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Chapter 1

Introduction

Searching is one of the fundamental problems in Computer Science. We “search” for
objects when we search for a web page related to a particular issue of interest (eg give
me a page showing the GDP in Greece), when we make a hotel reservation (eg is there a
free hotel room in Rome on 31 Dec?), when we buy an air ticket (eg is there an available
seat on 31 Dec from Chania to Athens and at what price?), when we browse a digital map
(show the map with center in Chania and radius 10km) or even when we withdraw money
from an ATM (eg return my bank account). Searching is everywhere! Due to all these
numerous application domains search has to deal with diverse data and query types.

Intuitively in order to retrieve objects we set a criterion and ask which data satisfy it. A
naive approach would be asking all the objects sequentially if they satisfy the criterion,
rank them by their relevance and return the most relative one (or more answers). Obvi-
ously this wouldn’t be efficient. Therefore we pre-organize objects into a data structure

(also called index) and ask the index in question. Notions such as relevant, ranking, index
and efficiency arise in the search context.

Of particular interest for this thesis is the type of query that asks for the k answers in a
question given that the objects are stored in a pool of distributed peers. This is called a
distributed k-NN query and such an example of such a query is presented on Figure 1.1.
In this thesis we will extend an existing framework for constructing data structure called
GRaSP which is presented in §2.1. GRaSP is a framework for constructing indices in
P2P networks where data are stored in many computers (peers) and therefore a query has
to traverse (forwarded) many peers (hops). At the moment GRaSP has been instantiated
with rectangular and 3-sided queries (more on these types of queries in §2.1).

On the remaining introduction we will refer on issues regarding the construction of a
distributed data structure for k-NN queries. Our motive will be exhibiting the inherent
difficulties of designing a solution for such a problem and the design choices among
which we will have to choose. Of special interest in the problem of space dimensionality
and the organization of the space among peers, i.e. the space partition.

1
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Figure 1.1: Example of a 1-nn query. Among all the candidate answer points the nearest
point to the query is the one shown on the figure.

1.1 Distributed nearest neighbor searching algorithms

In this section we will present the literature for k-NN search on a p2p environment.

A naive approach would be a central peer (manager node) collecting all the data and lo-
cally performing k-NN classification. This has been performed to sensor networks[44].
But sensors are nodes of low-capabilities. Moreover they have energy constraints and
therefore they cannot process large volume of data. On the contrary the common policy
is transmitting measurements to a pc which does all the hard processing. Therefore this
algorithm is not advised for sensor networks.

GHT*[12, 65] assumes a metric space for data and queries. It supports point, range and
k-NN queries[11]. On the other hand it doesn’t support deletions. Moreover, its perfor-
mance is dependent on (a) the underlying tree structure which in turn is very sensitive
to pivot selection1, and more importantly (b) by consistent updating peer’s state (locally
saved trees called AST).

[47] proposes a k-NN algorithm over CAN[3]. Its search algorithm is similar to ours and
is based on a typical branch-and-bound technique where the neighboring peers are asked
and if they contain a candidate answer recursively.

[59] extends the distributed quadtree-based index[34, 58] by adding k-NN capabilities. It
partitions the space using a quadtree. Each quadtree block is uniquely identified by its
centroid, named as a control point. Then each control point is mapped to a DHT, such as
Chord. The search algorithm similar to ours but parallelizes the search. The drawback is
that each query starts from the root peer and this can cause a bottleneck in the system.

1For the definition of pivots and Distance-Based Indexing see §1.2.4
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1.2 Building a data structure with emphasis on p2p envi-

ronment and nearest neighbor queries

Designing a data structure to be efficient is not an easy task. Generally we cannot or-
ganize data in such a manner that all queries can be optimally answered. Therefore we
construct custom data structures in relation to the problem in question. Accordingly, a Bi-
nary Search Tree is most suitable for searching 1-d data in memory, kd-tree for searching
m-d data in memory, B-tree for search m-d data in disk, etc. From now on we present the
design dimensions that should be taken into account for designing a data structure with
emphasis on a distributed environment and nearest neighbor queries.

The most notable factors that should be taken into account when designing a data struc-
ture are the following:

1.2.1 Type of data

Data can be discrete or continuous. A type of data is discrete if there are only a finite num-
ber of values possible. These values can be numerical, e.g. the line of integer numbers, or
quantitative, e.g. a boolean value (true or false) or a string. A type of data is continuous
when it is defined within a range, e.g. temperature, length, the line of real numbers, etc.
Moreover, the domain of a data type can be bounded (finite) or not. We are especially
interested in data that have extent i.e., occupy space (the so called spatial data). Such
are usually found in pattern recognition and image databases. Typical objects are lines
(roads, rivers), intervals (time, space), regions of varying shape and dimensionality (e.g.,
lakes, countries, building, crop maps, polygons, polyhedra), and surfaces. Objects may
be disjoint or could even overlap. Sometimes, objects are abstracted by feature vectors

usually selected by experts in the application domain. Typical features are color, color
moments, textures, shape descriptions, and so on, expressed using scalar values.

If feature vectors cannot be identified for objects then there are two alternatives assuming
all we have is the distance function among objects (see [36]). The first one is distance-

based indexing, where we compute distances of objects from a few selected objects (called
pivots or vantage points) and use their distances to sort and index data. The second
approach we can can follow if we cannot extract feature vectors from objects are the
embedding methods. Given N objects in a set U , the goal is to choose a value of k and
compute a set of N corresponding points in a k-dimensional space, via an appropriate
mapping F that is applicable to all elements of U and thus also to the query objects q, so
that the distance between the N corresponding points, using a suitably defined distance
function δ, is as close as possible to that given by the original distance function d for the N
objects. For an alternative definition and use of the embedding methods in dimensionality
reduction see Section 1.2.3.

1.2.2 Type of queries

Queries that have extent and arbitrary shape are called similarity queries in order to dis-
tinguish them from the usual queries found in databases. Most of the taxonomy here is
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taken from [28]. On the following definitions we assume that the set of objects (dataset)
is called Ed and is d-dimensional and each object o has extent o.G.

Ranking Queries Given a query object q, report all the objects o ∈ Ed in order of
distance from q, subject to some stopping condition.

Exact Match Query EMQ, Object Query[28] Given an object o′ with spatial extent
o′.G ⊆ Ed, find all objects o with the same spatial extent as o′.

EMQ(o′) = {o|o′.G = o.G}

Point Query PQ[28] Given a point p ∈ Ed, find all objects o overlapping p.

PQ(p) = {o|p ∩ o.G = p}

The point query can be regarded as a special case of several of the following queries, such
as the intersection query, the window query, or the enclosure query.

Window Query WQ, Range Query[28] Given a d-dimensional interval Id = [l1, u1]x[l2, u2]x...x[ld, ud]
where {li ≤ lj |i < j}, {ui ≤ uj|i < j} and {li ≤ ui}, find all objects o having at least
one point in common with Id.

WQ(Id) = {o|Id ∩ o.G 6= ∅}

The query implies that the window is iso-oriented, i.e. its faces are parallel to the coordi-
nate axes. A more general variant is the region query that permits search regions to have
arbitrary orientations and shapes.

Three-sided Range Query A 3-sided query is a special case of 2-d range query, where
the keys are planar points and a range is a rectangle bounded from 3 sides only; a range
is determined by parameters (a, b, c), and reports all keys (x, y) with a ≤ x < b and y < c.

Intersection Query IQ, Region Query, Overlap Query[28] Given an object o’ with
spatial extent o′.G ⊆ Ed, find all objects o having at least one point in common with o’.

IQ(o′) = {o|o′.G ∩ o.G 6= ∅}

Enclosure Query EQ[28] Given an object o’ with spatial extent o′.G ⊆ Ed, find all
objects o enclosing o’.

EQ(o′) = {o|(o′.G ∩ o.G) = o.G}
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Containment Query CQ[28] Given an object o’ with spatial extent o′.G ⊆ Ed, find
all objects o enclosed by o’. CQ(o′) = {o|(o′.G ∩ o.G) = o.G} The enclosure and
the containment are symmetric to each other. They are both more restrictive formulations
of the intersection query by specifying the result of the intersection to be one of the inputs.

Adjacency Query AQ[28] Given an object o’ with spatial extent o′.G ⊆ Ed, find all
object o adjacent to o’.

AQ(o′) = {o|o.G ∩ o′.G 6= ∅ ∧ o′.Go ∩ o.Go = ∅}

Here, o′.Go and o.Go denote the interiors of the spatial extents o′.G and o.G, respectively.

Nearest Neighbor Query NNQ[28], post-office problem[40] Given an object o’ with
spatial extent o′.G ⊆ Ed, find all objects o having a minimum distance from o’.

NNQ(o′) = {o|∀o′′ : dist(o′.G, o.G) ≤ dist(o′.G, o′′.G)}

Distance between extended spatial data objects is usually defined as the distance between
their closest points. Common distance functions for points include the Euclidean and the
Manhattan distance.

Spatial Join[28, 33] Given two collections R and S of spatial objects and a spatial pred-
icate θ, find all pairs of objects (o, o′) ∈ RxS where θ(o.G, o′.G) evaluates to true.

R ⋊⋉θ S = {(o, o′)|o ∈ R ∧ o′ ∈ S ∧ θ(o.G, o′.G)}

As for the spatial predicate θ, a brief survey of the literature [50, 51, 45, 27, 19, 8, 14]
including intersects(), contains(), isenclosedby(), distance()Θq (where Θ ∈ {=,≤
, <,≥, >} and q ∈ E1), northwest(), adjacent() and meets().

