
Designing Efficient Algorithms for

Approximating Probabilistic Data

Stylianos-Georgios Mammas

Department of Electronic and Computer Engineering

Technical University of Crete

A thesis submitted for the degree of Master of Science

February 11, 2013

Supervisory Committee:

1. Assistant Prof. Antonios Deligiannakis (Supervisor)

2. Prof. Minos Garofalakis

3. Assistant Prof. Vasilis Samoladas

Contents

1 Theoretical Background and Related Work 9

1.1 Approximate Histograms over Deterministic Data 10

1.1.1 Preliminaries . 10

1.1.2 The AHIST-S: An Approximate Algorithm with Small Space . 12

1.2 Optimal Histogram Construction over Probabilistic Data 15

1.2.1 Probabilistic Data Model . 15

1.2.2 Probabilistic Histograms: Definition and Construction 17

1.2.3 Two-Step Dynamic Programming Schemes for Optimal Prob-

abilistic Histogram Construction 20

2 Building Approximate Probabilistic Histograms 25

2.1 The Approximate Inter-Bucket Algorithm 26

2.2 The Approximate Intra-Bucket Algorithm 28

2.3 Experimental Study . 39

2.3.1 Sum-Squared Error Metric 41

2.3.2 (Squared) Hellinger Distance 53

2.3.3 L1 Error Metric . 57

2.3.4 Max-Error Metric . 60

3 Concluding Remarks and Future Work 63

Bibliography 65

2

List of Figures

1.1 The V-Optimal Algorithm. 12

1.2 Approximating an error curve with a staircase function 13

1.3 The AHIST-S Algorithm. 14

1.4 Summarizing a set of PDFs with compact PDF representatives. 18

2.1 The Inter-Bucket Algorithm: inter[N,T] 37

2.2 The Intra-Bucket Algorithm: intra(b)[V,T] 38

2.3 Sum-Squared Error vs Number of Terms: (1+ε)-approximation, N=27703,

V=14 . 41

2.4 Sum-Squared Error Metric: Time as the number of items N varies,

(1+ ε)-approximation, T=500, V=14 42

2.5 Sum-Squared Error Metric: Time as the number of terms T varies,

(1+ ε)-approximation, N=27703, V=14 43

2.6 Sum-Squared Error vs Number of Terms: (1+ε)-approximation, N=50000,

V=14 . 44

2.7 Sum-Squared Error Metric: Time as the number of items N varies,

(1+ ε)-approximation, T=50, V=14 45

2.8 Sum-Squared Error Metric: Time as the number of terms T varies,

(1+ ε)-approximation, N=50000, V=14 46

2.9 Sum-Squared Error vs Number of Terms: (1+ε)-approximation, N=10000,

V=14 . 47

2.10 Sum-Squared Error Metric: Time as the number of items N varies,

(1+ ε)-approximation, T=1000, V=14 48

3

4

2.11 Sum-Squared Error Metric: Time as the number of terms T varies,

(1+ ε)-approximation, N=10000, V=14 49

2.12 Sum-Squared Error vs Number of Terms: (1 + ε)2-approximation,

N=4000, V=131 . 50

2.13 Sum-Squared Error Metric: Time as the number of items N varies,

(1+ ε)2-approximation, T=200, V=14 51

2.14 Sum-Squared Error Metric: Time as the number of terms T varies,

(1+ ε)2-approximation, N=4000, V=14 52

2.15 (Squared) Hellinger Distance vs Number of Terms: (1+ε)-approximation,

N=27703, V=14 . 53

2.16 (Squared) Hellinger Distance: Time as the number of items N varies,

(1+ ε)-approximation, T=500, V=14 54

2.17 (Squared) Hellinger Distance: Time as the number of terms T varies,

(1+ ε)-approximation, N=27703, V=14 54

2.18 (Squared) Hellinger Distance vs Number of Terms: (1+ε)2-approximation,

N=4000, V=131 . 55

2.19 (Squared) Hellinger Distance: Time as the number of items N varies,

(1+ ε)2-approximation, T=200, V=131 56

2.20 (Squared) Hellinger Distance: Time as the number of terms T varies,

(1+ ε)2-approximation, N=4000, V=131 56

2.21 L1 Error vs Number of Terms: (1+ ε)-approximation, N=2000, V=14 57

2.22 L1 Error Metric: Time as the number of items N varies, (1 + ε)-

approximation, T=20, V=14 . 58

2.23 L1 Error Metric: Time as the number of terms T varies, (1 + ε)-

approximation, N=2000, V=14 . 59

2.24 Max Error vs Number of Terms, , (1+ ε)-approximation, N=27703,

V=14 . 60

2.25 Max Error Metric: Time as the number of items N varies, (1+ ε)-

approximation, T=500, V=14 . 61

2.26 Max Error Metric: Time as the number of terms T varies, (1+ ε)-

approximation, N=27703, V=14 . 62

Dedicated to my father.

Acknowledgements

I want to express my appreciation to my supervisor Dr. Antonios Deligiannakis for his

guidance. I am grateful to the members of the supervisory committee. A big thank you

to my friends, family and colleagues for their patience, love and support.

Introduction

Histograms have proven to be a very effective summarization mechanism, and are

widely used to capture data distributions. Currently, they are an important part in

commercial query engines.

Let a data distribution of tuple frequencies. Typically, an approximation of such

data distribution with a histogram, is obtained by partitioning the data domain into a

small number of consecutive ranges (the buckets), and by storing only concise statistics

to summarize the tuple frequencies within a bucket. The bucket boundaries are chosen

to minimize a given error metric that measures within-bucket dissimilarities, i.e., the

differences of the concise statistic selected for the bucket (e.g., the average value of

tuple frequencies within the bucket) from the real tuple frequencies, and aggregates

errors across the buckets (using summation or maximum). The fast computation of

such synopses is a crucial parameter in Data Base Management Systems (DBMSs), in

terms of fast approximate answers from the query engines.

Moreover, since histograms are themselves approximation schemes, an extra ap-

proximation factor in the histogram construction process for speed up, can be tolera-

ble. We present such an (1+ ε)-approximation scheme for histogram construction of

one-dimensional deterministic data in Section 1.1.

Another topic of this thesis, is the integration of such mechanisms in Probabilistic

Data Base Management Systems (PDBMSs), i.e., integrating methods for probabilistic

histogram construction over probabilistic data, since there is a growing realization

that modern DBMSs must be able to manage data that contain uncertainties that are

represented in the form of probabilistic relations. In Section 1.2, we present two-step

Dynamic Programming (DP) algorithms for building optimal probabilistic histograms,

for a variety of error metrics [8].

The main contribution of this thesis (Chapter 2), is the incorporation of (1+ ε)-

approximation schemes in the histogram construction process, in the case of two- di-

mensional probabilistic data. In order to reduce the high computational cost of optimal

probabilistic histogram construction, we set an approximation scheme to the general

DP framework. The speed up is obtained, because our approximate algorithm takes

7

into consideration only a small set of sub-problems in the DP framework. Our algo-

rithm provides guarantees to the overall error of the histogram, and gives the user a

useful trade-off between the accuracy of the histogram and the computational cost.

Our experimental study, to explore the effect of such approximation, shows that our

approximation scheme produces almost-optimal probabilistic histograms, with much

lower computational cost than the optimal algorithm.

8

Chapter 1

Theoretical Background and Related

Work

Histograms have proven to be a very effective summarization mechanism, and are

widely used to capture data distributions. Currently, they are an important part in com-

mercial query engines. Let a data distribution of tuple frequencies. Typically, an ap-

proximation of such data distribution with a histogram, is obtained by partitioning the

data domain into a small number of consecutive ranges (the buckets), and by storing

only concise statistics to summarize the tuple frequencies within a bucket. The bucket

boundaries are chosen to minimize a given error metric that measures within-bucket

dissimilarities, i.e., the differences of the concise statistic selected for the bucket (e.g.,

the average value of tuple frequencies within the bucket) from the real tuple frequen-

cies, and aggregates errors across the buckets (using summation or maximum).

The fast computation of such synopses is a crucial parameter in Data Base Manage-

ment Systems (DBMSs), in terms of fast approximate answers from the query engines.

Moreover, since a histogram is by itself an approximation scheme, an extra approxi-

mation factor in histogram construction process for speed up, can be tolerable. We

present such an approximation scheme for histogram construction of one-dimensional

deterministic data in Section 1.1. Another topic of this thesis, is the integration of

such mechanisms in Probabilistic Data Base Management Systems (PDBMSs), i.e.,

integrating methods for probabilistic histogram construction over probabilistic data.

9

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 10

In Section 1.2, we present DP programming schemes for optimal, in terms of overall

error, probabilistic histogram construction.

1.1 Approximate Histograms over Deterministic Data

S. Guha, N. Koudas, K. Shim [15], [16], present approximate algorithms for histogram

construction over one-dimensional deterministic data. Since, a histogram is by itself

an approximation of data distribution, they insert an additional approximation factor in

histogram construction process, in order to accelerate the computation, with tolerable

cost in accuracy of the produced histogram. Specifically, they integrate an approxi-

mation scheme in the V-Optimal algorithm, i.e., an algorithm which produces optimal

histograms for a variety of error metrics. Also, they proof that their approximation

is an (1+ ε)-approximation of the corresponding V-Optimal histogram, i.e., their his-

tograms have at most 1+ε times the error of the corresponding V-Optimal histograms.

1.1.1 Preliminaries

Let X = {x1,x2, ...,xn} be a finite data sequence. Given a space constraint B, the goal

of histogram construction is to create a compact representation of sequence X (Let HB

denote such representation) of space at most B. In histogram construction process, the

data sequence is partitioned into B disjoint intervals of consecutive data points, i.e.,

the data space is split into B buckets, and for each bucket we store only a single value

(the bucket representative). The bucket boundaries and bucket representatives are cho-

sen in order to minimize an error metric. Let the error of such approximation of data

sequence denoted by EX(HB). There are two problem statements delivered from the

above.

Optimal Histogram Construction Problem. Given a sequence X of length n, a num-

ber of buckets B, find HB to minimize EX(HB) under the given error function E.

(1 + ε)-Approximate Histogram Construction Problem. Given a sequence X of

length n, a number of buckets B, and a precision parameter ε > 0, find HB with EX(HB)

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 11

at most (1+ ε) minH EX(HB) where the minimization is taken over all histograms H

with B buckets.

Measuring the total error of a histogram with the sum-squared error metric:

One of the most common methods to measure the total error of a histogram is the sum-

squared error error metric. This metric, sums the squares of errors of each data point i

(1≤ i≤ n). Since the buckets are disjoint and cover the entire domain, i.e., each data

point belongs to exactly one bucket, we can express the total error of the histogram

as the sum of bucket errors of the histogram. Let b1,b2, ...,bB be the buckets of the

histogram. Thus, the total sum-squared error of the histogram is ∑
1≤i≤B

SQERROR(bi).

Let br = (sr,er), be the interval covered from bucket r, i.e., all data points from sr

to er belong to bucket r. Based on this notation we can express the error of bucket

r as SQERROR(br) = ∑
sr≤i≤er

(xi− hr)
2, where with hr we denote the representative

value of bucket r. This quantity is minimized by taking as bucket representative the

mean of data points belong to the bucket, i.e., hr =
1

er−sr+1 ∑
sr≤i≤er

xi. Thus, after some

processing, we can express the bucket error as:

SQERROR(sr,er) =
er

∑
i=sr

x2
i −

1
er− sr +1

(
er

∑
i=sr

xi)
2 (1.1)

V-Optimal Algorithm

In this paragraph we present the V-Optimal algorithm, a dynamic programming al-

gorithm which constructs optimal histograms for a variety of error metrics. Here, we

focus on sum-squared error metric [17], but is straightforward for someone, to see how

other error metrics can be supported, e.g., Max-Error Measure.

