
Technical University Of Crete

Master Of Science Thesis

A Heterogenous System Approach To
The RealTime Stereo Problem

Author:

Yiannis Agadakos

Supervisor:

Dr. Yiannis Papaeystathiou

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

in the

Microelectronics Hardware Laboratory

Electronic and Computer Engineering

September 2013

http://www.tuc.gr
http://www.yagad.com
http://www.ygp.tuc.gr
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http:WWW.ECE.TUC.GR//)

Declaration of Authorship

I, Yiannis Agadakos, declare that this thesis titled, ’ A Heterogenous System Approach

To The RealTime Stereo Problem ’ and the work presented in it are my own. I confirm

that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

”Imagination is more important than knowledge. For knowledge is limited to all we now

know and understand, while imagination embraces the entire world, and all there ever

will be to know and understand.”

Albert Einstein.

UNIVERSITY NAME (TECHNICAL UNIVERSITY OF CRETE)

Abstract

Electronic and Computer Engineering

Master of Science

A Heterogenous System Approach To The RealTime Stereo Problem

by Yiannis Agadakos

The time of monolithic devices is soon to end as the demand for innovative applications

increases and sophisticated technologies like augmented reality come to be. A hard con-

straint for such technologies is immense processing power, while also operating under

real time constrains, conventional systems and software principles fail to win the chal-

lenge. However a new era of embedded devices is dawning as heterogeneous systems

become readily available, the power hidden inside these tiny giants can bring appli-

cations previously unthought of within our grasp. By applying distributed embedded

software engineering and following the principles of heterogeneous systems we have cre-

ated a novel system that can solve the Stereo Vision challenge in Real Time with more

than 40FPS in QVGA and with less than 2 Watts total power consumption while at the

same time performing feature detection, furthermore the proposed architecture allows

the same system to be used for any processing intensive work where parallel calculation

is required, such as signal processing, by exploiting our novel client-server system devel-

oped. Lastly the design and implementation principles used and proposed in this thesis

foresee and support the cooperation with a higher level of heterogeneous systems with

more processing units such as the OpenCL enabled GPUs, soon to come. The proposed

system can satisfy some of the most demanding processing requirements in real time,

opening the door to applications previously available only to workstation machines.

University Web Site URL Here (include http://www.tuc.gr)
Faculty Web Site URL Here (include http:www.ece.tuc.gr//)
Department or School Web Site URL Here (include http:WWW.ECE.TUC.GR//)

Acknowledgements

This work would have been infinitely more difficult without the guidance and tutorship of

my supervisor Dr. Yiannis Papaeystathiouand my colleague Konsantinos Makantasis

MSc, whose expertise in Computer Vision proved invaluable. . . .

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables ix

Abbreviations x

1 Introduction 1

1.1 Introduction . 1

1.2 Goal . 3

1.3 Background . 3

1.3.1 Computer Vision . 3

1.3.1.1 Stereo Vision . 4

Epipolar Geometry . 4

Epipolar Constraint . 6

Monotonicity and Uniqueness Constraint 6

1.3.2 Embedded Systems . 8

1.3.2.1 Real Time . 9

FPGA . 9

DSP . 10

GPP . 10

ASIC . 11

1.3.3 Summary . 11

2 Architecture 12

2.1 Relative Work . 12

2.1.1 Embedded Universe . 12

2.1.2 FPGA based . 13

2.1.3 ASIC . 13

2.1.4 Atom . 14

v

Contents vi

2.1.5 DSP . 14

2.1.6 Heterogeneous Systems . 14

2.1.7 Summary . 15

2.2 Our Approach . 16

2.2.1 Initial Design . 16

2.2.2 Assumptions and Theory boosts 17

Epipolar Constraint . 18

Monotonicity Constraint . 18

2.2.3 GPP Side . 19

2.2.4 DSP Side . 20

2.2.5 Assembling the Puzzle . 20

3 Implementation 23

3.1 Introduction . 23

3.1.1 GPP Implementation Overview . 23

3.1.2 DSP Implementation Overview . 24

3.2 GPP . 25

3.2.1 Tools and Frameworks . 27

3.2.2 Tests . 27

3.2.3 Optimizations . 28

3.3 DSP . 28

3.3.1 Tools . 28

3.3.2 Implementation . 29

3.3.2.1 MexFile . 34

3.3.3 Amdahl’s Law . 39

3.3.3.1 Window Impact . 39

3.3.3.2 Maximum Disparity . 39

3.3.4 OMAP3530 . 41

3.4 Optimizations . 41

3.4.1 Platform independent optimizations- general principles 41

3.4.1.1 Disparity-Window Choice 41

3.4.1.2 Compiler optimizations 42

3.4.1.3 Optimized image data serialization and Loop Unrolling . 42

3.4.1.4 Memory Copy Impact . 43

3.4.1.5 SAD on one step . 43

3.4.2 Architecture Dependent Optimizations 45

3.4.2.1 Variable types . 47

3.4.2.2 Intrinsics . 48

3.4.2.3 Use of Restrict . 51

3.4.2.4 Configuration Files Optimizations 51

4 Results 53

4.1 Assumptions and Standards . 53

4.1.1 Quantum Change and Incremental Speed Ups 54

4.2 Disparity and Window Size . 59

4.2.1 Experimental Disparity Maps . 59

4.2.2 The Million Disparity per Second Metric 60

Contents vii

4.3 Summary . 60

5 Conclusions 64

5.1 Future Work . 65

6 The build path, fallacies and pitfalls 67

6.1 Time Distribution . 68

A The build path, fallacies and pitfalls 69

A.1 Time Distribution . 70

B Device Schematics And Info 71

B.1 OMAP3530 . 71

B.1.1 Arm Cortex A-8 . 76

B.1.2 TMS320C64+ . 80

B.1.3 POWERVR . 83

Bibliography 86

List of Figures

1.1 Software System Flowchart . 1

1.2 Epipolar Geometry and pinhole model . 5

1.3 Church Image Pair . 6

1.4 Epipolar Line . 7

1.5 Monotonicity and uniqueness constraints 8

2.1 Processing Pipeline . 17

2.2 Epipolar Line . 18

2.3 Monotonicity Constraint . 19

2.4 Software System Flowchart . 22

3.1 Code Profiler Lower Disparity . 33

3.2 Extracted depth, 32 Disparity Levels, Window size of W = 5 ∗ 5 33

3.3 Code Profiler . 33

3.4 Code Profiler Second run . 33

3.5 Code Profiler Output . 40

3.6 Extracted depth, 128 Disparity Levels, Window size of W = 5 ∗ 5 40

3.7 Datapath . 47

3.8 Functional Units. 49

4.1 Performance chart, frames per second and joules per frame. 56

4.2 Performance impact of pixel block size and disparity levels 59

4.3 Disparity Maps for block size 5 and varying disparity levels 61

4.4 Disparity Maps for block size 7 and varying disparity levels 61

4.5 Disparity Maps for block size 5 and varying disparity levels 62

4.6 Disparity Maps for block size 13 and varying disparity levels 62

4.7 Million Disparities Metrics, summary chart 63

viii

List of Tables

4.1 Stereo algorithm Run Times, unoptimized 54

4.2 Stereo algorithm Run Times, Quantum Step:Incremental Optimizations . 55

4.3 Stereo algorithm Run Times, Quantum Step:Incremental Optimizations . 58

ix

Abbreviations

LAH List Abbreviations Here

SoC System on a Chip

GPP General Purpose Processor

DSP Digitial Signal Processor

GPU Grapchics Processing Unit

API Appplication Interface

IP Intellectual Provider

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

O/S Operating System

RTO/S Real Time Operating System

BIOS Real Time Operating System

OE Open Embedded

TCP/IP Transmission Control Protocol , Internet Protocol

UDP Intellectual Provider

USB Universal Serial Bus

WAR Write After Read hazzard

RAW Read After Write hazzard

x

To my beloved family. Especially to my parents Vasili and
Katerina, thank you for patience and bottomless support, for
raising me with ethics and for awakening me to the world of

science. . . .

xi

Chapter 1

Introduction

1.1 Introduction

As technology advances more powerful devices find their way in the hands of even the

most casual user. Sophisticated software aids us in our ever more complicated everyday

Figure 1.1: The Google Glasses project brings
the dawn of augmented reality to the masses..

tasks, from the simple now everyday or-

ganizer and email enabled smartphones to

application software that aids us in find-

ing the constellations when we look at the

stars, it is a new age and every aspect of

our daily lives is under improvement, how-

ever this is bounded by the power and en-

ergy efficiency of our mobile devices, at

least up to now. We have reached a point

however, where in our humble opinion, the

processing power and capabilities hidden

in these handy portable devices, has ex-

ceeded the problems of such constraints

such as processing power, memory and

battery efficiency, and if properly handled,

we believe, they can be used to provide so-

lutions previously out of their reach.

A good candidate for such devices, is the

area of computer vision, a powerful field of

expertise that finds use in many distinct

applications from medicine to astronomy

1

Chapter 1. Introduction 2

and civil environments. Despite its tremendous usefulness, the processing requirements

and resources it required held its exposure to real time portable devices low. However,

this is not the case anymore, as recent embedded devices have shown a host of com-

puter vision applications, that found their way to our smart phones and smart devices

in general, one of the first massively used app was the smile detection one, now present

in nearly any compact camera, recently a popular trend is that of the QR1 code where a

user uses his smart phone to scan the special tag on a product and retrieve information

about it finally as augmented reality comes of age its enchanting applications awe us

with every appearance they make in our lives.

One of the last computer vision fields to appear on portable devices is that of stereo

vision, its complex and demanding algorithms prohibit its use to portable devices where

real time is a hard constraint, however it would provide even more flexibility and utility

to our smart devices, imagine your phone or pda being able to estimate depth, even

at close ranges, even from trivial applications like measuring objects or distances up

to sophisticated f augmented reality applications where the information of depth will

provide new possibilities.

Another recent trent in devices is the creation of hybrid systems a jump we saw happen-

ing in desktop personal computers and workstations with the establishment of CUDA

and OpenCL technologies where a system now has more than one processing units and

with vastly different architectures as well, allowing for distributed computing to provide

with unforeseen results.

Unlike the aforementioned desktop word, in the embedded word a host of fledgling hybrid

systems appeared recently combining in a single chip multiple processing units, bringing

thus embedded programming and development new possibilities, a good representative

of this category is the OMAP3530 system on a chip2, this SoC in its Gumstix OveroFire

host will also be used in this Thesis.

The work done in this Thesis will not only show that a device such as OMAP3530 is

capable of running stereo vision in real time, it will also demonstrate the full design and

development process for the newly arrived embedded hybrid devices, the power they

bring and the pitfalls one must avoid in order to harness their power. It is the authors

hope that the design principles for heterogeneous systems, presented in the following

sections will be applied in a variety of processing intensive applications especially in the

field of computer vision and telecommunications as the benefits of using only software to

achieve results comparable with hardware based solutions are numerous and vast further

more the incoming OpenCL technology is bound to arrive soon in the embedded world

further increasing the power of such devices. On top of that, the fact that the entire

1 QuickResponse Code
2henche refered to as SoC

Chapter 1. Introduction 3

embedded system is hosted on an O/S like Linux with the software universe this implies,

is an attractive notion for every engineer at least!

1.2 Goal

In this Thesis we challenge the stereo image problem attempting to create a real time em-

bedded system with at least 15 FPS on QVGA images while at the same time performing

application code capable of performing feature detection or other heavy processing in

real time while keeping the power consumption at a minimum. In order to achieve this

we will use the gumstix system on a chip utilizing both the arm GPP and the TI DSP

unit researching and implementing a data pipeline between them turning the system to

a hetereogeneous embedded system. It is the authors hope that through this long and

tough journey the principles and design patterns that will steam from this work will

find their way to numerous embedded systems in the fields of telecommunication, image

processing and in general any field where real time performance on big data is required.

1.3 Background

Intro

The work done in this Thesis is based into two major scientific fields the world of Com-

puter Vision and the field of Embedded Systems. Following is a the required background

and the main notions that we will commonly refer to in the chapters to come. The hereby

presented topics are by no means complete, as this demanding task would require several

chapters on each own, the reader is redirected to the excellent existing bibliography on

each field.

1.3.1 Computer Vision

with as few words as possible, computer vision is a field of expertise, where a system

takes an image as an input and tries by using principles from the sciences of physics,

anthropology and other sciences to explain and extract useful information. It is a science

that attempts to extract, analyze and explain from 2-D imagery the 3-D real world, thus

an inverse incomplete problem where complex mathematics and physics come into play.

A well known adage is

”a picture is worth thousand words”

Chapter 1. Introduction 4

while the saying roots vanish in history, its meaning cannot be truer when it comes in

computer vision where the information extracted from a simple can be used to detect

objects and describe the image Lastly in the authors humble opinion two cornerstone

books that interested readers should study are Gonzalez and Woods and the also excel-

lent work of prof http://szeliski.org/Book/.

1.3.1.1 Stereo Vision

Intro The field of Stereo Vision is a sub field of Computer Vision, its main goal is

to reconstruct the third dimension from two 2-D images, thus providing the distance

information of a printed scene. This is attained by using the disparity theory where

depth information can be found by comparing the horizontal location of an object from

two different pictures taken with a specific technique to create a stereoscopic pair.

Stereo Vision is used in many applications, especially those that require the 3D dimension

to properly operate such as unmanned vehicles where the system must avoid colliding

into obstacles, though recently stereo vision is used from augmented reality devices such

as smart tv’s to detect hand gestures, lastly the extracted 3D dimension can be used

to reconstruct the real world using stereoscopic pair of images thus it also finds use in

medicine, archeology and any science that attempts to reconstruct a 3D object from 2D

images.

Epipolar Geometry while not an actual geometry theory in the sense of Eukledian

or other theories, is the subset of rules and constraints chosen to perform the task of

stereo correspondence. There are several constraints that must hold true before one

can use Epipolar Geometry to calculate the depth information of an image firstly the

pictures of the scene must be taken by using cameras that satisfy the pinhole model

(in practice all cameras do) then both camera sensors must be identical or rectified so

that their corresponding image matrices are referring to the same basis system, lastly

noise due to physical flaws or deficiencies must be corrected amongst which is the barrel

vision effect where the camera stretches the image near the edges of the 2-D square

image plane.

Once these constraints hold true then this theory can be applied and by using the fol-

lowing procedure on a stereoscopic image pair one can recreate with acceptable accuracy

the distance of each point from the camera system, thus recreating the lost 3D informa-

tion. Figures 1.2 and 1.3 show the epipolar geometry at work where the same object is

shown in different corresponding location according to the point of view, it is precisely

this displacement that that provides us with the depth information. The displacement

between corresponding point, namely the difference between the location of appearance

Chapter 1. Introduction 5

of a point in the left and right image, is called a disparity and the image that contains

all the disparities of a stereo image pair is called a disparity map, once we have the

disparity map we can get the actual depth map by multiplying each disparity with the

depth ratio which depends on the lens of the camera and the distance between the two

camera center points which is also referred to as the baseline, the equation is Zi = B∗F
Di

whereDi = XiL − XiR where i is a pixel belonging to the left image, the generated

image is called a depth map. While there are many different approaches to calculate

disparities we will refer to the correspondence matching where as described above we

try to locate an object in the image pair. At this point we must select an image as our

basis image from the image pair this can be either the left image or the right image

and in bibliography both are used, we will use the left image to select a point and then

attempt to find its correspondent on the right image. This is an exhaustive problem and

if attempted as such the processing it requires renders it unusable as each pixel must be

tested for correspondence with each pixel from the left image luckily some constraints

can be used that drastically limit the range of search in a point where we can achieve

even real time performance on very large images these constraints are the Epipolar and

Monotonicity constraints.

Figure 1.2: Epipolar Geometry and pinhole model

Epipolar Geometry Model

Chapter 1. Introduction 6

Figure 1.3: Church Image Pair

Stereo pair of an actual image, horizontal displacement is evident.

Epipolar Constraint As we mentioned before searching excaustively for the match

of each pixel of an image is prohibitely expensive as even the smallest images contain

hundreds of thousands of pixels one imagine the vast number of calculations this easily

propagates. However the epipolar constraint can drastically limit the search range for a

corresponding pixel by denoting that a corresponding pixel can only occur on the same

horizontal line as our target pixel (target is the pixel in the left image and corresponding

is the match we try to find on the right image) this changes the problem to a 1-D search

problem since we only have to search one line of pixels in the target image. In order to

use this constraint however our images must refer to the same basis system and must

be rectified vertically so as the only displacement present is the one in the horizontal

dimension, this means that we also have to correct for the Barel vision effect. With

this constraint in effect the calculation cost of the stereo correspondence problem is low

enough to attain real time calculation on stereo image pairs.

Monotonicity and Uniqueness Constraint Another important constraint that

can be used to further speed up the search for the corresponding match is the so called

Monotonicity Constraint, this constraint states with simple words, that if we find a point

Xi− 1R on the right image that corresponds to a target Xi− 1L point on the left image

Chapter 1. Introduction 7

Figure 1.4: Epipolar Line

When a point appears on the left image then its corresponding match can only appear
on the epipolar line on the right image.

then the subsequent point XiL if it is after the point Xi − 1L (on the horizontal axis)

then it can only have a match on the right image in a position after the previously found

point Xi−1R, lastly the uniqueness constraint states that each point can only correspond

to one match. In order to get a feeling of how drastically this constraint helps, think

of a line of pixels of an average sized image has 640 pixels (if the image is 480 * 640)

on the horizontal axis, this is the image also known as VGA, in order to fully match all

points existing on the target frame with the corresponding frame we would thus need

640 ∗ 640 = 409600 operations by using the monotonicity and uniqueness constraint we

would get 640 operations for the first pixel, 639 operations for the second so on and so

forth down to 1 operation for the 639 pixel of the left image this is an arithmetic progress

and each sum can be calculated by Gauss formula
∑

i = 1640 (P1+P640)∗640
2 = 102560

operations since each VGA image has 480 lines that would mean a total reduction of

102560 ∗ 480 = 49228800 operations, this means that by using the monotonicity and

uniqueness constraints we calculated the entire disparity map in approximately 1
4 of the

time previously required.

Chapter 1. Introduction 8

Figure 1.5: Monotonicity and uniqueness constraints

Subsequent matches can appear only sequentially on the corresponding frame and can
only match one target.

1.3.2 Embedded Systems

A specialized computer system that is part of a larger system or ma-

chine. Typically, an embedded system is housed on a single microprocessor

board with the programs stored in ROM. Virtually all appliances that have a

digital interface – watches, microwaves, VCRs, cars – utilize embedded sys-

tems. Some embedded systems include an operating system, but many are

so specialized that the entire logic can be implemented as a single program.