A closer inspection of these spatial predicates shows that the intersection join R ⋊⋉intersects

S plays a crucial role for the computation in virtually all of those cases. For predicates
such as contains, encloses, or adjacent, for example ,the intersection join is an efficient
filter that yields a set of candidate solutions typically much smaller that the Cartesian
product RxS.

Generalized Range Search Formally the Generalized Range Search problem is defined
as following. Assume we denote the search space with the symbol U (infinite set), the
key space with K ⊆ 2U (keys are subsets of U) and the range space with R ⊆ 2U (ranges
are subsets of U). Then assuming that the dataset K ⊂ K is stored on a network and
given a general range query r ⊆ R we want all the keys AK(r) = {k ∈ K|k ∩ r 6= ∅}
that answer it. Note that instances of the Generalized Search Problem are the problems of
EMQ (§1.2.2), PQ (§1.2.2), WQ (§1.2.2), IQ (§1.2.2), CQ (§1.2.2)
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k-Nearest Neighbor Query, top-k Selection Query Given a set S of n sites and a
query point q, find a subset S ′ ⊆ S of k ≤ n sites such that for any sites p1 ∈ S ′ and
p2 ∈ S − S ′, dist(q, p1) ≤ dist(q, p2).

The k-nearest neighbor searching is used in a variety of applications, including knowledge
discovery and data mining[60], CAD/CAM systems[42] and multimedia database [15].

Figures 1.2(a)-1.2(f) give some concrete examples.

1.2.3 Dimensionality

In respect to the multi-dimensionality [18] classifies the effects as follows: (1) Geometric
Effects: when the dimension of a space increases, its volume is increased. In order to
sample a high dimensional space, we need an exponentially growing number of points.
This is called the curse of dimensionality[15]. (2) Effects of Partition: As the dimension
increases the space partitioning becomes coarser. (3) Databases Environment: The query
distribution is affected as the dimensionality of the data space increases. Let us add to all
these the fact that there is no total order that preserves spatial proximity. Therefore we
have to tackle with data that have no crisp hierarchical organization.

All this makes searching in high dimensions a hard problem we would like to reduce
to a low dimensional representation. Of course heuristic solutions have been developed
but none gives efficient and qualitative query results. These exploit the fact that fortu-
nately the "inherent dimensionality" of a dataset is often much lower than the dimen-
sionality of the underlying space. Therefore dimensionality reduction techniques (also
called embedding methods; see §1.2.1) have been developed. Dimensionality reduc-
tion techniques work as following: given N vectors in n dimensions find the k most
important axes to project them, where k ≪ n and not necessarily belongs to N (k is
user defined). Most prominent examples are the space filling curves (e.g. z-ordering[2]
and Hilbert curves), Eigenvalue analysis[52] (using Singular Value Decomposition or
Karhunen-Loeve transform), FastMap[26], Principal Component Analysis (PCA), Inde-

pendent Component Analysis (ICA) Multidimensional Scaling (MDS), Isomap, etc. On
Figure 1.2.3 we show exemplary how the FastMap reduces the number of dimensions and
on Figure 1.2.3 we depict a few well-known space filling curves.

1.2.4 Data Organization (aka Space Partition)

We usually cluster the data into sets so that we exploit the shape of the query. For ex-
ample if the query is an 1-d interval and the data are 1-d points and we look for all the
data that the query intersects then it would be better if we divided the space into intervals.
The choice for the partition of the data is called (space partition). Instead of partitioning
the original space we can alternatively map the original space into other (usually of fewer
dimensions) one and partition it. The motive may not be dimensions reduction like §1.2.3
but exploiting the data correlation. For example in a 2-d Cartesian space where all the data
are lied on the x-axis we can map each point (x, y) into x (i.e. throw the y-coordinate)
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(a) Point Query (b) Window Query (c) Intersection Query

(d) Enclosure Query (e) Containment Query (f) Adjacency Query

Figure 1.2: Queries[28]
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Figure 1.3: Dimensionality reduction with FastMap. FastMap embeds the 2-d points on
xy in a lower-dimensional 1-d vector space onto x’-axis and then make use of a filter-
and-refine algorithm in conjunction with multidimensional indexing methods to prune
irrelevant candidates from consideration.

and get same results with less complexity.

Usual space partitioning in distance-based indexing are the Ball-partitioning (see Fig-
ure 1.5(a)) if we choose one object and the Generalized-hyperplane partitioning (see
Figure 1.5(b)) if we choose two objects. Both create hierarchical partitionings.

1.2.5 Is the database static or dynamic?

If we allow data insertions or/and deletions then the data structure may need constant re-
organizing, e.g. if it the data structure is stored on disk and is a tree hierarchy then a leaf
can exceed the max capacity ratio and need splitting into two leaves. Moreover if the tree
is balanced it may need subtree rotations in order to remain balanced.

1.2.6 Storage Environment

Should the data structure be on the main memory, secondary memory of distributed? (de-
ciding this we must make assumptions such as if the data fit in memory or if they are
distributed or centralized).

1.2.7 Fault tolerance

Should the data structure be tolerant to failures, e.g. disk or peer failures. A common ap-
proach followed is inserting replication - the more replication the more tolerant the data
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(a) Hilbert curve (b) Z order curve (c) Peano curve

Figure 1.4: Well-known space filling curves. The motive is that if two objects are located
close together in original space, there should at least be a high probability that they are
close together in the total order, i.e. in the one-dimensional image (embedded) space. For
the organization of this total order one could then use a one-dimensional access method.
Images taken from Wikipedia.

structure. Data structure reorganization may still be needed in case of failure.

1.2.8 Is the storage environment static or dynamic?

If the data structure is distributed and peer additions/removals are allowed then spreading
updating the state of the rest of the peers may be necessary.

1.2.9 Distance function

The distance function is used to compute the distance among data, queries and data re-
gions. Another use of a distance function is to derive feature vectors based on the inter-
object distances (e.g. by using FastMap[26]).

Notation (Metric Space, Distance Function)

Our thesis is based on searching over metric spaces. A metric space M = (D, d), is
defined for a domain of object (or the objects’ keys or indexed features) D and a distance

function d.

If d is a metric (S, d) then the distance function d must satisfy the following three proper-
ties, where o1, o2, o3 ∈ S:

symmetry d(o1, o2) = d(o2, o1)

nonnegativity d(o1, o2) ≥ 0, d(o1, o2) = 0iff01 = o2

triangle inequality d(o1, o3) ≤ d(o1, o2) + d(o2, o3)
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(a) Ball Partitioning (b) Generalized Hyperplane Partitioning

Figure 1.5: Distance-based indexing. On (a) there is one pivot p with radius r and objects
are distributed in two buckets, one containing all the objects in the circle and another one
containing all the objects out of the circle. On (b) there are two pivots p1 and p2; objects
belong to their closes pivot. Images taken from [36].

Of the distance metric properties, the triangle inequality is the key property for pruning
the search space when processing queries.

Common Distance Functions

Hereafter will present the most common distance functions found in the literature.

Minkowski distances The Minkowski distance of order p between two points P =
(x1, x2, ..., xn) and Q = (y1, y2, ..., yn) ∈ Rn is defined as: Lp = (

∑n
i=q |xi − yi|)

1/p.
For L1 is called Manhattan (also City-Block distance), for L2 Euclidean and for L∞ =
limp→∞(

∑n
i=q |xi − yi|)

1/p = maxn
i=1|xi − yi| is called Chebyshev distance (i.e. maxi-

mum distance or infinite distance or chessboard distance).

Figure 1.6: Unit circles with various values of p for the Minkowski distance.[wikipedia]

Quadratic Form Distance If M is symmetric positive definite

dM(−→x ,−→y ) =
√

(−→x −−→y )T ·M · (−→x −−→y )
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Edit Distance The edit distance[62] between two strings of characters is the number of
operations required to transform one of them into the other.

The distance between two strings x = x1 · · ·xn and y = y1 · · · yn is defined as the min-
imum number of atomic edit operations (insert,delete, and replace) needed to transform
string x into string y. The atomic operations are defined formally as follows:

insert the character c into the string x at the position i: ins(x, i, c) = x1x2 · · ·xicxi+1 · · ·xn

delete the character at the position i from the sting x: del(x, i) = x1x2 · · ·xi−1xi+1 · · ·xn

replace the character at the position i in x with the new character c: rep(x, i, c) =
x1x2 · · ·xi−1cxi+1 · · ·xn

There are several different ways to define an edit distance, and there are algorithms to
calculate its value under various definitions:

• Hamming (exact) distance

• Longest common subsequence problem

• Levenshtein distance[43]

• Damerau-Levenshtein distance

• Jaro-Winkler distance

• Wagner-Fischer edit distance

• Ukkonen’s algorithm

• Hirschberg’s algorithm

Tree Edit Distance Tree Edit Distance was introduced by [57] as a generalization of the
well-known string edit distance problem [62] for the problem of comparing trees. This oc-
curs in diverse areas such as structured text databases like XML[61, 22], computer vision,
compiler optimization, natural language processing, computational biology and analysis
of RNA molecules in computational biology[63]. For a survey on tree edit distance and
related problems see [17].