Recall the data sequence X = {x1,x2, ...,xn}. The V-Optimal algorithm splits this

domain into B consecutive disjoint intervals, examining all possible bucket boundaries

via a dynamic programming scheme, to find the partition that has the minimum (opti-

mal) sum-squared error. The key observation here is the principle of optimality, that

is, if the last bucket contains the data points of the interval [i+1,n] in the optimal his-

togram, then the rest of the buckets must form an optimal histogram with B−1 buckets

for the interval [1, i], where 1≤ i≤ n−1.

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 12

Figure 1.1: The V-Optimal Algorithm.

Let TERR[i, k] be the minimum (optimal) sum-squared error in approximation

of the interval [1, i], with a k-bucket histogram. Notice that the optimal histogram

construction problem (in sum-squared error metric) is to find a histogram with the

minimum sum-squared error in the approximation of the interval [1, n], with a B-

bucket histogram, i.e., Terr[n, B]. We present the V-Optimal algorithm, in case of

sum-squared error metric, in Figure 1.1.

Let us define two vectors of length n, SUM and SQSUM, such that: SUM[1, i] =
i

∑
l=1

xl and SUM[1, i] =
i

∑
l=1

x2
l , where 1 ≤ i ≤ n. By maintaining these vectors, we can

compute the bucket error of equation (1.1) in O(1) time, i.e., in constant time, since

the partial sums of equation (1.1) can be calculated with the following formulas:
er
∑

i=sr

x2
i = SQSUM[1,er]−SQSUM[1,sr]

er
∑

i=sr

xi = SUM[1,er]−SUM[1,sr].

The V-Optimal algorithm has O(n2B) time complexity, since we must calculate

O(nB) error entries (T ERR[i,k],1 ≤ i ≤ n, 1 ≤ k ≤ B) in the dynamic programming

table, and each entry needs O(n) time to be calculated.

1.1.2 The AHIST-S: An Approximate Algorithm with Small Space

S. Guha, N. Koudas, K. Shim [15] present various techniques, for the approximate

histogram construction problem, to produce near-optimal histograms. Since the his-

tograms are themselves used to approximate query answering, an extra approximation

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 13

Figure 1.2: Approximating an error curve with a staircase function

factor used to speed up the computation is usually acceptable. In this subsection we

present the AHIST-S algorithm [15], [16], an algorithm which integrates an approxi-

mation scheme to the classic V-Optimal algorithm.

The key observation they did, was the monotonicity property of the optimal error

functions SQERROR(i, j), T ERR(i,k) (where i, j ∈ {1,2, ..,n} and k ∈ {1,2, ..,B}),
discussed before. Specifically, they observed that SQERROR(i, j) and T ERR(i,k)

are non-increasing and non-decreasing (both are non-negative), respectively, functions

over the values of i (as i increases). Clearly, T ERR(i,k) ≤ T ERR(i+ 1,k), since the

optimal error in approximation of first i data points cannot be larger than the error in

approximation of first i+1 data points. Accordingly, the optimal error of bucket (i,j),

i.e., SQERROR(i, j), cannot be smaller than the optimal error of bucket (i+1, j), i.e.,

SQERROR(i+1, j). They used this monotonicity property in their inductive proof, to

guarantee that the AHIST-S produces an 1+ ε approximation of optimal solution, i.e.,

ApxErr[i,k] ≤ (1+ ε)T ERR[i,k] (∀i ∈ {1, ..,n}, ∀k ∈ {1, ..,B}), where with ApxErr

we denote the error function of the approximate algorithm AHIST-S.

The key component of their algorithm is that instead of storing/remembering the

whole error functions ApxErr(i,k-1) (i = 1..n, k ∈ {2, ..,B}) like the classic V-Optimal

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 14

algorithm, they approximate them by staircase functions, as shown in Figure 1.2, re-

ducing the searching space needed from the algorithm. The error curve ApxErr(i,k)

(i = 1..n), depicts the error in approximation of first i data items using k buckets, as

the number of data items increases from 1 to n. Let us explore how such error curves

can be approximated by staircase functions. The data domain, i.e., the interval (1,

n), is broken down into τ (clearly τ depends on k, i.e., the number of buckets) inter-

vals (ai,bi) to approximate the whole error function with a staircase function. These

intervals are disjoint and cover the entire domain, i.e., a1 = 1, ai+1 = bi+1 and bτ = n.

Moreover, these intervals are stored by a 1+ δ factor, meaning that the value of

error function at the right boundary of an interval cannot be greater than 1+ δ times

the value of error function at left boundary of the interval, i.e., Apxerr[bi,k] ≤ (1+

δ)Apxerr[ai,k], ∀i ∈ {1,2, ..,τ}. The parameter δ is fixed to be ε

2B (ε < 1), in order

to produce an (1 + ε)-approximation of the optimal error curve, i.e., the algorithm

computes an (1+ε)-approximate B-bucket histogram. The inductive proof of that can

be found at [16].

Figure 1.3: The AHIST-S Algorithm.

We present the AHIST-S algorithm in Figure 1.3. The algorithm maintains B− 1

interval lists of bounded size. For each element (interval) of the k-th list, the algorithm

stores, the index number x (the left boundary of the interval), the index number y

(the right boundary of the interval), Sum[y], Sqsum[y] and Apxerr[y, k] values. The

algorithm maintains Apxerr[y, 1] = Terr[y, 1] = Sqerror(1, y), i.e., for representation

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 15

by one bucket, it computes the error exactly. Concluding, in [16], the interested reader

may see the proof that the algorithm AHIST-S computes an (1+ ε)-approximate B-

bucket histogram in O(nB2ε−1logn) time and O(B2ε−1logn) space.

1.2 Optimal Histogram Construction over Probabilis-

tic Data

There is a growing realization that modern DBMSs must be able to manage data that

contain uncertainties that are represented in the form of probabilistic relations. Thus,

there is a need to revisit the problem of creating synopses in presence of uncertain data,

for fast approximate answering over probabilistic data.

G. Cormode, A. Deligiannakis, M. Garofalakis, A. McGregor [8] present algo-

rithms for two-dimensional probabilistic histogram construction over probabilistic data.

They propose two-step dynamic programming algorithms for optimal probabilistic his-

togram construction, in terms of minimum possible error for a variety of error metrics.

Although, their algorithms are optimal in terms of total error of the approximation,

they have prohibited time complexity and it is impossible to cope with massive data

sets. The main contribution of our work in this problem (Chapter 2), is the integration

of (1+ ε)-approximation schemes, like those of Section 1.1, to the optimal algorithms

presented in [8], in order to speed up the computation of the probabilistic histograms.

Moreover, we bound the error of such approximation and we offer guarantees that the

errors of our approximate probabilistic histograms are no more than (1+ ε) times the

errors of the corresponding optimal probabilistic histograms.

1.2.1 Probabilistic Data Model

Let U be an ordered domain indexing the uncertain data presented in form of a

probabilistic relation. Assuming, for simplicity, that the U is a set of integers, i.e.,

U = {1,2, ..,N} (|U |= N). Each item i ∈U is probabilistic data distribution (PDF),

taking values from a ordered value domain V , i.e., V = {1,2, ..,V} (|V |=V).

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 16

The U is a probabilistic data sequence defining a set of ”possible worlds”. We can

think ”the worlds” as a set of N-dimensional vectors f. Each single ”grounded” vector

f is an instance of these worlds, i.e., it provides a value for each item in U . Each value

is taken from the value domain V discussed above.

For instance, U could correspond to a set of N temperature sensors placed at every

mile of a highway, and in this case, fi refers to the uncertain measure of a sensor placed

at ith mile of the highway on a particular day.

Let us define the meaning of a probabilistic data model. A probabilistic data model

defines a probabilistic distribution over the ”possible worlds” mentioned before. There

are many different probabilistic models, less or more descriptive, with a corresponding

description size according to the description power of the model, i.e., the ability of the

model to express more or less complex distributions.

The most descriptive model, and thus the most complex, is the model which is

able to describe any possible N-dimensional probability distribution, e.g., by listing

each possible world and its corresponding probability. Although, such a model is

the most descriptive and thus the most accurate, this comes with a prohibited time

requirements and complexity, since there is a huge number of possible worlds requiring

the computation of an enormous number of parameters that is exponential in N.

For these reasons, a less descriptive model can be tolerable. By making certain

independence assumptions, we can reduce the number of parameters needed from the

model. If such correlations exist in the real data, this comes with a loss of accuracy,

but if their impact is low, this can be tolerable in terms of having a less complex and

time consuming probabilistic data model, without a large handicap in the quality of the

model. Such a model is the Item-PDF Model (IPM) [8]:

Definition 1. In the Item-PDF Model (IPM), each item i ∈ U is assumed to behave

independently of all others. A PDF Xi is provided to describe the distribution of item i.

The probability of any given possible world f under this model can then be calculated

directly as Pr[f] = ∏i∈U Pr[Xi = fi].

The Item-PDF Model can capture the tuple- and attribute-level uncertainty. Since,

the model provides a distribution of X conditioned on the value of i, it captures the

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 17

correlations between variable and i. Although, this model reduces the number of pa-

rameters needed to be calculated, i.e., O(NV) parameters than the exponential (in N)

number of the general model, there is still a need for more compact descriptions and

thus the need of effective synopsis construction, like histograms, arises.

1.2.2 Probabilistic Histograms: Definition and Construction

Often, adjacent items in U are correlated, i.e., their distributions are quite similar, and

thus, using buckets to group together items with similar distributions in order com-

pute a compact representation of the original data is quite useful. If this ”smoothness”

property does indeed hold, the resulting histograms may effectively capture the orig-

inal data distributions, and thus, the error of such approximation may be tolerable in

terms of fast approximate answering.

In the probabilistic histogram construction process, the domain U is broken down

into a number of consecutive disjoint ranges (the buckets) and for each bucket only a

concise statistic, the bucket representative, is stored. The bucket boundaries and bucket

representatives are chosen in terms of minimizing a given error metric. The authors

of [8] propose a richer histogram representation, where the bucket representative is

itself a (compact) distribution over V , than earlier approaches [7], where each bucket

representative is a single value chosen to minimize a given error metric. This richer

representation leads to capture the underlying data semantics more accurately, that is,

with a given space bound, the produced probabilistic histogram is optimal, i.e., the

overall error function (with respect to the original IPM) is minimized.

Specifically, let b = (s,e) be a bucket with left boundary denoted by s and right

boundary denoted by e. Clearly, this bucket covers the range (s,e), i.e., it contains

all item PDFs within the range (|b| = e− s+1 item PDFs). In order to create a com-

pact representation of the item PDFs within the bucket, i.e., Xs,Xs+1, ...,Xe, a bucket

representative which is also itself a compact PDF over V , X̂(b), is chosen in terms of

minimizing the bucket error. We show this process in Figure 1.4.

At this point, we present a variety of PDF distance functions, i.e., functions that

measure the dissimilarity of probability distributions, as given in [8]:

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 18

Figure 1.4: Summarizing a set of PDFs with compact PDF representatives.

• The Variation Distance (aka L1) between two probability distributions over the

same value domain V is the sum of absolute differences between the probabili-

ties of each value. Formally, it is given by

d(X ,Y) = ‖X−Y‖1 = ∑
v∈V
|Pr[X = v]−Pr[Y = v]|.

• The Sum-squared error (aka L2
2) is similar to the Variation Distance, but takes

the square of the difference of each pair of probabilities. It is defined by

d(X ,Y) = ‖X−Y‖2
2 = ∑

v∈V
(Pr[X = v]−Pr[Y = v])2.

