Technical University of Crete

Production Engineering & Management Dept.

Study and development of an interactive information platform

for a prototype hybrid hydrogen-electric vehicle

Anastasios K. Petrou

A thesis submitted in fulfillment of the requirements for the degree of Master of Science in
Production Engineering.

Department of Production Engineering & Management.

Laboratory of Intelligent Systems & Robotics IS&RL

CHANIA 2012

This page was intentionally left blank.

Study and development of an interactive information platform
for a prototype hybrid hydrogen-electric vehicle

Master Thesis of

Anastasios K. Petrou

apetrou@isc.tuc.gr, petroutassos@gmail.com
DPEM, Technical University of Crete, Greece

Supervising Committee

Master’s Advisor

Dr. Nikolaos Tsourveloudis
nikost@dpem.tuc.qgr
Professor, Intelligent Systems & Robotics Lab, Machine Tools Lab.
DPEM, Technical University of Crete, Greece

Dr. loannis Nikolos

jnikolo@dpem.tuc.gr
Assistant Professor, Intelligent Systems & Robotics Lab.
DPEM, Technical University of Crete, Greece

Dr. Efstratios loannidis
efioan@dpem.tuc.gr
Assistant Professor, CAM Lab.
DPEM, Technical University of Crete, Greece

mailto:apetrou@isc.tuc.gr,
mailto:petroutassos@gmail.com
mailto:nikost@dpem.tuc.gr
mailto:jnikolo@dpem.tuc.gr
mailto:efioan@dpem.tuc.gr

Abstract

In this thesis an interactive multi-threading driver information system is presented. The
software was entirely developed using VB.Net and C programming language. The application
was initially developed to support the prototype urban vehicle TUC Eco Racer and its
participation in the international competition Shell Eco Marathon.

The developed system includes software interface and real time communication with 1) a
hydrogen fuel cell module and 2) a microcontroller equipped with a number of sensors used for
data acquisition and management. ,These data/sensor readings include: 1) Hydrogen
temperature and ambient temperature, 2) Voltage and current produced by the fuel cells, 3)
pressure, concentration of hydrogen and fuel consumption, 4) Concentration of oxygen, 5)
Instantaneous velocity and acceleration of the vehicle, and 6) Inclination of the track. The
above information is recorded and displayed in a graphical user interface, enabling the driver to
access and control various functionalities and subsystems through a touch screen. At the same
time a vehicle tracking functionality is provided. Further, a sound warning system for the
pedestrians and the cyclists has developed.

This page was intentionally left blank

Melét kot avAmTTuEN GLGTHUOTOC ALAOPAGTIKNG TANPOPOPNONG
Y10 TPOTOTLTO VPPLOTKO OYMNLLO VOPOYOVOL-NAEKTPIGLOV

Metamtoyaxt Atotpipr) tov

[Tétpov K. Avaotdoiov

apetrou@isc.tuc.gr, petroutassos@gmail.com
MIIA, TToAvteyveio Kpntng, EAAGOa

E&etaotikn Emtponn

EmpArénov

Ap. Nworhaog ToovpPerovong
nikost@dpem.tuc.gr
Kabnyntg, Epyaoctmpio Evpuov Zvomudtov & Pourotiknig,
Awrpnpatikd Epyaotiplo Epyoietopnyovov.
MIIA, IToAvteyveio Kpnng, EAAGOa

Ap. Todvvng NikoAdg
jnikolo@dpem.tuc.gr
Enikovpog Kabnynmg, Epyactipro Evpvav Zvompudrov & Poprotikng.
MIIA, TToAvteyveio Kpnng, EAAGO

Ap. Evotpdriog Imavviong
efioan@dpem.tuc.gr

Enikovpog Kadnynrng, Epyastipio Brounyavikng Iapaywyng pe ™ Bonbswo H'Y (CAM).
MIIA, TToivteyveio Kpnng, EAAGO

mailto:apetrou@isc.tuc.gr,
mailto:petroutassos@gmail.com
mailto:nikost@dpem.tuc.gr
mailto:jnikolo@dpem.tuc.gr
mailto:efioan@dpem.tuc.gr

NepiAnyn

Itnv epyaocia mpoteivetal TMoAuvnuaTtikd Stadpactikd cvotnua mAnpododpnong odnyol &f’
oAokAnpou avemtuyuévo pe xpnon YAwooag VB.Net kat C. H edappoyn avamtuxdnke yla tnv
UTIOOTNPLEN TOU TTPWTOTUTIOU €PEUVNTLKOU oxnpatog moAng TUC Eco Racer kot tn GUUUETOXN
Tou oto Oebvy Soywviopd owkovopiag kauoipou Shell Eco Marathon
(http://www.tucer.tuc.gr/).

To ovotnua mou avamtuxOnke TepAapBavel Aoylopulkd Slacuvdeong Kal ETIKOWVWVIAC OE
TIPAYUATIKO XPOVO, TwV KUPEAWV KAUGIHoU USPOYOVOU HE ULKPOEAEYKTN KAl aoBntrpeg, yla
™V anoktnon kat diaxeipton mAnpodopiag, onwc: 1) Ospuokpacia kuPpedwv vdpoyovou Kot
Bepuokpacia mepBarlovtog, 2) TAaon Kal €viacn PEVUUATOC TIOU TOPAYEL TO CUOTNUA
kupeAwyv, 3) Mieon, CUYKEVIPWON KOl KOTAVAAWGON Kauoipou udpoyovou, 4) ZuykEVIpwon
ofuyovou, 5) Ityuaio TaxuTNTA Kol EMITAXUVON Tou OXNUATog, Kabwg kat tnv 6) KAlon tou
obootpwpatog. Ol avwtépw TAnpodopieg Kataypadovrtal kot amewkovilovtol oe €lSIKA
oxeblaopéva mapabupa EMIKOWVWVIOC ylo TNV QUECH EVNUEPWON TOU XpPnotn-odnyou
mapExovtag tn SuvatotnTa evepyomoinong 1 ameVEPYOMOiNoNG TWV EMLUEPOUG AELTOUPYLWYV KOl
UTIOCUOTNUATWY OTov odnyo Héow o008ovne adng. MapdAAnAa mopéxetal n duvatotnta
gvtomiopol Kol amelkoviong tng B€ong tou oxnuatog, Kabwc emiong, €xel avamtuxBel Kalt
Slaouvbebel oloTnUa NXNTKAG l80moilnong mou oToxeVEL 0TO va yivel avtlAnmer n StéAevon
TOU OXNHATOC Ao Toug teloug Kol TOUG SLKUKALOTEC.

http://www.tucer.tuc.gr/

To my parents Kostas, Pagona

To Lila

This page was intentionally left blank.

Contents

F T [o [P PP PPPPPPPPP 11
D =Tol T =) o] o OO TP PP PP PP PPPP 12
F Yol qg o) Y] 1=To Fda 0 T=T) £ PP PPPPPPPPPRt 13
CH A P T E R L ettt e ettt s e ettt e e ettt e e e eeaa s e e eeaas s e e eana s seseaas s eaesnanseaasnnssesennnseenenn 15
000 I = oo T =Y o 15
1.2 THE NAIAWAIE ...ttt e e e e e sttt et e e e e s s s bbb bttt eeeeesssasbbaeeeeeeesssannsreeees 16
1.3 Operating principle and fuNCtioNAIILYuuuuuniii s 19
1.4 THE SOFEWAIE ettt e st e s st e e s st e s aanr e e s snre e e e snneeeees 20
1.4.1 The interactive graphical userinterfaceccccciiiiii 28
1.4.2 Threads and @VENTSeii ittt ettt et e st e e s e e st e e e snree e e sareeee s 30
1.4.2. 1 MAINThrEad ...ooeeieiiieee et s 31
1.4.2.2 Data acquisition from the fUel Cell..........uueeeeeeei 31
1.4.2.3. Communication through the dc-dc CONVEItEruuuueeeei 39
1.4.2.4. Communication with the microcontroller..........cccovveiiiiiiiii e 42
1.4.2.5 Data recording funCtioN@lityueeeeeee s 46
1.4.2.6. Setting fuel’s volume fuNCtionalityeeeeeeii e 48
1.4.2.7 Vehicle tracking system functionalityccccooooooioiiiiiiicc 50

(O o N o = S O TP PRSP PPPPPP 53
2.1 Sound warning functionNalityccooeeeeeeiiiei i 53
211 o] [0 =4 r=T o] o 1S 58
F YT o< o Vo LD PP PPPPPPPPPRt 63
F YT oT<T g Vo D= TP PPPPPPPRt 74

10

Award

Part of this work and especially the Pedestrian Sound Warning Functionality helped TUCer
Team to win the first safety award at the Shell Eco Marathon 2011 that conducted in the
EuroSpeedway Lausitz track in Germany.

OFF-TRACK AWARD

ADAC Safety Award
28/05/2011

This went to the Technical University of Crete for the second year running.

Mot only were judges impressed with the way the team’s workshop was set up, but their vehicle
met, and in some aspects exceeded, safety requirements. "They have uszed their experiences
from last year and developed a unigue concept in pedestrian warning systems,” commented
one of the judges. "The whole team ethos is about developing and exhibiting safety.” Wery

close runners-up were the Warsaw University of Technology and the Technical University of
sofia.

Figure a: Snapshot of the Shell Eco Marathon site for the ADAC Safety Award 2011.

Figure b: TUCer team celebrating the winning of the ADAC Safety Award with ER11 vehicle.

11

Declaration

The work in this thesis is original and no portion of the work referred to here has been
submitted in support of an application for another degree or qualification of this or any other
university or institution of learning.

Signed: Date:

Anastasios K. Petrou

12

Acknowledgments

A pou erutpamel TO KOUUATL TWV EUXAPLOTIWY, O avtiBeon pe TNV UTOAOLTIN €pyaocia, va
vpadBOel ota EAANVIKA, OTO TPWTO EVLKO Kal o€ TLo ‘yaAapr’ yl\wooa.

Apxika Aoutdv, Ba nBsla va skdpdow TIC Olaitepeg guxaplotie¢ pou otov K. NikoAao
TooupBeAoudn, Tov eniBAEmovTa Kabnyntr, MOV UE TIG YVWOELG TOU, TS SUUPBOUAEG Tou alla
TIAVW amo OAa pe tn BEANon Kot TV mavta euxaplotn Stabeaor tou BorlOnos waote va €XOUUE
uio apoyn ouvepyacia kat OAn n epyacio va KUAROEL OLOAQ Kal o€ EUAOYO XPOVIKO SLaoTnua.

Toug emikoupoug KABNYNTEC Kal PEAN TNG €EETAOTIKAG ETULTPOMNAG K. lwavvn NIKOAO Kot K.
Evotpatio lwavvidn yla tnv apoyn cuvevvonaon Kal cuvepyacia.

Tov k. ZapPa Murtepidn, ETEM tou Epyaotnpiov Euduwv Iuotnuatwyv & POUMOTIKAG yla TV
agoyn ocuvepyaoio pog ta dU0 xpovia Tou AUOUV PEAOG TG epeuvnTIKAC opadag TUCER. H
oupBoAn Tou NTav KABOPLOTIKAG onuooiog elBIKA O TEPUTTWOEL OMOU OAa ‘Tryalvav
otpaBa’.

Tov k. MoAuxpovn Inavoudakn, urtoPridplo SL8AKTWPA Tou TURHATOG Mnxavikwy Mapaywyng &
Awoiknong kat erikedaln g epeuvntikng opadag TUCER yla tn povtooTikh eUKalpia Tou pou
£€6woe KAl TNV EUMLOTOOUVN TIOU HoU £8el&e WOTE va amoTeEAEow HEAOG TNG opadag yia dvo
xpovia, 2010 kat 2011.

Tov K. lwavvn Towapn, E€pyaotnplakd ouvepyatn Tou Alatunpatikou Epyaotnpiou
EpyaAstlopunyxoavwy kat pEAog tng opadag TUCER yia tnv agoyn cuvepyaocia.

To ‘Tuvadeldo’! kat Ppido k. Anuntplo Euotabiou ywa tnv agoyn ocuvepyacia oe OAn
SLAPKELQ TOU HETATTTUXLOKOU, VLA TIG AKPWGE ETILOTNMOVLKEG CUINTACELG HAG KAL Yla OAQ QUTA Ta
Bpadia mou evuTroaE OTO EPYAOTPLO KAl 0To ypadeio SouAevovtac.

Toug ¢idoug kat péAn tng opadag TUCER, k. @avo Tlavakn kot K. lwavvn ITpatnyo yla tnv
aygoyn cuvepyaoia kal mopea autd ta Vo XpovLa.

Mavw amd O6Aa Ba nBela va euxoploTnow TOuG Yyovel¢ pou, Kwota kat Maywva ylo T
CUMMAPACTACH, TN oTAPLEN Kal TNV evBAppuveon Toug 6Ao auto to Staotnua. Télog Ba nBsAa
va euxoplotiow tn Atda Takpakn yla tTn YuxoAoyikr umooTtneLEn Kal TNV ateAELWTN UTIOUOVN)
NG 0€ OAO AUTO TO SLACTNHA LEXPL TNV OAOKAN PWON TOU UETOMTUXLOKOU SUTAWUATOG.

