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2 CHAPTER 1. ABSTRACT

1.1 Abstract

Automatic Control of systems has played a vital role in the development of
engineering. It plays a determinative role in the successful function of special
systems such as spacecraft systems, automatic navigation aircraft systems, mor-
tar shell driving systems, robotics etc. In parallel, it comprises one of the most
important components of contemporary industrial and constructive processes.
Theoretical development of the automatic control systems has a continuous evo-
lution which was accelerated from the Second World War period until today.
Theoretical aspects and control techniques for linear systems have met a partic-
ular progress while a special interest has been drawn during the last few decades
to the control of non-linear systems, but without reaching a universal applicabil-
ity. A basic prerequisite of conventional linear or non-linear control techniques,
is the presence of an accurate mathematical model of the dynamical behavior
of the under control system.

It is known today, that both physical and modern man-made systems can be
particularly complex (multi-variable) and are characterized by many nonlinear-
ities. This makes their dynamical mathematical description especially difficult
or even impossible, a fact that often leads to their treatment as unknown (black
box) systems. The complexity of these systems hinders the design of suitable
control techniques. This becomes even more difficult because the dynamical
mathematical model required by the conventional approaches is most of the
times unknown. Even though the mathematical description is possible, there
exist difficulties in the adaptation of the feedback controllers when the system
is time-varying with an unknown to the designer way. These drawbacks cre-
ate the demand for the development of new approximation models and control
techniques that have the ability to learn and adapt to varying environmental
conditions or internal dynamical behavior of the system.

Artificial neural networks and adaptive fuzzy systems constitute a reliable
choice for modeling unknown systems, since during the last years they are con-
sidered as universal approximators. In this way, they can approximate any
nonlinear function to any prescribed accuracy provided that sufficient hidden
neurons and training data are available. Recently, the combination of artificial
neural networks and adaptive fuzzy systems has lead to the creation of new ap-
proaches, fuzzy-neural or neuro-fuzzy approaches that capture the advantages
of both fuzzy logic and neural networks and intend to approach systems in a
more successful way. The neural and fuzzy approaches, are most of the time
equivalent, differing between each other mainly in the structure of the approxi-
mator chosen.



1.1. ABSTRACT 3

This thesis, is based on the development of an adaptive recurrent neuro-
fuzzy approximator for the identification and control of unknown multi-variable
nonlinear dynamical systems, which present various nonlinearities. It extends
the operational flexibility of the approximator by admiring a bilinear form in
respect to the unknown parameters and proposing new updating laws for the
on-line parameter updating. This approximator offers a new Neuro-Fuzzy (NF)
dynamical description of systems that cannot be mathematically described in
an accurate way. The central idea of the new approximator is an alternative
description of a classical fuzzy system, which combines the definition of some
Weighted Indicator Functions (WIF) with the fuzzy partitioning of the system
output variables. In the sequence, the discontinuous WIF functions are approx-
imated by high order neural networks (HONN’s). In other words, the central
idea of the approximator used regarding the fuzzy logic, is the following: Every
high order neural network approximates a group of fuzzy rules associated with
every center that has resulted from the fuzzy partitioning of the system output
variables. Moreover, after considering the demands of the initial design assump-
tions in the usual neuro-fuzzy adaptive systems, it is concluded that the new
neuro-fuzzy approximator used in this thesis (F-RHONN’s) can perform with
the existence of much less initial knowledge.

In this thesis is presented the design, analysis and simulation of new neuro-
fuzzy approximators and controllers that can be used for the approximation and
control of non-linear affine in the control systems in bilinear form. These sys-
tems have the form: ẋ = f(x) +G(x) · u. The approximator that is being used
for our bilinear approach is a new dynamical neuro-fuzzy model, which sepa-
rates the real system to neuro-fuzzy subsystems. Each one of the neuro-fuzzy
subsystems separately approximates the f(x) and G(x) terms. The method of
parameter hopping is suitably adapted to the new control data and it is reas-
sured in this way that all signals in the closed-loop remain bounded making the
system Lyapunov stable. Moreover, the controllers that are being proposed are
designed in such a way that the closed-loop error dynamics become linear as well
as stable. Suitably adapting it, the method of parameter hopping once again
reassures the existence of the control signal. This method is incorporated in
the weight and partitions centers updating laws and maintains the closed-loop
system Lyapunov stable.

Concluding briefly, in this master thesis the main aspect was to develop an
indirect adaptive regulation of unknown nonlinear dynamical systems in bilin-
ear form. This method is based on a Neuro-Fuzzy Dynamical Systems defini-
tion for nonlinear systems which uses the concept of Fuzzy Dynamical Systems
(FDS) operating in conjunction with High Order Neural Network Functions
(F-HONNFs). In this problem the plant is considered unknown, and ,so, it is
approximated by a special form of a fuzzy dynamical system while in the sequel
the fuzzy rules are approximated by appropriate HONNFs. Thus the identi-
fication scheme leads up to a Recurrent High Order Neural Network, which
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however takes into account the fuzzy output partitions of the initial FDS. This
scheme does not require a-priori experts’ information on the number and type
of input variable membership functions making it less vulnerable to initial de-
sign assumptions. At first, the system is identified around an operation point,
and then it is regulated to zero adaptively. By using the above analysis and
development of the special neuro FDS, this thesis extends its applicability for
the control of nonlinear systems, in a special bilinear however form. Weight and
Partitions Center updating laws are provided for the HONNFs and the centers
of the output membership functions respectively, which guarantee that both the
identification error and the system states reach zero exponentially fast, while
keeping all signals in the closed loop bounded. We assure the existence of the
control signal by applying a method of parameter hopping, which is incorpo-
rated in the weight and center updating law. The applicability of the method is
tested on a DC Motor system, where it is shown that by following the proposed
procedure one can obtain asymptotic regulation.
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8 CHAPTER 2. INTRODUCTION AND GOALS OF THE THESIS

2.1 Brief Introduction

In our world, there are two principal objectives in the scientific study of the
environment: we want to understand (identify) and to control. Those two goals
are in continuous interaction with each other, since deeper understanding allows
firmer control, while, on the other hand, systematic application of scientific the-
ories inevitably generates new problems while require further investigation, and
so on.

It was the design of the autopilots for high-performance aircraft which pri-
marily motivated the research in adaptive control in the early 1950’s. According
to Webster’s dictionary, to adapt means to change (oneself) so that one’s behav-
ior will conform to new or changed circumstances. The words adaptive systems
and adaptive control have been used as early as 1950 [61]. This generic defini-
tion of adaptive systems has been used to label approaches and techniques in a
variety of areas despite the fact that the problems considered and approaches
followed often have very little in common. In this thesis, the following specific
definition of adaptive control is used:

Adaptive Control is the combination of a parameter estimator, which gen-
erates parameter estimates online, with a control law in order to control classes
of plants whose parameters are completely unknown and/or could change with
time in an unpredictable manner. [53]

For most engineering systems, there are two important information sources.
Firstly, we have sensors which provide numerical measurements of variables
(data for neural networks) and secondly, we have human experts who provide
linguistic instructions and descriptions (fuzzy logic) about the system. Con-
ventional engineering approaches can only make use of numerical information
and have difficulty in incorporating linguistic information. Therefore, in our
approach we tried to relax this difficulty by using an underlying fuzzy descrip-
tion but keeping the least information (initial estimates of fuzzy output centers)
coming from experts,as our approach undertakes the final estimate of those in-
formation automatically.

Problem solving using a neuro-fuzzy (NF) or fuzzy-neural network approaches
has become a popular research topic in the past decades [19], [62], [63], [64], [65],
[66], [67], and many more. Many characteristics of the NF network contribute
to this phenomenon. Some of them are, as compared to the general neural
networks, faster convergence speed, and the combination of the adaptive learn-
ing capabilities from neural networks with the generality of representation from
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fuzzy logic [68], providing what has sometimes been referred to as ”grey box”
models. Moreover, the NF network approach automates the design of fuzzy
rules and makes the combinational learning of numerical data as well as expert
knowledge expressed as fuzzy if-then rules possible. In contrast to the pure
neural network or fuzzy system, the new NF method possesses both of their
advantages. It brings the low-level learning and computational power of neural
networks into fuzzy systems, and provides the high-level human-like thinking
and reasoning of fuzzy systems into neural networks [69], [70].

A recurrent neural and NF network, which naturally involves dynamic ele-
ments in the form of feedback connections used as internal memories, has been
attracting great interest in the past few years [19], [71], [72], [74], [75]. Unlike
the feedforward neural network whose output is a function of its current inputs
only and is limited to static mapping, recurrent neural and NF network perform
dynamic mapping. Like feedforward neural networks, these networks function
as black boxes. We do not know the meaning of each weight and node in these
networks. Recently, the concept of incorporating fuzzy logic into a recurrent
neural network is proposed in some papers,[54], [55], [56], [57], [58], [59], [60],
[63], [71], [74], [75], [76]. Since the NF networks have so many advantages over
the feedforward neural networks, it seems worth constructing a recurrent net-
work based on a NF approach.

In this thesis, we consider the adaptive control problem for nonlinear sys-
tems having the following form:

ẋ = f(x) +G(x) · u (2.1)

where the state x ∈ Rn is assumed to be completely measured, the control
u is in Rq, f is an unknown smooth vector field called the drift term and G is a
matrix with rows containing the unknown smooth controlled vector fields gij .

In controller design based on the feedback linearization technique, the most
commonly used control structure is u = [G(x)]−1 · [−f(x) + v] (for square sys-
tems, number of inputs equals with number of states), with v being a new
control variable. When the nonlinearities f(x) and G(x) are unknown, many
adaptive control schemes have been developed, [77], [78], [79], in which the un-
known elements of the matrix G(x) are usually approximated by a function
approximator ĝij(x,Wg) (where Wg is an estimated weight or parameter ma-
trix). Consequently, the estimate Wg must be such that G(x) is non-singular.
Several attempts have been made to deal with such a problem, as follows:

1. choosing the initial parameter Wg(0) sufficiently close to the ideal value
by off-line training before the controller is put into operation [17].

2. using projection algorithms to guarantee the estimate Wg inside a feasible
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set, in which ĝij(x,Wg) 6= 0 (some a-priori knowledge for the studied systems is
required for constructing the projection algorithms [53], [77], [78], [80].

3. modifying the adaptive controller by introducing a sliding mode control
portion to keep the control magnitude bounded [79].

4. applying neural networks or fuzzy systems to approximate the inverse of
G(x) in [77] and [81], which requires the upper bound of the first time derivative
of G(x) being known a-priori.

In the neuro or neuro fuzzy approaches, most of the already presented works
[9]-[15] deal with idirect adaptive control (trying first to identify the dynamics
of the systems and then generating a control input according to the certainty
equivalence principle), whereas few authors [16] and [17] face the direct approach
(i.e. directly generating the control input to guarantee stability), because it is
not always clear how to construct the control law without knowledge of the
system dynamics.

Recently [19], [20], [54], [55], [56], [57], [58], [59], [60] high order neural net-
work function approximators (HONNFs) have been proposed in order to identify
nonlinear dynamical systems of the form (2.1), approximated by a Fuzzy Dy-
namical System (FDS). The above approximation depends on the fact that fuzzy
rules could be identified with the help of HONNFs.

In this master thesis HONNFs are also used for the neuro fuzzy indirect adap-
tive control of unknown nonlinear dynamical systems in bilinear form, which
includes two interrelated phases: first the identification of the model-plant and
second the adaptive control of it.

The identification phase usually consists of two main categories: structure
identification and parameter identification. Structure identification involves
finding the main input variables out of all possible, specifying the member-
ship functions, the partition of the input space and determining the number of
fuzzy rules which is often based on a substantial amount of heuristic observation
to express proper strategy’s knowledge. Most of structure identification meth-
ods are based on data clustering, such as subtractive clustering [11], mountain
clustering [10] and fuzzy C-means clustering [8]. The above approaches require
that all input-output data are ready before we start to identify the plant. So,
those approaches are called off-line.

In our approach we use the structure identification that is also made off-
line and it is based either on human expertise or on gathered data. However,
the required a-priori information obtained by linguistic information or data is
very limited. The only required information in this approach is an initial esti-
mate (coming from the experts) of the centers of the output fuzzy membership
functions and it is not necessary on the underlying fuzzy rules, because this is
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automatically estimated by the HONNFs. So, in the sequel, the centers and the
neural weights are estimated on-line automatically. Based on these facts the
proposed method is less vulnerable to initial design assumptions.The parameter
identification part is then easily addressed by HONNFs, based on the linguistic
information regarding the structural identification of the output part and from
the numerical data obtained from the actual system to be modeled.

One of our consideration is that the nonlinear system is affine in the control
and could be approximated with the help of two independent fuzzy subsystems.
Every fuzzy subsystem is approximated by a family of HONNFs, each one be-
ing related with a group of fuzzy rules. Weight updating laws are given and
we prove that when the structural identification is appropriate then the error
reaches zero very fast. Moreover, an appropriate state feedback is constructed
in order to achieve asymptotic regulation of the output, while keeping all signals
of the system bounded in the closed loop. The existence of the control signal
is always assured by suitably using a method of parameter hopping, which is
incorporated in the weight and partitions centers updating laws.

The master thesis is organized as follows. Chapter 3 presents some basic facts
of the presented work in the field of Adaptive Neuro-Fuzzy Identification and
Control so far, while Chapter 4 sets some preliminaries related to the Recurrent
Neural Networks. Chapter 5 deals with preliminaries related to the concept of
Adaptive Fuzzy Systems (AFS) and the formal models used in the remaining
thesis, and Chapter 6 reports on the ability of HONNFs to act as fuzzy rule
approximators. The indirect neuro fuzzy adaptive regulation of affine in the
control dynamical systems is developed in Chapter 7, where the method of
Parameter Hopping is explained and the associated weight adaptation laws are
given. Simulation results on the control of a DC Motor system are given in
Chapter 8, showing that by following the proposed procedure one can obtain
asymptotic regulation. Finally, Chapter 9 concludes the work of this master
thesis, while the Appendix includes the proofs of the theorems we used.

2.2 Innovative Goals of the Thesis

The goals of the presented thesis cover the following issues:

The use of a NF approximator scheme for the identification of dynamical
unknown nonlinear systems which presents the following distinct advantages in
comparison with other approximations form the literature, in order extend the
control of nonlinear systems in special bilinear form.

The union between artificial neural networks, in the sense of high order neu-
ral networks, and fuzzy logic in order to generate a more powerful and general
approximator.
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From the fuzzy logic aspect, the reduction of strong requirements concerning
the careful selection of the fuzzy partitions of input and output variables, the
selected type of the membership functions and the proper number of fuzzy rules
which contribute to the success of the adaptive fuzzy system. Here is needed
only an initial estimate of the fuzzy partitions centers, which in the sequel are
estimated automatically by our algorithm.

From the neural network aspect, the alternative approximation of weighted
indicator functions with the help of high order neural networks for our special
bilinear case.

Based on the NF approximator to address a problem of indirect control (DC
Motor control) as well as to theoretically solidify its behavior under different
uncertainties and errors during the modeling procedure.

