.42 0.18 0.41 0.28

1 2 0.23 0.50 0.33 0.27 0.45

1 4 0.22 0.50 0.32 0.25 0.44

1 8 0.22 0.51 0.32 0.24 0.44

1 16 0.22 0.52 0.33 0.23 0.45

1 1 0.19 0.42 0.18 0.41 0.28

2 1 0.19 0.49 0.23 0.24 0.36

4 1 0.23 0.52 0.32 0.23 0.43

8 1 0.22 0.54 0.38 0.21 0.48

16 1 0.23 0.55 0.40 0.21 0.49

32 1 0.24 0.57 0.43 0.20 0.51

64 1 0.23 0.57 0.43 0.21 0.50

8 2 0.23 0.56 0.40 0.19 0.51

8 3 0.21 0.55 0.39 0.19 0.51

16 2 0.22 0.55 0.43 0.20 0.53

16 3 0.22 0.56 0.44 0.19 0.53

valence

states Gaussians ACC ACC±1 D.CORR MSQE C.CORR

3 3 0.20 0.51 0.10 0.30 0.16

1 1 0.16 0.43 -0.01 0.40 0.03

1 2 0.18 0.45 0.03 0.40 0.04

1 4 0.18 0.48 0.06 0.32 0.11

1 8 0.20 0.50 0.09 0.29 0.16

1 16 0.20 0.50 0.07 0.31 0.13

1 1 0.16 0.43 -0.01 0.40 0.03

2 1 0.17 0.46 0.06 0.35 0.10

4 1 0.17 0.49 0.08 0.33 0.11

8 1 0.21 0.55 0.13 0.29 0.17

16 1 0.21 0.56 0.18 0.28 0.22

32 1 0.22 0.57 0.16 0.30 0.19

64 1 0.22 0.58 0.17 0.33 0.19

8 2 0.20 0.53 0.10 0.31 0.12

8 3 0.21 0.52 0.08 0.32 0.11

16 2 0.21 0.53 0.12 0.31 0.16

16 3 0.21 0.55 0.15 0.30 0.18
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Table 2.3: The effect of language model class (0: zerogram, 1: unigram, 2:bigram)

and complexity on the performance of arousal and valence prediction. The metrics are:

accuracy, accuracy±1 and correlation of the discrete curve and Mean square error and

correlation of the continuous curve.

arousal

lm class weight ACC ACC±1 D.CORR MSQE C.CORR

2 1 0.22 0.53 0.34 0.20 0.46

0 1 0.21 0.52 0.31 0.20 0.45

1 1 0.22 0.52 0.32 0.20 0.45

1 20 0.22 0.54 0.38 0.20 0.48

1 50 0.22 0.54 0.39 0.21 0.46

1 100 0.22 0.53 0.39 0.22 0.44

2 20 0.23 0.56 0.41 0.20 0.48

2 30 0.23 0.57 0.43 0.20 0.49

2 40 0.24 0.57 0.44 0.20 0.50

2 50 0.24 0.58 0.45 0.20 0.51

2 100 0.24 0.58 0.43 0.21 0.49

2 200 0.24 0.56 0.40 0.22 0.45

2 500 0.24 0.56 0.38 0.24 0.43

valence

lm class weight ACC ACC±1 D.CORR MSQE C.CORR

2 1 0.20 0.51 0.10 0.30 0.16

0 1 0.19 0.49 0.09 0.30 0.16

1 1 0.19 0.50 0.09 0.30 0.15

1 20 0.20 0.51 0.11 0.33 0.14

1 50 0.21 0.52 0.10 0.35 0.12

1 100 0.21 0.52 0.09 0.38 0.10

2 20 0.21 0.54 0.14 0.32 0.16

2 30 0.21 0.54 0.14 0.32 0.16

2 40 0.21 0.55 0.16 0.32 0.18

2 50 0.22 0.55 0.16 0.32 0.18

2 100 0.23 0.56 0.17 0.32 0.19

2 200 0.22 0.56 0.15 0.31 0.17

2 500 0.22 0.54 0.13 0.33 0.15
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Table 2.4: List of features used for emotion recognition.

Valence

audio 12 MFCCs and C0, plus derivatives

video maximum color value

video maximum color intensity

Arousal audio 12 MFCCs and C0, plus derivatives

spectral centroid, spectral flux, spectral roll-off, line spectral pairs, chroma coefficients,

MFCCs and Perceptual Linear Prediction (PLP) coefficients. Audio features were ex-

tracted via OpenSMILE [18] using a 200ms window and 40ms update. We also created

a more extensive feature set by extracting the aforementioned low level features using a

40ms window, 10ms update, then calculating the statistics of these samples (moments,

derivatives, extrema) within a 200ms window (and using the statistics as features).

High level music features were extracted using the MIR Toolbox [29], namely: tempo,

pulse clarity, event density, spectral flatness, rhythm irregularity and inharmonicity.

These features must be computed using a larger window in order to be meaningful,

so we used a window of 1sec, updated every 40ms. The video features used were the

statistics of color, intensity and motion, extracted, per video frame (40ms), through

the algorithms described in [42]. All features were evaluated using three models of

increasing complexity (states, Gaussian components). The selected feature set was

created by hierarchically merging the best performing features. The rejected features

did not necessarily perform inadequately, some were simply highly correlated with

“more successful” features and therefore provided no additional benefit. Energy and

all energy-related features (e.g., 0th order MFCC) performed very well, as expected, for

detecting arousal and for separating neutral from non-neutral valence (but were not able

to distinguish between positive and negative valence). F0 and rhythm-based features

performed poorly; this was perhaps due to the complexity of the audio stimulus con-

taining speech, music, silence and various audio sounds. Visual motion and (musical)

tempo performed well individually but failed to provide any additional improvement

if the feature set contained energy-based features. MFCCs, PLPs and Chroma coeffi-

cients performed similarly in isolation. Color-based video features proved valuable in

valence classification. All in all, the selected parsimonious features set that provided

the best emotion recognition results can be seen in Table 2.4.
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Figure 2.8: Misclassification matrices normalized by row (%) for (a) arousal and (b)

valence.

2.3.2 Text features

To add textual information to the model we extract a number of audio features and sim-

ply append them to the audio-visual feature vector. The features are word frequencies

within a window, similarly to [41]. First we assign a rating to each subtitle utterance,

equal to the average value of the affective curve for the duration of the utterance.

Words are assigned ratings equal to the sentence ratings in which each word appears.

These ratings are used to calculate the Mutual Information for each word-category pair

and the 50 words with the highest ratings are selected as features. Finally, in order to

create the feature vectors we use a very large temporal window (60 - 200 seconds) and

count the number of appearances of each word-feature within that window.

2.4 Experimental Results

The output of our system is a –usually very noisy– time series of seven categories. The

signal is initially filtered with a low pass filter and then passed through a Savitzky-

Golay filter [44] that interpolates the affective signal into a continuous-valued curve. An

example of discrete and continuous output is shown in Fig 2.10. To evaluate our system

we compare the (seven-level) discrete output of the HMM system with the discretized

affective curves. The interpolated continuous output curves are also compared with

the reference continuous affective curves. Thus separate results are provided for the

discrete-valued and continuous-valued curves.
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Figure 2.9: Continuous intended emotion recognition vs. annotated curves for the “Rata-

touille” clip: (a) arousal and (b) valence.

Table 2.5: Result evaluation metrics.

metric arousal valence 2-D

Accuracy 0.24 0.24 0.06

Discrete Accuracy±1 0.57 0.62 0.37

(7 levels) Mean abs. error 0.52 0.47 0.82

Mean sq. error 0.48 0.43 0.92

Correlation 0.43 0.22 -

Continuous

Mean abs. error 0.32 0.37 0.55

Mean sq. error 0.17 0.24 0.41

Correlation 0.54 0.23 -
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Figure 2.10: An example of a discrete curve and it’s continuous form obtained via our

method.

Experiments are conducted using a “leave one (movie) out” cross-validation scheme.

Results are presented as averages across all clips. The following evaluation metrics

are shown: classification accuracy, classification accuracy ±1 (which considers a miss

by 1 category as a hit), mean absolute error (MAE), mean square error (MSE) and

correlation coefficient. MAE and MSE are calculated after rescaling the curves to a

[−1, 1] range.

Table 2.2 shows the effect that altering the number of HMM states and Gaussian

components has on performance, when using MFCCs as features. As noted previously,

the number of states seems far more important than the complexity of observation

distributions. Table 2.3 shows performance with different classes (zerogram, unigram

and bigram) and weights of language models used to represent inter-category transition

probabilities. There is a definite benefit to using a bigram model, while the weight has

a sweet spot around 50. The final model uses a bigram model with a weight of 40 and

HMMs with 32 states and single Gaussian components.

Results from the final model are shown in Table 2.5. Classification accuracy for

seven classes is, as expected, rather low at 25%. Accuracy±1 (equivalent to using

fewer categories) is fairly high at 60%; given the variety of movies in our database and

the difficulty of the task this is a promising result. Note the very low correlation for

valence that is further investigated next. Smoothing the discrete-valued curves further
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Table 2.6: Performance with the addition of Text features. The metrics are: accuracy,

accuracy±1 and of the discrete curve and correlation of the continuous curve.

Arousal Valence

Accuracy 0.1471 0.1708

Accuracy±1 0.4225 0.4839

Correlation 0.0311 0.1185

improves our results, as can be seen from the significantly improved MSE and MAE

continuous results, especially for arousal.

Fig 2.8 shows the misclassification matrices for arousal (a) and valence (b) normal-

ized by the sum of each row, i.e, each cell (i, j) indicates the percentage of samples that

belong to category i (actual) and are classified in category j (predicted). Best emotion

recognition results are obtained for high arousal values, over 50% of the high activity

frames are classified correctly (level 7). Note that frames are rarely misclassified to

very distant categories, while neighboring categories are highly confusable.