3 This rather simple definition describes but the simplest embedded devices, Raj Kamal

in his excellent book for embedded systems more completely describes such devices as

An embedded system is one that has computer-hardware with software

embedded in as its most important component.

this definition in our opinion more correctly describes an embedded system and at the

same time is allowed to scale with time as new devices come to be with uknown hardware

at the time of this writing as this was true for older devices before the time that RS232

or Ethernet, blue tooth or wifi or camera sensors found their way to the embedded

devices, software was and will be the key hardware component in an embedded systems

heart. This paradox means that in an embedded system software is written to be

so closely intimate with the underlying hardware that almost behaves as a hardware

controller and while the traditional language to write such software was no other than

the assembly language, advances to compiler technology and specialized tools allow the

programmer to write almost as efficient code using higher level languages such as C or

3Definition taken from http://www.webopedia.com/TERM/E/embedded_system.html

http://www.webopedia.com/TERM/E/embedded_system.html

Chapter 1. Introduction 9

VHDL. A word of note to keep from this introduction to embedded systems is that high

performance software that runs on an embedded device is closely tied to every aspect of

the underlying hardware and almost always requires heavy modifications to be ported to

another device as application logic is closely related to the very microcode that controls

the devices electronics.

1.3.2.1 Real Time

is a constraint that most embedded devices are required to hold true to, it is the con-

straint that denotes system behavior and its meaning is more apparent by the alternate

name of this constraint which is Reactive Systems as it is evident it implies a systems re-

sponse to events and interrupts in such a way that the initiator does not wait more than

a specified amount of time, the reflexes of a human being are a good metaphor to the

real time systems an action causes an imidiate reaction, the feel of pain or discomfort to

ones arm causes immediate retraction from the source of such discomfort with no delay.

Of course there are various levels of real time responses the aforementioned example is

more closely described from the so known Hard real time constraints where the corre-

sponding actions cause an immediate reaction with no delay, with a miss constituting

a complete system failure, softer constraints are the Firm and the Soft constraints. By

their nature most if not all embedded devices fall under the Soft constraint which means

that all embedded systems are required to respond within a range of time that is deemed

acceptable in each application while exceeding these boundaries usually renders them

useless.

Devices and Processors

In the universe of embedded devices exist many platforms and in contrast with the world

of personal computers the choices an embedded engineer has to make in order to select

a platform as the underlying hardware base for his application are quite a few each with

its own pros and cons, we will attempt a brief description for each of the main families

in the following paragraphs.

FPGA Field programmable gate arrays is a technology that with a few words aims

to achieve hardware level performance when executing algorithms while avoiding the

cost inherited with designing and implementing a microelectronic circuit. The exact

way it achieves such a feat are beyond the scope of this Thesis, in short it formats

an interconnected array of logical gates in such a way where the output of a logical

function given an input matches the ground truth table of the implemented algorithm.

Chapter 1. Introduction 10

Commonly implementation of these systems is done in the VHDL language, while their

major asset is their hardware level performance(albeit quite slower than their ASIC

counterparts and typically less power efficient) with just software effort their down side

is that reprogramming must take place on a special programmer device (typically) and

can only perform the task they were programmed to do.

DSP Digital Signal Processors are specialized processors that contain typically more

hardware resourses for addition and multiplication thus achieving higher throughput to

signal analysis where the same operation must be done to a vast number of data. These

devices while offering much higher throughput than a general purpose processor when

SIMD calculations are required, they typically fall behind in performance to FPGA

solutions their major strength is that they can be reprogrammed away from the lab

and require no special hardware as all the application program in written in software

and requires no internal structural change as is the case of FPGA’s, this allows a good

trade off for most applications between performance and robustness furthermore their

power consumption is quite low typically lower than corresponding FPGA but higher

than ASIC solutions.

GPP General Purpose Processors do not exist per Se in the embedded world while

Intel has attempted to enter the embedded world by using the Atom processor that is

a general purpose processor its power consumption is at least one order of magnitude

higher than other embedded systems. Most general purpose processors are based on

the ARM IP, while architectures from other Intellectual Providers also exist, in short

these processors are able to run programs in a similar if not identical way to personal

computers and their hardware follows a similar path typically one instruction is applied

to a set of one or two operants per cycle commonly referred to as SISD model. Strengths

of this platform are the easy access to software already compiled to run on those proces-

sors(since no special programming is needed other than to use an appropriate compiler

) thus implementation to these platforms is easy and straight forward one simply uses

a compiler that generates an output executable that runs on the target architecture,

also commonly these processors are quite cheap since they target a higher market share,

lastly power consumption is higher than all the aforementioned technologies and com-

monly one must have access to additional hardware in order to use them such as I/O

controllers and memory. We must note here that while the micro controller family is a

very important part of the embedded world we skip it here since they cannot cope with

the goal of the current thesis stereo map calculation.

Chapter 1. Introduction 11

ASIC application-specific integrated circuit, is as its name implied customized to be

used in one specific application and cannot be reprogrammed or reassigned there are

a host of different tehcnologies to create ASIC’s as the idea begun approximately in

1980’s, a common denominator is the absence of reprogramming and the narrowness of

the scope of execution which typically limits the ASIC’s to perform exaclty the task it

was created for. Strenghts of the ASIC is its almost undistputed performance as nothing

sort of a pure electronic solution such as a VLSI circuit can match is speed, while recent

advancements in FPGA technology have certainly shortened the gap between them,

ASIC retains the first place in performance and power consumption, on the down side it

cannot be reprogrammed as an FPGA can so bugs and updates cannot take place save

for those ASICs that have a microcode controller or BIOS and even then the updates

are extremely limited when compared with FPGA or the more versatile DSP and GPP

systems. Lastly the cost of creating such a system is higher by far than any of the

aforementioned systems since it commonly requires custom hardware or lengthly design

and implementation which is by far more expensive than all previous systems.

1.3.3 Summary

In this section we attempted to present the goal of this Thesis and provide the reader

with at least the basic background and notions that appear in this work. While the

fields that this work dabbles with are extremely complex a detailed description of either

computer vision or the embedded world was unrealistic, however the principles and

notions presented can be used as a seed for the reader to further research and study on

the excellent and numerous bibliography on either field. In the chapters to come we will

present:

Chapter 2 In chapter 2 we will show the relevant work in our field, discuss pros and

cons and based on this discussion present our novel approach to the problem.

Chapter 3 has a detailed description of our implementation, with detailed steps of

development and the reason behind each engineering choice.

Chapter 4 contains the results and their analysis.

Chapter 5 has conclusions and future work.

Appendices lastly contain informations about the tools used as well as fragments from

the codes and configurations for the DSP.

Chapter 2

Architecture

2.1 Relative Work

While the problem of stereo vision is studied from the early 70’s, and publications can

be found with algorithms and performances from around that time(put reference here),

it was not until the mid 90’s that the first embedded platforms appeared[1, 2] .

Due to the technological limits at the time embedded systems that performed stereo

vision, developed slowly but steadily from FPGA solutions that could perform stereo

correspondence on small resolution systems to ASIC and later with intel ATOM and

M processors; while the solutions that used DSP’s where sparce and few within, a very

important survey for relevant work until 2001 can be found in the excellent work of [3],

another survey that sums up some results is [4].

Since the focus of this thesis is on real time stereo vision performed on embedded systems,

we will focus on relevant work that presents results on those systems.

2.1.1 Embedded Universe

As we narrow our view to the embedded world we find three major contenders, FPGA[2,

5–7] based solutions are by far the most common, followed by Intel’s initial portable

cpu Atom, followed by DSP[8–10] standalone systems and a handful of ASIC[11, 12]

platforms, lastly a new wave of heterogeneous devices that appeared recently have begun

to be studied and show promising and extremely interesting results[13]..

12

Chapter 2 . Architecture-Previous Work 13

2.1.2 FPGA based

The vast majority of the systems developed utilize FPGA’s and provide excellent re-

sults, amongst them even some of the earliest work in this problem was developed as

a solution to FPGA systems i.e the system named PARTS [14] using 16 FPGA could

generate the outstanding for the time being 42 FPS at QVGA quality even earlier the

pioneering work of Olivier Fauger[2]as et all on 1993 was able to produce stereo images

of 256*256 at 8FPS using matrices of 4 by 4 networked FPGA. One of the most cited,

recent papers, concerning FPGA based implementation is the work of S. Jin et al. [15]

where in their work state that they have developed an FPGA solution that may perform

as good as 30 or 60FPS on VGA images while operating on two different timings, while

their results are impressive the window size of 15 is considered generally high and many

other authors provide results for window sizes of 7 or 5, in their own work however

they have developed their algorithm on a general processor as well to compare results

and provide that on their 3.2Ghz Pentium 4? with SSE optimizations a FPS of 1.1 is

achieved. Other systems namely the work of Masrani and and MacLean [5] report 30

FPS but at double disparity levels (128) , in the work of Darabiha[6] et all an array of

4 FPGA is used to calculate sub QVGA stereo image at 20 FPS and with 20 disparity

levels lastly in the work of Jia et all we see for VGA images approximately 30FPS using

64 disparity levels, it should be noted here that the usual window used in these works

is 15 and in some cases it is not reported, however since the impact of window size in

performance is significant in cases where it is not reported it is difficult to estimate the

power of the implementation.

To sum up, performance is directly correlated with the size of the FPGA unit, further-

more FPS alone should not be the only metric since the window size, disparity levels

and correlation functions must be considered. More recent systems such as the work of

[16] report even better performance with newer Xilinx Virtex 5 where they can process

more than 87fps in HD content, where for VGA the authors report more than 590 Fps.

. A low cost implementation of[16]is [17] where a complete system is implemented.

2.1.3 ASIC

Since the cost of constructing an ASIC custom board is significant and prototyping is

orders of magnitude slower than for the FPGA systems, the prior systems using ASIC’s

are significantly fewer; two of the most cited works in this field are the SAZAN system

propose in the work of Kimura [11] that is able to produce QVGA stereo maps with

20FPS on 20 Disparity levels, also Woodfill et al developed the ”The Tyzx DeepSea G2

Vision System” [12] based on the homonemous Deapsea processor that is able to produce

Chapter 2 . Architecture-Previous Work 14

as much as 200FPS on 64 disparity levels. Lastly an inovative work performed in the

aerospace field uses a novel architecture aimed for low power operation is introduced in

the work of Diotalevi[18] et al that produces up to 25FPS at 348*288 image size with

16 disparity levels consuming approximately 75mW using the IntellaSys S40C18 unit.

2.1.4 Atom

As this unit is more like an underpowered x86 cpu, and operating systems using this

unit are general purpuse results from works that used this unit as an embedded real

time solution provided unacceptable results, at least for the real time constraint, as they

failed to provide good quality depth map at an acceptable frame rate 0.1 to 2 FPS as

reported from [4], most systems using this solution simply perform stereo calculation

ofboard in a base station system [19] .

2.1.5 DSP

DSP systems are an attractive candidate for the stereo problem since they provide

parallel computation and can do so without the need of hardware level programming as

FPGA’s requiring just software level programming. One of the most used units in this

field is Texas Instruments TMS320DSP family, roughly arround since 1983 though the

TMS32010 model it has grown to a powerful and stable platform that according to the

model can perform either fixed point or floating point arithmetic.

It is of no wonder as such, that almost all available work in this field is done using some

model of this family, in the work of Nelson Chang et all [8] a DSP based solution is

proposed using the TMS320C6414T-1000 model that can perform up to 50FPS on 16

disparity levels at above QVGA quality (384*288) using their proposed jigsaw template

and the SAD correlation function. More recent work in the field are the two robot catcher

systems of Lin and Chiew[8–10] that can perform real time stereo calculation and are

able to catch items thrown at them from the distance of 4meters with 65% accuracy,

again these systems utilize THMS320C64 dsp.

2.1.6 Heterogeneous Systems

A new highly promising option are Heterogeneous systems, systems that provide 2 or

more processing units of different architecture that can use the best of multiple worlds,

such as providing a general purpuse operating system such as Linux and yet having

highly specialized capabilities such as a OpenCL enabled GPU or an in chip specialized

hardware such as a DSP unit or a FPGA.

Chapter 2 . Architecture-Previous Work 15

Due to the short history of these systems, prior work in these is limited, the only system

that implements stereo vision on Hetererogeneous system the author was able to find

was in the excellent work of Goldman and Matthies [13] , where the auhtors used a

GumstixFire unit with OMAP3530 SoC. Texas Instrument’s OMAP3530 unit contains

multiple operating units namely a GPU, CPU and a DSP system of the TMS320 family.

Using a distributed processing model the authors report a FPS of46 on QVGA images

or 8 on VGA while at the same time using the general purpose processor to run inde-

pendent feature tracking algorithms.

2.1.7 Summary

The aforementioned systems are by no means exhaustive as the work in this field is

immense, it would require nothing sort of a survey for each category (FPGA, ASIC,

DSP) to provide an exhaustive and complete state of the art, however the systems

mentioned are amongst the most cited the author managed to find. Alas the only

survey available, the work of [3] while excellent is a bit outdated and is not focused on

embedded systems. Lastly another important notion the we must keep in mind are the

metrics used to compare methods, the most common metric found in all publications, at

least in the real time field, is the FPS without a sufficient frame rate any solution is not

acceptable for real time applications, another commonly used metric is disparities per

second commonly abrevated as MDS(million disparities per second) also a useful metric

especially in publications where power consumption is important such as [13] and [18]

metrics that provide a view on consumption appear such as frame per joule, watt per

frame or even disparities per joule. Finally a common metric for all stereo vision based

works is the use of true disparities to error disparities ratio and the handling of non

correspondences and occlusions, although for embedded applications where usually less

accuracy is required (at least on pixel level), this metric is usually overlooked in favor

of the aforementioned fps and energy metrics.

Chapter 2 . Architecture-Our Approach 16

2.2 Our Approach

Considering the minimum requirements presented, the real time constraint and the de-

mand that a variety of computer vision algorithms should be able to run in parallel

we chose a heterogeneous system as the development platform that can adhere to these

demands. More specifically we chose the OMAP3530 S.o.C in the gumstix implementa-

tion.

Let us justify the reason behind this choice, an A.S.I.C system is only available if made

by a large company and even then the interoperability with another system is trou-

blesome at best, an FPGA has a varying price from affordable to expensive yet again

it suffers from interoperability issues and even though it can be programmed it is not

feasible to do this outside of a lab, a DSP system alone would be sufficient to process

the data yet it would suffer greatly to perform more than one operation, and lastly a

micro controller alone would not be able to perform the required Stereo Vision task in

real time.

A combination of the above systems however as presented before would combine the

strengths of two (or more) worlds to solve the problem. From the presented hetero-

geneous systems 1 we chose the GPP+DSP for three main reasons, firstly the cost is

lower, secondly the DSP can run in software any algorithm while the FPGA must be

reprogrammed and lastly the community supporting the GPP+DSP platform was open

source and with better support an important notion. Of the potential candidates we

chose the gumstix implementation a powerful complete system on a chip that houses a

GPP a DSP and a separate GPU amongst other components. This setup allows heavy

processing tasks to run on the DSP system while allowing the GPU for graphic support

and the GPP to run the operating system and any additional algorithms. The DSP

system communicates with the GPP through a special driver called DSP-Link which is

how all interprocessor communication takes place.

2.2.1 Initial Design

To fully exploit all benefits of this powerful system a modular architecture was designed

where each component was assigned the task that can handle best, the GPP will be

charged with running the O.S. control the cameras and perform any other task such as

networking and general algorithms according to each application such as custom feature

detection algorithms in the context of computer vision; The DSP unit will be tasked

with running highly parallelized and heavy processing parts of the algorithm where in

this context is the correspondence matching but in other applications a similarly heavy

operation should be placed in the DSP, lastly the GPU will handle the graphics display

Chapter 2 . Architecture-Our Approach 17

if it exists. Thus as shown in 2.1 a pipeline of data is formed starting from the CMOS

sensors passing through the GPP to the DSP and back.

This design is chosen in belief that this processing chain will vastly accelerate the re-

quested operation achieving the real time performance we require this hope is due to

the technical specifications of the DSP system B.

GPP
(O.S,Camera Control,
 feature detection etc)

DSP
(Depth Map Calculation)

 2 CMOS CAMERAS

GPU
(Graphics)

Figure 2.1: Data Flow .

2.2.2 Assumptions and Theory boosts

A very important step when trying to optimize a problem especially in resource limited

systems with real time constraints is which assumptions can be made using mathematics

or theory, where without sacrificing alot of accuracy we can get significant speedups. In

our problem the fastest stereo correspondence algorithm is the SAD while the profile

shape[add reference here] algorithm proposed by Trippets et al, is faster its loss of

accuracy in some applications may not be acceptable but the main reason we did not

chose this algorithm over SAD is not accuracy it is rather the lack of implementations of

Chapter 2 . Architecture-Our Approach 18

this algorithm in the field depriving us from the second major goal of this thesis which

is the comparison of the heterogeneous system performance versus other approaches

when using process heavy applications. Two major theoretical assumptions that can

be employed for stereo vision are also the monotonicity constraint and the epipolar

constraint.

Epipolar Constraint This constraint can be applied to all rectified stereo pair images

and it means that a point xijl where i= rows and j=columns cannot have a corresponding

point xijr in any other line than i , in other words it means that in a rectified stereo

pair if we put the images side by side and try to find for a given point in the left

image its match in the right image then if we draw two parallel lines one on the bottom

edge and one on the top edge of the image pairs then the match has to be on a line

passing through the interesting point and is parallel to the other two see figure 2.2. This

important notion limits the search for the corresponding point to only one line instead

of scanning the entire image without this constraint real time stereo vision might not be

feasible. As a reminder at this point the line where two matching points exist (on the

left and right image) is called an Epipolar Line.

Figure 2.2: the dotted green line is the convex where corresponding matches are
allowed to be.

Monotonicity Constraint This constraint first used by Davi Geige[ref], ChaMei[91

ref] further limits the required processing vastly limiting the convex where the match

might be found by suggesting that not only such a match must be on the Epipolar Line

but it must be in such a position on the Epipolar Line where previous points matched

points cannot occur again; In stricter terms for i, j where i=rows and j=columns of an

image array whereIlthe left image of a stereo pair andIrthe right image if a pointxi(j−1)l

has a corresponding match in the position xi(j−1+d)r where d is the displacement, then

the point xijl cannot have a match to any point in n wheren = [0...j − 1]. See figure2.3

Chapter 2 . Architecture-Our Approach 19

This simple constraint is an assumption that is true in most cases for more information

on when it does not hold please seek additional info in the aforementioned bibliography.