Assuming a pair of ordered rooted trees (A,B) the tree edit distance function equals
minimal cost to transform source tree A into target tree B assuming the following edit
operations:

insert inserting a node

delete deleting a node

replace replacing a node
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Jaccard’s Coefficient Jaccard’s Coefficient is a similarity measure applicable to sets.

Given two sets A and B, Jaccard’s distance coefficient is defined as the size of the inter-
section divided by the size of the union of the sample sets:

dδ(A,B) = 1−
A ∩B

A ∪B

Likewise Jaccard’s similarity coefficient is defined as d(A,B) = 1− dδ(A,B).

As an example of an application that deals with sets, suppose we have access to a log
file of web addresses (URLs) accessed by visitors to an Internet Cafe. Along with the
addresses, visitor identifications are also stored in the log. The behavior of a user brows-
ing the Internet can be expressed as the set of visited network sites and Jaccard’s distance
coefficient can be applied to assess the dissimilarity (or similarity) of individual users’
search interests.

Hausdorff Distance Similar to Jaccard’s coefficient measures set similarity but using
element pair-wise distance function de is defined. Specifically, the Hausdorff distance[37]
is defined as follows.

dH(X, Y ) = max{sup
x∈X

inf
y∈Y

de(x, y), sup
y∈Y

inf
x∈X

de(x, y)}

Informally, two sets are close in the Hausdorff distance if every point of either set is close
to some point of the other set. The Hausdorff distance is the longest distance you can be
forced to travel by an adversary who chooses a point in one of the two sets, from where
you then must travel to the other set.

A typical application is the comparison of shapes in image processing, where each shape
is defined by a set of points in a 2-dimensional space.

1.2.10 Traversal Strategies over search hierarchies

Branch and Bound

Nearest neighbor searching algorithms (distributed or not) generally partition the space
into non-overlapping regions and assign them to blocks or peers. The partition formed
is usually searched by branch and bound algorithms. Branch and bound consists of a
systematic enumeration of all candidate solutions (branch step), where large subsets of
fruitless candidates are discarded en masse (pruning step), by using upper and/or lower
estimated bounds of the quantity being optimized.

Roussopoulos et. al. [54] proposed a branch-and-bound algorithm for querying spatial
points storing in an R-tree. Meanwhile, they introduced two useful metrics: MINDIST
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Figure 1.7: Components of the calculation of the Hausdorff distance
between the green line X and the blue line Y (image taken from
http://en.wikipedia.org/wiki/Hausdorff_distance)

and MINMAXDIST for ordering and pruning the search tree. The algorithm is briefly
described as following.

1. Maintain a sorted buffer of at most k current nearest neighbors.

2. Initially set the search bound to be infinite.

3. Traverse the R-tree, always lower the search bound to the distance of the furthest
nearest neighbor in the buffer, and prune the nodes with MINDIST over the search
bound, until all nodes are checked.

This is a typical brand-and-bound algorithm for k-NN searching.

While traversing the search hierarchy (tree) we have many options which node to visit
next. The choice plays a crucial role to the stopping time of our algorithm because find-
ing fast the kth answer can rapidly prune candidate answers and save us from visiting
a large part of the tree. On the following paragraph we describe two general traversal
strategies over trees.

There are numerous ways of performing the search for knn queries, primarily depending
on how the search hierarchy is traversed. [36] presents two algorithms that use two dif-
ferent traversal orders. The first algorithm makes use of depth-first traversal. The second
algorithm, on the other hand, uses best-first traversal, which is based on the distances and,
in a sense, breaks free of the shackles of the search hierarchy. We will study and compare
these two strategies here in order we choose one for our search algorithm.

Depth-First Algorithm

The algorithm in listed on Figure 1.8(a). The key idea is assuming an initial maximum
distance equal to ∞ until at least k objects have been seen, and from then on is set to the

http://en.wikipedia.org/wiki/Hausdorff_distance
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(a) Deapth First k-NN algorithm (b) Best First k-NN algorithm

Figure 1.8: (a) A depth-first k-nearest neighbor algorithm on a search hierarchy T given
a query object q. (a) A best-first k-nearest neighbor algorithm on a search hierarchy T
given a query object q.

kth smallest distance seen so far. Clearly, the value of ǫ converges quicker to the distance
of the kth nearest neighbor of q if we see objects that are close to q as early as possible.
A heuristic that aims at this goal is such that at each non leaf element e that is visited, we
visit the children of e in order of distance.

In the algorithm, the list NearestList is used to store the k candidate nearest neighbors
(i.e., the k objects seen so far that are closest to q), similar to the use of RangeSet in the
range search algorithm. The expression MAXDIST (NearestList) has the value of the
greatest distance among the objects in NearestList, or ∞ if there are still fewer than k
objects in the list. The call to SORTBRANCHLIST in line 2 sorts the children of e
in order of distance, which determines the order in which the following for-loop iterates
over the children. When the distance from q of a child element is found to be greater
than MAXDIST (NearestList) (line 4), the ordering ensures that all subsequent child
elements also have distances that are too large, so the for-loop can be terminated.

Figure 1.9(b) shows a trace of the algorithm with k = 1 on the set of objects (and associ-
ated bounding rectangles and nodes) and query object q given in Figure 1.9(a). Initially,
NearestList is empty, which implies that MAXDIST (NearestList) in line 4 evalu-
ates to ∞. The root node n is naturally the first to be visited during the traversal. The
ActiveBranchList computed for n (in line 2) is {(n2, 44), (n1, 51), (n3, 80)}; the dis-
tance values come from Figure 1.9(a). The second node to be visited is then n2 , whose
ActiveBranchList is (b5, 85), (b4, 88). The bounding rectangle b5 is visited next, fol-
lowed by the associated object o5 at a distance of 91, which becomes the first candidate
nearest neighbor to be inserted into NearestList (line 7). Backtracking to n2, we must
now visit the next element on its ActiveBranchList, namely b4 since its distance value
is less than 91 (so the test in line 4 is false), but o4 is pruned from the search (via line 5)
since d(q, o4) = 112 > 91. Thus, the algorithm backtracks to n, where the next element
on the ActiveBranchList is n1, which is promptly visited since its associated distance
51 is less than 91. The ActiveBranchList for n1 is {(b2, 51), (b1, 63), (b3, 203)}, and
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(a) Space partition in a dataset which contains objects o1-o7
bounded by Minimum Bounding Rectangles (MBR) and stored
in leaf nodes b1-b7. The distance among the query q and ob-
jects o1-o7 are the following: Dist(q, n) = 0, Dist(q, n2) =
44, Dist(q, n1) = 51, Dist(q, b2) = 51, Dist(q, o2) =
57, Dist(q, b1) = 63, Dist(q, n3) = 80, Dist(q, b7) =
80, Dist(q, o7) = 82, Dist(q, b5) = 85, Dist(q, b4) =
88, Dist(q, o5) = 91, Dist(q, o1) = 98, Dist(q, b6) =
103, Dist(q, o6) = 104, Dist(q, o4) = 112, Dist(q, b3) =
203, Dist(q, o3) = 205.

(b) Depth First k-NN tree traversal (c) Best First k-NN tree traversal

Figure 1.9: (b) A depiction of the traversal for the depth-first nearest neighbor algorithm
for the data and query q of the dataset on (a) for k = 1, where the arrows indicate the
direction of the traversal and the circled numbers denote order in which the elements are
visited (i.e., the leaf and non-leaf elements that have not been pruned). (c) A depiction
of the traversal for the best-first nearest neighbor algorithm of Figure 1.8(b) for the same
argument values, with the curved line delimiting the portion of the search hierarchy that
is visited.
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since d(q, b2) = 51 < 91, we next visit b2, followed by the associated object o2, since its
distance from q of 57 is less than 91. At this point, o2 is inserted into NearestList (line
7), causing o4 to be ejected, and o2 thus becomes the new candidate nearest neighbor.
Finally, since the distance values of b1 (on the ActiveBranchList of n1) and n3 (on the
ActiveBranchList of n) are both greater than 57, the traversal backtracks beyond the
root and the algorithm terminates, having determined that o2 is the nearest neighbor of q.

Best-First Algorithm

It turns out that we can do better with different traversal strategies than the one presented
in the previous section. To see why, observe that once we visit a child e0 of an element e,
we are committed to traverse the entire subtree rooted at e0 (subject to the pruning con-
dition) before another child of e can be visited. For example, in the traversal illustrated
in Figure 1.9(b), we must visit b5 and o5 after the traversal reaches n2, even though n1
is closer to q than b5. The above property is inherent in the fact that the algorithm of
Figure 1.8(a) maintains a separate ActiveBranchList for each element on the path from
the root of the search hierarchy down to the current element. Thus, it may seem that we
might improve on the depth-first strategy by somehow combining ActiveBranchList’s
for different elements.