Adding subtitle information did not work. No performance benefit was observed

throughout our experiments. Adding more features, such as morphology (like punctu-

ation) did not improve results. Table 2.5 shows the performance achieved when adding

subtitle features to our audiovisual model. Correlation in particular suffers, showing

how bad this approach really is.

Overall, the classifiers on both dimensions perform very well in classifying the mood

of large segments, with the arousal classifier also performing well in describing detailed

dynamics. The valence classifier fails at describing the continuous curve in detail,

as revealed by the low correlation coefficient. Interestingly, this observation, as well

as the overall relative performance of the classifiers in the two dimensions (prior to

interpolation) also holds true for the performance of human annotators when evaluating

their own experience (see Section 2.2). Note that a typical error in valence recognition

is the misclassification of a contiguous area to entirely wrong valence categories, very

positive scenes being identified as very negative and vice versa. This seems to happen in

scenes where there is a conflict of modalities (e.g., “joyous” music, but “angry” video)

or a conflict of sensory and semantic information. Our system lacks such semantic

information, so it can not understand that a dark and gloomy battle will be perceived
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as positive if the viewers know that the hero is going to win. An example actual vs.

predicted annotation for a 30 minute movie clip is shown in Fig 2.9.

2.5 Conclusions

We have briefly presented an annotated database of affect and our experiments in track-

ing the affective contents of the movies using HMMs. Evaluation of a large number of

audio-visual features yielded somewhat surprising results, with many popular features

being rejected before selecting the “optimal” feature set. Two independent HMM rec-

ognizers were used for arousal and valence, each utilizing a small number of low level

features and a large number of states. The recognizers work well at a macroscopic

level, capturing the general mood of the vast majority of scenes across movies. On the

arousal dimension, the model also does well in capturing fine detail, subtle transitions,

as revealed by the average correlation coefficient of 0.54. On the valence dimension, the

model is successful at capturing the mood but sometimes fails at capturing the valence

sign and transitions. Overall this is a first step towards continuous emotion recogni-

tion in movies. Further research in feature extraction, high-level semantic analysis,

modeling and modality fusion is required to improve these results.
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Chapter 3

Text Affect∗

3.1 Introduction

Affective text analysis, the analysis of the emotional content of lexical information is an

open research problem that is very relevant for numerous natural language processing

(NLP), web and multimodal dialogue applications. One very popular such application

is sentiment analysis/opinion mining, which aims to identify the emotion expressed

in news stories [32], blogs and public forums [5] or product reviews [24, 58]. Gener-

ally opinion mining is restricted to separating positive and negative views or positive,

negative and neutral views and focused on writer-perspective emotion, the emotion

expressed by the writer, rather than the emotion experienced by the reader. Emotion

recognition from multimedia streams (audio, video, text) and emotion recognition of

users of interactive applications is another area where the affective analysis of text

plays an important, yet still limited role [3, 30, 31]. Another application is the cre-

ation of affective text/speech, to be used in Human Computer Interaction (HCI) [6]:

realistic expression of emotion by any artificial representation of a human is integral to

their believability and effectiveness. Such systems should also be capable of respond-

ing appropriately to expressions of emotion by the humans using them. Again, this

application requires writer-perspective emotion. Other applications may focus on the

reader/media consumer perspective, such as multimedia content analysis through sub-

titles [41] or news headlines analysis [47]. The requirements of different applications

lead to the definition of sub-tasks, such as emotional category labeling (assigning text

∗Parts of this chapter have appeared in [34] and [35]
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a label, such as “sad”), polarity recognition (classifying into positive or negative) and

subjectivity identification (separating subjective from objective statements). Further-

more the task is affected heavily by the emotional representation used (such as basic

emotions or valence) and the scope of analysis (word, sentence, documents characteri-

zation).

Given the wide range of important applications, affective text analysis has been a

popular topic of research in the NLP community in recent years. However the wide

range of application scenarios and the different ways to define affective tasks have

also lead to a fragmentation of research effort. The first step towards a general task-

independent solution to affective text analysis is the creation of an appropriate affective

lexicon; a resource mapping each word (or term) to a set of affective ratings. A num-

ber of affective lexicons for English have been manually created, such as the General

Inquirer [46], and Affective norms for English Words (ANEW) [8]. However, they fail

to provide the required vocabulary coverage; the negative and positive classes of the

General Inquirer contain just 3600 words, while ANEW provides ratings for just 1034

words. Therefore computational methods are necessary to create or expand an already

existing lexicon. Well-known lexica resulting from such methods are SentiWordNet [16]

and WORDNET AFFECT [48]. However, such efforts still suffer from limited coverage.

Our aim is to create an affective lexicon containing fine-grained/pseudo-continuous

valence ratings, ranging from very negative to very positive. This lexicon can be readily

expanded to cover unseen words with no need to consult ontologies or other linguistic

resources. The work builds on [53]. The proposed method only requires a small number

(a few hundred) labeled seed words and a web search engine to estimate similarity

between the seed and unseen words. Further, to improve the quality of the affective

lexicon we propose a machine learning approach to training a linear valence estimator.

The affective lexicon created is evaluated against manually labeled corpora both at

the word and the sentence level, achieving state-of-the-art results despite the lack of

underlying syntactic or pragmatic information in our model.

3.2 Prior Work

The task of assigning affective ratings, such as binary “positive - negative” labels, also

known as semantic orientation [23], has received much attention and a wide variety of
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methods have been proposed. The underlying assumption at the core of these methods

is that semantic similarity can be translated to affective similarity. Therefore given

some metric of the similarity between two words one may derive the similarity between

their affective ratings. This approach, pioneered in [53], is using a set of words with

known affective ratings, then using the similarities between these words and every new

word to define this new word’s ratings. These reference words are usually referred to

as seed words. There is significant variety on the nature of the seed words; they may be

the lexical labels of affective categories (“anger”,“happiness”), small sets of words with

un-ambiguous meaning or even all words in a large lexicon. Having a set of seed words

and an appropriate similarity measure, the next step is devising a method of combining

these to create the final rating. In most cases the desired rating is some form of binary

label like “fear” - “not fear”, in which case a classification scheme, like nearest neighbour

may be used to provide the final result. Alternatively, continuous/pseudo-continuous

ratings may be acquired via some numerical combination of similarities and known

ratings [49].

In [53] and [54] the method used (which is very similar to our own) utilizes conjunc-

tive “NEAR” queries to get the co-occurrence of words in web documents, from which

semantic similarity is extracted through point-wise mutual information. The estimated

valence v̂(wj) of each new word wj is expressed as a linear combination of the valence

ratings v(wi) of the seeds wi and the semantic similarities between the new word and

each seed d(wi, wj) as;

v̂(wj) =

N∑

i=1

v(wi) · d(wi, wj), (3.1)

The seeds used are 14 adjectives (7 pairs of antonyms) shown in Table 3.1 and their

known ratings are binary (-1 or 1). The method is shown to work very well in terms

of binary (positive/negative) classification, achieving an 82.8% accuracy in the general

inquirer dataset. The method is capable of creating continuous ratings - though it’s

performance in that task is not explored. The major weakness of this method is it’s

dependency on the, now defunct, altavista NEAR queries. While AND queries, which

are available through all search engines, return all documents that contain both terms,

altavista NEAR queries returned all documents where both terms existed with a dis-

tance of 10 words. As shown in [54] and [50] the method performs much worse using

AND queries.
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3. TEXT AFFECT

Table 3.1: The 14 seeds used in the experiments by Turney and Littman.

positive negative

good bad

superior inferior

positive negative

correct wrong

fortunate unfortunate

nice nasty

excellent poor

In [52], one of the most imaginative approaches, the “spin model”, is proposed as

a method of binary word classification. A network of words, representing word relat-

edness, is constructed using gloss definitions, thesaurus, and co-occurrence statistics.

Each word is regarded as en electron and has a “spin” with either an “up” or “down”

orientation. Neighboring spins tend to have the same orientation from an energetic

point of view, which is similar to neighboring words having similar valence. The prob-

lem is handled as an optimization problem and solved through the use of the mean

field method. This method is very complex, requires a lot of different resources and it

can not be used in more complex problems, it is strictly a binary classification method.

This of course is problematic due to the fact that most words have a low, insignificant

in the binary case, valence.

WordNet based methods such as those in [15], [1] and [48] start with a small set of

annotated words, usually with binary ratings. These sets are then expanded by exploit-

ing synonymy, hypernymy and hyponymy relations along with simple rules. After that

there are different approaches to calculating the similarity between new words and the

seed words, but a common approach is using contextual similarity based on glosses.

In [22], a random walk model is used to perform binary classification of words into

positive or negative. First a word network is created, based on Wordnet relations

(synonymy, hypernymy), on which related words are connected. In order to classify

a word of unknown valence, multiple random walks are initiated from the unknown

word. Each random walk stops when it hits a word of known valence, a seed. Then
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3.3 A supervised approach to Affective Lexicon creation

the unknown word is classified based on the average number of steps required to hit

a seed of the selected category. The method is computationally expensive, yet fails to

overcome the results produced by the method in [54].

The next step is the combination of these word ratings to create ratings for larger

lexical units, phrases or sentences. Initially the affect-bearing words need to be selected,

depending on their part-of-speech tags [11], affective rating and/or the sentence’s struc-

ture [2]. Then their individual ratings are combined, typically in a simple fashion, such

as a numeric average. More complex approaches involve taking into account sentence

structure, word/phrase level interactions such as valence shifters [40] and large sets

of manually created rules [2, 11]. In [37] a supervised method is used to train the

parameters of multiple hand-selected rules of composition.

As discussed, most of the aforementioned work is based on the assumption that

semantic similarity implies affective similarity. Thus it is important to also review the

literature on computational methods for estimating semantic similarity between words

or terms. Semantic similarity metrics can be roughly categorized into: (i) ontology-

based similarity measures, e.g., [9], where similarity features are extracted from ontolo-

gies (usually WordNet), (ii) context-based similarity measures [38], where similarity of

context is used to estimate semantic similarity between words or terms, (iii) hit-based

similarity metrics where the frequency of co-occurrence of terms in (web) documents

is the main feature used for estimating semantic similarity [50, 53], and (iv) combina-

tions of the aforementioned methods [7]. Recently corpus-based methods (especially

context-based metrics) where shown to perform almost at a par with ontology-based

metrics. For details see [25].