• The Kullback-Leibler divergence, also known as the relative entropy, uses a more

information theoretic approach to compare distributions. It is defined by

d(X ,Y) = KL(X ,Y) = ∑
v∈V

Pr[X = v] log2
Pr[X = v]
Pr[Y = v]

.

Note that KL is not symmetric. It is natural to consider the second argument as

the representative or approximation for the first argument.

• The (Squared) Hellinger distance is another commonly used measure of distri-

bution similarity, given by

d(X ,Y) = H2(X ,Y) = ∑
v∈V

(Pr[X = v]
1
2 −Pr[Y = v]

1
2)2

2
.

• The Max-Error measure (or L∞) tracks the maximum difference between pairs

of corresponding probabilities, and is given by

d(X ,Y) = ‖X ,Y‖∞ = max
v∈V
|Pr[X = v]−Pr[Y = v]|

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 19

Here, in contrast to other metrics, the error of a histogram bucket is taken to be

the maximum of this value over the different PDFs, rather than the sum.

With the above definitions we can express the overall error of the histogram as a

summation or maximum of bucket errors. Since, the histogram splits the domain into

B consecutive disjoint buckets which cover the entire domain U , i.e., the kth bucket

bk = (sk,ek) covers the the item PDFs within the range (sk,ek) (where s1 = 1, eB =

N, and sk = ek−1 +1, ∀k ∈ {2, ..,B}), we can express the total error of the histogram

with one of the two following formulas:

Summation of bucket errors:

S =
B

∑
k=1

ek

∑
i=sk

d(X̂(bk),Xi) (1.2)

Maximum of bucket errors:

M =
B

max
k=1

ek

∑
i=sk

d(X̂(bk),Xi) (1.3)

At this point, we formally present the definition of the probabilistic histogram con-

struction problem and the two cases delivered from this definition as given in [8]:

Probabilistic Histogram Construction. Given a distance function d(), a space - com-

plexity bound S , and an input set of item PDFs X1, . . . ,XN over V , construct a prob-

abilistic histogram of space complexity at most S which minimizes the histogram

Sum- or Max-error under PDF distance d().

• B-bucket Case: The histogram consists of exactly B buckets, each of which

is represented by a detailed, V -term PDF over values V . Such a representation

makes sense when the size of the frequency-value domain, V , is relatively small,

and so each of these PDFs is quite small. In the B-bucket case, the overall space

requirement of the probabilistic histogram is S = O(BV).

• T -term Case: When V is large, it makes more sense to try to find a T -term

summary: if we represent each bucket-representative PDF by a set of piecewise

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 20

constant values (i.e., a conventional histogram) then the total description length

is the total number T of such constant terms across all bucket representatives.

The overall space requirement of the histogram in this case is S = O(T).

The T-term case of probabilistic histogram construction problem gereralizes the

corresponding B-bucket case, since, assuming the same overall space (T = BV), in

T-term case there is a larger search space of space-allotments, i.e., greater flexibility

of space-allotments to each bucket. Thus, we will focus only on the T-Term case of

probabilistic histogram construction problem.

1.2.3 Two-Step Dynamic Programming Schemes for Optimal Prob-

abilistic Histogram Construction

The authors of [8] propose a general dynamic programming framework for optimal

probabilistic histogram construction for a variety of error metrics such Variation Dis-

tance, Sum-Squared Error, Max-Error measure, and (Squared) Hellinger Distance.

Briefly, they broke down the general probabilistic histogram construction problem

into two pieces, i.e., two sub-problems: the inner-part and the outer-part of the general

problem, and solved them with dynamic programming schemes.

In the inner-part, the objective is, given a number of t terms for a bucket, to find

the optimal bucket representative under a given error metric, i.e., to construct a t-term

PDF over V that approximates the item PDFs within the bucket with the minimum

possible error.

In the outer-part, the objective is, given the total number of terms for the histogram

(T), to allocate them efficiently among the buckets and find the appropriate bucket

boundaries in order to minimize the overall error of such approximation of the data

input U .

The Intra-Bucket Algorithm

Let b = (s,e) be a bucket with left and right boundaries s,e ∈U respectively. Clearly,

the bucket b covers the interval (s,e) and thus contains e−s+1 item PDFs. The goal in

the T-term case of probabilistic histogram construction, as already discussed, is to find

a t-term piece-wise constant representative over V , which approximates the e− s+1

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 21

item PDFs within the bucket b, with the minimum bucket error under a given error

metric.

Moreover, let VALERR(b,v,w) denote the optimal error under a given error metric,

in the approximation of the probability values in the range (v,w) (where v,w ∈ V)

within the bucket b, with a single value. In other words, the VALERR(b,v,w) function,

computes a single constant representative which approximates the (e− s+ 1)× (w−
v+1) probability values with the minimum possible error under a given error metric.

The computation of the VALERR(b,v,w) function, depends on the given error met-

ric. Several solutions for a variety of error metrics are given in [8]. Here, we present

only the proof for the sum-squared error metric (Lemma 1) as given in [8]. For com-

pleteness, the interested reader may refer to [8], for the proofs of other error metrics.

Let B-OPTb[v,T] denote the minimum possible error in the approximation of the

range (1,v) (where v ∈ V) within the bucket b, using at most T terms. With respect

to the principle of optimality, this error can be expressed with the following Dynamic

Programming recurrence:

B-OPTb[w,T] = min
1≤v≤w−1

{B-OPTb[v,T −1]+VALERR(b,v+1,w)}. (1.4)

The algorithm B-OPTb[w, t] (where 1 ≤ w ≤ V) computes recursively the optimal

error, in the representation (with t terms) of the first w values of item PDFs within the

bucket b. Thus, B-OPTb[V, t] constructs a PDF with t terms, which approximates all

item PDFs within the bucket b, with the minimum possible error. Notice that in the

initial call B-OPTb[V, t], there is no benefit in assignment of t >V terms, since a PDF

has only V values.

This algorithm search exhaustively the range (1,V) within a bucket in order to find

the appropriate intra-bucket boundaries, by testing all possible choices to find the rep-

resentation which has the minimum possible error. Moreover, for each intra-bucket,

there is a space allotment of a single term. In cases where the size of the domain V

is large, this approach may have prohibited time requirements. We inspired from this

observation and we go further, reducing the searching space by settling an approxima-

tion scheme to the intra-bucket algorithm (Chapter 2).

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 22

The Inter-Bucket Algorithm

Let H-OPT[m,T] denote the minimum possible error in the approximation up to do-

main value m ∈ U , using at most T terms. With respect to the principle of optimal-

ity, this error can be expressed with the following Dynamic Programming recurrence

(Max-Error case is handled similarly):

H-OPT[m,T] = min
1≤k≤m−1,1≤t≤T−1

{H-OPT[k,T − t]+B-OPT(k+1,m)[V, t]}. (1.5)

Clearly, the H-OPT[N,T] computes the optimal probabilistic histogram over the

domain U using at most T terms. This algorithm search exhaustively the range (1,N)

in order to find the appropriate bucket boundaries and space allotments to each bucket,

by testing all possible choices to find the representation which has the minimum pos-

sible error. In cases where the size of the domain U is large, this approach may have

prohibited time requirements. As in the case of the intra-bucket algorithm, we reduce

the searching space by settling an approximation scheme to the inter-bucket algorithm

in order to produce near-optimal probabilistic histograms with reduced time require-

ments (Chapter 2).

Lemma 1. The optimal cost for representing a range of values in a particular bucket

under Sum-Squared Error in the T -term case can be found in constant time using

O(V N) precomputed values.

Proof. Consider a range r = (v,w) (where v,w ∈ V) within a bucket b = (s,e) that we

wish to represent with a single value p. The contribution to the error is ∑
e
i=s ∑

w
j=v(Pr[Xi =

j]− p)2. Differentiating with respect to p shows that this is minimized by setting

p = p̄ =
∑

e
i=s ∑

w
j=v Pr[Xi = j]

(e− s+1)(w− v+1)
,

the average of the relevant probabilities. The cost VALERR(b,v,w) is then

e

∑
i=s

(w

∑
j=v

(Pr[Xi = j])2−2 p̄Pr[Xi = j]+ p̄2)
=

e

∑
i=s

(w

∑
j=v

(Pr[Xi = j])2)− p̄2(e− s+1)(w− v+1) .

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 23

This cost can be computed quickly based on O(V N) precomputed values. Define

A[e,w] =
e

∑
i=1

w

∑
j=1

Pr[Xi = j] B[e,w] =
e

∑
i=1

w

∑
j=1

(Pr[Xi = j])2.

Then p̄[(s,e),(v,w)] · (e− s+1)(w− v+1)

= (A[e,w]−A[s−1,w]−A[e,v−1]+A[s−1,v−1])

and
e

∑
i=s

w

∑
j=v

(Pr[Xi = j])2

= B[e,w]−B[s−1,w]−B[e,v−1]+B[s−1,v−1]).

From these, VALERR(b,v,w) can be computed in constant time. Last, note that

this does indeed generate a valid PDF: clearly, each p̄ is in [0,1], since it is the mean

of other probability values; and for a set of intervals I = {(v,w)} that partition V , we

have the cumulative probability,

∑
(v,w)∈I

w

∑
j=v

p̄[(s,e),(v,w)]

= ∑
(v,w)∈I

(w− v+1)
∑

w
j=v ∑

e
i=s Pr[Xi = j]

(e− s+1)(w− v+1)

=
e

∑
i=s

w

∑
j=v

Pr[Xi = j]
e− s+1

=
e

∑
i=s

1
e− s+1

= 1.

Concluding, we present the theorems for time complexity of optimal probabilistic

histogram construction for a variety of error metrics as given in [8]:

Theorem 2. The optimal T-term histogram of a probabilistic relation can be found

in time O(N2T (min(T,V)+V 2)) under sum-squared error. The optimal B-bucket his-

togram of a probabilistic relation under the sum-squared error can be found in time

O(N(BN +V)).

Theorem 3. The optimal T -term representation of a probabilistic relation under the

variation distance can be found in time O(N2(T min(T,V)+V 2 min(V,N) log(V N))).

The optimal B-bucket representation of a probabilistic relation under the variation

distance can be found in time O(N2(B+ log(V N))).

CHAPTER 1. THEORETICAL BACKGROUND AND RELATED WORK 24

Theorem 4. An ε-error (normalized) approximation to the optimal T -term probabilis-

tic histogram of a probabilistic relation under variation distance can be found in time

O(N2T 3V 2ε−1 log(T ε−1)). An ε-error (normalized) approximation to the optimal B-

bucket histogram can be found in time O(N2BV 4ε−1 log(T ε−1)).

Theorem 5. The optimal T-term histogram of a probabilistic relation under squared

Hellinger distance can be found in time O(N2T (min(T,V) +V 2)). The optimal B-

bucket histogram can be found in time O(N(BN +V)).

Theorem 6. The optimal T-term probabilistic histogram of a probabilistic relation

under max-error can be found in time O(TV N2). The optimal B-bucket histogram can

be found in time O(BV N2).

Chapter 2

Building Approximate Probabilistic

Histograms

In this Chapter, we present a novel approximate algorithm for the probabilistic his-

togram construction problem. The optimal dynamic programming algorithm, of Sec-

tion 1.2, has high computational cost. Our purpose is to produce efficiently near-

optimal probabilistic histograms with much lower computational cost than the cost of

the optimal algorithm, and provide guarantees to the precision (quality) of the pro-

duced histograms. The speed up is obtained, because our approximate algorithm ex-

plores only a small set of sub-problems in the DP framework, with respect to the under-

lying approximation scheme. Our approximation scheme provides a useful trade-off

between the precision of the histogram and the time cost of construction.

