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Abstract 

 The accurate representation of groundwater levels in an aquifer is very 

important for groundwater modeling and effective groundwater resources 

management. However, the number and spatial distribution of monitoring sites in a 

given aquifer are not always sufficient to accurately represent the water table. 

Predictions of groundwater level at unvisited locations of an aquifer can be obtained 

by applying geostatistical methods on the available groundwater level data and thus 

the free surface of the aquifer can be reliably mapped. In sparsely monitored basins, 

accurate mapping of the spatial variability of groundwater level requires the 

interpolation of scattered data. This thesis aims to present new modeling tools that 

help to better monitor and predict the groundwater level in sparsely gauged basins. 

The specific area of focus is the Mires basin of the Mesara valley in the island of 

Crete (Greece). The study area is a sparsely sampled basin that has limited 

groundwater resources which are vital for the area’s welfare; spatiotemporal 

variations of groundwater level are important for developing management and 

monitoring strategies. Efficient groundwater management in the basin is crucial in 

light of regional climate change model estimates showing a substantial risk of 

desertification for Crete. Our goal is to construct accurate spatial and spatiotemporal 

models of the basin’s groundwater level. Therefore, spatial and spatiotemporal models 

for the accurate representation of the groundwater level variability in already 

vulnerable areas with low groundwater resources, like Mires basin, need to be 

developed in order to identify the susceptible locations, to estimate the groundwater 

level distribution spatially and spatiotemporally and to provide input for potential 

groundwater resources management plans. The main data used in this research consist 

of seventy hydraulic head measurements (wet period of 2002-2003 hydrological year) 

which are unevenly distributed and mostly concentrated along a temporary river and 

time series performance consisting of biannual groundwater level data from ten 

boreholes (1981-2003). After the year 2003 observations of a shorter number of wells 

are available biannually. 

This thesis initially presents a comparison of deterministic interpolation 

methods, i.e., Inverse Distance Weight (IDW) and Minimum Curvature (MC), with 

stochastic methods, i.e., Ordinary Kriging (OK), Universal Kriging (UK) and Kriging 

with Delaunay Triangulation (DK). We evaluate the performance of the interpolation 
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methods with respect to different statistical cross validation measures. The Spartan 

variogram family is implemented for the first time to hydrological data and is shown 

to be optimal with respect to the stochastic interpolation methods such as OK, UK, 

DK and Residual Kriging (RK) applied in this dataset. The three stochastic methods 

(OK, DK, UK) perform overall better than the deterministic counterparts (IDW, MC). 

DK, which is herein for the first time applied to hydrological data, yields the most 

accurate cross validation estimate for the lowest value in the dataset. OK and UK lead 

to smooth isolevel contours, while DK and IDW generate more edges. The stochastic 

methods also deliver estimates of prediction uncertainty. 

The present research study also investigates the application of non-linear 

normalizing data transformations in conjunction with Ordinary Kriging (OK) for the 

accurate prediction of groundwater level spatial variability in a sparsely gauged basin. 

We investigate three established normalizing methods, Gaussian Anamorphosis, 

Trans-Gaussian Kriging and Box-Cox to improve the estimation accuracy. The first 

two are for the first time applied to groundwater level data. All three methods 

improve the mean absolute prediction error compared with the application of OK to 

the non-transformed data. In addition, a Modified Box-Cox (MBC) transformation is 

proposed and applied to normalize the hydraulic heads. MBC in conjunction with OK 

is found to be the optimal spatial model based on leave-one-out cross-validation. The 

recently established Spartan semivariogram family provides the optimal model fit to 

the transformed data.  

Trend functions, as previous studies have shown, improve the accuracy of 

interpolation. Therefore, we propose that the prediction of the hydraulic head spatial 

variability in Mires basin can be improved by incorporating in the trend function local 

properties. Firstly the distance of the prediction points from the temporary river 

crossing the basin is incorporated in the trend function and secondly a component 

based on the generalized Thiem’s equation for multiple wells. Residual Kriging is 

performed based on these two spatial trend models as well as using the novel MBC 

transformation to normalize the residuals and the flexible Spartan semivariogram 

family to optimally determine their spatial correlation. Both proposed spatial models’ 

improve significantly the cross validation measures compared to the other Kriging-

based methods tested. We also present maps of the groundwater level spatial 

variability and the estimation variance in Mires basin obtained by means of the 

optimal spatial models. 
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We determine that the optimal spatial interpolation approach is based on 

Residual Kriging using the non-differentiable Spartan semivariogram model for the 

normalized (MBC) fluctuations. Our proposal is supported by the results of cross 

validation analysis. The suggested methodology is applicable to other unconfined 

aquifers as well. The non-differentiable property of the Spartan semivariogram model 

is interpreted herein as the result of a deposition-removal process that leads to a 

fractional Brownian motion, fBm-like, behavior of the groundwater level surface.  

The overall goal of this dissertation is to use stochastic methods for the 

monitoring and prediction of the groundwater level in space and time. Following the 

spatial interpolation, first we model the temporal variation of groundwater level with 

a discrete time autoregressive exogenous variable model (ARX) model. In this study 

pumping data are used in addition to precipitation measurements. The ARX model is 

embedded in a discrete-time Kalman filter to estimate the model parameters and 

predict the optimal mean annual groundwater level. The ARX model is calibrated for 

the years 1981 to 2006 and is then used to predict the mean annual groundwater level 

in the basin for recent years (2007-2010). The predictions are validated with the 

available annual averages reported by the local authorities.  

Secondly, we use a spatiotemporal geostatistical analysis of the groundwater 

level using space-time Residual Kriging (STRK). The space-time trend is calculated 

using the product function of the estimated temporal trend from a weighted moving 

average filter and the spatial trend determined from the closest distance of the 

measurement locations from the river bed. A space-time experimental semivariogram 

is determined from the biannual (wet and dry period) groundwater level fluctuations 

time series between the years 1981 and 2003 at the ten sampling stations. We model 

the semivariogram with separable and non-separable theoretical spatiotemporal 

semivariogram functions. STRK is used to predict the groundwater level for selected 

hydrological periods at each sampling station in the time period (2004-2010) 

biannually.  

Maps of groundwater level predictions and of prediction accuracy are 

desirable and significant in order to assess the groundwater level spatiotemporal 

variability, whether observed changes in water-table levels are statistically significant 

and finally to identify additional locations where further monitoring is needed to 

increase the accuracy of the maps. All the methodologies and tools presented in this 
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thesis are implemented by original code developed by the author and run in Matlab
®
 

programming environment (Matlab v.7.5 on Microsoft Windows XP).  
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Περίληψη 

 Η ακριβής εκτίμηση της στάθμης του υδροφόρου ορίζοντα αποτελεί 

σημαντικό παράγοντα για ένα ολοκληρωμένο σχέδιο διαχείρισης των υδατικών 

πόρων μιας υδρολογικής λεκάνης. Η στάθμη των υπόγειων υδάτων σε έναν 

υδροφορέα ελέγχεται συνήθως με βάση το υδραυλικό ύψος στις θέσεις 

εγκατεστημένων πιεζόμετρων και ενεργών γεωτρήσεων σε κατάσταση ηρεμίας. Σε 

πολλές περιπτώσεις δεν παρακολουθούνται όλες οι γεωτρήσεις λόγω κόστους ή 

παράλειψης των αρμόδιων φορέων, ενώ σε άλλες περιπτώσεις ο αριθμός των 

γεωτρήσεων και των πιεζομέτρων είναι ανεπαρκής. Επομένως ο αριθμός των 

διαθέσιμων μετρήσεων είναι συχνά μικρός και αραιά κατανεμημένος στην περιοχή 

μελέτης με αποτέλεσμα να μην αντιπροσωπεύεται επαρκώς η στάθμη του υδροφορέα. 

Εκτιμήσεις της στάθμης σε θέσεις όπου δεν υπάρχουν παρατηρήσεις μπορούν να 

πραγματοποιηθούν με την εφαρμογή γεωστατιστικών μεθόδων στα διαθέσιμα 

δεδομένα, προκειμένου να χαρτογραφηθεί με ακρίβεια ο υδροφόρος ορίζοντας του 

υδροφορέα. Βοηθητικές πληροφορίες χρησιμοποιούνται συχνά για να ενισχύσουν τις 

εκτιμήσεις της στάθμης των υπόγειων νερών, όπως η τάση της φυσικής μεταβολής 

του επιπέδου των υπόγειων νερών (η οποία προσεγγίζεται συνήθως από πολυώνυμα 

με βάση τις χωρικές συντεταγμένες), η βροχόπτωση και το υψόμετρο. Η χρήση 

βοηθητικών χωρικών μεταβλητών έχει αποδειχθεί ότι βελτιώνει τις εκτιμήσεις 

υδραυλικών υψών.  

 Το νησί της Κρήτης διαθέτει οριακούς υπόγειους υδατικούς πόρους, οι οποίοι 

χρησιμοποιούνται εκτενώς για γεωργικές δραστηριότητες και ύδρευση. Η κοιλάδα 

της Μεσαράς, η οποία βρίσκεται στο νότιο τμήμα του περιφερειακού διαμερίσματος 

Ηρακλείου και καλύπτει μια έκταση 398 km
2
, είναι η μεγαλύτερη και 

παραγωγικότερη κοιλάδα του νησιού. Η υπερεκμετάλλευση κατά τη διάρκεια των 

προηγούμενων τριάντα ετών έχει οδηγήσει σε μια δραματική μείωση, πάνω από 

τριάντα πέντε μέτρα, στη στάθμη των υπόγειων νερών. Οι πιθανές μελλοντικές 

κλιματολογικές αλλαγές στην περιοχή της Μεσογείου, τα σενάρια πιθανής 

ερημοποίησης και η εκτενής γεωργική δραστηριότητα προκαλούν έντονη ανησυχία 

σχετικά με την αειφορία των υδατικών πόρων της περιοχής. Η παρούσα διατριβή 

εστιάζει στην υδρολογική λεκάνη Μοιρών της κοιλάδας της Μεσσαράς για δύο 

λόγους: α) διαθεσιμότητα υδρογεωλογικών και υδρολογικών δεδομένων και β) διότι 
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αποτελείται κυρίως από προσχωματικές αποθέσεις κάτι που εξασφαλίζει σε μεγάλο 

βαθμό υδρογεωλογική ομοιογένεια.  

 Η παρούσα διατριβή έχει στόχο να παρουσιάσει καινοτόμες μεθοδολογίες 

χωρικής και χρονικής γεωστατιστικής ανάλυσης αλλά και μεθόδους–εργαλεία 

αποσκοπώντας στην εκτίμηση και χαρτογράφηση της χωρικής και χρονικής 

μεταβλητότητας της στάθμης των υπόγειων νερών της λεκάνης με τη βέλτιστη 

δυνατή ακρίβεια λαμβάνοντας υπόψιν και την αβεβαιότητα των εκτιμήσεων. Ο 

κύριος στόχος της έρευνας είναι να αναπτυχθούν χωρικά μοντέλα για τον ακριβή 

προσδιορισμό της στάθμης, ο υπολογισμός των αντίστοιχων ισοδυναμικών καμπυλών 

και ο προσδιορισμός των πιο ευάλωτων περιοχών του υδροφορέα. Σε δεύτερο στάδιο, 

τα μοντέλα επεκτείνονται σε δυναμικές (space-time) καταστάσεις για τη 

μοντελοποίηση της χωροχρονικής μεταβολής και τη δυνατότητα εκτίμηση της 

μελλοντικής στάθμης. 

 Η χωρική εξάρτηση τόσο των δεδομένων στάθμης όσο και των διακυμάνσεων 

που προκύπτουν από τα μοντέλα τάσης που αναπτύσσονται στην παρούσα 

διδακτορική διατριβή μελετώνται με την προσαρμογή εμπειρικών 

ημιβαριογραμμάτων σε γνωστά κλασικά πρότυπα συναρτήσεων, στο πρότυπο 

συναρτήσεων Matérn και στο μοντέλο Σπαρτιάτικου ημιβαριογράμματος το οποίο 

χρησιμοποιείται για πρώτη φορά σε υδρολογικά δεδομένα. Τα μοντέλα Σπαρτιάτικου 

τύπου και Matérn περιλαμβάνουν περισσότερες παραμέτρους σε σχέση με τα 

κλασικά πρότυπα, γεγονός που ευνοεί στη βέλτιστη προσαρμογή στο πειραματικό 

ημιβαριόγραμμα. Το Σπαρτιάτικο ημιβαριόγραμμα και η αντίστοιχη συνάρτηση 

συνδιασποράς έχουν αναπτυχθεί πρόσφατα και αποτελούν μια επιτυχώς εναλλακτική 

πρόταση στον προσδιορισμό της χωρικής εξάρτησης των δεδομένων. 

 Αρχικά αξιολογείται η χρήση γνωστών και ευρέως εφαρμοσμένων μεθόδων 

χωρικής παρεμβολής όπως το κανονικό Kriging (ordinary Kriging-ΟΚ), το 

γενικευμένο Kriging (universal Kriging-UK), η μέθοδος σταθμισμένων αντίστροφων 

αποστάσεων (inverse distance weight-IDW), η μέθοδος ελάχιστης καμπυλότητας 

(minimum curvature-MC) και η μέθοδος Kriging με τριγωνοποίηση κατά Delaunay 

(Kriging with Delaunay Triangulation-DK). Η τελευταία διερευνάται για πρώτη φορά 

σε υδρολογικά δεδομένα. Μάλιστα εξετάζεται και παρουσιάζεται η εφαρμογή της 

μεθόδου χρησιμοποιώντας δύο διαφορετικές γειτονίες εκτίμησης που προκύπτουν 

από τον τρόπο επιλογής των γειτονικών τιμών του εκτιμώμενου σημείου με βάση την 

πρωτεύουσα και δευτερεύουσα τριγωνοποίηση των γειτονικών τιμών. Η σύγκριση 
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των συγκεκριμένων πέντε μεθόδων στο ίδιο δείγμα πραγματοποιείται για πρώτη φορά 

σύμφωνα με τη μέχρι πρόσφατη βιβλιογραφία. Τα αποτελέσματα της σύγκρισης 

υποδεικνύουν ότι οι στοχαστικές μέθοδοι (OK, DK, UK) λειτουργούν με μεγαλύτερη 

αποτελεσματικότητα σε σχέση με τις αντίστοιχες προσδιοριστικές (IDW, MC). 

Επίσης το Σπαρτιάτικο ημιβαριόγραμμα αποδεικνύεται με βάση διαφορετικά 

στατιστικά μέτρα το βέλτιστο για την εφαρμογή της γωστατιστικής εκτίμησης. Οι 

μέθοδοι OK και UK οδηγούν σε πιο ομαλές ισοδυναμικές σε αντίθεση με τις 

μεθόδους DK και IDW. Η μέθοδος DK η οποία χρησιμοποιείται για πρώτη φορά σε 

υδρολογικά δεδομένα υπολογίζει ακριβέστερα την ελάχιστη τιμή του δείγματος βάση 

της μεθόδου διασταυρωμένης επιβεβαίωσης. Οι στοχαστικές μέθοδοι πλεονεκτούν σε 

σχέση με τις προσδιοριστικές καθώς υπολογίζουν την αβεβαιότητα των εκτιμήσεων η 

οποία και μπορεί να υποδηλώσει περιοχές της υπό μελέτη λεκάνης όπου 

περισσότερες μετρήσεις απαιτούνται για γεωστατιστική ανάλυση μεγαλύτερης 

ακρίβειας.  

 Η προκαταρκτική γεωστατιστική ανάλυση των δεδομένων υδραυλικών υψών 

έδειξε ότι αυτά δεν ακολουθούν την κανονική κατανομή ωστόσο δεν είναι 

απαγορευτική η χρήση τους σε γραμμική γεωστατιστική ανάλυση. Για να 

δημιουργηθεί όμως ένα χωρικό μοντέλο με τη βέλτιστη δυνατή αποτελεσματικότητα 

για τα υδραυλικά ύψη εξετάζονται διάφορες μη γραμμικές προσεγγίσεις 

κανονικοποίησης των δεδομένων σε συνδυασμό με τη μέθοδο εκτίμησης kriging. Η 

μέθοδος Box-Cox και η μέθοδος της Γκαουσιανής Αναμόρφωσης (Gaussian 

Anamorphosis-GA) χρησιμοποιούνται για το μετασχηματισμό των δεδομένων στην 

κανονική (γκαουσιανή) κατανομή πιθανότητας. Προτείνεται επίσης μια νέα 

τροποποιημένη εκδοχή της μεθόδου Box-Cox (modified Box-Cox) η οποία βασίζεται 

στο συντελεστή κύρτωσης και ασυμμετρίας της παρατηρούμενης κατανομής. 

Χρησιμοποιείται ακόμη η μέθοδος Trans-Gaussian Kriging η οποία ενσωματώνει τη 

συνάρτηση μετασχηματισμού των δεδομένων στον εκτιμητή της χωρικής 

παρεμβολής. Η χρήση των εν λόγω μη γραμμικών μοντέλων αποτελεί καινοτομία 

στην υδρολογία. Η μέθοδος modified Box-Cox σε συνδυασμό με τη μέθοδο kriging 

και το Σπαρτιάτικο ημιβαριόγραμμα αποτελούν το βέλτιστο χωρικό μοντέλο 

εκτίμησης της στάθμης του υδροφορέα βάση σύγκρισης με τις υπόλοιπες μεθόδους. 

Παρουσιάζονται χάρτες ισοδυναμικών καμπυλών και αβεβαιότητας εκτιμήσεων με 

όλες τις στοχαστικές μεθόδους που εξετάστηκαν.    
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 Επίσης προτείνεται και διερευνάται ένα καινοτόμο χωρικό μοντέλο τάσης για 

τη στάθμη των υπογείων υδάτων που βασίζεται στα τοπικά χαρακτηριστικά της 

λεκάνης των Μοιρών, και συγκεκριμένα στην απόσταση των γεωτρήσεων από την 

κοίτη του ποταμού. Το μοντέλο επίσης ενσωματώνει το αντίστοιχο υψόμετρο στη 

θέση της κάθε γεώτρησης. Μια δεύτερη καινοτόμα πρόταση χωρικού μοντέλου τάσης 

αποτελεί η χρήση των πολλαπλών πηγαδιών άντλησης στον υδροφορέα των Μοιρών. 

Η εφαρμογή της εξίσωσης Thiem για πολλαπλά πηγάδια άντλησης μπορεί να 

αποδώσει την τάση της στάθμης της λεκάνης. Η χρήση των προτεινόμενων μεθόδων 

για τον υπολογισμό της τάσης της στάθμης του υδροφορέα σε συνδυασμό με τη 

μέθοδο του υπολειμματικού kriging (Residual Kriging) οδηγεί στη βέλτιστη εκτίμηση 

του υδραυλικού ύψους σε σημεία της λεκάνης όπου δεν υπάρχουν παρατηρήσεις. Η 

μέθοδος συνοδεύεται από τη χρήση της καινοτόμου μεθόδου κανονικοποίηση 

δεδομένων modified Box-Cox (για τις διακυμάνσεις) και του μη διαφορίσιμου 

Σπαρτιάτικου ημιβαριόγραμματος για τον προσδιορισμό της χωρικής εξάρτησης των 

διακυμάνσεων. Οι προτάσεις μας υποστηρίζονται από τα αποτελέσματα 

διασταυρωμένης επιβεβαίωσης.  

 Το Σπαρτιάτικο ημιβαριόγραμμα αποτελεί το βέλτιστο μοντέλο 

προσδιορισμού της χωρικής εξάρτησης των δεδομένων για κάθε μεθοδολογία που 

εξετάστηκε στην παρούσα διατριβή. Ωστόσο η συνάρτηση αυτή είναι μη 

διαφορίσιμη. Η ιδιότητα αυτή ερμηνεύεται ως το αποτέλεσμα μιας διαδικασίας 

εμπλουτισμού και άντλησης του υδροφορέα η οποία οδηγεί τον υδροφόρο ορίζοντα 

σε συμπεριφορά κλασματικής κίνησης Brown (fractional Brownian motion).   

 Η μοντελοποίηση της χρονικής μεταβολής της στάθμης του υδροφορέα 

πραγματοποιείται με τη χρήση ενός μοντέλου αυτοσυσχέτισης το οποίο ενσωματώνει 

εξωγενή πληροφορία από μεταβλητές όπως η βροχόπτωση, η παροχή αντλήσεων και 

η εξατμισοδιαπνοή. Το συγκεκριμένο μοντέλο έχει χρησιμοποιηθεί στην αρχική του 

μορφή χωρίς την παροχή αντλήσεων. Στην παρούσα διατριβή διερευνάται η χρήση 

και της μεταβλητής αυτής για πρώτη φορά με επιτυχή αποτελέσματα. Το μοντέλο 

αυτοπαλινδρόμησης ενσωματώνεται σε ένα διακριτό χρονικά φίλτρο Kalman για την 

εκτίμηση των παραμέτρων αλλά και για την πρόβλεψη της βέλτιστης στάθμης του 

υδροφορέα.  

 Τα κύρια στοιχεία που χρησιμοποιούνται στην παρούσα διατριβή 

αποτελούνται από εβδομήντα (70) μετρήσεις στάθμης που αφορούν την υγρή περίοδο 

του υδρολογικού έτους 2002-2003 και από στάθμες 10 γεωτρήσεων που καλύπτουν 
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το χρονικό διάστημα 1981-2003 σε υγρή και ξηρή περίοδο. Οι μετρήσεις 

κατανέμονται ανομοιόμορφα και εστιάζονται κατά μήκος του ποταμού Γεροπόταμου 

που διασχίζει τη λεκάνη. Από το 2003 και μετά, μετρήσεις πραγματοποιήθηκαν μόνο 

σε μικρό αριθμό επιλεγμένων γεωτρήσεων ενώ από το 2003 δύο τηλεμετρικοί 

σταθμοί λειτουργούν στην περιοχή παρακολουθώντας τη μεταβολή της στάθμης των 

υπογείων υδάτων.   

 Η ακριβής χωρική εκτίμηση της στάθμης σε συνδυασμό με τη μοντελοποίηση 

της χρονικής μεταβολής δημιουργούν τις συνθήκες για ένα ολοκληρωμένο 

χωροχρονικό μοντέλο το οποίο θα περιγράφει με ακρίβεια τη στάθμη του υδροφορέα 

και θα μπορεί να εκτιμά και τη μελλοντική συμπεριφορά του. Για το σκοπό αυτό οι 

τάσεις της χρονικής μεταβολής της στάθμης μελετώνται και προσδιορίζονται από ένα 

μοντέλο σταθμισμένου κινούμενου μέσου όρου (weighted moving average). Η 

χωροχρονική τάση προσδιορίζεται από το συνδυασμό του σταθμισμένου κινούμενου 

μέσου όρου και της απόσταση των γεωτρήσεων από την κοίτη του ποταμού. Στη 

συνέχεια η χωροχρονικής εξάρτηση των διακυμάνσεων των μετρήσεων υπολογίζεται 

με τη βοήθεια του χωροχρονικού εμπειρικού ημιβαριογράμματος. Η μοντελοποίηση 

του πραγματοποιείται με τη χρήση διαχωριζόμενων και μη διαχωριζόμενων 

χωροχρονικών συναρτήσεων. Η επαλήθευση εκτίμηση και πρόβλεψη στάθμης 

πραγματοποιείται με την εφαρμογή του χωροχρονικού υπολειμματικού kriging 

(Residual Kriging). Η χρήση μη διαχωρίσιμων χωροχρονικών συναρτήσεων αποτελεί 

επίσης καινοτομία στην υδρολογία. 

 Οι μεθοδολογίες που αναφέρονται παραπάνω δύναται να εφαρμοστούν και σε 

άλλες υδρολογικές λεκάνες με παρόμοια χαρακτηριστικά όπως αυτά της λεκάνης των 

Μοιρών. Η υλοποίηση των προτεινόμενων μεθόδων πραγματοποιήθηκε από το 

συγγραφέα σε πρωτότυπο κώδικα στο προγραμματιστικό περιβάλλον Matlab® ενώ η 

αξιολόγηση των γεωστατιστικών μεθόδων πραγματοποιείται με τη μέθοδο της 

διασταυρωμένης επιβεβαίωσης χρησιμοποιώντας διάφορα στατιστικά μέτρα 

επίδοσης. Πιστεύουμε ότι η παρούσα διδακτορική διατριβή συνεισφέρει στην 

επιστήμη της γεωστατιστικής αλλά και στην υδρολογική διερεύνηση της περιοχής 

μελέτης. Τα αποτελέσματα και οι μέθοδοι που παρουσιάζονται μπορούν να 

χρησιμοποιηθούν σε συνδυασμό με άλλες γεωεπιστήμες για την ολοκληρωμένη 

διαχείριση των υδατικών πόρων της λεκάνης των Μοιρών και της ευρύτερης περιοχής 

της Μεσσαράς.  
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1. Introduction 

 

1.1 Motivations for this research 

 During the last thirty years geostatistics has been successfully applied in 

several environmental and earth sciences disciplines. Geostatistics helps to overcome 

field data deficiencies such as, sparse and scarce measurements, uncertainty 

estimation and space-time data combination providing space-time predictions for 

variables with environmental and economical importance. To date research on space-

time dependent variables and geostatistics continues, in order to develop new more 

efficient space-time methodologies.  

 This thesis is primarily motivated by the need for accurate interpolation 

methodologies in order to determine with the highest possible accuracy the 

spatiotemporal variability of field data, i.e. hydrological data. Therefore below we 

introduce space and time geostatistical methodologies which we believe that have 

something new to contribute in geostatistics, e.g.: field data spatial correlation using 

the Spartan variogram family, kriging-based spatial models using non-linear 

normalizing data transformations, kriging-based spatial trend models capturing local 

properties, Kriging with Delaunay triangulation (DK) using second order neighbors 

applied for the first time in hydrological data, anisotropy estimation using a recently 

established method named covariance Hessian identity also applied for the first time 

in hydrological data, spatiotemporal trend calculation using a novel function based on 

local basin properties and the exponentially weighted moving average filter, 

spatiotemporal interpolation using a non-separable semivariogram function for the 

first time in real data, a comparison of well known stochastic and deterministic 

interpolation methods that in the same dataset has not been applied before. 

 Secondly, this thesis is motivated by the dramatic decrease in groundwater 

levels during the last decades in many Mediterranean basins due to overexploitation. 

Such an example is Mires basin of the Mesara valley in the island of Crete-Greece. In 

light of this development and the expected adverse effects of climate change on the 

basin’s water resources, accurate spatiotemporal modeling of the groundwater level 

variation is significant and is needed for two main reasons: a) to identify “vulnerable” 

locations on the basin where an integrated groundwater resources management plan 

should focus and b) to provide accurate information for numerical groundwater flow 
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models, such as the calibration of equipotentials and the representation of initial 

groundwater level conditions.  

 

1.2 Objectives 

 The main objective of this thesis is to develop and test interpolation 

methodologies and geostatistical tools for the accurate mapping of groundwater 

level’s spatial variability in sparsely monitored basins. Therefore initially in this thesis 

the interpolation performance of OK, UK and of the newly established DK with the 

deterministic methods IDW and MC on the same groundwater level data set is 

compared. To our knowledge, this is the first application of DK to groundwater level 

interpolation. The dataset used involves groundwater levels in a sparsely gauged 

basin. Measuring the relative performance of different interpolators is important for 

environmental monitoring. 