Without this constraint in order to match a point in the epipolar line for an image of

W*H pixels where W is the width of the image one would need W operations for each

pixel (we use the notion operation to denote it the abstract process of correspondence

matching be it SAD, SAS or any other of the aforementioned methods) , that means

W*O for each pixel thus for the entire line we would need M = W ∗W ∗ O operations

and for the entire image a total of M ∗H where using the monotonicity constraint the

number of operations per epipolar line is N(o) =
W∑
i=0

i2 = n∗(W−dsi+1))
2 in the worst case

where ds(i − 1) with dsi is 1 and dsi is the distance of the matching element in the

epipolar line from the start of the row . This constraint lowers the time required to find

a correspondence to the sum of an arithmetic progress the difference between this and

the W 2 which is the cost of not using this constraint greatly increases as W increases

so for large images the use of this constraint is almost mandatory.

Corresponding points

Figure 2.3: Grayed out part is the skipped part.

2.2.3 GPP Side

As our system is heterogeneous we are able to use each part to attain the best of both

worlds, in the case of GPP1 side our assets are immediate access to the Linux O/S ease

of programming and access to the Open CV library along with a huge variety of ready

to use frameworks such as the invaluable gstreamer API, this allows us to interconnect

our application with all this applications to provide rapid development prototypes and

applications that integrate easily with the work of others.

For our current application we used the Open CV framework in order to grab the

image frames from the device nodes2 perform image rectification and turn them to

1General Purpose Processor
2CMOS Camera’s

Chapter 2 . Architecture-Our Approach 20

gray-scale and once the depth map is generated and brought back from the DSP side

the visualization on the device is done using the same framework. The gstreamer API

allows us to wrap up the entire application as a gstreamer plug in that can be used as

part of a gstreamer pipeline ready to be used as a subcomponent even by simple users.

Lastly any interoperability using the network is done using the gstreamer pipeline itself

either broadcasting using UDP or in case of a more secure and reliable communication

using the TCP plug in.

2.2.4 DSP Side

This is the part where all the processing intensive computations take place, the slave

application that runs in the DSP3 is tasked with receiving a bundle of frames (left and

right) and computing the depth map, upon completion it signals the GPP side applica-

tion and transmits the depth map back, as memory copy operations are not negligible4

the DSP side transmits only the depth map without copying back the received left and

right frames, for debug reasons you may override this behavior and transmit the source

frames as well (see A).

The entire work of the stereo vision algorithm will be here finding the stereo corre-

spondences, plane fitting and depth map generation all take place in this processor in

contrast with other relevant work.

2.2.5 Assembling the Puzzle

Having studied the relative work done, provide us with insight on many pitfalls however

the uniqueness of the current system required extensive analysis on top of that. Having

identified the processing intensive parts of the task at hand, at least from a distant

point of view , allows as to depict the profile of our target system in a few words it must

be distributed and modular, it must be able to provide fast development environment

to quickly incorporate computer vision algorithms and the software already available

from libraries such as OpenCV, yet it must be able to process a consuming algorithm

in the DSP in a seamless manner this leads us to create dedicated module that runs

on the dsp with the sole purpose of performing the stereo vision task and nothing else

while the, now , idle GPP is left with all its resources available save the few allocated

for the interprocessor communication in its d disposal to perform feature detection and

any other task required while the DSP power is hidden behind a wrapper function

that appears to the host program as an external C function. The loose coupling of

3Digital Signal Processor
4See Results Chapter

Chapter 2 . Architecture-Our Approach 21

the components that operate in the GPP and DSP systems provide with the unique

flexibility of updating each code independently as long as we adhere to the interfacing

code that migrates data between the processors, and this is the third software module

developed, the glue software that connects this modular system together.

In the following figure 2.4 we see a detailed flowchart of how the software system runs.

The host processor ARM cortex A-8 initializes the client DSP application and the camera

systems, it should be noted that the current camera systems are one usb camera and

the e-con camera module where it resides on the special camera interface provided by

the SoC, this limits the power consumption to a minimum. Once the camera nodes are

configured they are synchronized through software by driving the picture capturing from

two synchronized threads, the constraint in this case is relaxed real time which means

that we have a somewhat narrow but not absolute time frame where the two snapshots

must occur. In the second phase and once the DSP Bios system has booted our client

application, the GPP side server app begins feeding the DSP client application with

stereo pairs through the interprocessor channel, data serialization provides a robust and

loose way to transfer data that will make the entire system easily portable and modular.

Lastly when the DSP client application receives the stereo pair input it begins processing

and once the disparity map is calculated it serializes the result in the buffer and transmits

it back to the GPP side, while the processing is done on DSP the GPP host application

carries on with feature detection or any other task required it should be noted that in

case feature detection is enabled the user always sees the outcome of the previous frame

to allow for the DSP to process the current frame. In the end when the user sends the

TERM signal the process gracefully exits and before doing so it gracefully shuts down

the DSP sub system as well.

Chapter 2 . Architecture-Our Approach 22

Unwrap Images,Initialize variables

Perform Stereo Calculation

Serialize Images,Replace Left Image
With Generated Depth Map

Wait For Data/Reclaim Phase

Initilize DSP hardware
Set L2/L1 Case Size

Declare DSP available Mem
Reserve Stack Memory
Reserve Heap Memory

Initialize DSP software Modules
Initilize Pool Module Buffers

Terminate

Initialize Stereo Variables,Run Mode

Initialize Camera Drivers
Initialize OpenCV Driver
Initialize E-con Camera

 Check Texas Instruments Software
Synchronize Cameras

Init and Launch DSP client

Open File Nodes,Begin Streaming

Read Configurations
Open File Nodes

 Load Rectifications Matrices,

Rectify Images If needed
Serialize Stereo Pair
Send Buffer to DSP

Perform Feature Detection or other
Host Powered Task,While waiting

for current frame

Wait For Current Disparity Map

Display Result
 To User or store to file

Using OpenCV

 GPP
ARM CORTEX A-8

 DSP
TMS320C64+

Figure 2.4: Proccessing Flowchart.

Chapter 3

Implementation

3.1 Introduction

Having done the draft overview of what processing unit will handle which task two inde-

pendent but closely related main components have been identified the GPP side and the

DSP side components. Since it is a rather complicated system with various components

the implementation was top down , in the sense that we started from the least com-

plicated but easiest to implement technologies and by confirming proper behavior and

results drilled down to more complicated, more difficult to debug levels, but of course of

much higher performance. Following is an overview of the development performed for

both parts more detailed information about the tools and more can be found to B.

3.1.1 GPP Implementation Overview

The development of the GPP side component since it is much easier to develop and test

using the tools supplied by the Open Embedded community (which are no other than

the GCC and GDB) can take place both natively on the Gumstix platform or we can

start by writing the same program for a x86 architecture, verify its correctness and then

cross compile to the armv7a architecture.

Both approaches are valid and the pros of one are the cons of the other, in a nutshell

those are :

Native Style Developing code on the target machine directly.

• Writes code directly to the target platform, encounter any problems on the

go and solve them without building on erroneous assumptions.

23

Chapter 3. Implementation 24

• Code depends only on available frameworks and API’s that are already cross

compiled.

• Easier to test application in intermediate states and visualize real results.

Build Host Style Developing code on a different machine that the target machine,

usually with different architectures(creating a program on a x86 architecture ma-

chine to run on a RISC machine).

• Access to better IDE’s or to IDE’s programmers are more accustomed to.

• More powerful machines allow for faster compilation and better responsive-

ness.

• Programming for general architectures such as x86 provides access to the

entire universe of software tools that might help debugging and prototyping

leading to rapid development .

• In contrast to Native development the programmer is not connected via SSH

or some console (eg USB) that might occasionally degrade or crash or become

unresponsive due to a code bug.

The author chose Build Host style for the GPP side of the system, tried to keep third

party libraries and frameworks at a minimum and when it was mandatory we took care

to first verify availability of the library in question to the end system before building

code on top of it, as was the case with Open CV and the gstreamer framework. Once

the GPP side application was up and running and we where satisfied with robustness

and performance the cross compilation procedure begun and ended without problems

since each and every part was known to already be available at the time we chose it.

3.1.2 DSP Implementation Overview

The development of the application for the DSP side has a major difference than that

of the GPP side, the Build Host approach is not available, at least not without using

specialized software such as an emulator. The reason is simple, DSP’s are SIMD pro-

cessors where x86 with a few exceptions (specific operations) are SISD further more the

compilers used to generate an executable that runs on the DSP are not available for

x86 since each company that provides DSP systems has its own compiler; Moreover in

the case of heterogeneous systems the DSP does not have access to the Linux operating

system and is not managed by it directly, especially in the case of the OMAP3530 that

we used, a special BIOS O/S is used to control and operate on the DSP in conjunction

with specialized software that runs on the GPP side.

The above reasons are the most significant ones while not exhausting all of them, it is

Chapter 3. Implementation 25

clear we cannot use the approach of the GPP side application. Thus a hybrid model was

used the DSP side application was divided into two main parts based on their function-

ality in the big picture. One part must perform the actual computation and generate the

depth map and one part can be tasked with handling the entire communication between

the GPP side and launching our algorithm, ensuring proper run and communicating the

result back in the GPP side and the Linux O/S. In principle these two parts can be

loosely connected and one can change the entire stereo vision algorithm with a com-

pletely different algorithm with only minimal changes to the other part, probably only

the input and output buffers and maybe some control signals to reflect the requirements

of the new algorithm.

It is evident this way that one of the parts is heavily based on the internals on the DSP

BIOS system using the RTOS functions and comforting to custom standards, while the

execution unit (the stereo vision part) only receives an input buffer and performs on

it taking into account the architectural resources of the DSP but from a programmers

perspective is just an algorithm that has access to some extra resources.

By noting the loose interoperability of the above design we prototyped the execution

unit of the stereo vision algorithm using the MatLab system, this gave us the power

of testing rapidly many different theoretical subcomponents for the algorithm as is for

example the correspondence kernel we tested all SAD, SAS, DAS, SSD benchmarked

its performance in the grand scale before choosing the best kernel for our requirements,

which is SAD.

On the other hand the communication part was developed natively on the gumstix sys-

tem, for all the reasons described in the first paragraph of this section, it might help

the reader at this point to read the appropriate section in Appendix B, where we de-

scribe the operation and development of this communication unit with great detail see

AppendixB.

3.2 GPP

The GPP side is tasked with operating the CMOS sensors grabing the stereo pair images

performing any rectification necessary and communicating the image pair on the DSP

side; That is by no means however the only tasks the GPP is running amongst them are

the actuall O/S and a host of processes required for networking and more applications

such as additional feature detection and classification software that runs in parallel or

in series with the depth map result.

Our implementation however is limited to the piece of software that performs two discrete

tasks :

Chapter 3. Implementation 26

• Control and communicate data with DSP side.

• Operate camera sensors and display results to user whether on an on screen module

or through network.

For the first part we used the LOOP GPP side application provided by Texas Instru-

ments; Using this program as a basis we developed a GPP side server that launches the

DSP side application and is responsible for communicating interprocessor data.

The second module of the GPP side application is the part that handles the camera

sensors grabs the stereo pair, rectifies, smooths and clears the images and bundles them

together in a byte buffer to be passed to the communicator so that it can be copied to

the DSP side. After the DSP finishes the depth map generation it sends back the depth

map frame using the same buffer that the initial source frames where transmitted, it

should be noted at this point that the memory copy practice used is the Isue-Reclaim

model (see App. A).

Finally the depth map is copied from the issue buffer to the memory space of the GPP

application for further use and the issue buffer is available to receive the next frame and

repeat the entire procedure. Once the depth map frame is received the user space appli-

cation performs any additional tasks that required the depth map as for example depth

estimation to avoid an object or feature detection while using the stereo information;

the additional tasks depend on the actual user application, however it should be timed

so that the user space application does not take more time than the time required by

the DSP to process and copy one frame otherwise performance will suffer and we will

have a lower frame rate due to the inability of the GPP to cope with the frame rate of

the DSP.

Visualization is the final part of the GPP application where the result is presented to

the user, in our SoC there is a GPU available to display using Qt or any other frame-

work available to the OE distribution to graphically display the results on an on-board

screen or transmit the result to a work station using either TCP/IP or UDP or even

Bluetooth. Lastly the program passes some configuration parameters to control the

DSP algorithm such as the correspondence window dimension N ∗N and the maximum

disparity levels D; also there is an option to ask the DSP to try to maintain real time

performance(15FPS) if possible for a given resolution, to calculate the required disparity

levels and window we take into account the available disparities per second this SoC can

calculate and approximate the best depth level and window, in case the required real

time FPS are not attainable the maximum possible is used.

Chapter 3. Implementation 27

3.2.1 Tools and Frameworks

The tools used for the implementation of the GPP side are

• GCC version 4.2.2

• Open CV version 2.2

• GDB client and server version 4.2 .

• Gstreamer version 1.0

The development was done in the build host machine which was a x86 Corei5 machine

running Ubuntu Linux 12.04. After verifying proper execution we used the available

corresponding libraries, already cross compiled in our build host machine; transfering

the cross compiled applications to the SOC was seamless and execution was verified

using the armv7a version of the GDB software on target. Following this top down

procedure we performed minimal development on the target board taking advantage

of easier debugging and development to the buildhost machine leaving only platform

specific bugs instead of application also, to be solved on the target system.

3.2.2 Tests

In order to verify proper procedure for the GPP application part, a test application to

stand in place of the DSP client was implemented. We also tested the Open CV image

read functions to handle the camera sensors with proper timing.

The DSP test application was used to test the buffer copy communication scheme using

the Isue Reclaim model using the followin scenario : using Open CV we controlled the

camera sensors grabbed the stereo image pair concatenating both images on 1-D memory

buffer array of character type (8 bit per element) notifying the DSP test application to

copy it on the its memory space; the test application then performed a simple operation

to each frame, wrote it back to the same 1-D memory character buffer array and notified

the main application to copy it back to the its memory space; this served more than a

test as the code that handles the stitching of the two frames to a linear character buffer

and vica versa was later used also in the DSP side to unmangle the frames, due to the

difficulty of debugging on the DSP side any bugs on even this simple operation would

be troublesome to find. Lastly the output received from the test app was unmangled

and displayed to the user. Note that this DSP test application does not run on the

DSP it emulates the DSP-GPP issue reclaim model but it otherwise is a normal armv7a

architecture executable that runs on the GPP.

Chapter 3. Implementation 28

3.2.3 Optimizations

Since this part was not computational intensive no optimizations besides those that

came from the compiler directive -O3 where performed, also since a lot of third party

libraries are used the custom code we could optimize was rather insignificant.

3.3 DSP

The DSP unit that lies within the OMAP3530 SOC is the system that performs the

most process intensive work, the stereo correspondence function; dense map generation;

plane fitting and error correction, in reality the entire depth map operation lies in the

DSP. Having no O/S at least not in the usual context means that this unit is able to

work on the loaded application almost exclusively, context switches and interrupts from

other processes that run on the DSP (typically those of the DSP BIOS system) are at a

minimum, this important attribute allows for almost 1 to 1 ratio in CPU time.

From the above, it is clear, that practically only the user level application runs on the

DSP system and as it was described in the overview section, this is in turn divided

into two parts the communicator client and the stereo vision system. The communi-

cator is based on the DSP side of the official Texas Instruments sample of the LOOP

application with some necessary modifications to account for the drastically increased

buffer requirements to house the stereo image pair interprocessor communication and a

number of arguments required to parametrize the stereo vision algorithm such as the cor-

respondence window size; disparity map and the real time flag, again for an exhaustive,

analytical list see Appendix B. Since no debugger was in our disposal for the OMAP3530

platform the development process was twofold, firstly we prototyped the entire stereo

map generation algorithm using the Matlab environment; verifying that from the avail-

able correspondence matching functions, that SAD were indeed the fastest and that its

accuracy was acceptable; then working our way towards the DSP we migrated towards

the final result in the process described in the following sections.

3.3.1 Tools

The tool chain used to develop DSP applications is proprietary and managed by Texas

Instruments, the most important tool used was the compiler tool cl6x which is actually

a script that calls a host of other tools amongst which is a gcc style compiler and a

similar linker, while there are some significant deviations from the standard, someone

experienced will find it easy to adopt it. From this compiler tool we receive the DSP

executable which ofcourse can only be used in the DSP unit.

Chapter 3. Implementation 29

Another tool used to configure the DSP unit’s many parameters, RAM memory section,

cache size, code size, memory unit register mappings among many other things, is th

TCONF tool; writing in a javascript like language the user may configure all DSP

subsystems, for more information about this tool and configuration see AppendixB and

the relevant excellent documentation manuals from Texas Instruments.

While there is also an emulator system that can be used to profile the executable and

the map file generated it was not used since the process intensive parts of the algorithm

were identified and weighted from our custom development procedure.

Instead we developed a debug mechanism based on the Notification module that allows

for callback functions in the GPP side to be called from the DSP code albeit a single

32bit value at a time, even so its significance in the development process was invaluable.

Lastly it must be noted that there is a debug development platform available from

Texas Instruments to construct prototypes on the OMAP3530 system using the Code

Composure Studio1 suite which is also proprietary and requires the use of the debug

platform to work; this was not used as it was not available to start with and the price

was especially high, at the time of this writing it is approximately 2000$, however the

author believes that the use of this platform might greatly speed up the development

process, especially for novice users.

3.3.2 Implementation

Since the DSP communicator is mostly based on the TI’s DSP side LOOP code, we

will focus on the implementation of the stereo vision part, note here that in place of

the stereo vision kernel using the our modular architecture one can replace it with any

process intensive program with minimal changes; as for the DSP communicator code the

reader should check AppendixB in the DSP section.

From this point onwards when we refer to the application or program we will mean

the stereo vision part of the DSP system. After the initial steps of the design where we

created a high level view of the system as a flowchart, the next step was to implement the

program to a high level easy to use language with equally powerful and easy visualization

power, so that we can visualize the depth map and any intermediate arrays, for this we

chose the Matlab environment. Thus the first version of the program was developed

and it helped us see using the profiler where the most computational critical parts are,

although a first estimation was available from the first step(designing the code), this

helped both visualize the program and verify our assumptions. A first version of the

code lies in 3.1

This version uses exclusively matlab functions most of which are optimized for x86

1OMAP3530 EVM http://www.ti.com/tool/tmdsevm3530

http://www.ti.com/tool/tmdsevm3530

Chapter 3. Implementation 30

architecture, the profiling results for this code appear in figure3.3, the window is 5 by

5 and the maximum disparity level is 128, which is extreme and unnecessary for this

image as for the current image pair in literature a maximum disparity of 16 is commonly

used, however the increased disparity level shows us two things :

• The impact on performance of disparity levels is evident as a simple change from

128 to 32 drops the process time almost linearly 3.5.