Euxaplotw!

13

This page was intentionally left blank.

14

CHAPTER 1

The Platform

1.1 The concept

The idea of developing the Interactive Information Platform was born in the Intelligent Systems
& Robotics Laboratory of Technical University of Crete for the support of the TUC Eco Racer 11
(ER11) and 12 (ER12) prototype urban vehicles (http://www.tucer.tuc.gr/) and their participation
in the annual European competition Shell Eco Marathon
(http://www.shell.com/home/content/ecomarathon/). The ER11 and ER12 (Figure 1) vehicles
are prototypes hybrid hydrogen-electric vehicles and they are an achievement of the TUC Eco
Racing team which designs and constructs prototype, low consumption urban vehicles since
2008.

The concept was simple and very interesting (Figure 2): The development of a system that will
provide information to the driver and allow him to interact with the hardware devices and the
whole system in real time. For the achievement of this goal there was the need to equip the
ER11 and ER12 with a variety of several hardware devices. And for the fitting interaction and
functionality of all of these hardware components a custom software application developed from
scratch.

This chapter presents and describes in detail the platform, it's functionality, the hardware
components consists of and the custom developed software.

Figure 1.1: The ER12 prototype urban vehicle.

15

http://www.tucer.tuc.gr/
http://www.shell.com/home/content/ecomarathon/

Environment

Information

n

Settings

Driver

Figure 1.2: The concept of the Interactive Information Platform.

1.2 The hardware

The interactive information platform consists of several hardware components. These are:

e A Nexa™ Power Module from Ballard Company.

The Nexa™ power module is a small, low maintenance and fully automated fuel cell
system designed to be integrated into products for portable and back-up power markets.
The Nexa™ system provides up to 1200 watts of unregulated DC power at a nominal
output voltage of 26 VDC. Using hydrogen fuel, the Nexa™ module is extremely quiet

and produces zero harmful emissions.

e A BSZ-PG 1200 DC-DC converter.

An especially designed, for the Nexa Fuel Cell system, DC-DC converter the “BSZ-PG
1200” developed by the ISLE Company used. The “BSZ-PG 1200” has to handle the
battery-management and to control the fuel cell system and complies with requirements
such as: High efficiency also at light load, protection of battery and fuel cell,
microprocessor controlled operation for optimum use of battery and fuel cell, fully

automatic operation, compact design, lightweight construction etc.

e A VIA Epia-P830 Pico-ITX embedded board.

Single board computer with VIA Nano 1.2 GHz processor equipped with a 2GB SO-

DIMM DDR 3 and with a 16GB solid state drive.

e An Arduino microcontroller.

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-

use hardware and software.

e An AccuStar® Electronic Clinometer module.

e An ADXL203 dual-axis accelerometer from Analog Devices.

e A reed switch.

16

A 7 inches VGA TFT USB touch screen.

A pair of USB speakers.

Nexa™ Power Module

isle

Fuc Cell Power Supply BSZ-PG 1200 DC-DC converter

VIA Epia-P830 Pico-ITX embedded
board

Arduino microcontroller

AccuStar® Electronic Clinometer

ADXL203 dual-axis accelerometer

Reed switch

7 inches VGA TFT USB touch screen

USB speakers

Table 1.1: The hardware devices used in the Interactive Information Platform.

17

Figure 1.3: The set up of the hardware devices.

Figure 1.4: The computer unit and the microcontroller.

18

1.3 Operating principle and functionality

The operating principle of the platform is as follows (Figure 1.5): The software application
executed on Epia board communicates with the Nexa power module and with the arduino
microcontroller. Nexa power module provides information like fuel cell’s temperature, voltage,
current and watt, hydrogen’s cumulative consumption and pressure and purge cell voltage. The
arduino microcontroller is responsible for the sensors data acquisition and provides the vehicle’s
velocity (reed switch), vehicle’s horizontal acceleration (ADXL203 dual-axis accelerometer) and
track’s inclination (AccuStar electronic clinometer). The user has the ability to interfere, to
activate or deactivate any of the supported functionalities the interactive information platform
provides.

The communication between the hardware devices and the software is bidirectional and an
asynchronous protocol is used (see Appendix A for a brief introduction to serial communication).
That means that the interface doesn’t include a clock line. Instead, each device provides its own
clock to use as a timing reference.

Computer

o A/ Unit

Micro
controller

Figure 1.5: Flows of the Interactive Information Platform.

Communication with the microcontroller is achieved using commands in a string format but
communication with the Fuel Cell is achieved by receiving bytes in a hexadecimal format.

The functionality that the platform provides comprises:

¢ Visualization functionality of the vital information that retrieved from the FC module and
the microcontroller.

e Data recording functionality of the retrieved data for later study and processing.

e Sound warning functionality for the warning of the pedestrians and the cyclists.

19

e Vehicle tracking functionality for the visualization of the vehicles position on the track
during the race.

e Support for an energy management functionality.

e The driver has the ability to activate or deactivate any of the functionalities described
above and he is able to interact with the platform.

1.4 The Software

The software was especially studied and developed as a part of the interactive information
platform described above. It was developed from scratch in VB.Net which means it is a
Windows OS native application. It provides a friendly and functional graphical user interface
(GUI) to allow the user constantly being informed about system’s status and allow him to
interact with the hardware devices and control the whole system in general.

The user has the ability to activate or deactivate any of the supported functionalities, to set or
reset wanted variables (such as fuel volume, timer etc.), to load extra track-maps and
information files for the Vehicle Tracking functionality using the system’s settings, to load a
custom sound file for the Pedestrian Sound Warning functionality, to select the location where
the data will be recorded, to make the necessary serial port settings and several other options.

Due to the need the graphical user interface has to remain responsive, the need of multiple
calculations and the simultaneous communication with two different hardware devices the
software developed is a multithreading application. And because of the interactivity the
application offers, this software is also an event-driven application.

When the software launches a welcome window appears and it provides a brief information text
about the interactive information platform (Figure 1.6). The user is being guided through the
necessary steps to make the required settings for the hardware devices and the software itself.

- Inv-r_u Ve Juuruuruu Phtusnr o TUCEe a’

Welcome to the Interactive Information Platform for TUCer

The Interactive Information Platform forTUCer (IIP) is especially designed
for TUC Eco Racing team and Eco Racer 12 prototype urban vehicle.

It was studied and developed by Anastasios Petrou.

You will be guided through the steps necessary to make the required settings for the
hardware devices and the software itself. To get started, click Next.

‘nt@ractwe

Fformatan o

Anastasios Petrou

IIP 2012a

[Nest> | [Cancel]

Figure 1.6: The welcome window of the software.

20

By clicking “Next” the license agreement of the software will appear and the user will be
prompted to accept it (Figure 1.7).

B2 [jjicraciive Injunndion Plaidunn jur TUCEr

License Agreement

Please read the follwing license agreement carefully.

Flease scmll down to see the rest of the agreement.

IIP License Agreement

The encloged software including binaries, source code, zample programs
and documentation [hereinafter the "SOFTWARE"] iz licenzed, not sold,
topou by T aszos Petrou [hereinafter the "Developer”] for uze only

under the terms of this License, and the Developer reserves any rights not
expressly granted to pou, You own the media where the Software is

recorded or stored, but the Developer retaing ownership of the Software itzelf.

Do you acocept all the terms of the praceding License Agreement™? If you select Mo, the
Application will cloze. To start the Application, you must accept this agreement.

[< Back][Tes] [Mo

Figure 1.7: The license agreement window.

The user has to accept the license agreement by clicking “Yes” and then a window for the
software’s folder destination path will appear (Figure 1.8). This folder will be the folder where the
files of the recorded data using the data recording functionality, the images and information files
for the vehicle tracking functionality and the sound files for the pedestrian sound warning
functionality will be saved. User has the ability to select the destination path in which this folder
will be created (Figure 1.9).

B3 |;jie iciive Infunnuiion Phifunn jus TUC ey ﬂ

Destination Path

Select path where the folder will be created.

The Application will create a folder named 'lF, by default on pour Desktop.

That falder will include all the relevant software files. If this folder already exists
nothing will happen.

“ou can change the directomy the 'lIP* folder will be created on, by clicking Change.

Click Mext to continue,

Destination Path

k) CADocuments and SettingshtassoshDesklop
[< Back][Mewt »] [Cancel]

Figure 1.8: Window for setting the software’s folder path.

21

Destinatiol _, =——
Biruyze Fur Fulder Jﬂ
Select p
Please select the path the 'TIP' falder will be created.

The Applicat

That folder (& Desktop

niathing will b (5 My Documerts

-j My Cormpuker

‘-_J Iy Metwoark Places
Click Mext to 2 Recycle Bin
[t

15 TIP For tucer

I Tassos

D estination 1) thesis

\ I

[Ok,][Cancel]

[< Back][Mewt »] [Cancel]

Figure 1.9: Browsing window for choosing the software’s folder path.

You can cha

By clicking “Next” a folder containing all the relevant software files will be created in the desired
location and then a window for making the necessary serial ports settings for the hardware
devices will appear (Figure 1.10).

Then the user is able to choose between two options. By clicking “Default Settings” the user
chooses to make use of the application’s functionality where the appropriate, for each hardware
device, serial port is recognized on the fly. If the application doesn’t recognize any of the
hardware devises that are connected a warning message will appear (Figure 1.11).

B8 [;jie i Infunnaiun Phitfunn fus TUSEr

COM Ports Settings

Make the neceszam hanware settings.

The Application uses bwo senal ports to communicate especially with an Arduino microcontoller
and with a Nexa Fuel Cell System.

The Application recognizes the appropriate senal ports and makes the appropriate settings for each
hardware device on the fiyl

It"s highly recommended to keep the default Settings.

MOTE: If you don't keep the default settings you may cause a serious damage
to the hardware devices. Also the Application may work improperly.

Click Default Settings, to select and zee the default zettings or click Custom Settings
b zet pour awn settings. Then click Mext.
COM ports Settings Choice
Make your choice! [Default Settings] [Custom Settings]

Figure 1.10: Window for the serial ports settings.

22

Furt elsienee Effus a‘

Mo appropriate serial connection with the FC found!
' Mo appropriate serial connection with the microcontroller Found!
-

Although, wou can start IIP and use a pair of null modems to
connect the hardware devises to the TUCer computer afterwards.

The Application will do the rest!

Ok,] [Cancel

Figure 1.11: Warning message for the user’s information.

By clicking “Custom Settings” the user has the ability to choose by his own the serial port for
each hardware device and make the appropriate settings for it. A warning message will pop up
to ensure the custom settings choice (Figure 1.12) and then a window for choosing the serial
ports’ settings will appear (Figure 1.13).

COM Ports Settings

Make the neceszam hanware settings.

The Application uses bwo serial ports to communicate especially with an Arduine micracontraller
and with a Mexa Fuel Cell System,

The Application recoghizes the appropriate serial ports and makes the appropriate settings for each
hardwara dawics me the f

Custu GULl noris Seiints ﬂ

It's

NOT ' E Are you sUke you wank ko use custom setkings for COM porks? ge
-

lé!izl;t [Yes H Mo H Cancel]

COM portz Settings Choice
Make your choicel [Default Settings] [Cugtom Settings]

\

Figure 1.12: Warning message to ensure custom settings choise.

23

Clsiun S

Arduino’s Mexa Fuel Cell's
COM port COM port

D Port D
Baud R ate
Ciata Bits
Handzhake
Parity Bit

Stop Bit

‘ i3 | [cance |

-

Figure 1.13: Window for the custom settings of the serial ports.

If the application doesn’t obtain enough free serial ports from the system a warning message
will pop up (Figure 1.14) and then a window for choosing the serial port’s settings will appear. In
this case a radio button is provided giving to the user the ability to choose the hardware device
the serial port will belong to (Figure 1.15).

COM Ports Settings

Make the necessay hanware settings.

The Application uses bwa serial ports to communicate especially with an Arduing micracontraller
and with a Newxa Fuel Cell Sypstem,

TH Furi gedsiznes Errur ﬂiﬂch
h.

Found only one free port in the system! Choose the hardware device
It ! vou want to use and then make the port settings of vour choise!

N “fou can start the &pplication and use a wvirtual serial port cable to
connect the remaining hardware devise to the TUCer computer afterwards,
cl The Application will do the rest!

ta

[Ok,] [Cancel]

\

Figure 1.14: Warning message to inform the user that not enough serial ports found.

24

[L‘I ST ELIT
Arduino’s Nexa Fuel Cell's
COM port COM port
D Port
Baud R ate
Ciata Bits
Handzhake
Parity Bit
Stop Bit
g 32: Ez:: :z: ?rcduino ol] [Cancel |

Figure 1.15: Window for the custom settings of the serial ports. A radio button is provided
for the choice of the hardware device the serial port will belong to.

After the user makes his choice the “Next” button will be enabled and a message will appear on
the parent window in the field “Com ports Settings Choice” informs user about his choice (Figure
1.16, 1.17).