This dissertation investigates the improvement in groundwater level 

interpolation with OK using non-linear data normalization methodologies. Well-

known OK based methodologies are applied, most of them for the first time to 

groundwater level data. In addition, a novel normalization method based on the Box-

Cox transformation, referred to as Modified Box-Cox (MBC) is established and 

implemented in this study. The (MBC) method, Gaussian Anamorphosis (GA) 

normalization and Trans-Gaussian Kriging (TGK) are applied for the first time to 

groundwater level data.  

In addition this dissertation introduces auxiliary trend variables based on local 

features (i.e., a temporary river crossing the basin) and physical laws (i.e., Thiem’s 

multiple well equation) to improve the prediction of groundwater level.  

Overall, several kriging-based spatial models are investigated, evaluated, and 

maps of estimated water table elevation and its associated uncertainty are generated 

by means of the optimal model. 

Another objective of this dissertation is to introduce some recently developed 

geostatistical tools in the hydrological literature. The recently established Spartan 

semivariogram family is applied herein along with classical semivariogram models to 

calculate the data spatial dependence. More specifically, the flexible Spartan 

semivariogram family is applied for the first time to hydrological data and is shown 

(based on cross validation) to be the optimal model of spatial variability in Mires. The 
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geometric anisotropy is estimated using the newly established Covariance Hessian 

Identity. 

The final objective of this research work is to use stochastic methods for the 

spatiotemporal monitoring and prediction of the groundwater level in sparsely gauged 

basins e.g. Mires basin, located on the island of Crete (Greece). First, we model the 

temporal variation of groundwater level with a discrete time autoregressive exogenous 

variable model (ARX) model and then we perform spatiotemporal geostatistical 

analysis of the groundwater level taking account the space time groundwater level 

trend using space-time Residual Kriging (STRK). 

 

1.3 Innovation 

 This research addresses some practical problems of hydrological data 

geostatistical analysis and contributes to geostatistics, hydrological theory and 

methodology and to factual information about the hydrology of a region.  

 The Spartan variogram family is tested and applied herein for the first time to 

hydrological data. The application and investigation of the variogram’s efficiency on 

real field data is one of primary objectives of this thesis. Furthermore a recently 

proposed method to estimate Geometric anisotropy is tested in this thesis namely the 

Covariance Hessian Identity. This method is also applied for the first time in 

hydrology. 

 It also examines the use of non-linear transformation of groundwater level 

data to obtain improved kriging estimates of the water table elevation. The thesis 

deals with several original ideas: (i) the Modified Box-Cox, Gaussian Anamorphosis 

and Trans-Gaussian Kriging transformations have not been previously applied to 

groundwater level data; (ii) the use of the Matern and Spartan models for the 

semivariogram is novel to groundwater level data; (iii) the application to real data is 

another feature of the thesis. 

 This thesis introduces two novel kriging based spatial models, for the 

groundwater levels accurate representation in sparsely monitored basins. The 

proposed spatial models include a trend component where auxiliary variables that 

incorporate specific features of the studied watershed are included. The first model 

incorporates in the trend the distance of the wells from the river bed in addition to 

surface elevation, while the second uses a novel trend approach that involves the 
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groundwater level predicted from a groundwater hydraulics’ equation (Thiem’s) 

regarding multiple wells system operation. 

 New approach is also the application of a discrete time autoregressive 

exogenous variable (ARX) model that uses in advance to the original approach the 

groundwater abstraction rate in order to model the aquifer’s groundwater level 

temporal variability. In addition new approach is the function applied to determine the 

groundwater level’s spatiotemporal trend. This function involves a weighted moving 

average filter for the temporal trend and the closest distance of the wells from the 

river bed for the spatial trend. Moreover the non-separable spatiotemporal function 

used to model the experimental spatiotemporal semivariogram of fluctuations is 

applied for the first time in real data providing very good estimates better than the 

classical spatiotemporal separable product function. 

 Finally it examines the use of Delaunay triangulation in conjunction with 

kriging for interpolation of groundwater level in sparsely monitored basins for the 

first time. The application of Delaunay triangulation with second neighbours is for the 

first time applied to field data. Moreover it compares IDW, MC, OK, UK and DK in 

the same dataset. Such a comparison has not been met in the scientific bibliography. 

 

1.4 Outline of the thesis 

 The remainder of this thesis is organized as follows. In Section 2 background 

and theory of geostatistical methodologies and applications are reviewed. Section 3 

presents relevant information for the study area (Mires basin) and an exploratory 

statistical analysis of the data set. Section 4 compares stochastic and deterministic 

methods for mapping groundwater level spatial variability. In Section 5 we introduce 

non-linear normalizing transformations for improving kriging of groundwater level 

data. Section 6 focuses on improvement of groundwater level prediction in sparsely 

gauged basins using physical laws and local geographic features as auxiliary 

variables. Section 7 presents stochastic tools for the space-time modeling of 

groundwater level variations. Finally section 8 contains a general discussion of the 

results and concluding remarks. 
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2. Background and theory 

 

The Mediterranean Sea region is affected by the global climate change. It is 

expected, according to recent climatic modeling results, to be further affected in the 

future (Intergovernmental Panel on Climate Change 2007, Tsanis et al. 2011). The 

Intergovernmental Panel on Climate Change (IPCC) (2007) and a series of climate 

change studies (Giorgi and Lionello 2008, Somot et al. 2008, Tsanis et al. 2011) 

report that the Mediterranean is highly sensitive and vulnerable to climate change, 

with recent simulations estimating substantial drying and warming effects. These 

predictions represent a serious threat to water resources in the region. According to 

the IPCC, there will be a global surface temperature increase of 1.1 - 6.4 °C until 

2100. The Mediterranean is expected to warm significantly, well above the global 

average. IPCC projections suggest that annual precipitation throughout most of the 

Mediterranean will be significantly reduced (fewer precipitation days, significantly 

drier summers and a higher risk of drought). Evaporation rates are also expected to 

increase leading to further reduction of aquifer recharge and surface runoff 

(Intergovernmental Panel on Climate Change 2007, Bates et al. 2008, Howard 2011). 

 The analysis of climate model data for the island of Crete indicates that the 

extreme events of the last few years will intensify, i.e., precipitation is expected to be 

less frequent but more intense, the average temperature will increase, while the 

severity and frequency of droughts will also increase in some regions. The 

quantitative impact of these changes on water resources can be significant at basin 

level (Tsanis et al. 2011). Mires basin in the Mesara valley of Crete has registered 

decreasing trends in annual precipitation and groundwater level over the last 30 years 

(see section 3.3). At the same time, the water demand is increasing because Mesara 

valley is the most productive agricultural valley of Crete.  

 Groundwater resources are very important to both humans and the 

environment. Hence it is essential to understand and control the environmental impact 

of groundwater overexploitation. The expansion of irrigated agriculture leads in many 

cases to groundwater overexploitation with serious impact on the water resources 

budget and the environment. This results in aquifer depletion, water quality 

degradation, stream flow reduction, and in major losses of habitat and biodiversity. It 

is necessary for the authorities to set safe limits of groundwater availability and 

vulnerability and to reconcile the human development with the preservation of nature 
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(Sophocleous 2002). Therefore, the accurate representation of the groundwater level 

and its spatiotemporal variability in Mires (as well as in basins with similar 

characteristics), is an important management tool for identifying vulnerable areas 

where pumping needs to be controlled or discontinued. The island of Crete generally 

may be characterized as having marginal groundwater resources, which are 

extensively used for agricultural activities and for human consumption (Donta et al. 

2006, Department of Water Resources Management 2009). A characteristic example 

of an area where the groundwater resources are overexploited is Mesara valley. 

 Groundwater levels in an aquifer are usually monitored by means of hydraulic 

head measurements at borehole locations. In many cases, only a subset of the existing 

boreholes are monitored due to financial constraints or omission by the responsible 

authorities; in other cases, the number of operating boreholes is inadequate for a 

global representation of head variability. In both cases, geostatistical methods can 

help to more accurately visualize the surface of an aquifer. The geostatistical 

approach allows the reproduction of spatial variability, while it also honors the 

available observation data. Hence geostatistics is traditionally used to modeling 

aquifer properties. 

 

2.1 Mathematical background 

 Geostatistics has been well established and developed during the last three 

decades and is widely applied in environmental research and technology (Journel and 

Huijbregts 1978, Isaaks and Srivastava 1989, Christakos 1991b, Deutsch and Journel 

1992, Cressie 1993, Goovaerts 1997, Kitanidis 1997, Christakos 2000). Geostatistics 

is a sub-discipline of spatial statistics. It includes a set of statistical methods that 

concern random variables with spatial and/or temporal variability (random fields). 

These variables represent physical quantities with economic or environmental 

importance. These methods are based on the assumption that the spatiotemporal 

variability includes a random component which has space-time correlation. Therefore 

statistical measures such as mean value, variance, standard deviation, spatiotemporal 

dependence, e.t.c, are used to extract any useful information from the available data 

(Mamassis 2006). Geostatistics deals with distributions in which the spatial and/or 

temporal dependence is the primary characteristic. Geostatistical analysis aims to 

estimate the statistical parameters that determine the spatial and/or temporal 

distribution and dependence of the relevant variables. This procedure is called 
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parameter inference. These parameters are used to estimate (interpolate) the variables 

at desired spatiotemporal locations where no measurements are available (Hristopulos 

2003a).  

 

2.1.1 Random fields 

 Geostatistics is intrinsically connected and based on the mathematical concept 

of Random fields (RF). As RF it can be considered a set of random variables that 

describe the spatiotemporal variation of a physical variable size (e.g. hydraulic head, 

concentration of a pollutant). Contrary to functions that have a specific mathematical 

expression, e.g. ( ) cos( )f x x , random fields don’t have a specific expression that 

represents all possible states. Each state is one sample of the field and is characterized 

by a probability determined by the multidimensional Probability Density Function of 

the field. Therefore, a random field can be considered as a multidimensional random 

variable. Due to the interdependence of the physical characteristics in different points 

of the space, random fields have particular mathematical properties that distinguish 

them from a set of independent random variables (Hristopulos 2008). 

 There are various categories of random fields. If the field takes values only 

from a finite set of numbers it is called discrete field. If the values of the field belong 

to a continuous interval of real numbers, the field is called continuous field. When 

variation is defined in a continuous space, such as natural fields, a continuous field is 

created. On the contrary, when the positions of a grid are defined the field is called 

lattice field.  

 Lattice fields are used in computational (e.g. simulation of the 

distribution of contaminants in groundwater) but also in theoretical studies, 

because grid symmetry allows the use of efficient numerical methods (e.g. fast 

Fourier transform). Moreover lattice fields allow benchmarking of different 

geostatistical methods (Hristopulos 2008). 

 In practice the measurements represent a finite number of points, the 

distribution of which does not necessarily have the symmetry of a regular grid. In 

these cases the network of sampling points is inhomogeneous. The terms 

disordered lattice and off lattice can be used as well. On such cases, geostatistical 

methods are needed to operate adequately, considering the limitations of each 

spatial distribution. If the distribution is off lattice, the evaluation or simulation of 
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procedure is realized on a gridded background that covers the area of interest (Hristopulos 

2006). 

 The concept of random fields is based on two key terms: randomness and 

interdependence of values of physical quantities at different points of the space. 

Randomness characterizes phenomena in which knowledge of a situation with complete 

accuracy is impossible due to various constraints. Such constraints originate from the 

variability of different physical quantities in space and the uncertainty due to limited 

number of measurements. In these cases the result (the value of the phenomenon) is 

determined via a probability distribution function, which defines the probability of 

occurrence of each state. 

 Spatial dependence is a particular feature in random fields and describes the 

reliance between the values of two different points in the field. The probability 

distribution of the field embodies correlations between different points, so the probability 

of observing a value at a point depends on the values in adjacent points (Hristopulos 

2008). 

 

2.1.2 Basic concepts in random fields 

 A random field is denoted as ( )Z s , where s  is a position vector  ,x ys . 

( )Z s  represents all possible states in the field, while ( )z s  denotes the values that 

correspond to a specific state. Probability Density Function (PDF) of the field is 

denoted as [ ( )]Zf z s . Index Z  indicates the field, while the argument of the function 

is the values of the state of the field (e.g. hydraulic head, concentration of pollutants). 

An example of PDF, which corresponds to a normal distribution random field, is 

given by: 
 

2

2

( ) ( )1
[ ( )] exp

22

Z

Z

ZZ

z m
f z



 
  
  

s s
s , where ( )Zm s is the mean value, 

2

Z  the variance and Z  the standard deviation of the random field. 

 Probability Density Function of a random field includes all values in the space 

where the field is defined. Therefore PDF is common for any number of points. One-

dimensional or point PDF describes all possible states in the field, on a specific point. It is 

possible that the one-dimensional PDF changes from point to point and that happens when 

the field is inhomogeneous. Proportionally, two-dimensional PDF of the field expresses 
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the interdependence of possible states of two points, while multidimensional PDF 

describes the interdependence of all possible situations for N points (Hristopulos 2008). 

 Another type of functions that provides information about the properties of a 

random field is statistical moments. Statistical moments are deterministic functions 

which represent average values in all possible situations. In practice, usually low 

order (up to second order) statistical moment, as mean value, dispersion, covariance 

functions and semivariogram, is useful (Hristopulos 2008). 

 Spatial random fields (SRF) are random fields that location plays the primal 

role as the property values are spatially correlated. An SRF state can be decomposed 

into a deterministic trend ( )Zm s  a correlated fluctuation ( )Z s
 , and an independent 

random noise term e( )s  so that, ( ) ( ) ( ) e( )ZZ Z m
  s s s s . The fluctuation term 

corresponds to ‘fast variations’ that reveal structure at small scales, which nonetheless 

exceed a cut-off λ, the trend is often determined from a single available realization. 

The random noise represents non-resolved inherent variability due to resolution 

limits, purely random additive noise, or non-systematic measurement errors. The 

classical approach of SRF’s is based on Gaussian SRF’s (GSRF’s) and various 

generalizations for non-Gaussian distributions (Wackernagel 2003). The covariance 

matrix therefore is used to determine the spatial structure for the GSRF’s which is 

estimated from the distribution of the data in space. Generally SRF’s model spatial 

correlations of variables and have various applications e.g., in hydrology (Kitanidis 

1997), environmental pollutant mapping and risk assessment (Christakos 1991b), 

mining exploration and reserves estimation (Goovaerts 1997). 

 

2.1.3 Mean value 

 The mean value of a random field is given by:  

 

 ( ) ( )Zm E Z s s . (2.1) 

 

 ( )E Z s  denotes the mean value, calculated in all states of the field, i.e.   

 

 ( ) ( ; )ZE Z dz f z zs s  , (2.2) 
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where z  the values that correspond to a given state. The integral limits depend on 

the space where field Z  is defined. If the field takes all negative and positive 

values the integral varies from   to . If the field takes only positive values the 

integral ranges from 0 to . If it is known that the values of the field are limited to 

a predetermined interval [a,b], the integral is calculated in this interval.  In the 

latter equation it can be noted that the average value may depend on position, s , 

which comes from a possible dependence between the one-dimensional probability 

density function and the position. Since PDF is not always known in advance, mean 

value is estimated through the sample using statistical methods. This is the average of 

all values in the sample, (Hristopulos 2008): 
1

1
ˆ ( ) ( )Z

N

i

i

m z
N 

  s s . A useful application 

topic of the mean value is to describe the large-scale trends in a random field. Mean 

value ( )Zm s  is defined using reference functions. They can be divided in general and 

local dependence patterns. In the case of general dependence only one mathematical 

equation describes the variance in the entire area. This kind of dependence patterns 

are: 

 

 Linear dependence, e.g. 0Zm m  b s  which expresses the existence of a 

constant slope 

 Polynomial dependence, e.g. 0 1 1 2 2( )Zm m b s b s   s  

 Periodic dependence, e.g. 0 1
( ) cos( )

N

Z n n nn
m m A 


   s k s , where variables 

nk  correspond to spatial frequencies and n  in phases 

 The overlay of two or more patterns, e.g. a polynomial and a periodic, 

   0 1 1 2 2 0 1
( ) cos( )

N

Z n n nn
m m b s b s m A 


      s k s . 

 

In cases where the general dependence patterns are insufficient for the exact 

determination of the trends, the use of local dependence functions is preferable (e.g. 

local polynomials). Such type of dependence is used in the model of locally weighed 

regression (Hristopulos 2008). 
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2.1.4 Variance  

 Variance in a random field is given by the mean value of the squared 

fluctuation according to equation, 

 

 
22 2( ) ( ) ( ) ( )Z ZE Z m E Z         

s s s s . (2.3) 

 

In general, it is possible for the variance to vary from point to point while remaining 

stable only when the field is statistically homogeneous. The variance fluctuations in a 

random field mean that the fluctuations in the field change from point to point (Isaaks 

and Srivastava 1989). 

 

2.1.5 Covariance function 

 Another property which gives useful information for a random field is the 

centered covariance function (CCF), which is defined as (Isaaks and Srivastava 1989): 

 

  1 2 1 1 2 2( , ) ( ) ( ) ( ) ( )Z Z Zc E Z m Z m     s s s s s s . (2.4) 

 

The random field 1 1 1( ) ( ) ( )ZZ Z m s s s  corresponds to the fluctuation in field 1( )Z s  

around the mean value at point 1s . The mean value of the fluctuation field is equal to 

zero, 1( ) 0E Z s    . Based on the previous equations it holds:  

 

1 2 1 2( , ) ( ) ( )Zc E Z Zs s s s    . (2.5) 

 

 Specifically, CCF describes quantitatively the dependence of the fluctuations 

between two different points in the field. When the points of the covariance function 

coincide, the value is equal to the variance of the field at that point 2

1 1 1( , ) ( )Z Zc s s s . 

On the contrary, when the distance between two points grows larger, the dependence 

of the fluctuations is reduced. An example of change of the covariance function with 

the distance follows: Let the covariance function between two points in a random 

field be given by the exponential model, 
2

1 2( , ) expZ Zc
r

s s 


 
  

 
, where r  is the 
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Euclidian norm of the distance vector between two points and   is the correlation 

length. If 0r  then 2

1 2( , )Z Zc s s  , while if r  then 2

1 2( , ) 0.36Z Zc s s   

(Hristopulos 2008). 

 In geostatistical analysis the experimentally determined spatial dependence is 

fitted to an optimal model selected by a set of accepted theoretical functions (e.g. 

exponential, Gaussian, powerlaw e.t.c). A function is a valid covariance function if 

and only if it satisfies the following criteria:  

 

1 1

( ) 0Z

N N

i j i j

i j

a a c s s
 

  , (2.6) 

 

for any real weights a , , 1, ,i j N   and any positive integer N. Acceptance 

conditions are also necessary for the covariance function. The acceptance conditions 

are set by Bochner’s theorem (Bochner 1959). This is expressed through the power 

spectral density of the covariance which is given by the Fourier transformation (Press 

et al. 1992) of the covariance function. Power spectral density is defined by the 

integral:  

 

( ) exp( ) ( )Z Zc d i ck r k r r   , (2.7) 

 

where r  is the distance vector between two points, d dx dy  r  and k  is the 

vector of spatial frequency (wavevector). Function ( )Zc r  is an accepted covariance 

function if the three following conditions are applicable: 

 

1) If the power spectral density exists ( )Zc k  (i.e. if the Fourier transformation of 

the function exists). 

 

2)  If ( )Zc k  is non-negative throughout the range of frequencies, i.e. ( ) 0Zc k   

for everyk . 

 

3) If the integral of ( )Zc k  throughout the range of frequencies is bounded (i.e. if 

the variance exists).  
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In practice, to determine if a function is an acceptable covariance, the Fourier 

transform of the function needs to be calculated (Hristopulos 2008). 

 

2.1.6 Statistical homogeneity 

 Assumptions that impose constraints on the properties of a random field can 

lead to a more efficient geostatistical analysis. The most widely used simplifying 

assumption is statistical homogeneity, which is an extension of the classical definition 

of homogeneity. A given property is homogenous if the corresponding variable is 

constant in space. On the contrary, a random field is statistically homogeneous if the 

mean value is constant, ( )Z Zm m s , covariance function is defined and depended 

only on the distance vector 1 2 r s s  between two points 1 2( , ) ( )Z Zc cs s r  and the 

variance of the field is also constant. These conditions define also 2
nd

 order 

stationarity. 

 These conditions define the statistical homogeneity in a weak sense. A random 

field is statistically homogeneous in a strong sense when the multidimensional PDF 

for N points (where N is any positive integer number) remains unchanged by 

transformations that alter the location of the points without altering the distances 

between them. Therefore the concept of statistical homogeneity is that the statistical 

properties of a random field does not depend on the spatial coordinates of the points, 

hence the reference system. Practically, statistical homogeneity implies that there are 

no systematic trends, so the change of the values in the field can be attributed to 

fluctuations around a constant level equal to the mean value (Hristopulos 2008). 

 

2.1.7 Statistical isotropy 

Another property that can be useful in geostatistical analysis of a random field 

is statistical isotropy. A field is statistically isotropic if it is statistically homogenous 

and at the same time the covariance function depends on the distance (Euclidean 

distance), but not on the direction of the distance vector r . This is important from a 

practical point of view because it helps in the identification of spatial dependence. If a 

covariance function is statistically isotropic is by definition statistically homogeneous, 

but not vice versa. 



BACKGROUND AND THEORY 

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 

HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

14 

 In the case of statistically isotropic fields the two most important parameters 

that determine very basic features of covariance function is the variance 2 (0)Z Zc   

and correlation length ξ. Variance is a measure of the width of the fluctuations in the 

field. The correlation length defines the interval in which there is interdependence, 

which defines the distance within which the field value at one point affects the value 

at another point (Christakos 1991b). 

 

2.1.8 Spatial dependence 

 There are several ways to measure the spatial dependence. Two of the most 

commonly used is the semivariogram and the correlation function. Both functions 

describe the dependence between two points in the statistical sense as both functions 

refer to pairs of points so their value depends on the distance between these points. 

The term, in the statistical sense, means that the described dependence emerges as a 

mean value from a large number of pairs and not a single pair of points (Hristopulos 

2008). Correlation function for a random field is equal to the ratio of the covariance 

function to the variance and is given by the equation, 
2

( )
( ) Z

Z

Z

c r
r


 , while the 

semivariogram of a random field is defined by the equation, 

 

  21
( , ) ( ) ( )

2
Z E Z Zs r s r s    . (2.8) 

 

The semivariogram is defined in relation to a pair of points, using the mean squared 

difference: ( ; ) ( ) ( )Z Z Zs r s r s    . The difference field ( ; )Z s r  is called distance step 

r . If the field ( )Z s  is statistically homogeneous the semivariogram is directly related to the 

covariance function by the equation (Deutsch and Journel 1992, Hristopulos 2008): 

 

2( ) ( )Z Z Zcr r   . (2.9) 

 

 For statistically homogeneous fields, semivariogram contains the same 

information as the covariance function. If the difference ( ; )Z s r  is statistically 

homogeneous, the random field ( )Z s  is called field with statistically homogeneous 

differences. In this case the semivariogram ( )Z r  depends solely on the distance r  
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between the points and this is a result of statistical homogeneity of the field 

differences. If the field ( )Z s  is statistically homogeneous then the same applies for 

the differences ( ; )Z s r , but the opposite is not necessarily true (Hristopulos 2008). 

 The parameters of the semivariogram determine the spatial dependence of the field 

values at two neighboring points. From the definition of the semivariogram, using the mean 

square of the differences, it is shown that the semivariogram is semi-positively defined 

( ) 0Z r  . But the reverse is not always the case, as a semi-positive defined function is not 

necessarily an admissible semivariogram. 

 In case of a statistically homogeneous field, if the spatial dependence is 

isotropic, the semivariogram is determined by two parameters: the sill and the 

correlation length. The value of the semivariogram for long distances r  tends 

asymptotically to a sill equal to the variance 2

Z  of the random field. This property is 

based on 2( ) ( )Z Z Zcr r    and the fact that at large distance the value of the 

covariance function tends towards zero. The presence of important large distance 

trends means that the assumption of statistical homogeneity is not valid. Then the 

semivariogram does not converge towards a balance value, when the distance tends 

towards infinite (Hristopulos 2008). 

 If correlation characteristics vary in different directions in space then the 

dependence is anisotropic. The two main types of anisotropy that are encountered in 

practice are geometrical and zone anisotropy. Geometrical anisotropy refers to cases when 

the semivariogram sill is independent of the direction, but the velocity approaching the sill, 

depends on the direction (Hohn 1999). In this case the semivariogram is expressed as 

function ,
1

,

1

Z
d

d

rr

 


 
 
 

of non-dimensional distances ,
1

,

1

d

d

rr

 
, where 1, , d   are 

the correlation lengths in the corresponding directions. 

 Zone anisotropy refers to the case where the sill depends on the spatial direction. 

Then the semivariogram can be expressed as the sum of resultant: 

,1 ,2
ˆ( ) ( ) ( )Z Z Zrr r    . In this equation ,1( )Z r , where r  r , describes an isotropic 

dependence while ,2
ˆ( )Z r  describes the anisotropic dependence between the sill and 

the direction of the unit vector r̂ . 

 In the case of geometrical anisotropy more than one correlation lengths are required 

1, , d  . Some of them, but not all, may be equal to each other. Therefore additional 
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parameters are required for the determination of the semivariogram’s anisotropy. In a 

two-dimensional system x  and y , correspond to the correlation lengths along the 

main axis, the anisotropy parameters are: (1) the ratio /y x y x   , which is called 

anisotropy ratio, (2) the orientation angle, which defines the orientation of the main 

anisotropy axis, in relation to the Cartesian coordinate system. 

 

 

 

Figure 2.1 Presentation of the main axis system (ΚΑ1, ΚΑ2) in relation to the coordinate system x, y. 

The ellipsis corresponds to the semivariogram direction (after (Hristopulos 2008)). 

 

 In order to understand the meaning of the orientation angle, the ellipse is 

defined as the geometrical location of points ( , )x yr r , where the value of the 

semivariogram is constant. The elliptical shape is used since this happens for different 

semivariogram models, such as exponential and Gaussian anisotropic 

semivariograms. The orientation angle is the angle between ΚΑ 1 axis of the ellipsis 

with the horizontal axis of the coordinate system (Figure 2.1), (Hristopulos 2008). 

 The semivariogram generally increases, but not necessarily linearly, with 

the distance between the points, while on the contrary the correlation function 

decreases. This is due to the fact that the correlation function describes the 

dependence between the field values in two different points in space and their 

dependence decreases in larger distances. On the contrary, the semivariogram 

measures the difference between field values as a function of their distance. 

Therefore, semivariogram values increase when the distance increases (Deutsch 

and Journel 1992). 
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 For statistically homogeneous fields, the two functions are equivalent 

which means that they have the same information in different form. However 

there are cases of random fields where semivariogram is a function of the 

distance between two points only, while the correlation function depends both on 

the distance and the specific location of the points in space (Hristopulos 2008). 

 Widely used semivariogram models, which can be also used in practical 

applications, are the exponential, the Gaussian, the spherical, the powerlaw and the nugget 

effect. The exponential model characterizes distributions with sharp spatial variations, 

opponent to the Gaussian model that characterizes more smooth variations. The powerlaw 

model corresponds to dependence with long distance spatial range and the nugget effect to 

variations which take place in distances smaller than the resolution that the sample allows. 

Another way of determining the spatial dependence of a random field, which is presented 

in this thesis, is that of the method of Spartan variogram family (Hristopulos 2008). 