• The importance of a fast correspondence function metric such as SAD since this

function is greatly used, an increase on the computational time for example for a

factor of 2 will almost directly decrease performance for an equal factor.

By analyzing the performance results we see that the vast amount of time is spend in

two functions findBestMatchInEpipolarLine and the SAD functions, here we must be

careful since the SAD function is called exclusively from the findBestMatchInEpipo-

larLine function we must not sum their independent time, the time that the findBest-

MatchInEpipolarLine takes to run includes that of the SAD function; nevertheless these

two functions alone account for approximately 94% of the total execution time, note at

this point that execution times might vary depending on system load yet the relative

impact of these two functions should approximately be the same a simple example for

the two profile maps(3.3 ,3.4) Using the formula TotalT ime
FunctionT ime = 100

x; we get for two

different runs with varying system load
5.022
4.750 = 100

x; = 94.5838%, 5.01324.468 = 100
x; = 92.9% , for a lower maximum disparity we get

different results 1.870
1.670 = 100

x; = 78.7%

we see that while the important functions are again the findBestMatchInEpipolarLine

and SAD, the fraction is (u 80%) differs from the u 94%previously seen, this can be

explained since while the program runs faster for lower disparities the impact to read

and process the images are still the same as well as the overhead to call the functions

thus the 0.3Seconds have a higher impact on the total lower time. In any case, find-

BestMatchInEpipolarLine and SAD remain the most process intensive and costly parts

of the program and any optimization must, in order to have any effect at all, improve

their operation times. Lastly in figure 3.6 we see the results of the algorithm.

Following our plan we work towards the target platform, having estimated our bottle-

necks, the next step is studying their behavior in native c code and verifying proper

results by comparing with our Matlab code, the jump to C code will not only provide an

intermediate step to the target platform but also reveal new optimization possibilities

that where not available in the Matlab level. To still keep the power that the Matlab

environment provides we will create the identified process intensive parts using Mex files

as described in the following subsection..

Chapter 3. Implementation 31

1 function[ret] = stereo ()

2 tic;

3 import yagad .*;

4 Left=rgb2gray(imresize(imread(’tsuL.png’) ,1));

5 %Tsukuba Left Image

6 Right=rgb2gray(imresize(imread(’tsuR.png’),1));

7 %Tsucuba Right Image

8 %Resize was used to benchmark image width impact using the monotonicity constraint .

9

10 [h,w]=size(Left);

11

12 window =+5;

13 range=floor(window /2);

14 A=zeros(h+2*range ,w+2* range);

15 B=A;

16

17 A(1+ range:end -range ,1+ range:end -range ,:) =Left (:,:,1);

18 B(1+ range:end -range ,1+ range:end -range ,:)= Right (:,:,1);

19

20

21

22 depthA=calculateDepth(A,B, size(A),window);

23 ret=depthA;

24 figure (1);

25

26 imshow(mat2gray(ret));

27 %colormap(jet);

28 toc;

29 end

30

31 function[depthMap]= calculateDepth(A,B,dim ,window)

32 depthMap=zeros(dim);

33 h=dim (1);

34 w=dim (2);

35 range=floor(window /2);

36 lastVal =0;

37

38 for y=1+ range:window:h-range

39 for x=1+ range:window:w-range

40 cp_x=findBestMatchInEpipolarLine(A(y-range:y+range ,x-range:x+range ,1),

41 B(y-range:y+range ,x-range:end ,1),128, window);

42 if(cp_x ==0)

43 depthMap(y-range:y+range ,x-range:x+range)= lastVal;

44 else

45 depthMap(y-range:y+range ,x-range:x+range)=cp_x -1;

46 lastVal=cp_x -1;

47 end

48 end

49 end

50 end

51

52 function [bestMatch] =findBestMatchInEpipolarLine(referenceWindow ,epipolarLine

53 ,maxDisparity ,window)

54 [h,w]=size(epipolarLine);

Chapter 3. Implementation 32

55 bestResult =900;

56 bestMatch =0;

57 result =0;

58 range=floor(window /2);

59 for x=1+ range:(w-range)

60 result=SAD(referenceWindow ,epipolarLine (:,x-range:x+range ,1));

61 if result <bestResult

62 bestMatch=x;

63 bestResult=result;

64 if result ==0%if perfect match is found

65 return

66 end

67 end

68 if x>maxDisparity

69 return

70 end

71

72 end

73 end

74

75 function[sq] = SAD(referenceWindow , correspondingFrame)

76 diff=(referenceWindow -correspondingFrame);

77 sq=sum(sum(abs(diff)));

78 end

Listing 3.1: Matlab pilot code

Chapter 3. Implementation 33

Figure 3.1: A smaller disparity level
drops execution time almost linearly,
however the impact of the identi-
fied process intensive functions is still

prominent.

Figure 3.2: Extracted depth map,
32 Disparity Levels, Window size of
W = 5 ∗ 5. While the presence of out-
liers is evident, the quality trade off for
performance is acceptable even with el-
ementary plane fitting and error correc-

tion.

Figure 3.3: Code profiler first run. It
is clear that the most intensive parts
of this code are finding the best match
in the Epipolar Line and the com-
putational cost of the correspondence
matching function(in this case SAD)

Figure 3.4: Code profiler second run.
Another run with different system load

provides similar results

Chapter 3. Implementation 34

3.3.2.1 MexFile

Using the option of Mex files we are able to write our code in C, while at the same time

verifying intermediate and final results with an already working program, rapidly. As

expected the functions findBestMatchInEpipolarLine and SAD where migrated to Mex

files and the calling entry mex function took the place of the calculateDepthMap (see

3.4 line:31), since the requirement was to be called from the already developed Matlab

code, no other development was nesecary other than simply writting the code in a Mex

file, compiling it and calling it in place of the previous Matlab functions the result of the

stereo.mex file was the depth map. By studying the C code in 3.4 one will identify the

entry function mexFunction that glues native code and the Matlab environment and the

stereo function which is in place of calculateDepthMap, findBestMatchInEpipolarLine

with its corresponding function and lastly in place of SAD there are two native functions

one to perform the Absolute Differences element by element and one to sum the resulting

matrix to a number. Lastly close observation to the following code segment will reveal

a peculiar operation , we put all the data to a structure byte by byte, the structure thus

contains the stereo image pair, this is done because as planned from the beginning of

this analysis in the target platform we will need to pass the data to the DSP using a

buffer, thus by creating the code wrap now we can test and verify proper serialization

and desirialization of data (DSP will also return data in a buffer).

1 for(x=0;x<n;x++){

2 unsigned char * offsetR=rightImage+x*m;

3 unsigned char * offsetL=leftImage+x*m;

4 for(y=0;y<m;y++){

5 testImage ->right.data[y][x][0]=*(offsetR+y);

6 testImage ->left.data[y][x][0]=*(offsetL+y);

7 }

8 }

9 stereo(testImage , window);

10

11 for(x=0;x<n;x++){

12 unsigned char * dstOffset=res +x*m;

13 for(y=0;y<m;y++){

14 *(dstOffset+y)=(unsigned char)testImage ->depth.data[y][x][0];

15 }

16 }

Listing 3.2: serialize data

As expected , writing the process intensive functions in native code and calling them

through the mex file mechanism accelerated the algorithm greatly for the 128 Disparities

the run time as verified by profiler output (3.3 is just above 1 second in contrast with the

4.7 it took in native matlab code. Note that no optimizations are done yet other than

turning the process intensive code to native code. The goal of this step however was

Chapter 3. Implementation 35

not to optimize the code as explained above we rather wanted to close in our distance

towards the target platform and have a bug free code to work with on the target platform

having debugged as much as possible in this higher level of development and indeed we

now have a C code that performs stereo vision with verified results and does so by

correctly serializing image data in a buffer and back2.

Results for this intermediate code in 3.5 and generated depth map 3.6.

1 function [c] =stereonative ()

2 tic;

3 window =5;

4 rawA=rgb2gray(imread(’tsuL.png’));

5 rawB=rgb2gray(imread(’tsuR.png’));

6

7 c=stereo(rawA ,rawB ,window);

8

9 imshow(mat2gray(c));

10 toc;

11 end

Listing 3.3: Mex matlab side pilot code, as evident all processing is done in the stereo

Mex function, using Matlab enviroment only for visualization and input.

The native C code below performs the stereo map calculation, no optimization is imple-

mented at this point and some helper functions are in the stereo.h header file.

1 #include "stereo.h"

2 #include "mex.h"

3 #include "matrix.h"

4

5

6 char * printMatrx(const int * M,int row , int col);

7 void absoluteDiffs(int* res ,const int * A, const int* B,int rows ,int cols);

8 int sumOfMatrix (const int* A,int rows ,int cols);

9 int findBestMatchInEpipolarLine(LargeImagePair pair ,int currentX , int currentY ,

10 int maxDisparity , int window);

11 void assignRowValues(int * target ,int startX ,int endX , int value);

12 void loadElementsWindow(int * dst , int * start ,int window , int cols , int rows);

13 void stereo(LargeImagePair * testImage ,int window);

14 #define MAX_DISPARITY 128

15

16 void mexFunction(int nlhs ,mxArray *plhs[],int nrhs , mxArray *prhs []){

17 int x=0;

18 int y=0;

19 int n,m=0;

20 unsigned char * leftImage;

21 unsigned char * rightImage;

22 unsigned char * res;

23 int window =5;

24

25 void * buffer;

26 mxArray *A,*B,*R;

2The image structure is in the stereo.h header file, check Appendix C for the source code.

Chapter 3. Implementation 36

27 mwSize dims [2];

28 LargeImagePair * testImage;

29 buffer= (void*) malloc(sizeof(LargeImagePair));

30 testImage= (LargeImagePair *) buffer;

31 A=prhs [0] ; B=prhs [1] ; R=plhs [0];

32 m=mxGetM(A); n=mxGetN(A);

33 dims [0]=m; dims [1]=n;

34 if(nrhs ==3){

35 window =* mxGetPr(prhs [2]);

36 }

37

38 plhs [0]= mxCreateNumericArray (2, dims , mxUINT8_CLASS , mxREAL);

39

40

41

42 leftImage =(unsigned char *) mxGetData(A);

43 rightImage =(unsigned char *) mxGetData(B);

44

45 res=(unsigned char *) mxGetPr(plhs [0]);

46 for(x=0;x<n;x++){

47 unsigned char * offsetR=rightImage+x*m;

48 unsigned char * offsetL=leftImage+x*m;

49 for(y=0;y<m;y++){

50 testImage ->right.data[y][x][0]=*(offsetR+y);

51 testImage ->left.data[y][x][0]=*(offsetL+y);

52 }

53 }

54 stereo(testImage , window);

55

56 for(x=0;x<n;x++){

57 unsigned char * dstOffset=res +x*m;

58 for(y=0;y<m;y++){

59 *(dstOffset+y)=(unsigned char)testImage ->depth.data[y][x][0];

60 }

61 }

62 free(buffer);

63 }

64

65

66 void stereo(LargeImagePair * pair ,int window){

67 int h =IMAGE_HEIGHT_LARGE;

68 int w= IMAGE_WIDTH_LARGE;

69 int range=window /2;// this will keep floor(window /2)

70 int x=0;

71 int y=0;

72 int k=0;

73 int lastVal =0;

74 int correspondingX =-1;

75 int val=lastVal;

76

77 for (y=range;y<(h-range);y=y+window){

78 for (x=range;x<(w-range);x=x+range){

79 correspondingX=findBestMatchInEpipolarLine (*pair , x,y,

80 MAX_DISPARITY ,window);

81 val=lastVal;

Chapter 3. Implementation 37

82 if(correspondingX != -1){

83 val=correspondingX -x;

84 lastVal=val;

85 }

86 for(k=(y-range);k<(y+range +1);k++){

87 assignRowValues (&pair ->depth.data[k][0][0] ,x,window ,val);

88 }

89 }

90 }

91

92 }

93

94

95

96

97

98

99 /***

100 *This function finds the best match of a window

101 * inside an epipolar line

102 *

103 */

104 int findBestMatchInEpipolarLine(LargeImagePair pair ,int currentX ,

105 int currentY ,int maxDisparity , int window){

106 int bestResult =900;

107 int h =IMAGE_HEIGHT_LARGE;

108 int w= IMAGE_WIDTH_LARGE;

109 int range=window /2;// this will keep floor(window /2)

110 int x=0;

111 int y=0;

112 int bestMatch =-1;

113 int result=bestResult;

114 int * diff=(int*) malloc(sizeof(int)* window*window);

115 int * referenceWindow =(int*) malloc(sizeof(int)* window*window);

116 int * correspondingWindow =(int*) malloc(sizeof(int)* window*window);

117 int * leftIndex =&pair.left.data [0][0][0];

118 int * rightIndex =&pair.right.data [0][0][0];

119 int giveUpThreshold=currentX+maxDisparity;

120 rightIndex +=(currentY -1) *IMAGE_WIDTH_LARGE;

121 leftIndex +=(currentY -1) *IMAGE_WIDTH_LARGE ;

122

123 loadElementsWindow(referenceWindow ,leftIndex ,window ,currentX -1,w);

124

125 for(x=currentX;x<(w-range);x++){

126 loadElementsWindow(correspondingWindow ,rightIndex ,window ,x-1,w);

127 absoluteDiffs(diff ,referenceWindow ,correspondingWindow ,window ,window);

128 result=sumOfMatrix(diff ,window ,window);

129 if(result <bestResult){

130 bestMatch=x;

131 bestResult=result;

132 }

133 if(result ==0){

134 break;

135 }

136 if(x>giveUpThreshold){

Chapter 3. Implementation 38

137 break;

138 }

139 }

140

141 free(correspondingWindow);

142 free(referenceWindow);

143 free(diff);

144

145 return bestMatch;

146 }

147

148

149

150 void loadElementsWindow(int * dst , int * start , int window , int col , int NoCols){

151 int y=0;

152 int x=0;

153 int *dstOffset;

154 for(y=0;y<window;y++){

155 int *offset =(start+y*NoCols+col);

156 int *dstOffset =(dst+y*window);

157 for(x=0;x<window;x++){

158 *(dstOffset+x)=*(offset+x);

159 }

160 }

161

162

163 }

Listing 3.4: Mex pilot code

Chapter 3. Implementation 39

3.3.3 Amdahl’s Law

Having profiled our code, at least from a high level, we identified the most time consum-

ing functions from Amdahl’s Law3 we know that if we want to speed up our code then we

should focus on the most time consuming parts, keeping in the back of our mind that the

DSP available to us is a SIMD component with 2 independent datapaths as well. Thus

we will turn our attention on the stereo correspondence and SAD functions exclusively.

Using the formula maximumspeedup ≤ p
1+f ·(p−1) thus since f is from our analysis up to

here approximately 1 − f u 94%,→ f = 6% → f = 0.06 ⇒ SpeedMax = p
1+0.06∗(p−1)

where p is the number of times we increased the speed of the aforementioned functions,

we can expect an almost linear 1 to 1 relationship between overall program speedup and

function speedups.

3.3.3.1 Window Impact

As we increase the window size we have two effects :

• Blurring, higher window means that more pixels are taken into account to find a

correspondence reducing noise effects but also reducing resolution, a good trade

off seems to be a window of 7. But as usual in most computer vision problems,

the best window size depends on the application.

• Speed higher window size means that once a correspondence is found it applies to

all the elements of the window, greatly increasing speed. For real time applications

the author believes a window size of 7 provides the optimum balance between time

and quality.

3.3.3.2 Maximum Disparity

Similar to the size of the correspondence window, maximum disparity has a major impact

on performance; a lower maximum disparity will end a correspondence search sooner

than not allowing for the entire process to complete faster albeit the optimum match

may not be found, but this is only true for items closer to the camera and in applications

where mid field detection is required that may not cause interference. Again according

to the application maximum disparity levels might range from as low as 8 to 128. For

real time application 16 to 32 disparity levels provide the fastest results while holding

acceptable levels of accuracy. Generally the higher the maximum disparity levels the

lower will be the frame rate.
3Amdahl’s law is mainly applied to speedup from parallel processors but it can also be used to

estimate speedup from code optimizations

Chapter 3. Implementation 40

Figure 3.5: All the processing is done natively

Figure 3.6: Disparity map as calculated from the above native code and visualized in
Matlab.

Chapter 3. Implementation 41

3.3.4 OMAP3530

Having identified our goals and with a tested working code(albeit at a a higher level)

we migrate our code towards the DSP unit where the optimization step will take place,

from now on development will be on target platform. A small intermediate step was to

cross compile the C code from the Mex file into armv7a architecture which is the GPP

unit of the OMAP3530 system, the jump was seamless as the native C code required

minimal adjustments (if any) at the same step we incorporated the Open CV framework

to control the camera sensors and until then to be the I/O interface for image reading

and handling see Appendix C for the code.

3.4 Optimizations

We can divide all the optimizations performed into two major categories, firstly is the

simple code logic optimizations that would be applied anywhere regardless of the under-

lying architecture such as (programmer defined)loop unrolling or even simply smarter

code; secondly are those optimizations that are architecture depending and as such can-

not be applied to all systems. Before we continue however lets identify the hardware

resources exported to us via the DSP architecture and see what can be exploited(and

what must be avoided).

3.4.1 Platform independent optimizations- general principles

3.4.1.1 Disparity-Window Choice

Window size affects the generated map quality, generally window sizes of higher di-

mensions offer robustness against noise and provide with better correspondences; per-

formance suffers however in a similar way as for each corresponding block more pixels

are taken into account, thus increasing the number of required operations. The maxi-

mum level of Disparities as stated multiple times affects the number of blocks that the

algorithm will search before selecting a match as best match, this affects performance

significantly since higher disparities will force the algorithm to process more blocks for

each pixel; implicitly this creates a window where objects that would generate higher

disparities, and are thus closer to the camera sensor, are filtered away selectively cre-

ating a map that contains only objects in a certain distance, this can be desirable or

not. In any case the above parameters drastically affect the depth map generation both

performance and quality wise and must be tweaked according to demands to provide

with optimum results.

Chapter 3. Implementation 42

3.4.1.2 Compiler optimizations

Since size is not an issue in this application and the entire program fits easily on the code

memory region of the DSP, the compiler optimizations given where -O3 which performs

a host of optimizations all aimed towards performance. The impact of even this simple

action gave a significant performance boost, when able always optimize using this flag.