The alternative use of a parameter hopping method in order to assure the
existence of the control signal and the robustness of the closed-loop system.

Those goals have been achieved during the hardworking design and imple-
mentation of this master thesis.
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3.1 Adaptive Neuro-Fuzzy Identification and Con-
trol : Basics

Many researchers have been active in the adaptive dynamic identification and
control area [82], [83], [53], [84], [85], [19], [86], to mention just a few. There are
different adaptive control schemes where neural, fuzzy or NF have gained the
interest of many researchers in the last years.

Neural Networks were conventionally introduced to adaptive control systems
in the presence of nonlinear uncertainties that could not be globally linearly pa-
rameterized with respect to the unknown parameters. Starting from the seminar
paper of [87], where rigorous stability proofs were first introduced, the field has
evolved significantly over the past two decades. Topics of interest included com-
putation of the gradients needed for backpropagation-type tuning, [130], [88],
use of radial basis functions (RBFs) for feedback [81], dead-zone methods for NN
parameters tuning, [17], projection-based adaptation, [89], use of e-modification
schemes in adaptive laws, [90], use of dynamic NNs for feedback, [16], use of
NNs for general nonlinear systems in state feedback and output feedback, [75],
[91], an adaptive neuro-fuzzy control design where the local submodels are re-
alized through nonlinear dynamical input-output mappings, [131], and use of
NNs in decentralized control [132], to name only a few. NNs have also proved
to be a useful tool in a wide range of applications from robotic manipulations
to aircraft control [92], and beyond.

The application of fuzzy control in engineering has become also a very ef-
fective method, fuzzy logical system is a systemical inference method, which is
transferred into a control strategy based on linguistics information provided by
the experts. The prominent character is the robustness of the controller. So
it can be applied to resolve many complex systems that cannot be controlled
by regular control methods, such as nonlinear systems, time-varying systems,
and delay systems. It still needs to be improved and perfected continuously to
be adaptive, self-organized and self-learning. There are many discussions about
the perfecting and improving of fuzzy controllers such as fuzzy controllers with
good self-adaptation [4], [12], [78], [94], [95], [96], [127], [133] and so on. In
recent years, many researchers, [71], [97], [134], associated neural network and
genetic algorithms with fuzzy control and in this way made fuzzy control reaches
a higher level.

The class of adaptive control schemes studied in this thesis is characterized
by the combination of an online parameter estimator for the dynamic identifi-
cation, which provides estimates of the unknown parameters at each instant of
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time, with a control law that is motivated from the known parameter case. The
way by which the parameter estimator, also referred to as adaptive law in this
thesis, is combined with the control law gives rise to an interesting approach.
The indirect adaptive control scheme.

The indirect adaptive control scheme is separated into two steps: (a) the
dynamics of the system are identified and (b) a control input is generated ac-
cording to the certainty equivalence principle. In the sequel, we will make a
short discussion about the bibliographical reference and give a brief description
about the identification and control scheme that is presented in this master the-
sis.

3.2 Identification

System modeling, [74], [75], [98], [99], [105], has played an important role in
many engineering fields such as control, pattern recognition, communications
and so on. The main idea in conventional approaches is to find a global function
of systems based on mathematical tools. However, it is well known that these
methods have been found to be unsatisfactory in coping with ill-defined and un-
certain systems. In order to circumvent these problems, model-free approaches
using either fuzzy logic or neural networks have been proposed. Functionally, a
fuzzy system or a neural network can be described as a function approximator.
The capability of sufficiently complex multilayered feedforward networks to ap-
proximate an unknown mapping f : Rr → Rs arbitrarily well firstly has been
investigated by [1], [22], [23] (and for sigmoid hidden layer activation functions).

The problem of identifying complex nonlinear systems where we have less in-
formation for the model or when we consider the controlled plant as a blackbox,
something common in many physical systems, may be resolved with the help
of neural network or fuzzy inference systems or a combination of them, leading
to NF approaches. This is due to the universal approximation abilities of both
neural networks and fuzzy inference systems, [1], [78], [100]. For the engineers,
the stability issues are very important to be ensured before they move further
and apply their NF networks to real systems. Therefore, first of all the derived
identification algorithms have to be proven to be Lyapunov stable.

Under these specifications many researchers such as, [53], [78], [101], [135],
gave the very basics and most useful information to system identification which
is the first step in the subsequent control of unknown nonlinear dynamical sys-
tems with various nonlinearities. From the neural network point of view, [19],
[22], [86], [87], [98], [99], [102], [103], [104], [136], [137], [138], develop on-line
nonlinear system identification schemes using recurrent neural networks. Also,
from the fuzzy logic point of view, [4], [8], [97], [105], [106], [107], describes an
encoding fuzzy scheme for learning the plant model from data with the help of
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genetic algorithms or clustering methods. Finally, many researchers such as, [9],
[59], [62], [71], [74], [67], [108], [109], deal with NF networks for realizing on-line
structure and parameter identification.

In existing NF networks, in early 1990’s almost all these systems are trained
by the backpropagation (BP) algorithm [2], [4], [5], [9], [110]. The major draw-
back of the BP algorithms is that it arises from a non-convex optimization
problem and therefore it presents slow speed of learning and entrapment in lo-
cal minima. Therefore, the optimal solution is not guaranteed and BP powered
neural approximators can not be implemented in real-time processes. Nowa-
days, although some special NF networks (fuzzy neurons and fuzzy weights)
have been presented [21], [63], [66], [69], [72], [75], the typical approach of NF
networks is to build standard neural networks which are designed to approxi-
mate a fuzzy system through the structure of neural networks, a methodology
that was chosen during the development of this thesis.

The research by [19], [73], [103] introduced RHONNs, which have been pro-
posed of the identification of nonlinear dynamical systems of the general form:

ẋ = f(x, u) (3.1)

and RHONNs ensures exponential error convergence to zero. Motivated by
this work the approximator was extended in [55] to include fuzzy logic, which
is the sequel generated a new NF approximator. In this approximatior, every
HONN approximates a group of fuzzy rules associated with a center that has
resulted from the fuzzy partitioning of the system output variables or other-
wise approximates a WIF (as already has been mentioned), unlike the classical
determination of Mamdani or Takagi-Sugeno type approximators [106], [111].

Figure 3.1 shows the overall scheme of the proposed NF algorithm which
approximates the plant model (3.1) based on state variables measurement and
input signals. The arrow that passes through the NF model is indicative of the
fact that the output error is used to train the NF network. The NF network’s
input is the plant’s output (through the sigmoidals terms) and the desired NF
network output is the plant’s output. The error difference between the actual
input of the plant and the output of the NF network is to be minimized and can
be used to train the NF network. Once an identification NF model of the plant
is available, this model can be used for the design of the controller ,as shown in
the next subsection.

The identification procedure can be generally divided into two phases. Firstly
the training phase, where the whole procedure is repeated consequently for sev-
eral loops using training inputs usually random values in a certain interval,
and secondly the testing phase, where a certain input signal (depending on the
bounds of the training input signal) is applied in conjunction with a stable
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Figure 3.1: Overall scheme of the indirect adaptive neuro-fuzzy control system
[54]

weight matrix (optimal weight values) extracted from the previous phase in or-
der to test the accuracy of the approximator in reproducing the behavior of the
plant in probably unknown data.

In this thesis the use of this approximator is extended for the control of
nonlinear systems in bilinear form.

3.3 Indirect Control

In conventional control approaches, most of the control schemes usually devised
assuming exact knowledge of (3.1) with pure or no nonlinearities. However, this
is not a plausible assumption, especially when the underlying physical process
is highly nonlinear and complex as has already been mentioned. To overcome
this problem, appropriate identification schemes have to be applied, which will
provide us with an approximate model of the plant which is absolutely necessary
for the indirect control schemes. Thus, in the indirect adaptive control schemes,
the dynamics of the system are firstly identified and then a control input is
generated according to the certainty equivalence principle.

We can present some representative works that deal with Indirect Adaptive
control.

1. Rovithakis and Christodoulou (1996) in [73] introduce techniques for con-
trollers design keeping control objectives of a system, such as fast convergence,
robustness of the proposed model and stability. This methodology is also ex-
tended for the control of system with various nonlinearities.
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2. Sanchez and Bernal (2000) in [139] used the properties of Recurrent Neu-
ral Networks for the development of a control law in which is incorporated a
sliding mode technique.

3. Diao and Passino (2002) in [65] investigate the indirect adaptive control
of unknown nonlinear time-varying systems. The fuzzy systems used for the
approximation of the dynamics of the system are in Takagi-Sugeno type and
the subsystems are i/o linearizable.

4. Golea in [18] (2003) proposed an adaptive control scheme for MIMO
continuous-time nonlinear systems. The methodology is based on a new fuzzy
model observer with Takagi-Sugeno fuzzy models in order to estimate the un-
known dynamics of the examined system.

5. Nounou and Passino (2004) in [119] introduced a scheme for canceling the
nonlinearities of the system by using a feedback controller. This methodology is
used for controlling nonlinear discrete-time systems with an update law based
on gradient technique.

6. Kung and Chen (2005) in [118] designed an adaptive controller for non-
linear dynamic systems with states that are not all available for measurement.
This controller is an observer-based fuzzy sliding mode and is being used for the
indirect control of the above class of unknown systems.

7. Abid (2007) in [117] proposed a scheme for indirect adaptive control of
SISO nonlinear systems with parametric uncertainties. The functions of the
plant are estimated by specific fuzzy systems and the constructed adaptive con-
trol law is based on sliding mode with Lyapunov approaches.

8. Baruch (2008) in [63] introduced an alternative adaptive control scheme
for complex nonlinear systems with a design of a local indirect adaptive trajec-
tory tracking control system. As for the identification part the fuzzy rules used
follow a recurrent neural procedure and the designed control laws are based on
a fuzzy rule-based control system.

9. Theodoridis, Boutalis and Christodoulou (2008) in [54] introduced a
new neuro-fuzzy description model for the indirect adaptive control of unknown
nonlinear systems. The estimation of the system is done by a F-RHONN model
which needs only an estimation of the centers of the fuzzy output variables.



3.3. INDIRECT CONTROL 21



22CHAPTER 3. ADAPTIVE NEURO-FUZZY IDENTIFICATION AND CONTROL: A GENERAL OVERVIEW



Chapter 4

The RHONNs

23



24 CHAPTER 4. THE RHONNS

4.1 Identification of Dynamical Systems using
RHONNs

The use of multi-layer neural networks for pattern recognition and for modeling
of ”static” systems is currently well-known. Given pairs of input-output data
the network is trained to learn the particular input-output map. Theoretical
work by several researchers, including [22], and [23], have proven that, even with
one hidden layer, neural networks can approximate any continuous function uni-
formly over a compact domain, provided the network has a sufficient number
of neural networks for modeling and identification of dynamical systems. These
networks, which naturally involve dynamic elements in the form of feedback
connections, are known as recurrent neural networks.

Several training methods for recurrent networks have been proposed in the
literature. Most of these methods rely on the gradient methodology and in-
volve the computation of partial derivatives, on sensitive functions. In this
respect, they are extensions of the backpropagation algorithm for feedforward
neural networks [24]. Examples of such learning algorithms include the recur-
rent backpropagation [25], the backpropagation-through-time algorithms [28],
the real-time recurrent learning algorithm [29], and the dynamic backpropaga-
tion [27] algorithms. The last approach is based on the computation of sensitiv-
ity models for generalized neural networks. These generalized neural networks,
which were originally proposed in [26], combine feedforward neural networks
and dynamical components in the form of stable rational transfer functions.

Although the training methods mentioned above have been used successfully
in many empirical studies, they share some fundamental drawbacks. One draw-
back is the fact that, in general, they rely on some type of approximation for
computing the partial derivative. Furthermore, these training methods require
a great deal of computational time. A third disadvantage is the inability to ob-
tain analytical results concerning the convergence and stability of these schemes.

Recently, there has been a concentrated effort towards the design and anal-
ysis of learning algorithms that are based on the Lyapunov stability theory [30],
[31], [33], [32], [34], [35], [36], [37], [38] targeted at providing stability, con-
vergence and robustness proofs, in this way, bridging the existed gap between
theory and applications.

In this section is discussed the identification problem which consists of choos-
ing an appropriate identification model and adjusting its parameters according
to some adaptive law, such that the response of the model to an input signal (or a
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class of input signals), approximates the response of the real system to the same
input. Since a mathematical characterization of a system is often a prerequisite
to analysis and controller design, system identification is important not only for
understanding and predicting the behavior of the system, but also for obtaining
an effective control law. For identification models recurrent high-order neural
networks are used. High-order networks are expansions of the first-order Hop-
field [39] and Cohen-Grossberg [40] models that allow higher-order interactions
between neurons. The superior storage capacity of them has been demonstrated
in [41], [42], while the stability properties of these models for fixed-weight values
have been studied in [43],[44]. Furthermore, several authors have demonstrated
the feasibility of using these architectures in applications such as grammatical
inference [45] and target detection [46].

The idea of recurrent neural networks with dynamical components distributed
throughout the network in the form dynamical neurons and their application
for identification of dynamical systems was proposed in [38]. In this section we
combine distributed recurrent networks with high-order connections between
neurons. At first it is shown that recurrent high-order neural networks are ca-
pable of modeling a large class of dynamical systems. In particular, it is shown
that if enough higher-order connections are allowed in the network then there
exist weight values such that the input-output behavior of the RHONN model
approximates that of an arbitrary dynamical system whose state trajectory re-
mains in a compact set. In the sequel, weight adjustment laws are developed for
system identification under the assumption that the system to be identified can
be modeled exactly by the RHONN model. It is shown that these adjustment
laws guarantee boundedness of all the signals and weights and furthermore, the
output error converges to zero. Then, this analysis is extended to the case where
there is a nonzero mismatch between the system and the RHONN model with
optimal weight values. This methodology is applied to the identification of a
simple robotic manipulator system and some final conclusions are drawn.

4.2 The RHONN Model

[73]
Recurrent neural networks (RNN) models are characterized by a two way

connectivity between units (i.e. ,neurons). This distinguishes them from feed-
forward neural networks, where the output of the unit is connected only to
inputs of the next layer. In the most simple case, the state history of each
neuron is governed by a differential equation of the form:

ẋi = −aixi + bi
∑
j

wijyj (4.1)
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Where xi is the state of the i − th neuron,ai,bi are constants, wij is the
synaptic weight connecting the j − th input to the i − th neuron and yj is the
j − th input to the above neuron. Each yj is either an external input or the
state of a neuron passed through a sigmoid function (i.e., yj = s(xj)), where
s(·) denotes the sigmoid nonlinearity [73].

The dynamic behavior and the stability properties of neural network models
of the form (4.1) have been studied extensively by various researchers [39],[40],[43],
[44]. These studies exhibited encouraging results in application areas such as
associative memories, but they also revealed the limitations inherent in such a
simple model.

In a recurrent second order neural network, the input to the neuron is not
only a linear combination of the components yi, but also of their product yiyk.
One can pirsue this line further to include higher order interactions represented
by triplets yiykyl, quadraplets, etc. forming the recurrent high order neural
networks (RHONNs).