In the T-term case of probabilistic histogram construction, we have a number of

available terms (which user specifies) for the histogram. Our algorithm tries to allo-

cate them efficiently among the buckets. Specifically, the algorithm tries to find the

appropriate, with respect to the underlying approximation scheme, bucket boundaries

and term assignments to each bucket, in order to minimize (approximately) a given

error metric. We try to find the approximately best choice of bucket boundaries and

term assignments to each bucket, i.e., the number of terms to construct the bucket rep-

resentative PDF, in order to minimize (approximately) the overall error. The error of

the histogram (overall error) can be the sum of bucket errors or the maximum of bucket

25

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 26

errors, depending on the given error metric.

Our algorithm consists of two nested approximate dynamic programming algo-

rithms: The inter-bucket algorithm and the intra-bucket algorithm. The inter-bucket

algorithm (inter) tries to find the appropriate bucket boundaries, with respect to the

underlying approximation scheme, and term assignments to each bucket. The intra-

bucket algorithm (intra) is called from the inter-bucket algorithm with any possible

(with respect to the underlying approximation scheme) combination of bucket bound-

aries and term assignments. For each call, the intra-bucket algorithm constructs the

bucket representative PDF, and returns the bucket error to the inter-bucket algorithm.

Then, after all appropriate choices have been tested, we have the final histogram, i.e.,

a sequence of bucket PDFs which approximate the underlying item PDFs.

2.1 The Approximate Inter-Bucket Algorithm

We adjusted the AHIST-S algorithm (discussed in subsection 1.1.2), to the two- dimen-

sional case of probabilistic data. Specifically, the AHIST-S algorithm, builds approx-

imate one-dimensional histograms over deterministic data. We keep the basic ideas

of that work and we create an algorithm which builds approximate probabilistic his-

tograms over probabilistic data. Let T be the number of available terms for histogram

construction, and U = {1,2, ...,N} (|U |= N) be the set of items on which we want to

build the histogram. Assume that item PDFs have a value domain V (|V |=V). Also,

let inter[m, t] (m ∈ U) be the error in approximation of first m items with t terms.

Our algorithm guarantees that inter[m, t] is an (1+ ε)2−approximation of the opti-

mal solution, i.e., inter[m, t] ≤ (1+ ε)2 H-OPT[m, t] (ε ≤ 1), where with H-OPT[m, t]

we denote the optimal solution of Section 1.2. If we set the approximation scheme

only to the inter-bucket algorithm (if we don’t set the approximation both to inter- and

intra-bucket algorithms), we have (1+ε)−approximation of the optimal solution, i.e.,

inter[m, t]≤ (1+ ε)H-OPT[m, t] (ε ≤ 1).

Recall the Dynamic Programming table of optimal algorithm. Our approximate

algorithm builds a similar table, but it chooses to remember/store only a small set of

solutions of sub-problems, which stores in appropriate lists, reducing the searching

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 27

space needed from the algorithm. These solutions are the necessary/important infor-

mation, needed to produce an (1+ ε)2−approximation of the optimal solution.

Our algorithm maintains T-1 lists Q[t] (t ≤ T − 1) of intervals. The intervals, of

each list, cover the entire domain U = {1,2, ..,N} and are disjoint. Each record within

a list Q[t] has the form: (a(t)i ,b(t)i ,err(t)i), where a(t)i ∈U is the start of the ith interval

in the tth list, and b(t)i ∈U is the end. The err(t)i is the error record of the ith interval

in the tth list, which is fixed to be equal with the error in approximation (with t terms)

up to domain value denoted by the end of the interval, i.e., err(t)i = inter[b(t)i , t]. The

intervals are stored by a 1+δ factor which will be fixed in lemma 8, i.e., the error up to

domain value denoted by the end of an interval is not more than (1+δ) times the error

up to domain value denoted by the start of the interval. Thus, a list Q[t] has the fol-

lowing form: Q[t] = {(a(t)1 ,b(t)1 ,err(t)1),(a(t)2 ,b(t)2 ,err(t)2), ...,(a(t)l ,b(t)l ,err(t)l)}, where

a(t)1 = 1,b(t)i +1 = a(t)i+1,b
(t)
l = N.

Each list Q[t] approximates the error curve inter[i, t](i = 1..N) with a staircase

function with l terms (with l error values), where l is the number of intervals stored

in list Q[t]. Notice that the number of intervals in a list, i.e., l, depends on the error

curve we approximating, and is known only after execution. In most cases l � N,

since the intervals are stored by a 1+ δ factor, suggesting that the searching space of

our approximate algorithm, is highly reduced in contrast with the optimal algorithm.

The algorithm inspects the items in increasing order. Let m ≤ N be the current

item, and t ≤ T be the current number of terms. The error in approximation of first m

items with t terms is computed with respect to the following recursion (initial call is

inter[N,T], Max-Error case is handled similarly):

inter[m, t] = min
b(t−t′)∈Q[t−t ′]
1≤t′≤min(V, t−1)

{inter[b(t−t ′), t− t ′]+ intra(b
(t−t′)+1,m)[V, t ′]}

In previous recursion, b(t−t ′) stands for the ends of intervals in Q[t− t ′] (1 ≤ t ′ ≤
min(V, t−1)) lists. It is remarkable that our approximate algorithm needs to examine

only the buckets starting from the ends of the intervals stored in the lists, against the

optimal algorithm which examines every possible bucket boundaries. At each step,

and for each interval (a(t)i ,b(t)i), the algorithm guarantees that: inter[b(t)i , t] ≤ (1 +

δ) inter[a(t)i , t]. Thus, when a new entry (inter[m, t]) has been computed, the algorithm

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 28

checks if inter[m, t] ≤ (1+ δ) inter[a(t)l , t]. If this inequality doesn’t hold, it creates

a new interval (a(t)l+1,b
(t)
l+1,err(t)l+1), where a(t)l+1 = b(t)l+1 = m and err(t)l+1 = inter[m, t].

Otherwise, the algorithm change the last interval in list Q[t], i.e., (a(t)l ,b(t)l ,err(t)l), to be

(a(t)l ,m,err(t)l), where err(t)l = inter[m, t]. We present the pseudocode of inter-bucket

algorithm in Figure 2.1.

2.2 The Approximate Intra-Bucket Algorithm

The algorithm intra(b)[w, t] (where 1 ≤ w ≤ V) computes recursively an approxima-

tion of the optimal error, in the representation (with t terms) of the first w values of

item PDFs within the bucket b. Thus, intra(b)[V, t] constructs a PDF with t terms,

which approximates all item PDFs within the bucket b. Notice that in the initial call

(intra(b)[V, t]), there is no a benefit in assignment of t >V terms, since a PDF has only

V values. The intra-bucket algorithm is an (1+ ε)-approximate algorithm with the

same logic as the inter-bucket algorithm, i.e., intra(b)[w, t]≤ (1+ε)B-OPT(b)[w, t](ε ≤
1), where with B-OPT(b)[w, t] we denote the optimal solution of Section 1.2. It main-

tains min(V−1, t−1) list of intervals with the same logic as before. Each list Q[k] cor-

responds to a staircase function which approximates the whole error function intra(b)[w,k]

(w = 1..V) with l � V error values. In the DP table of the approximate intra-bucket

algorithm, the computation of an entry intra(b)[w, t] follows the formula:

intra(b)[w, t] = min
b(t−1)∈Q[t−1]

{intra(b)[b(t−1), t−1]+VALERR(b,b(t−1)+1,w)}

The previous recurrence is similar with the corresponding recurrence of optimal intra-

bucket algorithm. The only change is the reduced searching space, i.e., our approxi-

mate algorithm examines only the intra-buckets starting from the ends of the intervals,

in contrast with the optimal algorithm which examines every possible bucket bound-

aries. We remind that the function VALERR(b,u,v) computes the optimal error in the

representation of the range (u,v) (where u,v ∈ V) within the bucket b, with one term

(with one value p). The computation of VALERR() depends on the given error metric

[8]. Algorithm’s pseudocode is in Figure 2.2.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 29

Lemma 7. The algorithm intra(b)[w,T] produce an (1+ε)-approximation of the opti-

mal solution, i.e., intra(b)[w,T]≤ (1+ ε)B-OPT(b)[w,T] (ε ≤ 1).

Proof. We will prove by induction that: intra(b)[w,T] ≤ (1+ δ)T−1B-OPT(b)[w,T].

The base case is T = 1. In this case we have: intra(b)[w,1] = B-OPT(b)[w,1] =

VALERR(b,1,w). We assume that the statement holds for t < T , and we will look

if it holds for t = T . Let (v,w] be the last bucket which has been chosen by opti-

mal algorithm (B-OPT(b)[w,T]) to separate the interval [1,w]. Assume that (s,e) is

the interval of (T −1)th list, which has been created from intra(b)[w,T] algorithm and

contains the v: s≤ v≤ e < w. With respect to the above assumptions, we have:

B-OPT(b)[w,T] = B-OPT(b)[v,T −1]+VALERR(b,v+1,w)

≥ B-OPT(b)[s,T −1]+VALERR(b,v+1,w)

(B-OPT(b)[. , T −1] is monotone)

≥ B-OPT(b)[s,T −1]+VALERR(b,e+1,w)

(v≤ e < w and VALERR(b, f ,w) is non-increasing as f increases)

≥ 1
(1+δ)T−2 (intra(b)[s,T −1])+VALERR(b,e+1,w)

(From the induction assumption)

≥ 1
(1+δ)T−2 (1

1+δ
intra(b)[e,T −1]+VALERR(b,e+1,w))

The last inequality holds, because the intra-bucket algorithm guarantees that:

intra(b)[e,T −1]≤ (1+δ) intra(b)[s,T −1]. So, we have that:

B-OPT(b)[w,T]≥ 1
(1+δ)T−2 (1

1+δ
intra(b)[e,T −1]+VALERR(b,e+1,w))

≥ 1
(1+δ)T−1 (intra(b)[e,T −1]+VALERR(b,e+1,w))

≥ 1
(1+δ)T−1 intra(b)[w,T]

The last inequality holds, since, according to the intra-bucket algorithm, we have:

intra(b)[w,T] = min
e∈Q[T−1]

{intra(b)[e,T−1]+VALERR(b,e+1,w)}. By setting δ = ε

2T ,

the approximation factor is at most (1 + ε

2T)
T−1, which is at most 1 + ε for small

ε (ε ≤ 1). This proves the lemma.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 30

Lemma 8. The inter-bucket algorithm produce an (1+ε)2-approximation of the opti-

mal solution, i.e., inter[m,T]≤ (1+ ε)2 H-OPT[m,T] (ε ≤ 1).