 

2.1.9 Semivariogram estimation 

 The main mathematical tool in geostatistical modeling is the semivariogram 

which expresses the spatial dependence between neighboring observations. In the case 

of geographical distributions and distribution of environmental variables, where the 

available data are limited to a sole sample, it is attempted to determine an estimation 

of the real semivariogram through it. This estimation is called sampled or 

experimental semivariogram and is calculated based on the values of the sample. 

The Matheron method-of-moments estimator of the semivariogram is given by (Isaaks 

and Srivastava 1989, Deutsch and Journel 1992): 

 

 

 
( )

2

, 1

1
ˆ ( ) ( ) ( ) ( ), ( 1, , )

2 ( )

N k

Z k i j i j k c

i jk

Z Z k N
N

r

r s s r
r

 


     , (2.10) 

 

 
1, ( )

( )
0,

i j k

i j k

B

otherwise

s s r
r  

 

 The class function ( )i j kr  defines different classes of distance vectors, 

choosing the vectors that correspond to a closed region ( )kB r  ( 
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 Figure 2.2) around vector kr   

 

 Variable ( )kN r  is equal to the number of point pairs inside class ( )kB r  

 

 The sample semivariogram is defined for a discrete and finite set of distances 

, ( 1, , )k ck Nr  the number of which is equal to the number of classes cN . 

 

 
rx 

 

Figure 2.2 Schematic figure of the region ( )B r  around the distance vector (Hristopulos 2008). 

 

The empirical semivariogram, ˆ ( )Z k r  is defined as the average square difference of 

the field values between points separated by the lag vector kr . More precisely, this 

calculation determines a value for the sample semivariogram for every kr , based on 

the mean value of differences
2

( ) ( )i jZ Zs s  in all pairs of points, the distance vector 

of which belongs in ( )kB r  region. ˆ ( )Z kr  is a good estimator of the real ( )Z kr  when 

the mean value of differences in kr  class approaches with accuracy, the mean value 

 
2

( ) ( )kE Z Zs s r   (Hristopulos 2008). The latter is true when the Ergodic 

assumption applies, which allows the switch between the stochastic and the sample 

mean. In semivariogram calculation the Ergodic property is valid when the following 

conditions occur: the field of differences ( ) ( )kZ Zs s r   is statistically 

homogeneous, the number of pairs in each class is large enough so the sample mean 

of the square difference is determined with good statistical accuracy and the number 

ry 
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of classes is large enough so the dense approach of the semivariogram variations as a 

function of the distance is allowed. After the sampled semivariogram is calculated, it 

is adjusted to a theoretical model which allows the calculation of the semivariogram 

in every distance. This can be achieved using e.g., the least square method, from 

which the optimal values for parameters ξ and 2

Z  of the theoretical model can be 

calculated. The variable ξ denotes the characteristic (correlation) length and 2

Z  the 

variance (sill) (Hristopulos 2008). 

 The theoretical model is needed for the estimation of field values in points 

where measurements are not available. Next, in order to accept the semivariogram 

and use it for geostatistical analysis, it is tested according to the semivariogram 

acceptance conditions. A semivariogram is acceptable if it is conditionally negative 

definite. This means that for any linear coefficients   that satisfies the equation 

1
0

N

a 
  the following inequality must apply, 

 

1 1
(s s ) 0

N N

Z ba   
  

 
    , (2.11) 

 

for any positive integer N. For a spatial homogeneous random field is simpler to 

check the acceptance of a semivariogram or covariance model using the function 

2 ( )Z Z r  . If the function ( )Z r  describes an acceptable semivariogram then the 

function 2( ) ( )Z Z Zc r r    is an acceptable covariance function and vice-versa 

(Hristopulos 2008). 

 If anisotropic spatial dependence occurs the semivariogram should be 

calculated in different directions is space, in order to determine the main direction of 

the anisotropy. This requires the definition of classes not only according to the range 

but also according to the direction of the distance vector. Every class has a tolerance 

(2 )r  in terms of the range, as well as ( 2 ) in terms of the direction angle of the 

distance vector, so as every class to include an adequate number of points. The 

semivariogram is usually calculated in terms of the directions North-South and East-

West, while for the angular tolerance the values 5
0
, 10

0
, 20

0
 and 45

0
 are used 

(Goovaerts 1997). In this thesis except of the latter approach anisotropy is determined 

using a newly established method named Covariance Hessian identity (Chorti and 

Hristopulos 2008). Figure 2.3 presents the characteristics of a typical semivariogram. 
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Figure 2.3 Presentation of typical semivariogram characteristics. 

 

 The nugget effect quantifies the variance of the sampling error, as well as the 

small scale variance, e.g. the spatial variance in distances smaller than the 

distances between sampling points. 

 The sill is the value that approaches asymptotically the experimental 

semivariogram. 

 Scale is the difference between the sill and the nugget effect, and declares the 

variance of the correlated fluctuations. 

 The correlation length is the distance in which the semivariogram almost (e.g. 

95-97%) reaches the sill value. 

 Variance is the mean squared deviation of every value of the sample from the 

mean value and is denoted with the horizontal dashed line in the figure. 

 The experimental semivariogram represents the classes of pairs along with the 

corresponding sampled values of the semivariogram. 
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 The theoretical semivariogram model is a continuous theoretical line which is 

fitted to the experimental semivariogram. 

 

If there are no distinct anisotropies, the omnidirectional empirical semivariogram 

ˆ ( )Z r  , kr r , is estimated and then fitted to a theoretical model function ( )Z r  

(Deutsch and Journel 1992, Kitanidis 1997). 

 

2.1.10 Semivariogram models  

 Classical theoretical semivariogram models listed below include the spherical, 

Gaussian, exponential, power-law and linear functions (Goovaerts 1997, Lantuejoul 

2002); 2

z  is the variance, |r | is the Euclidean norm of the lag vector r , and ξ is the 

characteristic length.  

 

Exponential: 2( ) 1 expZ Z 


  
    

   

r
r  (2.12)

 

 

Gaussian: 
2

2

2
( ) 1 expZ Z 



  
    

  

r
r  (2.13) 

 

Spherical:  
   

32( ) 1.5 / 0.5 /

0, 0, 0, 1

Z Z

if else if

     

   

   
 

     

r r r r

r r

 (2.14) 

 

Power-law: 
2H

( ) , 0 H 1Z c   r r  (2.15) 

c is the coefficient and H  the Hurst exponent. 

 

Linear: ( )Z c r r  (2.16) 

 

 Equations above define the isotropic versions of the models. These involve at 

most two parameters, i.e., the variance and correlation length for exponential, 
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Gaussian and spherical models, c and H for the power-law model and c for the linear 

model. Below we review two semivariogram models that offer increased parameter 

flexibility. 

 

2.1.11 Matérn model 

 This covariance family includes, in addition to the variance and correlation 

length a smoothness parameter ν, which controls the continuity and differentiability of 

the random field, and thus also the short-distance behaviour of ( ) r , which has 

greater impact on interpolation than medium to large distance dependence. The 

Matérn semivariogram model (Matérn 1960, Stein 1999, Pardo-Iguzquiza and Chica-

Olmo 2008) is defined as: 

 

1
2 2

( ) 1
( )

v
v

Z Z v
v 

 


     
      

      

r r
r ,  (2.17) 

 

where 2

z
 
> 0 is the variance, 0   is the characteristic length, ν >0 is the 

smoothness parameter, (·)  is the gamma function, and (·)  is the modified Bessel 

function of the second kind of order ν, and |r| is the Euclidean norm of vector r. For 

ν=0.5 the exponential model is recovered, whereas the Gaussian model is obtained at 

the limit as ν tends to infinity. The case ν=1 was introduced by Whittle (1954). The 

Matérn model has been applied to different research fields including hydrology e.g., 

(Rodriguez-Iturbe and Mejia 1974, Zimmermann et al. 2008). 

 

2.1.12 Spartan model 

 Spartan Spatial Random Fields (SSRFs) are a recently proposed 

geostatistical model (Hristopulos 2002, Hristopulos 2003b) with applications in 

environmental risk assessment (Elogne et al. 2008) and atmospheric environment 

(Žukovič and Hristopulos 2008). SSRFs are generalized Gibbs random fields, 

equipped with a coarse-graining kernel that acts as a low-pass filter for the 

fluctuations. The term Spartan indicates parametrically compact model families that 

involve a small number of parameters. These random fields are defined by means of 

physically motivated spatial interactions between the field values. 
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 In general, a spatial random field (SRF) ( )Z s  representing the measurements 

can be expressed as: 

 

( ) ( ) ( ) e( )ZZ Z m  s s s s , (2.18) 

 

where e( )s  is a zero-mean measurement noise process, assumed to be homogeneous 

over the domain of interest, ( )Z  s  is a correlated fluctuation SRF, and ( )Zm s  is a 

deterministic trend function. The trend is a non-stationary component representing 

large-scale, deterministic variations, which presumably correspond to the ensemble 

average of the SRF, 

 

 ( ) ( )Zm E Z s s . (2.19) 

 

 SSRFs are determined from a probability density function in terms of a spatial 

random field (SRF) ( )Z  s . The probability density function contains information for 

spatial dependence. In general, the probability density function SSRF can be 

expressed with the following equation: 

 

1[ ( )] exp{ [ ( )]}xf Z H Z  s sZ , (2.20) 

 

 
( )

exp [ ( )]
Z

H Z


  s
sZ , (2.21) 

 

is a normalization constant which ensures the basic theorem of probability, (i.e. that 

the sum of probabilities of a SRF is equal to 1). [ ( )]H Z  s  is an energy functional of 

spatial dependence which expresses the interdependence of SRF data values ( )Z  s  

between different locations. Therefore, SSRFs belong in the family of Gibbs random 

fields (Hristopulos 2003b). The Gibbs property stems from the fact that the joint 

probability density function of SSRFs is expressed in terms of an energy functional 

i.e. [ ( )]H Z s . Use of an energy functional containing terms with a clear physical 

interpretation permits inference of the model parameters based on matching respective 

sample constraints with their ensemble values (Hristopulos and Elogne 2007). Thus, 
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the spatial continuity properties can be determined without estimation of the 

experimental variogram. 

The SSRFs provide a new class of generalized covariance functions, which are 

by construction positive definite for an explicitly specified range of parameter values 

(Hristopulos 2003b, Hristopulos and Elogne 2007). Fluctuation-gradient-curvature 

(FGC) SSRFs model have an energy functional that involves the squares of the 

fluctuations, the gradient and the curvature of the field, see Eq. (2.22) below. This 

class provides covariance functions with four parameters that give considerable 

flexibility. The SSRF covariance functions can be used for spatial interpolation with 

the classical kriging estimators as well as with new spatial predictors (Elogne et al. 

2008, Hristopulos and Elogne 2009).  

Herein we use this new class of covariance function for the first time in 

groundwater hydrology in association with kriging for spatial interpolation of the 

groundwater level. For kriging applications, the estimation of the spatial dependence 

structure (semivariogram or covariance function) is a crucial step. 

 The isotropic FGC-SSRF functional is given by the following equation: 

 

2 2 2 4 2 2

1

0

1
[ ( )] { ( )} { ( )} { ( )}

2 d
H Z d Z Z Z  

 
         s s ss s . (2.22) 

 

The FGC model involves the parameters 0 , 1 ,   and mk . The scale coefficient 0  

determines the overall scale of the variance; the scale factor is proportional to the 

square of the regionalized variable, i.e. the groundwater level, and assumes the 

variable’s units. The shape coefficient 1  is dimensionless and determines the shape 

of the covariance function in connection with   and mk . The characteristic length   

has dimensions of length and determines the range of spatial dependence. Finally, the 

wavevector mk  has units of inverse length and determines the bandwidth of the 

covariance spectral density. If the latter is band-limited, mk  represents the band cutoff 

and is related to the resolution length scale by means of 1mk   . 

The SSRF covariance models derived from the above energy functional are 

determined by the parameters 0 1( , , , )mk   . Spartan (SP) covariance and 

semivariogram functions were introduced in (Hristopulos 2003b) and have been 

applied to various environmental data sets (Elogne et al. 2008, Elogne and 
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Hristopulos 2008, Hristopulos and Elogne 2009). Herein, we apply this family of 

functions for the first time in hydrological data.  

The SSRF family includes four-parameter functions (Hristopulos 2003b, 

Hristopulos and Elogne 2007). The Spartan covariance in any dimension d is 

expressed using the spectral representation as follows  

 

1 /2 /2

0 /2 1

/2 2 4

10

( )
( )

(2 ) 1 ( ) ( )

m
d k d

d

Z d

J
C d

   


   






 
r r

r;θ , (2.23) 

 

where /2 1( )dJ x  is the Bessel function of the first kind of order zero and 

0 1( , , , )mk    are the model parameters. The Spartan semivariogram is given by 

( ) (0 ) ( )Z Z ZC C  r;θ ;θ r;θ . The scale parameter 0  determines the variance, ξ is the 

characteristic length, km represents the wavenumber cutoff (band limit in Fourier 

space), and the dimensionless stiffness coefficient 1  determines the shape of the 

covariance function in connection with km and ξ (Elogne et al. 2008). In 1,3d   

explicit expressions for the Spartan covariance are possible at the asymptotic limit 

mk   (Hristopulos and Elogne 2007). 

 The Spartan covariance function of Eq. (2.23) in 3d  dimensions are 

expressed as follows: 
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 
1/2

1,2 1 2   , (2.25) 

 

1/2

1,2 12 2  . (2.26) 
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In the above 
1/2

2

1 4   , 1,2  and 2  are dimensionless damping coefficients, 1  is 

a dimensionless wave-number,   is a characteristic length, h r  is the 

normalized lag vector, | |h  h  its Euclidean norm and 2

z  is the variance. The 

exponential covariance is recovered for 
1 = 2, while for 1  < 2 the product of the 

exponential and hole-effect model is obtained. A covariance function that is 

permissible in three spatial dimensions is also permissible in two dimensions 

(Christakos 1991). Hence, (2.24) can be used in two dimensions, albeit it does not 

correspond to the FGC-SSRF two-dimensional covariance (Hristopulos and Elogne 

2007). 

 

2.1.13 Parameters inference 

 The Spartan parameters can be estimated by fitting the SSRF semivariogram 

to the empirical semivariogram estimator. A different approach is based on the 

modified method of moments, in which stochastic constraints are matched with 

corresponding sample constraints (Elogne et al. 2008, Žukovič and Hristopulos 2008, 

Žukovič and Hristopulos 2009). The constraints are motivated by the terms in the 

energy functional (2.22); the square of the fluctuations, the square gradient, and the 

square curvature are used to construct both the sample and the stochastic constraints. 

The latter approach is not investigated herein, because the focus of this thesis is on 

kriging interpolation techniques. 

 There is no universally accepted method for fitting the empirical 

semivariogram to a theoretical model. For each of the above theoretical models 

discussed above, we determine the optimal semivariogram parameters using the least 

squares method. Methods used include least-squares fits, weighted least squares, 

generalized least squares, maximum likelihood, and even empirical ‘‘fitting by eye’’ 

(Wackernagel 2003, Olea 2006). We implemented least-squares fiting by means of 

the «fminsearch» Matlab
®
 function which is based on the Nelder-Mead minimization 

algorithm (Press et al. 1992). The selection of the “optimal semivariogram model” is 

based on the results of leave-one-out cross validation (see section 2.5). 
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2.1.14 Spatial estimation 

 The determination of the spatial dependence, as well as of the trend and the 

fluctuations of the field values leads in two basic procedures of geostatistics; the 

spatial estimation and the simulation. Both procedures help in the representation of 

a random field in points where not exact values exist, based on available 

information (e.g. measurements in neighboring points, hydrogeological data). The 

available information is used in order to impose statistical limitations. Using 

statistical spatial dependence patterns (semivariograms) the unknown values are 

defined based on their correlation. The repetitiveness of this procedure in all points 

of the computational grid allows the mapping of an entire area (Hristopulos 2008). 

 The simulation process aims to create many of the possible states of the field, 

which are in accordance with existing statistical restrictions derived by the 

experimental sample e.g. simulated states with the same mean value, standard 

deviation and semivariogram with the one calculated using samples. Therefore, the 

simulation’s aims in the creation of many alternative scenarios, which are possible 

based on existing measurements (Hristopulos 2008). 

The term spatial and/or temporal estimate includes all the mathematical 

procedures that allow the calculation of field values where measurements of a 

property do not exist. The estimate can be local, if it is referred to a point in space-

time or global, if it aims to calculate a characteristic value that describes an entire 

region. The spatial and/or temporal estimate of a field presupposes the existence of 

spatial and/or temporal dependence, so that the field value at each point is 

“influenced” by the neighboring field values. This interdependence allows estimation 

of a variable where measurements do not exist based on the neighboring measured 

points. In many cases, the final objective is to estimate the field over a set of points 

instead of a single one. Various methods of spatial estimation (interpolation) exist that 

are based on similar principles. The main idea is that the value at the estimation point 

is given by a linear or nonlinear combination, of the neighboring values. The estimate 

results from the optimization of a statistical measure, e.g. maximization of probability 

or minimization of the mean square estimation error. The most popular methods are 

based on linear interpolation in conjunction with the minimization of the mean square 

estimate error. This set of methods is known as “kriging” (Goovaerts 1997, Kitanidis 

1997, Hristopulos 2003a). 
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The need of variables estimation at points where no measurements are 

available is not new. Statistical scientists, mining engineers, oil engineers, 

hydrologists and geologists who dealt with the problem developed the science of 

geostatistics. Application areas of geostatistics nowadays include: the analysis of ore 

deposits (e.g. estimate of extent, depth and quantification of total content) e.g., 

(Journel and Huijbregts 1978, De-Vitry et al. 2010), oceanography (mapping of ocean 

bed, waves height analysis) e.g., (Özger and Şen 2007), the morphological analysis of 

natural and technological non-homogeneous (e.g. porous) materials e.g., (Sahimi 

2011), the mapping of pollutant concentrations in various environmental means (air, 

subsoil, surface-underground water resources) e.g., (Goovaerts 1997, Webster and 

Oliver 2001), the topographic analysis and the geographic information systems (GIS) 

e.g., (Burrough 2001), the spatiotemporal analysis of rainfall data and of rainfalls in 

regions with insufficient monitoring stations e.g., (Ly et al. 2011), the determination 

of geological and hydrogeological variables (e.g. subsoil type, hydraulic conductivity, 

porosity, storativity, evapo-transpiration) e.g., (Kitanidis 1997, Hengl 2007), the 

environmental and human health risk assessment (e.g. estimate of pollutant 

concentration, determination of probabilities of exceeding the critical limits) e.g., 

(Goovaerts 1997, Christakos and Hristopulos 1998), the spatial and/or temporal 

estimation of hydraulic head of aquifers e.g., (Ahmed 2007). 

 

2.2 Spatial interpolation 

 Geostatistics is based on the work of Kolmogorov (1941) in atmospheric 

turbulence. He used the structure function (equivalent to the variogram) to represent 

spatial correlations and to develop optimal interpolation. Later, Matérn developed the 

family of spatial covariance functions that bear his name (Matérn 1960). His functions 

are equivalent with those developed by Jowett (1955). The geostatistical method 

called kriging, the most applied geostatistical method to date, was introduced and 

established by Krige (Krige 1951, Krige 1966) and Matheron (Matheron 1963) for 

applications in mining engineering. Since then, kriging has been applied to several 

other fields of research, such as geology (Davis 1973, Journel and Huijbregts 1978), 

petroleum engineering (Hohn 1999), hydrogeology (Kitanidis 1997), hydrology, 

meteorology and soil science (Webster and Oliver 2001, Atkinson and Lloyd 2010). 

The first application of kriging in groundwater hydrology was by Delhomme (1974). 

Since then, many studies applied kriging to the interpolation of groundwater levels, 
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e.g. (Delhomme 1978, Gambolati and Volpi 1979a, b, Sophocleous et al. 1982, 

Aboufirassi and Marino 1983, Pucci and Murashige 1987, Hoeksema et al. 1989, 

Desbarats et al. 2002, Ahmadi and Sedghamiz 2007, Kumar 2007, Ahmadi and 

Sedghamiz 2008, Rivest et al. 2008, Nikroo et al. 2009). 

In general interpolation methods routinely used for groundwater level 

mapping include deterministic methods such as inverse distance weighting (IDW) 

(Gambolati and Volpi 1979b, Philip and Watson 1986, Rouhani 1986, Buchanan and 

Triantafilis 2009, Sun et al. 2009) and stochastic methods such as Ordinary kriging 

(OK) and Universal kriging (UK). Such methods are incorporated in various 

commercial software packages e.g., mapping software: Arc-View (GIS), Surfer 

mapping system (Golden software), groundwater modeling software: Visual 

Modflow, Princeton transport code (PTC), Feflow subsurface flow model. 

 Deterministic interpolation methods use closed-form mathematical formulas 

(IDW) or the solution of a linear system of equations (Minimum Curvature) to 

interpolate the data. The weights assigned to each sample value depend only on the 

distance between the sample point and the location of the interpolated point. 

Deterministic methods are categorized as global and local: Global methods use the 

entire dataset for prediction at each point, while local methods use data in a 

neighborhood around the interpolation point. Deterministic methods can be either 

exact or inexact interpolators (Webster and Oliver 2001). Finally, they do not generate 

measures of estimate uncertainty. 

 Stochastic methods employ the spatial correlations between values at 

neighboring points. The most widely used stochastic method is kriging (Krige 1951, 

Matheron 1963, 1971). The kriging methodology comprises a family of interpolators. 

The interpolators most commonly used in hydrosciences are Ordinary Kriging (OK) 

and Universal Kriging (UK). A recently proposed variation of the kriging algorithm is 

kriging with Delaunay triangulation (DK) (Hessami et al. 2001). 

Kriging is characterized as the best linear unbiased estimator (BLUE). The 

kriging estimator is a weighted linear function of the data. The linear weights follow 

from the unbiasedness constraint (i.e., zero mean estimation error) and the minimum 

square error condition. The resulting system of linear equations is solved to determine 

the estimator’s weights. The coefficients of the equations depend on the model 

semivariogram, which is obtained by fitting the empirical semivariogram to 

theoretical models or by means of the maximum likelihood estimation method 
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(Kitanidis 1997, Ahmed 2007). The semivariogram measures the degree of spatial 

correlation as a function of distance and/or direction between data points. The 

semivariogram determines the kriging weights and therefore controls the quality of 

the estimates (Mouser et al. 2005, Ahmed 2007). If the semivariogram is perfectly 

known, kriging is the best linear unbiased estimator (BLUE). An advantage of kriging 

compared to deterministic approaches is that it allows the estimation of the 

interpolation error at unmeasured points (Deutsch and Journel 1992). In addition, in 

the absence of a nugget (e.g., measurement error), kriging is an exact interpolator at 

measurement points (Delhomme 1974, Ahmed 2007). Optimal kriging results are 

obtained if the probability distribution of the data is normal and stationary in space 

(spatially homogeneous). Kriging is computationally intensive when applied to large 

data sets (Webster and Oliver 2001), but the computational complexity is not a 

problem for sparsely sampled areas. 

Ordinary Kriging (OK) bases its estimates at unsampled locations only on the 

sampled primary variable. OK interpolation is widely used to determine the spatial 

variability of groundwater levels in hydrological basins e.g., (Olea and Davis 1999, 

Prakash and Singh 2000, Desbarats et al. 2002, Theodossiou and Latinopoulos 2006, 

Ahmadi and Sedghamiz 2007, Abedini et al. 2008, Ahmadi and Sedghamiz 2008, 

Yang et al. 2008, Kholghi and Hosseini 2009, Nikroo et al. 2009, Sun et al. 2009, 

Taany et al. 2009, Dash et al. 2010). OK was also used to predict the piezometric 

head in West Texas and New Mexico based on implementing clustered piezometric 

data (Abedini et al. 2008). In addition, the design, evaluation and optimization of 

groundwater level monitoring networks were performed by applying OK (Olea and 

Davis 1999, Prakash and Singh 2000, Theodossiou and Latinopoulos 2006, Yang et 

al. 2008). Evaluation of the performance and interpolation errors of OK in the 

estimation of water level elevation can be achieved by means of leave-one-out cross 

validation (Olea 1999). 

OK is not optimal for non-stationary data. The use of a linear drift term 

improves the accuracy of the interpolated head field if a regional gradient is present 

(Delhomme 1978, Aboufirassi and Marino 1983). Universal Kriging (UK) also has 

been used to estimate the groundwater level e.g., (Delhomme 1978, Sophocleous et 

al. 1982, Aboufirassi and Marino 1983, Sophocleous 1983, Pucci and Murashige 

1987, Kumar et al. 2005, Ahmadi and Sedghamiz 2007, Brus and Heuvelink 2007, 

Gundogdu and Guney 2007, Kumar 2007, Sun et al. 2009). Near extracting or 
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injecting wells a point logarithmic component is added to the drift to account for the 

drawdown caused by the pumping well. This approach is applicable if analytical 

solutions for the aquifer response are available (Tonkin and Larson 2002, Rivest et al. 

2008). 

 Auxiliary information can be included in the interpolation as a drift term, 

usually modeled by polynomial functions of the space coordinates, rainfall, or surface 

elevation based on a Digital Elevation Model (DEM). The use of auxiliary variables 

in general improves the accuracy of kriging estimation. Easily measurable secondary 

variables can also reduce the number of “expensive” observations (Knotters et al. 

1995). The auxiliary information can be incorporated using the co-Kriging (CoK) 

method, which utilizes secondary variables in the covariance structure. Various 

researchers (Hoeksema et al. 1989, Deutsch and Journel 1992, Goovaerts 1997) used 

CoK with ground surface elevation as a secondary variable to construct groundwater 

level maps that improved the OK predictions. The main disadvantage of CoK is the 

need to model coregionalisation, which requires the inference of direct and cross 

covariance functions (Journel and Huijbregts 1978). CoK also becomes cumbersome 

and time-consuming
 
if many secondary variables are involved (Deutsch and Journel 

1992). 

 Alternatively, Residual Kriging (RK) and Kriging with External Drift (KED), 

originally described and applied in hydrological problems (Delhomme 1978, Volpi 

and Gambolati 1978, Gambolati and Volpi 1979a, b), embody secondary information 

in the drift term. KED and RK are practically equivalent but differ in the 

methodological steps used (Hengl et al. 2003, Hengl 2007). Residual Kriging is also 

known as Regression Kriging and it was developed and applied in the hydrosciences 

by Delhomme (1974, 1978) and (Ahmed and De Marsily 1987). Odeh et al. (1994, 

1995) named it “Regression Kriging”, while (Goovaerts 1999) uses the term Kriging 

after detrending (Hengl et al. 2003).  

 KED assumes that the expectation of the primary variable is a linear 

combination of secondary variables (Deutsch and Journel 1992, Wackernagel 2003), 

while OK assumes the expectation to be constant (Rivest et al. 2008). In the case of 

KED (it has similar methodology to UK), the Kriging covariance matrix of residuals 

is extended with the auxiliary predictors (Kitanidis 1997, Webster and Oliver 2001). 

KED was applied for the interpolation of water table elevation by various researchers. 

Beven and Kirkby (1979) expressed the water table depth as a linear function of the 
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topographic index. Desbarats et al. (2002) applied KED to the interpolation of water 

table elevation using two deterministic trend models that include: a) the topographic 

elevation and b) the topographic index. Rivest et al. (2008) approximated the external 

drift using numerical solutions for the hydraulic head field obtained by means of finite 

elements based on a conceptual model that included hydrogeological parameters 

estimates, geology and boundary conditions. KED and collocated CoK incorporated 

topography as secondary information in Boezio et al. (2006a, b). Both methodologies 

improved the quality of the water table elevation maps compared to OK. Another 

approach combines KED with the regionalized autoregressive exogenous variable 

(RARX) model with precipitation surplus as the exogenous variable, and with DEM 

data as secondary variables (Knotters and Bierkens 2002). 