3.3 A supervised approach to Affective Lexicon creation

Just as in [53] we start from an existing, manually annotated lexicon. Then we auto-

matically select a subset of it to be used as seed words. The rating (in our case valence)

for an unseen word is estimated as the linear combination of the ratings of seed words

weighted by the semantic similarity between the unseen and seed words. In addition,

a linear weight is used that regulates the contribution of each seed word in the valence

computation. The weight of each seed word is selected to minimize the mean square

estimation error on all words in the training set.
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The motivation behind introducing a trainable weight for each seed word has to do

with the fact that semantic similarity does not fully capture the relevance of a seed

word for valence computation. For instance, consider an unseen word and a lexicon

that consists of two seed words that are equally (semantically) similar to the unseen

word. Based on the assumption that semantic similarity implies affective similarity

both seed words should be assigned the same feature weight. However, there is a

wide range of factors affecting the relevance of each seed word, e.g., words that have

high affective variance (many affective senses) might prove to be worse features that

affectively unambiguous words. Other factors might include the mean valence of seed

words and the degree of centrality (whether they are indicative samples of their affective

area). Instead of evaluating the effect of each factor separately, we choose to use

machine learning to estimate a single weight per seed word using Least Mean Squares

estimation (LMS).

3.3.1 Word Level Tagging

We aim at characterizing the affective content of words in a continuous valence range

of [−1, 1] (from very negative to very positive), from the reader perspective. We hy-

pothesize that the valence of a word can be estimated as a linear combination of its

semantic similarities to a set of seed words and the valence ratings of these words, as

follows:

v̂(wj) = a0 +
N∑

n=1

ai v(wi) f(d(wi, wj)), (3.2)

where wj is the word we mean to characterize, w1...wN are the seed words, v(wi) is

the valence rating for seed word wi, ai is the weight corresponding to word wi (that

is estimated as described next), d(wi, wj) is a measure of semantic similarity between

words wi and wj (see Section 3.3.1.1) and f() is some simple function, from the table

3.2. The function f(), which we will henceforth call the kernel of the equation, serves

to rescale the similarity metric d(wi, wj).






1 f(d(w1, w1))v(w1) · · · f(d(w1, wN ))v(wN )
...

...
...

...
1 f(d(wK , w1))v(w1) · · · f(d(wK , wN ))v(wN )




 ·








a0
a1
...
aN







=








1
v(w1)

...
v(wK)




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


(3.3)
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Table 3.2: The functions of similarity used.

linear f(d(•)) = d(•)

exp f(d(•)) = ed(•)

log f(d(•)) = log(d(•))

sqrt f(d(•)) =
√

d(•)

Assuming we have a training corpus of K words with known ratings and a set of

N < K seed words for which we need to estimate weights ai, we can use (3.2) to create

a system of K linear equations with N +1 unknown variables as shown in (3.3); the N

weights a1...aN and the extra weight a0 which acts as a DC offset (bias). The optimal

values of these variables can be estimated using LMS. Once the weights of the seed

words are estimated the valence of an unseen word wj can be computed using (3.2).

3.3.1.1 Semantic Similarity Metrics

The valence estimator defined in (3.2) employs a metric d(wi, wj) that computes the

semantic similarity between words wi and wj . In this work, we use hit-based and

text-based (contextual) similarity metrics.

Hit-based similarity metrics estimate the similarity between two words/terms

using the frequency of co-existence within larger lexical units (sentences, documents).

The underlying assumption is that terms that co-exist often are very likely to be related.

A popular method to estimate co-occurrence is to pose conjunctive queries including

both terms to a web search engine; the number of returned hits is an estimate of the

frequency of co-occurrence [25]. Hit-based metrics do not depend on any language

resources, e.g., ontologies, and do not require downloading documents or snippets, as

is the case for context-based semantic similarities.

In the equations that follow, wi, . . . , wi+n are the query words, {D;wi, . . . , wi+n}

is the set of results {D} returned for these query words. The number of documents in

each result set is noted as |D;wi, . . . , wi+n |. We investigate the performance of four

different hit-based metrics, defined next.
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Jaccard coefficient computes similarity as:

J(wi, wj) =
|D;wi, wj |

|D;wi |+ |D;wj |−|D;wi, wj |
. (3.4)

It is bounded in the range [0, 1].

Dice coefficient is a variation of the Jaccard coefficient, defined as:

C(wi, wj) =
2 |D;wi, wj |

|D;wi | + |D;wj |
. (3.5)

Mutual information [7] is an info-theoretic measure that derives the similarity between

wi and wj via the dependence between their number of occurrences. Point-wise Mutual

Information (PMI) is defined as:

I(wi, wj) = log

|D;wi,wj|
|D|

|D;wi|
|D|

|D;wj|
|D|

. (3.6)

Mutual information is unbounded and can take any value in [−∞,+∞]. Positive values

translate into similarity, negative values into dissimilarity (presence of one word tends

to exclude the other) and zero into independence, lack of relation.

Google-based Semantic Relatedness Normalized Google Distance is a distance metric

proposed in [12, 56] and defined as:

E(wi, wj) =
max{L} − log |D;wi, wj |

log |D | −min{L}
, (3.7)

where L = {log |D;wi |, log |D;wj |}. This metric is unbounded, taking values in [0,+∞].

[19] used Normalized Google Distance to define a bounded (in [0, 1]) metric, called

Google-based Semantic Relatedness, defined as:

G(wi, wj) = e−2E(wi,wj). (3.8)

Text-based similarity metrics compute cosine similarity between feature vectors

extracted from word or term context, i.e., using a “bag-of-words” context model. The

basic assumption behind these metrics is that similarity of context implies similarity of

meaning, i.e., words that appear in similar lexical environment (left and right contexts)

have a close semantic relation [43],[38]. “Bag-of-words” [26] models assume that the

feature vector consists of words or terms that occur in text independently of each other.

The context-based metrics presented here employ a context window of fixed size (K

30



3.3 A supervised approach to Affective Lexicon creation

words) for feature extraction. Specifically, the right and left contexts of length K

are considered for each occurrence of a word or term of interest w in the corpus, i.e.,

[vK,L · · · v2,L v1,L]w[v1,R v2,R · · · vK,R] where vi,L and vi,R represent the ith word to the

left and to the right of w, respectively. The feature vector for word or term w is defined

as Tw,K = (tw,1, tw,2 · · · tw,N) where tw,i is a non-negative integer and K is the context

window size. Note that the length of the feature vector is equal to the vocabulary size

N , i.e., all words in the vocabulary are features. The ith feature value tw,i reflects the

(frequency of) occurrence of vocabulary word vi within the left or right context window

K of (all occurrences of) the term w. The value of tw,i may be defined as a (normalized

or unnormalized) function of the frequency of occurrence of feature i in the context of

w. Once the feature weighting scheme is selected, the “bag-of-words”-based metric SK

computes the similarity between two words or terms, w1 and w2, as the cosine similarity

of their corresponding feature vectors, Tw1,K and Tw2,K as follows, [26]:

SK(w1, w2) =

∑N
i=1 tw1,itw2,i

√
∑N

i=1(tw1,i)
2

√
∑N

i=1(tw2,i)
2

(3.9)

where K is the context window length and N is the vocabulary size. The cosine

similarity metric assigns 0 similarity score when w1, w2 have no common context (com-

pletely dissimilar words), and 1 for identical words. Various feature weighting schemes

can be used to compute the value of tw,i. The binary weighting metric used in this

work assigns weight tw,i = 1 when the ith word in the vocabulary exists at the left

or right context of at least one instance of the word w, and 0 otherwise. Alternative

weighting schemes such as tf-idf are more popular, but we opt for binary weights to

reduce computational complexity.

3.3.2 Sentence Level Tagging

The principle of compositionality [39] states that the meaning of a phrase or sentence

is the sum of the meaning of its parts. One could readily extend this rule to affective

interpretation. In fact, since affect can be measured in a metric space, the generalization

of the principle of compositionality to affect could be interpreted as follows: to compute

the valence of a sentence simply take the average valence of the words in that sentence.
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The affective content of a sentence s = w1w2...wN in the simple linear model is:

v(s) =
1

N

N∑

i=1

v(wi). (3.10)

This simple linear fusion may prove to be inadequate for affective interpretation given

that non-linear affective interaction between words (especially adjacent words) in the

same sentence is common. Linear fusion may prove suboptimal since it weights equally

words that have a strong and weak affective content. It also tends to give lower absolute

valence scores to sentences that contain many neutral (non-content) words. Thus we

also consider a normalized weighted average, in which words that have high absolute

valence values are weighted more, as follows:

v(s) =
1

N∑

i=1
|v(wi)|

N∑

i=1

v(wi)
2 · sign(v(wi)), (3.11)

where sign(.) is the signum function. One could also generalize to higher powers or to

other non-linear scaling functions. Alternatively we consider non-linear min-max fusion,

in which the word with the highest absolute valence value dominates the meaning of

the sentence:

v(s) = max
i

(|v(wi)|) · sign(v(wz))

z = argmax
i

(|v(wi)|)
(3.12)

where argmax is the argument of the maximum. One could also consider combinations

of linear and non-linear fusion methods, as well as, syntactic- and pragmatic-dependent

fusion rules. However, more complex fusion methods are beyond the scope of this work

that focuses on the evaluation of the affective lexicon creation algorithm.

3.4 Corpora and Experimental Procedure

Next we present the corpora used for training and evaluation of the proposed algo-

rithms. In addition, the experimental procedure for semantic similarity computation,

affective lexicon creation and sentence-level affective score computation is outlined.
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3.4.1 Corpora

The main corpus used for creating the affective lexicon is the Affective Norms for

English Words (ANEW) dataset. ANEW consists of 1034 words, rated in 3 continuous

dimensions of arousal, valence and dominance. In this work, we only use the valence

ratings provided in ANEW.