Let us now consider a RHONN consisting of n neurons and m inputs. The
state of each neuron is governed by a differential equation of the form:

ẋi = −aixi + bi

[
M∑
k=1

wik
∏
j∈Ik

y
dj(k)
j

]
(4.2)

Where {I1, I2, ..., IL} is a collection of L not-ordered subsets of {1, 2, ...,m+
n}, ai,bi are real coefficients, wik are the adjustable synaptic weights of the neu-
ral network and dj(k) are non-negative integers. The state of the i − th input
neuron is again represented by xi and y := [y1, y2 · · · ym+n]T is the input vector
to each neuron defined by:

y =



y1

y2

.

.

.
yn
yn+1

.

.

.
yn+m



=



s(x1)
s(x2)
.
.
.

s(xn)
u1

u2

.

.

.
um



(4.3)
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where u := [u1, u2 · · · um]T is the external input vector to the network. The
function s(·) is monotone-increasing, differentiable and is usually represented
by sigmoids of the form:

s(x) = a
1

1 + e−βx
− γ (4.4)

where the parameters a,β represent the bound and slope of sigmoid’s cur-
vature and γ is a bias constant. In the special case where a = β = 1,γ = 0,
we obtain the logistic function and by setting a = β = 2,γ = 1, we obtain the
hyperbolic tangent function. These are the sigmoid activation functions most
commonly used in neural network applications.

It is now introduced the L−dimensional vector z, which is defined as

z =



z1

z2

.

.

.
zL


=



∏
j∈I1

y
dj(1)
j∏

j∈I2
y
dj(2)
j

.

.

.∏
j∈IL

y
dj(L)
j


(4.5)

Hence, the RHONN model (4.2) becomes

ẋi = −aixi + bi

[
L∑
k=1

wikzk

]
. (4.6)

Moreover, if the adjustable parameter vector is defined as

wi = bi[wi1, wi2 · · · wiL]T ,

then (4.6) becomes

ẋi = −aixi + wTi z. (4.7)
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The vectors [wi : i = 1, 2, · · ·, n] represent the adjustable weights of the net-
work, while the coefficients [ai : i = 1, 2, · · ·, n] are part of the underlying net-
work architecture and are fixed during training.

In order to guarantee that each neuron xi is bounded-input bounded-output
(BIBO) stable, it is assumed that [ai > 0, i = 1, 2, · · ·, n]. In the special case of
a continuous-time Hopfield model [39], we have ai = 1

RiCi
, where Ri > 0 and

Ci > 0 are the resistance and capacitance connected at the i − th node of the
network respectively [73].

The dynamic behavior of the overall network is described by expressing (4.7)
in vector notation as:

ẋi = Ax+WT z, (4.8)

where x = [x1, x2, · · ·, xn]T ∈ Rn,W = [w1, w2, · · ·, wn]T ∈ RLxn and A =
diag [−a1,−a2, · · ·,−an] is a nxn diagonal matrix. Since [ai > 0, i = 1, 2, · · ·, n],
A is a stability matrix. Although it is not written explicitly, the vector z is a
function of both the neural network state x and the external input u.

4.2.1 Approximation Properties

Consider now the problem of approximating a general nonlinear dynamical sys-
tem whose input-output behavior is given by

χ̇ = F (χ, u), (4.9)

where χ ∈ Rn is the system state, u ∈ Rn is the system input and F :
Rn+m → Rn is a smooth vector field defined on a compact set y ⊂ Rn+m.

The approximation problem consists of determining whether by allowing
enough higher-order connections, there exists weights W , such that the RHONN
model approximates the input-output behavior of an arbitrary dynamical sys-
tem of the form (4.9).

In order to have a well-posed problem, it is assumed that F is continuous
and satisfies a local Lipschitz condition such that (4.9) has a unique solution,
in the sense of Caratheodory [49], and {χ(t), u(t)} ∈ y for all t in some time
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interval JT = {t : 0 ≤ t ≤ T}. The interval JT represents the time period over
which the approximation is to be performed. Based on the above assumptions
the following result is obtained:

Theorem 1 Suppose that the system (4.9) and the model (4.8) are initially at
the same state x(0) = χ(0), then for any ε > 0 and any finite T > 0, there exists
an integer L and a matrix W ∗ ∈ RLxn such that the state x(t) of the RHONN
model (4.8) with L high-order connections and weight values W = W ∗ satisfies:

sup
0≤t≤T

|x(t)− χ(t)| ≤ ε.

The proof of the above theorem can be studied in the Appendix [73].

The above theorem proves that if sufficiently large number of connections is
allowed in the RHONN model then it is possible to approximate any dynamical
system to any degree of accuracy. This is strictly an existence result; it does not
provide any constructive method for obtaining the optimal weights W ∗. In what
follows, the learning problem of adjusting the weights adaptively is considered,
such that the RHONN model identifies general dynamic systems.

4.3 Learning Algorithms

[73]
In this section weight adjustment laws are developed under the assumption

that the unknown system is modeled exactly by a RHONN architecture of the
form (4.8). This analysis is extended in the next section to cover the case where
there exists a nonzero mismatch between the system and the RHONN model
with optimal weights values. This mismatch is referred to as modeling error.

Although the assumption of no modeling error is not very realistic, the iden-
tification procedure of this section is useful for two reasons:

• The analysis is more straightforward and thus easier to understand.

• The techniques developed for the case of no modeling error are also very
important in the design of weight adaptive laws in the presence of modeling
errors.

Based on the assumption of no modeling error, there exist unknown weight
vectors w∗i , i = 1, 2, · · ·, n, such that each state χi of the unknown dynamic
system (4.9) satisfies:
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χ̇i = −aiχi + w∗i z(χ, u), χi(0) = χ0
i . (4.10)

where χ0
i is the initial i − th state of the system. In the following, unless

there is no confusion, the arguments of the vector field z will be omitted.

As in standard in system identification procedures, the input u(t) and the
state χ(t) remain bounded for all t ≥ 0. Based on the definition of z(χ, u), as
given in (4.5), this implies that z(χ, u) is also bounded. In the sections that
follow different approaches for estimating the unknown parameters w∗i of the
RHONN model are developed.

4.3.1 Filter Regressor RHONN

The following lemma [73] is useful in the development of the adaptive identifi-
cation scheme presented in this section.

Lemma 1 The system described by

χ̇i = −aiχi + w∗i z(χ, u), χi(0) = χ0
i (4.11)

can be expressed as

ζ̇i = −aiζi + zi, ζi(0) = 0, (4.12)

χi = w∗Ti ζi + e−aitχ0
i (4.13)

The proof of the above lemma can be studied in the Appendix.

Using Lemma 1, the dynamical system described by (4.9) is rewritten as

χi = w∗Ti ζi + εi, i = 1, 2, · · · , n, (4.14)

where ζi is a filtered version of the vector z(as described by (4.5)) and
εi := eaitχ0

i is an exponentially decaying term which appears if the system
is in a nonzero initial state. By replacing the unknown weight vector w∗i in
(4.14), by its estimate wi and ignoring the exponentially decaying term εi, the
RHONN model is obtained:
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xi = wTi ζi, i = 1, 2, · · · , n. (4.15)

The exponentially decaying term εi(t) can be omitted in (4.15) since, as we
shall see later, it does not affect the convergence properties of the scheme. The
state error ei = xi − χi between the system and the model satisfies:

ei = φTi ζi − εi, (4.16)

where φi = wi − w∗i is the weight estimation error. The problem now is to
derive suitable adaptive laws for adjusting the weights wi, for i = 1, · · · , n. This
can be achieved by using well-known optimization techniques for minimization
of the quadratic cost functional

J(w1, · · · , wn) =
1

2

n∑
i=1

e2
i =

1

2

n∑
i=1

[
(wi − w∗i )T ζi − εi

]2
. (4.17)

Depending on the optimization method that is employed, different wight
adjustment laws can be derived. Here, we consider the gradient and the least-
squares method [50]. The gradient method yields

ẇi = −Γiζiei, i = 1, 2, · · · , n, (4.18)

where Γi is a positive definite matrix referred to as the adaptive gain or
learning rate. With this we obtain

{
ẇi = −Piζiei
Ṗi = −PiζiζTi Pi

i = 1, 2, · · · , n (4.19)

where P (0) is a symmetric positive definite matrix. In the above formula-
tion, the least-squares algorithm can be thought of as a gradient algorithm with
a time-varying learning rate.

The stability and convergence properties of the weight adjustment laws given
by (4.18),(4.19) are well-known in the adaptive control literature( see, for ex-
ample, [48],[51]).

Theorem 2 Consider the RHONN model given by

xi = wTi ζi, i = 1, 2, · · ·, n, (4.20)
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whose parameters are adjusted according to:

ẇi = −Γiζiei, i = 1, 2, · · ·, n, (4.21)

where Γi is a positive definite matrix referred to as the adaptive gain or
learning rate.
Then for i = 1, 2, · · ·, n it is proved that:

a) ei, φi ∈ L∞ (ei and φ are uniformly bounded)
b) limt→∞ ei(t) = 0

The proof of the above theorem can be studied in the Appendix.

Remark 1 The stability proof for the least-square algorithm:

ẇi = −PiζieiṖi = −PiζiζTi Pi (4.22)

where i = 1, 2, · · ·, n, where P (0) is a symmetric positive definite matrix. In
the above formulation, the least-squares algorithm can be thought of as a gradi-
ent with a time-varying learning rate.

proceeds along the same lines as in the proof of the previous theorem by con-
sidering the Lyapunov function:

V = 1
2

N∑
i=1

(φTi P
−1
i φi +

∞∫
t

ε2i (τ)dτ).

A problem that may be encountered in the application of the least-squares
algorithm is that P may become arbitrarily small and thus slow down adapta-
tion in some directions [50],[48]. This so-called problem can be prevented by
using one of various modifications which prevent P (t) form going to zero. One
such modification is the so-called, where if the smallest eigenvalue of P (t) be-
comes smaller than ρ1 then P (t) is reset to P (t) = ρoI, where ρo ≥ ρ1 > 0 are
some design constraints.

Remark 2 The above theorem does not imply that the weight estimation error
φi = wi − w∗i converges to zero. In order to achieve convergence of the weights
to their correct value the additional assumption of persistent excitation needs to
be persistently exciting if there exist positive scalars c and d and T such that for
all t ≥ 0
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cI ≤
t+T∫
t

ζi(τ)ζi(τ)T dτ ≤ dI,

where is the LxL identity matrix.

Remark 3 The learning algorithms developed above can be extended to the case
where the underlying neuron structure is governed by the higher-order Cohen-
Grossberg model [40],[43]:

ẋi = −ai(xi)

bi(xi) +

L∑
k=1

wik
∏
j∈Ik

y
dj(k)
j

 (4.23)

where ai(·), bi(·) satisfy certain conditions required for the boundedness of the
state variables [43]. It can be seen readily that in (4.23) the differential equation
is still linear in the weights and hence a similar parameter estimation procedure
can be applied.

The filtered-regressor RHONN model considered in this subsection relies on
filtering the vector z, which is sometimes referred to as the regressor vector.
By using this filtering technique, it is possible to obtain a very simple algebraic
expression for the error, which allows the application of well-known optimiza-
tion procedures for designing and analyzing weight adjustment laws but there is
an important drawback to this method, namely the complex configuration and
heavy computational demands required in the filtering of the regressor. Gen-
erally, the dimension of the regressor will be larger than the dimension of the
system, i.e., L > n, it might be very expensive computationally to employ to
many filters. In the next subsection a simple structure that requires only n
filters is considered and hence, fewer computations.

4.3.2 Filtered Error RHONN

In developing this identification scheme the start is again from the differential
equation that describes the unknown system, i.e.,

χ̇i = −aiχi + w∗Ti z, i = 1, 2, · · ·, n. (4.24)

Based on (4.24), the identifier is now chosen as:

ẋi = −aixi + wTi z, i = 1, 2, · · ·, n. (4.25)
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where wi is again the estimate of the unknown vector w∗i . In this case the
state error ei := xi − χi satisfies:

ėi = −aiei + φTi z, i = 1, 2, · · ·, n. (4.26)

where φi = wi − w∗i . The weights wi, for i = 1, 2, . . . , n are adjustable ac-
cording to the learning laws:

ẇi = −Γizei, (4.27)

where the adaptive gain Γi is a positive definite LxL matrix. In the special
case that Γi = γiI, where γi > 0 is a scalar, then Γi in (4.27) can be replaced
by γi.

The next theorem shows that the identification scheme has similar con-
vergence properties as the filtered regressor RHONN model with the gradient
method for adjusting the weights.

Theorem 3 Consider the filtered error RHONN model given by (4.25) whose
weights are adjustable according to (4.27). Then for i = 1, 2, . . . , n

(a) ei, φi ∈ L∞
(b) limt→∞ ei(t) = 0

The proof of the above theorem can be studied in the Appendix.

4.4 Robust Learning Algorithms

[73]
The derivation of the learning algorithms developed in the previous section

made the crucial assumption of no modeling error. Equivalently, it was assumed
that there exist weight vectors w∗i , for i = 1, 2, · · · , n such that each state of the
unknown dynamical system (4.9) satisfies

χ̇i = −aiχi + w∗Ti z(χ, u) (4.28)
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In many cases this assumption will be violated. This is mainly due to an
insufficient number of higher-order terms in the RHONN model. In such cases,
if standard adaptive laws are used for updating the weights, then the presence
of the modeling error in problems related to learning in dynamic environments,
may cause the adjusted weight values (and, consequently, the error ei = xi−χi)
to drift to infinity. Examples of such behavior, which is usually referred to as,
can be found in the adaptive control literature of linear systems [50],[51].

In this section the standard weight adjustment laws are being modified in
order to avoid the parameter drift phenomenon. These modified weight adjust-
ment laws will be referred to as robust learning algorithms.

In formulating the problem it is noted that by adding and subtracting
aiχi + w∗Ti z(χ, u) + vi(t), the dynamic behavior of each state of the system
(4.9) can be expressed by a differential equation of the form:

χ̇i = −aiχi + w∗Ti z(χ, u) + vi(t) (4.29)

where the modeling error vi(t) is given by

vi(t) := Fi(χ(t), u(t)) + aiχ(t)− w∗Ti z(χ(t), u(t)) (4.30)

The function Fi(χ, u) denotes the i−th component of the vector field F (χ, u),
while the unknown optimal weight vector w∗i is defined as the value of the weight
vector wi that minimizes the L∞-norm difference between F (χ, u) + aiχ and
wTi z(χ, u) for all (χ, u) ∈ y ⊂ Rn+m, subject to the constraint that |wi| ≤ Mi,
where Mi is a large design constraint. The region y denotes the smallest com-
pact subset of Rn+m that includes all the values that (χ, u) can take, i.e.,
(χ(t), u(t)) ∈ y for all t ≥ 0. Since by assumption u(t) is uniformly bounded
and the dynamical system to be identified is BIBO stable, the existence of such
y is assured. It is pointed out that in our analysis we do not require knowledge
of the region y, nor upper bounds for the modeling error vi(t).