 Neuman and Jacobsen (Neuman and Jacobson 1984) used RK to estimate the 

hydraulic head in a catchment by approximating the trend function with space 

polynomials. RK with rainfall data as secondary variable was also applied to examine 

the influence of land use/cover change on the temporal and spatial variability of 

groundwater levels (Moukana and Koike 2008). Nikroo et al. (2009) predicted water 

table elevation by different (SK, OK and RK) kriging methods and trend functions, 

including auxiliary information from ground surface elevation and slope as well as 

draining rates.  

Other researches that include kriging interpolation techniques in extended 

comparison studies regarding different interpolation methods applied to groundwater 

level data along with other hydrological variables e.g., (Subyani and Sen 1989, 

Kholghi and Hosseini 2009, Sun et al. 2009). 

 It can be proved mathematically that KED and RK are practically equivalent, 

although the methodological steps differ (Hengl et al. 2003, Hengl et al. 2007). The 

KED estimator is analyzed into a generalized regression of the primary variable with 

the secondary variables, followed by SK or OK of the regression de-trended residuals; 

in the Kriging equation system the covariance matrix is extended with the auxiliary 

predictors. A limitation of KED is the potential instability of the extended matrix if 

the covariate varies irregularly in space (Goovaerts 1997). In RK the drift model 

coefficients are first determined by regression, and the residuals are then interpolated 

using OK and finally added to the drift model. The main advantage of RK over KED 

is that it explicitly separates the trend estimation from the interpolation of the 

residuals, thus enabling the use of advanced regression methods (Hengl et al. 2003, 



BACKGROUND AND THEORY 

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 

HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

33 

Hengl 2007). In addition, RK permits separate interpretation of the interpolated 

components and straightforward inclusion of multiple sources of external information 

that may compensate for small sample sizes (Alsamamra et al. 2009). For the reasons 

explained previously, RK is chosen over KED in this thesis. 

 

2.3 Overview of geostatistical methodology 

 In the following, we will assume that the hydraulic head is represented by a 

spatial random field (SRF), which herein will be in generally denoted by ,( )Z s , 

where   is the state index used to denote that ,( )Z s  is a realization from an 

ensemble of possible states (to be omitted for brevity). The sampled field at the 

measurement points will be denoted by ( )Z Ss , where S is the set of sampling 

points with cardinal number N. The values of the SRF in a given state will be denoted 

by lower-case letters. The target is to derive estimates, ˆ( )Z Ps  of the head at the 

prediction set points, P that lie on a rectangular grid that covers the basin. Therefore 

is , , ,1i N   denote the sampling points, )( iz s  are the head values (in masl) at these 

points, and 0s  denotes an estimation point, which is assumed to lie inside the convex 

hull of the sampling network. For mapping purposes, it is assumed that 0s  moves 

sequentially through all the nodes of the mapping grid.  

 We examine linear interpolation methods for mapping spatial and/or temporal 

groundwater level variability. In spatial linear interpolation methods, it holds that 

 

: }0
0 {

ˆ( ) ( )ii i
i

z z


 s
s s , (2.27) 

 

where 0  is the set of sampling points in the search neighborhood of 0s . The 

neighborhood is empirically chosen so as to optimize the cross validation measures. 

 For spatial interpolation we initially use two deterministic (IDW, MC) and 

three stochastic (OK, UK, DK) methods (chapter 4). Then, we use OK (chapter 5) and 

RK (chapter 6) methods in combination with non-linear normalizing transformations. 

In the first approach, we apply a normalizing transformation ( )·g  to the data. Then, 

we use OK to predict the transformed field  (( )) gY Zs s , and we back-transform 

the predictions to obtain head estimates. Several methods can be used to handle non-
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Gaussianity in the data. We applied the Box-Cox transformation, TGK, GA, and a 

MBC transform. We review these methods in the following chapters.  

In the second approach, we introduce a trend model ( )Zm s  that captures local 

features and physical laws. Since the fluctuation SRF, ( ) ( ) ( )ZZ Z m  s s s , is non-

Gaussian, we apply a transformation ( )·g  to obtain a normalized SRF, 

 (( )) gY Z s s , estimate its experimental semivariogram and fit it to theoretical 

models. Next, we estimate the Gaussian field ˆ( )Y Ps  at the prediction points using 

OK. Finally, we retrieve head estimates from ˆ( )Y Ps  by applying the back-

transformation and adding the trend. We use leave-one-out cross-validation analysis 

to determine the optimal spatial model and to assess the accuracy of the interpolated 

head field (Ahmed 2007). 

Chapters 4, 5 and 6 are based on the above overview and focus on the spatial 

interpolation of groundwater level. The overview of spatiotemporal geostatistical 

methodology is presented in section 7. 

 In the thesis we opt to keep the interpolation estimates within the convex hull 

of the sampling points. In principle we can estimate maps over the entire study 

domain (Figure 3.10); however, this is equivalent to extrapolation. Kriging can be 

used for extrapolation but the results outside the quadrilateral, determined from the 

sampling locations boundaries, are often less accurate and subject to higher 

uncertainty. In addition the semivariogram is determined by the measurements and 

expresses the spatial dependence of the measured points. In performing extrapolation, 

we accept that the semivariogram is valid outside the range of measurements. 

Therefore the estimates inside the quadrilateral are more accurate and precise than 

those outside.  

 

2.4 Interpolation materials and methods 

Interpolation is the process of estimating the data values in unvisited locations 

using known measured data values from neighbor points. The interpolation methods 

are divided in deterministic and stochastic. Deterministic methods provide no 

information regarding the possible estimation errors while stochastic methods provide 

probabilistic estimates (i.e. provide the variance of the estimates). Deterministic 

interpolation methods assign weights to each sample value depending only on the 
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distance between the sample point and the location of the interpolated point. On the 

other hand stochastic or geostatistical methods treat the observations dataset as an 

arbitrary realization of a stochastic process and employ the spatial correlations 

between the values at neighboring points in order to distribute the weights. In this 

section the theoretical background of the deterministic and stochastic interpolation 

methods used for the groundwater level spatial variability prediction in Mires basin, is 

explicitly presented. 

 

2.4.1 Inverse Distance Weight  

 The estimation with the IDW method is given by means of the equation 

 

0

0

,0

0 { : }
,0{ : }

ˆ( ) ( )

n

i

ini
ii

i

i

d
z z

d 



 
 
 
 


s

s

s s , (2.28) 

 

where ,0id  is the distance between the estimation point and the sampling points, and 

0n   is the power exponent; usually 2n   is used. IDW assigns larger weights to 

data closer to the estimation point 0s  than to more distant points. Higher values of n 

increase the impact of values near the interpolated point, while lower values of n 

imply more uniform weights. As it follows from (2.28) the weights add up to one. 

IDW is an exact and convex interpolation method (Hengl et al. 2007). In addition it is 

very fast, straightforward and computationally non-intensive (Webster and Oliver 

2001). According to (2.28), as the distance of is  from 0s  increases, the respective 

weight is reduced. IDW’s disadvantages are the arbitrary choice of the weighting 

function and the lack of an uncertainty measure (Webster and Oliver 2001). 

 

2.4.2 Minimum Curvature 

 MC interpolation is based on the minimization of the total square curvature of 

the surface ( )z s , i.e., 
2

2 )(d z   s s  subject to the data constraints. In MC, the 

interpolated surface can be viewed as a thin linear elastic plate pinned to the data 

values at the sampling points. The estimate is obtained by solving the biharmonic 

partial differential equation (Briggs 1974, Sandwell 1987), i.e.,  
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2 2 2 2

2 2 2 2

( ) ( )
0

z z

x y x y

s s     
    

     
, (2.29) 

 

conditioned by the data values )( iz s . The interpolating function ( )z s  honours the 

observed data and tends to a planar surface as the distance between the interpolation 

point and the observations increases. Typical applications of MC include interpolating 

hydrocarbon (oil) depths (Cooke et al. 1993), interpolation of gravitometric and 

magnetometric geophysical data for mineral exploration (Mendonca and Silva 1995, 

Kay and Dimitrakopoulos 2000) and mapping the earth surface (Yilmaz 2007). 

 The MC method often suffers from oscillations due to the presence of outliers 

in the data or due to very large gradients. This problem can become important if the 

dataset is relatively small. The MC interpolation is based on the Green’s function gm 

of the biharmonic equation, which satisfies 4 ') )( ( 'mg s s s s     where )( ' s s  is 

the Dirac delta function. The two dimensional (2D) Green’s function is given by  

   2 ln 1mg d d d   (Sandwell 1987, Wessel 2009). The MC estimate is then 

expressed as follows: 

 

0

1

,0
ˆ( ) ( )ii m

i

N

z w g d


s . (2.30) 

 

The weights wi  are determined by solving the following linear system at the N data 

locations. 

 

,

1

( ) ( )i i jj m

j

N

z w g ds


 , (2.31) 

 

where 1, ,j N  and ,i jd  the distances between the sample points , s si j i jd   .  

 

2.4.3 Ordinary kriging interpolation 

 The term kriging is used for a suite of interpolation methods that are based on 

the principles of zero bias and minimum mean square error. Kriging estimates the 
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value of a process over an entire domain, over a finite-volume block or at a specific 

point 0s . The estimates are formed by means of a linear combination of the data 

values. The summation is over the entire area or a restricted neighborhood centered at 

the estimation point. Kriging interpolation method also quantifies the estimation 

variance, and thus, the precision of the resulting estimates. The commonly used OK 

method is based on the following equations (Goovaerts 1997, Kitanidis 1997).  

 The OK method assumes that ( )z s  is a random function with a constant but 

unknown mean. The OK estimate 0
ˆ( )z s  at 0s  is calculated based on a weighted sum 

of the data  

 

}0
0 { :

ˆ( ) ( )i i ii i
z z


 s

s s . (2.32) 

 

The weights i  in (2.32) are obtained by minimizing the mean square estimation error 

conditionally on the zero-bias constraint (Cressie 1993), and they depend on the 

semivariogram model ( )z r  (Deutsch and Journel 1992).  

 The kriging weights i  follow from the minimization of the mean square error 

and are given by the following 0 0( 1) ( 1)N N  linear system of equations 

 

0
0

0{ : }
,( , ) ( , ), 1,i z i j z ji i
Nj

s
s s s s


    (2.33) 

{ : }0
1ii is




 , (2.34) 

 

where 0N  is the number of points within the search neighborhood of 0s , ( , )iz js s is 

the semivariogram between two sampled points si  and s j , 0( , )s sjz  
the 

semivariogram between s j  and the estimation point 0s , and  is the Lagrange 

multiplier enforcing the no-bias constraint. 0 0,1 1, 1N j j N     for 0,1,j N  , 

while 0 01 1 0,N N   . Equation (2.34) enforces the zero-bias condition. 

 Kriging provides not only an estimation of the variable 0( )z s  but also the 

corresponding estimation’s error variance (associated uncertainty). For ordinary 

kriging the error variance 1) depends on the semivariogram model; the estimation 
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precision depend on the complexity of the spatial variability of random field Z as 

modeled by the semivariogram, 2) depends on the data configuration and their 

distances to the location 0( )z s  being estimated, 3) is independent of data values; for a 

given semivariogram model, two identical data configurations yield the same variance 

no matter their values and 4) the error variance is zero at data locations and increases 

away from the data while reaches a maximum value for extrapolation situation. 

 The OK estimation variance is defined by, 

 

 
2

0 0

2

0( ) ( ) ˆ( )E ZE Z   
  

s ss , 

 

and is given by the following equation, with the Lagrange coefficient μ compensating 

for the uncertainty of the mean value: 

 

  

2

0 : }0
0{

( ) ( , )E i z ii is
s s s   


  . (2.35) 

 

Overall OK variance is termed as the weighted average of semivariograms from the 

new point 0s  to all calibration points s j , plus the Lagrange multiplier. 

 

2.4.4 Universal kriging interpolation 

 In certain cases, the data exhibit a global trend over the study area. It is 

possible to incorporate in kriging a trend (drift function) modeling the global 

behavior. The resulting estimation algorithm is known as “Universal kriging” (UK) 

and was proposed by (Matheron 1969). UK requires the drift function ( )zm s
 
and the 

semivariogram of the residuals ( )ze s  (Goovaerts 1997). The trend is usually 

approximated by linear or higher order polynomials of the space coordinates (Ahmed 

2007). The drift function is given by 

 

1

( ) ( )
K

z k k

k

m a fs s


 , (2.36) 
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where ( )kf s  are basis functions and 
ka  are the drift coefficients (Goovaerts 1997). 

The UK estimator of the hydraulic head is expressed as follows: 

 

 
0 0

0 0 0{ : } { : }
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i i
z m e m z m

 
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s s s s s s , (2.37) 

 

where i  0( 1, , )i N  are the UK weights, ( )ie s is the residual at is  and 0( )zm s  is 

the drift at 0s . 

 The kriging weights are determined by the solution of the following 

0 0( ) ( )N K N K  linear system of equations, where 0N  is the number of points 

within the search neighborhood of 0s , 
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where ( , )iz js s is the semivariogram of the residuals between two sampled points si  

and s j  , 0( , )s sjz the semivariogram of the residuals between a sampled point s j  and 

the estimation point 0s , and k  are the Lagrange multipliers for each basis function. 

The kriging variance is given by the following equation (Goovaerts 1997), 
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2.4.5 Kriging with Delaunay triangulation 

 Kriging with Delaunay triangulation (DK) uses the Delaunay triangles to 

determine the search neighborhood 0  around the estimation point. The kriging 

equations in DK are identical to OK (Hessami et al. 2001). DK reduces the 

computational cost of kriging and ensures that the estimate depends only on data in 

each point’s immediate neighborhood.  
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Figure 2.4 Delaunay Triangulation of monitoring sites in Mires Basin. The vertices of the enclosing 

triangle (dark color) that contains the estimation point 0s  are the first-order neighbors of 0s ; the 

vertices of the three adjacent triangles (grey color) that do not belong to the enclosing triangle provide 

the second-order neighbors of 0s . 

 

 The Delaunay triangulation (e.g., Figure 2.4) is the dual graph of the Voronoi 

diagram for the sampling locations 
is , , ,1i N  . The latter is a set of polygons 

iP , 

each of which is centered at is  and contains all the points that are closer to is  than to 

any other data point. The Delaunay triangulation is formed by drawing line segments 

between Voronoi vertices if their respective polygons have a common edge (Okabe et 

al. 1992, Mulchrone 2003, Ling et al. 2005). The Delaunay triangle containing the 

estimation point 0s  is located using the «T-search
1
» function of Matlab

®
 (Matlab 

v.7.5). The vertices of the triangle 
0T  containing 

0s  are the first-order neighbors of 

0s . Second-order neighbors are determined from the vertices of the triangles adjacent 

to 0T  that do not belong to 0T  (Hessami et al. 2001) (see Figure 2.4). The number of 

second-order neighbors ranges between one and three. If the search neighborhood 

only includes the first-order neighbors, the CPU time is reduced but the precision of 

the estimates is lower (Hessami et al. 2001). 

 

2.4.6 Residual Kriging 

 Residual Kriging (RK) combines a trend function with interpolation of the 

residuals. In RK the estimate is expressed as: 

 

0 0 0( ) ˆ( ) ( )ˆ
z zmz s s s  , (2.41) 

                                                 
1
 The tsearch function will be replaced in future Matlab

® 
releases by DelaunayTri class 
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where 0( )zm s  is the trend function, and 
0

ˆ ( )z s  is the interpolated residual by means 

of OK (Rivoirard 2002). Typically, the trend function is modeled as: 

 

0 0

0

( ) ( )
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z k k

k

m qs s


 ; 0( ) 1kq s , (2.42) 

 

where 0( )kq s  are the values of auxiliary variables at 0s , k  are the estimated 

regression coefficients and p is the number of auxiliary variables (Draper and H. 

Smith 1981, Hengl 2007, Hengl et al. 2007). Auxiliary variables could include 

polynomials of the data coordinates (x,y). The regression coefficients are estimated 

from the sample using ordinary least squares (OLS) or generalized least squares 

(GLS). However, it has been shown (Kitanidis 1993) that GLS does not confer any 

significant benefit if the sampling locations are not clustered. The variance of the 

estimates follows from the equations (Hengl et al. 2003, Hengl et al. 2007): 
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where 2

0( )d s  is the drift prediction variance, 0q  is the vector of  1 1p    predictors 

at the unvisited location, q  is the matrix of    0 1 1N p    predictors at the 

sampling points in the search neighborhood, 'z  is the semivariogram matrix of the 

   0 01 1N N    residuals at the measured locations (neighborhood) and 2

0( )f s  is 

the kriging (OK) variance of residuals. The terms involved in the drift variance 

prediction are presented below in vector and matrix form as appropriate: 
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2.5 Spatial Model Validation 

 The groundwater level in Mires basin is investigated using the methods that 

are described above. All the methods are implemented by original code developed and 

run in the Matlab
®
 programming environment (Matlab v.7.5 on Microsoft Windows 

XP).  This approach allows control of the model parameters and straightforward 

comparison of the results. To avoid numerical instabilities, we normalize the 

coordinates of the study area in the interval [0, 1]. 

 Given the small size of the Mires data set, we use leave-one-out cross-

validation to compare different spatial models. This procedure consists of removing 

one datum at a time from S and estimating its value based on the remaining 1N   

data. Interpolated values are compared with their measured counterparts using the 

global performance measures listed below. The “optimal” spatial model is determined 

based on the performance of statistical metrics that quantify differences between the 

estimated and true values (Isaaks and Srivastava 1989, Goovaerts 1997, Leuangthong 

et al. 2004, Ahmadi and Sedghamiz 2008). The validation measures defined below 

are used, where *( )iz s  and ( )iz s  are, respectively, the estimated and true head values 
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at point is . The estimates are obtained by removing ( )iz s  from the dataset and 

interpolating the remaining data; ( )iz s
 
denotes the spatial average of the data and 

*( )iz s  the spatial average of the estimates, while N is the number of observations. 

 

Mean absolute error (MAE):  
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Mean absolute relative error (MARE):  
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Root mean square error (RMSE):  
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Linear Correlation Coefficient: 
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2.6 Comparison of interpolation methods 

 There is not a universally optimum interpolation method that can be used for 

all kind of datasets. Two spatial interpolation comparison exercises have been 

organized by the Radioactivity Environmental Monitoring (REM) Group of the Joint 

Research Centre of the European Commission (Dubois 1998, Dubois and Galmarini 
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2005). These exercises focused on radioactivity monitoring in the European continent 

and in particular on automatic (i.e., without user involvement) mapping. 

 Cornford (2005) emphasized the problems of interpreting comparative 

interpolation studies. First, their results do not admit generalization and are often 

contradictory. In addition, for a single dataset several or all assessed methods may 

exhibit similar performance. Hence, the choice of the “optimal” interpolation method 

is dictated by other factors, such as computational speed, implementation cost, scaling 

with data size and the ability to make probabilistic predictions (estimates of the 

prediction error). Van den Boogaart (2005) agrees that comparative studies based on 

one or two datasets can be misleading, and that a uniformly optimal method for all 

kinds of datasets does not exist. He points out that the performance and utility of the 

methods should be assessed in terms of decision making requirements (e.g. 

concerning outliers, estimation variances) and its adaptability to the complexity of the 

specific dataset (e.g. sparse data, presence of trends) and not only in terms of mean 

square errors. Myers (2005) emphasizes the use of clear software standards, common 

hardware configurations and an extensive set of performance measures to allow the 

duplication of reported results by others. 

 In light of the above remarks, we use the same programming environment for 

all the methods tested so that results are directly comparable. The methods are 

described in detail including the values of user-defined parameters to allow 

reproduction of our results by others. The performance of the interpolation methods 

for the Mires basin dataset is based on cross-validation measures, uncertainty 

estimation ability, methodological specifications (search neighbourhood, 

differentiability, contour map effects) and adaptability to the data set statistics (size of 

data, outliers). The results obtained in this work are useful for mapping groundwater 

level spatial variability in basins with similar characteristics, and more generally in 

environmental monitoring applications that involve spatially distributed data (e.g., air 

pollutants, groundwater quality, soil contaminants, etc.). 

 

2.7 Spatiotemporal interpolation 

Space-time analysis and prediction of groundwater level variability in a basin 

is more important than purely spatial analysis. In scarce and sparsely monitored 

basins, analysis and prediction becomes more difficult because of limited data 

availability. In case of temporal-only estimation it is desirable to formulate a 
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predictive model of groundwater table depth that can incorporate the various physical 

parameters that determine the groundwater level, such as meteorological data (e.g. 

precipitation), evapotranspiration, runoff, and water usage. A stochastic model is 

required due to the considerable uncertainty of certain parameters (e.g., 

evapotranspiration), the spatial variability of conditions within the basin, the sparse 

nature of sampling in space-time, and the inadequacy of available measurements (e.g., 

water usage is estimated based on data from the official boreholes; however, an 

unspecified number of unregulated boreholes operate in the area). We propose to 

model the variation of water table depth with a discrete time autoregressive 

exogenous variable (ARX) model (Knotters and Bierkens 2001, Knotters and 

Bierkens 2002). The autoregressive discrete-time model will account for the time 

variability based on the time series of groundwater level, precipitation measurements 

and abstraction rates. The term exogenous denotes that the model equations 

incorporate information from other (than the water table depth) variables. The ARX 

model is embedded in a Kalman filter in order to determine the ARX model 

parameters according to the system identification procedure (Ljung 1999). This is 

typically based on the maximum likelihood algorithm to determine the “optimal” 

parameters. A similar approach using differently trained Artificial Neural Network 

models was applied to a specific well in the Mesara valley to model the groundwater 

level temporal variability and then to estimate it during the period 1997-2002 

(Daliakopoulos et al. 2005, Tsanis et al. 2008). 

Space-time geostatistical approaches can be used to model the groundwater 

level variability. In areas with limited spatial and temporal data availability, 

application of space-time approaches can improve the reliability of predictions by 

incorporating space-time correlations instead of purely spatial ones; therefore the 

former approaches involve more parameters (Lee et al. 2010). 

In Christakos (1991a, b) a theory of spatiotemporal random fields is developed 

and properties of the most important classes of spatiotemporal fields are examined. 

The theory is used to describe the correlation structure of space non-

homogeneous/time non-stationary processes and to derive optimal estimators for data 

dispersed simultaneously in space and time. Christakos and Hristopulos (1998) 

presented a completed review and new material on Bayesian maximum entropy 

estimation techniques and space-time random field estimation methods. Later 

Kolovos et al. (2004) presented various methods for constructing space-time 
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covariance models. These include non-separable (in space and time) covariance 

models derived from physical laws (i.e., differential equations and dynamic rules), 

spectral functions, and generalized random fields. It is also shown that non-

separability is often a direct result of the physical laws that govern the process. The 

proposed methods can generate covariance models for homogeneous/stationary as 

well as for non-homogeneous/non-stationary environmental processes across space 

and time. 

Kyriakidis and Journel (1999) presented an extensive review for space-time 

geostatistical techniques. The initial approach for space-time geostatistical analysis 

was to add time as an additional dimension of space (Rouhani and Myers 1990, 

Kyriakidis and Journel 1999). This approach was implemented using kriging 

technique developing space-time kriging. Advanced space-time geostatistical 

approaches were also developed by (Christakos 1991b, Christakos 2000) and 

(Kyriakidis and Journel 1999) to account for fundamental dependencies in the 

combined space-time metric (Lee et al. 2010). 

 Bayesian approaches as an alternative to non-Bayesian i.e. kriging were 

introduced by Christakos (1990, 2000). The Bayesian Maximum Entropy (BME) is a 

non-linear method that relies on a two-steps procedure that first involves a Maximum 

Entropy step (the ME part of BME) to obtain a prior distribution and on a Bayesian 

conditioning rule for the assimilation of secondary information (possibly soft data). 

BME provides a flexible framework that accounts for the wide variety of available 

knowledge bases and leads, in general, to optimal non linear space/time estimators. 

Applications include soil science e.g., (Brus et al. 2008), water consumption (Lee and 

Wentz 2008), environmental health studies e.g., (Christakos and Hristopulos 1998, Yu 

et al. 2009, Kolovos et al. 2012), atmospheric environment e.g., (Vyas and Christakos 

1997, Christakos and Serre 2000, Yu et al. 2011). 

 A framework for stochastic spatiotemporal modeling has also been presented 

by Kyriakidis (2001a, b). A data set that is more densely sampled in time than in 

space can be modeled via a set of spatially correlated time series (Rouhani and T.J. 

Hall 1989). The time series at each sampled location can be decomposed into a non-

stationary deterministic or stochastic trend component and a stationary residual 

component. The residual time series is then fitted with a covariance model. It is 

possible to apply this approach to perform spatial interpolation or extrapolation; 

extending it to a continuous spatial domain by determining temporal covariance 
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models or time series independently at each fixed location and then regionalising 

them in space. Time series regionalization involves simulation of the spatiotemporal 

residual field by generating simulated realizations at any unmonitored location; 

sequential Gaussian simulation, i.e., autoregression (Kyriakidis and Journel 2001a). 

Simple kriging (SK) is used for the covariance parameters regionalization. This 

allows temporal covariance models or time series to be determined at unsampled 

locations and reduce the computational effort associated with the number of 

(temporal) covariances. A simulation procedure is also used for the trend 

regionalization which is typically approximated by periodic and sine and cosine 

functions in conjunction with multiple regression. The independently simulated trend 

and residual realizations are then added to produce realizations for the spatiotemporal 

field. An estimate of the standard deviation of the unknown residual profile at any 

unmonitored location is also derived via SK. Although this framework has been 

characterized as powerful, it requires multiple regionalisations, thus time and 

computational load (Kyriakidis and Journel 2001b). 

Space-time Kriging has been applied in geohydrology by Rouhani and T.J. 

Hall (1989) where intrinsic random functions (polynomial spatiotemporal covariance) 

for space-time kriging of piezometric data were used. In Rouhani and Myers (1990) 

potential drawbacks of space-time geostatistical analysis on geohydrological data 

(piezometric data) are discussed. More recently space-time kriging was applied by 

Mendoza-Cazares and Herrera-Zamarron (2010) for the estimation of the water level 

of the Queretaro-Obrajuelo aquifer and Hoogland et al. (2010), where the goal of the 

study was to map the seasonal fluctuation of water-table depths in Dutch nature 

conservation areas. Furthermore space-time Kriging was used for the design of 

rainfall networks in time and space (Rodriguez-Iturbe and Mejia 1974) and in a 

comparison study for estimating runoff time series in ungauged locations (Skøien and 

Blöschl 2007). 