The second corpus used for evaluation of the affective lexicon creation algorithm

is the General Inquirer (GINQ) corpus that contains 2005 negative and 1636 positive

words. The General Inquirer corpus was created by merging words with multiple entries

in the original lists of 2293 negative and 1914 positive words. It is comparable to the

dataset used in [53, 54].

Both the ANEW and GINQ datasets were used for both training (seed words) and

evaluation using cross-validation (as outlined below).

For the sentence level tagging evaluation (no training is performed here, only test-

ing) the SemEval 2007: Task 14 corpus is used [47]. This SemEval corpus contains

1000 news headlines manually rated in a fine-grained valence scale of [−100, 100], which

is rescaled to a [−1, 1] for our experiments.

For the movie subtitle evaluation task, we use the subtitles of our movie corpus.

It contains the subtitles of twelve thirty minute movie clips, a total of 5388 sentences.

Start and end times of each utterance were extracted from the subtitles and each

sentence was given a continuous valence rating equal to the average of the multimodal

affective curve for the duration of the utterance.

3.4.2 Semantic Similarity Computation

In our experiments we utilized four different similarity metrics based on web co-occurrence,

mentioned in section 3.3.1.1, namely, Dice coefficient, Jaccard coefficient, point-wise

mutual information (PMI) and Google-based Semantic Relatedness as well as a sin-

gle contextual similarity metric, cosine similarity with binary weights, calculated over

snippets and documents.

All of the similarity metrics employed require a corpus in order to count number

of appearances or collect context. The corpus we use in this work is the web and the

data required to calculate the similarity metrics are collected by submitting queries to

the Yahoo! search engine and collecting the response.
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Hit-based similarity metrics require the individual (IND) words number of occur-

rences as well as the number of times that the two words co-exist. This co-occurrence

may be within the boundaries of a single web document (page), in which case the

corresponding hit count can be obtained by using an AND query (w1 AND w2). Al-

ternatively we can restrict it by demanding that the two words co-occur within a set

distance of 10 words, in which case the corresponding hit count can be obtained by

using a NEAR query (w1 NEAR w2). NEAR queries are an undocumented feature of

the Yahoo! engine and are similar though different to the ones produced by Altavista.

Depending on they type of query used to obtain the co-occurence count, we will sep-

arate the similarity metrics into counts/AND and counts/NEAR. The number of seed

words determines the number of queries that will be required. Assuming N seed words

are selected, N + 1 queries will be required to rate each new word.

Context-based similarities require a sizable collection of documents that include

either or both of the words under examination. To collect the required documents

we pose IND queries to the Yahoo! search engine and collect the top |D| (if available)

results for each word. For each of these |D| results we add some text to the corpus. The

text in question may be the short excerpt (page sample) shown under each result called

a snippet, typically one or two sentences automatically selected by the search engine, or

the full web document that each result points to. Therefore we create two corpora, one

containing all the collected snippets and one containing the corresponding documents.

Depending on which corpus was used to calculate the similarity metrics, we separate

them into documents/IND and snippets/IND. Once the documents are downloaded,

the left and right contexts of all occurrences of w1 and w2 are examined and the

corresponding feature vectors are constructed. The parameters of this calculation are

the number |D| of web documents used and the size K of the context window. In all

experiments presented in this work |D| = 1000, whereas the values used for K are 1,2,5

and 10. In this scenario, |D| snippets or documents are required to rate each new word.

3.4.3 Affective Lexicon Creation

Overall the presented experiments, presented in the following sections are:

• Cross-validation on ANEW (ANEW-CV)

• Cross-validation on GINQ (GINQ-CV)
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• Training with GINQ, evaluation on ANEW (ANEW-N)

• Training with ANEW, evaluation on GINQ (GINQ-N)

In all cases the seed words are selected from the training set (training fold in the

case of cross-validation). We also conducted the same experiments using the 14 seeds

used in [54]. Furthermore we used the method outlined in [54], in it’s original form

(which will act as a baseline) as well as variations using different similarity metrics or

seeds. In the following pages we will refer to the 14 seeds as “Turney’s seeds” and the

linear equation without normalization coefficients as “Turney’s equation”.

Given a set of candidate seeds (in most cases the entire training set), we apply

a simple method to select the desired seeds. It seems, looking at Turney’s method,

but also confirmed by our experiments, that good seeds need to have a high absolute

valence rating and they should be common words. It also proved beneficial (particularly

when using Turney’s equation) to ensure that the seed set is as close to balanced (sum

of seed valence is zero) as possible. Therefore our selection method starts by sorting

the positive and negative seeds separately, either by their valence rating (if they have

continuous valence ratings) or number of hits returned by their queries (if they have

binary valence ratings). Then positive and negative seeds are added to the seed set

iteratively so as to minimize the absolute value of the sum of their valence ratings, yet

maximize their absolute valence ratings (or frequencies), until the required number N

is reached1.

We provide results for a wide range of N values, from 10 to 1000 seeds. Unless

mentioned otherwise, the seeds are selected among the training set, therefore on cross-

validation experiments the seeds are different for each fold.

The semantic similarity between each of the N features and each of the words in

the test set (“unseen” words) was computed, as discussed in the previous section. Next

for each value of N , the optimal weights of the linear equation system matrix in (3.3)

were estimated using LMS. Finally, for each word in the test set the valence ratings

were computed using (3.2) and evaluated against the ground truth.

1It is worth mentioning that the method is very robust to the selection of seed words. We also

attempted seed selection using wrappers [28], as well as completely random (not shown here), that

resulted in minimal performance differences; the estimation procedure simply adjusts the weights of

seed words accordingly. However the logic behind the selection method stands and has a major effect

on performance when using Turney’s equation.
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Table 3.3: Training sample using 10 seed words.

wi v(wi) ai v(wi)× ai

triumphant 0.96 1.48 1.42

rape -0.94 0.72 -0.67

love 0.93 0.57 0.53

suicide -0.94 3.09 -2.91

paradise 0.93 1.77 1.65

funeral -0.90 0.53 -0.48

loved 0.91 1.53 1.40

rejected -0.88 0.50 -0.44

joy 0.90 1.00 0.90

murderer -0.87 1.99 -1.73

w0 (offset) 1 -0.06 -0.06

A toy training example using N = 10 features and the Google semantic relatedness

hit-based metric is shown in Table 3.3. The second column v(wi) shows the manually

annotated valence of word wi, while the third column ai shows the corresponding linear

weight computed by the LMS algorithm. Their product (final column) v(wi) × ai is

a measure of the affective “shift” of the valence of each word per “unit of similarity”

to that seed word (see also (3.2)). The last row in the table corresponds to the bias

term a0 in (3.2) that takes a small positive value. Note that the coefficients ai take

positive values and are not bounded in [0, 1], although similarity metrics are bounded

at [0, 1] and target valence values are also bounded in [−1, 1]. There is no obvious

intuition behind the ai scores, e.g., it is not clear why “suicide” should receive much

higher weighting than “funeral”. The weights might be related to the semantic and

affective variance of the seed words.

The experiments using both word dataset, one for training and one for testing

are also conducted using the same method. Our goal here was not only to evaluate

the proposed algorithm, but also investigate whether using seeds from one manually

annotated corpus can robustly estimate valence ratings in another corpus.

The following objective evaluation metrics were used to measure the performance of

the affective lexicon expansion algorithm: (i) Pearson correlation between the manually
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watching
0.57

cute
0.71

puppies
0.50

makes
0.00

me
−0.11

happy
0.82

︸ ︷︷ ︸

[linear: 0.41, weighted average: 0.64, max: 0.82]

Figure 3.1: Example of word rating fusion, showing the per-word ratings and the phrase

ratings produced by the three fusion schemes.

labeled and automatically computed valence ratings and (ii) binary classification accu-

racy of positive vs negative relations, i.e., continuous ratings are produced, converted

to binary decisions and compared to the ground truth.

3.4.4 Sentence Level Tagging

The SemEval 2007: Task 14 and subtitles corpora were used to evaluate the various

fusion methods for turning word into sentence ratings. All unseen words in the sentence

corpus are added to the lexicon using the affective lexicon expansion algorithm outlined

above. The model used to create the required ratings is trained using all of the words

in the ANEW corpus as training samples and N of them as seed words. Then the

ratings of the words are combined to create the sentence rating using linear fusion

(3.10), weighted average fusion (3.11) or non-linear max fusion (3.12). In the first

experiment (labeled “all words”), all words in a sentence are taken into account to

compute the sentence score. In the second experiment (labeled “content words”), only

the verbs, nouns, adjectives and adverbs are used. To identify content words part-of-

speech tagging was performed using TreeTagger [45]. A toy example of this method

can be seen in Figure 3.1.

In order to evaluate the performance of the sentence level affective scores we use

the following metrics: (i) Pearson correlation between the manually labeled and au-

tomatically computed scores and (ii) classification accuracy for the 2-class (positive,

negative) problem.

3.5 Results

3.5.1 Lexicon Baseline

The baseline we will use for all affective lexicon experiments is the method proposed in

[53], of which our own is a generalization. The only comparable result in the original
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Figure 3.2: Performance of the affective lexicon creation algorithm using similarities

based on AND counts. Results shown: correlation in the (a) ANEW-CV and (b) ANEW-

N experiments and binary accuracy for the (c) GINQ-CV and (d) GINQ-N experiments.
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Figure 3.3: Performance of the affective lexicon creation algorithm using similarities

based on NEAR counts. Results shown: correlation in the (a) ANEW-CV and (b) ANEW-

N experiments and binary accuracy for the (c) GINQ-CV and (d) GINQ-N experiments.