The best-first traversal strategy is indeed driven by what is in effect a global, combined
ActiveBranchList of all elements that have been visited. In the nearest neighbor al-
gorithm of Figure 1.8(b), this global list is maintained with a priority queue Queue,
with distances serving as keys. Initially, the root of the search hierarchy is inserted
into the queue. Then, at each step of the algorithm, the element with the smallest dis-
tance is removed from the queue (i.e., it is “visited"), and its child elements either in-
serted into Queue or, for objects, into NearestList. The NearestList variable and
MAXDIST (NearestList) have the same meaning as in the depth-first algorithm, while
MINDIST (Queue) denotes the smallest distance among the elements in Queue. Ob-
serve that MINDIST (Queue) and MAXDIST (NearestList) converge toward each
other (from 0, being increased by line 7, and from ∞, being decreased by line 11, respec-
tively), and that when the while-loop terminates, the value of MAXDIST (NearestList)
has reached the distance from q of its kth nearest neighbor. Also, note that, as a variation
on this algorithm, we could remove elements from Queue after the execution of the for-
loop in case MAXDIST (NearestList) has decreased (due to one or more insertions in
line 11), which renders unnecessary the second part of the condition in line 6. However,
in this case, the priority queue implementation must support efficient ejection of elements
having keys greater than some value (i.e., MAXDIST (NearestList)).

One way to obtain an intuition about the best-first nearest neighbor algorithm is to con-
sider the geometric case. If q is a two-dimensional point, as in Figure 1.9(b), the search ef-
fectively proceeds by first drilling down the search hierarchy and then expanding a circular
query region with q as its center. Each time that the query region hits a non-leaf element
e, we visit e, and the search terminates once the query region intersects at least k objects.
The order in which search hierarchy elements would be visited for the above example is
depicted in Figure 8b. Initially, NearestList is empty and Queue = {(n, 0)}. Thus, we
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“drill down" to n, causing its children to be inserted into the priority queue, which results
in Queue = {(n2, 44), (n1, 51), (n3, 80)} (all enqueued in line 15). At this point, the
circular query is in effect expanded until its radius becomes equal to 44, the distance of
n2 from q. Visiting n2 causes b4 and b5 to be inserted into the priority queue, resulting in
Queue = {(n1, 51), (n3, 80), (b5, 85), (b4, 88)}. Next, n1 is visited and b1 through b3 en-
queued, yielding Queue = {(b2, 51), (b1, 63), (n3, 80), (b5, 85), (b4, 88), (b3, 203)}. Vis-
iting b2 leads to the insertion of o2 with distance value of 57 into NearestList (in line
11), which has hitherto been empty. Since we now have 63 = MINDIST (Queue) 6=
MAXDIST (NearestList) = 57 (i.e., the second part of the condition in line 6 now
evaluates to false), and the traversal is terminated with o2 as the nearest neighbor.

1.2.11 Parallelism

When a search request is sent from a peer to others there are two choices; forward the
query to all peers in parallel at once and coalesce the results or forward the query itera-

tively to each on of them.

1.3 P2P Data Structure Frameworks

Due to the diversity of the data and the queries there is the necessity for a diversity of cus-
tom data structures. Along this line of thought we need systematic approaches to develop
easily new data structures. In other words we need software packages called frameworks2,
that facilitate the construction of data structures for either memory, or disk or distributed
environments.

The concept of frameworks is very old. For example in the field of Software Engineering
several attempts had been made to construct frameworks that allowed the rapid compo-
sition and generation of new systems. A typical framework was GENESIS[1] in 1990.
Soon the concept of frameworks was developed by the Databases field.
Maybe the most prominent example of such a framework is the GiST (Generalized Search

Trees) framework which allows the development of data structures for the Secondary
Memory with satisfactory performance. GiST is constantly being developed since 1995.
It is a tree data structure stores data on leaves, supports search and update functions[35]
and provides an API which further supports recovery and transactions[41]. GiST frame-
work can be used to build a variety of search trees for Secondary Memory such as R-
Tree[32], B-Tree[13], hB-tree[46] and RD-tree[64]. Not surprisingly GiST has been
used to construct many indices for the well-known ORDBMS PostgreSQL3. As the Post-
greSQL online manual says4 "One advantage of GiST is that it allows the development of
custom data types with the appropriate access methods, by an expert in the domain of the
data type, rather than a database expert".

2We interchangeably use the terms framework, protocol and network
3http://www.postgresql.org
4http://www.postgresql.org/docs/9.1/interactive/gist-intro.html
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On Figure 1.3 we show how the GiST is integrated in a Relational Database and abstracts
the notion of the data structure.

(a) Standard ORDBMS (b) ORDBMS with GiST

Figure 1.10: Access methods Interfaces. On (a) traditional Object Relational Database
Management Systems (ORDBMS) if we want to create an extension to R-tree (e.g. R*-
tree) we will have to create everything from scratch, e.g. searching, concurrency (CC)
and replication (R). On (b) having GiST we can use we reuse its components and reduce
our effort (complexity, number of code lines) to the minimum. Images taken from [41].

On the other hand for the case of P2P rudimentary work has been done. Typical examples
of such frameworks are VBI[5], PGrid[6] and our own GRaSP[49] networks. This thesis
comes to extend GRaSP to support nearest neighbor queries.

1.3.1 VBI

A distributed data structure oriented to generalized range queries (see §1.2.2) is the Vir-

tual Binary Index Tree[5] (VBI-tree). On VBI peers are overlayed5 over a balanced binary
tree like they do on BATON[38]. The tree is only virtual, in the sense that peer nodes
are not physically organized in a tree structure at all. The abstract methods defined can
support any kind of hierarchical tree indexing structures in which the region managed by
a node covers all regions managed by its children. Popular multidimensional hierarchical
indexing structures that can be built on top of VBI include the R-tree[32], the X-tree[16],
the SS-tree[25], the M-tree[21], and their variants. VBI guarantees that point queries (see
§1.2.2) and range queries (see §1.2.2) can be answered within O(logn) hops, where n is
the number of the peers. VBI specifies an effective load balancing strategy to allow nodes
to balance their work load efficient. Validation has been made by applying the M-tree and

5An overlay network is a computer network which is built on top of another network. Nodes in the
overlay can be thought of as being connected by virtual or logical links, each of which corresponds
to a path, perhaps through many physical links, in the underlying network. For example, many peer-
to-peer networks are overlay networks because they run on top of the Internet. (definition taken from
http://en.wikipedia.org/wiki/Overlay_network)
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nearest neighbor queries over VBI.

The major drawback of VBI is that it suffers from congestion under large loads for low-
dimensional rectangular range queries as has been recently proved by Blanas et al[56].
They compared VBI[5], PGrid[6], CAN[3] and MURK[4] and concluded that with re-
gard to congestion PGrid is the most scalable while VBI is the least.

(a) VBI-Tree structure. The figure depicts the
state of data nodes (leaf nodes) and routing nodes
(internal nodes). Each routing node maintains
links to its parent, its children, its adjacent nodes
and its sideways routing tables. Each routing
peer maintains an “upside table” stored in each
routing peer, with information about regions cov-
ered by each of its ancestors.

(b) Two dimensional index structures. An R-
Tree and an M-Tree in two dimensional space are
mapped into VBI. It happens both trees to map
into the same VBI-Tree.

Figure 1.11: VBI exemplary topologies. Images taken from [5].

1.3.2 PGrid

PGrid is a peer-to-peer lookup system based on a virtual distributed search tree, similarly
structured as standard distributed hash tables. Figure 1.3.2 shows a simple P-Grid. Each
peer holds part of the overall tree. Every participating peer’s position is determined by its
path, that is, the binary bit string representing the subset of the tree’s overall information
that the peer is responsible for. For example, the path of Peer 4 in Figure 1 is 10, so it
stores all data items whose keys begin with 10. For fault tolerance multiple peers can
be responsible for the same path, for example, Peer 1 and Peer 6. PGrid’s query routing
approach is as follows: For each bit in its path, a peer stores a reference to at least one
other peer that is responsible for the other side of the binary tree at that level. Thus, if a
peer receives a binary query string it cannot satisfy, it must forward the query to a peer
that is “closer” to the result. In Figure 1.3.2, Peer 1 forwards queries starting with 1 to
Peer 3, which is in Peer 1’s routing table and whose path starts with 1. Peer 3 can either
satisfy the query or forward it to another peer, depending on the next bits of the query. If
Peer 1 gets a query starting with 0, and the next bit of the query is also 0, it is responsible
for the query. If the next bit is 1, however, Peer 1 will check its routing table and forward
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the query to Peer 2, whose path starts with 01.

Figure 1.12: PGrid-Trie instance. Image taken from [6].

PGrid protocol doesn’t give any guidelines on how to map the PeerIDs onto the key space.
It’s single requirement is the dimensionality of the key space to be 1.

PGrid was initially made to answer point queries (see §1.2.2) and handle 1-D data. The
algorithm for point queries is pretty simple and described on [7]. Aberer[24] proposes the
wrapping of PGrid with two equivalently algorithms for 1-D range queries (see §1.2.2):
a sequential algorithm (minmax algorithm) and a superior parallel (shower algorithm).
In the shower algorithm a peer forwards simultaneously a query it receives to neighbors
that can answer it. The latency for the shower algorithm is O(logn). The evaluation of
the aforementioned searching algorithm has been made theoretically and empirically on
PlanetLab.

An interesting application of the shower algorithm on PGrid has been realized by Blanas
and Samoladas [56]. They mapped the peerIDs of the multi-dimensional PGrid on 1-
dimension by applying to them zero-order space filling curve[2] thus making their mod-
ified PGrid version able to embody the shower protocol and facilitate multi-dimensional
range queries.