In addition, space-time Kriging has also been used in a wide range of scientific 

fields and topics such as agriculture (Stein 1998, Heuvelink and Egmond 2010) 

atmospheric data (De Iaco et al. 2002b, Myers 2002, Nunes and Soares 2005), soil 

science-water content (Snepvangers et al. 2003, Jost et al. 2005), surface temperature 

data (Hengl et al. 2011) wind data (Gneiting 2002), gama radiation data (Heuvelink 

and Griffith 2010), epidemiology (Gething et al. 2007) and forecasting municipal 

water demand (Lee et al. 2010). 
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Space-time geostatistical analysis is based on the joint spatial and temporal 

dependence between observations. There are two ways to represent space-time 

random variables (Christakos 1991b), a) the full space-time models using separable or 

non-separable space-time covariance functions; ( ,  ),  ( , )    ,Z t t D T s s   RdD  is 

the spatial domain (d is the dimensions) and  R T  is the temporal domain; and b) 

vectors of temporally correlated spatial random fields ( ,  ) ( ), 1tZ t Z t T s s , where 

T is the number of temporally correlated SRF or vectors of spatially correlated time 

series ( ,  ) ( ), 1Z t Z t n ss s , where n is the number of locations. The 

representation depends on the domain density (space or time).  

The space-time kriging method employs the first model. The two main tasks 

of space-time analysis are interpolation and extrapolation. The first refers to 

estimation of variable values at unmeasured locations inside the spatial extend of the 

study area, while the latter extends the estimations ahead of the boundaries of the 

observations in space or time. The main assumption used in interpolation and 

extrapolation is that the specific patterns extracted from the available data analysis 

delivers sufficient information to capture the spatiotemporal dynamics of the observed 

data (Lee et al. 2010). 

The application of space-time kriging to space-time field data entails practical 

difficulties, especially for geohydrological data. The most important problem is the  

construction of valid covariance or semivariogram models in space-time; valid 

covariance or semivariogram models constructed in the spatial or temporal context are 

not, in general valid when a valid temporal model with a valid spatial model are 

combined to produce a spatiotemporal model. Geohydrological data are usually dense 

in time and sparse in space. This feature is significant since covariances or 

semivariograms can lead to significantly different levels of reliability in space and 

time. The kriging estimator is inferior if the data is collected during the wet season 

and the estimates refer to the dry season. Finally, in space-time kriging applications 

computational problems may arise for specific sampling patterns with the coefficient 

matrix in the kriging system. These problems are due, e.g. to insufficient number of 

sample locations compared to the order of a drift function applied to the data, or 

scarcity and clustering of sampling locations (Rouhani and Myers 1990). 
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3. Study area and data exploratory statistical analysis 

 

3.1 Physical setting and information 

 The study area is located on the island of Crete (Greece). Crete has a dry sub-

humid Mediterranean climate with long hot and dry summers and relatively humid 

and cold winters. The island’s marginal groundwater resources are extensively used 

for agricultural activities and human consumption. Although Crete’s temperature lies 

between the 18.5 and 19.0 °C isotherms, it shows considerable variability throughout 

the island. During the winter period the temperature decreases with increasing 

altitude, but during the summer period it increases from the coast to the inland areas. 

The presence of mountains, mainly at the center and the south of the island, 

significantly affects the climate of different areas. Precipitation is higher in the 

Northwestern coastal areas and lower in the Southeastern part of the island. The total 

hours of sunshine in the Southeastern part are more than in the Northwestern part. 

These differences in climatic parameters create local, quite different microclimates 

(Department of Water Resources Management 2000, Chartzoulakis and Psarras 

2005). 

 The Mesara valley catchment covers an area of 398 km
2
 in the south of the 

Heraklion prefecture, and it is the largest and most productive valley of the island 

(Figure 3.1). About 250 km
2
 of the total valley area are cultivated. The distribution of 

the cultivated crops is olives 75%, 10% vines, 2% citrus and 13% vegetables (mostly 

open field and some greenhouses). Olive trees occupy most areas of flat land while 

vines are less widespread located mainly to the south east of Mires and in the north 

east of the catchment. An extensive network of pumping stations has been installed 

since 1984, turning the dry cultivation of olive trees to drip-irrigated (Donta et al. 

2006). As a result, productivity has risen at the cost of an alarming drop of the water 

table. Over-exploitation during the past thirty years has led to a dramatic decrease, in 

excess of 35 meters, in the groundwater level. Potential future climatic changes in the 

Mediterranean region, population increase, and extensive agricultural activity 

generate concern over the sustainability of the water resources. The accurate 

estimation of the spatial variability of the hydraulic head is important for integrated 
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groundwater resources management plans that will help reduce the risk of 

desertification. 

The Mesara Valley catchment comprises an east-west plain. Along the north 

side of the plain, the mountain altitude varies from 2200 m to 600 m from west to 

east. Along the southern side, the Asterousia mountain chain rises from 600 m in the 

west to 1200 m in the east. At the Phaistos constriction in the west, the catchment 

outlet of the Geropotamos River is at 30 meters above sea level. The catchment area 

of the northern slopes is 160 km
2
 while the southern slopes comprise a catchment area 

of 126 km
2
. Mainly quaternary alluvial clays, silts, sands and gravels with thickness 

from a few meters to 100 m or more, cover the plain. The inhomogeneities of the 

plain deposits give rise to great variations in the hydrogeological conditions even over 

small distances. The northern slopes are mainly silty-marly Neogene formations while 

the southern slopes are mainly schist and limestone Mesozoic formations (Donta et al. 

2006, Kritsotakis and Tsanis 2009, Tsanis and Apostolaki 2009, Kritsotakis 2010). 

The outlet of the catchment is narrow, confined to a channel cut into an impermeable 

barrier of lower Tertiary near Phaistos. Topographically, the Mesara catchment is 

characterized by a flat basin morphology modified by river terraces and alluvial fans. 

(Peterek and Schwarze 2004). The alluvium basin of Mesara catchment is not a 

uniform hydrogeological unit, and therefore it is divided into two sub-basins with 

different hydrogeological properties: the Mires and the Vayionia basins (Kritsotakis 

and Tsanis 2009), (Figure 3.1). A detailed hydrogeological description of the Mesara 

valley can be found in Vardavas et al. (1996) and Kritsotakis (2010). 

 

 
Figure 3.1 Map of Greece and the schematic representation of the Mesara valley and the Mires basin 

locations on the island of Crete. 
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3.2 Hydrogeological setting 

 This thesis focuses on the Mires basin of the Mesara valley for two reasons. 

The first is hydrogeological data availability, and the second that the basin consists 

mainly of alluvial sediments, providing to a large extent a hydro-geologically uniform 

study area. The basin has been consistently monitored over the last thirty (30) years 

for groundwater level variations, rainfall and surface runoff by the Department of 

Water Resources Management (DWRM) of the region of Crete. The Mires basin is a 

down-faulted trough with an area of 50.3 km
2
, roughly 14 km long and on average 3 

km wide. The trough is filled mainly with Quaternary alluvial sediments which form 

an inter-bedded sequence of gravels, gravely sands, sands, silts, silty sands and clays 

(Kilili-Polychronaki 2001, Donta et al. 2006, Kritsotakis 2010). The geological 

composition of the basin is presented in Figure 3.2.  

 

 
 

Figure 3.2 Geological representation of Mires basin.  
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The alluvium aquifer of Mires basin is the most significant of Mesara 

catchment. Its thickness decreases from the centre of the basin to the south and north. 

The thickest part is located at the eastern part where Lithaios river crosses 

Geropotamos river (near Houstouliana). The trough is covered in geological terms 

mainly with conglomerates, sands and clays of fluvial origin (Figure 3.2). These 

formations are favor aquifers of high capacity especially at the locations where mainly 

conglomerates occur. 

Borehole logs at the eastern and central part of the basin denote that the 

conglomerate thickness varies from 75 to 180m (Figure 3.3). The alluvial basin 

constitution changes from East to West (Figure 3.4). At the Eastern part the deposits 

are coarser with layers of clay and silt of less than 5m thickness. The surface layer is 

mainly composed of gravel and sand allowing high infiltration. At the downstream 

part, west of Mires, the thickness of clay and silt layers increases with the surface 

layer comprising mainly of clay deposits (Vardavas et al. 1996, Kritsotakis and Tsanis 

2009). 

Geophysical surveys have revealed that the flanks of the Mires basin are steep-

sided, which may reflect the presence of East-West fractures, or the bank of an 

erosion channel cut into the underlying lower Pleistocene sediments. Whatever the 

true nature of the trough boundaries are, extensive fractures parallel to and across the 

valley are present and have caused the variable thickness of the alluvium throughout 

the basin. The elevation of the base of the alluvium-lower Pleistocene aquifer ranges 

from –50 to +100 m, taking the mean sea level (MSL) as reference datum; the lowest 

points of the elongated trough being to the northeast of Petrokefali and north of 

Houstouliana. This surface is based on the elevation of the lowest permeable unit 

identified from borehole logs. Saturated thickness ranges from less than 20 m to over 

100 m in the lowest part of the trough (Donta et al. 2006). 

The aquifer capacity cannot be accurately estimated, as it is part of the unified 

Mesara catchment hydrological system. The Food and Agriculture organization of 

United Nations (FAO 1972) estimated the capacity of the aquifer equal to around 86 

Mm
3
 based on boreholes log data taken that year. The present aquifer capacity is 

smaller (due to the significant groundwater depletion) and is estimated equal to 

around 55 Mm
3
 (Kritsotakis and Tsanis 2009). The aquifer is supplied during the 

winter period from the main river that crosses the basin, Geropotamos, and from a 

secondary, Lithaios, in the eastern part. Surface runoff from the northern and southern 

http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Sea_level
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sides of the basin ends up in the basin where a significant percentage supplies the 

aquifer. Lateral groundwater inflow in the basin occur from Vayionia basin in the 

eastern part of the basin, while groundwater inflow is likely to also occur from the 

neogenic formations at the north-northwest part (Kilili-Polychronaki 2001). 

 

 
Figure 3.3 E-W cross-section along the Geropotamos river showing simplified geologic formation of 

the Mire basin (Fytolakis et al. 2005). 

 

 
Figure 3.4 Simplified geological structure of the Mires basin, modified after (Vardavas et al. 1996). 

 

Groundwater levels in Mesara valley are maximized during March or April 

with long dropdowns until recharge occurs in winter. The aquifers of Mires and 

Vayionia basins yielded high discharge rates, as high as 300 m
3
/hr, in the early 

seventies but they are now reduced to about one tenth of that figure. Based on 

pumping tests, the specific yield mainly ranges between 0.05 and 0.15, but in Mires 

basin locally it reaches 0.2. The horizontal transmissivity whereas ranges between 0.1 

and 0.01 m
2
/sec from east to west, while it takes the highest value along the 
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Geropotamos river bed. At the center of the alluvial aquifer and across the river bed 

the wells specific discharge is determined 40-100m
3
/h per meter of groundwater level 

drop. In the eastern part of the basin the rate decreases to 15-40m
3
/h. Lateral 

groundwater outflow from the valley is small compared with the vertical groundwater 

outflow. The higher values of hydraulic conductivity are concentrated in the Mires 

basin, where it varies between 10 and 120 m/day reflecting the presence of several 

gravel and sand horizons in the alluvial sequence. The least permeable areas are in the 

Vayionia block, where the scarcity of gravel and sand implies that values are reduced 

to an average of only 1 m/d. Lower values also occur in the northern side of the Mires 

basin, where lower Pleistocene rocks similar to those of the Vayionia block are 

present. The hydraulic properties of the Plio-Pleistocene aquifer are of a magnitude 

less than that of the alluvial deposits (Donta et al. 2006, Kritsotakis 2010). 

 

 

Figure 3.5 Hydro-geological representation of Mires basin. 
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The porosity decreases with depth below surface in a range of 0.05 to 0.12 

(Croke et al. 2000) while the effective porosity which is the percentage of pores 

(interconnected) that are available for fluid flow (Bear 1979) is determined in Mires 

basin equal to 0.085 (Kilili-Polychronaki 2001). The rapid groundwater level drop 

(>35 masl) has affected the hydraulic characteristics of the aquifer. An assessment of 

the groundwater level depletion impact on the hydraulic properties of the aquifer has 

shown a decrease of the tranmissivity mainly because the thickness of the saturated 

zone has changed (Kilili-Polychronaki 2001). 

The basin’s aquifer is characterized in hydro-geological reports as unconfined 

(Kilili-Polychronaki 2001, Donta et al. 2006), and it is sparsely monitored regarding 

the groundwater level. Aquifer storage coefficients, obtained from FAO pumping 

tests, in conjunction with the behavior of the water table (free surface existence) 

suggests, that although heterogeneous and locally confined, the aquifer behaves at the 

regional scale as an unconfined unit (Donta et al. 2006). 

 

3.3 Hydrological setting 

The mean annual rainfall in the Mesara catchment is around 650 mm. About 

65% of the rainfall is lost to evapotranspiration and 10% as runoff to the sea, leaving 

only 25% to recharge the groundwater store (Croke et al. 2000). Rainfall increases 

with the elevation from about 500 mm in the Mesara plain to about 800 mm in the 

valley slopes, 1100 mm in the Asterousian Mountains and up to 2000 mm in the Idi 

mountain (Tsanis and Apostolaki 2009). Figure 3.6 presents the mean annual rainfall 

in Messara for the hydrological years 1981 to 2010. About 40% of the precipitation 

occurs in the months of December and January, while there is negligible rainfall from 

June to August (Figure 3.7). 

The mean winter temperature is 12°C while the mean summer temperature is 

28°C. The relative humidity in the winter is about 70%, while it is about 60% in the 

summer (Tsanis et al. 2011). Pan evaporation is estimated at 1500±300 mm per year 

while western winds prevail. The potential evaporation is estimated at 1300 mm per 

year setting the ratio of mean annual rainfall to potential evaporation at about 0.5 

implying a dry sub-humid classification according to the (UNCED 1994) definitions 

(Croke et al. 2000, Tsanis and Apostolaki 2009). The plain altitude in Mires is less 

than 300m although the mean annual rainfall is similar to the catchment average. 
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Specifically for Mires basin the most recent hydro-geological study (Kilili-

Polychronaki 2001) estimates the evapotraspiration at 82%, the infiltration 18% and 

the surface runoff as negligible. 

 
Figure 3.6 Annual rainfall in Mesara valley (data provided by the Administration of Land Reclamation 

of the Prefecture of Crete and the Department of Water Resources Management of the Prefecture of 

Crete. 

 

 
Figure 3.7 Monthly rainfall in Mesara valley (data provided by the Administration of Land 

Reclamation of the Prefecture of Crete and the Department of Water Resources Management of the 

Prefecture of Crete. 

 

The main outlet of the catchment, as mentioned above, is Geropotamos river at 

the Phaistos constriction in the west. In its natural state, the Geropotamos River of the 

Mesara Valley flowed continuously, and sustained a wetland located near the 

catchment outlet. The drop in the groundwater level has resulted in the wetland drying 

up and no flow in the river so during the dry season of the 1989-90 hydrological year 

as during the whole 1992-1993. Additionally during the hydrological year 1992-1993 
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there was no river flow out of the valley, while very low flow was measured during 

the years 1999-2000 and 2004 to 2007 (Figure 3.8). 

 Groundwater abstraction rates in Mires basin varied from 20-400 m
3
/h before 

the extensive exploitation of the aquifer, while the pumping rates were correlated with 

the hydrogeological formation (higher in the alluvial formations). The number of 

boreholes operated at that time in the entire valley was 26. The average pumping rate 

at the center of the basin across the Geropotamos root was 200 m
3
/h and the 

groundwater level was less than 10 meters below surface. At the eastern part, near 

Lithaios, the pumping rates were similar but the depth of the water table varied from 

20-40 m
3
/h from south to north. 

 

 
Figure 3.8 Annual runoff of Geropotamos of Mesara catchment (data provided by the Administration 

of Land Reclamation of the Prefecture of Crete and the Department of Water Resources Management 

of the Prefecture of Crete. 

 

 An extensive network of pumping stations was installed on 1984. It is 

estimated that after the installation of the network around 40Mm
3 

(22Mm
3
 in Mires 

basin) on average are being pumped per year. The temporal variability of the annual 

pumping volume in Mires basin is presented in Figure 3.9. Before the installation of 

the groundwater irrigation system, less than 10Mm
3
 were pumped per year, the 

average discharge out of the valley was about 20 Mm
3
/yr corresponding to 50 mm of 

the annual rainfall lost as runoff to the sea. It is estimated that the annual recharge of 

the groundwater store was about 60 Mm
3
/yr (150 mm) and the evapotranspiration 

losses were about 160 Mm
3
/yr (400 mm). Nowadays, the surface runoff and the 

groundwater supplies are decreasing rapidly (Donta et al. 2006, Kritsotakis 2010). 
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The large number of operating boreholes and overexploitation are responsible for this 

trend. A recent publication cites that 1400 wells were operated on 2007 in whole 

Mesara valley (Kritsotakis 2009). In Mires basin, the Greek Institute of Geology and 

Mineral Exploration (IGME) has registered more than 80, although data are not 

available for all of them. 

 

 
Figure 3.9 Annual abstraction rate in Mires basin (data provided by the Administration of Land 

Reclamation of the Prefecture of Crete, the Department of Water Resources Management of the 

Prefecture of Crete and by Kritsotakis (2010). 

 

3.4 Groundwater level Data availability 

 The groundwater level monitoring locations in the basin are presented in 

Figure 3.10, while the groundwater level drop since 1981 has exceeded 35m (Figure 

3.11). Our overall goal is to use stochastic methods for the spatiotemporal monitoring 

and prediction of the groundwater level in the basin. The data used in this thesis 

comprise seventy (70) hydraulic head measurements, from wells located in Mires 

basin, for the wet period of the hydrological year 2002-2003 (October – April is the 

wet period of the hydrological year). This is the only period for which a full set of 

recorded head values exists. The data have been provided by the Administration of 

Land Reclamation of the Prefecture of Crete. The measurements are unevenly 

distributed and mostly concentrated along Geropotamos, a temporary river that 

crosses the basin (Figure 3.10). The range of hydraulic heads varies from an 

extremely low value of 9.4 meters above sea level (masl) to 62 masl for the wet 

period of the year. The head values are even lower during the dry period.  
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Figure 3.10 Topographic map showing the locations of groundwater head measurement in Mires basin 

along with the corresponding surface elevation and the temporary river (Geropotamos) path. 

 

Ten wells (Figure 3.12) were monitored between the years 1981 and 2003, 

while others were monitored for shorter periods. Since 2003, the regular biannual 

monitoring of the operating boreholes has been replaced by the continuous monitoring 

of two telemetric stations placed in two boreholes selected by the DWRM. It has to be 

mentioned that selective measurements occur at specific wells in the basin on 2003-

2006 period biannually at four of the ten set boreholes (leading to six monitored 

locations). The groundwater level increase during the period 2003-2005 is due to the 

increased rainfall and the low pumping activity during that period (Figures 3.6 and 

3.9). On the other hand the groundwater level trend since 2006 is mainly affected 

from the small number of the available observations.  

 

 
Figure 3.11 Mean bi-annual groundwater level in Mires basin. An average of 10 wells until 2002-03 is 

considered, 6 wells until 2005-06 and 2 wells until 2009-10. 
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Average pumping rates for the 70 wells operated in the basin have been also 

provided from the Administration of Land Reclamation of the Prefecture of Crete. 

The correlation of the pumping rates with the corresponding groundwater levels is 

characterized important as it is 68%. The pumping rates vary from 10-170 m
3
/h.  

 
Figure 3.12 Topographic map showing the locations of monitored wells (triangles) in Mires basin 

along with the corresponding surface elevation and the temporary river path. Green color is used to 

mark the wells monitored for the period 1981-2003. 

 

3.5 Exploratory statistics 

 The results of exploratory analysis for the hydraulic head data are shown in 

Table 3.1. The head data have skewness and kurtosis coefficients equal to ˆ 0.81zs   

and ˆ 2.58zk   respectively, implying a mild deviation from Gaussian statistics ( ˆ 0zs   

and ˆ 3zk   respectively).  

 

Table 3.1 Statistical measures of the hydraulic head data. minz : minimum value; 0.25z first quartile; 

0.50z  median; zm  mean; 0.75z  third quartile; maxz maximum value; ˆ
z  standard deviation; ˆ

zs  

skewness coefficient; ˆzk  kurtosis coefficient. 

minz  0.25z  0.50z  zm  0.75z  maxz  ˆ
z  ˆ

zs  ˆ
zk  

9.40  

masl 

20.50 

masl 

24.25 

masl 

32.05 

masl 

40.2  

masl 

62.00 

masl 

12.4 

masl 
0.81 2.58 
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 The Skewness coefficient ˆzs  is estimated based on the third central moment 

according to the equation below: 
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where ˆ
zm  the sample mean and N the number of sampling points. The skewnes 

coefficient of the normal distribution is equal to zero (Nist/Sematech 2009). 

 The Kurtosis coefficient is specified from the fourth central moment and 

defined by the following equation: 
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The Kurtosis coefficient of the normal distribution is equal to three (Nist/Sematech 

2009). 

 Another way to test if the hydraulic head data follows the normal distribution 

is the Kolmogorov-Smirnov test (Massey Jr 1951, Kitanidis 1997). The Kolmogorov–

Smirnov test is a nonparametric test for the equality of continuous, one-dimensional 

probability distributions that can be used to compare a sample with a reference 

probability distribution (one-sample K–S test), or to compare two samples (two-

sample K–S test). The Kolmogorov–Smirnov statistic quantifies a distance between 

the empirical distribution function of the sample and the cumulative distribution 

function of the reference distribution for the one-sample K–S test. The null 

distribution of this statistic is calculated under the null hypothesis that the sample is 

drawn from the reference distribution (in the one-sample case); the distributions 

considered under the null hypothesis are continuous distributions. The null hypothesis 

for the Kolmogorov-Smirnov test is that data follows the standard normal distribution. 

The test is applied comparing the normalized data values according to:  

 

http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Nikolai_Smirnov_%28mathematician%29
http://en.wikipedia.org/wiki/Nonparametric_statistics
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Random_sample
http://en.wikipedia.org/wiki/Metric_%28mathematics%29
http://en.wikipedia.org/wiki/Empirical_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Null_distribution
http://en.wikipedia.org/wiki/Null_distribution
http://en.wikipedia.org/wiki/Null_hypothesis
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ˆ
i z

z

z m




, (3.3) 

 

with a normal distribution having mean ˆ
zm =0 and standard deviation z =1. The test 

statistic is: max ( ) ( )D F z G z , where ( )F z  is the empirical cumulative 

distribution function (cdf) and ( )G z  is the standard normal cdf. If the sample comes 

from distribution ( )F z , then D  converges to 0 almost surely. The test is 

implemented in Matlab
®
 environment using the function «kstest». For this dataset the 

null hypothesis is rejected at significant levels 5% and of 10%. 

 This is also confirmed by the normal probability plot presented in Figure 3.13. 

The purpose of a normal probability plot is to graphically assess whether the data 

could come from the normal distribution. If the data are normal the graph is linear; 

otherwise, the graph is curved as herein. In light of OK, it is known to be the optimal 

estimator if the data follow a multivariate normal distribution (Deutsch and Journel 

1992). Therefore a series of normalizing methodologies are assessed in this thesis in 

order to transform the data closer to the normal distribution. 

 

 
Figure 3.13 Normal probability plot of the basin’s groundwater level data for the hydrological year 

2002-2003. 

http://en.wikipedia.org/wiki/Almost_surely
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3.6 Anisotropy estimation 

 In the present study a test for geometric anisotropy is performed by comparing 

directional semivariograms in four main directions (Goovaerts 1997) using an angle 

tolerance of 40° for the semivariogram estimation. As shown in Figure 3.14, there are 

no distinct differences among the directional semivariograms. Therefore, the spatial 

variation of groundwater level is considered to be isotropic (Ahmadi and Sedghamiz 

2007). 

 We also performed a test of geometric anisotropy based on the method of 

Covariance Hessian Identity (Hristopulos 2002, Chorti and Hristopulos 2008). This 

method is non-parametric, in the sense that it provides an estimate of the aspect ratio 

(i.e. the ratio of the two principal correlation lengths) and the orientation of the 

principal axes, without requiring semivariogram estimation and modeling. The aspect 

ratio is thus estimated at 0.806, while the short principal axis is rotated by 6° with 

respect to the E-W direction. The value of 0.806 does not differ significantly from 

unity. Indeed, the isotropic hypothesis cannot be rejected with 95% confidence for 

ratios in the range [0.73 – 1.37] using the anisotropy test given in (Spiliopoulos et al. 

2011, Petrakis and Hristopulos 2012). 

 

Figure 3.14 Experimental directional semivariograms of groundwater level in Mires basin along the 

four main geographical directions, E–W, N–S, NE and NW.  
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4. Comparison of stochastic and deterministic methods for 

mapping groundwater level spatial variability in sparsely 

monitored basins-Application to Mires basin2
 

 

4.1 Introduction 

 The accurate mapping of groundwater levels in an aquifer is important for 

effective management and monitoring decisions. However, the number and spatial 

distribution of hydraulic head measurements are not always sufficient to accurately 

represent the groundwater levels in a given aquifer. Estimates at unsampled locations 

can be obtained by applying geostatistical and deterministic interpolation methods to 

the available data. This study aims to compare the performance of stochastic versus 

deterministic methods for mapping groundwater level in areas with sparsely 

distributed measurements and to specify additional observation locations where 

denser sampling is needed. 

 This chapter compares the interpolation performance of OK, UK and DK with 

the deterministic methods IDW and MC. The dataset used involves groundwater 

levels in a sparsely gauged basin. Measuring the relative performance of different 

interpolators is important for environmental monitoring.  

 

4.2 Semivariogram estimation 

 The omnidirectional empirical semivariogram of the hydraulic head 

fluctuations (after trend removal in UK) is determined using the method of moments. 

Anisotropy is not modeled since the directional semivariograms (not shown here) do 

not exhibit significant anisotropic dependence. The empirical semivariogram is fitted 

with isotropic classical models such as the exponential, Gaussian, spherical, power-

law, and linear models (Deutsch and Journel 1992), the Matérn model (Matérn 1960, 

Stein 1999, Pardo-Iguzquiza and Chica-Olmo 2008), and the new family of Spartan 

variograms (Hristopulos 2003b, Hristopulos and Elogne 2007). For each of the above 

                                                 
2
 This chapter is an adaptation of a paper published in Environmental Monitoring and Assessment Journal  

(Varouchakis and Hristopulos, 2012), please see page 179 for details. 
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theoretical models, we determine the optimal semivariogram parameters that 

correspond to the stochastic methods tested (Table 4.1and Table 4.2). 

 
Table 4.1 Optimal estimates of semivariogram model parameters obtained by a least squares fit to the 

experimental semivariogram of the data (Columns 2-4). The search radius defines the neighborhood 

used in the OK predictor (Column 5). The number of first- and second-order neighbors used by DK at 

each estimation point. 

 

Model 

 

Sill 

 

  

 

Other 

parameters 

 

OK search radius 

(normalized units) 

 

DK No  

of neighbors  

Exponential 133 0.30 NA 0.38 4 to 6 

Gaussian 160 0.28 NA 0.38 4 to 6 

Spherical 150 0.63 NA 0.59 4 to 6 

Power-law 538 NA 2 H 1.31 0.59 4 to 6 

Linear  331 NA NA 0.38 4 to 6 

Matérn 440 0.94 v 0.92 0.59 4 to 6 

Spartan 184 0.46 1  1.12 0.46 4 to 6 

 
Table 4.2 Optimal estimates of semivariogram model parameters obtained by a least squares fit to the 

experimental semivariogram of the residuals (Columns 2-4). The search radius defines the 

neighborhood used in the UK predictor (Column 5). 