39

figures/text/crossval/similarities_comparison/anew_counts_near_corr.eps
figures/text/normal/similarities_comparison/anew_counts_near_corr.eps
figures/text/crossval/similarities_comparison/ginq_counts_near_acc.eps
figures/text/normal/similarities_comparison/ginq_counts_near_acc.eps


3. TEXT AFFECT

0 200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
or

re
la

tio
n

number of seeds

 

 

baseline
binary ws=1
binary ws=2
binary ws=5
binary ws=10

(a)
0 200 400 600 800 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
or

re
la

tio
n

number of seeds

 

 

baseline
binary ws=1
binary ws=2
binary ws=5
binary ws=10

(b)

0 200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y

number of seeds

 

 

baseline
binary ws=1
binary ws=2
binary ws=5
binary ws=10

(c)
0 200 400 600 800 1000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ur
ac

y

number of seeds

 

 

baseline
binary ws=1
binary ws=2
binary ws=5
binary ws=10

(d)

Figure 3.4: Performance of the affective lexicon creation algorithm using similarities

based on IND snippets. Results shown: correlation in the (a) ANEW-CV and (b) ANEW-

N experiments and binary accuracy for the (c) GINQ-CV and (d) GINQ-N experiments.
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Figure 3.5: Performance of the affective lexicon creation algorithm using similarities based

on IND documents. Results shown: correlation in the (a) ANEW-CV and (b) ANEW-N

experiments and binary accuracy for the (c) GINQ-CVand (d) GINQ-Nexperiments.
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Figure 3.6: Performance of the affective lexicon creation algorithm on the ANEW-CV

experiment comparing the existence or absence of weights ai. Results shown for the corre-

lation between the automatically computed and manually annotated scores. The similarity

metrics used are the best performing ones based on (a) AND counts, (b) NEAR counts,

(c) IND snippets and (d) IND documents.
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Figure 3.7: Performance of the affective lexicon creation algorithm on the ANEW-N

experiment comparing the existence or absence of weights ai. Results shown for the corre-

lation between the automatically computed and manually annotated scores. The similarity

metrics used are the best performing ones based on (a) AND counts, (b) NEAR counts,

(c) IND snippets and (d) IND documents.
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Figure 3.8: Performance of the affective lexicon creation algorithm on the ANEW-CV

experiment, comparing different kernels f(·). Results are shown for the correlation between

the automatically computed and manually annotated scores. The similarity metrics used

are the best performing ones based on (a) AND counts, (b) NEAR counts, (c) IND snippets

and (d) IND documents.
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Figure 3.9: Performance of the affective lexicon creation algorithm using the DICE sim-

ilarity metric based on AND counts and comparing kernels f(·). Results are shown for (a)

the correlation between the automatically computed and manually annotated scores of the

ANEW-CV experiment and (b) binary accuracy of the GINQ-CV experiment.

paper is that of binary accuracy for the GINQ dataset (82.8%), so in order to have a

more meaningful comparison we repeated the GINQ experiment and added the ANEW

experiment for the method. The results achieved were: 0.66 correlation and 0.82 binary

accuracy in the ANEW dataset and 0.84 accuracy in the GINQ dataset, beating the

score in the original paper. These three scores are our baselines and appear as cyan

threshold lines on every performance graph.

3.5.2 Affective Lexicon Creation

Similarity metric selection The first set of results compare the different perfor-

mance metrics evaluated for each data type, using an equation with a linear kernel. In

Figure 3.2 the performance achieved by all performance metrics based on AND counts

is shown, with Google semantic relatedness being the clear winner. In Figure 3.3, the

performance achieved by all performance metrics based on NEAR counts is shown.

Here the differences are smaller, but mutual information is the best performing met-

ric. In both cases the Jaccard and Dice coefficients fail to achieve good results, their

problem is one of scaling as we will see later.

In Figure 3.4 and Figure 3.5 performance is shown when using contextual similarities

based on snippets and documents respectively. In both cases the parameter, which is
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Figure 3.10: Performance of the affective lexicon creation algorithm as a function of the

number of seeds words and the similarity metric type, using the best performing similarity

per type and the 14 Turney seeds. Results shown: the correlation between the automat-

ically computed and manually annotated scores in the (a) ANEW-CV and (b) ANEW-N

experiments, accuracy for the (c) ANEW-CV and (d) ANEW-N experiments. and binary

accuracy for the (e) GINQ-CV and (f) GINQ-N experiments.
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Figure 3.11: Performance of the affective lexicon creation algorithm as a function of

the number of seeds words and the part of speech tag of the seed words, using the best

performing similarity metric per type. Results are shown (using the manually annotated

scores as the ground truth) for the correlation between the automatically computed and

manually annotated scores in the ANEW-N experiment, when using similarity metrics

based on (a) AND counts, (b) NEAR counts, (c) IND snippets and (d) IND documents.
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Figure 3.12: Performance of the affective lexicon creation algorithm as a function of

the number of seeds words and the part of speech tag of the seed words, using the best

performing similarity metric per type. Results are shown (using the manually annotated

scores as the ground truth) for the correlation between the automatically computed and

manually annotated scores in the GINQ-N experiment, when using similarity metrics based

on (a) AND counts, (b) NEAR counts, (c) IND snippets and (d) IND documents.
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Figure 3.13: Performance of the affective lexicon creation algorithm as a function of

the number of seeds words and the part of speech tag of the seed words, using the best

performing similarity metric per type. Results are shown (using the manually annotated

scores as the ground truth) for the correlation between the automatically computed and

manually annotated scores in the ANEW-N experiment (a) adjectives, (b) nouns and (c)

verbs, when using similarity metrics based on NEAR counts.
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Figure 3.14: Performance of the affective lexicon creation algorithm as a function of

the number of seeds words and the part of speech tag of the seed words, using the best

performing similarity metric per type. Results are shown (using the manually annotated

scores as the ground truth) for the correlation between the automatically computed and

manually annotated scores in the ANEW-N experiment (a) adjectives, (b) nouns and (c)

verbs, when using similarity metrics based on IND documents.
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Figure 3.15: Performance of the affective lexicon creation algorithm as a function of the

number of seeds words and the similarity metric type, using the best performing similarity

per type. Results are shown (using the manually annotated scores as the ground truth)

for: the correlation between the automatically computed and manually annotated scores

in the ANEW-CV (a) and ANEW-N (b) experiments, accuracy for the ANEW-CV (c) and

ANEW-N (d) experiments. and binary accuracy for the GINQ-CV (e) and GINQ-N (f)

experiments.
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Figure 3.16: Rejection-Accuracy graphs for the (a) ANEW-CV, (b) ANEW-N, (c) GINQ-

CV and (d) GINQ-N tasks. Accuracy is presented as a function of the percentage of samples

we disregard as “unsure”. The similarity metrics used are the best per type.
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Figure 3.17: Performance of the phrase rating creation algorithm as a function of the

number of seeds words and the word fusion method. Results are shown (using the manually

annotated scores as the ground truth) for the binary accuracy, when using AND counts,

Google semantic relatedness and (a) all or (b) only content words and using NEAR counts,

Mutual Information and (c) all or (d) only content words.
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Figure 3.18: Performance of the phrase rating creation algorithm as a function of the

number of seeds words and the word fusion method. Results are shown (using the manually

annotated scores as the ground truth) for the correlation to the ground truth, when using

AND counts, Google semantic relatedness and (a) all or (b) only content words and using

NEAR counts, Mutual Information and (c) all or (d) only content words.
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Figure 3.19: Performance of the phrase rating creation algorithm as a function of the

number of seeds words and the sample rejection percentage. Results are shown (using

the manually annotated scores as the ground truth) for the binary accuracy, when using

AND counts, Google semantic relatedness, weighted average fusion and (a) all or (b) only

content words and using NEAR counts, Mutual Information, min-max fusion and (c) all

or (d) only content words.
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the size of the context window, seems to have no appreciable effect. For both of them

we choose the window size of 1 as the “best”.

Note the drop in performance past 500 seeds or so, when the ANEW dataset is used

for training and how it disappears when the GINQ corpus is used for training. This

indicates that we need at least 2-3 training samples per seed word to avoid over-fitting.

The effect is much less pronounced when contextual similarities are used. In terms of

absolute performance, almost all variations can easily improve on the baseline when

tasked with creating accurate continuous ratings, but that is not true for the binary

classification task.

All graphs beyond, unless mentioned otherwise, use these 4 top performing metrics

per data source.

Effect of weights To gauge the significance of weights ai we simply compare the

performance of a linear kernel equation with and without these weights. The results

are shown in Figure 3.7 and Figure 3.6 for the ANEW-N and ANEW-CV experi-

ments respectively. It is clear that the addition of weights has a profound effect on

performance. Also interesting is the fact that when using NEAR counts and mutual

information (Turney’s model with different seeds) performance eventually gets close or

over that achieved with the original 14 seeds, even without the use of training/weights.

Kernels comparison Results shown so far used a linear equation kernel f(), which

in effect is a lack of kernel. Figure 3.8 shows a comparison of the kernels in Table 3.2

when used in conjunction with the best performing similarity metrics in the ANEW-CV

experiment. The overall results show little reason to use a more complex kernel when

using a well behaving similarity metric, no kernel can produce a result that is apprecia-

bly higher than those achieved by the linear kernel. However that changes when using

less suitable similarity metrics. In previous steps we eliminated the Dice coefficient

since it failed to achieve high performance, however that can change drastically when

applying kernels, as shown in Figure 3.9. With a logarithmic or exponential kernel

the Dice coefficient becomes competitive with the top performers. However, subopti-

mal similarity metrics combined with kernels still fail to outperform the best similarity

metrics combined with the linear kernel.
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Seeds In all of our experiments the seed words are selected from the training set, with

all words in the training set being candidates. In this section we examine performance

using different seeds.

Figure 3.10 shows performance achieved when we combine the best performing

similarity metrics and the linear kernel equation with the 14 seeds used by Turney,

as shown in Table 3.1. Probably the most interesting thing in the graphs is how

those in the left column (cross-validation) are almost identical to those in the right

column, particularly when the GINQ dataset is evaluated. Perhaps the reason is that

the 14 Turney seeds all belong to the GINQ dataset (but not to the ANEW dataset).