In summary, for i = 1, 2, . . . , n, the optimal weight vector w∗i is defined as

w∗i := arg min
|wi|≤Mi

{
sup

(χ,u)∈y
|Fi(χ, u) + aiχ− wTi z(χ, u)|

}
(4.31)
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The reason for restricting w∗i to a ball of radius Mi is twofold: firstly, to
avoid any numerical problems that m ay arise owing to having weight values
that are too large, and secondly, to allow the use of the σ-modification [50],
which will be developed below to handle the parameter drift problem. The for-
mulation developed above follows the methodology of [30] closely. Using this
formulation, we now have a system of the form (4.29) instead of (4.28). It is
also noted that since χ(t) and u(t) are bounded, the modeling error vi(t) is also
bounded, i.e., sup

t≥0
|vi(t)| ≤ 0 for some finite constant v̄i.

In what follows robust learning algorithms based on the filtered error RHONN
identifier are developed; however, the same underlying idea can be extended
readily to the filtered-regressor RHONN. Hence, the identifier is chosen as in
(4.25), i.e.,

ẋi = −aixi + wTi z, i = 1, 2, · · · , n (4.32)

where wi is the estimate of the unknown optimal weight vector w∗i . Using
(4.29),(4.32), the state error ei = xi − χi satisfies

ėi = −aiei + φTi z − vi, (4.33)

where φi = wi − w∗i . Owing to the presence of the modeling error vi, the
learning laws given by (4.27) are modified as follows:

ẇi =

{
−Γizei, if |wi| ≤Mi

−Γizei − σiΓiwi, if |wi| > Mi

}
(4.34)

where σi is a positive constant chosen by the designer. The above weight
adjustment law is the same as (4.27) if wi belongs to a ball of radius Mi. In
the case that the weight leave this ball, the weight adjustment law is modified
by the addition of the leakage term σiΓiwi, whose objective is to prevent the
weight values from drifting to infinity. This modification is known as the [50].

In the following theorem the vector notation v := [v1, · · · , vn]T and e :=
[e1, · · · , en]T is being used.
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Theorem 4 Consider the filtered error RHONN model given by (4.32) whose
weights are adjusted according to (4.34). Then for i = 1, 2, · · · , n

(a) ei, φi ∈ L∞
(b)there exist constants λ,m such that

t∫
0

|e(τ)2|dτ ≤ λ+m
t∫

0

|v(τ)2|dτ

The proof of the theorem can be studied in the Appendix.

Remark 4 It is noted that the σ modification causes the adaptive law (4.34) to
be discontinuous; therefore standard existence and uniqueness results of solutions
to differential equations are in general not applicable. In order to overcome the
problem of existence and uniqueness of solutions, the trajectory behavior of wi(t)
can be made ”smooth” on the discontinuity hypersurface {wi ∈ RL : |wi| = Mi}
by modifying the adaptive law (4.34) to

ẇi =


−Γiziei, if {|wi| < Mi} or {|wi| = Mi and wTi Γizei > 0}

−Γizei+w
T
i Γizei

wTi Γiwi
Γiwi , if {|wi| = Mi} and {−σiwTi Γiw ≤ wTi Γizei ≤ 0}

−Γizei − σiΓiwi , if {|wi| > Mi} or {|wi| = Mi} and {wTi Γizei < −σiwTi Γiw}


(4.35)

As shown in [52], the adaptive law (4.35) retains all the properties of (4.34)
and, in addition, guarantees the existence of a unique solution, in the sense
of Caratheodory [49]. The issue of existence and uniqueness of solutions in
adaptive systems is treated in detail in [52].
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5.1 Notion and Representation of Adaptive Fuzzy
Systems

Fuzzy Sets and Systems have gone through substantial development since the
introduction of fuzzy set theory by Zadeh [68], [121], [122], [123] about four
decades ago. They have found a great variety of applications ranging from con-
trol engineering, qualitative modeling, signal processing, machine intelligence,
decision making, motor industry, robotics and so on [105], [124], [125].

Following a similar idea in neural networks for their universal function ap-
proximation capability [81], it is shown [107] that a fuzzy system is capable of
approximating any smooth nonlinear functions over a convex compact region.
Fuzzy basic function based fuzzy systems are used to represent those unknown
nonlinear functions. The parameters of the fuzzy systems including membership
functions characterizing linguistic terms in fuzzy rules are updated according to
some adaptive laws which are derived based on Lyapunov Stability Theorem [2],
[4], [12], [78], [94], [126], [127], [133].

The performance, complexity and adaptive law of an adaptive fuzzy system
representation can be quite different depending upon the type of the fuzzy sys-
tem (Mamdani [111], or Takagi-Sugeno [106]). It also depends upon whether
the representations is linear or nonlinear in its adjustable parameters. Adaptive
fuzzy controllers depend also on the type of the adaptive fuzzy subsystems they
use. Suppose that the adaptive fuzzy system is intended to approximate the
nonlinear function f(x). In the Mamdani type, linear in the parameters form,
the following fuzzy logic representation is used [78], [100]:

f(x) =

M∑
l=1

θlξl(x) = θT ξ(x) (5.1)

whereM is the number of fuzzy rules, θ = (θ1, θ2, ..., θM )T , ξ(x) = (ξ1(x), ξ2(x), ...ξM (x))T

and ξl(x) is the fuzzy basis function defined by

ξl(x) =

∏n
i=1 µF li (xi)∑M

l=1

∏n
i=1 µF li (xi)

(5.2)

θl are adjustable parameters, and µF li are given membership functions of the

input variables (can be gaussian, triangular, or any other type of membership
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functions).

In Takagi-Sugeno formulation f(x) is given by

f(x) =

M∑
l=1

gl(x)ξl(x) (5.3)

where gl(x) = αl,0 +αl,1x1 + ...+αl,nxn, with xi, i = 1...n being the elements
of vector x and ξl(x) being defined in (5.2). According to Passino and Yurkovich
[100], (5.3) can also be written in the linear to the parameters form, where the
adjustable parameters are all αl,i, l = 1...M, i = 1...n.

From the above definitions it is apparent that in both, Mamdani and Takagi-
Sugeno forms the success of the adaptive fuzzy system representations in ap-
proximating the nonlinear function f(x) depend on the careful selection of the
fuzzy partitions of input and output variables. Also, the selected type of the
membership functions and the proper number of fuzzy rules contribute to the
success of the adaptive fuzzy system. This way, any adaptive fuzzy or NF ap-
proach, following a linear in the adjustable parameters formulation becomes
vulnerable to initial design assumptions related to the fuzzy partitions and the
membership functions chosen. In this thesis, this quite huge for the applications
drawback is largely overcome by using the concept of rule indicator functions,
which are in the sequel approximated by high-order neural networks approxima-
tors (HONNs). In this way there is not any need for initial design assumptions
related to the membership values and the fuzzy partitions of the if part [59].

More precisely, the underlying fuzzy model that is used in this thesis is the
centroid of area defuzzification procedure of Mamdani type which is explained
in the following subsection.

5.2 Centroid of Area Defuzzification

The centroid of area method is the most prevalent and physically appealing
of all the defuzzification methods. Final crisp output when using centroid de-
fuzzification is equal to weighted average of centroid of consequents membership
functions [128] and is given as:

f(x) =

∑r
i=1 ωi(x)vix̄fi∑r
i=1 ωi(x)vi

(5.4)

where ωi is the firing strength of the i− th rule, vi is the area of the conse-
quent membership functions of i− th rule and x̄fi is the i− th fuzzy center of
the consequent membership function.
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In a more detailed form, we can rewrite Eq.(5.4) as:

f(x) =
ω1(x)v1∑r
i=1 ωi(x)vi

x̄f1 + · · ·+ ωr(x)vr∑r
i=1 ωi(x)vi

x̄fr (5.5)

Now, if it is choosen an indicator function as: Ii(x) = ωi(x)vi then Eq.(5.5)
can be written as:

f(x) =
I1(x)∑r
i=1 Ii(x)

x̄f1 + · · ·+ Ir(x)∑r
i=1 Ii(x)

x̄fr (5.6)

Hence, if it is defined (I ′)i(x) = Ii(x)∑r
i=1 Ii(x) as the weighted indicator function

(WIF), the system output finally is given by the following form:

f(x) =

r∑
i=1

(I ′)i · x̄fi (5.7)

Eq. (5.7) provides the functional representation of the fuzzy system in terms
of WIF [59]. This representation is used in the sequel for deriving the NF
approach.
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6.1 NF Model

Let us consider a nonlinear function f(x, u), where f : Rn+m → Rn is a smooth
vector field defined on a compact set Ψ ⊂ Rn+m, with input space u ∈ Uc ⊂ Rm
and state-space x ∈ X ⊂ Rn. Also, we assume that the dynamic equation which
describes the i/o behavior of a system has the following form:

ẋ(t) = f(x(t), u(t)), (6.1)

or in a per-state form:

ẋi(t) = f(xi(t), ui(t)), (6.2)

where fi(·), i = 1, 2, ..., n, is a continuous function and t denotes the tempo-
ral variable. In order to proceed further we have the following assumption [59].

Assumption 1: Notice that since Ψ ⊂ Rn+m then Ψ is closed and
bounded set. Also, it is noted that even if Ψ is not compact we may
assume that there is a time instant T such that (x(t), u(t)) remain in
a compact subset of Ψ for all t < T ;i.e. if ΨT := (x(t), u(t)) ∈ Ψ, t < T .
The interval ΨT represents the time period over which the approxi-
mation is to be performed.

It is considered, that function f(x, u) is approximated by a fuzzy system
using appropriate fuzzy rules. In this framework let Ωf be defined as the uni-
verse of discourse of (x, u) ∈ X ∪U ⊂ Rn+m belonging to the (j1, j2, ..., jn+m)th

input fuzzy patch and pointing-through the vector field f(·) - to the subset
which belong to the (l1, l2, ..., ln)th output fuzzy patch. Also, Ωfi is a subset
of Ωf containing input pairs values associated with fi. Furthermore, Ωpfi , with
p = 1, 2, ..., q, q being the number of fuzzy partitions of the i− th state variable,
is defined as the p− th subregion of Ωfi such that Ωfi = ∪qp=1Ωpfi .

Definition 1: According to the above notation the indicator function
(IF) connected to Ωpfi is defined as follows:

Ipi (x(t), u(t)) =

{
αpi (x(t), u(t)) if (x(t), u(t)) ∈ Ωpfi

0 otherwise

}
(6.3)

where αpi (x(t), u(t)) denotes the firing strength of the rule[59].
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Then, assuming a standard defuzzification procedure (e.g. centroid of area
or weighted average), the functional representation of the fuzzy system that
approximates the real one can be written as:

f̂i(x(t), u(t)) =

∑q
p=1 I

p
i · x̄

p
fi∑q

p=1 I
p
i

(6.4)

where the summation is carried over all the available fuzzy rules [59].

Definition 2: We can define the weighted IF (WIF) by the following
equation:

(I ′)pi =
Ipi∑q
p=1 I

p
i

(6.5)

which is the IF defined in (6.3) divided by the sum of all IF partici-
pating in the summation of (6.4).

Thus, Eq.(6.4) can be rewritten as:

f̂i(x(t), u(t)) =

q∑
p=1

(I ′)pi · x̄
p
fi

(6.6)

Based on the fact that functions of high order neurons are capable of approx-
imating discontinuous functions [19], [20], high order neural networks (HONNs)
are used in order to approximate a (I ′)pi . A HONN is defined as:

Np
i (x(t), u(t);w, k) =

k∑
l=1

wplfi

∏
j∈Il

Φ
dj(l)
j , (6.7)

where Il = I1, I2, ..., Ik is a collection of k not-ordered subsets of 1, 2, ..., n+m,
dj(l) are non-negative integers. Φj are the elements of the following vector,

Φ = [Φ1...ΦnΦn+1...Φn+m]T = [s(x1)...s(xn)s(u1)...s(um)]T ,

where s denotes the sigmoid function defined as:

s(x) =
α

1 + e−βx
− γ, (6.8)

with α, β being positive real numbers and γ being a real number. Special
attention, has to be given in the selection of parameters α, β, γ so that s(x)
fulfil the persistency of excitation condition (s ∈ [−γ,−γ + α])when γ > 0 re-

quired in some system identification tasks. Also, wplfi is the HONN weights with
i = 1, 2, ..., n, p = 1, 2, ..., q, and l = 1, 2, ..., k. Thus, Eq.(6.7) can be written
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as:

Np
i (x(t), u(t);w, k) =

k∑
l=1

wplfisl(x(t), u(t)), (6.9)

where sl(x(t), u(t)) are high order terms of sigmoid functions of the state
and/or input [59].

The next lemma [59] states that a HONN of the form in Eq.6.9 can approx-
imate the weighted indicator function (WIF), (I ′)pi .

Lemma 1: Consider the WIF (I ′)pi and the family of HONNsNp
i (x(t), u(t);w, k).

Then for any εpi , there is a vector of weights w and a number of k
high order connections such that:

sup
(x(t),u(t))∈Ψ

(I ′)pi (x(t), u(t))−
∑k
l=1 w

pl
fi
sl(x(t), u(t)) ≤ εpi

The magnitude of approximation error εpi ≥ 0 depends on the choice
of the member of high order terms.

Furthermore, someone can say that we are provided with rules of the form:

Rpi : IF (x(t), u(t)) ∈ Ωpfi THEN HONNp is (I ′)pi (t)

Following the above analysis, actually it is given a membership value accord-
ing to the output fuzzy partitioning to every HONN which participates to the
estimation of fi(x, u) [59].

As a consequence we have the following definition.

Definition 3: The center membership value (CMV) x̄pfi which is the
p − th fuzzy center of the i − th state variable (or equivalently fi)
influences a HONN by a degree of implementation x̄pfi .

Therefore, rule Rpi can be equivalently expressed as:

Rpi : IF (x(t), u(t)) ∈ Ωpfi THEN HONNp is (I ′)pi (t) withCMV x̄pfi

Now, the rules which participate to the construction of the i− th state vari-
able output can be grouped according to the following form:
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Rpi : IF (x(t), u(t)) ∈
Ωfi THEN HONN1 is (I ′)p1(t) withCMV x̄1

fi
andHONN2

is (I ′)2
i (t)withCMV x̄2

fi
and...andHONNq is (I ′)qi (t)withCMV x̄qfi .

As it is clear enough by the above fuzzy rule definition, the i − th state
variable of the system output is determined as follows:

Rpi : IF (x(t), u(t)) ∈ Ωfi THEN fi(x, u) = (I ′)1
i (t) · x̄1

fi
+ ...+ (I ′)qi (t) · x̄

q
fi

where it is clear enough that the information about the antecedent parti-
tioning of the rules as well as the number of rules is not necessary here to be
determined. Therefore, the rules are not treated here with the classical way of
Mamdani or Takagi-Sugeno definition but their consequent parts are determined
directly from F-HONNs.