B2 [jjicraciive Injunndion Plaidunn jur TUCEr

COM Ports Settings

Make the neceszam hanware settings.

The Application uses bwo serial ports to communicate especially with an Arduino microcontoller
and with a Mexa Fuel Cell System.

The Application recognizes the appropriate serial ports and makes the appropriate settings for each
hardware device on the fiyl

It"s highly recommended to keep the default Settings.

MOTE: If you don't keep the default settings you may cause a serious damage
to the hardware devices. Also the Application may work improperly.

Click. Default Settings, to select and see the default settings or click Custom Settings
to zet pour own settings. Then click Mext.
COM portz Settings Choize
‘Qf Custom settings! [Drefault Settings] [Custom Settings]

[< Back][M et >] [Cancel]

Figure 1.16: Message appearing after user’s choice for the port settings.

25

-
B8 |1 raciive Infunnaion Plaifunn fus TUSEr d

COM Ports Settings

Make the neceszam hanware settings.

The Application uses bwo zenial ports to communicate especially with an Arduino microcontoller
and with a Mewxa Fuel Cell System.

The Application recognizes the appropriate senal ports and makes the appropriate zettings for each
hardware device on the fiyl

It"s highly recommended to keep the default Settings.

MOTE: If you don't keep the default settings you may cause a serious damage
to the hardware devices. Also the Application may work improperly.

Click Default Settings, to select and see the default zettings or click Custom Settings
ta zet pour awn settings. Then click Mest.
COM ports Settings Chaise

Mo connected ports found! [Default Settings] [Cuztom Settings]

[< Back][Mewst »] [Cancel]

Figure 1.17: Warning message appearing to inform the user.

By clicking “Next” the Interactive graphical user interface will appear (Figure 1.18).

Velocity:

Mean velos

———

Figure 1.18: The interactive graphical user interface.

N

T T I PR

(Psws)

26

Figure 1.19: The inside of the TUCer 12 vehicle with the Interactive Information Platform and the touch screen.

Figure 1.20: The first version (beta) of the interactive graphical interface.

27

1.4.1 The interactive graphical user interface

A friendly and functional interactive graphical user interface (GUI) provides the visualization
functionality of the system’s vital information and also provides the ability to the user to react
with the system. It consists of several gauges and legible indicators. In the main area of the
screen the user-driver can see the values of the measured data and in the right side of the
screen the control buttons for the user-driver are provided. Figure 1.21 shows the interactive
graphical user interface and its functionality. The description of the GUI is as follows:

1. Gauge for displaying hydrogen’s fuel volume. By double pushing it the user has the ability to
set fuel tank’s capacity.

. Gauge for displaying fuel cell stack voltage.

. Gauge for displaying vehicle’s current velocity.
. Gauge for displaying fuel cell stack current.

. Gauge for displaying fuel cell stack watt.

. Warning indicator. It appears to inform driver for a warning situation.

~N OO 0o~ WON

. Message displaying type of warning. Warning may be: Low Voltage, Low H2 volume, Low
H2 pressure, High H2 pressure or the combination of any of the previous warnings.

8. Numeric indicator for displaying the vehicle’s current velocity.

9. Numeric indicator for displaying the vehicle’s mean velocity. It displays only if the “Start Race”
button is pushed.

10. Numeric indicator for displaying the race time. It displays only if the “Start Race” button is
pushed.

11. Track map for displaying vehicle’s position during the race. It is visible only if the vehicle
tracking system is activated.

12. Label displaying the lap of the race. It is visible only if the vehicle tracking system is
activated.

13. Touch button for the activation/deactivation of the data recording functionality.

14. Touch button for the activation/deactivation of the pedestrian sound warning functionality.
15. Touch button for the activation/deactivation of the vehicle tracking functionality.

16. Touch button for the activation/deactivation of the energy management system.

17. Touch button has to be pushed when the race starts. By pushing this button indicators for
displaying the vehicle’s mean velocity and the race time become active.

18. Touch button for the termination of the application.

28

Figure 1.21: The interactive graphical user interface in detail.

29

1.4.2 Threads and events

As mentioned before the developed application is a multithreading and also an event driven application.
This subchapter introduces the threads and the events of the software application.

Start Thread

Found serial port
for communication

Make necessary

Start Thread

Found serial port
for communication

Make necessary

ir.Ef"l_E.CK E p::urt {:nr tne CO"IVEIte'-_fa'L-lqa ____________________________

Copy map and iIf Me.found conv_pert = True Then
information file for 1 ' set port's properties
1 Me.Set_Converter Port Properties()
' create new rfcd class
Me.Rfcd = New Read_FC_and_Decode (Me.converter_port)
' create new thread for FC readi ng
Dim thread_RSad As Thread = New Thread(hddressCf Ricd. na:.nl
thread | RSad. IsBackgrou-u:l = True
thread RSad.Name = “READ FC thread”

Reset to zero i thread RSad.Start()
system's sound

i - Data Logging Button pushed

......................... - Pedestrian Sound Warning Button pushed

i - Vehicle Tracking Button pushed :

;— Energy Management Button pushed i

i - Start Race Button pushed :
1
]

i - Fuel Volume Gauge pushed twice
I

i- Shut Down button pushed

.. -

Figure 1.22: Flowchart of the application’s main thread.

30

1.4.2.1 Main thread

The main thread of the application is responsible for the next processes:

e Checking for the existence of appropriate serial ports for each hardware device.

e |f appropriate serial ports were found, the necessary settings for them are carried out.

e Two threads, a thread for the communication with the microcontroller and a thread for
the communication with the fuel cell module are created.

e The relevant files (track pictures and information files) for the vehicle tracking
functionality are copied to the application’s folder.

e System’s sound volume turned off for the initialization of the pedestrian sound warning
functionality.

¢ Handling of the events.

Figure 1.22 shows the flowchart for the main thread.

1.4.2.2 Data acquisition from the fuel cell

Because of the continuous experimentation with the energy management system and the
electronics components setup of the TUC Eco Racer 12 vehicle two different ways for the
information acquisition from the fuel cell module were developed. The first way is the direct
communication with the fuel cell module and the second way is the communication through the
dc-dc converter.

1.4.2.2.1 Direct communication with the fuel cell module

A serial port is used for the communication between the fuel cell module and the computer unit.
The fuel cell provides information such as Fuel Cell Stack Temperature, Fuel Cell Stack
Voltage, Fuel Cell Stack Current, Hydrogen Pressure, Hydrogen Concentration, Cumulative
Hydrogen Consumption, Oxygen Concentration, Ambient Temperature and Purge Cell Voltage.

The serial port interface uses full duplex communication, a pair of wires for transmission, and a
pair of wires for reception. The full duplex communication allows asynchronous data
transmission without needing to handle bus contention. The differential voltage levels used by
the serial port are defined by the RS-485 standard. The features of the serial port
communication follow:

1. Communication is asynchronous at 9600 baud, with the fuel cell module sending a data
stream to the serial buffer approximately once every 200 ms.

2. SLIP (Serial Line Internet Protocol, Internet RFC 1055) is used to encode and decode the
messages sent between devices. The SLIP code uses a one-byte tag (OxCO) at the
beginning and at the end of each message. Three other special characters called "escape

31

characters,” 0xDB, 0xDC, and 0xDD are required to handle cases where 0xCO must occur in
the middle of the message.

3. The message from the fuel cell will always include a 40 bytes segment at the beginning of the
message that includes all relevant operating data. Up to an additional 100 bytes may be
added for diagnostic and fault code retrieval purposes to the end of the message. These
bytes should be considered unused bytes except for the purposes of computing the
checksum at the end of the message.

4. In addition to the varying length of the message that accounts for the diagnostic transmission,
additional bytes are required to handle the transmission of the "escape characters".

5. A check sum is computed over the entire message and displayed as the last byte at the end
of the message. The check sum is computed as a simple summation of the message bytes.
Overflow bits are discarded. The Check Sum does not include the Tags or any "escape
characters.”

6. Each character is sent containing 1 start bit, 8 data bits, no parity bit, and 1 stop bit.
7. The format for the message from the fuel cell is given below:

Tag | Status | Fail | Warning | Last Command Stack Stack Stack
Code | Bitmap Acknowledge | Temperature | Voltage | Current

H2 H2 H2 Oxygen Ambient Purge Cell
Pressure | Concentration | Cumulative | concentration | Temperature Voltage
Consumption
Additional diagnostic and fault code bytes Checksum Tag
(0 to 100 extra bytes)

8. Information in the message header and footer (the 2 Tags, the Status, the Fail Code, the
Warning Bitmap, the Last Command Acknowledge, and the Check Sum) are sent as single
bytes.

9. The fuel cell has the following Status Codes:
0x00 = Standby
0x01 = Start up
0x02 = Normal Operation
0x03 = Warning
0x04 = Normal Shut Down
0x05 = Failure Shut Down
0x06 = Non Restartable
10. The fuel cell has the following Fail Codes:
0x00 = Normal Operation
0x01 = High Fuel Cell Stack Temperature

32

0x02 = Low Fuel Cell Stack Voltage
0x03 = High Fuel Cell Stack Current
0x04 = Low Cell Voltage
0x05 = Low Fuel Pressure
0x06 = Fuel Leak Detected
0x07 = Low Oxygen Concentration
0x08 = Low Ambient Temperature
0x09 = Low Purge Cell Voltage
OxO0A = Low Battery Voltage
0x0B = Startup Time Expired
0x0C = Self Test Fault
0x0D = General Software Fault
OxOE = Spurious Interrupt Fault
11. The fuel cell has the following Warning Bitmap Codes:
0x00 = No Warnings
0x01 = High Fuel Cell Stack Temperature Warning
0x02 = Low Fuel Cell Stack Voltage Warning
0x04 = High Fuel Cell Stack Current Warning
0x08 = Low Fuel Pressure Warning
0x10 = Fuel Leak Warning
0x20 = Low Oxygen Concentration Warning
0x40 = Low Purge Cell Voltage Warning
These warning codes are designed so that more than one warning can be issued at one
time. The bitmap is a combination of the warnings present. The warning codes are

combined with "OR" logic to form a single byte. For example, to send Low Fuel Cell Stack
Voltage and Low Fuel Pressure Warnings simultaneously, the code 0x0A would be sent.

12. The Last Command Acknowledge is a repetition of the last command received.

13. The data (Fuel Cell Stack Temperature, Voltage, Current, Hydrogen Pressure, Hydrogen
Concentration, and Cumulative Hydrogen Consumption, Oxygen Concentration) are sent as
floating point numbers using the following 4 byte format as follows:

Sign (1 bit) Exponent (8 bits) Mantissa (23 bits)

The 4 bytes are arranged in the following fashion:

33

Sign (1 bit) + Exponent (LSB) +
Exponent (7 MSB’s) | Mantissa (7 MSB’s)

Mantissa (8 bits)

Mantissa (8 LSB’s)

Fourth byte Third byte

Second byte

First byte

The mantissa and the exponent are arranged so that the Most Significant Bit (MSB) is on the left
and the Least Significant Bit (LSB) is on the right. To convert this format into a decimal number,

the following formula is used:

Where:

Sign is either 1 or O
Exponent is 8 bits (0 to 255)
Mantissa is 23 bits

14. The engineering units for the data are as follows:

Data

Fuel Cell Stack Temperature
Fuel Cell Stack Voltage

Fuel Cell Stack Current
Hydrogen Pressure
Hydrogen Concentration

Cumulative Hydrogen

Consumption
Oxygen Concentration
Ambient Temperature

Purge Cell Voltage

1.4.2.2.2 Slip decoding

Unit
°C
Volt
Ampere

Bar (gauge)

ppm

Standard liters

Percent (%)
°C
Volt

In Normal Mode, the fuel cell system transmits a 40-character status message followed by a 1
byte checksum. If the status data contains the SLIP End Character OxCO or the SLIP Escape
Character 0xDB then each occurrence of these characters is encoded as a two-byte escape

34

sequence consisting of the Escape Character OxDB followed by the Escape-Esc Character
O0xDC or the Escape-End Character 0xDD, as appropriate. Hence an encoded SLIP message is
transmitted by the fuel cell as a character stream that is a minimum of 43 bytes (0xCO, 40 status
bytes, 1 byte checksum and 0xC0) and a maximum of 84 bytes. In reality, the 84-byte message
will never be observed since the values 0xC0O and 0xDB will never appear in the status message
status code, failure code, warning bit map, and acknowledgement fields.

As an aside, the fuel cell module has a Diagnostic Mode in which an extended status message
is transmitted. A receiver that knows only the structure of the basic Normal Mode message can
still correctly process a Diagnostic Mode message without knowing its complete structure since
the first 40 bytes of the diagnostic Mode message are the same as the Normal Mode message
and the last byte is always the checksum over the entire message. Thus, the receiver should
compute the checksum over any valid message it gets, regardless of length, and compare it to
the last byte in the message to determine the message's validity. Then the receiver can decide
whether to make use of the first 40 bytes or the extended message, as appropriate.