Another reason could be that the effect of training simply becomes more important as

the number of seeds increases. In terms of absolute performance, adding weights does

improve on the original method, but only when using mutual information based on

NEAR counts. The performance achieved in the GINQ-N experiment (0.84 accuracy)

is the highest ever achieved for this task using these 14 seeds.

An obvious modification to the seed selection algorithm would be to take into ac-

count the candidates’ part of speech (POS) tags and select only those with specific tags:

after all, Turney’s seeds are all adjectives. To do this we gather all possible POS tags

per word from WordNet. Each word may have multiple possible POS tags (Turney’s

seeds do), but to enhance any differences we only take into account words with no part

of speech ambiguity: words that only have one possible part of speech tag. Figure 3.11

and Figure 3.12 show the effect of using seeds of only one part of speech tag in the

ANEW-N and GINQ-N experiments respectively. In most cases the result is a net gain

over using words of any POS tag as seeds. It should be noted that these graphs only go

up to 100 seeds, since there are simply not enough seed candidates, so this gain exhib-

ited when using a low number of seeds is more than offset by the availability of more

candidate seeds. Also note the relative performance: in most cases adjectives are the

best seeds, however their difference with nouns is not necessarily significant, depending

on the similarity metric. This indicates that the similarity metric used and, possibly

the POS tags of the evaluated words, affect the optimal choice of seed word POS tag.

We perform partial evaluation, focusing on the performance exhibited when the words

being rated have specific POS tags (again the words examined have only one possible

POS tag). In Figure 3.13 and Figure 3.5 the performance of different types of seeds at

evaluating different types of target words is shown, when the similarity metric used is

57



3. TEXT AFFECT

based on NEAR counts and IND documents respectively. For contextual similarities,

the best performance is achieved when the seeds have the same POS tag as the targeted

words: the best seeds when it comes to predicting ratings for nouns are other nouns.

That is clearly not the case when using NEAR counts, where nouns are better defined

by adjectives.

Overall, the evidence suggest creating a more complex hierarchical model, utilizing

different seeds depending on the input word. There are however practical issues in such

an implementation, most importantly that we do not know the POS tags of annotated

lexicon words nor do we have any way to handle words with multiple possible POS tags.

Regarding the use of seeds bearing only one specific POS tag, it doesn’t seem worth it

for these experiments: the net gain when using few seeds is not substantial enough and is

offset at higher seed numbers due to simply having far less seed candidates available, so

models without a POS tag limitation eventually achieve higher performance. However

it is an alternative if resources are more available than corpora/queries.

Overall Figure 3.15 shows the overall performance of the proposed method per task

when using the best performing similarity metrics and the linear kernel equation. Over-

all NEAR counts (mutual information) and IND documents (contextual) produce the

best results, being clearly better than AND counts (google semantic relatedness) and

IND snippets respectively.

In the case of counts this shows that proximity plays a role in accurately determining

similarity, though is unclear how important it is and what the “threshold” may be.

Perhaps a maximum distance of 10 words is sub-optimal, perhaps an approach taking

into account text structure may be better, such as requiring words to co-occur within

a paragraph. However, unlike the results reported in [53] and [54] the method does not

fall apart when using AND queries: the results are worse, but not bad. Documents

performing better than snippets seems more straightforward: the corpus created by

documents is simply much bigger than the one created by snippets.

Looking at absolute performance numbers, accuracy and correlation reach maxi-

mums of 0.82/0.88 and 0.81/0.84 for the ANEW-CV and ANEW-N experiments re-

spectively. Unfortunately no comparable numbers exist in literature using the ANEW

dataset, though of course they are much higher than those achieved using Turney’s

method. Accuracy in the GINQ corpus reaches 90% for the GINQ-CV experiment,
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News corpus, Correlation

All words Content words

avg w.avg max avg w.avg max

AND

dice 0.45 0.44 0.39 0.48 0.45 0.42

jaccard 0.44 0.42 0.36 0.48 0.44 0.41

google 0.50 0.47 0.46 0.51 0.49 0.46

PMI 0.45 0.40 0.39 0.47 0.41 0.39

NEAR

dice 0.19 0.11 0.03 0.29 0.19 0.19

jaccard 0.16 0.10 0.03 0.26 0.19 0.19

google 0.43 0.33 0.31 0.51 0.45 0.48

PMI 0.51 0.49 0.46 0.54 0.52 0.47

News corpus, Accuracy

All words Content words

avg w.avg max avg w.avg max

AND

dice 0.66 0.66 0.67 0.69 0.70 0.70

jaccard 0.61 0.62 0.63 0.68 0.68 0.67

google 0.71 0.72 0.72 0.70 0.72 0.72

PMI 0.66 0.69 0.68 0.68 0.68 0.68

NEAR

dice 0.50 0.50 0.50 0.55 0.56 0.56

jaccard 0.49 0.49 0.49 0.52 0.52 0.53

google 0.67 0.65 0.66 0.68 0.72 0.72

PMI 0.62 0.65 0.69 0.68 0.69 0.69

Table 3.4: Correlation and Classification Accuracy on the SemEval Dataset for all metrics

and fusion schemes.

which is in fact lower than the 91.3% reached in [52] and 93.1% reached in [22] and

86% for the GINQ-N experiment which is significantly better than the previous best in

literature, the 82.8% in [53].

Figure 3.16 shows accuracy-rejection graphs for the 4 tasks. In all cases we use our

method to create ratings for the entire test corpus, then disregard the words that have

the lowest absolute valence (closer to zero), effectively taking the absolute rating as a

confidence measure. These graphs show accuracy as a function of the percentage of

samples that are ignored. Predictably, given the equivalent accuracy and much higher

correlation, our method performs very well in these as well.
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Subtitles corpus, Correlation

All words Content words

avg w.avg max avg w.avg max

AND

dice 0 0 0 0.02 0.02 0.02

jaccard 0 0 0.01 0.02 0.02 0.02

google 0.05 0.04 0.04 0.06 0.06 0.05

PMI 0.04 0.03 0.04 0.05 0.05 0.05

NEAR

dice -0.02 -0.02 -0.02 -0.03 -0.03 -0.04

jaccard -0.02 -0.01 -0.02 -0.02 -0.02 -0.03

google 0.02 0.02 -0.01 0.02 0.02 -0.02

PMI 0.04 0.04 0.03 0.04 0.04 0.03

Subtitles corpus, Accuracy

All words Content words

avg w.avg max avg w.avg max

AND

dice 0.56 0.56 0.55 0.56 0.56 0.55

jaccard 0.57 0.57 0.57 0.57 0.57 0.57

google 0.57 0.57 0.56 0.58 0.57 0.56

PMI 0.57 0.56 0.56 0.57 0.56 0.56

NEAR

dice 0.6 0.6 0.6 0.6 0.6 0.6

jaccard 0.60 0.60 0.6 0.6 0.60 0.6

google 0.53 0.51 0.51 0.53 0.51 0.5

PMI 0.59 0.59 0.59 0.59 0.59 0.59

Table 3.5: Correlation and Classification Accuracy on the Subtitle Dataset for all metrics

and fusion schemes.
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3.5.3 Sentence Level Tagging

Figure 3.17 and Figure 3.18 show the performance of the sentence level affective tag-

ging algorithm on the SemEval corpus, as binary accuracy and correlation respectively,

versus the number of seed words used to create the required word ratings and the fusion

scheme used to combine them. Results are shown for the case when all words are taken

into account and the case where only content words are selected. The similarity metrics

used to create the needed word ratings are hit-based. Overall, selecting only the con-

tent words has a small positive effect on correlation, however that translates into a big

boost in terms of accuracy when using NEAR counts. This indicates a bias issue, which

is resolved removing non-content words. In terms of fusion schemes, the plain average

produces the highest correlation scores, while weighted average does better in terms

of accuracy. Similarly, when comparing the performance of AND and NEAR counts,

AND counts produce higher accuracy, while NEAR counts perform better with regards

to correlation. Given how small these differences are, they are likely to be caused by

each method’s accuracy in classifying sentences with very low absolute valence. To ex-

amine, we calculate accuracy while ignoring sentences with an actual absolute valence

rating that puts them in the lowest x%, where x ∈ {25, 50, 75}. The results are shown

in Figure 3.19. As expected, performance improves if we only look at sentences with a

higher absolute affective score. In this case there is a clear winner, the method using

AND counts provides better results with the increased rejection. Table 3.4 shows per-

formance for all similarity metrics and fusion schemes evaluated, when the number of

seeds used to created the word ratings is 200. The relative performance of the various

similarity metrics mirrors their performance in word level tests, with Google semantic

relatedness performing best when using AND counts and mutual information perform-

ing best when using NEAR counts. Deciding between these two is less straightforward.

Regardless, the achieved correlation of 0.54 is higher than any previous in literature,

with the best system in [47] achieving 0.5. The binary accuracy of 0.72 is much higher

than the 0.62 reported in [51] and the 0.66 in [36], higher than the 0.71 reported in [37]

using a very complex compositional model and almost as high as the 0.728 achieved

in [10] while using 10-fold cross-validation, manually annotated words and multiple

resources to estimate the effect of modifiers and negations.
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All in all, the results are encouraging, considering that our proposed method uses

very little prior knowledge, no linguistic rules and rather simple fusion schemes. Even

including non content words has the very minimal effect of adding a slight bias.

Table 3.5 shows performance in the subtitle dataset. Overall the results are very

bad, barely beating randomness. The poor results show the added complexity of this

task compared to unimodal polarity detection in text. More likely it points to the

significance of factors we ignored: interactions across sentences and across modalities.

It is reasonable to assume that context acts as a modifier on the affective interpretation

of each utterance. Furthermore, here, it is not just lexical context that contributes to

the ground truth, but also multimedia context: from the voice tone of the actor, to his

facial expression, to the movie’s setting.