Following the above notation, Eq. (6.6) in conjunction with Eq. (6.9) can
be rewritten as:

f̂i(x(t), u(t)) =

q∑
p=1

x̄pfi · (
k∑
l=1

wplfi · sl(x(t), u(t))), (6.10)

or in a more compact form:

˙̂
f = Xf ·Wf · sf (x, u) (6.11)

An alternative, recurrent NF form of Eq. (6.2) which will be used in the
subsequent analysis of the thesis is:

˙̂x = Ax̂+ f̂ . (6.12)

Considering that f is approximated by the NF model described above, Eq.
(6.12) can be rewritten as:

˙̂x = Ax̂+XfWfsf (x, u), (6.13)

where A is a n × n stable matrix which for simplicity can be taken to be
diagonal as A = diag[−α1,−α2, ...,−αn], with αi > 0. Also, Xf is a matrix
containing the centers of the partitions of every fuzzy output variable of f(x, u),
sf (x, u) is a vector containing high order combinations of sigmoid functions of
the state x and control input u. Also, Wf is a matrix containing respective
neural weights according to (6.9) and (6.10). For notational simplicity we as-
sume that all output fuzzy variables are partitioned to the same number, q, of
partitions. Under these specifications Xf is a n × n · q block diagonal matrix
of the form Xf = diag(x̄f1 , x̄f2 , ..., x̄fn) with x̄fi being a q − dimensional row
vector of the form:

x̄fi = [x̄1
fi
x̄2
fi
· · · x̄qfi ].
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Also, sf (x) = [s1(x)s2(x)...sk(x)]T , where each sl(x) with l = 1, 2, ..., k is
a high order combination of sigmoid functions of the state variables and input
signals. Finally, Wf is a n · q × k matrix with neural weights. Wf is assumes

the form Wf = [Wf1Wf2 · · ·Wfn ]T , where each Wfi is a matrix [wplfi ]q×k.

From the above definitions and Eq. (6.9) it is obvious that the accuracy of
the approximation of fi(x, u) depends on the approximation abilities of HONNs
and on an initial estimate of the centers of the output membership functions.
These centers can be obtained by experts or by off-line techniques based on
gathered data. Any other information related to the input membership func-
tions is not necessary because it is replaced by the HONNs [59].

In the next chapter we overcome the need of the centers estimation by the
experts by introducing a bilinear parameter estimation algorithm. All we need
is an initial estimate of the centers of the partitions of the output membership
functions and in the sequel, our algorithm estimate them automatically. This is
one of the contribution of this master thesis.
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7.1 Neuro-Fuzzy Representation and Identifica-
tion

At first we consider affine in the control, nonlinear ,in general, dynamical sys-
tems of the form

ẋ = f(x) +G(x) · u (7.1)

where the state x ∈ Rn is assumed to be completely measured, the control signal
u is in Rn, f is an unknown smooth vector field which is called the drift term
and G ia a matrix with columns the unknown smooth controlled vector fields
gi, i = 1, 2, ..., n and G = [g1, g2, . . . , gn]. The above class of continuous-time
nonlinear systems are called affine, because in (7.1) the control input appears
linear with respect to G. The main reason for considering this class of nonlinear
systems is that most of the systems encountered in engineering, are by nature
or technical design, affine. Furthermore, we note that non affine systems of the
form given in (2.1) can be converted into affine, by passing the input through
integrators, a procedure which is widely known as dynamic extension.

In our approach, referred to as indirect adaptive fuzzy-HONNF control, the
parameters of the plant are estimated on-line except of the fuzzy partitions
which are used to calculate the controller parameters. The following mild as-
sumptions are also imposed on (7.1), to guarantee the existence and the unique-
ness of solution for any finite initial condition and u ∈ U .

Proposition: Given a class U of admissible inputs, then for any u ∈ U and
any finite initial condition, the state trajectories are uniformly bounded for any
finite T > 0 . Hence, |x(T )| <∞.

Proposition: The vector fields f, gi, i = 1, 2, ..., n are continuous with respect
to their arguments and satisfy a local Lipchitz condition so that the solution
x(t) of (7.1) is unique for any finite initial condition and u ∈ U .

Following the analysis of the privious section, we are using an affine in the
control fuzzy dynamical system, which approximates the system in (7.1) and
uses two fuzzy subsystem blocks for the description of f(x) and G(x) as follows:

f(χ) = Aχ+
∑

f̄ l1,...,lnj1,...,jn
× I l1,...,lnj1,...,jn

(χ) (7.2)

gi(χ) =
∑

(ḡi)
l1,...,ln
j1,...,jn

× I1l1,...,lnj1,...,jn
(χ) (7.3)
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where the summation is carried out over the number of all available fuzzy
rules, I, I1 are appropriate fuzzy rule indicator functions and the meaning of
indices •l1,...,lnj1,...,jn

has already been described in Section 6.1.
According to Lemma for indicator HONNF’s, every indicator function can

be approximated with the help of a suitable HONNF. Therefore, every I, I1 can
be replaced with a corresponding HONNF as follows:

f(χ) = Aχ+
∑

f̄ l1,...,lnj1,...,jn
×N l1,...,ln

j1,...,jn
(χ) (7.4)

ḡi(χ) =
∑

(ḡi)
l1,...,ln
j1,...,jn

×N1
l1,...,ln
j1,...,jn

(χ) (7.5)

where N, N1 are appropriate HONNFs.

In order to simplify the model structure, since some rules result to the same
output partition, we could replace the NNs associated to the rules having the
same output with one NN and therefore the summations in (7.4),(7.5) are car-
ried out over the number of the corresponding output partitions. Therefore, the
affine in the control fuzzy dynamical system in (7.2), (7.3) is replaced by the
following equivalent affine Recurrent High Order Neural Network (RHONN),
which depends on the centers of the fuzzy output partitions f̄l and ḡi,l

˙̂χ = Aχ̂+

Npf∑
l=1

f̄ ×Nl(χ) +

n∑
i=1

(
Npgi∑
l=1

(ḡi)l ×N1l(χ)

)
ui (7.6)

Or in a more compact form

˙̂χ = Aχ̂+XWS(χ) +X1W1S1(χ)u (7.7)

Where A is a n × n stable matrix which for simplicity can be taken to be
diagonal as A = diag[a1, a2, ..., an] , X, X1 are matrices containing the centres
of the partitions of every fuzzy output variable of f(x) and g(x) respectively,
S(χ), S1(χ) are matrices containing high order combinations of sigmoid func-
tions of the state χ and W,W1 are matrices containing respective neural weights
according to (7.6) and (7.7). The dimensions and the contents of all the above



56CHAPTER 7. BILINEAR NEURO-FUZZY INDIRECT ADAPTIVE CONTROL OF UNKNOWN NONLINEAR DYNAMICAL SYSTEMS

matrices are chosen so that XWS(χ) is a n×1 vector and X1W1S1(χ) is a n×n
matrix. Without compromising the generality of the model we assume that the
vector fields in (7.3) are such that the matrix G is diagonal. For notational
simplicity we assume that all output fuzzy variables are partitioned to the same
number, m, of partitions. It should be noted that each output fuzzy variable
may have a different number of let’s say mi partitions where

k =
n∑
i=1

mi

Then the matrix X is of dimension n × k and is block diagonal. Without
loss of generality (the same results are true for non-equal partition-numbers
for each variable), X is a n × n · m block diagonal matrix of the form X =
diag(X1, X2, . . . , Xn) with each Xi being an m-dimensional raw vector of the
form

Xi =
[
f̄ i1 f̄ i2 · · · f̄ im

]
where f̄ ip denotes the centre of the p − th partition of fi. Also, S(χ) =[

s1(χ) . . . sk(χ)
]T

, where each si(χ) with i = {1, 2, ..., k}, is a high order
combination of sigmoid functions of the state variables and W is a n · m × k
matrix with neural weights. W assumes the form W =

[
W 1 · · · Wn

]T
,

where each W i is a matrix
[
wij l

]
m×k

. Also, X1 is a n × n ·m block diagonal

matrix X1 = diag(1X1, 1X2, . . . , 1Xn) with each 1Xi being an m-dimensional
raw vector of the form

1Xi =
[
ḡi,i1 ḡi,i2 · · · ḡi,im

]
,

where ḡi ik denotes the center of the k-th partition of gii. W1 is a m · n × n
block diagonal matrix W1 = diag(1W 1, 1W 2, . . . , 1Wn), where each 1W i is a

column vector
[

1wij l

]
m×1

of neural weights. Finally, S1(χ) is a n× n diagonal

matrix with each diagonal element si(χ) being a high order combination of
sigmoid functions of the state variables.

According to the above definitions the configuration of the F-HONNF ap-
proximator is shown in Fig. (7.1). When the inputs are given into the fuzzy-
neural network shown in Fig. (7.1), the output of layer IV gives indicator
function outputs which activate the corresponding rules and are calculated by
Eq. (6.9). At layer V, each node performs a fuzzy rule while layer VI gives the
function output.
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Figure 7.1: Overall scheme of indirect adaptive neuro-fuzzy approximator [54]
The approximator of indicator functions, has four layers. At layer I, the

input nodes represent input and/re state measurable variables. At layer II, the
nodes represent the values of the sigmoidal functions. At layer III, the nodes are
the values of high order sigmoidal combinations. The links between layer III and

layer IV are fully connected by the weighting factors W =
[
W 1 · · · Wn

]T
,

the adjusted parameters. Finally, at layer IV the output represents the values
of indicator functions.
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7.2 Parametric and partition centers uncertainty

We assume the existence of uncertainty in the partition centers and parameter
weight uncertainty, so, we can take into account that the actual system (7.1)
can be modeled by the following neural form:

χ̇ = Aχ+X∗W ∗S(χ) +X∗1W
∗
1 S1(χ)u (7.8)

Define now, the error between the identifier states and the real states as

e = χ̂− χ (7.9)

Then from (7.7) and (7.8) we obtain the error equation

ė = Ae+X∗W ∗S(χ) +X∗1W
∗
1 S1(χ)u

−XWS(χ)−X1W1S1(χ)u

To this end add and subtract to the above error equation the termsX∗WS(χ)
and X∗1W1S(χ))u

and define: W̃ = W −W ∗ and W̃1 = W1 −W ∗1 .
Then the error equation becomes:

ė = Ae−X∗W̃S(χ)− X̃WS(χ)−X∗1W̃1S1(χ)u− X̃1W1S1(χ)u (7.10)

Our objective is to find suitable control and learning laws to drive both e
and χ to zero, while all other signals in the closed loop remain bounded. Taking
u to be equal to

u = − [X1W1S1(χ)]
−1
XWS(χ) (7.11)

and substituting it into (7.7) we finally obtain

˙̂χ = Aχ̂ (7.12)

In the next theorem the weight and partitions centers update laws are given,
which can serve identification and control objectives, provided the updating of
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the weights of matrices X1 and W1 is performed in such a way, so that the
existence of [X1W1S1(χ)]

−1
is assured.

Theorem 5 Consider the identification scheme given by (7.10). Provided that

[X1W1S1(χ)]
−1

exists the learning laws:
a) For the elements of W and X{

Ẇ = sgn(X∗)
T
PeST

Ẋ = PeSTWT (7.13)

b) For the elements of W1 and X1{
Ẇ1 = sgn(X∗1 )

T
PeuTST1

Ẋ1 = PeuTST1 W
T
1

(7.14)

guarantee the following properties.

• e, χ̂, W̃ , W̃1, X̃, X̃1 ∈ L∞, e, χ̂ ∈ L2

• limt→∞ e(t) = 0, limt→∞ χ̂(t) = 0

• limt→∞
˙̃W (t) = 0, limt→∞

˙̃W1(t) = 0

• limt→∞
˙̃X(t) = 0, limt→∞

˙̃X1(t) = 0

where the matrices sgn(X∗) and sgn(X∗1 ) are defined in the proof.

The proof can be studied in the Appendix.
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7.3 A Novel Approach of Parameter Hopping

The weight updating laws presented previously are valid when the control law
signal in 7.11 exists. Therefore, the existence of [X1W1S1(χ)]−1 has to be as-
sured. Since S1(χ) is diagonal with its elements si(χ) 6= 0 and X1,W1 are block
diagonal the existence of the inverse is assured when Xi

1 ·W i
1 6= 0, ∀i = 1, ..., n.

Therefore, we have to assure that |Xi
1 ·W i

1| ≥ θi > 0, with θi being a design
parameter. In our case where both terms change, we shall introduce a specific
update of both laws, one at a time, for keeping the above inequality true at
all times. The idea is the following : we keep one term fixed and we change
appropriately the other one. Then, we examine whether the above inequality
of θi is still true. If not, we keep the first term fixed and we update the second
one. The first one term that we keep fixed is matrix Xi

1 and we update the neu-
ral weights of the matrix W i

1, and that is because due to the initial estimation
of the centers of the output membership functions by the experts, we consider
them more difficult to change dramatically from their initial values (given by the
experts) and we ”pay more attention” by switching appropriately the vectors in
matrix W i

1.

The logic behind the appropriate change of our update laws is the same for
both terms Xi

1,W
i
1 who change when our condition of distance is being satisfied.

So, using concepts from multidimensional geometry we modify the updating laws
such that, when the vector approaches, within a safe distance θi , the forbidden
hyper-plane Xi

1 ·W i
1 = 0 and the direction of updating is toward the forbidden

hyper-plane, it introduces a hopping which drives the vector in the direction
of updating but on the other side of the space, where here the space is divided
for each modification of each term into two sides by the forbidden hyper-plane.
Theorem below introduces this hopping in the update laws respectively.

Theorem 6 Consider the control scheme (7.10), (7.11), (7.12). The updating
law:

For the elements of 1W i given by the modified form:

1Ẇ i = sign(1X∗i)T pieiuisi(χ) if
∣∣1Xi · 1W i

∣∣ > θi > 0

or
∣∣1Xi · 1W i

∣∣ = θi and
1Xi · 1Ẇ i ≤ 0

1Ẇ i = sign(1X∗i)T pieiuisi(χ)−

− 2
tr{(1Xi)T 1Xi}

1Xi 1W i (1Xi)T otherwise

guarantees the properties of theorem 5 and assures the existence of the control
signal.
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Theorem 7 Consider the control scheme (7.10), (7.11), (7.12). The updating
law:

For the elements of 1Xi given by the modified form:

1Ẋi = (1W i)T pieiuisi(χ) if
∣∣1Xi · 1W i

∣∣ > θi > 0

or
∣∣1Xi · 1W i

∣∣ = θi and
1Ẋi · 1W i ≤ 0

1Ẋi = (1W i)T pieiuisi(χ)−

− 2
tr{(1W i)T 1W i}

1Xi 1W i (1W i)T otherwise

guarantees the properties of theorem 5 and assures the existence of the con-
trol signal.