1.4 Outline

On Chapter 2 we introduce the reader to GRaSP since our work is built on top of it. More
specifically we familiarize the reader with the notion of the trie, how it is built when a
peer joins the network, how the metric space is mapped to trie nodes and peers through
hashing functions and how the data are inserted and the routing algorithm. The following
Chapter 3 is the core of our thesis and contains our main contributions. More specifically
building on GRaSP we provide user with a framework on top of unbalanced tries where
nearest neighbor searching can be performed preserving all the good benefits of GRaSP,
i.e. not requiring the trie to remain balanced, allowing the user to experiment with dif-
ferent space partition schemes adapted to the workload in question, etc. We prove the
searching algorithm’s good performance theoretically and on next Chapter 4 we evaluate
it experimentally in terms of maximum throughput, latency, data fairness of index, etc
with several workloads and for several dimensions. We summarize and conclude our the-
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sis on Chapter 5.



Chapter 2

Related Work

In this chapter we delve into GRaSP. We formally present its underlying trie and how
its nodes are mapped to space regions with a custom hashing function S(). After this
the routing algorithm is presented used to route queries among peers. We demonstrate
GRaSP’s efficiency with some theoretical bounds. Data updates and peer joins are also
presented. We conclude with two protocols developed with GRaSP, for tackling the multi-
dimensional rectangular (MDRS) search problem and the 3-sided search problem.

22
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2.1 GRaSP

In this section we explore GRaSP a P2P framework which tackles the case of generalized
range search (see §1.2.2). GRaSP can be extended to particular range search problems
with little effort, simply by providing a hierarchical space-partitioning function which
maps binary strings to space ranges. In the following chapter, which delves into our main
contribution, we extend GRaSP to support nearest neighbor searching.

2.1.1 Trie-structured networks

The goal in this section is to develop the necessary definitions needed in the description
of GRaSP protocols, and in the analytical results of the next section.

Notation

We shall use the following notation: a binary string x has length |x|, and ǫ denotes the
empty string. We write x ⊑ y to denote that x is a prefix of y. The longest common prefix
of x and y is denoted by x ↑ y and their concatenation by x · y. Finally, x[i], 0 ≤ i < |x|
is the i-th symbol of x (starting with 0), x[: j] is the prefix of size j, x[i :] is the suffix of
size |x| − i and x[i : j] = x[i :][: j − i].

A prefix code is a finite set P of (finite) binary strings, with the following property: for
every infinitely long binary string x, there is a unique y ∈ P such that y ⊑ x.

The i-th complement of x is x[: i] · x[i] (for i < |x|).

Binary tries

A binary trie is a full binary tree, i.e., a binary tree where each non-leaf node has exactly
two children. Each node n of the trie can be associated with a binary string I(n), called
the node ID, by the following rule: the node ID of the root is the empty string, and for
every other node u, with parent v, if it is a left child of v then I(u) = I(v) · 0, else
I(u) = I(v) · 1. A binary trie can be fully described by the set of node IDs of its leaves,
which constitute a prefix code.

In the context of PGrid, any trie of n leaves gives rise to a network of n peers, where each
peer is associated with a distinct leaf. Thus, we describe the shape of a trie-structured
network by a prefix code P . For simplicity, we often identify a peer with the node ID of
the corresponding leaf (its peer ID), that is, the elements of P (which are binary strings)
will be referred to as peers.

Let us fix a trie P . For p, q ∈ P , let

p ⊲ q = |p| − |p ↑ q|
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be called the gap from p to q. Note that 0 ≤ p ⊲ q ≤ |p|. Informally, p ⊲ q can be described
in terms of the trie: starting from p, one must ascend p ⊲ q nodes in the trie, before it can
descend towards q. Thus, p ⊲ q is, in a sense, a distance function; note however that it is
not symmetric.

The most useful law regarding gaps is:

Theorem 1 (Routing rule)

p ⊲ q < p ⊲ r ⇔ q ⊲ p < q ⊲ r ⇔ r ⊲ p = r ⊲ q

Basic routing

In order to route messages among the peers, each peer maintains a set of pointers to other
peers. For peer p ∈ P , define a (|p|+ 1)-partition of the set of peers P as follows:

Np
i =

{

q ∈ P
∣

∣ p ⊲ q = i
}

for 0 ≤ i ≤ |p|.

Alternatively, each set Ni consists of the leaves of the subtree (of the trie) rooted at the
trie node with node ID equal to

p[: |p| − i] · p[|p| − i]

(the (|p| − i)-th complement of p).

The routing table of p is constructed by selecting uniformly at random one peer from each
Np

i . Let Lp
i ∈ Np

i denote the selected peer.

In order to route a message from p to q, the message is forwarded from p to r = Lp
p⊲q .

From r it is recursively forwarded to Lr
r⊲q , and so on, until it reaches q. To see that this

will happen, note that p ⊲ r = p ⊲ q, and by the routing rule, q ⊲ p > q ⊲ r: with each hop,
the gap from the destination q to the current node

Hierarchical binary space partition

Let U be an arbitrary set, called the search space. The elements of U are called points.
A key space K is a family of non-empty subsets of U , whose elements are called keys.
A range space R is also a family of non-empty subsets of U , whose elements are called
ranges. A dataset K ⊆ K is a finite subset of the key space. Given a range R ∈ R, and a
dataset K, the answer AK(R) to R over K is the set of elements of K which intersect R:

AK(R) = {x ∈ K|x ∩ R 6= ∅}.

A hierarchical binary space partition is a function S from binary strings to subsets of U ,
such that S(ǫ) = U , and for each string u, {S(u · 0), S(u · 1)} is a partition of S(u), i.e.,
S(u · 0) ∩ S(u · 1) = ∅ and S(u · 0) ∪ S(u · 1) = S(u).

For a given space partition S, assign S(p) ⊆ U to be the peer range of p. Since the peer
IDs form a prefix code, it is easily seen that the peer ranges partition the search space.

Given a dataset K, each peer p stores AK(S(p)). Note that this storage scheme implies
redundancy; keys may be stored in multiple peers.
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Range search

To answer a range query for range R, starting from some initial peer q, all that is needed
is to forward the search to those peers whose range intersects R. These peers will collec-
tively report the full answer to the range query.

The following protocol can be used to locate the relevant peers:

RangeSearch(peer p, range R, int l) {

if( R ∩ S(p) 6= ∅ ) answerLocally(R);

for(int i = l; i < |p|; i++)

if( S(p[: i] · p[i]) ∩R 6= ∅ ) RangeSearch(Lp
|p|−i, R, i+ 1);

}

where the search is initiated by a call to RangeSearch(q,R,0). In terms of a P2P net-
work, RangeSearch(p,R,l) is a message sent to p. Parameter l is used to restrict the
scope of search. It denotes that p should only forward the search to the part of the net-
work corresponding to a subtree of the trie, rooted at the trie node with nodeID p[: l].
This subtree includes every peer q with q ⊑ p[: l]. Peer p fulfills this request by for-
warding further to each network subset Np

|p|−i, for l ≤ i < |p|. However, the search is
pruned for those i where there will be no answer from the corresponding subtree. Routine
answerLocally(R) poses range query R to the set of keys stored at peer p, and reports
AK(S(p)) ∩ AK(R) to the user.

2.1.2 Analysis of trie-structured networks

We now turn our attention to the cost of searching over tries. We are interested in two met-
rics: hop latency and congestion. Hop latency is the maximum distance (in terms of hops)
from the initial peer to any peer reached during the search. On [49] we have showed that
the average cost for generalized range queries is logarithmic. Actually we have showed
that the routing diameter is O(logn), with high probability. The congestion at peer p is
the number of messages forwarded via p, when every peer in the network routes a search
to some other, randomly chosen peer.n [49] we have showed that the average congestion
is logarithmic.

2.1.3 Network maintenance

So far we have concentrated on describing and analyzing the performance of range search
over a static P2P network. In most applications, P2P networks are in a continuous state of
flux, as peers join and leave, often by failing. Also, new data arrives constantly and must
be inserted into the network.

One of the most appealing features of GRaSP is that, as a straightforward extension of
P-Grid, it inherits many of its protocols from it. P-Grid has been extensively studied in
previous work, both by simulation and by implementation, and its performance is well
documented. So, we shall only discuss those issues where GRaSP differentiates from
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P-Grid. These issues are, insertion and deletion of keys, and peer joins. Other issues,
including the handling of failing peers, peers leaving the network gracefully, updating of
routing tables etc. are handled identically to P-Grid.

Data updates

To insert a new key into the network, one can use the RangeSearch procedure of §2.1.1,
where now in place of a search range we pass the actual key to be inserted. This key
may be replicated to multiple peers. Deletions can be handled in a similar manner. For
bulk updates, e.g., when a newly arriving peer wishes to index multiple keys, the same
basic procedure applies, except that the set of indexed keys should be distributed at each
forwarding step, in order to minimize the amount of data transferred over the network.
Note that the hop latency of all these procedures is still O(logn) w.h.p.

Peer joins

A new peer p who wishes to join the network, must contact some existing peer whose
network address is known to it, called the bootstrap peer. Then, it must select a mate, that
is, an existing peer q (which can be the bootstrap itself), whose region it will split, taking
its place in the trie as a sibling of q. We now discuss the problem of mate selection.

It is desirable to select mates in a manner that tends to equalize load distribution among
peers. However, what constitutes “load” may depend on the particular application; in fact,
peers in the same P2P network may have differing concepts of load. Several works in the
literature propose schemes that distribute the stored data evenly. Yet, many peers may
consider storage a cheap resource to contribute, and may be more interested in reduc-
ing the network bandwidth contributed to the P2P network. By this reasoning, a general
policy for mate selection may be hard to devise. Therefore, we discuss a few possible
heuristics.