3.4.1.3 Optimized image data serialization and Loop Unrolling

Another general optimization is writting both frames simultaneously on the buffer using

the same loop, , in the folowing code snippet the procedure starts by reading the stereo

image pair, and then serializes it to the aforementioned character buffer, exploiting

the fact that all images have the same dimensions we serialize using the same loop

avoiding extra overhead, furthermore high loop unrolling is adviced at least for this

loop. Loop unrolling pragma directives while available to other compilers (like cl6x

which we exploit in the DSP side later) are not available as a standard on GCC4 and

in any case are architecture dependant , loop unrolling might not be optimum for all

loops so fine grained control is required otherwise generally increasing the loop unrolling

count for all loops might lead instead to performance decrease.

1 Mat colorI=imread(rightImage.c_str () ,1);

2 Mat imageR ;cvtColor(colorI , imageR , CV_RGB2GRAY);

3 colorI=imread(leftImage.c_str (),1);

4 Mat imageL ;cvtColor(colorI , imageL , CV_RGB2GRAY);

5

6 for(y=0;y<IMAGE_HEIGHT_LARGE;y++){

7 int offset= y*imageR.cols;

8 char *trip ,*tlip ,*dlip;

9 rptr=imageR.data + offset;

10 lptr=imageL.data + offset;

11

12 trip=rImageBuffer+offset;

13 tlip=lImageBuffer+offset;

14 dlip=dImageBuffer+offset;

15

16 #pragma unroll (IMAGE_WIDTH_LARGE)

17 for(x=0;x<IMAGE_WIDTH_LARGE;x++){

18 testImage ->right.data[y][x][0]= rptr[x];

19 trip[x]=rptr[x];

20 testImage ->left.data[y][x][0]= lptr[x];

21 tlip[x]=lptr[x];

22 dlip[x]=’0’;

23 }

24 }

4The BOOST preprocessor library provides this functionality

Chapter 3. Implementation 43

Listing 3.5: Optimized data serialization code, usingOpen CV imread on lines 1-3 we

read the image frames from filepath

3.4.1.4 Memory Copy Impact

We evaluated the memory copy operation between the DSP and the GPP using the

issue reclaim model, as it will be shown in the next chapter(results), memory copy is

not trivial, it must be taken under account and minimize interprocessor memory copies

to a minimum. The initial application copied a buffer that contained the left frame, the

right frame and room for the resulting depth map, for the Tsukuba Image pair this was

Imageleft = 384 ∗ 288 ∗ 8bit + 384 ∗ 288 ∗ 8bit + 384 ∗ 288 ∗ 8bit to store the resulting

disparity map, to a total of Buffer = 331776bytes , for each frame this buffer had to

be copied once to the DSP and then back to the GPP side thus each frame required

Total = GPPtoDSP + DSPtoGPP = 663552Bytes or648Kbytes, with our tests about

50Mb/sec can be copied between processors that means that the maximum frame rate

achievable with this scheme is FPS = 50∗1024Kb
648 u 79 just by the limit of the memory

copy operations alone. The optimization performed here cat the memcopy requirements

in 2
3 , by sending the image pair alone from the GPP to the DSP and reclaiming the

stereo depth map in the place of the left image.

One might consider sending just the depth map from the DSP side, such an action

was not possible in the issue reclaim model, since the issued buffer must be reclaimed

whole. In the current scheme our hard limit is thus. FPS = 50∗1024Kb
648∗ 2

3

u 118 , of course

this is not achievable since we haven’t even taken under account the actual depth map

frame calculation time, which is the actual application, yet it will allow us to achieve

higher frame rates since less time will be used in memory copy of the data between the

processors hence more time will remain for the processing.

3.4.1.5 SAD on one step

Improving the stereo correspondance estimation is expected to provide significant speedup,

again by rearenging code we exploited the SAD functionality as part of one function

avoiding recurring costs of both loop overhead and stores by almost half.The following

code is the SAD functionality unoptimized(reminder, this code runs on DSP) on figure

3.6 we see 2 different functions performing the parts of the SAD function one to calcu-

late the matrix of absolute differences, and the next to sum all the elements. The next

optimization wich again can be practiced in any architecture is performing the SAD

calculation in one step as shown in 3.7, in this snippet the entire calculation is done on

Chapter 3. Implementation 44

one step without keeping the intermediate matrix of differences, since this functionality

is used a vast ammount of times it has a significant impact on performance henche the

benefits from this optimization are substansial.

1

2

3 findBestMatchInEpipolarLine (...){

4 ...

5

6 absoluteDiffs(diff ,referenceWindow ,correspondingWindow ,window ,window);

7 result=sumOfMatrix(diff ,window ,window);

8

9 ...

10 }

11

12

13

14 /**

15 * square matrices only

16 */

17 void absoluteDiffs(pixel * res ,const pixel * A, const pixel* B,small rows ,small cols){

18 int i, j;

19 for(i=0; i<rows;i++){

20 const pixel * offsetA=A+i*rows;

21 const pixel * offsetB=B+i*rows;

22 pixel * offsetRet=res+i*rows;

23 for(j=0; j<cols;j++){

24 *(offsetRet+j)= abs ((*(offsetA+j))-*(offsetB+j));

25 }

26 }

27 }

28

29 /**

30 * SUM ALL ROWS AND COLUMNS OF A MATRIX

31 *

32 */

33 Int sumOfMatrix (const pixel* A,usmall rows ,usmall cols){

34 int res=0;

35 int j,i;

36 for(i=0; i<rows;i++){

37 const pixel * offset=A+i*rows;

38 for(j=0; j<cols;j++){

39 res +=(*(offset + j));

40 }

41 }

42 return res;

43 }

Listing 3.6: Naive SAD

1

2 findBestMatchInEpipolarLine (...){

3 ...

4 calcAndSumDiff (...);

5 ...

Chapter 3. Implementation 45

6 }

7

8

9 int calcAndSumDiffs(const pixel * A, const pixel * B){

10 int i, j;

11 int result =0;

12 for(i=0; i<WINDOW;i++){

13 const pixel * offsetA=A+i*WINDOW;

14 const pixel * offsetB=B+i*WINDOW;

15 for(j=0; j<WINDOW;j++){

16 result += (pixel)abs ((*(offsetA+j))-*(offsetB+j));

17

18 }

19 }

20 return result;

21 }

Listing 3.7: Fast compact SAD

3.4.2 Architecture Dependent Optimizations

The general optimizations can only take as so far, while important the results gained

where modest in compare to what really the powerful DSP unit can give us. In order to

use its power however we must exploit its hardware resources and change our code to

comfront to its custom capabilities.

By studying ”TMS320C64x/C64x+ DSP CPU and Instruction Set” document we find

out that the DSP unit is composed of two independent data paths that may work

independantly on their register files , furthermore each datapath actually is a pipeline

containing 4 functional units each with an an execution model that closely resembles

Tomasulo;s reservation stations model. This means that we must exploit instruction

issuing in such a way as to fully occupy all functional components if possible; our code

will need rearenging to support this. Furthermore the manual states that the number

of operations each unit may perform depend on the size of operants, ranging from one

32bit operation to 4 simultaneous 8 bit operations for the .L units (there are two .L

units one for each datapath namely .L1 and .L2), this means that where possible we

must limit the variables to the minimum available container (8bit if possible), in the

following figures we see figures 3.7,3.8 5 from the ”TMS320C64x/C64x+ DSP CPU and

Instruction Set” document that show the datapath architecture and a brief descrieption

of the functional units, it is evident that all functional units have areas where they

excell such as the .L units that may perform simultaneous adds/subs on 8bit packed

variables, where the .S units can only perform 32Bit additions/subs. Also it is evident

5Reproduced from document id:spru732j, pages 21,29-30, publicly available from http://www.ti.

com/lit/ug/spru732j/spru732j.pdf

http://www.ti.com/lit/ug/spru732j/spru732j.pdf
http://www.ti.com/lit/ug/spru732j/spru732j.pdf

Chapter 3. Implementation 46

that multiplications can only occur(in hardware level) on the .M units, while the .D

units are used for memory operations. Also we find in the manual that all operations

besides memory(some) operations conclude in one cycle(see pages 519-523 of manual).

Lastly we verify our assumption , that performance is directly related to the abudance

of the available and issued instructions (by keeping all functional units occupied if

possible) from section Performance Considerations6 and we quote

”The C64x/C64x+ DSP pipeline is most effective when it is kept as full

as the algorithms in the program allow it to be. It is useful to consider some

situations that can affect pipeline performance.”

In the same section the instruction fetch model depicts that up to 8 instructions can

be fetched and issued in one cycle (14 for the C64+ model via packed headers), this

places another constraint and goal at the same time : issue as many instructions as

possible up to the maximum allowed number, while ofcourse appying caution so as to

not overload one component in favour of others since then no speedup will be gained.

In the same documentation to take into account the previous statement there is section

9.C-F,p.627 a detailed mapping between instructions and corresponding functional unit

exists to optimize code.

To sum up, the TMS320C64+ unit 7 is a powerful processing unit with strong paral-

lel computation capabilities, whose power can only be leveraged if properly exploited

by taking under consideration a number of things, most prominent of which are the

capabilites of each functional unit, architecture depended commands and the differen-

tial impact each variable has depending on its size to program performance, lastly the

Warp like fetch and issue model implicitly dictates that code is written in such a way

that SIMD principles can be applied. With all these in mind we further develop the

stereo correspondence and depth map generation code to reach the maximum atainable

performance this is desribed in the following sections Variable Types, Intrinsics , Loop

Unrolling and the Use of Restrict . for a more detailed description the user is directed

to study the aforementioned excellent document.

6Ch4.3,p.527
7the one apparent to Gumstix OveroFire via OMAP3530

Chapter 3. Implementation 47

Figure 3.7: 2 Independent identical datapaths, A and B each with 4 functional units
(.L,.S,.M,.D)

3.4.2.1 Variable types

Since image intensities vary from 0. . . 255 we can use for pixel container the uint88 type.

Also most results such as the result from the matching function can fit into a 16 bit

unsigned interger and since it is the sum of absolute values, unsigness will not be an

issue. Restring sizes on all numerical values such as counters in loop code segments

might not give the expected result since the .L unit that performs the 8 bit packed

operations is already utilized leaving the .S,.D units that can only perform 32 bit ops

alone thus counters are not uint8 but rather simple integers lastly to perform 8bit packed

operations on .L units we need to pack them first to a 32bit register, this is done by the

.S unit.

To sum up the data flow to utilize all 6 components (remember .M units are not used

currently) goes like this : The .S units pack 16 8bit values(8 intensity pixels) to 2 32

8unsigned 8 bit integers values range from 0 to 255

Chapter 3. Implementation 48

bit registers, the .L units subtruct the previous packed values from .S while the .D units

increment the counters and load from memory if nessecary. Operation wise we need 4

pack operations, 2 8bit subs(.L units) , 2 adds/mem accesses which is 8 Operations plus

the occasional sift that migh take place to the .M units, for a total of 8 instrutions. It is

evident that a big portion of these optimizations is done by the compiler optimization

-O3 (if we implicitly use .L with exclusive operations for this module then newlly issued

ADD or SUB operations burden .D module if idle, with a restriction in cross path

allowances) from the compiler tools as will be shown in the Results Chapter.

3.4.2.2 Intrinsics

Before we continue on the details of why and which Intrinsics we used in this application

a small introduction is required. We quote from the 2 major processor architecture

currently on the market

Intel9 Intrinsics are assembly-coded functions that allow you to use C++

function calls and variables in place of assembly instructions. Intrinsics

are expanded inline eliminating function call overhead. Providing the

same benefit as using inline assembly, intrinsics improve code readabil-

ity, assist instruction scheduling, and help reduce debugging. Intrinsics

provide access to instructions th at cannot be generated using the stan-

dard constructs of the C and C++ languages

Arm10 Intrinsic functions and data types, or intrinsics in the shortened

form, provide access to low-level NEON functionality from C or C++

source code. They use syntax that is similar to function calls. Software

can pass NEON vectors as function arguments or return values, and

declare them as normal variables.

Intrinsics provide almost as much control as writing assembly lan-

guage, but leave the allocation of registers to the compiler, so that you

can focus on the algorithms. Also, the compiler can optimize the in-

trinsics like normal C or C++ code, replacing them with more efficient

sequences if possible. It can also perform instruction scheduling to re-

move pipeline stalls for the specified target processor. This leads to more

maintainable source code than using assembly language.

So in sort, intrinsics give access to exclusive capabilities of the underlying hardware

and do so by providing a c/c++ style function that when interpreted by the compiler

provides inline high performance assembly code. In our application for example we

Chapter 3. Implementation 49

Figure 3.8: 4 independent functional units per Datapath, each with its own strengths
and exclusive Intrinstics.

Chapter 3. Implementation 50

denoted the need to calculate the difference matrix between the left and right frame in

a window each time, this as shown requires the subtraction of 2 8bit values each time

that in order to gain the parallel speedup we downscaled to 8bit variables; this scenario

works perfectly well when in the equation

R = A−B (3.1)

where R is the result and A,B the values of an 8bit pixel on the left and right correspon-

dance window respectively, if A ≥ B then the outcome stored in R is correct however

if A � B then we have an overflow since R,A, and B are unsigned and the result in

R is wrong i.e R = 1 − 2 we get R=255 while we would obviously want a -1 and via

the absolute operator a 1. This problem conventionaly means to upscale it to 16bit or

perform a simply test case code like the one in 3.8, however experimentaly upscaling to

16bit or doing this code has exaclty the same cost.

1 // typical code to calculate absolute

2 uint8 R,A,B;

3 ...

4

5 R=A-B;

6 (A<B){

7 R=B-A;

8 }

9

10

11 // second style

12

13 uint8 R,A,B;

14 ...

15

16 R=(uint8)abs(A, B);// ABS function upscales A, B to 32 bit.

Listing 3.8: 8bit Absolute calculation using conditionals

By using Texas Instruments Intrinsics however for the TMS320C64+ DSP we can use

this function subabs4(A,B) that substracts and then returns the absolute 8bit result

of the 8bit operrants A, B, the new code is shown in 3.9, the discerning reader will note

that we did not pack the values to 32bit this is because by experiments it is shown that

performance does not suffer and that due to implicit issuing of multiple commands by the

scheduler and loop unrolling multiple 8bit commands are issued to the .L units providing

with the same speed as if using the pack and then issue a single command model. Note

that the pramga unroll directive instructs the compiler to unroll the loop WINDOW

times, furthermore the result is 16 bit since W11* W= Max(256) (windows more than

16 do not provide acceptable accuracy in literature), 256 = 28 → 28 ∗ 28 = 216 ≡ 16Bit

11W is the WINDOW size of the correspondence search and assignment window

Chapter 3. Implementation 51

it will be shown in the result section that the impact of this optimization along with

loop unrolling was immense.

1 Int16 calcAndSumDiffs(const pixel * A, const pixel * B){

2 small i, j;

3 Int16 result =0;

4 #pragma unroll (WINDOW);

5 for(i=0; i<WINDOW;i++){

6 const pixel * offsetA=A+i*WINDOW;

7 const pixel * offsetB=B+i*WINDOW;

8 #pragma unroll (WINDOW);

9 for(j=0; j<WINDOW;j++){

10 // call specialized function to return abs of 8bit uint

11 result += _subabs4 (*(offsetA+j),*(offsetB+j));

12 }

13 return result;

14 }

Listing 3.9: 8bit Absolute calculation using intrinsics

3.4.2.3 Use of Restrict

No optimization in SIMD units might be complete unless we account for RAW and WAR

hazzards. To ensure correct execution the scheduler makes sure that no instructions that

have WAR dependencies execute simultaneously and waits for one to finish; however

this is not known in advance in arrays where pointer operations might alter the location

where a pointer references and that may lead in improper and erroeneous results. This

is why the compiler cannot parallelize code that exists in a loop where the destination

is an array such as in the following snippet 3.10, the compiler does not know in advance

if the destination address in line 10 is accessed in following loops so it must wait for

its execution to finish before issuing another, it is the programmers job to tell the

compiler that no RAW hazzards exist and that he may perform loop unrolling issuing

simultaneous assignments; we achieve this by using the restrict keyword as shown in 3.11

in our application this is used in numerous locations see AppendixB for the final source

code and where restrict is used. By supplying the compiler with the required insurances

that no memory accesses occur in the specified locations other than the ones apparent,

it may issue parallel operations that greatly accelerate the procedures in question.

3.4.2.4 Configuration Files Optimizations

The last optimizations are the ones that took place in the .tcf and .tci files that describe

to the TCONF tool our DSP application and its requirements in memory and subsys-

tems. Also the OMAP3530 ALL CONFIGURATION.c file was altered to account for

Chapter 3. Implementation 52

1 void loadElementsWindow(pixel * dst , pixel

2 * start , Int16 col , Int16 NoCols){

3 small y,x;

4 pixel * base=start+col;

5 #pragma unroll (WINDOW);

6 for(y=0;y<WINDOW;y++){

7 pixel *offset =(base+y*NoCols);

8 pixel * dstOffset =(dst+y*WINDOW);

9 #pragma unroll (WINDOW);

10 for(x=0;x<WINDOW;x++){

11 *(dstOffset+x)=*(offset+x);

12 }

13 }

Listing 3.10: Code with pottential WAR hazzards, is left unopti-
mized by the compiler.

1 void loadElementsWindow(pixel * restrict dst , pixel

2 * restrict start , Int16 col , Int16 NoCols){

3 small y,x;

4 pixel * base=start+col;

5 for(y=0;y<WINDOW;y++){

6 pixel *offset =(base+y*NoCols);

7 pixel * dstOffset =(dst+y*WINDOW);

8 for(x=0;x<WINDOW;x++){

9 *(dstOffset+x)=*(offset+x);

10 }

11 }

Listing 3.11: Usage of restrict keyword by the programmer allows
the compiler to issue multiple writes in parallel.

our increased requirements in memory pool size and for the custom location and layout

of the available RAM.

Chapter 4

Results

Overview

Due to our top to bottom implementation methodology we where able to benchmark

and study many intermidiate programms and see the same algorithm evolve and speed

up as we worked our way to the DSP level. The author feels, besides the contribution

of providing a real time implementation for the stereo vision problem, that these in-

termediate results and the relative speedups presented are an interesting byproduct of

our work, since this was done incrementaly one can see how each discipline affects code

performance indepentently and estimate impact on his own work.