The proof, which follows the exact same steps for both terms can be studied
in the Appendix.
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8.1 Simulation of a DC Motor

In this section we apply the proposed approach to solve the problem of control-
ling the speed of a 1 KW DC Motor with a normalized model described by the
following dynamical equations

Ta
dIa
dt = −Ia − ΦΩ + Va

Tm
dΩ
dt = ΦIa −K0Ω−mL

Tf
dΦ
dt = −If + Vf
Φ =

aIf
1+bIf

(8.1)

(8.2)

Traditionally, the Angular Velocity of a DC Motor is controlled with changes
in its armature voltage, while keeping constant the field excitation. Thus, the
above nonlinear model is linearized and reduced to

Ta
dIa
dt = −Ia − ΦΩ + V

Tm
dΩ
dt = ΦIa −K0Ω−mL

(8.3)

now with Ω a constant value parameter.

So, the regulation problem of a DC Motor is translated as follows: Find a
state feedback to force the Angular Velocity Ω and the Armature Current Ia to
go to zero, while the Magnetic Flux varies.

To achieve such a goal, assuming that the dynamics of the system are un-
known, we first assume that the system is described, within a degree of accuracy,
by a Neuro-Fuzzy system of the form

˙̂χ = Aχ̂+XWS(χ) +X1W1S1(χ)u (8.4)

Where A is a n × n stable matrix which for simplicity can be taken to be
diagonal as A = diag[a1, a2, ..., an] , X, X1 are matrices containing the centers
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Table 8.1: Parameter values for the DC motor.

Parameter Value
1/T a 148.88
1/Tm 42.91
K0/Tm 0.0129
Tf 31.88
TL 0.0
a 2.6
β 1.6

of the partitions of every fuzzy output variable of f(x) and g(x) respectively,
S(χ), S1(χ) are matrices containing high order combinations of sigmoid func-
tions of the state χ and W,W1 are matrices containing respective neural weights.

The number of states being n = 2, the number of fuzzy partitions being
m = 5 and the depth of high order sigmoid terms k = 2. In this case si(x)
assumes high order connection up to the second order.

Also, to regulate the motor speed to zero we apply the control law

u = − [X1W1S1(χ)]
−1
XWS(χ) (8.5)

where the number of fuzzy partitions of each gi i is m = 3.

We simulated a 1 KW DC Motor with parameter values that can be seen in
Table 8.1. Our two stage algorithm, was applied.

We considered the identification procedure known and for the indirect adap-
tive control we used the following values

For the block diagonal matrix X = diag(X1, X2, · · · , Xn) with n = 2 and
the sub-matrices X1, X2, we gave the following values for the centers of the
fuzzy partitions:

X =

[
X1 0
0 X2

]
where the centers of the fuzzy partitions of X1, X2 are the following:

X1 =
[
−163.3061 − 148.9226 − 153.1720− 79.9453 − 175.4806 − 18.1483

]
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X2 =
[
25.1305 9.1845 − 15.2403 18.0842 − 9.2918 − 0.1840

]
For the block diagonal matrix X1 = diag(1X1, 1X2, . . . , 1Xn) with n = 2

and the sub-matrices 1X1, 1X2, we gave the following values for the centers of
the fuzzy partitions:

X1 =

[
1X1 0
0 1X2

]
where the centers of the fuzzy partitions of X1, X2 are the following:

1X1 =
[
148 149 150

]
1X2 =

[
42 43 44

]
In the sequel, we give the values of the matrices (W,W1) which contain the

neural weights

For the block diagonal (2*6x2) matrix W, the initial values are

W =



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


And for the block diagonal (2*3x2) matrix W1, the initial values

W =


0.04 0
0.04 0
0.04 0
0 0.04
0 0.04
0 0.04


In order to estimate our actual system-model in the proposed neural form,

we need to calculate the function sigmoidals, i.e., the matrices S(χ), S1(χ). For
that reason, we used the following values for their parameters a, b, c:
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a1 = 0.1; b1 = 1; c1 = 0 sigmoidal parameters used in w update.

a2 = 6; b2 = 1; c2 = 0 sigmoidal parameters used in w1 update.

Last, we need to find an appropriate matrix A > 0 which is chosen in order
to satisfy the Lyapunov equation

PA+ATP = −I,

and a matrix A we found in order to achieve the satisfaction of the above
equation is

A =

[
−1 0
0 − 1

]
This matrix P , which is calculated by the Lyapunov equation is used in the

update laws for W,X,W1, X1.

The figures 8.1,8.2,8.3 give the evolution of the states of the DC motor,i.e.,
the armature current Ia, the angular velocity Ω and the magnetic flux Φ respec-
tively. We used the initial values Ω = 0.3 (being in fact the 30 per cent of the
nominal value of velocity’s actual value) and Ia = 0.3 for the Angular Velocity
and the Armature Current respectively.

Figure 8.1: Evolution of the Armature Current of the DC Motor System
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Figure 8.2: Evolution of the Angular Velocity of the DC Motor System

As can be seen,both Ia and Ω converge to zero very fast as desired.
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Figure 8.3: Evolution of the Magnetic Flux of the DC Motor System

As we can see above the magnetic flux remains bounded,as desired.
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In the sequel, in Fig. 8.4 we give the evolution of our controller u, which is
calculated in the controller stage.

Figure 8.4: Evolution of the Controller of the proposed scheme

As can be seen above, the 2 − state control input remains bounded and
converges to zero as time evolves.
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Last, in Fig. 8.5 we give the evolution of the error between the F-RHONN
approximator and the actual system.

Figure 8.5: Evolution of the error signal between the F-HONNF approximator
and the actual system .

As can be seen above, the error between the F-RHONN approximator and
the actual system converges to zero as desired.
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In the sequel we present the figures 8.6,8.7,8.8 for the same variables, but
now we put initial values for Ia,Ω = 0.1.

The three states of the DC motor system are the following

Figure 8.6: Evolution of the Armature Current of the DC Motor System
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Figure 8.7: Evolution of the Angular Velocity of the DC Motor System

As can be seen,both Ω and Ia converge to zero very fast as desired despite
the change of the initial values.
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Figure 8.8: Evolution of the Magnetic Flux of the DC Motor System

As we can see above the magnetic flux remains bounded as well,as desired.
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In the sequel, we give the evolution of the control signal u, which is calcu-
lated by the controller stage.

Figure 8.9: Evolution of the Controller of the proposed scheme

As can be seen above, the 2 − state control input remains bounded and
converges to zero as time evolves.
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Last, we give the evolution of the error between the F-RHONN approxima-
tor and the actual system.

Figure 8.10: Evolution of the error signal between the F-HONNF approximator
and the actual system .

As can be seen above, the error between the F-RHONN approximator and
the actual system converges to zero as desired.

More examples of the application of bilinear parameter hopping in contrast
with the simple case of not applying this optimization technique are given in
the presentation of the thesis as well.

We proved the stability of the proposed scheme for different values of the
initial parameters which guarantees the viable results of the mentioned theory.
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9.1 Conclusions

In this master thesis we considered an indirect adaptive control scheme in or-
der to regulate unknown nonlinear plants in bilinear form. This approach is
based on a Neuro-Fuzzy Dynamical Systems definition, which uses the concept
of Fuzzy Dynamical Systems (FDS) operating in conjunction with High Order
Neural Network Functions (HONNFs). Since the plant is initially considered
unknown, first it is proposed its approximation by a special form of an affine in
the control fuzzy dynamical system (FDS) and in the sequel the fuzzy rules are
approximated by appropriate HONNFs. Once the system is identified around
an operation point is regulated to zero adaptively. The used scheme does not
require a-priori experts’ information on the number and type of input variable
membership functions making it less vulnerable to initial design assumptions.
Weight and Center updating laws for the involved HONNFs and the centers
of the output membership functions respectively are provided, which guarantee
that both the identification error and the system states reach zero exponentially
fast, while keeping all signals in the closed loop bounded. A method of param-
eter hopping assures the existence of the control signal and is incorporated in
the weight and center updating law. Simulations illustrate the potency of the
method by comparing its performance with this of conventional approaches.
More specifically, the applicability of the method was tested on a DC Motor
system where it is shown that by following the proposed procedure one can ob-
tain asymptotic regulation.

We presented some basic research works that have already been done in the
field of Adaptive Neuro-Fuzzy Control in Chapter 3. The literature in that field
is very rich and quite challenging for future work through the development of
more sophisticated control schemes. In Chapter 4 are presented some prelim-
inaries related to Recurrent High Order Neural Networks and the model that
was used for the development of the neuro-fuzzy model F-RHONN for the esti-
mation of our actual system. The underlying neuro-fuzzy model which we used
in the development of the bilinear scheme is presented thoroughly in Chapters
5,6, by introducing some basic facts of fuzzy systems description models and
the way in which weighted indicator functions are used in order to approximate
those fuzzy models. Chapter 7 introduces the indirect adaptive control of un-
known nonlinear systems in a special bilinear form. This extension is based on
the underlying neuro-fuzzy model of F-RHONNs. This scheme needs less infor-
mation of the actual operation of the system (linguistic information related to
the functionality of the examined system), and only an initial estimate of the
centers of the output membership functions, in a way that our algorithm can
start and estimate those centers automatically through the adaptive procedure.
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One more quite reasonable assumption that we use in order to derive suitable
update laws for the estimated parameters involved is that we know the sign of
the centers of the fuzzy partitions.

The application of the neuro-fuzzy model in the approach of controlling
unknown dynamical systems in bilinear form still requires an initial estimate
of the centers of the fuzzy output variables, which in the sequel are estimated
automatically. The complete absence of knowledge of operational information
(such that specific information mentioned) of the examined system leads to a
more complex approach that is still to be searched. The simulation results of
the DC Motor are quite comforting for our control objectives and verify the
theoretical solidification of the proposed updating laws.

There are many open topics in the field of neuro-fuzzy modeling where this
approach could be used in order to overcome other difficulties. The bilinear
model based on the underlying neuro-fuzzy model we used could be extended
with modeling uncertainties, such as unmodeled dynamics, in the representation
of the system and be controlled as such. Interest could be gained if one could
face the problem of direct control of bilinear dynamical systems, or reduced
model order problems. Those are some aspects of proposed future work in
the estimation and control of bilinear dynamical systems and the neuro-fuzzy
indirect or direct control of them.
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10.1 Proofs of Theorems

In this section we present the proofs of the theorems and lemmas we used in
the previous sections of this diploma thesis.

Theorem 8 Consider the system:

χ̇ = F (χ, u), (10.1)

where χ ∈ Rn is the system state, u ∈ Rn is the system input and F :
Rn+m → Rn is a smooth vector field defined on a compact set y ⊂ Rn+m

and the model

ẋ = Ax+WT z, (10.2)

where x = [x1, x2, · · ·, xn]T ∈ Rn,W = [w1, w2, · · ·, wn]T ∈ RLxn and A =
diag [−a1,−a2, · · ·,−an] is a nxn diagonal matrix. Since [ai > 0, i = 1, 2, · · ·, n],
A is a stability matrix. Although it is not written explicitly, the vector z is a
function of both the neural network state x and the external input u.

Suppose that the system (10.1) and the model (10.2) are initially at the same
state x(0) = χ(0); then for any ε > 0 and any finite T > 0, there exists an inte-
ger L and a matrix W ∗ ∈ RLxn such that the state x(t) of the RHONN model
(10.2) with L high-order connections and weight values W = W ∗ satisfies

sup
0≤t≤T

|x(t)− χ(t)| ≤ ε.

Proof 1 [73] From (10.2), the dynamic behavior of the RHONN model is de-
scribed by

ẋ = Ax+WT z(x, u). (10.3)

Adding and subtracting Aχ, (10.1) is rewritten as

χ̇ = Aχ+G(χ, u), (10.4)

where G(x, u) = F (x, u)−Aχ. Since x(0) = χ(0), the state error e = x− χ
satisfies the differential equation
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ė = Ae+WT z(x, u)−G(χ, u), e(0) = 0. (10.5)

By assumption, (χ(t), u(t)) ∈ y for all t ∈ [0, T ], where y is a compact
subset of Rn+m. Let

ye =
{

(χ, u) ∈ Rn+m : |(χ, u)− (χy, uy)| ≤ ε, (χy, uy) ∈ y
}
. (10.6)

It can be seen easily that ye is also a compact subset of Rn+m and y ⊂ ye.
In simple words ye is ε larger than y, where ε is the required degree of approx-
imation. Since, z is a continuous function, it satisfies a Lipschitz condition in
ye, i.e., there exists a constant l such that for all (x1, u), (x2, u) inye

|z(x1, u)− z(x2, u)| ≤ l|x1 − x2|. (10.7)

In what follows, we show that the function WT z(x, u) satisfies the conditions
of the Stone-Weierstrass Theorem and can approximate any continuous function
over a compact domain, therefore.

From (4.2),(4.3) it is clear that z(x, u) is in the standard polynomial expan-
sion with the exception that each component of the vector x is preprocessed by a
sigmoid function s(·). As shown in [14], preprocessing of input via a continuous
invertible function does not affect the ability of a network to approximate contin-
uous functions; therefore, it can be shown readily that if L is sufficiently large,
then there exist weight values W = W ∗ such that W ∗Tz(x, u) can approximate
G(x, u) to any degree of accuracy, for all (x, u) in a compact domain.Hence,
there exists W = W ∗ such that

sup
(χ,u)∈y

e

|W ∗Tz(χ, u)−G(χ, u)| ≤ δ, (10.8)

where δ is a constant to be designed in the sequel.

The solution of (10.5) is

e(t) =
t∫

0

eA(t−τ) [W ∗Tz(x(τ), u(τ))−G(χ(τ), u(τ))] dτ =

t∫
0

eA(t−τ) [W ∗Tz(x(τ), u(τ))−W ∗Tz(χ(τ), u(τ))] dτ +

t∫
0

eA(t−τ) [W ∗Tz(χ(τ), u(τ))−G(χ(τ), u(τ))] dτ.
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Since A is a diagonal stability matrix, there exists a positive constant α such
that ‖eAt‖ ≤ e−αt for all t ≥ 0. Also, let L = l‖W ∗‖.Based on the aforemen-
tioned definitions of the constants α,L, ε, let δ in (10.8) be chosen as:

δ =
εα

2
e

−L
α > 0. (10.9)

First consider the case where (x(t), u(t)) ∈ ye for all t ∈ [0, T ]. Starting
from the equation of the solution of (10.5), taking the norms on both sides and
using (10.7),(10.8) and (10.9), the following inequalities hold for all t ∈ [0, T ]:

|e(t)| ≤
t∫

0

‖eA(t−τ)‖
∣∣W ∗T z(x(τ), u(τ))−W ∗T z(χ(τ), u(τ))

∣∣ dτ
+

t∫
0

‖eA(t−τ)‖
∣∣W ∗T z(χ(τ), u(τ))−G(χ(τ), u(τ))

∣∣ dτ,
≤

t∫
0

e−α(t−τ)L|e(τ)|dτ +
t∫

0

δe−α(t−τ)dτ,

≤ ε
2e
−Lα + L

t∫
0

e−α(t−τ)|e(τ)|dτ.