Proof. Let ε1 be the aprroximation factor of intra-bucket algorithm. In Lemma 7

we proved that: intra(b)[w, t]≤ (1+ ε1)B-OPT(b)[w, t]. We will prove by induction

that: inter[m,T] ≤ (1+ ε1)(1+ δ)T−1H-OPT[m,T]. The base case is T = 1. In this

case we have: inter[m,1] = H-OPT[m,1] = VALERR((1,m),1,V). Assume that the

statement holds for t < T . We will look if it holds for t = T . Let (k,m] be the last

bucket, chosen by optimal algorithm to separate the interval [1,m] and that assigned

t terms. Also let (s,e) be the interval of (T − t)th list which has created by inter-

bucket algorithm and contains the k, i.e., s ≤ k ≤ e < m. With respect to the above

assumptions, we have:

H-OPT[m,T] = H-OPT[k,T − t]+B-OPT(k+1,m)[V, t]

≥ H-OPT[s,T − t]+B-OPT(k+1,m)[V, t] (H-OPT[. , T − t] is monotone)

≥ H-OPT[s,T − t]+B-OPT(e+1,m)[V, t]

(k ≤ e < m and B-OPT(f ,m)[V, t] is non-increasing as f increases)

≥ 1
(1+ ε1)(1+δ)T−t−1 (inter[s,T − t])+B-OPT(e+1,m)[V, t]

(From the induction assumption)

≥ 1
(1+ ε1)(1+δ)T−t−1 (

1
1+δ

inter[e,T − t])+B-OPT(e+1,m)[V, t]

(The inter-bucket algorithm guarantees that:

inter[e,T − t])≤ (1+δ)inter[s,T − t])

≥ 1
(1+ ε1)(1+δ)T−t (inter[e,T − t])+B-OPT(e+1,m)[V, t]

≥ 1
(1+ ε1)(1+δ)T−t (inter[e,T − t])+

1
(1+ ε1)

(intra(e+1,m)[V, t])

(From lemma 7)

≥ 1
(1+ ε1)(1+δ)T−1 (inter[e,T − t] + intra(e+1,m)[V, t])

(T ≥ t and t ≥ 1)

≥ 1
(1+ ε1)(1+δ)T−1 inter[m,T]

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 31

The last inequality holds, since, according to the inter-bucket algorithm :

inter[m,T] = min
e∈Q[T−t]

{inter[e,T − t]+ intra(e+1,m)[V, t]} (1≤ t ≤ min{V,T −1}).

Setting δ = ε2
2T , the factor (1+ ε2

2T)
T−1 is at most 1+ ε2 for small ε2 (ε2 ≤ 1). Thus,

inter[m,T]≤ (1+ ε1)(1+ ε2)H-OPT[m,T], and if we fix ε1 = ε2 = ε ≤ 1, we have an

(1+ ε)2-approximation of optimal solution. This proves the lemma.

Lemma 9. Let τ1 = min{T ε−1 ln(N), N}. Each list created by inter-bucket algorithm

has O(τ1) size, under sum-squared error metric.

Proof. Consider a list Q[T] = {[a1,b1, inter[b1,T]], ..., [al,bl, inter[bl,T]], [al+1,bl+1, inter[bl+1,T]]}

, which contains l + 1 intervals, where a1 = 1 and ai = bi−1 + 1(2 ≤ i ≤ l + 1). With

respect to the inter-bucket algorithm, we have:

inter[b1 +1,T] = inter[a2,T]> (1+δ)inter[a1,T]

inter[b2 +1,T] = inter[a3,T]> (1+δ)inter[a2,T]
... >

...

inter[bl +1,T] = inter[al+1,T]> (1+δ)inter[al,T]

inter[al+1,T]> (1+δ)l−1inter[a2,T]

Notice that inter[a2,T] cannot be zero, because, in that case, the first inequality cannot

be satisfied.

Let the minimum possible non-zero bucket error be 0 < B-OPTb[V,min{V, T}−k] =

x (k ≥ 0), measured with sum-squared error metric. The k defined, as the minimum

integer which gives a non-zero error. It is clear that this is also the minimum possible

error of the approximate algorithm (inter[N,T]), since inter[N,T] ≥ H-OPT[N,T].

Suppose, for contradiction, that: l > 1+2δ−1ln(x−1 N V)F. The maximum error

of inter-bucket algorithm is when it approximates all item PDFs, with one term. In this

case, we have:

inter[N,1] = VALERR((1,N),1,V) =
N

∑
i=1

V

∑
j=1

(Pr(Xi = j)− p)2 (2.1)

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 32

p = p =

N
∑

i=1

V
∑
j=1

Pr(Xi = j)

(N−1+1)(V −1+1)
(2.2)

(2.1),(2.2)
=⇒ 0 < VALERR((1,N),1,V)≤ N V ⇒ N V ≥ VALERR((1,N),1,V)

≥ inter[al+1,T]≥ (1+δ)l−1inter[a2,T]⇒ N V ≥ (1+δ)l−1inter[a2, t]

≥ x (1+δ)l−1 F⇒

x−1 N V ≥ ((1+δ)
2
δ)ln(x−1 N V) (2.3)

We have that: (1+δ)
2
δ > e (0 < δ < 1), so, from the above equation:

x−1 N V > eln(x−1 N V), which is a contradiction. So, we have:

l ≤ 1+2 δ−1ln(x−1 N V) = 1+2 δ−1(ln(x−1 V)+ ln(N))
�⇒

⇒ l = O(δ−1ln(N)) ⇒
δ= ε

2T (lemma 8)
l = O(T ε−1ln(N)). This proves the lemma.

� Assuming that, asymptotically, the dominant factor is N.

Lemma 10. Let τ2 =min{T ε−1 ln(N), V}. Each list created by intra-bucket algorithm

has O(τ2) size under sum-squared error metric.

Proof. The proof is quite similar with the proof in Lemma 9.

Lemma 11. Let τ3 = min{T ε−1ln(x−1/2), N}, where x > 0 is a constant. Each list

created by inter-bucket algorithm has O(τ3) size, under Max-Error metric.

Proof. Consider a list Q[T] = {[a1,b1, inter[b1,T]], ..., [al,bl, inter[bl,T]], [al+1,bl+1, inter[bl+1,T]]}

, which contains l + 1 intervals, where a1 = 1 and ai = bi−1 + 1(2 ≤ i ≤ l + 1). With

respect to the inter-bucket algorithm, we have:

inter[b1 +1,T] = inter[a2,T]> (1+δ)inter[a1,T]

inter[b2 +1,T] = inter[a3,T]> (1+δ)inter[a2,T]
... >

...

inter[bl +1,T] = inter[al+1,T]> (1+δ)inter[al,T]

inter[al+1,T]> (1+δ)l−1inter[a2,T]

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 33

Notice that inter[a2,T] cannot be zero, because, in that case, the first inequality cannot

be satisfied.

Let the minimum possible non-zero bucket error be 0 < B-OPTb[V,min{V, T}−k] =

x (k ≥ 0), measured with max-error metric. The k defined, as the minimum integer

which gives a non-zero error. It is clear that this is also the minimum possible error of

the approximate algorithm (inter[N,T]), since inter[N,T] ≥ H-OPT[N,T]. Suppose,

for contradiction, that: l > 1+2δ−1ln(x−1/2)F. Directly, from the max-error met-

ric properties, the maximum error of inter-bucket algorithm is 1/2. In this case, we

have:

1/2≥ inter[al+1,T]≥ (1+δ)l−1inter[a2,T]

⇒ 1/2≥ (1+δ)l−1inter[a2, t]≥ x (1+δ)l−1

F⇒ x−1/2≥ ((1+δ)
2
δ)ln(x−1/2) (2.4)

We have that: (1+δ)
2
δ > e (0 < δ < 1), so, from the above equation:

x−1/2 > eln(x−1/2), which is a contradiction. So, we have:

l ≤ 1+2δ−1 ln(x−1/2) ⇒
δ= ε

2T (lemma 8)
l = O(T ε−1ln(x−1/2)). This proves the lemma.

In the following lemmas we don’t give the proofs, since the error bounds (minimum

and maximum error) are the same with those in sum-squared error metric, and so, the

proofs are quite similar.

Lemma 12. Let τ1 =min{T ε−1 ln(N), N}. Each list created by inter-bucket algorithm

has O(τ1) size, under squared Hellinger distance.

Lemma 13. Let τ2 =min{T ε−1 ln(N), V}. Each list created by intra-bucket algorithm

has O(τ2) size, under squared Hellinger distance.

Lemma 14. Let τ1 =min{T ε−1 ln(N), N}. Each list created by inter-bucket algorithm

has O(τ1) size, under L1 Error metric.

Lemma 15. Let τ2 =min{T ε−1 ln(N), V}. Each list created by intra-bucket algorithm

has O(τ2) size, under L1 Error metric.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 34

We are ready now to give the time complexity of our approximate algorithm for a

variety of error metrics.

Theorem 16. An (1+ ε)2-approximation, i.e., when we set the approximation scheme

both to inter- and intra-bucket algorithms, of optimal T-term histogram of a proba-

bilistic relation under sum-squared error, can be found in time

O(NT min{T,V}τ1 +N T τ1V min{T,V}τ2), where τ1, τ2 are the list sizes, under sum-

squared error, of the approximate inter- and intra-bucket algorithms, respectively.

Proof. The time complexity of our approximate Dynamic Programming algorithms

depends on the time complexity of the core component, i.e., the time complexity of

VALERR function. The VALERR function can be computed in constant time, under

sum-squared error metric [8]. Our approximate inter-bucket algorithm builds an ap-

proximate N × T Dynamic Programming table. For each entry in this table, there

is a inter-searching space of size O(min{T,V} τ1) (τ1 denotes the list size bound of

inter-bucket algorithm). Thus, our approximate Dynamic Programming scheme needs

O(N T min{T,V}τ1) time to compare all possible choices (with respect to the underly-

ing approximation scheme) of bucket boundaries and term assignments. The rest time

is consumed by the intra-bucket algorithm’s calls. Clearly, each call of intra-bucket

algorithm has O(V min{T,V} τ2) time complexity (τ2 denotes the list size bound of

intra-bucket algorithm). We need to call intra-bucket algorithm only with a space al-

lotment of min{T,V} terms, since there is no benefit in assignment of t >V terms for

a bucket (a PDF has only V terms), and additionally, the intra-bucket algorithm itself

performs Dynamic Programming, so the calculation of intra(b)[V, t] also generates the

solutions intra(b)[V, t ′] (1 ≤ t ′ < t). Naively, there is a need to carry out O(N T τ1)

evaluations of intra-bucket algorithm totally, i.e., we need to evaluate the intra-bucket

algorithm for each bucket, starting at the end point of an interval in a list (plus one)

and ending at the current item i ∈U . Actually, we carry out significantly fewer eval-

uations than O(N T τ1) and of course fewer than the optimal algorithm which needs

O(N2) evaluations. This holds, because we need to evaluate the intra-bucket algorithm

only for the buckets starting at the distinct ends of the intervals within the T-1 lists.

These distinct ends are obviously less than N. Hence, combining the above, the overall

time complexity to build an approximate probabilistic histogram under sum-squared

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 35

error metric is O(N T min{T,V} τ1 + N T τ1 V min{T,V} τ2).

Theorem 17. An (1+ ε)-approximation, i.e., when we set the approximation scheme

only to the inter-bucket algorithm, of optimal T-term histogram of a probabilistic rela-

tion under sum-squared error, can be found in time

O(NT min{T,V}τ1 +N T τ1V 2min{T,V}), where τ1, is the list size, under sum-squared

error, of the approximate inter-bucket algorithm.

Proof. The proof is quite similar with the proof of theorem 16. The only difference is

that an intra-bucket call has O(V 2min{T,V}) time complexity, since we don’t set the

approximation scheme to the intra-bucket algorithm.

Theorem 18. An (1+ ε)2-approximation, i.e., when we set the approximation scheme

both to inter- and intra-bucket algorithms, of optimal T-term histogram of a proba-

bilistic relation under (squared) Hellinger distance, can be found in time

O(NT min(T,V)τ1 +N T τ1V min{T,V}τ2), where τ1, τ2 are the list sizes, under (squared)

Hellinger distance, of the approximate inter- and intra-bucket algorithms, respectively.

Proof. The proof is quite similar with Theorem 16.

Theorem 19. An (1+ ε)-approximation, i.e., when we set the approximation scheme

only to the inter-bucket algorithm, of optimal T-term histogram of a probabilistic rela-

tion under under (squared) Hellinger distance, can be found in time

O(NT min{T,V}τ1 +N T τ1V 2min{T,V}), where τ1, is the list size, under (squared) Hellinger

distance, of the approximate inter-bucket algorithm.