In summary, the invocation of the SLIP decode routine by the receiver should not depend on or
be triggered by the receipt of any specific of characters. Instead, the SLIP decode routine
should be called whenever a 0xCO character is received. The receive algorithm can be
implemented in one of two ways. Receive Algorithm B is a simplification of Algorithm A.

Receive Algorithm A

1. When any character arrives on the serial interface, put the character into the serial receive
buffer.

2. If the received character is 0xCO, call the SLIP decode routine, passing it all the data
currently in the receive buffer.

3. If the SLIP decode routine returns 0, then the decode operation failed. This will happen if the
receive buffer contains only the OxCO character or if there was noise on the serial line and a
byte-stuffed SLIP character was dropped from the message.

4. If the SLIP decodes routine returns a non-zero value, N, then the first N-1 characters
constitute the fuel cell status message and the Nth character is the 8-bit checksum over the
preceding N-1 characters. Compute the checksum over the first N-1 characters and compare it
to the Nth octet. If they match, then the (N-1)-char status messages has been received intact. If
not, discard the message.

Receive Algorithm B

1. When any character arrives on the serial interface, examine it to see if it is the SLIP End
Character, 0xCO. If not, put the character in the receive buffer. If so and the receive buffer is
empty, continue. Otherwise, invoke the SLIP decode routine on the contents of the receive
buffer.

2. If the SLIP decode routine returns 0, then the decode operation failed. This will only happen
if there was noise on the serial line and a byte-stuffed SLIP character was dropped from the
message.

35

3. If the SLIP decode routine returns a non-zero value, N, then the first N-1 characters constitute
the Nexa status message and the Nth character is the 8-bit checksum over the preceding N-1
characters. Compute the checksum over the first N-1 characters and compare it to the Nth
octet. If they match, then the (N-1)-char status messages has been received intact. If not,
discard the message.

Strictly speaking, a packet that conforms to the SLIP protocol need only have the trailing 0xCO.
It is standard practice, however, to prefix a SLIP-encoded message with a leading 0xCO. The
purpose of this is to 'flush' a partially-received message from the receiver's buffer, i.e. a
message whose tail (including its trailing OxC0) was corrupted or truncated due to noise on the
serial line. The leading 0xCO of the next message will cause the partially-received data of the
previous message to be flushed out of the receive buffer and be passed to the SLIP decode
routine. The SLIP decode operation may or may not succeed.

Regardless, integrity of a fuel cell’'s message is protected by its checksum. If the checksum
byte has been damaged or dropped then the checksum calculation that follows the SLIP decode
will detect the damaged message.

Note that it is crucial that a character beginning and ending with OXxCO not be passed to the SLIP
decode routine. If a OXxCO appears in the receive data passed to this routine it must only be at
the end of the buffer. The serial receive algorithm outlined above guarantees that this is the
case. Under normal circumstances where there is no noise on the serial line, the receive
interface will get both the leading 0xCO and the trailing 0xCO.

In Receive Algorithm A above, the leading 0xCO will be passed to the SLIP decode routine by
itself. Since it is preceded by no data, the SLIP decode routine will return 0, indicating that a
valid SLIP message has not been received. When the trailing OxCO is received, the SLIP-
encoded message and the trailing OxCO will be passed to the SLIP decode routine and the
message will be properly decoded. Therefore, it is typical that the SLIP decode routine will be
called twice for each status message transmitted by the fuel cell module, the first time for the
leading OxCO and the second time for the status message and the trailing 0xCO.

In Receive Algorithm B the SLIP decode routine is invoked only once per status message since
the OxCO character is not added to the receive buffer and the decode routine is called only if the
receive buffer is not empty.

Although, because the process of the constant sampling of the fuel cell's serial port is a very
laborious process for the CPU and because there is no need of knowing the diagnostic
message that may be transmitted, Receive Algorithm C was developed. According to this
algorithm the serial reading took place every two seconds.

Receive Algorithm C

1. Sleep thread for two seconds.
2. Discard any characters are on the input buffer.

3. Check the character that arrives on the input buffer. If the character is the 0xCO character,
discard it and check next character. If next character is the OxCO character, discard it and put
the characters follow into the serial receive buffer. If not, put character into serial buffer and put
the characters follow into the serial receive buffer too.

36

4. When the serial receive buffer fills up with 42 characters check the 41th character
(CheckSum byte). If this character is equal to 40 then the message has been received intact.
So, the decode method is called. If not, there was noise on the serial line or one or more
characters were dropped from the message. So, discard message and go to step 2.

5. Go to step 1.

The implementation of the Receive Algorithm C presented on Table 1.2.

' private function for reading values from FC
Private Function readFC() As Byte()

Dim readingOk As Boolean = False
Dim receivedata (42) As Byte

Try
'check if com port is open. if not open it
If converter port.IsOpen = False Then
converter port.Open ()
End If
Catch ex As Exception
End Try

' try to discard input buffer
Try
converter port.DiscardInBuffer ()
Catch ex As Exception
End Try
' Read from FC
Try
While readingOk = False
' Read byte from input buffer
Dim bt As Byte = converter port.ReadByte

If bt = &HCO Then ' Check if byte is the 0xCO byte
receivedata (0) = bt

Dim bt2 As Byte = converter port.ReadByte
' Read byte from input buffer
' Check if next byte is the 0xCO byte
If bt2 = &HCO Then
' save byte into receive buffer
receivedata (0) = bt2
While converter port.BytesToRead < 42
' do nothing until the input buffer
' fills up with 42 bytes
End While
'save the 42 bytes into the receive buffer
converter port.Read(receivedata, 1, 42)
readingOk = True
Else
' save byte into receive buffer
receivedata (l) = bt2
While converter port.BytesToRead < 41
' do nothing until the input buffer
' fills up with 41 bytes
End While
'save the 41 bytes into the receive buffer
converter port.Read(receivedata, 2, 41)
readingOk = True
End If
End If

End While
Catch ex As Exception

End Try

Return receivedata

37

End Function

Table 1.2: Receive Algorithm C.

Start thread for
communication
with FC

Is serial Port

Open serial port
for communication

Discard serial
port's input buffer

—

Read data

from FC

No

Correct =~
format of
reading data?

Split the data

v

Decode the data -

v

Raise event for the
completion of data
reading and
decoding

e

--------------------------------------- —~Event Handler

:

Tag | Status | Fail | Warning | Last Command Stack Stack Stack Hydrogen
Code | Bitmap | Acknowledge | Temperature | Voltage | Current Pressure
Hydrogen Cumulative Hydrogen Oxygen Ambient Purge Cell |!
Concentration Consumption Concentration Temperature Voltage 1
1

‘ Additional diagnostic and fault code bytes

Check Sum Tag |!
(0 to 100 extra bytes)

— Asynchronous data decoding

The data (Fuel Cell Stack Temperature, Voltage, Current, Hydrogen Pressure, Hydrogen
Coneentration, and Cumulative Hydrogen Consumption, Oxygen Concentration) are sent
as floating point numbers using the following 4 byte format as follows:

| Sign (1 bit) | Exponent (8 bits) ‘ Mantissa (23 bits) |

The 4 bytes are arranged in the following fashion:

Sign (T bit) + Exponent (LSB) + Mantissa Mantissa
Exponent (7 MSB’s) | Mantissa (7 MSB’s) | (8 bits) (8 LSB’s)
Fourth Byte Sent Third Byte Second Byte First Byte

The mantissa and the exponent are arranged so that the Most Significant Bit (MSB) is on
the left and the Least Significant Bit (LSB) is on the right. To convert this format into a
decimal number, the following formula is used:

X — (_1)Sign i (2{Exp0nem—l2'.-")) . (1 .Man[ism)

Where: Sign is either | or 0

Exponent is 8 bits (0 to 253)
Mantissa is 23 bits

- Synchronize threads for accessing resources

- Check if we need to cross threads

- Update Gauges and controls' values

- Check for warnings and display the appropriate
message

Figure 1.23: Thread for the communication with the FC.

The processes of the data acquisition from the FC and the decoding of the retrieved data are
executed in a different thread inside the application. The flow chart for this thread is shown in
Figure 1.23. The thread’s functionality for the communication and the decoding of the fuel cell is:

Checking if serial port is open. If not, open it.
Discard serial port’s input buffer.

Read data from fuel cell.

Check if received data have the right format.
Split data.

Decode data.

Raise the event for completion of the process.
Synchronize threads for accessing resources.
Check if there is a need for crossing threads.
Update Gauges and controls' values.

Check for warnings and display the appropriate message.

1.4.2.3. Communication through the dc-dc converter

A serial port is used for the communication between the dc-dc converter and the computer unit.
The dc-dc converter provides information such as Fuel Cell Stack Temperature, Fuel Cell Stack
Voltage, Fuel Cell Stack Current, Hydrogen Pressure, Hydrogen Concentration, Cumulative
Hydrogen Consumption, Oxygen Concentration, Ambient Temperature and Purge Cell Voltage

etc.

A 9-pin RS232 direct link is used. The baud rate is 38400 baud with one stop bit, none parity bit,
one start bit and 8 bit data length. The protocol for retrieving data out of dc-dc converter (Figure
1.24) is as follows. Master indicates the computer unit and slave indicates the dc-dc converter:

Master starts data transfer by sending first byte.

Slave responds within 10ms.

Master has to wait for slave reply until next byte is sent.

Master monitors time out and correctness of slave values.

After data reading the values are scaled according to their scaling factors.

39

Master Slave

> Master transmits 0x00
1. Synchronization 0x00 OxAA Slave responds with OXAA
[
Master Slave
2. Data Read: EE— Master transmits 0x01
0x01 0x01 Slave responds with 0x01
]
adr = RAM address
Master Slave
= P -
datlow Ifow Ipart Oxadr Oxad Master transmits Oxadr
of value nElele Slave responds with Oxadr
]
dathigh = high part
of value Master Slave
EEEE——
0x05 Oxdatlow Master transmits 0x05
¢ Slave responds with Oxdatlow
Master Slave
——> .
0x05 . Master transmits 0x05
X Oxdathigh | gjaye responds with Oxdathigh
]

3. Gottostep 1

Figure 1.24: Communication protocol for the dc-dc converter.

Table 1.3 shows the addresses and the scaling factors of the dc-dc converter and the code
implementation for the communication with the dc-dc converter is shown on Table 1.4.

Adress Variable Explanation Scaling Factor
Ox3F nexa_warnings Warnings from Nexa
0x3F.0 stack_temp_warn
Ox3F.1 stack_volt_warn
Ox3F.2 stack_current_warn
0x3F.3 fuel press warn
Ox3F.4 fuel leak_warn
Ox3F.5 low_ox_conc_warn
0x3F.6 low purge cell volt warn
0x40 dcdc_error_flags
0x40.0 Gesamterror Summation error bit
0x40.1 Temp_error Over temperature
0x40.2 V_bat_min_error Battery under voltage
0x40.3 V_bat_max_error Battery over voltage
0x40.4 V_nexa_min_error Nexa under voltage
0x40.5 V_nexa_max_error Nexa over voltage
0x40.6 |_max_error Over current

40

0x41.7 Unit_12V 1 =12 Volt-unit
0 =24 Volt- unit
0x42 V_Nexa Nexa output voltage 210 =60 V
0x44 |_Battery Battery current 210=71A
(Unit_12Vv=0);
210=142 A
(Unit_12Vv=1)
0x46 V_Battery Battery voltage 210=36,71V
(! Scale according to bit (Unit_12Vv=0);
"Unit_12V") 210 =18,355V
(Unit_12Vv=1)
0x49 Regime 0 - Start
1 - Standby
2 — Power_Start
3 — Mainloading_Current
4 - Mainloading _Voltage
5 — Timeloading
6 — Shut down
7 - Error
Ox4A V_ch_min Minimum battery voltage 210=36,71V
(Unit_12Vv=0);
210 =18,355V
(Unit_12V=1)
0x4C V_ch_max Maximum battery voltage 210=36,71V
(Unit_12Vv=0);
210 =18,355V
(Unit_12Vv=1)
Ox4E T reload Reload time 210 = 85,25
0x50 |_ch_max Maximum battery current 210=71A
(Unit_12Vv=0);
210=142 A
(Unit_12Vv=1)
0x52 |_change Current for changing to phase 210=71A
reload (Unit_12Vv=0);
210=142 A
(Unit_12Vv=1)
0xA0-0xC4 nexa_rs485_buffer[40]
0xA0 Status
OxAl Failcode
OxA2 Warning Bitmap
0xA3 Last Command Acknowl.
OxA4 Stack Temperature
OxA8 Stack Voltage

41

OxAC Stack Current
0xBO0 Hydrogen Pressure
0xB4 Hydrogen Concentration
0xB8 Cumul. Hydrogen
Consumption
0xBC Oxygen Concentration
0xCO0 Ambient Temperature
0xC4 Purge Cell Voltage

Table 1.3: Addresses and scaling factors of the dc-dc converter

Dim sync () As Byte = {&HO, &H1}
Dim H2pressureadr () As Byte = {&HB8, &HBA}

Dim answer As Byte() = {&HO}

Dim five As Byte() = {&H5}

Dim pressure() As Byte = {&HO, &HO, &HO, &HO}
L}

l';.l';.l';.llllllllllllll SynChrOnlzathn

SerialPortl.Write(sync, 0, 1)
SerialPortl.Read (answer, 0, 1)
SerialPortl.Write(sync, 1, 1)
SerialPortl.Read (answer, 0, 1)

lllllllllllllllllllllReadtwofirstbytes
SerialPortl.Write (H2pressureadr, 0, 1)
SerialPortl.Read (answer, 0, 1)
SerialPortl.Write (five, 0, 1)
SerialPortl.Read (pressure, 3, 1)
SerialPortl.Write (five, 0, 1)

SerialPortl.Read (pressure, 2, 1)
L}

Table 1.4: Part of the implemented code for the communication with the dc-dc converter.