Using the Bellman-Gronwall Lemma [34], we obtain

|e(t)| ≤ ε

2
e−

L
α + eL

t∫
0

e−α(t−τ)dτ ≤ ε

2
. (10.10)

Now suppose (for the sake of contradiction), that (x, u) does not belong to ye
for all t ∈ [0, T ]; then, by continuity of x(t), there exist a T ∗, where 0 ≤ T ∗ ≤ T ,
such that (x(T ∗), u(T ∗)) ∈ ∂ye, where ∂ye denotes the boundary of ye. If
we carry out the same analysis for t ∈ [0, T ∗] we obtain that in this interval
|x(t)− χ(t)| ≤ ε

2 , which is clearly a contradiction. Hence, (10.10) holds for all
t ∈ [0, T ].

Lemma 2 The system described by

χ̇i = −aiχi + w∗i z(χ, u), χi(0) = χ0
i . (10.11)

can be expressed as

ζ̇i = −aiζi + zi, ζi(0) = 0, (10.12)

χi = w∗Ti ζi + e−aitχ0
i . (10.13)
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Proof 2 From (10.12) we have

ζi =
t∫

0

e−ai(t−τ)z(χ(τ), u(τ))dτ

therefore,

w∗Ti ζi + e−aitχ0
i = e−ait +

t∫
0

e−ai(t−τ)w∗Ti z(χ(τ), u(τ))dτ. (10.14)

Using (10.11), the right hand side of (10.14) is equal to χ(t) and this con-
cludes this proof.

Theorem 9 Consider the RHONN model

xi = wTi ζi, i = 1, 2, · · · , n (10.15)

whose parameters are adjusted according to

ẇi = −Γiζiei, i = 1, 2, · · · , n. (10.16)

Then for i = 1, 2, · · · , n

a) ei, φi ∈ L∞ (ei and φ are uniformly bounded)
b) limt→∞ ei(t) = 0

Proof 3 Consider the Lyapunov function candidate

V =
1

2

n∑
i=1

φTi Γ−1
i φi +

∞∫
t

εei (τ)dτ

 . (10.17)

Using (10.16) and ei = φTi ζi − εi, where φi = wi − w∗i is the weight estima-
tion error, the time derivative of V in (10.17) is expressed as

V̇ =
n∑
i=1

(
−eiφTi ζi − 1

2ε
2
i

)
=

n∑
i=1

(
−ei(ei + εi)− 1

2ε
2
i

)
= − 1

2

n∑
i=1

(
e2
i + (ei + εi)

2
)
≤ 0.
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Since V̇ ≤ 0, we obtain that φi ∈  L∞. Moreover, using ei = φTi ζi−εi and the
boundedness of ζi, we have that ei is also bounded. To show that ei(t) converges
to zero, we first note that since V is a non-increasing function of time and also
bounded from below, the limt→∞ V (t) = V∞ exists; therefore, by integrating both
sides of the above expression of the derivative V̇ from t = 0to∞, and taking
bounds we obtain

∞∫
0

n∑
i=1

e2
i (τ)dτ ≤ 2(V (0)− V∞),

so for i = 1, 2, · · · , n ei(t) is square integrable. Furthermore, using ei =
φTi ζi − εi :

ėi(t) = φ̇Ti ζi + φTi ζ̇i − ε̇i = −eiζTi Γiζi − aiφTi ζi + φTi z − ε̇i

Since ei, ζi, φi, ε̇i are all bounded, ėi ∈ L∞. Hence, by applying Barbalat’s
Lemma [73] we obtain that limt→∞ ei(t) = 0.

Theorem 10 Consider the filtered error RHONN model given by

ẋi = −aixi + wTi z, i = 1, 2, · · · , n, (10.18)

whose weights are adjusted according to

ẇi = −Γizei (10.19)

where the adaptive gain Γi is a positive definite LxL matrix, and wi is the
estimate of the unknown vector w∗i . Then for i = 1, 2, · · · , n

(a) ei, φi ∈ L∞
(b) limt→∞ ei(t) = 0

Proof 4 Consider the Lyapunov function candidate

V =
1

2

n∑
i=1

(
e2
i + φTi Γ−1

i φi
)

(10.20)

Then, using ėi = −aiei + φTi z, i = 1, 2, · · · , n, whereφi := wi − w∗i , and
(10.19), and the fact that φ̇i = ẇi, the time derivative of V in (10.20) satisfies

V̇ = −
n∑
i=1

aie
2
i ≤ 0 (10.21)
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Since V̇ ≤ 0, from (10.20) we obtain that ei, φi ∈ L∞ for i = 1, 2, · · · , n.
Using this result in ėi = −aiei + φTi z, i = 1, 2, · · · , n, whereφi := wi − w∗i , we
also have that ėi ∈ L∞. Now by employing the same techniques as in proof of
theorem 9 it can be shown readily that ei ∈ L2, i.e., ei(t) is square integrable;
therefore, by applying Barbalat’s Lemma we obtain that limt→∞ ei(t) = 0.

Theorem 11 Consider the filtered error RHONN model given by

ẋi = −aixi + wTi z, i = 1, 2, · · · , n, (10.22)

whose weights are adjusted according to

ẇi =

{
−Γizei, if |wi| ≤Mi

−Γizei − σiΓiwi, if |wi| > Mi

}
(10.23)

Then for i = 1, 2, · · · , n

(a) ei, φi ∈ L∞
(b)there exist constants λ,m such that

t∫
0

|e(τ)2|dτ ≤ λ+m
t∫

0

|v(τ)2|dτ

Proof 5 Consider the Lyapunov function candidate

V =
1

2

n∑
i=1

φTi Γ−1
i φi +

∞∫
t

εei (t)dt

 . (10.24)

Using ėi = −aiei + φTi z − vi,and (10.23) it can be shown that

V̇ =

n∑
i=1

(−aie2
i − eivi − I∗wiσiφ

Twi). (10.25)

where I∗wi is the indicator function defined as I∗wi = 1 if |wi| > Mi and
I∗wi = 0 if |wi| ≤Mi. Since φi = wi − w∗i , we have that

φTi wi = 1
2φ

T
i φi + 1

2 (φTi φi + 2φTi w
∗
i ) = 1

2 |φi|
2 + 1

2 |wi|
2 − 1

2 |w
∗
i |2.

Since, by definition, |w∗i | ≤Mi and |wi| > Mi for I∗wi = 1, we have that

I∗wi
σi
2 (|wi|2 − |w∗i |2) ≥ 0;
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therefore, (10.25) becomes

V̇ ≤
n∑
i=1

(−aie2
i − I∗wi

σi
2
|φi|2 − eivi), (10.26)

≤
n∑
i=1

(−ai2 e
2
i − σi

2 |φi|
2) +

n∑
i=1

(
(1− I∗wi)

σi
2 |φi|

2 − ai
2 (e2

i + 2
ai
eivi)

)
.

So. we have that

V̇ ≤ −αV +

n∑
i=1

(
(1− I∗wi)

σi
2
|φi|2 +

v2
i

2ai

)
, (10.27)

where

α := min
{
ai,

σi
λmax(Γ−1

i )
; i = 1, 2, · · · , n

}
and λmax(Γ−1

i ) > 0 denotes the maximum eigenvalue of Γ−1
i . Since

(1− I∗wi)
σi
2 |φi|

2 =

{
σi
2 |φi|

2 if |wi| ≤Mi

0 otherwise

}
we obtain that (1 − I∗wi)

σi
2 |φi|

2 ≤ σiM
2
i . Hence, (10.27) can be written in

the form

V̇ ≤ −αV +K,

where K :=
n∑
i=1

(σiM
2
i + v̄2

i /2ai) and v̄i is an upper bound for vi; therefore,

for V ≥ V0 = K/α, we have that V̇ ≤ 0, which implies that V ∈ L∞. Hence
ei, φi ∈ L∞.

To prove the second part, we note that by completing the square in (10.26)
we obtain

V̇ ≤
n∑
i=1

(−aie2
i − eivi) ≤

n∑
i=1

(
−ai

2
e2
i +

v2
i

2ai

)
. (10.28)

Integrating both sides of (10.28) yields

V (t)− V (0) ≤
n∑
i=1

(
−ai2

t∫
0

ei(τ)2dτ + 1
2ai

t∫
0

vi(τ)2dτ

)
,
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≤ −amin2

t∫
0

|e(τ)|2dτ + 1
2amin

t∫
0

|v(τ)|2dτ,

where amin := min ai ; i = 1, 2, · · · , n; therefore,

t∫
0

|e(τ)|2dτ ≤ 2
2amin

[V (0)− V (t)] + 1
2a2min

t∫
0

|v(τ)|2dτ,

≤ λ+ µ
t∫

0

|v(τ)|2dτ,

where λ := (2/amin)supt≥0[V (0)− V (t)] and µ := 1/a2
min. This proves part

(b) and concludes the proof of this theorem.

Theorem 12 Consider the identification scheme given by

ė = Ae−X∗W̃S(χ)− X̃WS(χ)−X∗1W̃1S1(χ)u− X̃1W1S1(χ)u (10.29)

Provided that [X1W1S1(χ)]
−1

exists the learning laws:

a) For the elements of W and X{
Ẇ = sgn(X∗)

T
PeST

Ẋ = PeSTWT (10.30)

b) For the elements of W1 and X1{
Ẇ1 = sgn(X∗1 )

T
PeuTST1

Ẋ1 = PeuTST1 W
T
1

(10.31)

guarantee the following properties.

• e, χ̂, W̃ , W̃1, X̃, X̃1 ∈ L∞, e, χ̂ ∈ L2

• limt→∞ e(t) = 0, limt→∞ χ̂(t) = 0

• limt→∞
˙̃W (t) = 0, limt→∞

˙̃W1(t) = 0

• limt→∞
˙̃X(t) = 0, limt→∞

˙̃X1(t) = 0

where the matrices sgn(X∗) and sgn(X∗1 ) are defined in the proof.
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Proof 6 Consider the Lyapunov function candidate

V (e, χ̂, X̃, W̃ , X̃1, W̃1) = 1
2e
TPe+ 1

2 χ̂
TPχ̂+

+ 1
2 tr{X̃

T X̃}+ 1
2 tr{W̃

T∆W̃}

+ 1
2 tr{X̃

T
1 X̃1}+ 1

2 tr{W̃
T
1 ∆1W̃1}

Where P > 0 is chosen to satisfy the Lyapunov equation

PA+ATP = −I

and matrices ∆ and ∆1 are both diagonal n ·m×n ·m and defined as follows:

∆ = diag{(|f̄1∗
1 |, |f̄1∗

2 |, . . . , |f̄1∗
m |), (|f̄2∗

1 |, |f̄2∗
2 |, . . . , |f̄2∗

m |), . . . ,

(|f̄m∗1 |, |f̄m∗2 |, . . . , |f̄m∗m |)}

and

∆1 = diag{(|ḡ1,1∗
1 |, |ḡ1,1∗

2 |, . . . , |ḡ1,1∗
m |),

(|ḡ2,2∗
1 |, |ḡ2,2∗

2 |, . . . , |ḡ2,2∗
m |), . . . ,

(|ḡm,m∗1 |, |ḡm,m∗2 |, . . . , |ḡm,m∗m |)}

Thus ∆ ≥ 0 and ∆1 ≥ 0.

Taking the derivative of the Lyapunov function candidate and taking into
account (7.12) we get

V̇ = 1
2e
T
(
ATP + PA

)
e+ 1

2 χ̂
T
(
ATP + PA

)
χ̂+

+ 1
2 tr{

˙̃XT X̃}+ 1
2 tr{

˙̃WT∆W̃}

+ 1
2 tr{

˙̃
1X
T X̃1}+ 1

2 tr{
˙̃

1W
T∆1W̃1} ⇒

V̇ = 1
2e
T
(
ATP + PA

)
e+ 1

2 χ̂
T
(
ATP + PA

)
χ̂+(

− 1
2e
TPX̃WS − 1

2e
TPX̃WS

)
−(

− 1
2e
TPX∗W̃S − 1

2e
TPX∗W̃S

)
−

−
(

1
2e
TPX̃1W1S1u− 1

2e
TPX̃1W1S1u

)
−

−
(

1
2e
TPX∗1W̃1S1u− 1

2e
TPX∗1W̃1S1u

)
+
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tr{ ˙̃WT∆W̃}+ tr{ ˙̃WT
1 ∆1W̃1} ⇒

tr{ ˙̃XT X̃}+ tr{ ˙̃XT
1 X̃1} ⇒

V̇ = − 1
2e
T e− 1

2 χ̂
T χ̂+ eTPXW̃S+ eTPXW̃1S1U+ tr{ ˙̃WT W̃}+ tr{ ˙̃WT

1 W̃1} ⇒
Take:

tr{ ˙̃WT∆W̃} = eTPX∗W̃S

tr{ ˙̃XT X̃} = eTPX̃WS

tr{ ˙̃WT
1 ∆1W̃1} = eTPX∗1W̃1S1u

tr{ ˙̃XT
1 X̃1} = eTPX̃1W1S1u

Then the Lyapunov function becomes:

V̇ = − 1
2e
T e− 1

2 χ̂
T χ̂ ≤ 0

Using the fact that whenever tr{ẊT X̃} = AX̃B, where A is a row and B is
a column vector, ⇒ Ẋ = ATBT , we get:


∆Ẇ = X∗TPeST

Ẋ = PeSTWT

∆1Ẇ1 = X∗1
TPeuTST1

Ẋ1 = PeuTST1 W
T
1

(10.32)

We write X∗T = ∆{sgn(X∗)}T
and X∗T1 = ∆1{sgn(X∗1 )}T

where:

sgn(X∗) = diag{sgn(X1∗), sgn(X2∗), . . . , sgn(Xn∗)}

where:

sgn(Xi∗) = [sgn(f̄1
i,∗

), sgn(f̄2
i,∗

), . . . , sgn(f̄m
i,∗

)]

and:

sgn(X∗1 ) = diag{sgn(X1∗
1 ), sgn(X2∗

1 ), . . . , sgn(Xn∗
1 )}
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where:

sgn(Xi∗
1 ) = [sgn(ḡ1

i,i,∗), sgn(ḡ2
i,i,∗), . . . , sgn(ḡm

i,i,∗)]

Then equations (10.32) become:
Ẇ = sgn(X∗)

T
PeST

Ẋ = PeSTWT

Ẇ1 = sgn(X∗1 )
T
PeuTST1

Ẋ1 = PeuTST1 W
T
1

(10.33)

The update laws (10.33) are implementable, provided we know the signs of
the partitions, which is a very reasonable assumption. However the centers of
the partitions are automatically selected by our algorithm optimally.

Using the above Lyapunov function candidate V and proving that V̇ ≤ 0 all
properties of the theorem are assured [53].

For the proof of the next theorem we shall use some basic equations of the
section of Neuro-Fuzzy Indirect Adaptive Control, and those are the following

ė = Ae−X∗W̃S(χ)− X̃WS(χ)−X∗1W̃1S1(χ)u− X̃1W1S1(χ)u (10.34)

u = − [X1W1S1(χ)]
−1
XWS(χ) (10.35)

˙̂χ = Aχ̂ (10.36)

Theorem 13 Consider the control scheme (10.34), (10.35), (10.36). The up-
dating law:

For the elements of 1W i given by the modified form:

1Ẇ i = sign(1X∗i)T pieiuisi(χ) if
∣∣1Xi · 1W i

∣∣ > θi > 0

or
∣∣1Xi · 1W i

∣∣ = θi and
1Xi · 1Ẇ i ≤ 0

1Ẇ i = sign(1X∗i)T pieiuisi(χ)−
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− 2
tr{(1Xi)T 1Xi}

1Xi 1W i (1Xi)T otherwise

guarantees the properties of theorem 12 and assures the existence of the con-
trol signal.