Volume-balanced selection: The goal here is to equalize the volumes of peer regions,
by selecting mates with probability proportional the volume of their area. This can
be done by selecting a point x ∈ U from the search space, uniformly at random,
The peer q whose region contains x is designated as mate. This protocol requires
O(logn) routing messages, in order to route from the bootstrap to the mate. See
Figure 2.1(a) for an exemplary volume-balanced partition.

Data-balanced selection: If an estimate of the distribution of indexed data is available,
it may be used to equalize the number of keys stored by peers. A method similar
to volume-balanced selection can be used: choose some point x ∈ U according
to the estimated data distribution, and locate the corresponding peer in O(logn)
messages. Data-balanced tends to create balanced tries. See Figure 2.1(b) for an
exemplary data-balanced partition.

Uniform selection: Random walks in a P2P network can be used to sample peers roughly
uniformly [30]. In general, a walk of O(logn) hops is sufficient. In our network,
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each peer can have a rough estimate of logn in the following way: each message
routed through the network, carries a counter with the number of hops from the
originating peer. Each peer observes the counter of messages routed through it, and
maintains the maximum value of these counters, which is O(logn) w.h.p. When
a peer is asked to bootstrap the join of a new peer, it performs a random walk of
length equal to its estimate of logn. One of the peers visited during the walk is
selected as mate, according to some criterion (e.g., randomly, most loaded, etc.).
This protocol needs O(logn) messages.

2.1.4 Applications of GRaSP

We now briefly turn our attention to specific range-search applications of GRaSP, which
we have studied experimentally on [49].

Multidimensional Range Search

We introduced the problem of Range Search on §1.2.2. This type of search arises in nu-
merous applications, and has recently received significant attention in the context of P2P
networks [66, 20, 29, 53, 31, 9, 55].

For this type of problem, a natural choice for space partitioning is based on the idea of k-d
trees. We can view a trie as a k-d tree, and split the space along one dimension each time,
cycling through dimensions as we descend. If the expected data and query distributions
are known, splits may not be even (similar to MURK [29]); typically, splits are even. Note
that, in contrast to k-d trees in main memory, we are not concerned with keeping the trie
balanced.

Three-sided Range Search

We introduced 3-sided queries on §1.2.2. Three-sided search arises in a large number of
applications, and has been studied extensively. Optimal data structures are known both
on main memory [48] and on disk [10].

To our knowledge, 3-sided search has not been studied before on P2P networks. In prin-
ciple, it could be handled as a special case of 2-d range search, e.g., by the techniques
of the previous section. In practice, such an approach would not be scalable, because of
increased congestion. The problem lies in the shape of the queries: points with a low
y-coordinate are much more likely to be returned than points with higher y-coordinates,
even for uniformly distributed data and queries, inducing undue load on the peers that
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store them. The imbalance in access frequencies is not detrimental for data structures—
rather, it can be exploited, via caching, to improve performance. In a P2P setting though,
accesses to data stored in the network should be relatively balanced, to avoid hotspots.

The solution presented in [49] ameliorates this problem by employing the versatility of
GRaSP, to reduce contention by mapping the search problem within the setting of GRaSP
such that accesses are more evenly distributed. The salient feature of our solution is that
it attempts to introduce storage redundancy in such a way, that frequently accessed points
(those with low y-coordinates) are stored in multiple peers, so that accesses to these keys
can be distributed among the copies. For more information please refer to [49].

A possible space partition obtained by the above rules is seen in Fig. 2.1. It corresponds

Figure 2.1: A 3-sided space partition for seven peers, marked by peer IDs.

to a hypothetical network of seven peers. This example also depicts four data points,
marked 1 to 4, and three queries, marked a to c. Point 1 is relatively low, and is accessed
by all three queries. However, point 1 is also replicated; it stored in peers 00, 010 and
101. Although all three queries shown will indeed return point 1, each query will access
a different copy. For example, query a will access the copy in peer 00, whereas query c
will access the copy in 101.
Our space partitioning scheme attempts to distribute the load rather than the data, by
assigning peers into horizontal zones, so that each query will be answered by peers in
the same zone. Peers in higher zones are assigned taller and narrower regions, whereas
peers in lower zones are assigned shorter, wider regions. Thus, as long as query width
decreases for taller queries, the number of peers accessed by each query will be relatively
small. As this scheme redundancy, the total storage occupied in all peers may grow large,
depending on the distribution of data and parameter λ. Fortunately, the redundancy is at
most proportional to the number of zones, which should not grow too large, as the height
of zones decreases exponentially. Also, if data is uniformly distributed, then the overall
storage redundancy is constant, for any number of zones.



Chapter 3

Nearest Neighbor Search

In this chapter we extend GRaSP with k-NN capabilities. In order to do this we constrain
the search domain to only metric spaces.

3.1 Hierarchical binary space partition

A metric search space U = (K, d), is defined as a domain of points K and a distance

function d. A key space K is a family of non-empty subsets of U , whose elements are
called keys. A nearest neighbor query space Qk is also a family of non-empty subsets of
U of size k, whose elements are called k nearest neighbor queries. A dataset K ⊆ K is a
finite subset of the key space.

If the indexed objects reside in a finite metric space (K, d) then the distance function d
must satisfy the following three properties, where o1, o2, o3 ∈ K:

symmetry d(o1, o2) = d(o2, o1)

nonnegativity d(o1, o2) ≥ 0, d(o1, o2) = 0 iff o1 = o2

triangle inequality d(o1, o3) ≤ d(o1, o2) + d(o2, o3)

Of the distance metric properties, the triangle inequality is the key property for pruning
the search space when processing queries.

Given a query Qk ∈ Qk, and a dataset K, the answer AK(Qk) to Qk over K is the set of
k elements of K which satisfy the following property:

AK(Qk) = {xi ∈ K|i ∈ (1, k) : dist(xi, Qk) ≤ dist(xi+1, Qk)

∧x′ ∈ K ∧ x′ 6= xi : dist(xk, Qk) ≤ dist(x′, Qk)}

3.2 K-nn Search Algorithm

Our nearest neighbor search algorithm is a typical sequential branch-and-bound algorithm
like the one naively described on §2. We preferred a Best First traversal (see §1.2.10)

29
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strategy because of the reasons presented in §1.2.10. Now we will delve into more detail
in the algorithm which is presented on the following Figure 3.2.

// initially calling: search(Qk, p0, ǫ, ∅, ∅)
searchKnn(Qk, peer p, int l, priority queue F , priority queue A) {

// p.answerLocally() returns the answers of peer p to the query set Qk

A = mink{A ∪ p.answerLocally(A,Qk)}
for(int i = l; i < |p|; i++)

insertIntoPriorityQueue(F , (i,p[: i] · p[i]), d(Qk,S(p[: i] · p[i])));
pruneFringe(F ,pullHighestPriorityElement(A));

if(F 6= ∅) {

(lnext,pnext) := removeNearestSubtrie(F);

searchKnn(Qk ,pnext,lnext,F ,A);

}

}

Figure 3.1: The k-NN search algorithm. Recursively (a) it branches by adding to fringe
F all the recently found peers and sequentially (b) it bounds by pruning all the peers
in fringe F that are sure not to have a better answer and (c) lastly the updated query is
forwarded to the most promising peer in fringe F .

Each k-NN query has a state which is forwarded at each hop. This state is consisted of
five parameters: Qk, p, l, A and F .

Qk = (q, k) is the nearest neighbor query asked and contains the query point q and the k
expected number of answers.

p is the peer executing the nearest neighbor search algorithm.

Integer l is used to restrict the scope of search. It denotes that the part of the network
corresponding to a subtree of the trie, rooted at the trie node with nodeID p[: l] may have
candidate answers.

A is a priority queue which contains all the answers (keys) found so far, Obviously A’s
maximum size is k. The element t of A with the highest priority is the one which is
nearest to the query Qk, i.e. t = argmin

a∈A
d(Qk, a). Note that here the distance function is

defined between two point.

The variable F is a priority queue with elements parts of the trie that are promising to
have better answers than the ones found so far (already contained in set A). By promising
we mean and that the distance between the data region mapped by S() to a subtree and
the query is less than the k-th answer found so far (if we have already found k answers).
The head of the priority queue F is the most promising subtrie. We could say that F
is a fringe which separates the trie into two disjoint sets. All the members of F are the
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subtrees which the search algorithm hasn’t explored yet and the the rest subtrees map to
regions which the search algorithm has visited or discarded (pruned). Therefore we call
F simply Fringe of the query. F ’s elements are of the form (i, p). Integer i is used to
restrict the scope of search like l does. F ’s elements are sorted likewise to A, i.e. the ele-
ment (h, t) which has the highest priority is the one which is nearest to the query Qk, i.e.
(h, t) = argmin

(i,p)∈F

d(Qk, S(p[: i])). Note that here the distance function is defined between

a point and a region.