1.4.2.4. Communication with the microcontroller

A serial port is used for the communication between the microcontroller and the computer unit.
The microcontroller provides information such as track inclination, vehicle’s current velocity,
vehicle’s current acceleration and the vehicle’s traveled distance.

The serial port interface uses full duplex communication, a pair of wires for transmission, and a
pair of wires for reception. The full duplex communication allows asynchronous data
transmission without needing to handle bus contention at 9600 baud rate. For the
communication between the microcontroller and the software application a custom code was
developed at a microcontroller level (Table 1.5).

// 07/05/2012
// Petrou Tassos
// v.1.3

42

const int accelerationPin = 1; // pin for accelerometer

const int inclinationPin = 2; // pin for inclinometer

int accelerationValue ; // x-axis acceleration value

int inclinationValue ; // road inclination value

double distance ; // vehicle's traveled distance

double velocity ; // vehicle's velocity

unsigned long oldtime ; // time for the completion of the last wheel roatation
unsigned int totalRotationCounter ; // number of wheel rotations

boolean oneRotation ;

void setup ()
{
Serial.begin(9600) ;
Serial.flush();
attachInterrupt (0,rotation,RISING);
velocity = 0;

oldtime = 0;

totalRotationCounter = 0;
distance = 0;
oneRotation = false ;

void loop ()
{

int serialRead = 0;
accelerationValue = analogRead (accelerationPin);
inclinationValue = analogRead(inclinationPin);

if (oneRotation)

{

velocity (2 * 3.14 * 0.27 * 3.6 * 1000 / (millis()-oldtime));
distance = 2 * 3.14 * 0.27 * totalRotationCounter;

oldtime = millis();

oneRotation = false;

}

// if no wheel rotation has completed in 4 seconds then set velocity equal to zero

if ((millis() - oldtime) > 4000) {
velocity = 0 ;

}

if (Serial.available() > 0)

{

// deduct ascii value of '0O' to find numeric value of sent number
serialRead = Serial.read() - '0'

if (serialRead == 0) // Reset totalRotationCounter

totalRotationCounter = 0;

distance = 0;

Serial.println(distance); // send distance
Serial.flush();

}
if (serialRead == 1) // send acceleration value

43

Serial.println(accelerationValue) ;
Serial.flush();
}
else if (serialRead == 2) // send inclination value
{
Serial.println(inclinationValue);
Serial.flush();
}
else if (serialRead == 3) // send velocity
{
Serial.println(velocity,2);
Serial.flush();
}
else if (serialRead == 4)
{
Serial.println(distance,2); // send distance

Serial.flush();

else

}
void rotation ()
{
totalRotationCounter++;

oneRotation = true;

Table 1.5: Implemented code at the microcontroller level.

The process for the communication between the microcontroller and the software application is
executed in a different thread. The thread’s functionality is as follows:

e Checking if serial port is open. If not, then thread opens it.

e Discard serial port’s input buffer.

e Synchronize threads. It sends to the serial port the appropriate commands for reading
data.

¢ Reading the microcontroller’s response.

e Synchronize threads for accessing variables.

e Checking if Pedestrian Sound Warning System is activated.

e If PSWS is activated a thread for the PSWS functionality is created.

e Checks if there is a need to cross threads, update gauges and controls’ values.

44

EsyncLucx arduine_Read_Lock
' try to open plc port if it is closed

Try
If Me.pic_port.IsOpen = False Then
Ma.pic_part.Open iy
End If

Me.pic port.Encoding = Systm.Tlx:.E-ncnd.ing;Dq!nulu:

Synchronize threads,
send to the serial port

pic port.DiscardIinBuifer()
pic_port.Write("1")
1 accelread = pii;:_puzt.Rmad.Linn (]

Read

Synchronize threads

Start thread for

Check if we need to

Figure 1.25: Flowchart for the communication with the microcontroller.

45

1.4.2.5 Data recording functionality

The interactive graphical user interface provides the ability to the user-driver to activate-
deactivate the data recording functionality, by touching the corresponding button. This
functionality is executed by the software application in a different thread. Figure 1.26 shows the
flowchart for the data logging functionality push button event and for the functionality thread.

Data Logging
System button
pushed event

Is DLS
activated?

Has a data file
already been
created?

Synchronize threads
and write to the

" data file a message

for DLS deactivation

Deactivate DLS
(terminate thread)

+ Create a data file

g

ine + _
nment.NewLine + _|

Synchronize threads
and write to the
data file a message
for DLS activation

;

Start thread for
Data logging
System

Synchronize threads

for accessing

resources and
variables

r

/
Synchronize threads
for accessing data
file and =
writing data

|
/

Write data to -
text file

Figure 1.26: Flowchart for the data logging thread.

46

When the user-driver pushes the data logging button the sequence of the processes that
executed is as follows:

e Checking for the state of the data recording functionality. If data recording is activated
then terminate thread. If not, continue.

e Checking for the existence of a data recording file. If a data file hasn’t already been
created, then the thread creates one.

e Synchronize threads. Write a DLS activation message to the data file.

e Start thread for the data recording functionality.

The code for the data logging functionality push button event is shown in Table 1.6.
The functionality of the data recording thread is as follows:

e Synchronize threads for accessing resources and variables.
e Synchronize threads for accessing and writing to the data file.
e Write data to the file.

' Click event for data logging system
Private Sub dls Button Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles dls Button.Click

' Activate dls

If dls = "off" Then
Me.dls = "on"
Me.dls Button.BackgroundImage = My.Resources.dlsaZ2
Me.dls Button.Text = "Data Logging" + Environment.NewLine + _

"System" + Environment.NewLine + "Activated"

' Check if data file is not already created
If Me.dlsfilename Is Nothing Then
' Data file is not created. It will be now!

' Current date and time

Dim datetime As String = Format (Now, "dd-MM-yyyy h,mm,ss")

' Set name of file that keeps the recording data

Me.dlsfilename = Me.datafolderpath + "\data (" + datetime +
")" + ".log"

' Try

' Create file that keeps the recording data
Me.dlsfile = New System.IO.StreamWriter (Me.dlsfilename)
' Write the first line to the data file
Me.dlsfile.Write ("Time" & vbTab + "Distance" & vbTab & vbTab + "Velocity"
& vbTab & vbTab + "Acceleration" & vbTab + "Inclination" _
& vbTab + "FC Temperature" & vbTab + "FC Voltage" & vbTab +
"FC_Current" _
& vbTab + "Watt" & vbTab + "H2 Pressure" & vbTab +
"H2 Cumulative Consumption"
& vbTab + "Purge Cell Voltage" + vbNewLine)
Me.dlsfile.Flush ()

'Catch ex As Exception
'End Try

Else
' Data file is already created. Do nothing

End If

Try
' If dls has already activated and the user deactivate it
' a seperating line will be added in the file
SyncLock Write Lock

47

Me.dlsfile.Write (Environment.NewLine +

" "
+

" + Environment.NewLine + _

Data Logging System Activated" + Environment.NewLine +

" "
Me.dlsfile.Flush ()
End SyncLock
Catch ex As Exception

End Try

'Activate timer for dls
Me.Write to text Timer.Enabled = True

' Deactivate dls

ElseIf dls = "on" Then
'Deactivate timer for dls
Me.Write to text Timer.Enabled = False

Try
' If dls has already activated and the user deactivate it
' a seperating line will be added in the file
SyncLock Write Lock
Me.dlsfile.Write (Environment.NewLine +

" [
" + Environment.NewLine + -
Data Logging System Deactivated" + Environment.NewLine + _

" "
Me.dlsfile.Flush ()
End SyncLock
Catch ex As Exception

End Try

'Deactivate dls

Me.dls = "off"
Me.dls Button.BackgroundImage = My.Resources.dls
Me.dls Button.Text = "Data Logging" + Environment.NewLine +

"System" + Environment.NewLine + "Deactivated"

End If

End Sub

Table 1.6: Implemented code for the data logging functionality.

1.4.2.6. Setting fuel’s volume functionality

The interactive graphical user interface provides the ability to the user- driver to set the fuel
tank’s maximum volume, by touching twice the gauge displaying the fuel’'s volume. This

48

functionality is provided because there is no other way for the application to know the fuel’s
volume at the time that application starts. Figure 1.27 shows the flowchart for the fuel gauge
double push button event.

Fuel Volume
Gauge pushed
twice event

e

Cancel

Open form for
setting fuel volume

e
o
H &

User sets
fuel volume

Cancel
Button

Button

Close form

Button

Is value
appropriate?

Set fuel's tank
capacity
(max value)

Figure 1.27: Flowchart for the fuel gauge double push event.

49

1.4.2.7 Vehicle tracking system functionality

The interactive graphical user interface also provides the ability to the user- driver to activate-
deactivate the vehicle tracking functionality by touching the corresponding button. The
functionality of the vehicle tracking is executed in a different thread in the application also.
Figure 1.28 shows the flowchart for the vehicle tracking functionality push button event and
Table 1.8 shows the code that updates vehicle’s position.

activated?

Deactivate VTS,
hide track map
(terminate thread)

Open form for
selecting track

(EuroSpeedway

Rotterdam™

Highlight selected
track

EuroSpeedway

Cancel

|-

Show confirmation
message for the
track deletion

Open form for
loading track's
image and
information file

L

Load track map image fle

A Tk oo (I .
\

Load information fi

Close select track
form and start thread
for VTS. Show track
map on the GUI

e
AN irfo fic rot selocted [se=——| Cancel
\—

Close select track
form

0
D‘

Figure 1.28: Flowchart for the VTS button pushed event.

50

' Routine to show vehicles position
Private Sub CalculatePosition ()
' show dot image and give it the start mark coordinates
Dim position As Integer = 0
Dim dist As Double = 0
Dim tracklength As Integer = 0
Dim lapno As Integer
' synchronize length for getting track's length
SyncLock coordinate_ Lock
tracklength = coordinate (10, 0)
End SyncLock

SyncLock lap_ Lock
lapno = Me.lap
End SyncLock

SyncLock distance Lock

' calculate distance

dist = Me.distance - ((lapno - 1) * tracklength)
End SyncLock

SyncLock coordinate Lock

For k As Integer = 0 To 9 ' i have 11 elements into array
If dist > coordinate(k, 0) And dist < coordinate(k + 1, 0)
Then
position = k
Me.update position(coordinate(k, 1), coordinate(k, 2))
End If
Next

If dist > tracklength Then
SyncLock lap Lock
Me.lap = Me.lap + 1
'Me.update position(coordinate (0, 1), coordinate(0, 2))
End SyncLock
Me.update position(coordinate (0, 1), coordinate (0, 2))
End If

End SyncLock
End Sub

L}
' Routine to update vehicles position when vts is activated
L}
Private Sub update position(ByVal xcoor As Integer,
ByVal ycoor As Integer)
' See if we need to cross threads
' If so, have the UI thread call this method for us
If Me.InvokeRequired Then
Try
Me.Invoke (New update position delegate (AddressOf update position),
New Object () {xcoor, ycoor})

Catch ex As Exception

End Try
Else
Me.GaugeContainer2.Images ("Image2") .Visible = True
Me.GaugeContainer2.Images ("Image2") .Location.X = xcoor
Me.GaugeContainer2.Images ("Image2") .Location.Y = ycoor
End If

End Sub

Table 1.7: Implemented code for the updating of the vehicle’s position.

51

This page was intentionally left blank.

52

CHAPTER 2

The Sound Warning System

2.1 Sound warning functionality

The pedestrian sound warning functionality is an innovative idea that was born in Intelligent
Systems & Robotics Laboratory (IS&RL) of Technical University of Crete considering the
European and international rules of adding sounds in electric cars for the warning of the
pedestrians and the bicyclists. The specific functionality helped Technical University of Crete
Eco Racing team to win the ADAC safety award in the annual competition Shell Eco Marathon
the year 2011.

The interactive graphical user interface provides the ability to the user- driver to activate-
deactivate the sound warning functionality, by touching the corresponding button. This
functionality is also executed by the software application in a different thread. Figure 2.1 shows
the flowchart for the push button event and Figure 2.2 shows the flowchart for the thread that
executes the sound warning functionality.