Proof. The proof is quite similar with the proof of theorem 18. The only difference is

that an intra-bucket call has O(V 2min{T,V}) time complexity, since we don’t set the

approximation scheme to the intra-bucket algorithm.

Theorem 20. An (1+ ε)2-approximation, i.e., when we set the approximation scheme

both to inter- and intra-bucket algorithms, of optimal T-term histogram of a proba-

bilistic relation under L1 error metric, can be found in time

O(NT min(T,V)τ1 +N T τ1V τ2min{V,N}log(V N)), where τ1, τ2 are the list sizes, under

L1 error metric, of the approximate inter- and intra-bucket algorithms, respectively.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 36

Proof. The proof is quite similar with the corresponding proof for L1 error metric in

[8]. The only difference is the reduced searching space of our approximate inter- and

intra-bucket algorithms, depending on the list sizes under L1 error metric.

Theorem 21. An (1+ ε)-approximation, i.e., when we set the approximation scheme

only to the inter-bucket algorithm, of optimal T-term histogram of a probabilistic rela-

tion under under L1 error metric, can be found in time

O(NT min{T,V}τ1 +N T τ1V 2min{V,N}log(V N)), where τ1, is the list size, under L1 er-

ror metric, of the approximate inter-bucket algorithm.

Proof. The proof is quite similar with the proof of theorem 20. The only difference is

that we don’t set the approximation scheme to the intra-bucket algorithm, and thus, its

searching space is the same with the searching space of optimal intra-bucket algorithm.

Theorem 22. An (1+ε)-approximation of optimal T-term histogram of a probabilistic

relation under Max-Error, can be found in time O(T N min{T,V} τ3 V), where τ3 is the

list size, under max-error, of the approximate inter-bucket algorithm.

Proof. The proof is quite similar with the corresponding proof in [8]. The only dif-

ference is the reduced searching space of our approximate inter-bucket algorithm, de-

pending on the list sizes under the max-error measure.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 37

Set up T lists Q[t] to store the intervals (initially are empty)
for t = T Down to 1 do

inter[1, t]← intra(1,1)[V,min(t,V)])
Insert a new interval (1,1, inter[1, t]) to Q[t]

end for
for i = 2 up to N do

for t = T Down to 1 do
if t == 1 then

inter[i,1]← VALERR((1, i),1,V)
//al is the start index of the last interval in Q[1]
//bl is the end index of the last interval in Q[1]
if inter[i,1]> (1+δ)inter[al,1] then

al+1 = bl+1 = i
Insert a new interval [al+1,bl+1, inter[i,1]] to Q[1]

else
Change the last interval to be: [al, i, inter[i,1]]

end if
else

inter[i, t]← ∞

for k = 1 up to min(V, t−1) do
for e = each end point b of interval list Q[t-k] do

inter[i, t]←min(inter[i, t], inter[e, t− k]+ intra(e+1,i)[V,k])
//al is the start index of the last interval in Q[t]
//bl is the end index of the last interval in Q[t]
if inter[i, t]> (1+δ)inter[al, t] then

al+1 = bl+1 = i
Insert a new interval [al+1,bl+1, inter[i, t]] to Q[t]

else
Change the last interval to be: [al, i, inter[i, t]]

end if
end for

end for
end if

end for
end for

Figure 2.1: The Inter-Bucket Algorithm: inter[N,T]

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 38

Set up T lists Q[t] to store the intervals (initially are empty)
for t = T Down to 1 do

intra(b)[1, t] = VALERR(b,1,1)
Insert a new interval [1,1, intra(b)[1, t]] to Q[t]

end for
for i = 2 up to V do

for t = T Down to 1 do
if t == 1 then

intra(b)[i,1]← VALERR(b,1, i)
//al is the start index of the last interval in Q[1]
//bl is the end index of the last interval in Q[1]
if intra(b)[i,1]> (1+δ)intra(b)[al,1] then

al+1 = bl+1 = i
Insert a new interval [al+1,bl+1, intra(b)[i,1]] to Q[1]

else
Change the last interval to be: [al, i, intra(b)[i,1]]

end if
else

intra(b)[i, t]← ∞

for e = each end point in interval list Q[t-1] do
intra(b)[i, t]←min(intra(b)[i, t], intra(b)[e, t−1]+VALERR(b,e+1, i))
//al is the start index of the last interval in Q[t]
//bl is the end index of the last interval in Q[t]
if intra(b)[i, t]> (1+δ)intra(b)[al, t] then

al+1 = bl+1 = i
Insert a new interval [al+1,bl+1, intra(b)[i, t]] to Q[t]

else
Change the last interval to be: [al, i, intra(b)[i, t]]

end if
end for

end if
end for

end for

Figure 2.2: The Intra-Bucket Algorithm: intra(b)[V,T]

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 39

2.3 Experimental Study

We implemented our algorithms for building approximate probabilistic histograms in

C, and carried out a set of experiments to compare the quality and scalability of our

results against the optimal (in terms of overall error) probabilistic histograms. The

experiments were performed on a server equipped with 4 CPUs clocked at 2.3 GHz,

and 4GB of RAM. Each experiment was run on a single CPU.

Data Set. We experimented using a real data set. The real data set came from the

MystiQ project1 which includes approximately 127,000 tuples describing 27,700 dis-

tinct items. These correspond to links between a movie database and an e-commerce

inventory, so the tuples for each item define the distribution of the number of expected

matches, formed by combining individual tuple linkage probabilities into PDFs. In

this data set the maximum frequency of any item was 13, thus requiring us to estimate

V = 14 frequency probabilities for each item (i.e., the probability that the frequency of

each item is 0, 1,...,13).

Testing the approximation scheme. We experimented with the real data set and the

following error metrics: Sum-Squared Error, (Squared) Hellinger Distance, L1 error,

and Max-Error metric. We explore the effect of the approximation in construction time

costs and in accuracy of the produced histograms. We contrast our algorithm with the

optimal algorithm (Section 1.2), termed as phist.

We build histograms over N items using T terms and we study two basic cases.

In the first case we set the approximation scheme only to the inter-bucket algorithm

to produce (1+ ε)-approximate Probabilistic Histograms. This case make more sense

when the item domain U is huge and value domain V is small. We experimented with

various domain U sizes (N=10000, N=27703, N=50000), to see how our approximate

scheme behaves against the optimal algorithm as the size of U increases. In that

experiments, the size of value domain was fixed to |V | = 14. Also, we experimented

with various choices of number of available terms (T=50, T=500, T=1000). For L1

error metric, we used the first 2000 items and 20 terms, because the computational

cost for this algorithm is much higher.

1http://www.cs.washington.edu/homes/suciu/project-mystiq.html

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 40

In the second case, we set the approximation scheme to both algorithms (inter- and

intra-bucket) to produce (1 + ε)2-approximate Probabilistic Histograms. This case

make more sense when the item domain U and the corresponding value domain V are

huge. We experimented with a item domain of size N = 4000 and a value domain of

size |V |= 131, to see how our approximate scheme behaves against the optimal algo-

rithm, when the value domain V is big. In that experiments, the number of available

terms was T = 200.

We produce three graphs for each experiment. In the first graph, we show the

error of the probabilistic histogram, according to the number of terms we used. In the

second graph, we show the time taken to build the histogram (with a given number of

terms), as the number of items (N) increases. Finally, the third graph, presents the time

taken to build the histogram (with a given number of items), as the number of terms

(T) increases.

In Figures 2.3 - 2.14, we show the results for the Sum-Squared Error metric. In

Figures 2.15 - 2.20, we present the results for the (Squared) Hellinger Distance. The

Figures 2.21 - 2.23 are for L1 Error metric and the Figures 2.24 - 2.26 are for Max

Error metric.

In most cases, we see that our approximate algorithm produce almost-optimal

Probabilistic Histograms. Moreover, in most cases, we see the clear benefits of our

approximate algorithms in construction time costs.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 41

0 100 200 300 400 500
Number of Terms

0

5000

10000

15000

20000

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

SSE vs Number of Terms (SSE, N=27703, V=14)

(a) The overall picture

430 440 450 460 470 480 490 500
Number of Terms

1905

1910

1915

1920

1925

1930

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

SSE vs Number of Terms (SSE, N=27703, V=14)

(b) Zoomed picture

Figure 2.3: Sum-Squared Error vs Number of Terms: (1 + ε)-approximation,
N=27703, V=14

2.3.1 Sum-Squared Error Metric

1st Case Study:

In this case study, we use N=27703 item PDFs with a value domain of size |V |= 14.

The number of available terms, for histogram construction, varies from T = 1 to T =

500.We set the approximation scheme only to the inter-bucket algorithm, since the

value domain V is small, i.e., we produce (1+ε)-approximations of optimal solution,

where ε ∈ {0.1,0.2,0.5,0.8}.
In Figure 2.3, we present the sum-squared error of our probabilistic histograms

over N items, as the number of available terms increases. The Figure 2.3(a) is the

overall picture. We see that the error decreases gradually as more terms are allowed,

but in high rates for the first terms and in low rates as the number of terms becoming

large, suggesting that there is a little benefit in using a large number of terms for this

data set. The important observation in this graph, is that our approximate algorithm

produces, even for large ε , i.e., ε = 0.8, almost-optimal probabilistic histograms. We

show the negligible differences in sum-squared errors, between our approximate algo-

rithm and the optimal algorithm (phist), in the zoomed picture 2.3(b). These negligible

differences in sum-squared errors, making us to remember that the error bounds in the

inductive proofs, was for worst case scenarios. As we expected, as the precision pa-

rameter ε increases, we have larger errors.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 42

0 5000 10000 15000 20000 25000
Number of Items

0

50

100

150

200

250

300

T
im

e
(m

in
u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Items (SSE, T=500, V=14)

Figure 2.4: Sum-Squared Error Metric: Time as the number of items N varies, (1+ε)-
approximation, T=500, V=14

In Figure 2.4, we present the time taken to build the optimal T-term probabilistic

histogram and the corresponding (1+ε)-approximate T-term probabilistic histograms,

under sum-squared error metric, over N items, as the number of items N increases. The

number of available terms is fixed to T = 500. We observe the clear benefits of our ap-

proximation scheme, in construction time costs, against the optimal algorithm (phist).

Even for small ε , i.e., ε = 0.1, our approximate algorithm builds the probabilistic his-

togram in less than the half time required by the optimal algorithm. As we expected,

the benefits in construction time cost are larger, as the precision parameter ε increases.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 43

0 100 200 300 400 500
Number of Terms

0

50

100

150

200

250

300

T
im

e
(m

in
u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Terms (SSE, N=27703, V=14)

Figure 2.5: Sum-Squared Error Metric: Time as the number of terms T varies, (1+ε)-
approximation, N=27703, V=14

In Figure 2.5, we present the time taken to build the optimal T-term probabilistic

histogram and the corresponding (1+ε)-approximate T-term probabilistic histograms,

under sum-squared error metric, over N items, as the number of terms T increases. The

number items N is fixed to N = 27703. We observe the clear benefits of our approxi-

mation scheme, in construction time costs, against the optimal algorithm (phist). Even

for small ε , i.e., ε = 0.1, our approximate algorithm builds the probabilistic histogram

in less than the half time required by the optimal algorithm. As we expected, the ben-

efits in construction time cost are larger, as the precision parameter ε increases. We

also see that the time costs grow in a linear fashion as the number of terms increases.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 44

2nd Case Study:

In this case study we increase the item domain size, i.e., we use N=50000 item PDFs

with a value domain of size |V |= 14, to see how our approximate algorithm behaves

with large item domain sizes. Our purpose is to show the O(NlogN) nature of our

approximate algorithm against the O(N2) nature of the optimal algorithm, as the item

domain U becoming huge. The benefit in construction time costs, of our approximate

algorithm, is clearer, as the size of item domain U increases. Also, we have clearer

benefits, when the number of available terms is small, because the δ factor of our

approximate algorithm was fixed by the inductive proofs to δ = ε/2T . Thus, small T

produces large δ , leading to small sizes of interval lists maintained by our approximate

algorithm. In this case study, the number of available terms varies from T = 1 to

T = 50. We set the approximation scheme only to the inter-bucket algorithm, i.e., we

produce (1+ ε)-approximations of optimal solution.