Proof 7 In order the properties of theorem 12 to be valid it suffices to show that
by using the modified updating law for 1W i the negativeness of the Lyapunov
function is not compromised. Indeed the if part of the modified form of 1Ẇ i is
exactly the same with (10.31) and therefore according to theorem 12 the nega-
tiveness of V is in effect. The if part is used when the weights are at a certain
distance (condition if

∣∣1Xi · 1W i
∣∣ > θi )from the forbidden plane or at the safe

limit (condition
∣∣1Xi · 1W i

∣∣ = θi) but with the direction of updating moving the

weights far from the forbidden plane (condition 1Xi · 1Ẇ i ≤ 0).

In the otherwise part of 1Ẇ i, term − 2
tr{(1Xi)T 1Xi}

1Xi 1W i (1Xi)T deter-

mines the magnitude of weight hopping, which as explained later and is depicted
in Fig. 10.2 has to be two times the distance of the current weight vector to the
forbidden hyper-plane. Therefore the existence of the control signal is assured
because the weights never reach the forbidden plane. Regarding the negative-
ness of V̇ we proceed as follows.

Let that 1W ∗i contains the initial values of 1W i provided from the iden-
tification part such that

∣∣1Xi · 1W ∗i
∣∣ >> θi and that 1W̃ i = 1W i − 1W ∗i.

Then, the weight hopping can be equivalently written with respect to 1W̃ i as
−2θi

1W̃ i/‖1W̃ i‖. Under this consideration the modified updating law is rewrit-
ten as 1Ẇ i = sign(1X∗i)T pieiuisi(χ)− 2θi

1W̃ i/‖1W̃ i‖. With this updating law
it can be easily verified that V̇ = − 1

2e
T e − 1

2 χ̂
T χ̂ − Θ, with Θ being a positive

constant expressed as Θ =
∑

2θi

(
(1W̃ i)T )1W̃ i)

)
/‖1W̃ i‖, where the summation

includes all weight vectors which require hopping. Therefore, the negativeness
of V̇ is actually enhanced.

The figure below shows the procedure, where a simplified 2-dimensional rep-
resentation is given.
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xw=0
xw=è

xw=-è

Hopping
magnitude

w
1

w
2

Weight
updating
direction

Figure 10.1: Pictorial Representation of Parameter Hopping [54].
Vectorial Proof of Parameter Hopping

In selecting the terms involved in parameter hopping we start from the vector
definition of line, of a plane and the distance of a point to a plane. The equation
of a line in vector form is given by

r = α+ λt,

where α is the position vector of a given point of the line, t is a vector in
the direction of the line and λ is a real scalar. By giving different numbers to
λ we get different points of the line each one represented by the corresponding
position vector r. The vector equation of a plane can be defined by using one
point of the plane and a vector normal to it. In this case

r · n = α · n = d,

is the equation of the plane, where α is the position vector of a given point
on the plane, n is a vector normal to the plane and d is a scalar. When the
plane passes through zero, then apparently d = 0. To determine the distance
of a point B with position vector b from a given plane we consider Fig. and
combine the above definitions as follows. Line BN is perpendicular to the plane
and is described by vector equation

r = b+ λn,

where n is the normal to the plane vector. However, point N also lies on the
plane and in case the plane passes through zero.
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r · n = 0⇒ (b+ λn) · n = 0⇒ λ = −b·n
‖n‖

Apparently, if one wants to get the position vector of B′, the symmetrical of
B in respect to the plane, this is given by

r = b− 2 b·n
‖n‖n

In our problem b = W i
1, our plane is described by the equation Xi

1 ·W i
1 = 0

and it has already been mentioned the normal to it is the vector Xi
1.

The figure below shows the vector explanation of what has already been men-
tioned.
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o

b

B

A

a

N

Plane

B’

Figure 10.2: Vector Explanation of Parameter Hopping [54].
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10.2 Optimization Techniques

An important part of every adaptive control scheme is the online estimator of
the adaptive law used to provide an estimate of the plant or controller param-
eters at each time t. Most of these adaptive laws are derived by minimizing
certain cost functions with respect to the estimated parameters. The type of
the cost function and method of minimization determines the properties of the
resulting adaptive law as well as the overall performance of the adaptive scheme.

In this subsection we introduce some notations as well as some simple op-
timization techniques that includes the method of steepest descent, referred to
as gradient method and the gradient projection method for constrained mini-
mization problems.

10.2.1 Notation and Mathematical Background

A real-valued function f : Rn → R is said to be continuously differentiable if

the partial derivatives ∂f(x)
∂x1

, · · ·, ∂f(x)
∂xn

exist for each x ∈ Rn and are continuous

functions of x. In this case we write f ∈ c1. More generally, we write f ∈ cm
if all partial derivatives of order m exist and are continuous functions of x. If
f ∈ c1, the gradient of f at a point x ∈ Rn is defined to be the column vector

∇f(x) ,


∂f(x)
∂x1

.

.

.
∂f(x)
∂xn


If f ∈ c2, the Hessian of f at x is defined to be the symmetric n×n matrix

having ∂2f(x)
∂xi∂xj

as the ijth element, i.e.,

∇2f(x) ,
[
∂2f(x)
∂xi∂xj

]
n×n

A subset s of Rn is said to be convex if for every x, y ∈ s and α ∈ [0, 1] we
have αx + (1 − α)y ∈ s. A function f : s → R is said to be convex over the
convex set s if for every x, y ∈ s and α ∈ [0, 1] we have

f(αx+ (1− α)y) ≤ af(x) + (1− α)f(y)

Let f ∈ c1 over an open convex set s ; then f is convex over s if and only if

f(y) ≥ f(x) + (∇f(x))T (y − x) ∀x, y ∈ s
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If f ∈ c2 over s and ∇2f(x) ≥ 0 ∀x ∈ s, then f is convex over s.

Let us now consider the unconstrained minimization problem

minimize J(θ)
subject to θ ∈ Rn

where J : Rn → R is a given function. We say that the vector θ∗ is a global
minimum for the above minimization problem if

J(θ∗) ≤ J(θ) ∀θ ∈ Rn.

A necessary and sufficient condition satisfied by the global minimum θ∗ is
given by the following lemma.

Lemma 3 Assume that J ∈ c1 is convex over Rn. Then θ∗ is a global mini-
mum for the above minimization problem if and only if

∇J(θ∗) = 0

A vector θ̄ is called a regular point of the surface sθ = {θ ∈ Rn|g(θ) = 0}
if ∇g(θ̄) 6= 0. At a regular point θ̄, the set

M(θ̄) = { θ ∈ Rn | θT∇g(θ̄) = 0 }

is called the tangent plane of g at θ̄.

10.2.2 The Method of Steepest Descent (Gradient Method)

This is one of the oldest and most widely known methods for solving the men-
tioned unconstrained minimization problem. It is also one of the simplest for
which a satisfactory analysis exists. More sophisticated methods are often mo-
tivated by an attempt to modify the basic steepest descent technique for better
convergence properties. The method of steepest descent proceeds from an initial
approximation θ0 for the minimum θ∗ to successive points θ1, θ2, ·, ·, ·,∈ Rn in
an iterative manner until some stopping condition is satisfied. Given the current
point θk, the point θk+1 is obtained by a linear search in the direction dk, where

dk = −∇J(θk)
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It can be shown that dk is the direction from θk in which the initial rate of
decrease of J(θ) is the greatest. Therefore, the sequence θk is defined by

θk+1 = θk + λkdk = θk − λk∇J(θk) (k = 0, 1, 2, ·, ·, ·), (10.37)

where θ0 is given and λk, known as the step size, or step length, is deter-
mined by the linear search method, so that θk+1 minimizes J(θ) in the direction
dk from θk. A simpler expression for θk+1 can be obtained by setting λk = λ ∀k,
i.e.,

θk+1 = θk − λ∇J(θk). (10.38)

In this case, the linear search for λk is not required, though the choice of
the step length λ is a compromise between accuracy and efficiency. Considering
infinitesimally small step lengths, (10.38) can be converted to the continuous-
time differential equation

θ̇ = −∇J(θ(t)), θ(t0) = θ0, (10.39)

whose solution θ(t) is the descent path in the time domain starting from
t = t0

The direction of steepest descent d = −∇J can be scaled by a constant pos-
itive definite matrix Γ = ΓT as follows: We let Γ = Γ1ΓT1 , where Γ1 is an n× n
nonsingular matrix, and consider the vector θ̄ ∈ Rn given by

Γ1θ̄ = θ.

Then the previous mentioned minimization problem is equivalent to

minimize J̄(θ̄) , J(Γ1θ̄) subject to θ̄ ∈ Rn.

If θ̄∗ is a minimum of J̄ , the vector θ∗ = Γ1θ̄
∗ is a minimum of J . The

steepest descent for the above minimization problem is given by

θ̄k+1 = θ̄k − λ∇J̄(θ̄k). (10.40)

Because ∇J̄(θ̄) = ∂J(Γ1θ̄)

∂θ̄
= ΓT1∇J(θ) and Γ1θ̄ = θ, it follows from 10.40

that

θk+1 = θk − λΓ1ΓT1∇J(θk).
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Setting Γ = Γ1ΓT1 , we obtain the scaled version for the steepest descent
algorithm

θk+1 = θk − λΓ∇J(θk). (10.41)

The continuous-time version of 10.41 is given by

θ̇ = −Γ∇J(θ). (10.42)

The convergence properties of 10.37,10.38,10.41 for different step lengths are
given in any standard book on optimization.

10.2.3 Gradient Projection Method

Above, the search for the minimum of the function J(θ) given in our first mini-
mization problem was carried out for all θ ∈ Rn. In some cases, θ is constrained
to belong to a certain convex set

s , {θ ∈ Rn | g(θ) ≤ 0} (10.43)

in Rn, where g(·) is a scalar-valued function if there is only one constraint,
and a vector-valued function if there is more than one constraint. In this case,
the search for the minimum is restricted to the convex set defined by 10.43 in-
stead of Rn.

Let us first consider the simple case where we have an equality constraint,
i.e., the problem

minimize J(θ) subject to g(θ) = 0, (10.44)

where g(θ) is a scalar-valued function. One of the most common techniques
for handling constraints is to use a descent method in which the direction of the
descent is chosen to reduce the function J(θ) while remaining within the con-
strained region. Such a method is usually referred to as the gradient projection
method.

We start with a point θ0 satisfying the constraint, i.e., g(θ0) = 0. To ob-
tain an improved vector θ1, we project the negative gradient of J at θ0, i.e.,
−∇J(θ0), onto the tangent plane M(θ0) = {θ ∈ Rn | ∇gT (θ0)θ = 0}, obtain-
ing the direction vector Pr(θ0). Then θ1 is taken as θ0 + λ0Pr(θ0), where λ0

is chosen to minimize J(θ1). The general form of this iteration is given by
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θk+1 = θk + λkPr(θk), (10.45)

where λk is chosen to minimize J(θk) and Pr(θk) is the new direction vec-
tor after projecting −∇J(θk) onto M(θk). The explicit expression for Pr(θk)
can be obtained as follows: The vector −∇J(θk) can be expressed as a linear
combination of the vector Pr(θk) and the normal vector N(θk) = ∇g(θk) to the
tangent plane M(θk) at θk, i.e.,

−∇J(θk) = α∇g(θk) + Pr(θk) (10.46)

for some constant α. Because Pr(θk) lies on the tangent plane M(θk), we
also have ∇gT (θk)Pr(θk) = 0, which together with 10.46 implies that

−∇gT∇J = α∇gT∇g,

i.e.,

α = −(∇gT∇g)−1∇gT∇J.

Hence, from 10.46 we obtain

Pr(θk) = −[I −∇g(∇gT∇g)−1∇gT ]∇J. (10.47)

We refer to Pr(θk) as the projected direction onto the tangent plane M(θk).

It is clear that when g(θ) is not a linear function of θ, the new vector θk+1

given by 10.45 may not satisfy the constraint, so it must be modified. There are
several successive approximation techniques that can be employed to move θk+1

from M(θk) to the constraint surface g(θ) = 0. One special case, which is often
encountered in adaptive control applications, is when θ is constrained to stay
inside a ball with a given center and radius, i.e., g(θ) = (θ−θ0)T (θ−θ0) −M2,
where θ0 is a fixed constant vector and M > 0 is a scalar. In this case, the dis-
crete projection algorithm which guarantees that θk ∈ s ∀k is

θ̄k+1 = θk + λk∇J,

θk+1 =

{
θ̄k+1 if |θ̄k+1 − θ0| ≤M,

θ0 + θ̄k+1−θ0
|θ̄k+1−θ0|

if |θ̄k+1 − θ0| > M
(10.48)

Letting the step length λk become infinitesimally small, we obtain the continuous-
time version of 10.48, i.e.,
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θ̇ = Pr(θ) = −[I − ∇g(∇gT∇g)−1∇gT ]∇J. (10.49)

Because of the sufficiently small step length, the trajectory θ(t), if it exists,
will satisfy g(θ(t)) = 0 ∀t ≥ 0, provided that θ(0) = θ0 satisfies g(θ0) = 0.

The scaled version of the gradient projection method can be obtained by
using the change of coordinates Γ1θ̄ = θ, where Γ1 is a nonsingular matrix that
satisfies Γ = Γ1ΓT1 and Γ is the scaling positive definite constant matrix. The
scaled version of 10.49 is given by:

θ̇ = P̄ r(θ),

where

P̄ r(θ) = −[I − Γ∇g(∇gTΓ∇g)−1∇gT ]Γ∇J.

The minimization problem 10.44 can now be extended to:

minimize J(θ) subject to g(θ) ≤ 0, (10.50)

where s = θ ∈ Rn | g(θ) ≤ 0 is a convex subset of Rn.

The solution to 10.50 follows directly from that of the unconstrained prob-
lem and 10.44. We start from an initial point θ0 ∈ s. If the current point
is in the interior of s, defined as s0 , {θ ∈ Rn | g(θ) < 0, then the uncon-
strained algorithm is used. If the current point is on the boundary of s, defined
as δ(s) , θ ∈ Rn | g(θ) = 0, and the direction of search given by the uncon-
strained algorithm is pointing away from s, then we use the gradient projection
algorithm. If the direction of search is pointing inside s, then we keep the un-
constrained algorithm. In view of the above, the solution of the constrained
optimization problem 10.50 is given by:

θ̇ =


−Γ∇J(θ) if θ ∈ s0

or if θ ∈ δ(s) and − (Γ∇J)T∇g ≤ 0

−Γ∇J(θ) + Γ ∇g∇g
T

∇gTΓ∇gΓ∇J otherwise,

(10.51)
where θ0 ∈ s and Γ = ΓT > 0 is the scaling matrix.
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