53

Pedestrian Sound
Warning System
button pushed
event

Deactivate PSWS,
stop sound
(terminate thread)

Is PSWS
activated?

Has user set a No
custom engine
sound?
Yes
Activate PSWS Activate PSWS
and start playing and start playing
user's added sound default sound on the
on the background background
'Search for added custom sound
If My.Computer.FileSystem.FileExists (socundfolderpath + "‘engine.wav")
Then
Try
4 'Piay custom sound
"""" - My.Computer.Audio.Play(soundfolderpath + "\engine.wav", _
AudioPlayMode.BackgroundLoop)
Catch ex As Exception
End Try

Figure 2.1: Flowchart for the PSWS button pushed event.

When the user-driver pushes the pedestrian sound warning button the sequence of the
processes that executed is as follows:

e Checking for the state of the sound warning functionality. If sound warning is activated
then terminate thread. If not, continue.

e Checking for the existence of a custom added sound.

e Start thread for the sound warning functionality playing the appropriate sound.

54

Call routine to

3 .",?. J)-‘

Routine for sound volume changing if psws is activated

‘See if we need to cross threads

'IZ so, have the UI thread call this method for us

a
.
Frivate Sub addsubsound(ByVal diff As long)
I
|
i If Me.InvokeRegquired Then
i Me.Invoke (New addsubsound delegate (AdcdressOf Me.addsubsound), _
Y i New Cbject() {diff})
i | Else
} i I2 dif2 < 0 Then
i | For i As Integer = 1 To -diff
! i
;’ ' SendMessagew (Me.Handle, WM_APPCOMMAND, _
.! Me.Handle, New IntPtr (APPCCMMAND_VOLUME_DOWN))

Next
Elself diff > 0 Then

For { As Integer = 1 To difZ

SendMessagei (Me.Handle, WM_APPCOMMAND, _

Me.Handle, New IntPrr (APPCOMMAND VOLUME UP))
Next
End IS
Engd I2
ad_Sub

Figure 2.2: Flowchart for the thread that executes the sound warning functionality.

Private Sub
Dim
Dim
Dim

check psws system(ByVal vel As Double)

psws_check As String = "O0"
subb As Double = 0
check previous psws velocity As Double = 0

SyncLock psws_Lock

End

If psws check =

psws_check = Me.psws
SyncLock

"on" Then

'SyncLock velocity Lock

check previous psws velocity =
Me.psws_previous velocity = vel
'End SyncLock

Me.psws_previous velocity

subb = Math.Round(vel - check previous psws velocity)

If subb > 0 Then

55

End
End Sub

Dim thread sound As Thread = New Thread (AddressOf Me.addsubsound)
thread sound.IsBackground = True

thread sound.Name = "Change sound volume thread"

thread sound.Start (subb)

ElseIf subb < 0 And check previous_psws_velocity > 25 Then

If vel <= 25 Then
Dim thread sound As Thread = New Thread (AddressOf Me.addsubsound)
thread sound.IsBackground = True
thread sound.Name = "Change sound volume thread"
thread sound.Start (vel - 25)

Else
' do nothing

End If

ElseIf subb < 0 And check previous psws_velocity <= 25 Then
Dim thread sound As Thread = New Thread (AddressOf Me.addsubsound)
thread_sound.IsBackground = True
thread_sound.Name = "Change sound volume thread"
thread sound.Start (subb)

End If
If

Table2.1: Implemented code for the start of PSWS thread.

The software first samples the odometer response through the microcontroller and then
computes the vehicle’s current velocity. Then according to the vehicle’s current velocity the
software increase or decrease the volume of the sound that produced by the speakers.

56

This page was intentionally left blank.

57

Bibliography

[1] Michael Halvorson, “Microsoft Visual Basic 2008 Step by Step”, Microsoft.

[2] James Foxal, “Teach Yourself Visual Basic 2008 in 24 Hours: Complete Starter Kit”, Sams.
[3] Bill Sempf, “Visual Basic 2008 For Dummies”, For Dummies.

[4] Evangelos Petroutsos, “Mastering Microsoft Visual Basic 2008”, Wiley.

[5] Christian Gross, “Beginning VB 2008, From Novice to Professional”, Apress.

[6] StudyVB.com, “Visual Basic 2008 9.0 .NET Ebook “, Online Book. Available at:
http://www.studyvb.com/.

[7] Home & Learn, “Visual Basic .NET Programming for Beginners”, Online book. Available at:
http://www.homeandlearn.co.uk/net/vbNet.html

[8] Jan Axelson, “Serial Port Complete 2" Edition”, Lakeview Research.

[9] Joe Pardue, “Virtual Serial Port Cookbook”, Smiley Micros.

[10] Innovatik.dk, “Serial Com Port Communication”, Online Book. Available at:
http://www.innovatic.dk/knowledg/Serial COM/Serial COM.htm.

[11] Alan Dennis, “.NET Multithreading” Manning Publications Co.

[12] Jim Beveridge, Robert Wiener, “Multithreading Applications in Win 32”, Addison-Wesley.
[13] Joe Duffy, “Concurrent Programming on Windows”, Addison-Wesley.

[14] Gaston Hillar, “C# 2008 and 2005 Threaded Programming: Beginner’s Guide”, Packt.

[15] Tobin Titus , Fabio Claudio Ferracchiati, Srinivasa Sivakumar , Kourosh Ardestani, Tejaswi
Redkar , Sandra Gopikrishna, “Visual Basic .NET Threading Handbook”, Wrox.

[16] Joseph Albahari, “Threading in C#’, Online Book, Available at:
http://www.albahari.com/threading/.

[17] ooPIC.com, “o0oPIC Manual & Technical Specifications”, www.oopic.com.

[18] Massimo Banzi, “Getting Started with Arduino”, O’Reilly.

[19] Simon Monk, “30 Arduino Projects for the Evil Genius”, Mc Graw Hill.

[20] Michael McRoberts, “Beginning Arduino”, Apress.

[21] Arduino Main Site, www.arduino.cc

[22] Heliocentris, “Nexa™ Power Module User’s Manual”. Available at:
http://faculty.stut.edu.tw/~wcchang/MAN5100078.pdf

[23] Future Electronics, “AccuStar® Electronic Clinometer Data Sheet”. Available at:
http://www1.futureelectronics.com/doc/MEASUREMENT%20SPECIALTIES/02110102-000.pdf
[24] Analog Devices, “ADXL203 dual-axis accelerometer Data Sheet”. Available at:
http://www.analog.com/static/imported-files/data sheets/ADXL103 203.pdf

[25] Isle, “Fuel Cell Converter BSZ-PG 1200 Technical Description”. Available at: http://www.isle-
ilmenau.de/english/gmbh/produkte/bsz/Te De BSZ PG 02a.pdf

[26] Via Embedded, “VIA EPIA-P700-10 Pico-ITX Data Sheet”. Available at:
http://www.viaembedded.com/en/products/boards/690/1/EPIA-P700%20%28E0L%29.html
[27] Via Embedded, “VIA EPIA-P830 Pico-ITX Data Sheet”. Available At:
http://www.viaembedded.com/en/products/boards/1310/1/EPIA-P830.html|

[28] CARTFT, “CTF700 V2 - VGA 7" TFT - Touchscreen USB Data Sheet”. Available at:
http://www.cartft.com/catalog/il/541

[29] ARC Electronics, RS232 Data Interface. “A Tutorial on Data Interface and cables”. Available
at: http://www.arcelect.com/rs232.htm

[30] Volunteers and Editors at Wikibooks.org, “Wikibooks Serial Programming”. Available at:
http://upload.wikimedia.org/wikipedia/commons/1/1f/Serial Programming.pdf.

58

http://www.studyvb.com/
http://www.homeandlearn.co.uk/net/vbNet.html
http://www.innovatic.dk/knowledg/SerialCOM/SerialCOM.htm
http://www.albahari.com/threading/
http://www.oopic.com/
http://www.arduino.cc/
http://faculty.stut.edu.tw/~wcchang/MAN5100078.pdf
http://www1.futureelectronics.com/doc/MEASUREMENT%20SPECIALTIES/02110102-000.pdf
http://www.analog.com/static/imported-files/data_sheets/ADXL103_203.pdf
http://www.isle-ilmenau.de/english/gmbh/produkte/bsz/Te_De_BSZ_PG_02a.pdf
http://www.isle-ilmenau.de/english/gmbh/produkte/bsz/Te_De_BSZ_PG_02a.pdf
http://www.viaembedded.com/en/products/boards/690/1/EPIA-P700%20%28EOL%29.html
http://www.viaembedded.com/en/products/boards/1310/1/EPIA-P830.html
http://www.cartft.com/catalog/il/541
http://www.arcelect.com/rs232.htm
http://upload.wikimedia.org/wikipedia/commons/1/1f/Serial_Programming.pdf

[31] Wikibooks, “Serial Programming/RS-232 Connections”. Online book. Available at:
http://en.wikibooks.org/wiki/Serial Programming:RS-232 Connections.

[32] Jeremy Blum, “Serial Communication and Processing: Tutorial 6 for Arduino”. Available at:

http://www.jeremyblum.com/2011/02/07/arduino-tutorial-6-serial-communication-and-
processing/.

[33] Society of Robots, “Microcontroller Uart Tutorial”. Available at:
http://www.societyofrobots.com/microcontroller uart.shtml.

[34] Microcontroller Board, “Pic Serial Communication Tutorial”. Available at:
http://www.microcontrollerboard.com/pic_serial communication.html.

[35] Wikipedia, “Serial Communication”, Online Article. Available at:
http://en.wikipedia.org/wiki/Serial communication.

[36] Wikipedia, “Serial Port”, Online Article. Available at:
http://en.wikipedia.org/wiki/Serial port#Pinouts.

[37] Wikipedia, “Serial Cable”, Online Article. Available at:
http://en.wikipedia.org/wiki/Serial cable.

[38] Wikipedia, “RS-232”, Online Article. Available at: http://en.wikipedia.org/wiki/RS-232.
[39] Tronixstuff, “Arduino timing methods”, Online Tutorial. Available at:
http://tronixstuff.wordpress.com/2011/06/22/tutorial-arduino-timing-methods-with-millis/.
[40] Gonium, “Handling External Interrupts with Arduino”, Online Article. Available at:
http://gonium.net/md/2006/12/20/handling-external-interrupts-with-arduino/.

[41] MSDN, “Memory Leak Detection and Isolation”. Available at:
http://msdn.microsoft.com/en-us/library/x98tx3cf%28v=vs.90%29.aspx.

[42] Wikibooks, “Visual Basic/Effective Programming”, Online Book. Available at:
http://en.wikibooks.org/wiki/Visual Basic/Effective Programming.

[43] Adam Wehmann, “Visual Basic Array Tutorial”, Online book. Available at:
http://patorjk.com/programming/tutorials/vbarrays.htm.

[44] Dundas, “Dundas gauge for Windows Forms”, Online Documentation. Available at:
http://support2.dundas.com/OnlineDocumentation/WinGauge2005/webframe.html.
[45] MSDN, “Managed threading Best Practices”, Online Article. Available at:
http://msdn.microsoft.com/en-us/library/1c9txz50%28v=vs.90%29.aspx.

[46] MSDN, “How to: Make Thread-Safe Calls to Windows Forms Controls”, Online Article.
Available at: http://msdn.microsoft.com/en-us/library/ms171728%28v=vs.90%29.aspx.
[47] MSDN, “How to: Declare Events That Avoid Blocking”, Online Article. Available at:
http://msdn.microsoft.com/en-us/library/wf33s4w7%28v=vs.90%29.aspx.

[48] MSDN, “Thread Synchronization (C# and Visual Basic)”, Online Article. Available at:
http://msdn.microsoft.com/en-us/library/ms173179%28v=vs.100%29.aspx#Y247.

[49] MSDN, “Managed and Unmanaged Threading”, Online Article. Available at:
http://msdn.microsoft.com/en-us/library/5s8ee185%28v=vs.90%29.aspx.

[50] Tedd Pattison, “Thread Synchronization”, MSDN Magazine Article. Available at:
http://msdn.microsoft.com/en-us/magazine/cc163929.aspx.

[51] MSDN, “Thread Synchronization”, Online Article. Available at:
http://msdn.microsoft.com/en-us/library/dsw9f9ts%28v=vs.90%29.aspx.

[52] Fabrice Marguerie, “How to detect and avoid memory and resources leaks in .NET

applications”, Online Article. Available at: http://madgeek.com/Articles/Leaks/Leaks.en.html.

[53] lan Griffith, “Doing Work Without Threads”, Online article. Available at:
http://www.interact-sw.co.uk/iangblog/2004/09/23/threadless.