 

Model 

 

Sill 

 

  

 

Other 

parameters 

 

UK search radius 

(normalized units) 

Exponential 142 0.34 NA 0.38 

Gaussian 211 0.35 NA 0.38 

Spherical 137 0.69 NA 0.59 

Power-law 500 NA 2 H 1.39 0.59 

Linear  300 NA NA 0.38 

Matérn 236 0.66 v 0.87 0.59 

Spartan 169 0.75 1  1.07 0.59 

 

4.3 Results and Discussion 

4.3.1 Global cross validation measures 

 Table 4.3 presents the results for the cross-validation measures previously 

defined for each of the interpolation methods studied. IDW is applied using inverse 

square distance weights ( 2n  ). This exponent value is widely used in geohydrology 

and also provides more accurate results for the Mires basin than other values. The 
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optimum search neighborhood consists of the four closest observation points to the 

estimation location. The MC method, implemented based on equations (2.30) and 

(2.31), uses the entire dataset for prediction. 

 Figure 4.1 shows the empirical semivariogram and its fit with the optimal 

Spartan and power-law models that provide similar cross validation results for the OK 

and DK methods. The empirical semivariogram does not approach a sill, which is 

interpreted as lack of stationarity within the study area. The power-law model is non-

stationary, while the Spartan model is stationary but approaches the sill outside the 

study area. The cross validation measures obtained with the above semivariogram 

models and with the best-fit Matérn model, which gives slightly inferior results, are 

shown in Table 4.3. The results obtained with UK using the same semivariogram 

models are also shown in Table 4.3. 

 

Table 4.3 Cross validation measures (section 2.5) for the stochastic and deterministic interpolation 

methods investigated. Results obtained with the three “optimal” (in terms of cross validation measures) 

semivariogram models are presented. The following abbreviations are used: IDW: Inverse distance 

weighted. MC: minimum curvature.  DK: kriging with Delaunay triangulation. OK: Ordinary kriging. 

UK: Universal kriging. SP: Spartan semivariogram. P: Power-law semivariogram. M: Matérn 

semivariogram. MAE: Mean absolute error. MARE: Mean absolute relative error. RMSE: Root mean 

square error. R: Linear correlation coefficient. Optimal values are emphasized 

Method MAE 

(masl) 

BIAS 

(masl) 

MARE RMSE 

(masl) 

R 

IDW 3.45 -0.17 0.15 5.58 0.89 

MC 4.01 0.10 0.17 6.18 0.87 

DK-SP  3.48 0.10 0.15 5.47 0.89 

DK-P 3.48 0.14 0.15 5.52 0.87 

DK-M 3.63 -0.08 0.15 5.74 0.89 

OK-SP 3.37 0.02 0.14 5.15 0.91 

OK-P 3.58 0.07 0.15 5.46 0.90 

OK-M 3.80 0.02 0.16 5.84 0.89 

UK-SP 3.40 0.13 0.14 5.23 0.91 

UK-P 3.50 0.09 0.15 5.54 0.89 

UK-M 3.8 0.09 0.15 5.78 0.89 

 

 In OK the Spartan semivariogram model (Figure 4.1) gives the most accurate 

estimates in terms of mean absolute error (MAE), i.e., 3.37 masl, compared to the 

power-law model which is a close second with 3.58 masl. The Spartan model is also 
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superior with respect to the other estimation measures (Table 4.3). DK has a MAE of 

3.48 masl respectively, for both the Spartan and power-law semivariograms. 

However, as shown in Table 4.3 the validation measures obtained with the Spartan 

model are overall slightly better. The Spartan semivariogram is thus used in OK and 

DK interpolation. For OK a search radius equal to the characteristic length (0.46 in 

normalized units) yields the best cross validation results (Table 4.1). DK is applied 

using the first and second-order neighbors of the estimation point (Table 4.1), 

resulting in higher accuracy.  

 

 
Figure 4.1 Plot of omnidirectional experimental semivariogram of groundwater level data (stars), the 

optimal Spartan model (parameter estimates: variance 
2̂ =184, characteristic length 

̂ =0.46(normalized units), stiffness coefficient 1̂ =1.12), and the optimal power-law model ( ĉ =538, 

ˆ2H =1.31). Numbers of pairs used at each lag distance are also shown on the plot. 

 

 For the application of UK, the drift is approximated by 1 2( )zm k x k y ks , 

where 1k 29.83, 2k 11.14, k 23.13 are the drift coefficients (constants) and 

( , )x ys  are the space coordinates of the data. This is followed by a calculation of 

the semivariogram of the residuals. Leave-one-out cross validation (Table 4.3) shows 

that the Spartan model (Figure 4.2) delivers the most accurate results with respect to 

MAE, i.e., 3.40 masl, and performs overall better than the other “near-optimal” 

semivariogram models; the power-law model comes second with 3.50 masl. 
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Therefore, the Spartan semivariogram is applied in UK interpolation. The optimum 

search radius used with the Spartan model is equal to 0.59 (normalized units), which 

is somewhat shorter than the estimated characteristic length (Table 4.2).The power-

law model in both OK and UK is also applied using an optimum search radius equal 

to 0.59 (Table 4.1, Table 4.2). 

 The cross validation measures (Table 4.3) show that no method performs 

significantly better than the others. OK gives uniformly the best results for the mean 

errors and the correlation coefficient followed, for most measures, by UK, DK and 

IDW in the order mentioned here. OK has clearly the lowest bias, very close to zero. 

MC generates a bias similar to DK and UK but lower than IDW; however, its 

performance is inferior with respect to other validation measures. 

 

 
Figure 4.2 Plot of omnidirectional semivariogram of residuals (stars) and optimal Spartan model 

(parameter estimates: variance 
2̂ =169, characteristic length ̂ =0.75 (normalized units), stiffness 

coefficient 1̂ =1.07). Residuals are derived by removing a linear drift. Numbers of pairs used at each 

lag distance are also shown on the plot. 

 

 The Spartan semivariogram model provides the most accurate cross validation 

estimates for the three stochastic methods investigated. In terms of MAE, OK-SP 

gives the most accurate estimate followed by UK-SP and DK-SP. The bias of OK-SP 

is very close to zero, while it is worse for DK-SP and UK-SP in the order stated. 

MARE and R are similar for OK-SP and UK-SP but slightly lower for DK-SP. 
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Finally, OK-SP yields the lowest RMSE followed by UK-SP and DK-SP. Overall, 

OK-SP provides the most accurate estimation measures compared to the other 

stochastic and deterministic methods. 

 

4.3.2 Lowest-value estimation 

 In addition to the global cross-validation results investigated above a statistic 

of interest is the estimation accuracy of the lowest groundwater level, i.e., 9.4 masl. 

DK-SP gives the most accurate estimate, i.e., 29 masl. DK estimates the lowest level 

17% more accurately than OK-SP and UK-SP which yield 33 masl, and 17.6% more 

accurately than IDW, which yields 33.15 masl. In contrast, the highest level of 62 

masl is accurately estimated by both the stochastic and deterministic interpolation 

methods. The superior performance of DK with respect to the lowest-value estimation 

is due to the local averaging property of DK. 

 DK is herein applied using both the first-order and second-order neighbors of 

the estimation point. At the location of the minimum, up to six neighbors are used in 

DK. The maximum distance from the neighbors (0.11 normalized units) is shorter 

than the estimated optimal radius for OK-SP and UK-SP interpolation (0.46, 0.59 

normalized units, respectively). In order for OK-SP and UK-SP to approach the DK-

SP optimal estimate (29 masl), they should be applied with a smaller estimation 

neighborhood. Using circular neighborhoods, the OK-SP and UK-SP neighbors of the 

minimum value location do not coincide with the DK-SP neighbors (see Figure 4.3). 

So, the optimal local neighborhood used by DK-SP is not feasible for OK-SP and 

UK-SP. IDW yields optimal global cross-validation results if applied with a circular 

neighborhood that encloses the four nearest neighbors but delivers an estimate of 

33.15 masl for the lowest value. 

 In light of the above, we compare the minimum value estimation by means of 

OK-SP, UK-SP, and IDW with the same radii (0.05 to 0.13 normalized units, see 

Table 4.4). Leave-one-out cross validation results are shown in Table 4.4 using  the 

Spartan semivariogram, which provides the most accurate estimates of the minimum 

compared to the other models tested, for all the methods (DK, OK and UK) and all 

search radii used (OK and UK). Most of the estimates in Table 4.4 are better than 

those obtained using “globally optimal” interpolation radii, which are derived by 

minimizing the mean absoluter error over all the points. 
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Figure 4.3 First- and second-order neighbors (full black circles) of extreme low value (at location 

marked by star) of the dataset located using Delaunay triangulation. The circles centered on the 

estimation point enclose the neighboring points for specific search radius (0.05 to 0.11 corresponding 

to normalized units) used for OK, DK and IDW for the extreme low value calculation. 

 

Table 4.4 OK-SP, UK-SP (SP: Spartan semivariogram) and IDW estimates (masl) of the extreme low 

value in the dataset using search radii (normalized units). The radius 0.11 leads to a neighborhood 

similar to DK which generates the most accurate estimate, 29 masl, of the extreme low value). The 

numbers in parentheses denote the number of Delaunay neighbors present inside the corresponding 

search radius, while (+) denotes the presence of other neighbors as well (see Figure 4.3). Delaunay 

neighbors (symbolized with full black circles in Figure 4.3) are the vertices of the enclosing triangle 

(dark color) and of the three adjacent triangles (grey color). 

Search 

radius 

 

0.05 

(2)  

neighbors 

0.06 

(3)  

neighbors 

0.09 

(4+) 

neighbors 

0.11 

(5,6+) 

 neighbors 

0.13 

(5,6+) 

neighbors 

OK-SP 32.61 31.93 32.36 31.50 33.23 

UK-SP 32.25 31.71 32.31 31.34 33.15 

IDW 33.80 33.23 32.87 31.98 32.27 

 

 DK-SP estimation based on the first-order neighbors (i.e., the vertices of the 

triangle enclosing the lowest-value location), provides the same accuracy (31.93 masl) 

as OK-SP, but inferior than UK-SP (see Table 4.4). By increasing the search radius of 

OK-SP, UK-SP and IDW the second-order neighbors are progressively included (see 

Figure 4.3). The cross validation performance of OK-SP, UK-SP and IDW improves 

(see Table 4.4) approaching the optimal of DK-SP (29 masl) as the neighborhood of 

the latter is closely matched (i.e., for search radius of 0.11 normalized units). The best 

estimate is obtained with UK-SP (31.34 masl). 

 The optimal radius for the lowest value estimation is not generally suitable for 

OK, UK and IDW interpolation, because it generates search neighborhoods that do 

not include any neighbors around some of the data points. The smallest search radius 
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that leads to at least one neighbor for each data point is equal to 0.13 (normalized 

units). However, this value delivers inferior cross validation measures for OK-SP, 

UK-SP and IDW compared to the respective optimal radii. A radius of 0.13 

(normalized units) provides a better IDW estimate (32.27 masl) of the minimum than 

the optimal neighborhood (33.15 masl). In contrast, the OK-SP and UK-SP estimates 

(33.23 and 33.15 masl respectively) are inferior to those obtained with the “globally 

optimal” interpolation radii (33 masl). 

 

4.3.3 Isolevel contour maps of hydraulic head 

 Next, we generate isolevel contour maps of the groundwater surface in the 

basin. We use interpolated values of the hydraulic head on a 100 100  grid (actual 

cell size: 114x47 m). Only grid points inside the convex hull (7317 grid points) of the 

sampling network are given numerical values, to ensure that the interpolated field is 

based on sufficient information. The contour maps generated are shown in Figure 4.4 

to Figure 4.11. 

 

 
Figure 4.4 Isolevel contour map of estimated groundwater level in Mires basin using IDW. 
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Figure 4.5 Isolevel contour map of estimated groundwater level in Mires basin using MC. 

 
Figure 4.6 Isolevel contour map of estimated groundwater level in Mires basin using DK with the 

Spartan semivariogram model. 
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Figure 4.7 Isolevel contour map of kriging standard deviation for groundwater level in Mires basin 

using DK with the Spartan semivariogram model. 

 
Figure 4.8 Isolevel contour map of estimated groundwater level in Mires basin using OK with the 

Spartan semivariogram model. 
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Figure 4.9 Isolevel contour map of kriging standard deviation for groundwater level in Mires basin 

using OK with the Spartan semivariogram model. 

 
Figure 4.10 Isolevel contour map of estimated groundwater level in Mires basin using UK with the 

Spartan semivariogram model. 
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Figure 4.11 Isolevel contour map of kriging standard deviation for groundwater level in Mires basin 

using UK with the Spartan semivariogram model. 

 

IDW and DK contours are rougher than those estimated by means of the other 

methods. This is due to the fact that both methods use a small number of neighbors, 

leading to considerable variation of the estimates. MC, OK and UK lead to smoother 

contours. The smoothness of MC contours is due to the assumption of an underlying 

differentiable function. OK and UK yield very smooth contours, because their 

estimates are based on observations within a neighborhood defined by the large 

characteristic length (50% - 75% of the area’s extent in normalized units). 

 OK, DK and UK interpolation maps are derived using the non-differentiable 

Spartan model. The power-law semivariogram, which is also non-differentiable, gives 

similar results to the Spartan model. Third best is a non-differentiable Matérn model 

with smoothness coefficient v<1. (0.92 and 0.87 for original data and residuals 

respectively). Similarly, a non-differentiable semivariogram (spherical model), was 

used for the hydraulic head in a different study (Fasbender et al. 2008). We propose 

an explanation for the non-differentiability of the groundwater level surface. The data 

reflect the surface formed by the upper boundary of the saturated zone. We suggest 

that the height of this zone is determined by a deposition-removal process: locally 
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varying increments of water are added (e.g., due to precipitation) and removed (e.g., 

due to pumping and evapotranspiration) from the aquifer. Hence, the height at any 

given time results from the superposition of (both positive and negative) random 

increments. If the increments are approximately Gaussian, this process is expected to 

generate a non-stationary fractional Brownian motion (fBm) pattern (Mandelbrot and 

Van Ness 1968). In surface hydrology, fBm processes have been used to model the 

level of water reservoirs (Feder 1988). Hence, it is not coincidental that the fBm 

power-law semivariograms are very close to the best performing model in the OK, 

DK and UK cross validation procedure. Of course, for a finite-size basin the purely 

power-law fBm dependence should be truncated by the domain size. The non-

differentiability of the groundwater level explains the poor performance of MC, which 

assumes a differentiable hydraulic head function, in comparison to the other methods. 

 

4.3.4 Estimation variance 

 Stochastic interpolation methods quantify the kriging (error) variance, which 

determines the precision of the estimates. The map of kriging standard deviation 

(kriging error) can be used to identify locations where the estimates have high 

uncertainty and further sampling is needed (Prakash and Singh 2000, Fatima 2006, 

Theodossiou and Latinopoulos 2006, Yang et al. 2008). 

The error maps (Figure 4.7, Figure 4.9, Figure 4.11) identify the locations of 

the Mires basin with the largest kriging standard deviation. The south and east borders 

of the basin can benefit from further sampling according to OK (standard deviation 

67.5 masl) and UK (standard deviation 56.5 masl). DK shows a standard 

deviation range approximately between 6 and 8 masl at the same locations, but also 

similar values along the west border. The fact that DK is based only on three to six 

neighboring points often results in higher kriging variances than OK or UK. In Mires 

basin, most estimation points have more than six neighbors in their UK and OK 

search neighborhoods, thus reducing the OK and UK variances with respect to DK. 

UK delivers the lowest standard deviation, as it includes a linear trend function that 

reduces variability compared to OK. Interpolation with the Spartan semivariogram 

model delivers the lowest standard deviation for all three (OK, UK, DK) interpolation 

methods tested. 
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4.3.5 Semivariogram validation 

 Cross validation studies mostly focus on univariate measures of performance, 

such as the ones described above. Stochastic interpolation methods also allow 

comparison of the empirical semivariogram with that obtained from the interpolated 

values, thus testing the accurate reproduction of spatial continuity by interpolation 

(Kitanidis 1997, Olea 1999).  

 In Figure 4.12 and Figure 4.13, we compare (i) the experimental 

semivariogram of the observations (ii) the optimal theoretical model (iii) the 

experimental semivariograms obtained from OK- (Figure 4.12) and DK- (Figure 4.13) 

interpolation estimates and (iv) the respective optimal models. Figure 4.14 presents 

the experimental semivariograms of the observations and the UK interpolation 

estimates. Optimal theoretical models are not presented, because the semivariogram 

fit is performed for the residuals. In all cases, the semivariogram of the estimates 

shows very similar structure as that of the data. However, the former exhibit overall 

lower variability tending to have lower values than the empirical semivariogram of 

the data. This behaviour reflects the smoothing effect of interpolation. 

 

 

Figure 4.12 Comparison of groundwater level semivariograms: data (stars), OK estimates using 

Spartan (SP) semivariogram (circles), along with optimal SP model fits to data (dashed line) and to OK 

estimates (continuous line). 
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Figure 4.13 Comparison of groundwater level semivariograms: data (stars), DK estimates using 

Spartan (SP) semivariogram (circles), along with optimal SP model fits to data (dashed line) and to DK 

estimates (continuous line). 

 

 

Figure 4.14 Comparison of omnidirectional groundwater level semivariograms of data (stars) and UK 

estimates (circles). 
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4.3.6 General remarks 

 Stochastic and deterministic methods for the interpolation of groundwater 

levels have been used in other studies before. Below we briefly describe how this 

study differs from previous ones. 

 To our knowledge, this is the first application of DK to groundwater level 

interpolation. First- and second-order neighbors are used in DK to improve estimation 

accuracy. In contrast with studies that employ only first-order neighbors, we clearly 

present and apply the methodology for locating second-order neighbors. This paper 

also presents the recently developed Spartan semivariogram model for environmental 

applications. In the present study, this model is shown to be optimal for interpolation. 

The OK-SP and UK-SP methods employed in this manuscript apply the Spartan 

semivariogram model for the first time to hydrological data. 

 We compare three stochastic versus two deterministic methods for mapping 

groundwater level that have not heretofore been compared on the same data set. The 

case study in our manuscript investigates the performance of well-known methods 

with respect to interpolation in a sparsely gauged basin (Mires basin). To our 

knowledge, the groundwater level in Mires basin has not been modeled with 

geostatistical methods.  

 According to the five statistical measures assessed, no method performs 

extremely better than the others, with OK-SP to lead. The statistical measures can be 

also assessed by categories. Best absolute error method, lowest bias method, best 

statistical accuracy (MARE, RMSE) method and method with the higher cross 

validation correlation coefficient (R). However, the conclusion is the same; the results 

are not significantly different. Therefore, except of the estimation accuracy the choice 

of the best performing interpolation method should be also based on the prediction 

uncertainty, that is an advantage only of the stochastic methods.  

 The method comparison is based on cross validation measures, which include 

global statistical quantities, the accuracy of the minimum value estimate, estimation 

variance and semivariogram reproduction. The impact of search neighborhood effects 

on the validation results is analyzed in detail. The comparison is conducted in the 

Matlab
®
 programming environment, using code developed by the author, as opposed 

to commercial software packages. This approach provides increased flexibility and 

common ground for comparison. 
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5. Improving kriging of groundwater level data using non-

linear normalizing transformations-Application to Mires 

basin3
 

 

5.1 Introduction 

 Skewed or erratic data can often be made more suitable for geostatistical 

modeling by appropriate transformation. Such applications can lead to the reliable 

mapping of the free surface of an aquifer. A normal distribution for the variable under 

study is desirable in linear geostatistics (Clark and Harper 2000). Even though mild 

deviations from normality do not cause problems, significant deviations, e.g. due to 

high skewness and outliers, have an undesirable impact on the semivariogram 

structure and the kriging estimates (Gringarten and Deutsch 2001, Ouyang et al. 

2006). OK is well-known to be optimal when the data have a multivariate normal 

distribution and the true semivariogram is known. Therefore, transformation of data 

may be required before kriging to normalize the data distribution, suppress outliers, 

and improve data stationarity (Deutsch and Journel 1992, Armstrong 1998). Then the 

estimation is performed in the Gaussian domain, before back-transforming the 

estimates to the original domain. An advantage of the Gaussian distribution is that 

spatial variability is easier to be modeled, because it reduces effects of extreme values 

providing more stable semivariograms (Goovaerts 1997, Armstrong 1998, Pardo-

Iguzquiza and Dowd 2005). Kriging represents variability only up to the second order 

moment (covariance), therefore the random field of the transformed variable must be 

Gaussian to derive unbiased estimates at non-sampled locations (Deutsch and Journel 

1992, Goovaerts et al. 2005). In practice, multi-normality is invoked as a working 

hypothesis. 

The aim of this work is to investigate the improvement in groundwater level 

interpolation with OK using non-linear data normalization methodologies. Well-

known OK based methodologies are applied and most of them for the first time to 

groundwater level data. In addition, a novel normalization method based on the Box-

                                                 
3
 This chapter is an adaptation of a paper accepted for publication in Hydrological Sciences Journal  

(Varouchakis et al. 2012), please see page 179 for details. 



NON-LINEAR NORMALIZING TRANSFORMATIONS  

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 

HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

82 

Cox transformation, termed Modified Box-Cox is established and implemented in this 

article. Furthermore, the recently established Spartan semivariogram family is applied 

herein along with classical semivariogram models. The Modified Box-Cox (MBC) 

method, the Gaussian Anamorphosis (GA) normalization method and the Trans-

Gaussian Kriging (TGK) method are implemented for the first time to groundwater 

level data. Overall, several kriging-based spatial models are investigated, evaluated, 

and maps of estimated water table elevation and its associated uncertainty are 

generated by means of the optimal model. 

 

5.2 Box-Cox transformation method 

 The Box-Cox (BC) method (Box and Cox 1964) is widely used to transform 

hydrological data into approximately Gaussian distributions (Chander et al. 1978, 

Hirsch 1979, Jain and Singh 1986, Salas 1993, Thyer et al. 2002). The transform is 

defined only for positive data values and is defined by means of 
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k
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Given the vector of data observations 1( , ), N

T z z z , the optimal value of the power 

exponent k, which leads to the best agreement of  1( ), , ( )k k

T

Ng z g zy  with the 

Gaussian distribution, can be determined by means of the maximum likelihood 

estimation method (De Oliveira et al. 1997). The power exponent k is estimated by 

maximizing the logarithm of the likelihood function: 
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where 
1

1
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i

g k g z k
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 
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 
  is the arithmetic mean of the transformed data 

whilst the sum of squares 
 

2

1

( ; ) ( ; )N
BC i BC i

i

g z k g z k

N

 
 
  
  denotes the transformed data 

variance. 

 

5.3 Trans-Gaussian Kriging (TGK) 

 Trans-Gaussian Kriging is more general than the Box-Cox transformation 

(Cressie 1993, Kozintseva 1999, Schabenberger and Gotway 2005). For a nonlinear 

normalizing transformation,  (( )) gY Zs s , where ( )sY  follows the multivariate 

Gaussian distribution, assume that ( ) ( ( ))Z Ys  s , where 1( ) ( )g     is a one-to-

one, twice-differentiable function. It is also assumed that ( )Y s  is an intrinsically 

stationary SRF with mean Ym  and semivariogram  .Y r  For an unknown Ym , the 

OK predictor, 0
ˆ ( )OKY s , is used to predict 0( )sY . An estimate of 0( )Z s  is then given 

by  0 0( ) (ˆ ˆ )OKZ Ys  s , where ( )  is the inverse of the transformation function. 

However, this results in a biased predictor if ( )   is a nonlinear transformation. A 

bias-correcting approximation is the trans-Gaussian predictor (Cressie 1993): 
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0 0 ; 0

( )ˆ ˆ ( ) ( ) 2
2

ˆ
Y

OK OK Y YZ Y
m

s s s


  


     , (5.3) 

 

where ˆ
Ym  is the OK estimate of Ym , Y  is the Lagrange multiplier of the OK system, 

·( )  is the second-order derivative of the inverse transformation function, and 

2

; 0( )OK Y s  is the OK variance. If the Box-Cox normalizing transformation (5.1) is 

used, as herein, the functions ( )·  and ·( )  have the following form: 

 

  1/( 1) ky k y   , (5.4) 
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5.4 Gaussian Anamorphosis (GA) 

 This method is based on the transformation of a Gaussian variable Y into a 

new variable Z with an arbitrary distribution by means of  GAZ Y   , where 

(·)GA  is the Gaussian anamorphosis transformation. The transformation used in GA 

involves the following polynomial expansion (Chiles and Delfiner 1999): 

 

 
0

  ( )
K

GA i ii
Y H Y


   , (5.6) 

 

where the functions  iH Y , , ,0i K   are Hermite Polynomials and i  denote the 

coefficients of the expansion. The Hermite polynomials are defined in terms of the 

derivatives of the Gaussian density function: 

 

( ) ( )
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i

g x
H x

g x
 , (5.7) 

 

where ( )g x is the zero-mean and unit variance Gaussian density function, i.e., 

2

2
1

( )
2

x

g x e




  and ( ) ( )ig x  is the ith-order derivative of ( )g x . The Hermite 

polynomials are calculated by means of the following recurrence relation:  

 

1 1( ) ( ) ( ), 0i i iH x xH x iH x i     . (5.8) 

 

Typically, a high polynomial order (K=30-100) is used. Model fitting consists 

of estimating the coefficients i . The normalization of a non-Gaussian variable 

requires the inversion of the anamorphosis function, by means of  1

GA
Y Z . The 

geostatistical analysis is performed on the transformed variable Y, and the estimates 

are finally back-transformed to the original values through the anamorphosis function 

(Olea 1999, Wackernagel 2003, Casa and Castrignano 2008).  
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 Practically any function of Y which is square integrable with respect to the 

Gaussian density can be expanded in terms of Hermite polynomials. The coefficients 

of the expansion are given by the following equation (Journel and Huijbregts 1978, 

Wackernagel 2003): 

 

( ) ( ) ( )i GA ix H x g x dx





  . (5.9) 

 

For the field application studied in this thesis the expansion coefficients i  

are estimated for the linear, polynomial and exponential functions. The function GA  

that gives the best fit to the data is the quadratic function 2( )GA x x   . For the 

quadratic, the integral (5.9) used to estimate i  is solved analytically for any Hermite 

polynomial using integration by parts. As an example, for the second-order Hermite 

polynomial, equation (5.9) becomes: 
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In general, the solution of the integral is:  

 
2
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for n even, while 0na   for odd n . Hence, the corresponding expansion coefficients 

i  vanish for Hermite polynomials of odd order. 

 

5.5 Modified Box-Cox (MBC) 

 This new method focuses on normalizing the skewness and kurtosis 

coefficients of the data, but it neglects higher-order moments. It is defined by the 

following function: 
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where 
1k  is the power exponent and 

2k  is an offset parameter. Use of the latter allows 

negative z values and so the transformation (5.12) can be applied to fluctuations as 

well. Parameters 1 2( , )k k  are estimated from the numerical solution of the equations 

0, ˆˆ 3z zs k  , where ˆ
zs  and ˆ

zk  are the sample skewness and kurtosis coefficients 

respectively, 
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where zm  is the sample’s median. The minimization is performed using the Nelder-

Mead simplex optimization method (Nelder and Mead 1965, Press et al. 1992). 

 

5.6 Results and discussion 

 Three general approaches are tested for interpolation. The first approach 

applies OK with the optimal semivariogram function to the original data. The second 

approach first applies a normalizing transformation (Box-Cox, MBC, GA), then 

applies OK on the transformed variable, and finally it back-transforms the predictions. 

The third one employs TGK using the Box-Cox transform. The application of 

transformation methods improves the data normality as can be seen in Table 5.1. 