3.6 Conclusions

We proposed an affective lexicon creation/expansion algorithm that estimates a con-

tinuous valence score for unseen words from a set of manually labeled seed words and

semantic similarity ratings. The proposed affect estimator is trained using LMS and

feature selection. Once trained, the affect estimator was used to compute the valence

ratings for unseen words in a fully automatic unsupervised manner that did not re-

quire any external linguistic resource (e.g., ontologies), using semantic similarity scores

computed from web documents. The lexicon creation algorithm achieved very good

results on the ANEW and General Inquirer datasets, achieving higher performance

than any method in literature. All of the modifications to the original method by

Turney proved useful, even if only in specific contexts. The method can be adapted

to work well using any data source and any similarity metric we tried, allowing easy

adaptation to any constraints on queries, space and computational complexity as well

as any starting lexicon. One obvious use of such a method would be to create affective

lexica for languages other than English, for which resources like WordNet do not exist.

In addition, preliminary results on sentence level valence estimation show that simple

linear and non-linear fusion schemes achieve performance that is at least at a par with

the state-of-the-art for the SemEval task.

Although the results are encouraging, this work represents only the first step towards

applying machine learning methods to the problem of analysing the affective content
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of words and sentences. Alternative semantic similarity or relatedness metrics could

also be investigated, better fusion models that incorporate syntactic and pragmatic

information can also prove instrumental in achieving improved sentence-level valence

scores. Overall, the proposed method creates very accurate ratings and is a good

starting point for future research. An important advantage of the proposed method is

it’s simplicity: the only requirements are a few hundred labeled seed words and a web

search engine.
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Chapter 4

Conclusions

In Chapter 2 we an annotated database of affect and our experiments in tracking the

affective contents of the movies using HMMs. Overall the results are promising, even

surprisingly good in the case of predicting arousal. Compared to previous work on much

more limited domains, we experienced a, perhaps predictable, regression in feature

complexity: we found that very generic descriptors achieved the best results, while

some very popular features like motion and tempo failed to provide an improvement.

Feature-level fusion proved inadequate for subtitle information, leading to a more

in depth exploration of affective text modeling, as shown in Chapter 3. The proposed

affective lexicon creation algorithm performed well in virtually any task we tried and

is extremely versatile with regards to the nature of the starting lexicon, the type of

similarity metrics used and the seed word selection strategy. Also unlike contemporary

methods based on WordNet, this method can create ratings for (proper) nouns and

potentially be applied to languages other than English. Sentence experiments were

conducted simply to verify the applicability of the lexicon to sentence tasks and again

achieved state-of-the-art results. While the method is generally successful, it still fails

in the subtitle classification task.

Despite the failure to merge the two parts of this work into a single movie-oriented

solution, we feel that results achieved overall are good enough and interesting enough

to consider this research endeavour a success.
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4.1 Future Work

Eventually the audio-visual and text parts of this work will have to be merged, but

before that there are potential improvements to be applied to both.

The audio-visual model performs acceptably well, but is fairly light on the video

features. The use of many times more audio than video features leads to a system that

is inherently biased and that may very well fail when the cinematographic style is less

dependent on music. So a more in depth look at the visual parts is in order. Then there

is the audio-visual fusion scheme, which will have to be improved; this is not a simple

task and constitutes a field of research by itself. There will also have to be more work

on incorporating high-level semantics into the model, as they are obviously important

modifiers of affect. One idea that seems feasible using today’s technology, is using face

and speaker recognition to identify movie characters.

On the affective text front, there doesn’t seem to be much room for improvement

with regards to the lexicon creation method, apart perhaps from using more sophis-

ticated similarity metrics as they become available. There are possible improvements

when the method is used to create a lexicon for a sentence classification task. So far

we have not considered part of speech or senses when creating word ratings, however

these can potentially be incorporated by the use of specialized web queries when col-

lecting data. Our sentence model is very naive disregarding any syntactic information,

so that is an obvious step forward in that regards. Applying this same model to movies

will require much deeper exploration of the interactions between sentences, as well as,

taking into account temporal distance, a factor that has never been inspected before

in this context. Finally the two streams will have to be merged, which again points to

the multimodal fusion problem.
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Appendix A

Annotation - Analysis

This section shows some of the results obtained during the analysis of users’ annota-

tions. It should be noted that almost none of the results that follow shows statistically

significant differences.

A.1 Values analysis

Figure A.1 shows the comparison, by ANOVA analysis, of users’ mean arousal, valence

and absolute valence depending on whether they enjoyed the clip. There is no significant

dependency, though the overall trend is as expected.

A.2 Time delay

Figure A.6 shows an example of two annotations performed for the same clip, by the

same user. The user had not watched the movie before the annotation and it is clear

that he shows a significant delay in reacting to the movie during the first annotation.

To assess and compare time delay we use the cross-correlation between user anno-

tations and the expected emotion (the average, after removal of outliers). Then we

use the questionnaire answers as grouping factors and perform ANOVA analysis. Fig-

ures A.7, A.8 and A.9 show relative time delays when using prior knowledge, annotator

name and enjoyment of the clip as grouping factors. Prior knowledge only has an ap-

preciable effect on valence: having prior knowledge means a noticeably faster response

time, suggesting that the self-evaluation of valence is a more complex cognitive process

than the self-evaluation of arousal. This is consistent with fMRI research showing that
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Figure A.1: ANOVA graphs for the normalized mean arousal (a), valence (b) and absolute

valence (c) given the annotator liked(1) or disliked(0) the clip
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Figure A.2: ANOVA graphs for the normalized mean arousal (a), valence (b) and absolute

valence (c) valence given the annotator was bored (1) or not (0) of the clip
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Figure A.3: ANOVA graphs for the normalized mean arousal (a), valence (b) and absolute

valence (c) given the annotator had watched the same movie before (1) or not (0)

70

figures/analysis/means/data_mean_basics_watched_aro.eps
figures/analysis/means/data_mean_basics_watched_val.eps
figures/analysis/means/data_abs_mean_basics_watched_val.eps


A.2 Time delay

arousal valence

0 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) 0 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

0 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) 0 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d)

0 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) 0 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f)

Figure A.4: ANOVA graphs for the correlation between each user’s first and second

annotations. Grouping factors: liked(1) or disliked(0) the clip (a)-(b), was bored (1) or

not (0) of the clip (c)-(d), had watched the same movie before (1) or not (0) (e)-(f)
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Figure A.5: ANOVA graphs for the correlation between each user’s annotation and the

intended emotion annotation. Grouping factors: liked(1) or disliked(0) the clip (a)-(b),

was bored (1) or not (0) of the clip (c)-(d), had watched the same movie before (1) or not

(0) (e)-(f)
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1.4 1.5 1.6 1.7 1.8 1.9 2

x 10
5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

first

second

Figure A.6: Excerpt from a user’s two arousal annotations for Million Dollar Baby,

showing a clear time-shift of around 10 seconds

self-report of valence is more dependent on knowledge-based interpretation, making

knowledge itself more important. Looking at the comparison per annotator, the expert

of the group (nikos) who had watched all clips multiple times before annotating is just

average when it comes to arousal, but very fast when it comes to valence, matching the

previous find. Enjoyment of the clip on the other hand has an effect on arousal, with

users that enjoyed a clip having a slower response time. Perhaps an explanation is the

varied degree of immersion implied by enjoyability, however that would suggest that

annotators enjoying the movie neglect their annotation, something not too flattering.
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Figure A.7: Anova graphs for the arousal and valence time-shifts, grouping factor: have

watched the movie and have some recollection.
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Figure A.8: Anova graphs for the arousal and valence time-shifts, grouping factor: an-

notator. Note that the “expert” of the group is average when it comes to arousal, but very

fast when it comes to valence
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Figure A.9: Anova graphs for the arousal and valence time-shifts, grouping factor: en-

joyed the clip. For some reason enjoyment slows the reaction time?

75

figures/appendix/liked_clip_aro1.eps
figures/appendix/liked_clip_val1.eps


A. ANNOTATION - ANALYSIS

76



Appendix B

Events VS Affect

We performed an annotation of events on two clips in order to examine how the man-

ifestation of expectation is presented on our affective curves. Our initial thoughts on

the subject suggested that defining the temporal limits of an event was not a triv-

ial matter. As such we annotated hierarchically; starting from minimal events then

annotating larger events containing these minimals. An example can be seen in the

Figure B.1, taken from Million Dollar baby; we start by annotating the minimal event

“hero breaks her neck” then expand backwards to create larger events. Nominally

we should also expand forward in time, creating onset-event-fade arcs, however we are

currently interested in prediction which should manifest immediately prior to the event.

Figure B.2 shows the positions of all events we annotated on both clips. Figures B.3

and B.4 show a more detailed view of some of them.

To examine the response to these events we compared (visually) how annotators

responded to them during their first and second annotations. A couple of examples

can be seen in Figures B.5 and B.6. These particular examples show that the second

annotations do shift so as to better align events with major changes in affective state.
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tagonist glaring at the hero), the

second vertical line shows the point

when image/sound go to slow-

motion.

Figure B.1: Milliond Dollar Baby EV4: Hero breaks her neck.
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Figure B.2: Graphs and tables showing our annotated events for each clip
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EV1: Hero wins a fight (bell rings) EV2: Freeman stops a fight
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Figure B.3: Events from Million Dollar Baby
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Figure B.4: Events from No Country for Old Men
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Figure B.5: MDB Event 3: Freeman avenges Danger.
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Figure B.6: MDB Event 4: Hero breaks her neck.
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Appendix C

Multimedia Results

This appendix contains some extra results and information for the multimedia experi-

ments detailed in Chapter 2. Figure C.1 shows a more exhaustive list of audio features

used in our experiments, organized by source.