59

http://en.wikibooks.org/wiki/Serial_Programming:RS-232_Connections
http://www.jeremyblum.com/2011/02/07/arduino-tutorial-6-serial-communication-and-processing/
http://www.jeremyblum.com/2011/02/07/arduino-tutorial-6-serial-communication-and-processing/
http://www.societyofrobots.com/microcontroller_uart.shtml
http://www.microcontrollerboard.com/pic_serial_communication.html
http://en.wikipedia.org/wiki/Serial_communication
http://en.wikipedia.org/wiki/Serial_port#Pinouts
http://en.wikipedia.org/wiki/Serial_cable
http://en.wikipedia.org/wiki/RS-232
http://tronixstuff.wordpress.com/2011/06/22/tutorial-arduino-timing-methods-with-millis/
http://gonium.net/md/2006/12/20/handling-external-interrupts-with-arduino/
http://msdn.microsoft.com/en-us/library/x98tx3cf%28v=vs.90%29.aspx
http://en.wikibooks.org/wiki/Visual_Basic/Effective_Programming
http://patorjk.com/programming/tutorials/vbarrays.htm
http://support2.dundas.com/OnlineDocumentation/WinGauge2005/webframe.html
http://msdn.microsoft.com/en-us/library/1c9txz50%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms171728%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/library/wf33s4w7%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms173179%28v=vs.100%29.aspx#Y247
http://msdn.microsoft.com/en-us/library/5s8ee185%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/magazine/cc163929.aspx
http://msdn.microsoft.com/en-us/library/dsw9f9ts%28v=vs.90%29.aspx
http://madgeek.com/Articles/Leaks/Leaks.en.html
http://www.interact-sw.co.uk/iangblog/2004/09/23/threadless

[54] lan Griffith, “How To Stop a Thread in .NET (and Why Thread.Abort is Evil)”, Online Article.
Available at: http://www.interact-sw.co.uk/iangblog/2004/11/12/cancellation.

[55] Diranieh.com, “Multithreading Basics”, Online Article. Available at:
http://www.diranieh.com/NETThreading/MultithreadingBasics.htm.

[56] Dan Mabbutt, “Disposing Objects”, Online Article. Available at:
http://visualbasic.about.com/od/usingvbnet/a/disposeobj.htm.

[57] Dan Mabbutt, “Coding New Instances of Objects”, Online Article. Available at:
http://visualbasic.about.com/od/usingvbnet/a/newinst.htm.

[58]Ed Ball, “Thread Safe Disposable Objects”, Online Article. Available at:
http://code.logos.com/blog/2008/03/threadsafe disposable objects.html.

[59] Juval Lowy, “Asynchronous Calls in .Net”, Online Article. Available at: http://www.code-
magazine.com/Article.aspx?quickid=0305071.

[60] Suprotim Agarwal, “Programmatically Increase, Decrease and Mute the Volume”, Online
Article. Available at: http://www.dotnetcurry.com/ShowArticle.aspx?1D=431.

[61] John Spano, “Delegates in .NET”, Online Article. Available at:
http://www.developerfusion.com/article/5251/delegates-in-vbnet/.

[62] MSDN,” Interoperating with Unmanaged Code”, Online Article. Available at:
http://msdn.microsoft.com/en-us/library/sd10k43k%28v=VS.85%29.aspx.

[63] MSDN, “An Overview of Managed/Unmanaged Code Interoperability”. Available at:
http://msdn.microsoft.com/en-us/library/ms973872.aspx.

[64] MSDN, “How to: Declare Events That Conserve Memory Use”. Available at:
http://msdn.microsoft.com/en-us/library/yt1k2w4e%28v=vs.90%29.aspx.

[65] Ted Pattison, “Asynchronous Method Execution Using Delegates”, MSDN Magazine Article.
Available at: http://msdn.microsoft.com/en-us/magazine/cc164036.aspx.

[66] Richard Grimes,” .NET Delegates: Making Asynchronous Method Calls in the .NET
Environment”, MSDN Magazine Article. Available at: http://msdn.microsoft.com/en-
us/magazine/cc301332.aspx.

[67] Ted Pattison, “Asynchronous Method Execution Using Delegates”, MSDN Magazine Article.
Available at: http://msdn.microsoft.com/el-gr/magazine/cc164036%28en-us%29.aspx.

[68] MSDN, ”Processes, Threads, and Apartments”, Online Article. Available at:
http://msdn.microsoft.com/en-us/library/ms693344.

[69] Ted Pattison, “Creating and Managing Secondary Threads”, MSDN Magazine Article.
Available at: http://msdn.microsoft.com/en-us/magazine/cc188722.aspx.

[70] David Carmona, “Programming the Thread Pool in the .NET Framework”, MSDN Online
Article. Available at: http://msdn.microsoft.com/en-us/library/ms973903.aspx.

[71] Microsoft Corporation, “Developing Applications for an Auto PC”, MSDN Online Article.
Available at: http://msdn.microsoft.com/en-us/library/ms834174.aspx#apcapps topic2.

[72] Robert Burns, “Multithreaded Programming with Visual Basic .NET”, MSDN Online Article.
Availablea at: http://msdn.microsoft.com/en-us/library/aa289496%28v=vs.71%29.aspx.

[73] Alex Calvo,” Comparing the Timer Classes in the .NET Framework Class Library”, MSDN
Magazine Online Article. Available at: http://msdn.microsoft.com/en-
us/magazine/cc164015.aspx.

[74] MSDN, “Managed Threading Best Practices”, MSDN Online Article. Available at:
http://msdn.microsoft.com/en-us/library/1c9txz50%28v=VS.90%29.aspx.

[75] MSDN, “How to: Make Thread-Safe Calls to Windows Forms Controls”, MSDN Online
Article. Available at: http://msdn.microsoft.com/en-us/library/ms171728%28v=VS.90%29.aspx.

60

http://www.interact-sw.co.uk/iangblog/2004/11/12/cancellation
http://www.diranieh.com/NETThreading/MultithreadingBasics.htm
http://visualbasic.about.com/od/usingvbnet/a/disposeobj.htm
http://visualbasic.about.com/od/usingvbnet/a/newinst.htm
http://code.logos.com/blog/2008/03/threadsafe_disposable_objects.html
http://www.code-magazine.com/Article.aspx?quickid=0305071
http://www.code-magazine.com/Article.aspx?quickid=0305071
http://www.dotnetcurry.com/ShowArticle.aspx?ID=431
http://www.developerfusion.com/article/5251/delegates-in-vbnet/
http://msdn.microsoft.com/en-us/library/sd10k43k%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms973872.aspx
http://msdn.microsoft.com/en-us/library/yt1k2w4e%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/magazine/cc164036.aspx
http://msdn.microsoft.com/en-us/magazine/cc301332.aspx
http://msdn.microsoft.com/en-us/magazine/cc301332.aspx
http://msdn.microsoft.com/el-gr/magazine/cc164036%28en-us%29.aspx
http://msdn.microsoft.com/en-us/library/ms693344
http://msdn.microsoft.com/en-us/magazine/cc188722.aspx
http://msdn.microsoft.com/en-us/library/ms973903.aspx
http://msdn.microsoft.com/en-us/library/ms834174.aspx#apcapps_topic2
http://msdn.microsoft.com/en-us/library/aa289496%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/magazine/cc164015.aspx
http://msdn.microsoft.com/en-us/magazine/cc164015.aspx
http://msdn.microsoft.com/en-us/library/1c9txz50%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms171728%28v=VS.90%29.aspx

[76] MSDN, “Calling Synchronous Methods Asynchronously”, MSDN Online Article. Available at:
http://msdn.microsoft.com/en-us/library/2e08f6yc%28v=VS.90%29.aspx.

[77] MSDN, “Multithreading in Visual Basic”, MSDN Online Article. Available at:
http://msdn.microsoft.com/en-us/library/eed6swsx%28v=VS.90%29.aspx.

Author: Anastasios K. Petrou (K. = Konstantinos)

E-mail: petroutassos@gmail.com , apetrou@isc.tuc.gr

61

http://msdn.microsoft.com/en-us/library/2e08f6yc%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/eed6swsx%28v=VS.90%29.aspx
mailto:petroutassos@gmail.com
mailto:apetrou@isc.tuc.gr

This page was intentionally left blank.

62

Appendix A

Serial communication

The software developed in this master thesis is primarily based on serial communication
between a computer unit, a fuel cell unit and an object oriented programmable intergraded
circuit (OOpic microcontroller). So, this chapter is an introduction to serial communication and a
clarification to the concepts that rule serial communication.

63

Serial Communication

In computer science, serial communication is the process of sending data one bit at a time,
sequentially, over a communication channel or a computer bus (Figure A.1). This is in contrast
to parallel communication, where several bits are sent as a whole, on a link with several parallel
channels (Figure A.2). Serial communication is used for long distance communications and
for computer networking, where the cabling cost and synchronization difficulties make parallel
communication impractical.

S

10011101 |

1202012121401 ‘

Figure A.1: Serial Communication.

=

L I

Q\

o
S

Figure A.2: Parallel Communication.

Serial computer buses or serial cables are becoming more common even at shorter distances,
as improved signal integrity and transmission speeds in newer serial technologies have begun
to outweigh the parallel bus's advantage of simplicity (no need for serialization and
deserialization) and to outstrip its disadvantages (clock skew, interconnect density).

Architectures

Examples of serial communication architectures are among others:

= Morse code telegraphy

» RS-232 (low-speed, implemented by serial ports)
= RS-422

» RS-423

64

= RS-485

= |2C

= SPI

= ARINC 818 Avionics Digital Video Bus

= Universal Serial Bus (moderate-speed, for connecting peripherals to computers)
= FireWire

= Ethernet

= Fibre Channel (high-speed, for connecting computers to mass storage devices)
= InfiniBand (very high speed, broadly comparable in scope to PCI)

= MIDI control of electronic musical instruments

= DMX512 control of theatrical lighting

= SDI-12 industrial sensor protocol

= Serial Attached SCSI

= Serial ATA

= SpaceWire Spacecraft communication network

= HyperTranspot

= PCI Express

= SONET and SDH (high speed telecommunication over optical fibers)

= T-1, E-1 and variants (high speed telecommunication over copper pairs)

= MIL-STD-1553A/B

Serial buses

A serial bus or serial cable is a cable that can be used to transfer information between two
devices using serial communication. The form of connectors depends on the particular serial
port used. A serial cable for connecting two data terminal equipments directly is known as a null
modem cable (Figure A.3).

Figure A.3: Null modem cable.

65

The maximum working length of a cable varies depending on the characteristics of the
transmitters and receivers, the baud rate on the cable, and the capacitance and resistance of
the cable. The RS-232 standard states that a compliant port must provide defined signal
characteristics for a capacitive load of 2500 pF. This does not correspond to a fixed length of
cable since varying cables have different characteristics. Empirically tested combinations of bit
rate, serial ports, cable type, and lengths may provide reliable communications, but generally
RS-232 compatible ports are intended to be connected by at the most a few tens of meters of
cable. Other serial communications standards are better adapted to drive hundreds or
thousands of meters of cable.

Figure A.4: Serial Cable, typically used for RS-232 serial communication

66

RS-232 standard

RS-232 (Recommended Standard 232) is the traditional name for a series of standards
for serial binary single-ended data and control signals connecting between a DTE (Data
Terminal Equipment) and a DCE (Data Circuit-terminating Equipment). It is commonly used
in computer serial ports. The standard defines the electrical characteristics and timing of
signals, the meaning of signals, and the physical size and pin out of connectors. The current
version of the standard is TIA-232-F Interface Between Data Terminal Equipment and Data
Circuit-Terminating Equipment Employing Serial Binary Data Interchange, issued in 1997.

D COQQO0OOoOoOO0OQo00 D
QOO0 00QC0000

Figure A.5: A 25 pin connector as described in the RS-232 standard.

oo

Figure A.6: A 9 pin connector for the RS-232 standard.

An RS-232 port was once a standard feature of a personal computer for connections
to modems, printers, mice, data storage, un-interruptible power supplies, and other peripheral
devices. However, the limited transmission speed, relatively large voltage swing, and large
standard connectors motivated development of the universal serial bus which has displaced RS-
232 from most of its peripheral interface roles. Many modern personal computers have no RS-
232 ports and must use an external converter to connect to older peripherals. Some RS-232
devices are still found especially in industrial machines or scientific instruments.

Scope of the RS-232 standard

The Electronic Industries Association (EIA) standard RS-232-C defines:

» Electrical signal characteristics such as voltage levels, signaling rate, timing and slew-rate of
signals, voltage withstand level, short-circuit behavior, and maximum load capacitance.

» Interface mechanical characteristics, pluggable connectors and pin identification.
» Functions of each circuit in the interface connector.

» Standard subsets of interface circuits for selected telecom applications.

67

The standard does not define such elements as the character encoding or the framing of
characters, or error detection protocols. The standard does not define bit rates for transmission,
except that it says it is intended for bit rates lower than 20,000 bits per second. Many modern
devices support speeds of 115,200 bit/s and above. RS-232 makes no provision for power to
peripheral devices.

Details of character format and transmission bit rate are controlled by the serial port hardware,
often a single integrated circuit called a UART that converts data from parallel to asynchronous
start-stop serial form. Details of voltage levels, slew rate, and short-circuit behavior are typically
controlled by a line driver that converts from the UART's logic levels to RS-232 compatible
signal levels, and a receiver that converts from RS-232 compatible signal levels to the UART's
logic levels.