To answer a nearest neighbor query for query Qk, starting from some initial peer p0, all
that is needed is to forward the search at each hop to this peer that has the best candidate
answer.
Initially, the peer (p0) who asks the k-NN query executes the knnSearch algorithm for
itself, i.e. searchKnn(k,p0,ǫ, ∅, ∅). The peer answers the query locally by calling an-

swerLocally which answers the query Qk on its own dataset Ko, i.e. reports the set
AKo(Qk). The local results is merged with the answers found so far and after only the
first (at most) k answers are kept. All the rest are discarded. Then the peer (the for-loop)
examines it’s routing table and adds to fringe F every network subset that is not examined
so far. by calling insertIntoPriorityQueue (the branch step). After, all the subtrees in
the fringe that correspond to regions with minimum distance to the query further than the
kth answer found so far are pruned because we know that they cannot contain better an-
swers (the prune step). To fully illustrate this see Figure 3.2 for an instance of the search
algorithm running and pruning candidate regions to visit.
answerLocally poses nearest neighbor query Qk to the set of keys stored at peer p, and
reports AKp

(Qk), where Kp is the set of keys of peer p. trimToK keeps only the first k
elements of A.
pullHighestPriorityElement removes the answer s from the A which is furthest to the
query. This point is used by pruneFringe to prune the fringe F by discarding all elements
(i, q) of fringe F which satisfy d(Qk, q[: i]) > d(Qk, s) (pruning distance).
removeNearestSubtrie actually calls pullHighestPriorityElement(F) which returns the
part of space with the most promising candidate answers. Then we recursively call the
searchKnn algorithm for the peer pnext.

Last but not least a salient feature of the above algorithm is that it uses the distance func-
tion in two forms; to calculate the distance (a) between a point and a region and (b)
between two points. Metrics such as the MINDIST and MINMAXDIST proposed in [54]
can be used.

3.3 Data Updates

Let’s explain here the process for data insertion. The hierarchical space partition men-
tioned on §2.1.1 implies the optional use of replication. In such cases we apply the Range-

Search algorithm described on §2.1.1 to locate the nodes responsible for the regions con-
taining the new data. Afterwards we can insert the new datum to as many of them as we want.
The proof for the correctness of the insertion algorithm under replication conditions fol-
lows.
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Figure 3.2: An exemplary ball-space partition (see §1.2.4) is presented and its trie of
peers. Assume a is the k-th most distant answer to query q. Should peer 0100 asks
its neighbors 1,00,011,0101? The yellow regions are the ones rejected because their min
distance from q is further than a. The red regions are the ones that must be visited because
its min distance from q is less than a. The red regions are actually the Support Set of the
query.

Consider for example the partition space depicted on Figure 3.3 where node n1 is respon-
sible for the regions of the inner circle 1 and the middle circle 2 and node n2 is responsible
for the middle circle 2 and the outer circle 3. Data of circle 2 can be replicated on either
peer or both.
If x is candidate answer and is located in S(n1) ∩ S(n2) then n1 and n2 can enter the
fringe.
Assume that we insert x only in the dataset of n2 and searchKnn examines only n1.
Then a better answer is not found and A remains unchanged. Therefore pruneFringe

won’t prune n2 and the search algorithm at last will visit n2. On the other hand, assume
that we insert x only in n1 and searchKnn examines only n1. Then x enters A. But again
pruneFringe doesn’t prune n2 because d(Qk, S(n2)) <= d(Qk, x).
All the rest cases i.e. x ∈ S(n1)− S(n2) or x ∈ S(n2)− S(n1) and Q−K ∈ S(n1)−
S(n2) or Q−K ∈ S(n2)− S(n1) are handled similarly or even easier.
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Figure 3.3: Instance of the correctness proof of the data insertion algorithm.

3.4 Analysis of trie-structure networks

We have shown that the search algorithm works correctly even if we insert selective repli-
cation to some of the peers that their regions overlap. The question now is if the selective
replication is useful in terms of the number of messages exchanged among the peers. Be-
cause of the sequential nature of the search algorithm the selective replication would make
the search algorithm to visit all the peers that contain replicas of a key we are looking for.
Therefore in terms of message traffic replication is inefficient but it may be helpful in
terms of fault tolerance.

3.4.1 Latency Complexity Theorem

First we define a useful term called Support Set. The Support Set of a query is the min.
number of peers required to visit and ask to fully answer it. For the k-NN case these
peers are the ones which own space regions that overlap the query range, i.e. the cir-
cle with center the query point and radius the distance of the query to the k-th answer
(for 2-dimensional space) or the sphere in 3-dimensional space. An example is depicted
on Figure 3.4. The peers which own the red regions should be at least be visited and asked.

Now we will give an upper bound for the messages exchanged by the searchKnn algo-
rithm presented on §3.2.

Theorem 2 (Latency Complexity Theorem) In a trie of n leaves, the number of mes-

sages exchanged by searchKnn is bounded by |T |O(log(n)), where T is the Support Set

of the query.

Let us consider a fixed trie T0 with n peers P = {p1, . . . , pn}. A nearest neighbor query
asks all the peers in a circle with center Qk and radius maxx∈A d(Qk, x)}, i.e. all the peers
satisfying the following property:

T = {p ∈ P |d(Qk, S(p)) ≤ max
x∈A

d(Qk, x)} = {t1, . . . , tk}



CHAPTER 3. NEAREST NEIGHBOR SEARCH 34

q

Figure 3.4: Figure shows the Support Set (colored in red) of the query q. The radius of the
circle equals the distance between the query q and the kth answer. All the regions in the
circle colored red must be asked to fully answer the question. The peers that own these
regions are called the Support Set of the query. Although the query covers a small region
of the data space the number of peers and regions required to ask is proportionally high.

Therefore the minimum number of peers an optimum nearest neighbor search algorithm
would have to ask would be |T |.

Assume searchKnn with query Qk starts from peer p0. p0 examines its routing table and
adds to fringe F the subtrees T1,T2,T3 with representative neighbor peers p1,p2,p3, be-
cause their distance from Qk is less than the pruning distance (see §3.2). Assume p0
forwards query to p1. p1 adds to F the subtrees T4,T5,T6 with representative neighbor
peers p4,p5,p6, because their distance from Qk is less than the pruning distance. Assume
p1 can forward query to p3 and p4 because d(Qk, S(T3)) = d(Qk, S(T4)), where S(Ti) is
the region a subtree is responsible for. Note that p1 and p4 belong to T1. This is depicted
on Figure 3.5(a) where two hops are possible from p1, (a) hopping to p3 and subtree T3

or (b) hopping to p4 and remaining in the same subtree T1. On both cases the peers will
add to fringe their neighbor subtrees that satisfy the pruning distance criterion. But on the
second case, i.e. if we stick to the policy of remaining in the same subtree that we are, the
fringe’s size will expand more slowly than the first case, i.e. hopping to other subtrees.
The search will end when we find the last element of T .

If we place all the peers the search visits on a tree, with root node the peer p0 initiating
the query, leaf nodes the peers that contain answers i.e. elements of T and inner nodes all
the rest nodes which happen to be all the peers of the fringe F then the multicast tree M
of Figure 3.5(b) is formed.
On the worst case the multicast tree M is balanced. The number of the leafs of T0 equals
to the length of T , i.e. |T |. Therefore the number of nodes of the worst case multicast
tree is at most |T |D, where D is the diameter of the trie. But on [49] we have shown that
the diameter of a trie with n nodes is O(logn) w.h.p.. Therefore the cost of algorithm
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knnSearch in number of messages exchanged is |T |O(logn).
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(a) An instance of the algorithm knnSearch running. Peer p0 forwards query Qk to p1. After, peer p1 can
forward query to p4 or p3 because (assuming) they equally distant from Qk.
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(b) Instance of the Multicast Tree M of trie T of Figure 3.5(a): p0 forwards query to p1. p1 can forward
query to p4 or p3. On second case the query will remain in subtree T1 forming smaller fringe.

Figure 3.5: Instance of the proof of the number of messages exchanged by algorithm
knnSearch.



Chapter 4

Performance Evaluation

In order to evaluate GRaSP we have constructed a fast and scalable simulator. This is
the mean of the evaluation and is presented on §4.1. On §4.2 we present the cost model
on which we have based the evaluation, i.e. the metrics used to evaluate the quality of a
network. On §4.3 we experiment with multi-dimensional synthetic and real workloads.

4.1 Simulator

In order to develop protocols over our framework we needed to develop a consistent API.
This API gives the necessary mechanisms to represent the trie topology of our framework,
the routing tables, the k-NN searching algorithm, the bootstrapping and to customize any
Space Partitioning algorithm.

Our simulator is written in C++, is highly configurable, extendable, self-contained, fast
and can provably support the simulation of large networks and the processing of many
queries. It supports dynamic protocols, where node additions and removals are happen-
ing.

The simulator follows the Cycle Based Simulation pattern. The Cycle Based Simulation

is a simplest simulation mode. Herein all the queries are executed sequentially one after
the other. Each query is process in cycles. On each cycle either is processed locally by
a node and/or forwarded to another node. When a query is fully answered is discarded
from the simulated network and the next one is loaded.

4.2 Modeling P2P Network Performance

In order to evaluate our framework we borrow from the literature some performance met-
rics (see [56]) and introduce some new ones. Initially we formally describe each metric
and later on we apply them to evaluate our experiments.