0 10 20 30 40 50
Number of Terms

0

5000

10000

15000

20000

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

SSE vs Number of Terms (SSE, N=50000, V=14)

(a) The overall picture

46 47 48 49 50
Number of Terms

3580

3585

3590

3595

3600

3605

3610

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

SSE vs Number of Terms (SSE, N=50000, V=14)

(b) Zoomed picture

Figure 2.6: Sum-Squared Error vs Number of Terms: (1 + ε)-approximation,
N=50000, V=14

In Figure 2.6, we present the sum-squared error of our (1+ ε)-probabilistic his-

tograms, over N items, as the number of available terms increases. From this figure,

someone can extract similar observations with the previous experiment (Fig. 2.3), i.e.,

that our approximation scheme produces almost-optimal probabilistic histograms.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 45

0 10000 20000 30000 40000 50000
Number of Items

0

50

100

150

200

250

T
im

e
(m

in
u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Terms (SSE, T=50, V=14)

Figure 2.7: Sum-Squared Error Metric: Time as the number of items N varies, (1+ε)-
approximation, T=50, V=14

In Figure 2.7, we present the time taken to build the optimal T-term probabilistic

histogram and the corresponding (1+ε)-approximate T-term probabilistic histograms,

under sum-squared error metric, over N items, as the number of items N increases. The

number of available terms is fixed to T = 50. We observe the clear benefits of our ap-

proximation scheme, in construction time costs, against the optimal algorithm (phist).

Even for small ε , i.e., ε = 0.1, our approximate algorithm builds the probabilistic his-

togram in 1/3 of time required by the optimal algorithm. When ε = 0.8, our algorithm

builds the histogram in 1/6 of time required by the optimal algorithm. The benefits in

construction time cost are larger, as the precision parameter ε increases.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 46

10 20 30 40 50
Number of Terms

0

50

100

150

200

T
im

e
(m

in
u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Terms (SSE, N=50000, V=14)

Figure 2.8: Sum-Squared Error Metric: Time as the number of terms T varies, (1+ε)-
approximation, N=50000, V=14

In Figure 2.8, we present the time taken to build the optimal T-term probabilistic

histogram and the corresponding (1+ε)-approximate T-term probabilistic histograms,

under sum-squared error metric, over N items, as the number of terms T increases. In

this experiment, the number items N is fixed to N = 50000. We observe again (as in

Fig. 2.7) the clear benefits of our approximation scheme, in construction time costs,

against the optimal algorithm (phist). We observe again (as in Fig. 2.5) that the time

costs grow in a linear fashion as the number of terms increases.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 47

3rd Case Study:

0 200 400 600 800 1000
Number of Terms

0

1000

2000

3000

4000

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsion 0.8

SSE vs Number of Terms (SSE, N=10000, V=14)

(a) The overall picture

920 940 960 980 1000
Number of Terms

568

570

572

574

576

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsion 0.8

SSE vs Number of Terms (SSE, N=10000, V=14)

(b) Zoomed picture

Figure 2.9: Sum-Squared Error vs Number of Terms: (1 + ε)-approximation,
N=10000, V=14

In this case study, we allow a large number of available terms, i.e., T = 1 to T =

1000, to see how our approximation scheme behaves with large numbers of available

terms. We use N=10000 item PDFs with a value domain of size |V | = 14. We set

the approximation scheme only to the inter-bucket algorithm, i.e., we produce (1+ε)-

approximations of optimal solution.

In Figure 2.9, we present the sum-squared error of our (1+ ε)-probabilistic his-

tograms, over N items, as the number of available terms increases. Again, someone can

extract similar observations with the Fig. 2.3 (negligible differences in sum-squared

errors).

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 48

0 2000 4000 6000 8000 10000
Number of Items

0

10

20

30

40

50

60

70

80

T
im

e
(m

in
u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Items (SSE, T=1000, V=14)

Figure 2.10: Sum-Squared Error Metric: Time as the number of items N varies, (1+
ε)-approximation, T=1000, V=14

In Figure 2.10, we present the time taken to build the optimal T-term probabilistic

histogram and the corresponding (1+ε)-approximate T-term probabilistic histograms,

under sum-squared error metric, over N items, as the number of items N increases.

The number of available terms is fixed to T = 1000, i.e., 10% of total number of items.

Even for small ε , i.e., ε = 0.1, our approximate algorithm builds the probabilistic

histogram in less than the half of time required by the optimal algorithm. Again, the

benefits in construction time cost are larger, as the precision parameter ε increases.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 49

0 200 400 600 800 1000
Number of Terms

0

10

20

30

40

50

60

T
im

e
(m

in
u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Terms (SSE, N=10000, V=14)

Figure 2.11: Sum-Squared Error Metric: Time as the number of terms T varies, (1+
ε)-approximation, N=10000, V=14

In Figure 2.11, we present the time taken to build the optimal T-term probabilistic

histogram and the corresponding (1+ε)-approximate T-term probabilistic histograms,

under sum-squared error metric, over N items, as the number of terms T increases from

T = 1 to T = 1000. The number items N is fixed to N = 10000. We observe again

(as in Fig. 2.10) the benefits of our approximation scheme, in construction time costs,

against the optimal algorithm (phist). Also, we see (as in Fig. 2.5) that the time costs

grow in a linear fashion as the number of terms increases.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 50

0 50 100 150 200
Number of Terms

300

400

500

600

700

800

900

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

SSE vs Number of Terms (SSE, N=4000, V=131)

(a) The overall picture

160 170 180 190 200
Number of Terms

368

370

372

374

376

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

SSE vs Number of Terms (SSE, N=4000, V=131)

(b) Zoomed picture

Figure 2.12: Sum-Squared Error vs Number of Terms: (1 + ε)2-approximation,
N=4000, V=131

4th Case Study:

In this case study, we use N=4000 ”heavy” item PDFs with a value domain of size

|V | = 131. We set the approximation scheme both to the inter- and intra-bucket

algorithms, since the value domain V is relatively big, i.e., we produce (1 + ε)2-

approximations of optimal solution, where ε ∈ {0.1,0.2,0.5,0.8}. Thus, we explore

the effect of (1+ ε)2-approximation in quality and scalability of the produced his-

tograms, when the value domain is big and make more sense to set the approximation

scheme both to the inter- and intra-bucket algorithms.

In Figure 2.12, we present the sum-squared error of our probabilistic histograms

over N items as the number of available terms increases. Even for large choices for

ε , ε = 0.8, we see again negligible differences, in sum-squared errors, between our

(1+ ε)2-approximations and the corresponding optimal errors.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 51

0 1000 2000 3000 4000
Number of Items

0

100

200

300

400

T
im

e
(m

in
u
te

s)

phist

epsilon 0.1

epsilon 0.5

epsilon 0.5

epsilon 0.8

Time vs Number of Items (SSE, T=200, V=131)

Figure 2.13: Sum-Squared Error Metric: Time as the number of items N varies, (1+
ε)2-approximation, T=200, V=14

In Figure 2.13, we present the time taken to build the optimal T-term probabilis-

tic histogram and the corresponding (1 + ε)2-approximate T-term probabilistic his-

tograms, under sum-squared error metric, over the N ”heavy” item PDFs, as the num-

ber of items N increases. The number of available terms is fixed to T = 200. As in the

case of (1+ ε)-approximation, when we set the approximation scheme both to inter-

and intra bucket algorithms, we see again the clear benefits, in construction time costs,

against the optimal algorithm (phist). Even for small ε , i.e., ε = 0.1, our approximate

algorithm builds the probabilistic histogram in less than the half time required by the

optimal algorithm. Again, as we expected, the benefits in construction time cost are

larger, as the precision parameter ε increases.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 52

0 50 100 150 200
Number of Terms

100

150

200

250

300

350

400

T
im

e
(m

in
u
te

s) phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Terms (SSE, N=4000, V=131)

Figure 2.14: Sum-Squared Error Metric: Time as the number of terms T varies, (1+
ε)2-approximation, N=4000, V=14

In Figure 2.14, we present the time taken to build the optimal T-term probabilis-

tic histogram and the corresponding (1 + ε)2-approximate T-term probabilistic his-

tograms, under sum-squared error metric, over N ”heavy” items, as the number of

terms T increases. The number items N is fixed to N = 4000. We observe again (as in

Fig. 2.13) the clear benefits of our approximation scheme, in construction time costs,

against the optimal algorithm (phist). Again, the time costs grow in a linear fashion as

the number of terms increases.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 53

2.3.2 (Squared) Hellinger Distance

The (squared) Hellinger distance is a similar error metric with the sum-squared error

metric. Thus, the results for this metric are quite similar with the corresponding results

of sum-squared error metric. Here, we present two experiments for the (Squared)

Hellinger Distance.

In the first experiment (1st case study: Figs 2.15 - 2.17), we use N=27703 items

with a value domain of size |V |= 14, and we build (1+ ε)-approximate probabilistic

histograms over the N items, using at most T=500 terms. The results are quite similar

with the corresponding case study for sum-squared error metric, i.e., Figs 2.3 - 2.5.

In the second experiment (2nd case study: Figs 2.18 - 2.20), we use N=4000

”heavy” items with a large value domain of size |V | = 131, and we build (1+ ε)2-

approximate probabilistic histograms over the N items, using at most T=200 terms.

The results are quite similar with the corresponding case study for sum-squared error

metric, i.e., Figs 2.12 - 2.14.

1st Case Study:

0 100 200 300 400 500
Number of Terms

0

5000

10000

15000

20000

25000

30000

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Hellinger Error vs Number of Terms (Hellinger, N=27703, V=14)

(a) The overall picture

430 440 450 460 470 480 490 500
Number of Terms

2910

2915

2920

2925

2930

2935

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Hellinger Error vs Number of Terms (Hellinger, N=27703, V=14)

(b) Zoomed picture

Figure 2.15: (Squared) Hellinger Distance vs Number of Terms: (1 + ε)-
approximation, N=27703, V=14

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 54

0 5000 10000 15000 20000 25000
Number of Items

0

50

100

150

200

250

300
T

im
e

(m
in

u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Items (Hellinger, T=500, V=14)

Figure 2.16: (Squared) Hellinger Distance: Time as the number of items N varies,
(1+ ε)-approximation, T=500, V=14

0 100 200 300 400 500
Number of Terms

0

50

100

150

200

250

300

T
im

e
(m

in
u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Terms (Hellinger, N=27703, V=14)

Figure 2.17: (Squared) Hellinger Distance: Time as the number of terms T varies,
(1+ ε)-approximation, N=27703, V=14

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 55

2nd Case Study:

0 50 100 150 200
Number of Terms

1000

1500

2000

2500

3000

3500

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Error vs Number of Terms (Hellinger, N=4000, V=131)

(a) The overall picture

180 185 190 195 200
Number of Terms

812

814

816

818

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Error vs Number of Terms (Hellinger, N=4000, V=131)

(b) Zoomed picture

Figure 2.18: (Squared) Hellinger Distance vs Number of Terms: (1 + ε)2-
approximation, N=4000, V=131

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 56

0 1000 2000 3000 4000
Number of Items

0

100

200

300

400
T

im
e

(m
in

u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs number of Items (Hellinger, T=200, V=131)

Figure 2.19: (Squared) Hellinger Distance: Time as the number of items N varies,
(1+ ε)2-approximation, T=200, V=131

0 50 100 150 200
Number of Terms

100

150

200

250

300

350

400

T
im

e
(m

in
u
te

s) phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Terms (Hellinger, N=4000, V=131)

Figure 2.20: (Squared) Hellinger Distance: Time as the number of terms T varies,
(1+ ε)2-approximation, N=4000, V=131

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 57

2.3.3 L1 Error Metric

The L1 error metric is the most time consuming metric relatively with the other metrics

explored. This metric has much higher computational cost than the other metrics con-

sidered, since the computation of VALERR function for L1 error metric, is associated

with the time consuming two-dimensional range-sum-median problem [8].