History of the RS-232 standard

RS-232 was first introduced in 1962. The original DTEs were electromechanical teletypewriters,
and the original DCEs were usually modems. When electronic terminals began to be used, they
were often designed to be interchangeable with teletypewriters, and so supported RS-232. The
C revision of the standard was issued in 1969 in part to accommodate the electrical
characteristics of these devices.

Since application to devices such as computers, printers, test instruments, and so on was not
considered by the standard, designers implementing an RS-232 compatible interface on their
equipment often interpreted the requirements idiosyncratically. Common problems were non-
standard pin assignment of circuits on connectors, and incorrect or missing control signals. The
lack of adherence to the standards produced a thriving industry of breakout boxes, patch boxes,
test equipment, books, and other aids for the connection of disparate equipment. A common
deviation from the standard was to drive the signals at a reduced voltage. Some manufacturers
therefore built transmitters that supplied +5V and -5V and labeled them as "RS-232
compatible”.

Later personal computers started to make use of the standard so that they could connect to
existing equipment. For many years, an RS-232-compatible port was a standard feature
for serial communications, such as modem connections, on many computers. It remained in
widespread use into the late 1990s. In personal computer peripherals, it has largely been
supplanted by other interface standards, such as USB. RS-232 is still used to connect older
designs of peripherals, industrial equipment, console ports, and special purpose equipment,
such as a cash drawer for a cash register.

The standard has been renamed several times during its history as the sponsoring organization
changed its name, and has been variously known as EIA RS-232, EIA 232, and most recently
as TIA 232. The standard continued to be revised and updated by the Electronic Industries
Alliance and since 1988 by the Telecommunications Industry Association (TIA). Revision C was
issued in a document dated August 1969. Revision D was issued in 1986. The current revision
is TIA-232-F Interface Between Data Terminal Equipment and Data Circuit-Terminating
Equipment Employing Serial Binary Data Interchange, issued in 1997.

68

Limitations of the RS-232 standard

Because the application of RS-232 has extended far beyond the original purpose of
interconnecting a terminal with a modem, successor standards have been developed to address
the limitations. Some of the RS-232 standard’s limitations are:

= The large voltage swings and requirement for positive and negative supplies increases power
consumption of the interface and complicates power supply design. The voltage swing requirement
also limits the upper speed of a compatible interface.

= Single-ended signaling referred to a common signal ground limits the noise immunity and
transmission distance.

= Multi-drop connection among more than two devices is not defined. While multi-drop "work-arounds"
have been devised, they have limitations in speed and compatibility.

= Asymmetrical definitions of the two ends of the link make the assignment of the role of a newly
developed device problematic. The designer must decide on either a DTE-like or DCE-like interface
to use and which connector pin assignments.

= The handshaking and control lines of the interface are intended for the setup and takedown of a dial-
up communication circuit. In particular, the use of handshake lines for flow control is not reliably
implemented in many devices.

* No method is specified for sending power to a device. While a small amount of current can be
extracted from the DTR and RTS lines, this is only suitable for low power devices such as mice.

= The 25-way connector recommended in the standard is large compared to current practice.

RS-232 standard details

In RS-232, data is sent as a time-series of bits. Both synchronous and asynchronous
transmissions are supported by the standard. In addition to the data circuits, the standard
defines a number of control circuits used to manage the connection between the DTE and DCE.
Each data or control circuit only operates in one direction that is, signaling from a DTE to the
attached DCE or the reverse. Since transmit data and receive data are separate circuits, the
interface can operate in a full duplex manner, supporting concurrent data flow in both directions.
The standard does not define character framing within the data stream, or character encoding.

Voltage levels

The RS-232 standard defines the voltage levels that correspond to logical one and logical zero
levels for the data transmission and the control signal lines. Valid signals are plus or minus 3 to
15 volts; the £3 V range near zero volts is not a valid RS-232 level. The standard specifies a
maximum open-circuit voltage of 25 volts: signal levels of £5 V, +10V, 12 V, and +15 V are all

69

commonly seen depending on the power supplies available within a device. RS-232 drivers and
receivers must be able to withstand indefinite short circuit to ground or to any voltage level up to
125 volts. The slew rate, or how fast the signal changes between levels, is also controlled.

For data transmission lines (TxD, RxD) logic one is defined as a negative voltage, the signal
condition is called marking, and has the functional significance. Logic zero is positive and the
signal condition is termed spacing. Control signals are logically inverted with respect to what
one sees on the data transmission lines. When one of these signals is active, the voltage on the
line will be between +3 to +15 volts. The inactive state for these signals is the opposite voltage
condition, between -3 and —15 volts. Examples of control lines include request to send (RTS),
clear to send (CTS), data terminal ready (DTR), and data set ready (DSR).

+16V —

LSB MSB
Start. 1 1 0 1 0 0 1 0 Stop

+3V

Idle Idle

Mark

-16V

Figure A.7: Diagrammatic oscilloscope trace of voltage levels for an uppercase ASCIl "K" character (0x4b) with 1 start bit, 8
data bits and 1 stop bit.

Because the voltage levels are higher than logic levels typically used by integrated circuits,
special intervening driver circuits are required to translate logic levels. These also protect the
device's internal circuitry from short circuits or transients that may appear on the RS-232
interface, and provide sufficient current to comply with the slew rate requirements for data
transmission.

Because both ends of the RS-232 circuit depend on the ground pin being zero volts, problems
will occur when connecting machinery and computers where the voltage between the ground
pin on one end and the ground pin on the other end is not zero. This may also cause a
hazardous ground loop. Use of a common ground limits RS-232 to applications with relatively
short cables. If the two devices are far enough apart or on separate power systems, the local
ground connections at either end of the cable will have differing voltages; this difference will
reduce the noise margin of the signals. Balanced, differential, serial connections such
as USB, RS-422 and RS-485 can tolerate larger ground voltage differences because of the
differential signaling.

Unused interface signals terminated to ground will have an undefined logic state. Where it is
necessary to permanently set a control signal to a defined state, it must be connected to a
voltage source that asserts the logic 1 or logic O level. Some devices provide test voltages on
their interface connectors for this purpose.

70

Connectors

RS-232 devices may be classified as Data Terminal Equipment (DTE) or Data Communication
Equipment (DCE). This defines at each device which wires will be sending and receiving each
signal. The standard recommended but did not make mandatory the D-subminiature 25 pin
connector (Figure A.8). In general and according to the standard, terminals and computers have
male connectors with DTE pin functions, and modems have female connectors with DCE pin
functions. Other devices may have any combination of connector gender and pin definitions.
Many terminals were manufactured with female terminals but were sold with a cable with male
connectors at each end; the terminal with its cable satisfied the recommendations in the
standard.

e ——
o I'Coﬁvﬁ;;::; lal DA-15

.
o ||Cfn;b.—..:;;:;;_;—..:;)i ol DB-25

|l eaceaseaacoageagca |

[.:; rac-o:-cc-oabo:-eoacc,uﬂc-} O DC_3?

[rDJLDDEGDﬂtG«JEDDﬂtI

Ol esaseasceacsasca [0 DD—S{}

I.‘.DD'FD‘TIFE‘OQGID".\GF‘TI;‘FJ

. cq:-:-cc-.il . DE_g

- Ikul.'u-u [
—_—

Figure A.8: DA, DB, DC, DD, and DE RS-232 standard sized connectors.

The standard specifies 20 different signal connections. Since most devices use only a few
signals, smaller connectors can often be used.

Cables

The standard does not define a maximum cable length but instead defines the maximum
capacitance that a compliant drive circuit must tolerate. A widely used rule of thumb indicates
that cables more than 50 feet (15 m) long will have too much capacitance, unless special cables
are used. By using low-capacitance cables, full speed communication can be maintained over
larger distances up to about 1,000 feet (300 m). For longer distances, other signal standards are
better suited to maintain high speed.

71

Conventions

For functional communication through a serial port interface, conventions of bit rate, character
framing, communications protocol, character encoding, data compression, and error detection,
not defined in RS-232 standard, must be agreed to by both sending and receiving equipment.

72

This page was intentionally left blank.

73

Appendix B

Multithreading

Since the software developed for the purposes of the specific thesis is a multithreading
application, this brief chapter is an introduction to the concept and the idea of multithreading.

74

Introduction

Our brain allows us to multitask. For example, we can prepare dinner while talking on the
telephone. However, this multitasking has limits, and we can do only two or three things
simultaneously. But suppose we could put down the work, start another piece of work, then put
that down, and then switch to the original work. By this way probably we could handle a few
hundred tasks at the same time. This method called multitasking serialization.

Now suppose you and another person are preparing dinner in the kitchen, but you are not
communicating with each other. In that case the likelihood that you will run into the other person
is pretty high. So, there is a big difference between multitasking with a single brain and
multitasking with multiple brains. Multitasking always has a cost, which is orchestration. And
sometimes doing more multitasking is not going to speed things up. There is a limit to how many
brains are required to run an efficient kitchen.

In general is more difficult to make code run efficiently in parallel. Race conditions and
deadlocks are the two common problems in multitasking applications.

Clarifications

Program

A program is typically defined as a series of instructions that are related in some way. In .NET
terms, a program can be defined as an assembly, or group of assemblies, that work together to
accomplish a task. Assemblies are nothing more than a way of packaging instructions into
maintainable elements. An assembly is generally housed in a dynamic link library (DLL) or an
executable.

Closely related to programs are processes and threads. A program’s execution occurs on one
or more threads contained with a process. Threads allow the operating system to exert control
over processes and the threads that execute within.

Process

A process gives a program a place to live, allowing access to memory and resources. A process
is an operating system’s object used to associate one or more paths of execution with required
resources, such as memory that stores values manipulated by threads that exist within the
process.

A process provides a level of isolation that keeps different applications from inadvertently
interacting with each other. It is like cans with several different colors of paint. While each color
of paint is in its own can it cannot mix with other paints. The can is similar to a process in that it
keeps things in the can contained within and things outside of the can out. Every process

75

contains one or more threads. You can think of a thread as the moving part of the process.
Without a thread interacting with elements within a process, nothing interesting will happen.

Thread

Threads are paths of execution. The threads perform the operations while the process provides
the isolation. A single-threaded application has only one thread of execution.

When an executable is launched the operating system creates a process for the executable to
run in. The operating system then loads the executable into the process’s memory and looks for
an entry point, a specially marked place to start carrying out the instructions contained within the
executable. This entry point is like the front door of a building. Every building has one, and front
doors are relatively easy to find. Generally speaking, it's impossible to get into a restaurant
without going through the front door. Once the entry point is identified, a thread is created and
associated with the process. The thread is started, executing the code located at the entry point.
From that point on the thread follows the series of instructions. This first thread is referred to as
the main thread of the process.

Multitasking

When an operating system supports execution of multiple concurrent processes it is said to be
multitasking. The operating system used for the development of the specific project, Microsoft
windows XP, is a multitasking operating system. There are two common forms of multitasking:
preemptive and cooperative. Preemptive multitasking is the one we care about.

Preemptive multitasking

When more than one application is executing, there must be some means of determining whose
turn it is to execute. This is generally referred to as scheduling. Scheduling involves an element
in one of two states: currently executing and waiting to execute. Under modern operating
systems scheduling is performed on a per-thread basis. This allows a single thread to be
paused and then resumed. Only one thread can be executing at a given point in time. All other
threads are waiting for their turn to execute. This allows the operating system to exert a high
degree of control over applications by controlling the execution of their threads.

Time slicing

76

Time slicing is when an operating system can dictate for how much time a program is allowed to
execute. Between the times of execution, the program is in a state of deep freeze and does
nothing. The user is not aware of the time slices, because a time slice operates on the order of
microseconds. Because time slicing is so fast, user think the program is running continuously.

Let’s say that a program that runs two tasks, task 1 and task 2, is executed. The microprocessor
is a single core, and thus when running two separate tasks, there will be two time slices (Figure
B.1). In the figure, the entire processing cycle is represented as a pie, and each time slice is a
slice of the pie.

Time Slice

Full Cycle IL

Figure B.1: Single core microprocessor running two tasks.

Task 1 and task 2 run in a serial manner, rather than concurrently. This is because the
microprocessor is a single-task device made to look like a multitask device. A programmer must
develop an application with multiple tasks, for a single-core microprocessor, when there is the
need of application’s background tasks not to affect the foreground tasks. The operating system
will still allocate time slices in this case and use preemptive multitasking. For the reference, the
VIA EPIA-P700 motherboard used for this project is a single 1 GHz core board.

Figure B.2 illustrates how the same application executes on a multiple-core microprocessor.
The operating system, in a bid to make more efficient use of the microprocessor, has put one
task on one core and another task on the other core. Now both tasks are running in parallel. In
that case is possible that both tasks would want to manipulate the same piece of data at the
same time. In a single-core microprocessor, that is not physically possible. However, with a
single processor, it is still possible for one task to be interrupted mid-flight while accessing some
data, and for the other task to step in and use inconsistent data.

77

Figure B.2: Multiple-core microprocessor running two tasks.

78

The End!

79