37
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4.2.1 Maximum Throughput

Maximum throughput was proposed in [56], to quantify the resilience of a P2P network
to contention by concurrent searches. Succinctly, assume that a workload of Q queries is
executed on a network. For each peer p, let mp be the number of messages received by
p due to the Q queries. Assume further, that each peer can process at most one message
per unit of time. Now, if queries from the workload arrive (stochastically) at a rate of
Λ queries per unit of time, each query with equal probability, then messages to peer p
shall arrive at a rate of mp

Q
Λ messages per unit of time. Assuming that peer p is not

overloaded (messages do not arrive faster than it can process them), we have Λ < Q
mp

.
Now, maximum throughput Λmax is defined as the maximum value of Λ such that no peer
is overloaded:

Λmax =
Q

maxpmp

Also, let M be the message traffic, i.e. the expected number of messages per query. Then,
if n is the network size then Λmax ≤ n/M , with equality holding in the ideal case where
all traffic is distributed equally. Then, the ratio of traffic of the most loaded peer, over the
average peer traffic, is n/M

Λmax

.

4.2.2 Fringe Size

Of special interest for the scaling of the searching algorithm is the size of the Fringe we
introduced in §3.2. Among all the messages exchanged for a gives query set and network
size we examine the average and the maximum size of the fringe.

4.2.3 Fairness Index

Another metric pertinent to the data is the Data Fairness Index[39] which is defined as

FI =
(
∑n

i=1 xi)
2

n
∑n

i=1 xi
2

where xi is the number of data points of peer i and n is the number of peers. In essence
Data Fairness of Index shows the fairness of the distribution of the data on the peers; i.e.
how are the data distributed among the peers. FI is continuous, scale independent, i.e.
applies to any network size (even for a few peers only) and is bounded between 0 and 1
— 0 for maximal unfairness (when one peer holds all the data), 1 for maximum fairness
(when all the peers have equal number of data).

4.2.4 Latency

Another interesting metric is the number of hops the query requires in order to fully
be answered. We call this number the Number of Peers Asked and compare it with the
theoretical lower bound, i.e. the size of the Support Set (see Figure 3.4) which we call it
the Min. Number of Peers Required To Ask.
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4.3 Experimental Evaluation

After presenting our extended framework and the cost model we are ready to evaluate its
performance. Initially we present the workloads employed to evaluate our framework.
We found or constructed such workloads in order to stress test our framework on various
dimensions.

4.3.1 Test workloads

Datasets

In our experiments we used one synthetic and two real datasets of different dimensionality.

Greece: This real dataset was constructed from real geographic data; it contains 999578
random 2-d points along the road network of Greece 1.

Corel: This real dataset contains 68040 9-d points which represent the Color Moments
of images from the Corel image collection 2.

Uniform: This synthetic dataset contains 1M 2-d points distributed uniformly. In this
case our aim was experimenting with the number of dimensions.

Space Partition

For all our experiments we partitioned the space into peers by employing a k-d tree space

partition (see [23], Chapter 10). We can view a trie as a k-d tree, and split the space along
one dimension each time, cycling through dimensions as we descend. On splitting the
space we have two options as we have already described in §2.1.3; splitting the volume
in two equal-volume regions (Volume-balanced partition) or into two regions of equal
number of data keys (Data-balanced partition). Note that, in contrast to k-d trees in main
memory, we are not concerned with keeping the trie balanced.

Querysets

All the queries for all the datasets have been synthetically created with the following
process; in order to construct a query we used the trie produced by a space partition of
our choice and for each leaf we (uniformly) randomly picked the query. For distance
function we sticked to the Euclidean metric3 (see §1.2.9 on page 10). For a network size
of n peers we asked n/3 queries. We repeated the experiments 10 times and averaged
the results. On a few metrics we used confidence intervals to indicate the reliability of an
estimate.

1Source: http://www.rtreeportal.org/spatial.html
2Source: http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
3We used the proposed Euclidean distance are recommended from the download site
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4.3.2 Results for low dimensions

In this section we evaluate our algorithm on a low 2-dimensional space by experimenting
with the Greece dataset for various values of k, i.e. the number of answers asked. The
questions raised is how well the frameworks performs with different space partitions,
network sizes and number of answers k.

Space Partitioning: volume-balanced vs data-balanced

The Data-balanced partitioning shows better Data Fairness Index as shown on Fig. 4.1(b)
where FI is about 0.6 in comparison to Fig. 4.4(b) where it fluctuates around 0.1. This
is expected since data-balanced partition does exactly this; tries to equally partition data
into peers. Note that on both cases FI remains almost constant irrelevant to the number of
peers.

The max throughput of d.b.p. (Fig. 4.1(d)) is an order of magnitude more than the v.b.p.
(Fig. 4.4(d)).

The mean and max fringe size of d.s.p (Fig. 4.1(a)). is the one fifth of the fringe size of
v.b.p. (Fig 4.4(a)).

As we see on Fig. 4.4(c) the latency of v.b.p. is approximately 45 times more than the
latency induced by d.b.p. (see Fig. 4.1(c)).

To sum up d.b.p. outweighs v.b.p. in terms of all the metrics.

Size of fringe

As was expected the fringe grows as the k parameter increases (i.e. the requested number
of answers) because a larger range of the trie should be searched. More specifically, for
every ten fold of k the max and mean fringe size are doubled (compare Fig 4.1(a) for
k = 1 with Fig 4.2(a) for k = 10 and Fig 4.3(a) for k = 100).

The mean and max fringe size are increased logarithmically in relation to the number of
peers (see for example Fig 4.3(a)).

Latency

Generally the number of peers asked by the search algorithm remains close to the op-
timum numbers of peers. To be more precise wee see from Fig. 4.1(c), Fig. 4.2(c) and
Fig. 4.3(c) that it is at most 3.5 times more.

Maximum Throughput

As expected the maximum throughput is decreased when k is decreased but only by a
small factor (see figures 4.1(d), 4.2(d) and 4.3(d))
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Data Fairness Index

Interestingly the Data Fairness Index seems to be irrelevant to the number of peers; see
Fig. 4.1(b).

4.3.3 Results for medium dimensions

In this section we evaluate our algorithm for more than 2 dimensions. We use the real
9-dimensional ColorMoments dataset and the 9-dimensional synthetic uniform dataset.

Size of fringe

From Fig. 4.6(a) we see that the Fringe Size is bounded by a logarithmic distribution in
relation to the network size. But on Figures 4.5(a) and 4.5(b) the fringe size especially the
mean size is steeply becoming large for more than 7 dimensions (but still remains low;
less than 30 for 9 dimensions).

Latency

The Latency Complexity Theorem Proof tells us that the number of messages is bounded
by |T |O(logn). The lower curve on Fig. 4.5(d) and Fig. 4.6(c) is the size of the Sup-
port Set |T |. See for example Fig. 4.6(c) for n=90000. The theoretical upper bound is
|T |O(logn) = 1150 ∗ log(90000) = 1150 ∗ 5 = 5750 but the actual experimental result is
1500 messages only. This tells us that the theoretical bound is pessimistic, i.e. in action
the algorithm is efficient.

Maximum Throughput

As we see on Fig. 4.6(d) the throughput is low but it isn’t increased for large network
sizes because of the lot of messages exchanged. This is not good but not bad. Actually
it’s still practical.

Referring now to Fig. 4.5(e) the throughput for more than 7 dimensions (i.e. for high
dimensions) is very low which means there is no meaning experimenting with higher
dimensions.

Data Fairness Index

Data Fairness Index as on low dimensions remains constant and irrelevant to the number
of peers as we see on Fig. 4.6(b) and Fig. 4.5(c). Of course the uniform dataset has better
(higher) Data Fairness Index because the data are uniformly scattered and therefore its
volume-balanced partition is the same if we did data-balanced partition.

4.3.4 Results for high dimensions

From the results shown on the previous section related to medium dimensions we see
that the framework for more than 7-8 dimensions (see previous section for medium di-
mensions) is not efficient but there is nothing we can do because of the inherited curse
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Figure 4.1: Results of k-NN search over network size for the Greece dataset, for data
space partition and k = 1.

of dimensionality. Usually on memory and disk data structures the policy followed is
just linear searching. In a p2p environment we can further experiment with approximate

nearest neighbor searching.

Figures

Herein we collectively list the figures of the results of all our experiments.



CHAPTER 4. PERFORMANCE EVALUATION 43

 5

 10

 15

 20

 25

 30

 35

 40

 0  10000 20000 30000 40000 50000 60000 70000 80000 90000

F
rin

ge
 S

iz
e

Peers

Max Fringe Size vs Peers
Mean Fringe Size vs Peers

(a) Fringe Size (b) Fairness Index for data distribution

(c) Latency

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10000 20000 30000 40000 50000 60000 70000 80000 90000

(d) Max. throughput

Figure 4.2: Results of k-NN search over network size for the Greece dataset, for data
space partition and k = 10.
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Figure 4.3: Results of k-NN search over network size for the Greece dataset, for data
space partition and k = 100.
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Figure 4.4: Results of k-NN search over network size for the Greece dataset, for volume
space partition and k = 1.
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Figure 4.5: Results of k-NN search over number of dimensions, for the Uniform dataset,
for volume space partition and k = 1.
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Figure 4.6: Results of k-NN search over network size, for the ColorMoments dataset, for
data space partition and k = 1.



Chapter 5

Conclusion and Future Work

This work comes to complement the one on [49] were we had crafted a solid distributed
framework for generalized range queries where no assumptions (shape,dimensionality)
are placed about the data and query types. Moreover our data structure is free of the
height-balanced search tree limitation presented in adversary works. In this thesis we
extend it to also support nearest neighbor queries with mathematically good guarantees.
Experiments have proven the network size scalability for low dimensions. For higher
dimensions the framework is as good as it can gets; approximate neighbor searching al-
gorithms should be evaluated.
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