We performed a sort of forward selection using a wrapper approach, however we

could not practically evaluate every combination (exhaustive search) or even perform

best-first selection by incrementing by a single feature at a time. Instead we evaluated

in small groups. Some of the results can be seen in Table C.1. This first round of

selection gave us MFCCs as the best performing group of features, so we used them

as a base and ran further experiments attempting to improve on their performance by

adding features to a set already containing MFCCs and their deltas and accelerations.

Some results from this round can be seen in Table C.2. The final feature sets used for

our experiments are shown in Table 2.4.
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C. MULTIMEDIA RESULTS

• HTK

– MFCC 0 E D A Z (42)

– PLP 0 E D A Z (42)

• MARSYAS

– Chroma (14)

– Spectral Crest Factor (19)

– Spectral Flatness Measure (24)

– Spectral Centroid, Flux and Rolloff (3)

– Pitch, raw and smoothed (5)

• OpenSMILE

– log Mel Frequency Band Energy (8)

– Pitch, Jitter, Jitter of Jitter, Shimmer (4)

– Line Spectral Pairs (8)

– pitch(mean,range,variance,slope), intensity(mean,range) (6)

• MIR Toolbox

– Tempo, Pulse Clarity, Event Density, Spectral Skewness, Spectral kurtosis,

Spectral Flatness, Rhythm Irregularity, Inharmonicity (8)

– Standard deviation of RMS, Maximum value of summarized fluctuation, Key

clarity average, Mode average, Averaged spectral novelty (5)

– Average of RMS, Maximum value of summarized fluctuation, Spectral Cen-

troid average, Spectral spread average, Entropy of smoothed and collapsed

spectrogram (5)

• NTUA

– maximum average Teager energy, mean instant amplitude, mean instant

frequency

Figure C.1: Full list of evaluated audio features, grouped by source.
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Table C.1: Comparison of different feature groups on the performance of arousal and

valence prediction

arousal

Features ACC ACC±1 D.CORR MSQE C.CORR

MFCC 0.22 0.53 0.34 0.20 0.46

Chroma 0.21 0.50 0.37 0.22 0.47

Spectral Crest Factor 0.16 0.44 0.11 0.25 0.20

Spectral Flatness Measure 0.17 0.43 0.11 0.27 0.20

Spectral Centroid, Flux, Rolloff 0.20 0.46 0.22 0.31 0.30

MIR features 0.20 0.49 0.30 0.23 0.43

ntua audio 0.20 0.51 0.29 0.22 0.40

PLP 0.22 0.52 0.34 0.21 0.47

log Mel Freq. Band Energy 0.19 0.47 0.26 0.23 0.35

Line Spectral Pairs 0.17 0.45 0.13 0.27 0.20

Kotropoulos 0.20 0.51 0.33 0.20 0.44

Pitch, jitter, jitter of jitter, shimmer 0.14 0.40 0.01 0.32 -0.02

valence

Features ACC ACC±1 D.CORR MSQE C.CORR

MFCC 0.20 0.51 0.10 0.30 0.16

Chroma 0.19 0.49 0.07 0.40 0.11

Spectral Crest Factor 0.17 0.47 0.03 0.32 0.06

Spectral Flatness Measure 0.17 0.47 0.07 0.31 0.11

Spectral Centroid, Flux and Rolloff 0.18 0.50 0.06 0.33 0.09

MIR features 0.18 0.48 0.05 0.34 0.07

ntua audio 0.19 0.51 0.05 0.33 0.05

PLP 0.21 0.51 0.11 0.30 0.16

log Mel Frequency Band Energy 0.18 0.49 0.06 0.35 0.09

Line Spectral Pairs 0.17 0.47 0.05 0.33 0.07

Kotropoulos 0.17 0.44 -0.04 0.44 -0.06

Pitch, Jitter, Jitter of Jitter, Shimmer 0.20 0.50 0.00 0.32 0.01
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Table C.2: Comparison of different feature groups on the performance of arousal and

valence prediction. Each group is added to a feature set already containing MFCCs.

MFCC plus features on Arousal

MFCC and: ACC ACC±1 D.CORR MSQE C.CORR

Chroma 0.24 0.54 0.38 0.23 0.51

Spectral Crest Factor 0.19 0.46 0.23 0.22 0.38

Spectral Flatness Measure 0.19 0.48 0.20 0.21 0.33

Spectral Centroid, Flux and Rolloff 0.23 0.53 0.32 0.21 0.45

ntua audio 0.21 0.51 0.31 0.21 0.43

MFCC plus features on Valence

MFCC and: ACC ACC±1 D.CORR MSQE C.CORR

Chroma 0.16 0.43 0.04 0.38 0.04

Spectral Crest Factor 0.18 0.47 0.07 0.31 0.14

Spectral Flatness Measure 0.18 0.48 0.09 0.30 0.16

Spectral Centroid, Flux and Rolloff 0.20 0.51 0.11 0.29 0.18

ntua audio 0.18 0.49 0.04 0.32 0.07
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Appendix D

Similarity VS co-occurence

In Chapter 3 we used multiple hit-based similarity metrics with varying success. We

also found that rescaling some of the less well performing metrics via simple functions

could improve performance significantly. We believe that is due to the differences

between metrics regarding how they scale relatively to the co-occurrence hit count.

Plotting relative frequencies and their resultant similarity metrics is not possible,

since it is a multivariate problem. As an alternative we show multiple plots, where

each plot has fixed IND counts and the only variable is the co-occurence count. What

changes between the different plots is the ratio of IND counts: they may be equal (1

to 1) or one is a multiple of the other. In all graphs the x axis represents the value

of the co-occurence count as a percentage of the minimum of IND counts. The y axis

values have no meaning, since for representation purposes the similarity metrics are

peak-to-peak normalized. Figure D.1 shows the results.

As we expected, these graphs explain why some metrics are less suitable to the

task. The metrics are clearly not connected by a linear relation, since they scale very

differently to the increasing co-occurrence hit count, but we use them as part of a

linear equation, assuming they are linear to an ideal “affective similarity”. We can

assume that the scaling of this affective similarity would be most similar to those of

PMI and Google semantic relatedness, our best performing metrics. Dice and Jaccard

coefficients (which generally perform poorly) deviate significantly from that, but they

can be adapted by using a scaling function less steep than linear, as shown in the graphs

for the logarithm of Jaccard coefficient.
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Figure D.1: Mapping of co-occurence count to similarity

90

figures/sim_mapping/1to1.eps
figures/sim_mapping/1to2.eps
figures/sim_mapping/1to5.eps
figures/sim_mapping/1to10.eps
figures/sim_mapping/1to50.eps
figures/sim_mapping/1to100.eps


Appendix E

ChIMP results

The ChIMP database was used to evaluate the method on spontaneous spoken dialog

interaction. The ChIMP corpus contains 15,585 manually annotated spoken utterances,

with each utterance labeled with one of three emotional state tags: neutral, polite, and

frustrated [62]. While the labels reflect emotional states, their valence rating is not

obvious. In order to adapt the affective model to the ChIMP task, the discrete sentence

level valence scores were mapped as follows: frustrated was assigned a valence value

of -1, neutral was 0 and polite was 1. To bootstrap the valence scores for each word

in the ChIMP corpus, we used the average sentence-level scores for all sentence where

that word appeared. Finally, the ANEW equation system matrix was augmented with

all the words in the ChIMP corpus and the valence model in (3.3) was estimated using

LMS. Note that for this training process a 10-fold cross validation experiment was run

on the ChIMP corpus sentences. The relative weight of the ChIMP corpus adaptation

data was varied by adding the respective lines multiple times to the augmented system

matrix, e.g., adding each line twice gives a weight of w = 2. We tested weights of

w = 1, w = 2, and using only the samples from ChIMP as training samples (denoted

as w = ∞). The valence boundary between frustrated and other classes was selected

based on the a-priori probability distribution for each class, and is simply the Bayesian

decision boundary (similarly between polite and other classes). In Table E.1, the two-

class sentence-level classification accuracy is shown for the ChIMP corpus (polite vs

other: “P vs O”, frustrated vs other: “F vs O”). For the baseline ChIMP experiment,

200 words from the ANEW corpus were used to train the affective model in (1) using

the linear similarity function. For the adaptation experiments, the parameter w denotes
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Table E.1: Sentence classification accuracy for the ChIMP baseline and ChIMP adapted

tasks.

Sentence Classification Accuracy

avg w.avg max

ChIMP (P vs O) baseline 0.70 0.69 0.54

ChIMP (P vs O) adapt w = 1 0.74 0.70 0.67

ChIMP (P vs O) adapt w = 2 0.77 0.74 0.71

ChIMP (P vs O) adapt w = ∞ 0.84 0.82 0.75

ChIMP (F vs O) baseline 0.53 0.62 0.66

ChIMP (F vs O) adapt w = 1 0.51 0.58 0.57

ChIMP (F vs O) adapt w = 2 0.49 0.53 0.53

ChIMP (F vs O) adapt w = ∞ 0.52 0.52 0.52

the weighting given to the in-domain ChIMP data, i.e., number of times the adaptation

equation were repeated in the system matrix (2). Results are shown for the three fusion

methods (average, weighted average, maximum).

Paper [61] achieves 81% accuracy in politeness detection and 61.7% accuracy in

frustration detection. With regards to politeness detection, performance of the baseline

(unsupervised) model is lower than that quoted in [61] for lexical features. Performance

improves significantly by adapting the affective model using in-domain ChIMP data

reaching up to 84% accuracy for linear fusion and surpassing [61]. The best results for

frustration detection task are achieved with the baseline model and max fusion schemes

at 66% (again better than [61]). It is interesting to note that in-domain adaptation

does not improve frustration classification. A possible explanation is that there is a

high lexical variability when expressing frustration, thus, the limited adaptation data

does not help much. Also frustration may be expressed with a single word that has

very negative valence, as a result, max fusion works best here. Overall, very good

results are achieved using a domain-independent affective model to classify politeness

and frustration. However, the appropriate adaptation and sentence-level fusion schemes

seem to be very much task-dependent.
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