In the following sections we will present our novel implementation results in the metrics

commonly used in the field of stereo vision, where as described in the 2 are mDs, FPS

and mD/Joule; also to server as a reference we will provide the execution times of the

algorithm in the following cpu’s :

• Core i5 sandybridge 3.2Ghz

• Core(M) i5 sandybridge 2.1Ghz

• The ARM9 600Mhz unit of the omap 3530.

4.1 Assumptions and Standards

Table 4.1 contains results from the initial algorithm with no optimizations. Special note

must be made on how we estimated energy, using the reported cpu time from tools such

as gprof and time and the consumption of the unit as declared by the factory. Also the

code running in the Corei5 machine is is the one presented in the implementation section

53

Chapter 4 . Results 54

Table 4.1: Stereo algorithm Run Times, unoptimized

Platform Clock Watt TPF 2 FPS EPF 3] md/S md/J md/Ghz1

Corei5 3·200 80·000 0·500 2·000 160·000 3·539 0·044 1·105

Corei5(M) 2·100 35·000 1·200 0·833 29·167 1·475 0·042 0·702

ARM9 0·620 0·643 6·000 0·166 0·107 0·294 0·459 0·476

DSP 0·430 0·248 0·083 11·905 2·953 21·065 84·942 48·990

1 Estimated energy , time to generate frame * power consumtpion (Watt)
2 Time per Frame in seconds.
3 Energy per Frame in Joule

under matlab and shows only the time required to run the .mex function the overhead

calling the mex file is neglible as tested by calling an empty dummy stereo function

the system reported zero running time hence time we deemed that calling overhead was

neglible and used the time reported from the Matlab performance utility, at this point

we must note that no cpu level optimizations are done to this code and our target is not

to optimize it for x86 rather to provide us with a first imprestion and serve as a base

for comparison . The time reported in the Mobile Core i5 it is the same code running

natively and the O/S is Linux Ubuntu 12.04.For the calculation of the disparities we

used a window of 7 and 16 disparity levels, furthermore to calculate md/S we multiplied

FPS with the as stated calculated disparities per frame. Lastly in the sevent column

we propose the use of million disparites per Ghz as we feel it provides a more intuitive

metric when it comes in compairing processing units and can provide the reader with a

sense of future improvement in case of overclocking or higher clocked similar systems.

As for the frame per second metric, 100 frames where issued for each platform in 10

batches at random intervals with varying system load and average time of execution was

estimated with each batch execution contributing equally. In the case of the DSP unit

where no actual proccessing time could be estimated with sufficient accuracy we instead

considered the worst case of 100% processing and maximum power consumption (as if

all DSP modules are busy 100%).

Lastly we used the Tsukuba stereo pair as it has become the norm for benchmarking

stereo algorithms, the images dimensions are width:384 and heigh:288 u 110K pixels ,

we remind the user that the closest standard is theQVGA with width:340 and height:240

u 76k pixels, this means that NoP ixelsT sukuba
N0QV GAP ixels u 1.44, multiplying the provided Tsukuba

FPS with this factor will provide a very rough estimation on how fast this system will

provide using the QVGA standard images.

4.1.1 Quantum Change and Incremental Speed Ups

A common notion in computer science is when debugging or performing a change, do

so but a single step at a time, this practice is sometimes referred to as quantum change

and the figures following show how each quantum change affects our algorithm and the

Chapter 4 . Results 55

Table 4.2: Stereo algorithm Run Times, Quantum Step:Incremental Optimizations

No Platform Clock Watt TPF 2 FPS EPF 3] md/S md/J md/Ghz1

1 Corei5 3·200 80·000 0·500 2·000 40·000 3·539 0·044 1·105

2 Corei5(M) 2·100 35·000 1·200 0·833 42·000 1·475 0·042 0·702

3 ARM8 0·620 0·643 6·000 0·166 5·466 0·294 0·459 0·476

4 ARM8(6) 0·620 0·643 4·950 0·202 3·183 0·357 0·556 0·577

5 DSP 0·430 0·310 0·084 11·905 0·026 21·066 67·953 48·990

6 OC DSP 0·520 0·375 0·057 17·544 0·021 31·044 82·783 59·699

7 Fast Correlation 0·520 0·375 0·046 21·645 0·017 38·300 102·134 73·654

8 SUB ABS4 0·520 0·375 0·039 25·523 0·015 45·162 120·433 86·850

9 RESTRICT 0·520 0·375 0·034 29·553 0·013 52·293 139·449 100·564

10 Opti.MemCopy 0·520 0·375 0·030 33·380 0·011 59·065 157·507 113·586

11 DSP Only(5) 0·520 0·375 0·023 43·860 0·009 77·609 206·957 149·248

1 Estimated energy , time to generate frame * power consumtpion (Watt)
2 Time per Frame in seconds.
3 Energy per Frame in Joule
4 With all optimizations
5 All in DSP ,without any memory transfer between processors With ALL implemented optimizations.
6 With optimizations in logic level, Not NEON.

provided speedup. The measurement method, is the same batch method of test runs

with batches of 100 frames per time as described in the previous section.

To study the impact that memory copy between DSP and GPP has on our application,

we performed the calculation of a batch of 100 frames with two approaches, firstly the

usual method of single frame transfer between DSP and GPP was performed with the

GPP providing a new frame once the previous depth map was returned by the DSP, on

the other hand we modified the DSP application to run a calculate 100 depth maps of the

same frame so as to avoid interproccessor communication and started the measurement

after memory copy finished.

It must be noted here that the outcome is not only the actual memory transfer delay

due to memory copy operation itself, hidden inside is the overhead the Isue Reclaim

communication model inherently contains since the issuer is not instantly notified when

his issued buffer is ready to be reclaimed and vice versa . Regardless of the exact reason

however the memory impact on our application is significant and this evidently shown

in 4.2.

Chapter 4 . Results 56

Figure 4.1: Performance chart.

Chapter 4 . Results 57

Result Analysis

The power consumption of the OMAP3530 ArmCortex8 and of the DSP subsystem was

taken from the tool that Texas Instruments provides to estimate power consumption

according to usage is available for download for free from the company site1, the author

finds no reason to dispute the tools results as they system has been tested to operate

under maximum power consumption with all subsystems operating at 100% utilization

consumed less that 2Watts as expected.

From row 7 to 12, only the over clocked version of the DSP appears as it provides better

results and while it consumes more 75mW more power it is yet more efficient md/J

makes it attractive. Another interesting result on the overclocked version of the DSP

unit is that the md/Ghz seem to increase which means that the when DSP operates

at this frequency it does not simply raises its clock frequency it seems that additional

improvements come into play otherwise the difference in the md/Ghz should be minimal

between the two different clock rates on the same system (a higher clock rate should

link to an equally amount of higher fps yet the ratio should be the same).

In row 11 the impact the interprocessor communication has on performance is evident.

Observing the unoptimized memory copy, where a buffer of three images in size is trans-

fered two times per frame, once towards the DSP and back, provides a FPS of 29.553

(row 10, the best result with all optimizations but memory optimization), yet without

any memory copies by running the program exclusively on the DSP side performing 100

depth map calculations in a loop we receive the outstanding result of 43.860 FPS, in short

from 39ms per frame we dropped to 23ms per frame or else 67.64% of the 34ms seems

to be the cost of the actual calculation the rest appear to be memory copy and issue

reclaim overhead, this means about 11ms for a duplex transfer of Buffer = 3images ∗
ImageSize,Buffer = 3 ∗ 384 ∗ 288 ∗ 1Byte = 331776, T otal = Buffer ∗ 2 = 663552

so 663552Bytes = 648Kb u 0.632Mb per Image yet we showed that 11ms per frame is

the impact of the complete memory operation (memory copy +issue reclaim and rest

delays) when have 29.553 FPS in the case with all optimizations2all with the exception

of memory buffer optimization), we can estimate the complex memory bandwidth for

our application as PracticalMemoryBandwidth u 1S/11ms ∗ 0.632Mb = 57.45Mb/S,

we also know that without memory transfers, we need 23ms per frame just for the

depth map operation and that in order to perform the calculation we need the two

frames (Left and Right Image) from the GPP side and we need to return the calculated

depth map, that places a hard constraint on the size of the data we absolutely have to

copy and that is : SizeDepthMapImagebytes + SizeLeftImage + SizeRightImage =

110592+110592+110592 = Buffer/2 u 324Kb, if we assume that by cutting the buffer

1 http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet
2(

http://processors.wiki.ti.com/index.php/OMAP3530_Power_Estimation_Spreadsheet

Chapter 4 . Results 58

Table 4.3: Stereo algorithm Run Times, Quantum Step:Incremental Optimizations

No Platform Speedup

1 (1)ARM8 1·000

2 ARM8+Optimizations 1·717

3 DSP 58·930

4 OC DSP 1·474

5 CALC AND SUM 1·234

6 USING SUB ABS4 1·179

7 USING RESTRICT 1·158

8 Optimizing MemCopy 1·129

9 Total Speedup 165·231

1 We use the execution time it takes to run
the initial algorithm takes to run in the
ARM8 unit in OMAP3530, at 600Mhz.

size in half will lead to an equal amount of reduction in memory copy time then our

estimation is 5.5ms; that would be if the actual memory copy operation was the most

important factor, that would lead us to an expected result theoritically of approxemately

32.5 PS by 1000ms
TimeExecutionperFrame+T imememorytranfers = 1000ms

23ms+5.5ms u 35.08, as the reader

will note entry 11 provides the result for Optimizing with MemCopy and the result of

33.380 is distant from the one we theoretically (even though quite close) calculated, the

reason is two fold, firstly memory copy operation is not the only factor so a linear reduci-

ton in buffer size will not lead to a linear reduction in total time since the Issue Reclaim

overhead remains the same, secondly and perhaps most importnantly is the issue reclaim

model the issuer must reclaim the same buffer, that means that once we issued a buffer

for the 2 input frames and the buffer was of size X we must reclaim a buffer of the same

size, thus our theoritical calculation does not hold true, we must calculate for a buffer

equal to 4 images even though we need , with these two additional constraints in mind we

get the new result taking the assumption that the impact of a new frame will add amount

of time equal to its size 1000ms
TimeExecutionperFrame+T imememorytranfers = 1000ms

23ms+6.67ms u 33.7,

the theoritical result is a bit faster than the measured one but that is to be expected

since there is also the overhead of the issue reclaim model and also our DSP application

has also an overhead each time it receives a buffer to launch the kernel and perform some

initializations each time where in the batch execution is hidden all of these and more

small delays can be roughly calculated if we add a variable D and tweak it to touch

our experimental results due to the ad hoc nature of the problem it is very difficult

to analytically calculate exactly the delay but using the above method we have roughly

0.33ms hidden latencies due to the aforementioned reasons and potential interrupts even

from the DSP Bios O/S.

Another interesting table is 4.3 , that shows the speedup gained from each quantum step

.

Chapter 4 . Results 59

4.2 Disparity and Window Size

Disparity levels and the size of the corelation window (which in our application is also the

size of the block asignment) have a direct effect on performance, as shown in figure 4.2

the higher the disparity levels the less the performance while increasing the correlaction

window provides usually better results the most important effect in performance is the

size of the block where we assign the same value for all pixels, the bigger this window the

faster the algorithm runs, since in effect it reduces the size of the image, yet produced

images have lower resolution and small objects might get lost, the opposite is true for

reducing the block. The results presented are for the initial version of the algorithm and

we only show the results collected from the DSP, as always 10 runs of 100 single frame

batches were used.

Figure 4.2: FPS degrades with higher disparity levels and with smaller pixel block
sizes

4.2.1 Experimental Disparity Maps

We used our stereo algorithm and by tweaking pixel block sizes and disparity levels on

the same image pair we generated the following disparity maps, we present it for the

reader to get a feeling of the trade offs one makes when adjusting these very important

Chapter 4 . Results 60

parameters, some applications where only rough information and topology is required

might suffice on using 8 disparity levels and large block size but benefit from an ex-

tremely high framerate where others might have stricter requirements. In case small

disparity levels are chosen then implicitly the user looses objects close to the camera

(since the items close to the camera will have quite large disparities) while retaining

those in the far field the exact distance can be tweaked by adjusting camera focus.

4.2.2 The Million Disparity per Second Metric

During our tests we noticed that the application did not respond linearly to the increase

of the disparity levels as such the disparity per second metric without providing the

corresponding disparity levels that provided for the measurement is incomplete, for

instance we have a measured maximum disparity of 55md/s in the best case with 16

levels of maximum disparity however when testing for 32 disparity levels while our FPS

suffers greatly it does not fall as much thus actually providing for an increased md/s of

1.22, thus had we used 32 Disparity levels instead of 16 for our comparisons our md/s

metric would be 72 md/s instead of 55 md/s, it is clear that the md/s metric alone

is ambiguous and should be followed by the pixel block and window correlation. In

our application specifically this behavior is justified because as analyzed in the previous

chapter, about 30% of the time is spend on memory transfers and the buffer transporting

the data is unaffected by any change in disparity henche while our formula for calculating

disparity is doubled (16 to 32) the corresponding FPS does not drop for the same amount

thus leading us to a higher disparity per second.

4.3 Summary

In this section we presented the results of our implemented system. We can summarize

the gathered data into two main categories the performance of the DSP system and

what was the impact of each optimization step by step (table 4.3, the second interesting

category is how our stereo vision approach of having a pixel block that matches the size of

the correlation kernel affects performance and a host of disparity maps were presented in

figures 4.4 ,4.6. Also the relative debunking of the metric million disparities per second,

at least for hybrid systems should not go annoticed as an increase to disparity levels

did not lead to the expected drop in FPS, due to the memory bottleneck previously

described leading us to a higher relative disparity from the reported 59.064 md/s to

89md/s.

Chapter 4 . Results 61

8 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

12 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

16 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

32 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

Figure 4.3: Disparity Maps for block size 5

8 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

12 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

16 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

32 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

Figure 4.4: Disparity Maps for block sizes 5 (first four) and 7 (later)

Chapter 4 . Results 62

8 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

12 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

16 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

32 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

Figure 4.5: Disparity Maps for block size 9

8 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

12 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

16 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

32 Disparity

50 100 150 200 250 300 350

50

100

150

200

250

Figure 4.6: Disparity Maps for block sizes 9 (first four) and 13 (later)

Chapter 4 . Results 63

Lastly in figure4.7 we see all the commonly used metrics(in million disparities) along

with the newly proposed million disparities per Ghz metric.

Figure 4.7: MillionDisparitiesMetrics summary chart

Chapter 5

Conclusions

Conclusions

The problem studied in this Thesis, was a rather complicated one, merging challenges

from two distinct fields, the field of embedded computers and the field of computer vision.

During this rather long journey a lot of the aforementioned challenges where solved, step

by step, applying the iterative research and development process analyzed in chapter3,

until reaching the final results . In this process however we designed and implemented a

system that can compete with the current state of the art in both energy efficiency, with

less than 4 ∗ 10−3Joule per frame, marking it as one of the most power efficient systems

in the field, with more than 33 frames per second in 384*288 images. The results greatly

exceeded our expectations but our contribution does not stop with the proposed novel

system. The byproducts of this work show interesting results and arouse some questions

about the commonly used metrics such as md/sec as we showed that it is not valid for all

systems, as in our case memory bandwidth is an issue , hence the time cost of copying a

memory buffer remains unaffected by increasing disparity thus leading to higher md/sec

when increasing disparity levels while not necessarily providing better results. While this

might be negligible for monolithic systems it is should not be overlooked for modular

or hybrid systems. Furthermore the proposed metric of md/ghz (million disparities per

Ghz) shows a new, more consistent in our opinion way, of comparing similar systems;

denotes at the same time architectural differences and pros one system might have to

another (see DSP vs CPU on figure4.7) in our case it allowed us to notice that over

clocking our system has other hidden effects, that lead to higher performance and this

is easily noticed from the increase in md/Ghz.

Our proposed novel system also bridges the world of linux and that of DSP, providing the

benefits of both worlds, an important notion for development and research alike when

64

Chapter 5 . Conclusions 65

coupled with the design and implementation practices proposed; the low cost and high

availability of such devices also provide an easily available platform; the possibility that

hybrid devices such as the one used in this Thesis will be massively available by many,

signals that research and implementation on such novel devices has only just begun and

will certainly see more use. However as important all the aforementioned results might

be, the author believes, that the biggest contribution of this work is bringing hybrid

and modular embedded systems in the spotlight unearthing their power, showing that

with proper design and data flow one might achieve tremendous results in otherwise

complicated and previously hands off problems, for the embedded world , due to high

processing demands. Using our proposed client server interprocessor design one can

simply remove the stereo system code and insert his own while at the same time following

the practices mentioned and evaluated in this work, with minimal change, since our

interprocessor medium is simply a buffer one can achieve massive speedups with minimal

development. Lastly while our initial goal was to generate 15FPS on QVGA images we

achieved more than 40 FPS bringing our implementation on par with even some FPGA

systems while at the same time having the arm processor free to be used for any other

task creating a system that is on par with the state of the art having only as rival at

the time of this writting the work of [13] who have mentioned 46 FPS. Lastly we have

showed the weakness of md/S metric to describe performance unless accompanied by

the disparity levels performed especially for heterogeneous systems. Lastly in the field

of Stero Vision and especially in the level of embedded devices, we have studied the

commonly used metrics that are applied when comparing and evaluating work in this

field. We believe and have so highlighted, that some issues arise in the million disparity

metric, as there is ambiguity on how to calculate this rather commonly used metric for

example in our system we receive higher disparity metric when using 64 disparity levels

even though the test image requires only 16 and benefits slightly to no from this increase.

The aforementioned issue directly affects all disparity metrics (md/joule, md/second,

md/Ghz and so on) we thus propose that the disparity levels used to calculate the

million disparity levels are always mentioned so there can be a more precise evaluation.

5.1 Future Work

From the work done in this Thesis the are two main paths for improvements and potential

future work. Firstly in our currently used system not all power has been exploited, since

we have an ARM Cortex A-8 unit that has NEON capabilities it would be possible to use

the floating point unit using the NEON instruction set to calculate VGA or higher depth

maps by splitting a stereo image frame between the processors, this i possible because

using the epipolar constraint a match can only occur in a horizontal line allowing us

Chapter 5 . Conclusions 66

to split frames in as many pieces as required as long as each part contains entire lines

it is possible to simple resyntesize from the depth map parts a complete and correct

total image depth map. For applications requiring VGA or higher resolution images this

can provide with results similar to those presented in this work for the Tsukuba Image

Pair(384*288).