 
Table 5.1 Normalization results using Box-Cox, Modified Box-Cox (MBC) and Gaussian 

Anamorphosis (GA) transformations: skewness coefficient ˆzs ; kurtosis coefficient ˆzk . 

Method ˆ
zs  ˆ

zk  

Box-Cox 0.01 2.70 

MBC 0.13 2.99 

GA 0.10 2.87 

 

The results of leave-one-out cross-validation are shown in Table 5.2, which 

shows that no transformation method is significantly superior. The best 

semivariogram fit, in terms of cross-validation results, is obtained by means of the 
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Spartan model for all the kriging-based methodologies assessed (Table 5.2). The 

power-law semivariogram gives similar results to the Spartan model. Third best is the 

Matérn model.  

The Box-Cox transformation with 0.22k    and the GA transformation in 

combination with OK improve the mean absolute prediction error (3.30 masl) 

compared to OK (3.37 masl). TGK using the Box-Cox transform and the Spartan 

semivariogram performs best in terms of the Mean Absolute Error (MAE), yielding a 

value of 3.28 masl. All three methodologies have greater (in absolute value) bias than 

OK (0.02 masl), and similar value for the other estimation measures. Although MBC-

OK ( 1 20.51, 0.0001k k   ) with the Spartan semivariogram model (shown in Figure 

5.1) has a slightly larger MAE (3.30 masl) than TGK, MBC-OK provides overall the 

most accurate cross-validation results (Table 5.2). The parameters of the Spartan 

semivariogram are 2̂ =13.4, ̂ =0.42 (in normalized units), and 
1̂ =0.97. The MBC-

OK method with the above parameters improves the MAE and the Root Mean Square 

Error (RMSE) compared to OK while its bias, Mean Absolute Relative Error (MARE) 

and correlation coefficient R are identical to OK.  

 

 
Figure 5.1 Plot of omnidirectional experimental semivariogram of transformed (MBC) groundwater 

level data (stars) and optimal Spartan model fit (SP), (parameter estimates: variance 
2̂ =13.4, 

characteristic length ̂ =0.42(normalized units), stiffness coefficient 1̂ =0.97). Numbers of pairs used 

at each lag distance are also shown. 
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The scale factor 
0  

of the Spartan semivariogram is equal to 147.20 

(dimensionless). This is obtained by equating the semivariogram sill with 2

z ; the 

latter is given by (2.24) for 1 2  , based on the estimate 
1̂ =0.97. The scale factor of 

the transformed data is dimensionless, because the initial data are rendered 

dimensionless by dividing with an arbitrary constant that has the same units as the 

data (one meter in the present case study). In the back-transform stage the hydraulic 

head estimates are multiplied by this constant. If we use a unit constant (as we do 

herein), these operations have no impact on the number values, they just ensure that 

the final estimates are in the correct units.  

 
Table 5.2 Cross-validation results of the spatial models with the optimal semivariograms based on the 

measures listed in section 2.5. OK: Ordinary Kriging. Box-Cox-OK: Box-Cox transformation 

followed by OK and back-transformation. MBC-OK: Modified Box-Cox transformation followed by 

OK and back-transformation. GA-OK: Gaussian Anamorphosis in combination with OK. TGK: Trans-

Gaussian Kriging using the Box-Cox transform. SP: Spartan semivariogram. P: Power-law 

semivariogram. M: Matérn semivariogram. MAE: Mean Absolute Error. MARE: Mean Absolute 

Relative Error. RMSE: Root Mean Square Error. R: Linear correlation coefficient. Optimal values are 

emphasized. 
NT Method Semi-

variogram 

MAE 

(masl) 
BIAS 

(masl) 
MARE RMSE 

(masl) 
R 

OK  SP 3.37 0.02 0.14 5.15 0.91 

P 3.58 0.07 0.15 5.46 0.90 

M 3.80 0.02 0.16 5.84 0.89 

Box-Cox-OK SP 3.30 0.10 0.14 5.14 0.91 

P 3.41 0.09 0.14 5.31 0.90 

M 3.60 -0.30 0.15 5.65 0.89 

MBC-OK SP 3.30 0.02 0.14 5.12 0.91 

P 3.39 0.05 0.14 5.17 0.90 

M 3.60 0.03 0.15 5.54 0.89 

GA-OK SP 3.30 -0.3 0.14 5.14 0.90 

P 3.32 -0.4 0.14 5.21 0.89 

M 3.48 -0.59 0.14 5.54 0.89 

TGK SP 3.28 -0.1 0.14 5.14 0.91 

P 3.35 -0.13 0.14 5.19 0.90 

M 3.43 -0.2 0.14 5.48 0.90 
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Therefore, the MBC-OK method is optimal for interpolating groundwater 

levels in the Mires basin. To further support this choice, a series of specialized 

statistical measures are investigated. The correlation coefficient of the estimates vs. 

the true values is equal to 0.91 (Table 5.2), while the distribution of errors is 

symmetric with a low bias equal to 0.02 masl (Figure 5.2 a). The plot of errors vs. 

estimates (Figure 5.2 b) is centered about zero error, satisfying the “conditional 

unbiasedness” property. According to (Leuangthong et al. 2004), cross-validation that 

yields such results satisfies the conditions for a model with “good” parameters. 

Histogram reproduction is another measure for evaluating the spatial model 

performance (Leuangthong et al. 2004). 

Figure 5.3 shows that the histograms of the measurements and the cross-

validated values are overall in good agreement. In general, the spatial model tends to 

overestimate the lower values while the opposite is true for the higher values. MBC-

OK (with the Spartan model) gives the most accurate estimate, i.e., 29.7 masl for the 

extreme low level in the data set (9.4 masl). Thus it determines the low level with 

≈6% higher accuracy than the second best Box-Cox-OK and TGK, which yield ≈31 

masl and ≈17% higher accuracy than the OK and GA-OK, which yield 33 masl. In 

contrast, the highest level of 62 masl is estimated with higher accuracy ≈ 60 masl by 

all interpolation methodologies tested. 

 

 
Figure 5.2 a Distribution of MBC-OK cross-validation errors. 
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Figure 5.2 b MBC-OK cross-validation estimates and their corresponding errors. 

 

 
Figure 5.3 Histograms of measured values and MBC-OK cross-validation estimates using seven 

classes of width 10 masl each, centered at 5, 15, 25, 35, 45, 55, and 65 masl respectively. 

 

The extreme values in this dataset include the global minimum (9.4 masl), as 

well as three local extremes that differ significantly from their measured neighbors. 

These values are estimated with relatively large errors (see Figure 5.2 a,b) due to the 

significant deviations of the measurements from the values of their nearest 

neighbours. These errors may be due to the presence of fractures near the 

measurement-well (in the case of the minimum) or to locally different inter-bedded 
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sequence of alluvial sediments that can affect the water table head. The highest 

estimation error (Figure 5.2 a,b) is associated with the minimum value of 9.4 masl, 

which differs from its neighbors by at least 10 masl.  

As shown in the histogram of Figure 5.3, the tails of the measured histogram 

are wider than those of the estimates. The discrepancy in the lower tail has been 

explained above. The underestimation of the high values (i.e., the values exceeding 60 

masl) is due to the smoothing effect of kriging and the fact that only two such values 

exist in the dataset. The impact of the extreme values is mostly noticeable in the 

cross-validation analysis, because the values in question are removed and then 

estimated from their neighbors. The generated maps, however, are based on all the 

measurements and thus not affected by the removal of local extreme values.  

A series of statistical metrics are used to compare the performance of different 

interpolation methods. MAE is a linear score, meaning that the errors at all points are 

equally weighted in the average. On the other hand, RMSE is a quadratic scoring rule, 

i.e., the errors are squared before averaging, thus leading to relatively higher 

contributions of larger errors. The difference between the RMSE and MAE increases 

with the variance of the errors. Herein the difference between the two metrics is small 

(Table 5.2). The slightly better RMSE obtained with MBC-OK is due to the more 

accurate estimation of the extreme low value by this method. The bias is the 

difference between the estimated and the true values at a single point; hence, it can be 

positive or negative or zero. Unbiased estimation corresponds to zero bias. The sign 

of the average bias shows if the specific method underestimates (negative bias) or 

overestimates (positive bias) the data. Low bias errors mean more accurate 

estimations.  

The MARE measures the accuracy of the estimates relatively to the respective 

measured values; MARE is independent of the units of measurement. The magnitude 

of MARE for all the normalization methods presented herein is similar and 

approximately equal to 14%. This estimate is partly due to the overestimation of the 

minimum value (9.4 masl) by all the methods (see above). The linear correlation 

coefficient (R) measures the strength of the association between the estimates and the 

measured values. Values of the coefficient close to 1 imply high association strength 

between the estimates and the measurements. In the present study, for all the methods 

the correlation coefficient has high values (ranging from 0.89 to 0.91).  
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All the error metrics are significant for evaluating the methods’ performance, 

and they are typically used in geostatistical studies (Goovaerts 1997). We give 

priority to MAE, bias and RMSE which are able to differentiate between the 

methodology and the semivariogram model used, in contrast with MARE and R that 

are similar for the majority of methodologies. Since the bias is the most sensitive 

evaluator of method performance, we use it to select the optimal transformation 

method (MBC-OK). 

The validation metrics presented in Table 5.2 show that the studied methods 

are practically insensitive to the methodology used to normalize the data. This occurs 

because the transformation methods used lead to similar values for the skewness and 

kurtosis of the transformed data (Table 5.1). In addition, the differences between the 

transformation methods and classical OK are not significant. This is due to the fact 

that the original dataset has a mild deviation from the normal distribution, and the OK 

estimator is used for all cases tested following the normalizing transformation. For all 

the methods tested, however, there are differences in the validation metrics between 

different semivariogram models. Nevertheless, the validation metrics obtained with 

different normalizing methods but with the same semivariogram model are similar. 

This chapter shows that non-linear normalization methods help to improve the 

performance of kriging estimations (Table 5.2), even for datasets that has mild 

deviations from the normal distribution. 

The optimal interpolation map is derived using the MBC-OK with the Spartan 

model approach on a 100100 grid defined in normalized coordinate space (actual 

cell size: 114m   47m). Estimates are obtained only at points inside the convex hull 

of the measurement locations (7317 grid points). The contour map in physical space is 

shown in Figure 5.4. The kriging standard deviation, which represents the uncertainty 

of the estimates, is shown in Figure 5.5. The optimum search radius used with the 

Spartan model (determined from leave-one-out cross-validation) is equal to 0.39 

(normalized units), which is a little shorter than the determined characteristic length. 

Interpolation and error maps for all the normalization methods investigated 

and for classical OK are constructed with the optimal semivariogram (Spartan); the 

maps are compared in Figure 5.6 to Figure 5.13. For the specific dataset there are no 

significant differences between the generated groundwater level maps. This is 

expected since the estimation measures are similar for all the methods, and especially 

for those that use a normalization process (Table 5.2). According to the interpolation 
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results, MBC-OK delivers a slightly more accurate groundwater level interpolation 

map compared to the other methods. Specifically, on the grid nodes close to the 

minimum value, MBC-OK method provides estimates closer to 9.4 masl (9.44 masl) 

than the other methods (which give estimates larger than 9.6 masl). Another feature 

observed in the maps is the smoothness of TGK contours compared to the other 

normalization methods. In advance the standard deviation maps of the methodologies 

tested (MBC-OK, GA-OK, TGK, Box-Cox-OK) present similar results due to the 

normalization methods similar performance and of the more efficient semivariogram 

parameters calculation, but significantly lower of the OK method. MBC-OK method 

provides the estimates with the lowest standard deviation. This shows that non-linear 

normalization methods improve in addition to kriging estimations their standard 

deviation results. 

 

 
Figure 5.4 Isolevel contour map of estimated groundwater level in the Mires basin using MBC-OK 

(red circles denote location of wells and solid black line the temporary river path). 
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Figure 5.5 Isolevel contour map of kriging standard deviation for groundwater level in the Mires basin 

using MBC-OK (red circles denote location of wells and solid black line the temporary river path). 

 

 

 
Figure 5.6 Isolevel contour map of estimated groundwater level in the Mires basin using GA-OK (red 

circles denote location of wells and solid black line the temporary river path). 
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Figure 5.7 Isolevel contour map of kriging standard deviation for groundwater level in the Mires basin 

using GA-OK (red circles denote location of wells and solid black line the temporary river path). 

 

 
Figure 5.8 Isolevel contour map of estimated groundwater level in the Mires basin using TGK (red 

circles denote location of wells and solid black line the temporary river path). 
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Figure 5.9 Isolevel contour map of kriging standard deviation for groundwater level in the Mires basin 

using TGK (red circles denote location of wells and solid black line the temporary river path). 

 
Figure 5.10 Isolevel contour map of estimated groundwater level in the Mires basin using Box-Cox-

OK (red circles denote location of wells and solid black line the temporary river path). 
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Figure 5.11 Isolevel contour map of kriging standard deviation for groundwater level in the Mires 

basin using Box-Cox-OK (red circles denote location of wells and solid black line the temporary river 

path). 

 
Figure 5.12 Isolevel contour map of estimated groundwater level in the Mires basin using OK (red 

circles denote location of wells and solid black line the temporary river path). 
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Figure 5.13 Isolevel contour map of kriging standard deviation for groundwater level in the Mires 

basin using Box-Cox-OK (blue circles denote location of wells and solid black line the temporary river 

path). 

 

Stochastic interpolation methods such as kriging allow the comparison of the 

empirical semivariogram of the data with that obtained from the interpolation results, 

in order to test for the accurate reproduction of the spatial continuity. In Figure 5.14 

we compare the experimental semivariogram of the observations and the experimental 

semivariogram obtained from the MBC-OK interpolation estimates. The 

semivariogram of the estimates shows very similar structure to that of the data. 

However, the former exhibits overall lower variability that reflects the smoothing 

effect of interpolation. The MBC-OK method is optimal with respect to the statistical 

metrics investigated above, and thus we used it for the interpolation of groundwater 

levels in the basin. Experience from previous studies has shown that a generally 

optimal interpolation method does not exist. Therefore, MBC-OK is optimal with 

respect to the specific case study and no general conclusions for the method’s 

efficiency can be drawn. Hence, the optimal method should be determined for each 

case individually. 
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Figure 5.14 Comparison of groundwater level omnidirectional experimental semivariograms: data 

(stars), and MBC-OK estimates (circles). 
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6. Improvement of groundwater level prediction in sparsely 

gauged basins using physical laws and local geographic 

features as auxiliary variables4 

 

6.1 Introduction 

 In Stochastic hydrology physical laws and analytical solutions are 

incorporated in stochastic processes in order to predict the value of some variable at 

non-observed times or at non-observed locations. A physical law is a generalization 

obtained from the scientific study of the facts of observations. Physical laws are 

expressed by mathematical equations and govern the evolution of natural processes in 

space/time. They provide an important source of general knowledge that can interpret 

the natural process derived from the available data. Any physically based model 

becomes a stochastic model once its inputs, parameters or outputs are treated as 

random (Christakos 2000). A series of characteristic examples in stochastic hydrology 

that incorporated physical laws are presented for completeness below. 

 A physical law used in hydrology is the Perturbation-based spectral theory, 

which presumes local statistical homogeneity, and provides generic theoretical results 

for the head variance, effective conductivity tensor, and macrodispersivity tensor in a 

field (Gelhar 1986). Another stochastic approach based on the physical law of 

hydrological balance of an aquifer achieves water table elevations estimation using a 

regionalised autoregressive exogenous variable (RARX) model with precipitation 

surplus as the input variable. Classical geostatistics were applied as regionalisation 

functions (Knotters and Bierkens 2001). In addition a stochastic rainfall-runoff model 

based on the mass balance of a watershed was constructed with the rainfall excess 

input to the model to be treated as a stochastic process with a unit-step function. A 

stochastic differential equation described the relationship between the mean rainfall 

excess and the mean direct runoff (Lee et al. 2001). Finally eco-hydrological 

processes in water-limited ecosystems are described by simplified, vertically averaged 

soil moisture models. The principal aim of these models is to understand how the 

                                                 
4
 This chapter is an adaptation of a paper accepted for publication in Advances in Water Resources Journal 

(Varouchakis and Hristopulos, 2012), please see page 179 for details. 
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main physical processes linking soil, vegetation, and climate impact on the statistical 

properties of soil moisture. A key component of these models is the stochastic nature 

of daily rainfall, which is mathematically described as a compound Poisson process 

with daily rainfall amounts drawn from an exponential distribution (Verma et al. 

2011). 

 Classical geostatistics (e.g., kriging estimators) were primarily designed to use 

hard data (i.e., sets of measurements). These methods according to Christakos (2000) 

lack to account for important sources of physical knowledge (including physical laws, 

empirical models, higher-order space/time moments, and uncertain information). A 

framework that is incorporating various physical knowledge bases into spatiotemporal 

analysis and mapping is BME introduced by Christakos (1990, 1991b, 2000). The 

spatiotemporal distribution of most natural variables can be expressed through 

physical laws which, thus, constitute important aspects of the mapping process. 

Incorporation of general knowledge in the mapping process can lead to considerable 

gains in the estimation accuracy. For example an advection model provides valuable 

information for managing uncertainty in an air quality study. In the BME framework, 

physical laws are incorporated in the general knowledge by means of an appropriate 

set of moment equations (Christakos 2000). Another example is the incorporation of 

the Darcy law in the mapping of water table elevations that leads to predictions that 

are physically meaningful and more accurate than those provided by classical data 

analysis. (Serre and Christakos 1999). 

 Physical laws however have found applications in classical geostatistical 

modeling, e.g. for the definition of space only or spatiotemporal distance metrics, for 

the development of covariance functions in order to model the spatiotemporal data 

dependence and in the approximation of the trend term for spatial geostatistical 

models. 

 Metrics are mathematical expressions that define the concept of distance in the 

space-time continuum. Distance cannot always be defined explicitly in space-time. It 

is possible to decide using additional information, about the distance between two 

pairs of points by considering the outcome of a natural process. For example, the 

distance between two pairs of points in an aquifer regarding a pollutant transport is 

defined not purely form a geometric property of space-time, but it also depends on the 

medium's properties. Measuring distance by means of fluid tracer dispersion 

(dynamics of transport) can lead to very different results than measuring distance by 
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means of Euclidean distance. If a physical law is known for a natural (e.g. hydrologic) 

process it can also play a fundamental role in determining the appropriate space/time 

metric (Christakos and Hristopulos 1998, Christakos et al. 2000).  

 Covariance models are inherently connected to the physical laws governing a 

process. Natural processes are involved in the transport of water and pollutants from a 

source through different media. The evolution of natural processes is governed by 

differential equations that describe the motion of concentrations and fluxes in space 

and time. The coefficients of these equations represent properties of the media within 

which the processes take place. Usually, a complete characterization of the 

coefficients variability is impossible due to measurement errors that lead to 

uncertainty and because of limited sampling points in space-time. Such processes are 

represented by means of stochastic partial differential equations (SPDE). Exact 

solutions of SPDE are not in general available in explicit form. Two approaches are 

commonly used for the solution of SPDE: The first focuses on obtaining solutions that 

are valid for specific realizations of the coefficients of the spatiotemporal random 

field (S/TRF), the second approach focuses on the estimation of stochastic moments. 

The latter is of interest in this thesis as the integration of physical processes in the 

covariance function is researched. Moment-based approaches (obtain the mean and 

the covariance from monitoring data and physical modeling) focus on solving the 

deterministic equations that govern the stochastic moments of the natural processes 

represented by the SPDEs. The moment equations are solved explicitly only if the 

correlation functions of the coefficients satisfy certain symmetry requirements such as 

homogeneity and isotropy. As moment equations may suffer from the well-known 

closure problem; it is achieved using truncated perturbation series or non-perturbative 

approximations (Christakos and Hristopulos 1998). 

 Covariance models except of describing how the correlations behave in space 

and time, they can be intrinsically connected to the physical laws governing the 

process. For example power law correlation indicates the existence of scaling in the 

system i.e. due to different physical causes which denotes that the system may exhibit 

critical behavior. Percolation type models of flow and transport in porous media is an 

example of systems that exhibit critical behavior. Certain processes also, such as 

fractional Brownian motions (Mandelbrot and Van Ness 1968) are characterized by 

power law correlations. The apparent irregularity of such processes was shown to 

derive from the long range nature of the power law correlations among individual 
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events (Christakos and Hristopulos 1998). Generally power law correlations have 

been observed in environmental processes (Webster and Oliver 2001). 

 In addition physically motivated space-time random fields covariance models 

can be developed inspired by natural models such as the diffusion equation and the 

invasion percolation model. Invasion percolation describes the displacement of a 

defending viscous fluid in a porous medium (e.g., oil) by an invading fluid of lower 

viscosity (e.g., water). Spatiotemporal covariance models are derived so from a 

physical differential equation such as the diffusion equation as from the invasion 

percolation model in order to be applied in geostatistical modeling (Christakos and 

Hristopulos 1998, Kolovos et al. 2004). 

 Furthermore Heuvelink et al. (1996) suggested the inclusion of more process-

oriented information into the interpolation, thus to incorporate physical laws about the 

transport of water in the soil, such as the law of continuity and Darcy's law. Therefore 

(Tonkin and Larson 2002) suggested the following approach. They use a linear drift 

term to approximate the hydraulic head field trend. However near extracting or 

injecting wells a point logarithmic component is added to the drift to account for the 

drawdown caused by the pumping well. This approach is applicable if analytical 

solutions for the aquifer response are available such as application of Theis method 

which is based on pumping tests. The above propositions gave the idea of using a 

physical law that could describe the aquifer behavior and used as the trend term in a 

spatial trend model for the groundwater level of the Mires basin. 

 Auxiliary information is often included as a drift term in spatial models in 

order to improve the accuracy of the estimations by capturing local properties. 

Usually polynomial functions of space coordinates, rainfall, or surface elevation from 

a Digital Elevation Map (DEM) are used as secondary information.  

 We propose therefore that the prediction of the hydraulic head spatial 

variability in Mires basin can be improved by incorporating in the trend a) the 

distance from a temporary river crossing the basin and b) a component based on the 

generalized Thiem’s equation for multiple wells. In addition we use the flexible 

Spartan semivariogram family to perform Residual Kriging. Our proposal is 

supported by the results of cross validation analysis. Our results can be generalized to 

other unconfined aquifers. 
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6.2 Normalizing transformations 

A nonlinear transformation ( )·g  is applied to the data if there is deviation 

from the normal distribution. Normality is desirable for the application of OK (Clark 

and Harper 2000). OK is the optimal estimator if the data follow a multivariate 

normal distribution and the true semivariogram is known. Significant deviations from 

normality, e.g., excessive skewness or presence of outliers, impair the estimation of 

the semivariogram structure and OK performance (Gringarten and Deutsch 2001, 

Ouyang et al. 2006). Application of a normalizing transformation on the univariate 

distribution of the data can suppress outliers, improve stationarity and semivariogram 

stability and reduce the impact of extremes (Deutsch and Journel 1992, Armstrong 

1998). In practice, multi-normality is invoked as a working hypothesis.  

On the non-detrended head data we applied the Box-Cox transformation 

(section 5.2) and the new normalization method presented in this thesis; modified 

Box-Cox transform (section 5.5). On the de-trended head data we applied the 

modified Box-Cox transform, which can handle negative values. 

 

6.3 Trend Modeling of Hydraulic Head in Mires Basin 

Below we present the trend models for Mires basin. Following other studies, 

we first include secondary information in the trend from a Digital Elevation Model 

(DEM) of the area (Hoeksema et al. 1989, Deutsch and Journel 1992, Goovaerts 

1997, Desbarats et al. 2002, Rivest et al. 2008, Nikroo et al. 2009). The correlation 

coefficient of the groundwater level and the ground surface elevation in Mires basin is 

calculated at 0.65, a value that is characterized as important (Tichy 1993). We also 

include information about the distance of the estimation point from the temporary 

river crossing the basin. This is an important auxiliary variable as it is observed that 

the groundwater level at the measured locations have an increasing trend moving 

away from the river bed. Finally, the hydraulic head trend is approximated by a term 

that is based on the multiple well extension of Thiem’s equation. The motivation of 

using such a term corresponding to a physical law came from the idea to use an 

analytical solution that could describe the water table level under pumping conditions. 

A data set with information about the basin’s hydraulic conductivity, the pumping 
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activity, the aquifer’s saturation thickness and the wells radius of influence were used 

in order to solve locally the proposed analytical equation. 

 

6.3.1 Topographic variables component 

We introduce in the trend an external variable that represents the closest 

distance between the sampling locations and the temporary river that crosses Mires 

basin. The correlation coefficient between the groundwater level and the closest 

distance from the river is equal to 0.68. This means that the groundwater level is 

higher away from the river bed than closer to it. The dependence is reasonable 

considering that the agricultural activity in the area is concentrated along the 

temporary river. The following expression for the trend of the hydraulic head (in 

masl) is proposed: 

 

( ) ( ) ( )Zm a d f DEM c  s s s , (6.1) 

 

where , ,a f c  are linear coefficients, ( )d s  is the minimum distance of point s  from 

the curve that follows the river bed, and ( )DEM s  is the local DEM value. We also 

use the linear approximation 0( ·)DEMm c sgs , where ( )DEMm s  is the smoothed 

topographic elevation, g  is the uniform gradient, and 0c  the reference elevation at the 

origin of the coordinate system. 

 The river bed can be modeled in two dimensions as a curve. Herein we 

represent the curve by a second-order polynomial, 2

0 1 2( )y x w w x w x  . The 

coefficients 0 1 2,,w w w  are determined by a least-squares fit of ( )y x  to “anchor points” 

along the river bed (see Figure 6.1). 

 As it is well-known, the closest distance of any given point from a curve is the 

perpendicular distance between the point and the tangent at a unique point of the 

curve. The slope of the straight line with the closest distance from a curve, which is 

perpendicular to the tangent, is given by 
min,0 )

1

(s
   , where min,0( )s  denotes the 

tangent’s slope. The perpendicular line has a form of y x b   . The initial point 

coordinates 0 0,x y  belong to that line as well as the closest to it point of the curve 
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min,0 min,0,x y . Substituting these two pairs of coordinates and the   factor in the 

perpendicular line equation after elimination of the factor b  an equation of the 

perpendicular line that contains the two desired pairs of coordinates is produced, 

min,0 min,0 min,0 0 0min,0( ) ( ) 0s sy y x x      . The tangent’s slope is equal to the first 

derivative of the curve. 

 

 

Figure 6.1 Locations of “anchor points” along the river bed (stars), second-order polynomial model of 

the river (continuous line), well locations (circles) and their projections (crosses) on the model curve of 

the temporary river. 

 

 In general, the distance of a point 0 0 0( , )x ys  from the river curve is given 

by,  

 

2 2 2

0 min,0 0 min,0 0( ) )( ()d x x y y   s , (6.2) 

 

where min,0 min,0 min,0( , )x ys  is the closest point to 0s  on the river curve. This is 

determined by solving the following system of equations: 

 



PHYSICAL LAWS AND LOCAL GEOGRAPHIC FEATURES  

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 
HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

108

min,0min,0 0 1 min,0 2
2x w xy w w= + + , (6.3) 

min,0 min,0 0 0min,0( ) ) 0( y y x x− + − =sl , (6.4) 

 

where min,0 1 2 min,0) 2( ww x+=sl  is the slope of the line tangent to the river curve at 0s . 