Thus, in the case study presented here, we use a relatively small dataset, consisting

of N=2000 items with a value domain of size |V | = 14. We build T-term (1+ ε)-

approximate probabilistic histograms over N items using at most 20 terms. We set

the approximation scheme only to the inter-bucket algorithm, i.e., we produce (1+ε)-

approximations of optimal solution. We contrast our results, i.e., scalability and quality

of the produced (1+ ε)-approximate histograms, against the optimal histogram.

0 5 10 15 20
Number of Terms

600

800

1000

1200

1400

1600

1800

2000

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

L1 Error vs Number of Terms (L1, N=2000, V=14)

(a) The overall picture

18 18.5 19 19.5 20
Number of Terms

592

592.5

593

593.5

594

594.5

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

L1 Error vs Number of Terms (L1, N=2000, V=14)

(b) Zoomed picture

Figure 2.21: L1 Error vs Number of Terms: (1+ ε)-approximation, N=2000, V=14

In Figure 2.21, we present the L1 error of our (1+ ε)-probabilistic histograms,

over N items, as the number of available terms increases. From this figure, someone

can extract similar observations with the other metrics, i.e., our approximate scheme

produces almost-optimal probabilistic histograms (negligible differences between the

(1+ ε)-approximations and the optimal L1 error).

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 58

0 500 1000 1500 2000
Number of Items

0

100

200

300

400
T

im
e

(m
in

u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Items (L1, T=20, V=14)

Figure 2.22: L1 Error Metric: Time as the number of items N varies, (1 + ε)-
approximation, T=20, V=14

In Figure 2.22, we present the time taken to build the optimal T-term probabilistic

histogram and the corresponding (1+ε)-approximate T-term probabilistic histograms,

under L1 error metric, over N items, as the number of items N increases. The number

of available terms is fixed to T = 20. We observe the benefits of our approximation

scheme, in construction time costs, against the optimal algorithm (phist). The results

for this experiment are not such good as in the other metrics, since the benefits of our

approximation scheme are clearer as the domain of items increases. But, because of

high computational cost of this metric, explained before, it was not possible to examine

larger data sets. However, even with a small dataset of 2000 items, we observe that

our approximate algorithm when ε = 0.8, builds the histogram almost in half of the

time required by the optimal algorithm (phist). As in the other metrics, the benefits in

construction time cost are larger, as the precision parameter ε increases.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 59

5 10 15 20
Number of Terms

100

150

200

250

300

350

400
T

im
e

(m
in

u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Terms (L1, N=2000, V=14)

Figure 2.23: L1 Error Metric: Time as the number of terms T varies, (1 + ε)-
approximation, N=2000, V=14

In Figure 2.23, we present the time taken to build the optimal T-term probabilistic

histogram and the corresponding (1+ε)-approximate T-term probabilistic histograms,

under L1 error metric, over N items, as the number of terms T increases from T = 1

to T = 20. The number of items N is fixed to N = 2000. We observe again (as in Fig.

2.22) the benefits of our approximation scheme, in construction time costs, against the

optimal algorithm (phist).

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 60

2.3.4 Max-Error Metric

The best results came from Max-Error metric. Clearly, from the Max-Error metric

properties, there are large ranges with the same max-error. Specifically, let maxErr(i, t)

denote the max-error in the t-term representation up to domain point i ∈ U . Also,

let the current measured max-error caused by item j ∈ U . For a given number of

t terms, this error will be the same with the errors maxErr(j + 1, t),maxErr(j +

2, t), ...,maxErr(j+ k, t), until a next item (let be j+k+1) contributes to a larger error,

i.e., maxErr(j+k+1, t)> maxErr(j, t). From our approximation scheme properties,

all these ranges will be stored in the interval lists maintained by our algorithm. Thus,

the searching space of our approximate algorithm is drastically reduced relatively with

the searching space of optimal algorithm, since we need to remember only the max-

errors at the ends of such large intervals.

0 100 200 300 400 500
Number of Terms

0.42

0.44

0.46

0.48

0.5

E
rr

o
r

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Max Error vs Number of Terms (Max Error, N=27704, V=14)

Figure 2.24: Max Error vs Number of Terms, , (1+ε)-approximation, N=27703, V=14

We use N=27703 item PDFs with a value domain of size |V |= 14. The number of

available terms, for histogram construction, varies from T = 1 to T = 500. We produce

(1+ ε)-approximations of optimal solution, where ε ∈ {0.1,0.2,0.5,0.8}.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 61

0 5000 10000 15000 20000 25000
Number of Items

0

100

200

300

400

500

600

700

T
im

e
(m

in
u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Items (Max Error, T=500, V=14)

Figure 2.25: Max Error Metric: Time as the number of items N varies, (1 + ε)-
approximation, T=500, V=14

In Figure 2.24, we present the max error of our probabilistic histograms over N

items as the number of available terms increases. Even for large choices for the pre-

cision parameter ε , the (1+ ε)-approximate max-error curves are identical with the

corresponding optimal error curve.

In Figure 2.25, we present the time taken to build the optimal T-term probabilistic

histogram and the corresponding (1+ε)-approximate T-term probabilistic histograms,

under max-error metric, over N items, as the number of items N increases. In this

experiment, the number of available terms is fixed to T = 500. We observe the ex-

traordinary benefits of our approximation scheme, in construction time costs, against

the optimal algorithm (phist). It is remarkable that time costs, of our approximate

algorithm, grow in a linear fashion as the number of items increases.

CHAPTER 2. BUILDING APPROXIMATE PROBABILISTIC HISTOGRAMS 62

0 100 200 300 400 500
Number of Terms

0

100

200

300

400

500

600

700

T
im

e
(m

in
u
te

s)

phist

epsilon 0.1

epsilon 0.2

epsilon 0.5

epsilon 0.8

Time vs Number of Terms (Max Error, N=27703, V=14)

Figure 2.26: Max Error Metric: Time as the number of terms T varies, (1 + ε)-
approximation, N=27703, V=14

In Figure 2.26, we present the time taken to build the optimal T-term probabilistic

histogram and the corresponding (1+ε)-approximate T-term probabilistic histograms,

under max-error metric, over N items, as the number of terms T increases from T =

1 to T = 500. In this experiment, the number of items N is fixed to N = 27703.

We observe again (as in Fig. 2.25) the extraordinary benefits of our approximation

scheme, in construction time costs, against the optimal algorithm (phist). As in the

other metrics, we observe that the time costs grow in a linear fashion as the number of

terms increases.

Chapter 3

Concluding Remarks and Future

Work

Histograms have proven to be a very effective summarization mechanism, and are

widely used to capture data distributions. Currently, they are an important part in

commercial query engines.

Moreover, there is a growing realization that modern DBMSs must be able to man-

age data that contain uncertainties that are represented in the form of probabilistic

relations. However, it is difficult to work with the probabilistic data, because of their

high complexity in contrast with the deterministic case. Even for simple queries, there

is a #P hard complexity [9], and thus effective probabilistic histogram construction

arises.

The authors of [8] proposed optimal dynamic programming algorithms to build

optimal probabilistic histograms for probabilistic data. Although, their algorithms are

optimal in terms of overall error, they have high time-complexity.

Since, histograms are themselves approximation schemes, an extra approximation

factor for speed up can be tolerable. The main contribution of this thesis, was the incor-

poration of (1+ ε)-approximation schemes, in the case of probabilistic data. In order

to reduce the high computational cost of optimal probabilistic histogram construction,

we set an approximation scheme to the general DP framework. The speed up is ob-

tained, because our approximate algorithm takes into consideration only a small set of

63

CHAPTER 3. CONCLUDING REMARKS AND FUTURE WORK 64

sub-problems in the DP framework. Our algorithm provides guarantees to the overall

error of the histogram, and gives the user a useful trade-off between the accuracy of the

histogram and the computational cost. Our experimental study, to explore the effect of

such approximation, shows that our approximation scheme produces almost-optimal

probabilistic histograms, with clear benefits in time-complexity against the optimal

algorithm.

It would be interesting to adjust more sophisticated approximation schemes, like

those in [16], to the two-dimensional case of probabilistic data. Another idea for speed

up, is to use map-reduce techniques to have parallel computation. Finally, it would be

interesting to examine other error metrics, e.g., Earth Movers Distance.

Bibliography

[1] C. Aggarwal, editor. Managing and Mining Uncertain Data. Springer, 2009.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the

frequency moments. In ACM Symposium on Theory of Computing, pages 20–29,

1996. Journal version in Journal of Computer and System Sciences, 58:137–147,

1999.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational pro-

cessing of uncertain data. In IEEE International Conference on Data Engineer-

ing, 2008.

[4] O. Benjelloun, A. D. Sarma, C. Hayworth, and J. Widomn. An introduction to

ULDBs and the Trio system. IEEE Data Engineering Bulletin, 29(1):5–16, Mar.

2006.

[5] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu. Mystiq:

A system for finding more answers by using probabilities. In ACM SIGMOD

International Conference on Management of Data, 2005.

[6] G. Cormode and M. Garofalakis. Sketching probabilistic data streams. In ACM

SIGMOD International Conference on Management of Data, 2007.

[7] G. Cormode and M. Garofalakis. Histograms and wavelets on probabilistic data.

In IEEE International Conference on Data Engineering, 2009.

[8] G. Cormode, A. Deligiannakis, M. Garofalakis, A. McGregor. Probabilistic

Histograms for Probabilistic Data. In the Proceedings of VLDB’2009 (PVLDB,

Vol. 2), Lyon, France, August, 2009.

65

BIBLIOGRAPHY 66

[9] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In

International Conference on Very Large Data Bases, 2004.

[10] N. Dalvi and D. Suciu. Management of probabilistic data: foundations and chal-

lenges. In ACM Principles of Database Systems, 2007.

[11] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics

over sliding windows. Proc. of SODA, pages 635-644, 2002.

[12] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate

L1-difference algorithm for massive data streams. SIAM J. Comput., 32(1):131-

151, 2002.

[13] P. Gibbons and Y. Matias. Synopsis data structures for massive data sets. Proc.

of SODA, pages 909-910, 1999.

[14] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and Martin

Strauss. Fast, small-space algorithms for approximate histogram maintenance.

Proc. of ACM STOC, pages 389-398, 2002.

[15] Sudipto Guha, Nick Koudas, Kyuseok Shim. Approximation and Streaming Al-

gorithms for Histogram Construction Problems. ACM Transactions on Database

Systems, Vol. 31, No. 1, March 2006, Pages 396-438.

[16] Sudipto Guha, Nick Koudas, Kyuseok Shim. Data-Streams and Histograms.

STOC01, July 6-8, 2001, Hersonissos, Crete, Greece.

[17] H. V Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T.

Suel. Optimal Histograms with Quality Guarantees. In the Proceedings of the

VLDB Conference, pages 275-286, 1998.