Secondly future devices show promise or advertise that OpenCL enabled GPU’s will

replace current solutions like the PowerSVG core present in our system, providing an

OpenCL enabled GPU alongside DSP and a CPU unit provides immense capabilities for

our stereo application a further division will provide access to real time performance on

even higher resolution images with minimal code where for other applications extending

our client server model with issue reclaim buffers will allow for a software pipelining to

solve extremely demanding problems.

Another interesting and important improvement that can benefit the proposed system

is the use of two camera sensors on the camera interface bus, instead of using only one

in the camera interface and one USB, this will surely lead to lower power consumption

but the use of a common bus will need clever multiplexing and camera synchronization

possible requiring custom hardware. As for the software we currently use to calculate

the disparity maps since the .M units of the DSP are not used it would be feasible for one

to replace the corresponding function with a more complex one possible providing better

results while sustaining the current FPS. Lastly new hybrid units with different hardware

such as the FPGA system Zinc that provides a GPP unit with an FPGA could be

implemented and compared with the proposed system. Exploration and implementation

of similar processing intensive problems using the proposed software application .

Chapter 6

The build path, fallacies and

pitfalls

A simple overview of the tasked perform will reveal that several district and vastly dif-

ferent platforms are implicated, as is true to even mundane tasks that involve multiple

different components such a case is errorprone and even a simple error or miss config-

uration can cause mayhem and countless hours of delay. Due to prior experience with

similar embedded work, we tried to avoid and prepare for errors and save time and

energy, however a host of problems where encountered and dealt with while working

in this thesis. Mainly the source of troubles was the interprocessor communication as

debugging and monitoring was difficult , since excellent debug tools exist to monitor

situations that occur in the ARM7 Cortex A-8 processor or the DSP processor (Texas

instrument’s Code composer studio line is the main one) there are no tools that allow

you to adequatly configure and monitor both of the processors operating in the current

gumstix package where complexity arises even more by the different modules. Having

the linux operation system provided a host of tools to ease our task but the poor docu-

menation and relatively few similar projects (only one actually) provided with limited

insight. Furthermore the absense of the omap3530 development kit that provided such

functionality using the external jtag hardware further implicated our debugging process,

thus evaluating all these problems we followed the top down procedure analytically de-

scribed in the implementation section, the particular steps followed allowed us to debug

our source c code using the matlab environment mainly for visualization purpouses thus

at the end of the procedure we had a c programm that was verified to work properly

and had no bugs, even more we managed to profile and identify the most processing

intensive parts of our system and this aided us in designing our system.

67

”Appendix A”. Fallacies and Pitfalls 68

6.1 Time Distribution

The work presented hereby took aproximately 800 hours to complete. A rough estima-

tion of the time allocation to each phase during the work in this Thesis follows :

• Background And Theory : 20 %

• Matlab Profiling and Debugging :15 %

• GCC profiling in native Code :15 %

• DSP transition problem resolution and cross compilation: 40 %

• OpenEmbedded Toolchain and Environment Generation :10 % As it is evident the

lack of tools and the shortage of examples and relative work in the platform took

its toll as an otherwise well defined task consumed substancial ammounts of time,

however the task might not be achievable at all without the proper profilign and

debugging performed in the matlab level as the clean code generated through that

step allowed us to focus elsewhere without doubt of our programms correctness.

Time spend in Background and relevant Theory cannot be overestimate even more

so a higher time allocation would be better fitting. Laslty the open embedded gen-

eration task was a tedious at the time the vast majority of this Thesis took place,

however recent advancements to the Yocto project allows for a much cleaner and

faster solution and is strongly recommended that the older distribution and build

system is avoided all togher. As for the GCC cross compilation chain, the tools

are state of the art and its correspondance with the normal linux procedures for

compilation provided with a friendly and well defined development process where

we could design,develop and test seamlessly while exploiting our programming

knowledge, the same cannot be said for the TI dsp tools as incopatibilities with

normal GCC options provided problems where they could be avoided an example

to this case is the -o flag where as known in the gcc environment provides with

the name of an output file where in the ctg6l compiler it is a completely different

option that invokes the linker.

Appendix A

The build path, fallacies and

pitfalls

A simple overview of the tasked perform will reveal that several district and vastly dif-

ferent platforms are implicated, as is true to even mundane tasks that involve multiple

different components such a case is errorprone and even a simple error or miss config-

uration can cause mayhem and countless hours of delay. Due to prior experience with

similar embedded work, we tried to avoid and prepare for errors and save time and

energy, however a host of problems where encountered and dealt with while working

in this thesis. Mainly the source of troubles was the interprocessor communication as

debugging and monitoring was difficult , since excellent debug tools exist to monitor

situations that occur in the ARM7 Cortex A-8 processor or the DSP processor (Texas

instrument’s Code composer studio line is the main one) there are no tools that allow

you to adequatly configure and monitor both of the processors operating in the current

gumstix package where complexity arises even more by the different modules. Having

the linux operation system provided a host of tools to ease our task but the poor docu-

menation and relatively few similar projects (only one actually) provided with limited

insight. Furthermore the absense of the omap3530 development kit that provided such

functionality using the external jtag hardware further implicated our debugging process,

thus evaluating all these problems we followed the top down procedure analytically de-

scribed in the implementation section, the particular steps followed allowed us to debug

our source c code using the matlab environment mainly for visualization purpouses thus

at the end of the procedure we had a c programm that was verified to work properly

and had no bugs, even more we managed to profile and identify the most processing

intensive parts of our system and this aided us in designing our system.

69

”Appendix A”. Fallacies and Pitfalls 70

A.1 Time Distribution

The work presented hereby took aproximately 800 hours to complete. A rough estima-

tion of the time allocation to each phase during the work in this Thesis follows :

• Background And Theory : 20 %

• Matlab Profiling and Debugging :15 %

• GCC profiling in native Code :15 %

• DSP transition problem resolution and cross compilation: 40 %

• OpenEmbedded Toolchain and Environment Generation :10 % As it is evident the

lack of tools and the shortage of examples and relative work in the platform took

its toll as an otherwise well defined task consumed substancial ammounts of time,

however the task might not be achievable at all without the proper profilign and

debugging performed in the matlab level as the clean code generated through that

step allowed us to focus elsewhere without doubt of our programms correctness.

Time spend in Background and relevant Theory cannot be overestimate even more

so a higher time allocation would be better fitting. Laslty the open embedded gen-

eration task was a tedious at the time the vast majority of this Thesis took place,

however recent advancements to the Yocto project allows for a much cleaner and

faster solution and is strongly recommended that the older distribution and build

system is avoided all togher. As for the GCC cross compilation chain, the tools

are state of the art and its correspondance with the normal linux procedures for

compilation provided with a friendly and well defined development process where

we could design,develop and test seamlessly while exploiting our programming

knowledge, the same cannot be said for the TI dsp tools as incopatibilities with

normal GCC options provided problems where they could be avoided an example

to this case is the -o flag where as known in the gcc environment provides with

the name of an output file where in the ctg6l compiler it is a completely different

option that invokes the linker.

Appendix B

Device Schematics And Info

B.1 OMAP3530

As stated numerous times, the OMAP3530 S.o.C, is a powerful heterogenous system

developed by Texas Instruments; this system contains numerous processing units and

subsystems; the material presented hereby is property of Texast Instruments1 corpora-

tion and serves only as a reference in the context of the work done in this Thesis and

for academical purposes only.

• Omap3530 S.o.C schematic

• Omap3530 S.o.C datasheet

1http://www.ti.com/

71

http://www.ti.com/

1 OMAP3530/25 Applications Processor

1.1 Features

OMAP3530/25 Applications Processor
www.ti.com SPRS507F–FEBRUARY 2008–REVISED OCTOBER 2009

– Additional C64x+™ Enhancements• OMAP3530/25 Applications Processor:
• Protected Mode Operation– OMAP™ 3 Architecture
• Exceptions Support for Error Detection– MPU Subsystem

and Program Redirection• Up to 720-MHz ARM Cortex™-A8 Core
• Hardware Support for Modulo Loop• NEON™ SIMD Coprocessor Operation– High Performance Image, Video, Audio

• C64x+ L1/L2 Memory Architecture(IVA2.2™) Accelerator Subsystem
– 32K-Byte L1P Program RAM/Cache (Direct• Up to 520-MHz TMS320C64x+™ DSP

Mapped)Core
– 80K-Byte L1D Data RAM/Cache (2-Way• Enhanced Direct Memory Access

Set-Associative)(EDMA) Controller (128 Independent
– 64K-Byte L2 Unified Mapped RAM/CacheChannels)

(4-Way Set-Associative)• Video Hardware Accelerators
– 32K-Byte L2 Shared SRAM and 16K-Byte L2– POWERVR SGX™ Graphics Accelerator

ROM(OMAP3530 Device Only)
• C64x+ Instruction Set Features• Tile Based Architecture Delivering up to

10 MPoly/sec – Byte-Addressable (8-/16-/32-/64-Bit Data)
• Universal Scalable Shader Engine: – 8-Bit Overflow Protection

Multi-threaded Engine Incorporating – Bit-Field Extract, Set, Clear
Pixel and Vertex Shader Functionality – Normalization, Saturation. Bit-Counting

• Industry Standard API Support: – Compact 16-Bit InstructionsOpenGLES 1.1 and 2.0, OpenVG1.0 – Additional Instructions to Support Complex
• Fine Grained Task Switching, Load MultipliesBalancing, and Power Management

• ARM Cortex™-A8 Core• Programmable High Quality Image
– ARMv7 ArchitectureAnti-Aliasing

• Trust Zone®– Fully Software-Compatible With C64x and
• Thumb®-2ARM9™
• MMU Enhancements– Commercial and Extended Temperature

Grades – In-Order, Dual-Issue, Superscalar
Microprocessor Core• Advanced Very-Long-Instruction-Word (VLIW)

– NEON™ Multimedia ArchitectureTMS320C64x+™ DSP Core
– Over 2x Performance of ARMv6 SIMD– Eight Highly Independent Functional Units
– Supports Both Integer and Floating Point• +Six ALUs (32-/40-Bit), Each Supports

SIMDSingle 32-Bit, Dual 16-Bit, or Quad 8-Bit
– Jazelle® RCT Execution EnvironmentArithmetic per Clock Cycle

Architecture• Two Multipliers Support Four 16 x 16-Bit
– Dynamic Branch Prediction with BranchMultiplies (32-Bit Results) per Clock

Target Address Cache, Global HistoryCycle or Eight 8 x 8-Bit Multiplies (16-Bit
Buffer, and 8-Entry Return StackResults) per Clock Cycle

– Embedded Trace Macrocell (ETM) Support– Load-Store Architecture With Non-Aligned
for Non-Invasive DebugSupport

– 64 32-Bit General-Purpose Registers • ARM Cortex™-A8 Memory Architecture:
– Instruction Packing Reduces Code Size – 16K-Byte Instruction Cache (4-Way

Set-Associative)– All Instructions Conditional

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this document.

POWERVR SGX is a trademark of Imagination Technologies Ltd.
OMAP is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Copyright © 2008–2009, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.

OMAP3530/25 Applications Processor
SPRS507F–FEBRUARY 2008–REVISED OCTOBER 2009 www.ti.com

– 16K-Byte Data Cache (4-Way • Up to 24-Bit RGB
Set-Associative) • HD Maximum Resolution

– 256K-Byte L2 Cache • Supports Up to 2 LCD Panels
• 112K-Byte ROM • Support for Remote Frame Buffer

Interface (RFBI) LCD Panels• 64K-Byte Shared SRAM
– 2 10-Bit Digital-to-Analog Converters• Endianess: (DACs) Supporting:– ARM Instructions - Little Endian • Composite NTSC/PAL Video– ARM Data – Configurable • Luma/Chroma Separate Video (S-Video)– DSP Instruction/Data - Little Endian – Rotation 90-, 180-, and 270-degrees

• External Memory Interfaces: – Resize Images From 1/4x to 8x
– SDRAM Controller (SDRC) – Color Space Converter

• 16, 32-bit Memory Controller With – 8-bit Alpha Blending1G-Byte Total Address Space
• Serial Communication• Interfaces to Low-Power Double Data

– 5 Multichannel Buffered Serial PortsRate (LPDDR) SDRAM
(McBSPs)• SDRAM Memory Scheduler (SMS) and
• 512 Byte Transmit/Receive BufferRotation Engine

(McBSP1/3/4/5)– General Purpose Memory Controller
• 5K-Byte Transmit/Receive Buffer(GPMC)

(McBSP2)• 16-bit Wide Multiplexed Address/Data
• SIDETONE Core Support (McBSP2 and 3Bus

Only) For Filter, Gain, and Mix• Up to 8 Chip Select Pins With 128M-Byte OperationsAddress Space per Chip Select Pin
• Direct Interface to I2S and PCM Device• Glueless Interface to NOR Flash, NAND and TDM BusesFlash (With ECC Hamming Code
• 128 Channel Transmit/Receive ModeCalculation), SRAM and Pseudo-SRAM

– Four Master/Slave Multichannel Serial Port• Flexible Asynchronous Protocol Control
Interface (McSPI) Portsfor Interface to Custom Logic (FPGA,

– High-Speed/Full-Speed/Low-Speed USBCPLD, ASICs, etc.)
OTG Subsystem (12-/8-Pin ULPI Interface)• Nonmultiplexed Address/Data Mode

– High-Speed/Full-Speed/Low-Speed(Limited 2K-Byte Address Space)
Multiport USB Host Subsystem• System Direct Memory Access (sDMA)
• 12-/8-Pin ULPI Interface or 6-/4-/3-PinController (32 Logical Channels With

Serial InterfaceConfigurable Priority)
• Supports Transceiverless Link Logic• Camera Image Signal Processing (ISP) (TLL)

– CCD and CMOS Imager Interface – One HDQ/1-Wire Interface
– Memory Data Input – Three UARTs (One with Infrared Data
– RAW Data Interface Association [IrDA] and Consumer Infrared
– BT.601/BT.656 Digital YCbCr 4:2:2 [CIR] Modes)

(8-/10-Bit) Interface – Three Master/Slave High-Speed
– A-Law Compression and Decompression Inter-Integrated Circuit (I2C) Controllers
– Preview Engine for Real-Time Image • Removable Media Interfaces:

Processing – Three Multimedia Card (MMC)/ Secure
– Glueless Interface to Common Video Digital (SD) With Secure Data I/O (SDIO)

Decoders • Comprehensive Power, Reset, and Clock– Histogram Module/Auto-Exposure, ManagementAuto-White Balance, and Auto-Focus
– SmartReflex™ TechnologyEngine
– Dynamic Voltage and Frequency Scaling– Resize Engine

(DVFS)• Resize Images From 1/4x to 4x
• Test Interfaces• Separate Horizontal/Vertical Control

– IEEE-1149.1 (JTAG) Boundary-Scan• Display Subsystem Compatible
– Parallel Digital Output

OMAP3530/25 Applications ProcessorCopyrightNote Submit Documentation Feedback

OMAP3530/25 Applications Processor
www.ti.com SPRS507F–FEBRUARY 2008–REVISED OCTOBER 2009

– Embedded Trace Macro Interface (ETM) • 1.8-V I/O and 3.0-V (MMC1 only),
– Serial Data Transport Interface (SDTI) 0.985-V to 1.35-V Adaptive Processor Core

Voltage• 12 32-bit General Purpose Timers
0.985-V to 1.35-V Adaptive Core Logic Voltage• 2 32-bit Watchdog Timers
Note: These are default Operating

• 1 32-bit 32-kHz Sync Timer Performance Point (OPP) voltages and could
• Up to 188 General-Purpose I/O (GPIO) Pins be optimized to lower values using

(Multiplexed With Other Device Functions) SmartReflex™ AVS.
• 65-nm CMOS Technology • Applications:
• Package-On-Package (POP) Implementation – Portable Navigation Devices

for Memory Stacking (Not Available in CUS – Portable Media Player
Package) – Advanced Portable Consumer Electronics

• Discrete Memory Interface (Not Available in – Digital TV
CBC Package) – Digital Video Camera

• Packages: – Portable Data Collection
– 515-pin s-PBGA package (CBB Suffix), – Point-of-Sale Devices

.5mm Ball Pitch (Top), .4mm Ball Pitch – Gaming
(Bottom) – Web Tablet

– 515-pin s-PBGA package (CBC Suffix), – Smart White Goods
.65mm Ball Pitch (Top), .5mm Ball Pitch – Smart Home Controllers(Bottom)

– Ultra Mobile Devices– 423-pin s-PBGA package (CUS Suffix),
.65mm Ball Pitch

Submit Documentation Feedback OMAP3530/25 Applications Processor 3

1.3 Functional Block Diagram

IVA 2.2 Subsystem
TMS320DM64x+ DSP
Imaging Video and
Audio Processor

32K/32K L1$
48K L1D RAM

64K L2$
32K L2 RAM
16K L2 ROM

Video Hardware
Accelerators

64 32

Async

64 32

64 64

Async

64 64

L2$
256K

MPU
Subsystem

ARM Cortex-

A8TM Core
16K/16K L1$

POWERVR
SGX

Graphics
Accelerator
(3530 only)

TM

3232

32
Channel
System

DMA

3232

Parallel TV

Amp

LCD Panel

CVBS
or

S-Video

Dual Output 3-Layer
Display Processor

(1xGraphics, 2xVideo)
Temporal Dithering

SDTV → QCIF Support

32

Camera
ISP

Image
Capture

Hardware
Image

Pipeline
and

Preview

Camera
(Parallel)

64

HS USB
Host
(with
USB
TTL)
HS

USB
OTG

32

L3 Interconnect Network-Hierarchial, Performance, and Power Driven

64K
On-Chip

RAM
2KB

Public/
62KB

Secure

32

112K
On-Chip

ROM
80KB

Secure/
32KB
BOOT

32

SMS:
SDRAM
Memory

Scheduler/
Rotation

64

SDRC:
SDRAM
Memory

Controller

L4 Interconnect

32

System
Controls

PRCM

2xSmartReflexTM

Control
Module

External
Peripherals
Interfaces

Peripherals:
3xUART, 3xHigh-Speed I2C,

5xMcBSP
(2x with Sidetone/Audio Buffer)

4xMcSPI, 6xGPIO,
3xHigh-Speed MMC/SDIO,

HDQ/1 Wire,
2xMailboxes

12xGPTimers, 2xWDT,
32K Sync Timer

GPMC:
General
Purpose
Memory

Controller
NAND/
NOR

Flash,
SRAM

32

Emulation
Debug: SDTI, ETM, JTAG,

CoresightTM DAP

External and
Stacked Memories

32

OMAP Applications Processor

OMAP3530/25 Applications Processor
www.ti.com SPRS507F–FEBRUARY 2008–REVISED OCTOBER 2009

Figure 1-1 shows the functional block diagram of the OMAP3530/25 Applications Processor.

Figure 1-1. OMAP3530/25 Functional Block Diagram

Submit Documentation Feedback OMAP3530/25 Applications Processor 7

Schematics and Datasheets. Appendix B 76

B.1.1 Arm Cortex A-8

• Arm Cortex A-8 S.o.C schematic

Copyright © 2006-2007 ARM Limited. All rights reserved.
ARM DDI 0344D

Cortex™-A8
Revision: r2p1

Technical Reference Manual

ii Copyright © 2006-2007 ARM Limited. All rights reserved. ARM DDI 0344D

Cortex-A8
Technical Reference Manual

Copyright © 2006-2007 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Some material in this document is based on ANSI/IEEE Std 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic and on IEEE Std. 1500-2005, IEEE Standard Testability Method for Embedded
Core-based Integrated Circuits. The IEEE disclaims any responsibility or liability resulting from the
placement and use in the described manner.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that
ARM delivered this document to.

Change History

Date Issue Confidentiality Change

18 July 2006 A Confidential First release for r1p0

13 December 2006 B Non-Confidential First release for r1p1

13 July 2007 C Non-Confidential First release for r2p0

16 November 2007 D Non-Confidential First release for r2p1

ARM DDI 0344D Copyright © 2006-2007 ARM Limited. All rights reserved. iii

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Schematics and Datasheets. Appendix B 80

B.1.2 TMS320C64+

• TMS320C64+, Taken from page 13 of the of TI ”TMS320C6413, TMS320C6410

Fixed-Point Digital Signal Processors” Data Manual with Lieterature Number

SPRS247F.

• Datasheet The following schematic is from the TMS320C64x+ DSP Megamodule

manual with Literature Number: SPRU871K.

Features

13April 2004 − Revised January 2006 SPRS247F

1 Features

� High-Performance Fixed-Point Digital
Signal Processor (TMS320C6413/C6410)
− TMS320C6413

− 2-ns Instruction Cycle Time
− 500-MHz Clock Rate
− 4000 MIPS

− TMS320C6410
− 2.5-ns Instruction Cycle Time
− 400-MHz Clock Rate
− 3200 MIPS

− Eight 32-Bit Instructions/Cycle
− Fully Software-Compatible With C64x 
− Extended Temperature Devices Available

� VelociTI.2  Extensions to VelociTI 
Advanced Very-Long-Instruction-Word
(VLIW) TMS320C64x DSP Core
− Eight Highly Independent Functional

Units With VelociTI.2  Extensions:
− Six ALUs (32-/40-Bit), Each Supports

Single 32-Bit, Dual 16-Bit, or Quad
8-Bit Arithmetic per Clock Cycle

− Two Multipliers Support
Four 16 x 16-Bit Multiplies
(32-Bit Results) per Clock Cycle or
Eight 8 x 8-Bit Multiplies
(16-Bit Results) per Clock Cycle

− Load-Store Architecture With
Non-Aligned Support

− 64 32-Bit General-Purpose Registers
− Instruction Packing Reduces Code Size
− All Instructions Conditional

� Instruction Set Features
− Byte-Addressable (8-/16-/32-/64-Bit Data)
− 8-Bit Overflow Protection
− Bit-Field Extract, Set, Clear
− Normalization, Saturation, Bit-Counting
− VelociTI.2  Increased Orthogonality

� VelociTI.2  Extensions to VelociTI 
Advanced Very-Long-Instruction-Word
(VLIW) TMS320C64x DSP Core

� L1/L2 Memory Architecture
− 128K-Bit (16K-Byte) L1P Program Cache

(Direct Mapped)
− 128K-Bit (16K-Byte) L1D Data Cache

(2-Way Set-Associative)
− 2M-Bit (256K-Byte) L2 Unified Mapped

RAM/Cache [C6413]
(Flexible RAM/Cache Allocation)

− 1M-Bit (128K-Byte) L2 Unified Mapped
RAM/Cache [C6410]
(Flexible RAM/Cache Allocation)

� Endianess: Little Endian, Big Endian

� 32-Bit External Memory Interface (EMIF)
− Glueless Interface to Asynchronous

Memories (SRAM and EPROM) and
Synchronous Memories (SDRAM,
SBSRAM, ZBT SRAM, and FIFO)

− 512M-Byte Total Addressable External
Memory Space

� Enhanced Direct-Memory-Access (EDMA)
Controller (64 Independent Channels)

� Host-Port Interface (HPI) [32-/16-Bit]

� Two Multichannel Audio Serial Ports
(McASPs) - with Six Serial Data Pins each

� Two Inter-Integrated Circuit (I 2C) Buses
− Additional GPIO Capability

� Two Multichannel Buffered Serial Ports

� Three 32-Bit General-Purpose Timers

� Sixteen General-Purpose I/O (GPIO) Pins

� Flexible PLL Clock Generator

� On-Chip Fundamental Oscillator

� IEEE-1149.1 (JTAG†)
Boundary-Scan-Compatible

� 288-Pin Ball Grid Array (BGA) Packages
(GTS and ZTS Suffixes), 1.0-mm Ball Pitch

� 0.13-µm/6-Level Cu Metal Process (CMOS)

� 3.3-V I/Os, 1.2-V Internal

VelociTI.2, VelociTI, and TMS320C64x are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.
† IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.

Cache control

Memory protect

Bandwidth mgmt

L1P

RAM/
cache RAM

ROM/

256 256

Bandwidth mgmt

Memory protect

Cache control

256

L2

256

RAM/
ROM/
cache

RAM/
ROM/
SMC

256

Instruction fetch

file A file B

C64x + CPU

256

Cache control

Memory protect

Bandwidth mgmt

L1D

64 64

8 x 32

ID
M

A

256

256

256

Power down

Interrupt
controller

CFG

MDMA SDMA

EMC

256

32 Chip
registers

32/64/128 32/64/128

RAM/
cache

Register Register

System
infrastructure

Introduction www.ti.com

1.1 Introduction

The C64x+™ megamodule includes the following components: C64x+ CPU, Level 1 program (L1P)
memory controller, Level 1 data (L1D) memory controller, Level 2 (L2) memory controller, Internal DMA
(IDMA), bandwidth management (BWM), interrupt controller (INTC), power-down controller (PDC), and an
extended memory controller (EMC).

A block diagram of the megamodule is shown in Figure 1-1.

Figure 1-1. TMS320C64x+ Megamodule Block Diagram

18 Overview SPRU871K–August 2010

Copyright © 2010, Texas Instruments Incorporated

Schematics and Datasheets. Appendix B 83

B.1.3 POWERVR

• Powervrsgx530

Chapter 5
SPRUH73E–October 2011–Revised May 2012

Graphics Accelerator (SGX)

This chapter describes the graphics accelerator for the device.

Topic ... Page

5.1 Introduction .. 184
5.2 Integration .. 187
5.3 Functional Description ... 189

183SPRUH73E–October 2011–Revised May 2012 Graphics Accelerator (SGX)
Submit Documentation Feedback

Copyright © 2011–2012, Texas Instruments Incorporated

Introduction www.ti.com

5.1 Introduction

This chapter describes the 2D/3D graphics accelerator (SGX) for the device.

NOTE: The SGX subsystem is a Texas Instruments instantiation of the POWERVR® SGX530 core
from Imagination Technologies Ltd.

This document contains materials that are ©2003-2007 Imagination Technologies Ltd.

POWERVR® and USSE™ are trademarks or registered trademarks of Imagination
Technologies Ltd.

The 2D/3D graphics accelerator (SGX) subsystem accelerates 2-dimensional (2D) and 3-dimensional (3D)
graphics applications. The SGX subsystem is based on the POWERVR® SGX core from Imagination
Technologies. SGX is a new generation of programmable POWERVR graphic cores. The POWERVR
SGX530 v1.2.5 architecture is scalable and can target all market segments from mainstream mobile
devices to high-end desktop graphics. Targeted applications include feature phone, PDA, and hand-held
games.

5.1.1 POWERVR SGX Main Features
• 2D graphics, 3D graphics, vector graphics, and programming support for GP-GPU functions
• Tile-based architecture
• Universal scalable shader engine (USSE™) – multithreaded engine incorporating pixel and vertex

shader functionality
• Advanced shader feature set – in excess of Microsoft VS3.0, PS3.0, and OpenGL2.0
• Industry-standard API support – Direct3D Mobile, OpenGL ES 1.1 and 2.0, OpenVG v1.0.1
• Fine-grained task switching, load balancing, and power management
• Advanced geometry direct memory access (DMA) driven operation for minimum CPU interaction
• Programmable high-quality image anti-aliasing
• POWERVR SGX core MMU for address translation from the core virtual address to the external

physical address (up to 4GB address range)
• Fully virtualized memory addressing for OS operation in a unified memory architecture
• Advanced and standard 2D operations [e.g., vector graphics, BLTs (block level transfers), ROPs

(raster operations)]
• 32K stride support

5.1.2 SGX 3D Features
• Deferred pixel shading
• On-chip tile floating point depth buffer
• 8-bit stencil with on-chip tile stencil buffer
• 8 parallel depth/stencil tests per clock
• Scissor test
• Texture support:

– Cube map
– Projected textures
– 2D textures
– Nonsquare textures

• Texture formats:
– RGBA 8888, 565, 1555
– Monochromatic 8, 16, 16f, 32f, 32int
– Dual channel, 8:8, 16:16, 16f:16f

184 Graphics Accelerator (SGX) SPRUH73E–October 2011–Revised May 2012
Submit Documentation Feedback

Copyright © 2011–2012, Texas Instruments Incorporated

Bibliography

[1] R.B. Porter and N.W. Bergmann. A generic implementation framework for FPGA

based stereo matching. In , Proceedings of IEEE TENCON ’97. IEEE Region 10 An-

nual Conference. Speech and Image Technologies for Computing and Telecommuni-

cations, volume 2, pages 461–464 vol.2, 1997. doi: 10.1109/TENCON.1997.648244.

[2] Bernard Hotz Olivier Faugeras. Real time correlation-based stereo: algorithm,

implementations and applications.

[3] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms. In IEEE Workshop on Stereo and

Multi-Baseline Vision, 2001. (SMBV 2001). Proceedings, pages 131–140, 2001. doi:

10.1109/SMBV.2001.988771.

[4] Nalpantidis Lazaros, Georgios Christou Sirakoulis, and Antonios Gasteratos. Re-

view of stereo vision algorithms: From software to hardware. International Journal

of Optomechatronics, 2(4):435–462, November 2008. ISSN 1559-9612, 1559-9620.

doi: 10.1080/15599610802438680. URL http://kth.diva-portal.org/smash/

record.jsf?pid=diva2:463163.

[5] D.K. Masrani and W.J. MacLean. A real-time large disparity range stereo-system

using FPGAs. In IEEE International Conference on Computer Vision Systems,

2006 ICVS ’06, pages 13–13, 2006. doi: 10.1109/ICVS.2006.6.

[6] A. Darabiha, J. Rose, and J.W. Maclean. Video-rate stereo depth measurement on

programmable hardware. In 2003 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2003. Proceedings, volume 1, pages I–203–I–210

vol.1, 2003. doi: 10.1109/CVPR.2003.1211355.

[7] M.A.I. Manzano, D.L.A. Ojeda, M. Devy, J.L. Boizard, and J-Y Fourniols. Stereo

vision algorithm implementation in FPGA using census transform for effective re-

source optimization. In 12th Euromicro Conference on Digital System Design,

Architectures, Methods and Tools, 2009. DSD ’09, pages 799–805, 2009. doi:

10.1109/DSD.2009.159.

86

http://kth.diva-portal.org/smash/record.jsf?pid=diva2:463163
http://kth.diva-portal.org/smash/record.jsf?pid=diva2:463163

Bibliography 87

[8] N. Chang, Ting-Min Lin, Tsung-Hsien Tsai, Yu-Cheng Tseng, and Tian-Sheuan

Chang. Real-time DSP implementation on local stereo matching. In 2007 IEEE

International Conference on Multimedia and Expo, pages 2090–2093, 2007. doi:

10.1109/ICME.2007.4285094.

[9] Chyi-Yeu Lin and Yi-Pin Chiu. The DSP based catcher robot system with stereo

vision. In IEEE/ASME International Conference on Advanced Intelligent Mecha-

tronics, 2008. AIM 2008, pages 897–903, 2008. doi: 10.1109/AIM.2008.4601780.

[10] Chyi-Yeu Lin Chyi-Yeu Lin, Yi-Pin Chiu Yi-Pin Chiu, and Chi-

Ying Lin Chi-Ying Lin. Robot catching system with stereo vision

and DSP platform. DeepDyve, January 2011. URL http://www.

deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/

robot-catching-system-with-stereo-vision-and-dsp-platform-r50gyFb3QQ.

[11] S. Kimura, T. Shinbo, H. Yamaguchi, E. Kawamura, and K. Nakano. A convolver-

based real-time stereo machine (SAZAN). In Computer Vision and Pattern Recog-

nition, 1999. IEEE Computer Society Conference on., volume 1, pages –463 Vol. 1,

1999. doi: 10.1109/CVPR.1999.786978.

[12] J.I. Woodfill, G. Gordon, D. Jurasek, T. Brown, and R. Buck. The tyzx DeepSea

g2 vision system, ATaskable, embedded stereo camera. In Conference on Computer

Vision and Pattern Recognition Workshop, 2006. CVPRW ’06, pages 126–126, 2006.

doi: 10.1109/CVPRW.2006.202.

[13] S.B. Goldberg and L. Matthies. Stereo and IMU assisted visual odometry on an

OMAP3530 for small robots. In 2011 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition Workshops (CVPRW), pages 169–176, 2011.

doi: 10.1109/CVPRW.2011.5981842.

[14] J. Woodfill and B. Von Herzen. Real-time stereo vision on the PARTS reconfigurable

computer. In , The 5th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 1997. Proceedings, pages 201–210, 1997. doi: 10.1109/FPGA.

1997.624620.

[15] Seunghun Jin, Junguk Cho, Xuan Dai Pham, Kyoung-Mu Lee, Sung-Kee Park,

Munsang Kim, and J.W. Jeon. FPGA design and implementation of a real-time

stereo vision system. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 20(1):15–26, 2010. ISSN 1051-8215. doi: 10.1109/TCSVT.2009.2026831.

[16] Apostolos Dollas Sotiris Thomas, Kyprianos Papadimitriou. Fpga-based architec-

ture and design for real-time 3d stereo vision. Proc VLSI SoC,Instabul, 2013.

http://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/robot-catching-system-with-stereo-vision-and-dsp-platform-r50gyFb3QQ
http://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/robot-catching-system-with-stereo-vision-and-dsp-platform-r50gyFb3QQ
http://www.deepdyve.com/lp/institute-of-electrical-and-electronics-engineers/robot-catching-system-with-stereo-vision-and-dsp-platform-r50gyFb3QQ

Bibliography 88

[17] Apostolos Dollas Georgia Rematska, Kyprianos Papadimitriou. A low-cost embed-

ded real-time 3d stereo matching system for surveillance applications. 2013.

[18] F. Diotalevi, A. Fijany, M. Montvelishsky, and J. Fontaine. Very low power parallel

implementation of stereo vision algorithm on a solar cell powered MIMD many

core architecture. In 2011 IEEE Aerospace Conference, pages 1–13, 2011. doi:

10.1109/AERO.2011.5747451.

[19] Markus Achtelik, Abraham Bachrach, Ruijie He, Samuel Prentice, and Nicholas

Roy. {Stereo Vision and Laser Odometry for Autonomous Helicopters in GPS-

denied Indoor Environments}. page 7332. SPIE, 2010. URL http://dspace.mit.

edu/handle/1721.1/52660.

http://dspace.mit.edu/handle/1721.1/52660
http://dspace.mit.edu/handle/1721.1/52660

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Introduction
	1.2 Goal
	1.3 Background
	1.3.1 Computer Vision
	1.3.1.1 Stereo Vision
	Epipolar Geometry
	Epipolar Constraint
	 Monotonicity and Uniqueness Constraint

	1.3.2 Embedded Systems
	1.3.2.1 Real Time
	FPGA
	DSP
	GPP
	ASIC

	1.3.3 Summary

	2 Architecture
	2.1 Relative Work
	2.1.1 Embedded Universe
	2.1.2 FPGA based
	2.1.3 ASIC
	2.1.4 Atom
	2.1.5 DSP
	2.1.6 Heterogeneous Systems
	2.1.7 Summary

	2.2 Our Approach
	2.2.1 Initial Design
	2.2.2 Assumptions and Theory boosts
	Epipolar Constraint
	Monotonicity Constraint

	2.2.3 GPP Side
	2.2.4 DSP Side
	2.2.5 Assembling the Puzzle

	3 Implementation
	3.1 Introduction
	3.1.1 GPP Implementation Overview
	3.1.2 DSP Implementation Overview

	3.2 GPP
	3.2.1 Tools and Frameworks
	3.2.2 Tests
	3.2.3 Optimizations

	3.3 DSP
	3.3.1 Tools
	3.3.2 Implementation
	3.3.2.1 MexFile

	3.3.3 Amdahl's Law
	3.3.3.1 Window Impact
	3.3.3.2 Maximum Disparity

	3.3.4 OMAP3530

	3.4 Optimizations
	3.4.1 Platform independent optimizations- general principles
	3.4.1.1 Disparity-Window Choice
	3.4.1.2 Compiler optimizations
	3.4.1.3 Optimized image data serialization and Loop Unrolling
	3.4.1.4 Memory Copy Impact
	3.4.1.5 SAD on one step

	3.4.2 Architecture Dependent Optimizations
	3.4.2.1 Variable types
	3.4.2.2 Intrinsics
	3.4.2.3 Use of Restrict
	3.4.2.4 Configuration Files Optimizations

	4 Results
	4.1 Assumptions and Standards
	4.1.1 Quantum Change and Incremental Speed Ups

	4.2 Disparity and Window Size
	4.2.1 Experimental Disparity Maps
	4.2.2 The Million Disparity per Second Metric

	4.3 Summary

	5 Conclusions
	5.1 Future Work

	6 The build path, fallacies and pitfalls
	6.1 Time Distribution

	A The build path, fallacies and pitfalls
	A.1 Time Distribution

	B Device Schematics And Info
	B.1 OMAP3530
	B.1.1 Arm Cortex A-8
	B.1.2 TMS320C64+
	B.1.3 POWERVR

	Bibliography