The solution of the nonlinear system (6.3)-(6.4) with respect to min,0 min,0( , )x y , for 

every 0 0,x y  depends on the roots of a third order (cubic) function after the 

substitution of (6.3) into (6.4): 

 

{ {
3 2

min,0 1 2 min,0 0
2 2
2 2 1 2 1 1 00 min,0 0 02 3 (2 2 1) 0

a cb d

w w w w w w y x w w w yx xx w+ + + − + + − − =14444244443 1442443 . (6.5) 

 

Every cubic equation with real coefficients has at least one solution among the real 

numbers however several possible cases can be distinguished using the discriminant,  

 
3 2 2 3 2 218 4 4 27abcd b d b c ac a d      . (6.6) 

 

Hence if Δ > 0, the equation has three distinct real roots, if Δ = 0, the equation has a 

multiple root and all its roots are real and if Δ < 0, the equation has one real root and 

two non-real complex conjugate roots. The real roots of equation (6.5) with respect to 

min,0( )x  are then substituted in equation (6.3) to calculate the corresponded min,0( )y . 

The point min,0s  is then determined by the root, with respect to min,0 min,0( , )x y , of the 

nonlinear system (6.3)-(6.4) that minimizes 0( )d s  given by (6.2). 

 

6.3.2 Multiple-well hydraulic head component 

Physical laws incorporation in stochastic hydrology aspects and in classical 

geostatistical modelling reviewed previously gave the idea to introduce a spatial trend 

model that could incorporate in the trend a physical law that describes the Mires basin 

aquifer behavior with respect to groundwater level and pumping activity. 

Therefore we include in the trend modeling the analytical solution for a system 

of multiple wells in an unconfined aquifer. This component of the trend is based on 

Thiem’s equation for an unconfined aquifer. The equation describes the relationship 
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between the steady-state radial inflow into a pumping well and the drawdown (Todd 

1959, Charbeneau 2000). It is commonly used to estimate aquifer properties, i.e., 

hydraulic conductivity or transmissivity (Bear 1979, Butler Jr. 1988, Silliman and 

Caswell 1998, Balkhair 2006, Altunkaynak 2007) but also for calculating the 

hydraulic head (Yeo and Lee 2003, Pinder and Celia 2006, Steward and Jin 2006). 

Thiem’s equation assumes that the aquifer is homogeneous (Thiem 1906) and in 

steady-state (Todd 1959, Bear 1979). As it was previously mentioned (section 3.2) to 

a large extent Mires basin is considered as a hydro-geologically uniform study area, 

therefore the basin is assumed geologically homogeneous. Steady-state conditions are 

also assumed as according to observations there is not temporal short term variation 

of hydraulic head. 

Thiem’s equation for a single pumping well in an unconfined aquifer is 

provided by the following function: 

 

2 2

0

1
( ) ( ) ln ,

r
H H Q r R

K R
s s



 
   

 
. (6.7) 

 

However it can be generalized to include the influence of a number of pumping wells 

as follows (Todd 1959, Bear 1979): 

 

2 2

0

1

1
( ) ( ) ln , , 1 ,

n
i

i i i

i i

r
H H Q r R

K
i

R
n

 

 
   


 


s s . (6.8) 

 

In the above, ( )H s  is the estimated hydraulic head, 0 )(H s  the initial hydraulic head 

before abstraction, K is the hydraulic conductivity, n is the number of wells 

( , ,1i n  ), Q is the pumping rate, || ||i ir  s s  is the distance of the estimation point 

from the ith well, and iR  is the radius of influence of the i-th well. The pumping wells 

contributing in Eq. (6.8) are those whose distance from the estimation point does not 

exceed their radius of influence. 

 The average pumping rates (m
3
/h) at the 70 wells of the study are used in 

order to determine the variable iQ . As initial values before abstraction we use the 

hydraulic head profile of the preceding hydrological year for the same period (April). 
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Readings from 10 piezometers in the basin are available for that month. The initial 

hydraulic head is assumed to follow the linear trend 10 2( )H J x J y D  s , where 

1 2, ,J J D  are linear coefficients obtained by a least squares fit to the 10 available 

measurements. The hydraulic conductivity in the basin varies from 0.0014 to 0.00014 

m/sec with the value 10
-4

 considered to be typical for the basin (Donta et al. 2006, 

Kritsotakis 2010). 

 Since pumping tests are not available, we determine the radius of influence 

using empirical equations (Bear 1979, Sen and Al-Somayien 1991, Prakash 2004), 

subject to available hydrogeological field data, i.e.,  

 

,3000i w i iR s K , (6.9) 

 

, 0,575i w i i iR s H K , (6.10) 

 

where ws  is the drawdown at the well face (m), iK  is the hydraulic conductivity 

around the pumping well and 0,iH  (m) is the initial saturated thickness, i.e., the initial 

hydraulic head before the abstraction. Since the drawdown and hydraulic conductivity 

are not known at every well, an effective uniform value is used based on the 

sensitivity analysis described below. Hence, Eq. (6.9) provides a common radius of 

influence for all the wells, while Eq. (6.10) leads to iR  values that depend on the 

initial saturated thickness of the aquifer. 

 Linear regression analysis of the mean annual groundwater levels (Figure 6.2) 

estimates the rate of mean annual level decrease at 1.85m/yr with the 95% confidence 

interval at [1.60 - 2.10]. The correlation coefficient of the fit to the data is R= -0.96, 

implying a strong negative correlation. Analysis based on a groundwater balance 

model leads to a drop similar with that predicted by the regression. The mean annual 

recharge in the basin is 14.2 Mm
3
/yr, as reported by the Department of Agriculture of 

the Regional Council of Crete, while the mean annual abstraction rate is 22 Mm
3
/yr. 

Therefore, the mean absolute volumetric consumption is calculated at 7.8 Mm
3
/yr. 

Dividing this value by the surface area of Mires basin (50.3 km
2
), the loss of 

groundwater content is estimated at 0.156m/yr. Further, dividing this figure with the 

average porosity of the basin (8.5%), the annual decrease of groundwater level is 
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estimated at 1.83 m/yr, in close agreement with the estimate from linear regression 

(1.85 m/yr). A similar balance analysis (Croke et al. 2000) estimated a groundwater 

level drop of 1.5m/yr for the time period from 1985 until 1995.  

 

 

Figure 6.2 Annual average groundwater level variation in Mires basin for the period covering the years 

1981-2003 (circles) and fitted linear trend (broken line). 

 

 We estimate an optimal “effective” hydraulic conductivity using sensitivity 

analysis that focuses on the reproduction of the measured head values by means of 

leave-one-out cross validation and RK. The mean absolute error (MAE) is used as the 

criterion of performance. In the analysis we use drawdown values in the 95% 

confidence interval [1.60 – 2.10]. Values of the hydraulic conductivity between the 

reported minimum and maximum are investigated to determine an effective K value 

for the basin. We found that the MAE is primarily sensitive to the hydraulic 

conductivity. Figure 6.3 shows the dependence of the MAE on the hydraulic 

conductivity; a clear minimum is obtained for K = 0.00015 m/sec. This value 

minimizes the MAE for all values of ws  tested (e.g., Figure 6.3). The lowest MAE is 

obtained by using ws  equal to 1.85m. Based on the above estimates and 

10 2( )H J x J y D  s , the minimum radius of influence in Eq. (6.10) is 
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approximately 80 m and the maximum 150 m. Equation (6.9) leads to a uniform value 

of 70 m. 

 

 

Figure 6.3 Sensitivity analysis to determine the optimal hydraulic conductivity (K) value used for the 

calculation of the radius of influence R in (6.9) or (6.10) and subsequently for the hydraulic head 

(trend), in (6.8). The cross validation measure MAE, is calculated based on RK methodology. Different 

values of K between the two extremes are investigated while ws  is set equal to 1.85m. 

 

6.4 Interpolation of Hydraulic Head in Mires Basin: Models and 

Results  

6.4.1 Exploratory statistics 

The main statistics of the head data are shown in Table 3.1. The skewness and 

kurtosis coefficients are equal to
 
ˆ 0.81zs   and ˆ 2.58zk   respectively, implying a 

mild deviation from Gaussian statistics ( ˆ 0zs  , ˆ 3zk   respectively). Data 

transformations are used to improve normality as shown in Table 6.1. The residuals of 

the trend models also display deviations from normality that are reduced by means of 

the MBC transformation (Table 6.1). 
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Table 6.1 Skewness ˆ
zs  and kurtosis ˆ

zk  coefficients of head data and of trend models residuals 

following Box-Cox normalization (for non-negative values) and modified Box-Cox (MBC). T-DEM 

model uses the surface elevation as an external variable, the T-DEM-UGA uses the uniform-gradient 

approximation of the DEM, the T-RD uses the distance from the river curve, the T-RD-DEM-UGA 

uses a linear combination of the distance from the river curve and the uniform-gradient approximation 

of the surface elevation and T-MW approximates the trend using Thiem’s equation, Eq. (6.8). 

 Method No Trend 

approximation 

T-DEM T-DEM-

UGA 

T-RD T-DEM-

UGA-

RD 

T-MW 

 

Head data 
ˆ

zs  0.81 - - - - - 

ˆ
zk  

2.58 - - - - - 

 

Residuals  
ˆ

zs  - 1.23 0.9 0.7 0.61 0.81 

ˆ
zk  

- 5.1 4.4 4.07 4.17 2.47 

 

Box-Cox 
ˆ

zs  0.01 N/A N/A N/A N/A N/A 

ˆ
zk  

2.70 N/A N/A N/A N/A N/A 

 

MBC 
ˆ

zs  0.13 0.6 0.54 0.21 0.19 0.20 

ˆ
zk  

2.99 3.54 3.47 3.23 3.19 2.91 

 

6.4.2 Geostatistical head models 

As reported in Section 2.5, for interpolation we use both models with trend 

function, to which we refer as (T), and models without trend (NT). Normalizing 

transformations are used in both cases. For models with trend, the transforms act on 

the residuals, while for the non-trend models they act on the original data. In the T-

case we investigate various trend options: the T-DEM model uses the surface 

elevation as an external variable, the T-DEM-UGA uses the uniform-gradient 

approximation of the DEM, the T-RD uses the distance from the river curve, the T-

RD-DEM-UGA uses a linear combination of the distance from the river curve and the 

uniform-gradient approximation of the surface elevation and T-MW approximates the 

trend using Eq. (6.8). 

 

6.4.3 Head models without trend 

Two general approaches are used for interpolation: the first one applies OK 

with the optimal semivariogram function to the original data. The second applies a 

normalizing transformation (Table 6.1) followed by OK on the transformed variable, 

and it finally back-transforms the predictions. 

The parameters of the theoretical semivariogram models (Gaussian, 

Exponential, Linear, Spartan, Matérn, Spherical, and Power-law) obtained by least 
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squares fitting to the experimental omnidirectional semivariogram of the original 

hydraulic head data are shown in Table 6.2. The Spartan model gives the best fit in 

terms of cross validation results of all the NT models tested (Table 6.3). 

Normalization methods improve OK estimation measures, with the MBC method 

performing overall slightly better than Box-Cox. 

 
Table 6.2 Optimal estimates of semivariogram model parameters obtained by least squares fit to 

experimental semivariogram. Sill and characteristic length   are in normalized units. 

 

Semivariogram 

model 

 

sill 

 

  

 

Other 

parameters 

Matérn 440  0.94  0.92  

Exponential  133 0.30 NA 

Spherical  150 0.63 NA 

Spartan  184 0.46 1  1.12 

Gaussian  160 0.28 NA 

Power Law 538 NA 2H  1.31 

Linear 331 NA NA 

 

Table 6.3 Cross validation results of spatial models with optimal semivariograms, based on measures 

listed in section 2.5. OK: Ordinary Kriging. Box-Cox & OK: Box-Cox transformation followed by OK 

and back-transformation. MBC & OK: Modified Box-Cox transformation followed by OK and back-

transformation. SP: Spartan semivariogram. P: Power-law semivariogram. M: Matérn semivariogram. 

NT Method Semi-

variogram 

MAE 

(masl) 
BIAS 

(masl) 
MARE RMSE 

(masl) 
R 

 

 

OK  

SP 3.37 0.02 0.14 5.15 0.91 

P 3.58 0.07 0.15 5.46 0.9 

M 3.80 0.02 0.16 5.84 0.89 

 

 

Box-Cox & OK 

SP 3.30 0.10 0.14 5.14 0.91 

P 3.41 0.09 0.14 5.31 0.90 

M 3.60 -0.30 0.15 5.65 0.89 

 

 

MBC & OK 

SP 3.30 0.02 0.14 5.12 0.91 

P 3.39 0.05 0.14 5.17 0.90 

M 3.60 0.03 0.15 5.54 0.89 
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Note that the Spartan semivariogram is continuous but non-differentiable, 

implying that the water table level is a non-differentiable function. Similarly, a study 

focusing on an aquifer in Belgium (Fasbender et al. 2008), proposed the spherical 

semivariogram. The superior performance of non-differential semivariograms versus 

differentiable models is surprising at first, since the hydraulic head is assumed to be a 

differentiable function in the saturated zone. However, the water table level 

corresponds to the surface defining the upper boundary of the saturated zone. One can 

model the elevation as the result of a deposition-removal process that adds (e.g., due 

to precipitation) and removes (e.g., due to pumping and evapotranspiration) locally 

varying increments of water. Such an idealized process is expected to yield a 

fractional Brownian motion (fBm) (Mandelbrot and Van Ness 1968). In surface 

hydrology fBm processes have been used as models of reservoir water levels (Feder 

1988). The fBm models have power-law semivariograms of the form 2 H( )z r r   

with 0 H 1  . As shown in Table 6.3, the power-law semivariogram with H 0.65  

performs closely to the Spartan model. H 0.5  implies persistent correlations of the 

water table level values in the basin. 

 

6.4.4 Head models with trend 

In the case of spatial models with trend components RK is applied. RK 

combines a trend function with interpolation of the residuals. The omnidirectional 

experimental semivariogram is calculated by applying the method of moments (2.10) 

to the transformed residuals. The MBC transformation is used to normalize the 

residuals (Table 6.1). The Spartan semivariogram model gives overall the most 

accurate cross validation results in all cases, while the power-law and the Matérn 

semivariogram come close (Table 6.4 to Table 6.8). 

 

Table 6.4 Cross validation measures (cf. section 2.5) for spatial T-DEM model with optimal 

semivariograms: trend using DEM surface elevation with 0.37, 30 .75, f ca    in (6.1). MBC & 

RK: Residual Kriging with modified Box-Cox transformation of residuals and back-transformation. 

SP: Spartan semivariogram. P: Power-law semivariogram. M: Matérn semivariogram. 

Method Semi-

variogram 

MAE 

(masl) 
BIAS 

(masl) 
MARE RMSE 

(masl) 
R 

 

MBC & 

RK 

SP 3.32 0.07 0.15 5.20 0.90 

P 3.31 0.03 0.15 5.23 0.90 

M 3.65 0.04 0.16 5.70 0.88 
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Table 6.5 Cross validation measures (cf. section 2.5) for the spatial T-DEM-UGA model with the 

optimal semivariograms: trend using the uniform gradient approximation of the surface elevation with 

0, 0.28, 10.43f ca    in (6.1). MBC & RK: Residual Kriging with modified Box-Cox 

transformation of the residuals and back-transformation. SP: Spartan semivariogram. P: Power-law 

semivariogram. M: Matérn semivariogram. 

Method Semi-

variogram 

MAE 

(masl) 
BIAS 

(masl) 
MARE RMSE 

(masl) 
R 

 

MBC & 

RK 

SP 3.21 0.03 0.14 5.08 0.90 

P 3.22 0.09 0.14 5.10 0.90 

M 3.51 0.04 0.15 5.40 0.88 

 

Table 6.6 Cross validation measures (cf. section 2.5) for spatial T-RD model with optimal 

semivariograms: trend using distance from the river curve with 52.90 90, 0, 20.f ca    in (6.1). 

MBC & RK: Residual Kriging with modified Box-Cox transformation of residuals and back-

transformation. SP: Spartan semivariogram. P: Power-law semivariogram. M: Matérn semivariogram. 

Method Semi-

variogram 

MAE 

(masl) 
BIAS 

(masl) 
MARE RMSE 

(masl) 
R 

 

MBC & 

RK 

SP 3.11 0.08 0.12 4.86 0.92 

P 3.11 0.11 0.12 4.88 0.91 

M 3.11 -0.08 0.12 4.90 0.92 

 

Table 6.7 Cross validation measures (cf. section 2.5) for T-DEM-UGA-RD model with optimal 

semivariograms: trend using gradient approximation to ground surface elevation and distance from 

river curve with 0.27, 2., 2252.07a f c   in (6.1). MBC & RK: Residual Kriging with modified 

Box-Cox transformation of residuals and back-transformation. SP: Spartan semivariogram. P: Power-

law semivariogram. M: Matérn semivariogram. 

Method Semi-

variogram 

MAE 

(masl) 
BIAS 

(masl) 
MARE RMSE 

(masl) 
R 

 

MBC & 

RK 

SP 3.02 0.07 0.12 4.79 0.92 

P 3.02 -0.09 0.12 4.81 0.92 

M 3.01 -0.13 0.12 4.82 0.92 

 

 The cross validation results are compared in Table 6.4 to Table 6.8 with the 

respective ones for the NT models (Table 6.3). Similar performance measures are 

obtained with the T-DEM model that uses the surface elevation, and the results are 

improved by the T-DEM-UGA model using the uniform-gradient approximation. The 

validation measures overall improve by adding the distance from the river curve to the 

trend model (Table 6.6). Incorporation of the smoothed surface elevation (Table 6.7) 

can further improve certain validation measures, e.g., the MAE drops from 3.11 masl 

to 3.02 masl and the RMSE from 4.86 to 4.79 masl. Nevertheless, the bias is similar 

(0.08 and 0.07 respectively), while the MARE and R remains unchanged. 
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 The T-MW model uses Eq. (6.8) for the trend. Equation (6.10) is used for the 

calculation of the wells’ radius of influence. We use the model coefficients 

determined in Section 6.4.2. RK combines the trend with the fluctuation estimate 

based on OK. Table 6.8 presents the cross validation results for different ws  values 

and the three “optimal” semivariogram functions for the transformed residuals. As 

shown in Table 6.8, the Spartan semivariogram gives overall the most accurate 

estimates followed closely by the power-law model. The validation measures are 

further improved, i.e., the MAE drops to 2.75 masl, the RMSE to 4.57 masl, the 

MARE to 0.11, and R increases to 0.93. Such a trend determination does not include 

variance in its estimations, as the coefficients of basis functions, (6.8), r, R are known. 

Therefore the variance of estimations is only due to the interpolation of the residuals. 

 
Table 6.8 Cross validation measures (cf. section 2.5) for T-MW model with optimal semivariograms: 

trend using hydraulic head obtained from multiple wells system operation. MBC & RK: Residual 

Kriging with modified Box-Cox transformation of residuals and back-transformation. ws : the 

drawdown at the well face. SP: Spartan semivariogram. P: Power-law semivariogram. M: Matérn 

semivariogram. 

Method Semi-

variogram 

MAE 

(masl) 
BIAS 

(masl) 
MARE RMSE 

(masl) 
R 

 

MBC & RK 

ws  =1.85 (masl) 

SP 2.75 0.07 0.11 4.57 0.93 

P 2.75 0.11 0.11 4.63 0.90 

M 3.00 -0.14 0.12 4.76 0.89 

 

MBC & RK 

ws  =2.10 (masl) 

SP 2.77 0.13 0.11 4.67 0.91 

P 2.81 0.09 0.11 4.7 0.90 

M 3.04 -0.2 0.12 4.8 0.89 

 

MBC & RK 

ws  =1.60 (masl) 

SP 2.80 0.16 0.11 4.72 0.91 

P 2.80 0.12 0.11 4.71 0.90 

M 3.10 -0.13 0.12 4.84 0.89 

 

 Based on the analysis above and the cross-validation results, we rank the 

“optimal spatial models” (that perform similarly) as follows: (1) T-MW, (2) T-DEM-

UGA-RD, and (3) T-RD. The semivariograms (experimental and modeled) of the 

transformed residuals for the T-DEM-UGA-RD and T-MW models are shown in 

Figure 6.4, Figure 6.5 and the model predictions are based on RK.  
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Figure 6.4 Plots of the omnidirectional semivariogram of the residuals (after applying MBC 

normalization) and the best-fit Spartan semivariogram (SP) model fit (
2 =0.62,  =0.38, 1  1.51). 

The residuals are derived in the framework of the T-DEM-UGA-RD model, i.e., by subtracting a trend 

that accounts for distance from the river curve and surface elevation (in the uniform-gradient 

approximation). The numbers of pairs used at each lag distance are also shown on the plot.  

 
Figure 6.5 Plots of the omnidirectional semivariogram of the residuals (after applying MBC 

normalization) and the best-fit Spartan semivariogram (SP) model fit (
2 =9.9,  =0.28, 1  0.52). 

The residuals are derived in the framework of the T-MW model, i.e., by subtracting a trend that 

accounts for the groundwater level calculated from a multiple wells system operation analytical 

equation. The numbers of pairs used at each lag distance are also shown on the plot. 
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 Figure 6.6 and Figure 6.7 show the experimental omnidirectional 

semivariogram of the measurements along with the semivariograms obtained from the 

leave-one-out estimates of the three top performance models. All four plots show very 

similar structure of spatial continuity. The semivariograms of the estimates exhibit 

lower variability reflecting the smoothing effect of the interpolation. 

 
Figure 6.6 Comparison of omnidirectional experimental semivariograms of the groundwater level 

measurements and of leave-one-out estimates for T-RD and T-RD-DEM-UGA spatial models.  

 
Figure 6.7 Comparison of omnidirectional experimental semivariograms of the groundwater level 

measurements and of leave-one-out estimates for the T-MW spatial model. 
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6.4.5 Mapping of Groundwater Level for the Optimal Model 

We use the T-DEM-UGA-RD and T-MW models with RK to estimate the 

groundwater level on a 100x100 grid defined in normalized coordinate space (actual 

cell size: 114x47 m). Estimates are obtained only at points that lie inside the convex 

hull of the measurement locations (7317 grid points). The contour maps in physical 

space are shown in Figure 6.8 and Figure 6.10. The residuals of the T-DEM-UGA-RD 

model are interpolated using the Spartan semivariogram model (see Figure 6.4) with 

the following optimal parameter values: 2 =0.62,  =0.38, 1  1.51. The residuals 

of the T-MW model are interpolated with the Spartan semivariogram model (see 

Figure 6.5) with 2 =9.9,  =0.28, 1  0.52. The optimum search radius used with 

the Spartan model (determined by the leave-one-out cross validation test) is equal to 

0.38 (normalized units) for both models, identical to the estimated   by T-DEM-

UGA-RD and slightly greater than the   of T-MW.  

 

 

Figure 6.8 Map of estimated groundwater level in the Mires basin using RK-T-RD-DEM-UGA spatial 

model, adapted on the real basin coordinates and location in the valley. 
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Figure 6.9 Map of estimated groundwater level standard deviation in the Mires basin using RK-T-RD-

DEM-UGA spatial model, adapted on the real basin coordinates and location in the valley. 

 

 
Figure 6.10 Map of estimated groundwater level in the Mires basin using RK-T-MW spatial model, 

adapted on the real basin coordinates and location in the valley. 
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Figure 6.11 Map of estimated groundwater level standard deviation in the Mires basin using RK-T-

MW spatial model, adapted on the real basin coordinates and location in the valley.  

 

 Low groundwater levels (20 masl or less) are observed over a significant 

fraction of the basin, with the lowest values observed near the northwest end. The 

kriging standard deviation, which represents the uncertainty of the estimates, is shown 

in Figure 6.9 and Figure 6.11. The highest values, around 0.8 masl for T-DEM-UGA-

RD model and around 2.8 masl for T-MW model are obtained near the boundaries of 

the basin, and especially at distant points from the measurement stations. 

6.5 Discussion 

Changes in precipitation and temperature due to predicted climate changes in 

Crete will substantially affect the island’s water resources due to declining recharge 

rates and increasing abstraction rates. Spatial models for the accurate representation of 

groundwater level variability in vulnerable areas with low groundwater resources, 

such as the Mires basin, will help the identification of susceptible locations and 

potential groundwater resources management plans. In addition, accurate on-grid 

representation of the basin’s groundwater level can be used in numerical models to 

calibrate the estimated hydraulic head field by providing suitable initial conditions. 

The calibrated model combined with an optimization method can lead to improved 
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planning of the abstraction rates that will aim to maintain sustainable groundwater 

levels in the basin (Garg and Ali 2000, Karterakis et al. 2007, Ahlfeld and Hoque 

2008). 

 In this work we assess kriging-based methods for groundwater level 

interpolation (Table 6.3 to Table 6.8) using cross-validation metrics (section 2.7). The 

most accurate results are obtained with the RK method. We introduce two new trend 

components that improve the RK performance. The first one combines the closest 

distance of the sampling stations from the river and a uniform-gradient approximation 

to ground surface elevation (T-RD-DEM-UGA). The residuals are then normalized 

using the MBC method. Figure 6.12 and Figure 6.13 present the interpolated residuals 

and the determined trend distribution in physical space.  

 
Figure 6.12 Map of estimated groundwater level residuals in the Mires basin using RK-T-RD-DEM-

UGA spatial model (interpolation of the residuals obtained from the subtraction of the measured values 

minus the trend determined from the approximation to ground surface elevation and the distance from 

the river curve), adapted on the real basin coordinates and location in the valley.  

 

 Using only the distance from the river (T-RD) model reduces the mean 

absolute error (MAE) to 3.11 masl compared to 3.30 masl and higher for the OK-

based models. Using the full T-RD-DEM-UGA further reduces the MAE to 

approximately 3.00 masl. We obtain the most accurate results based on the second 

trend model that uses the hydraulic head distribution for a system of multiple 



PHYSICAL LAWS AND LOCAL GEOGRAPHIC FEATURES  

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 

HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

124 

operating wells (T-MW). This leads to an MAE of 2.75 masl. On the other hand, the 

T-MW spatial model leads to higher standard deviation ( 2.80 masl) compared T-

RD-DEM-UGA (around 0.8 masl). We believe that this is due to the uncertainty in the 

estimation of the sw and R parameters for the aquifer’s wells. 

 
Figure 6.13 Map of estimated groundwater level trend in the Mires basin using RK-T-RD-DEM-UGA 

spatial model (trend using the gradient approximation to ground surface elevation and the distance 

from the river curve), adapted on the real basin coordinates and location in the valley. 

 

 T-RD, T-RD-DEM-UGA and T-MW (with the Spartan model) also give the 

most accurate leave-one-out cross-validation estimate, i.e., 29.0 (T-RD, T-RD-

DEM-UGA) and 27.7 masl (T-MW) at the extreme low level location (9.4 masl) 

compared to OK which yields 33 masl. In contrast, the highest level of 62 masl is 

accurately estimated by all interpolation methodologies tested.  

 The Spartan semivariogram function provides the optimal fit with the 

empirical semivariogram, with the power-law and the Matérn (with 0.92   for 

original data, 0.46   for residuals of T-RD, 0.34   for residuals of T-RD-DEM-

UGA and 0.48   for residuals of T-MW) models following closely. The Spartan 

model is used for interpolation, because it gives slightly better cross validation 

measures for all methods tested. All of the above semivariogram models are non-

differentiable. Fasbender et al. (Fasbender et al. 2008) also used the non-differentiable 
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spherical model for water table elevation. As we mention in section 4.4.3 we attribute 

the non-differentiability to the water table level being the result of a deposition-

removal process. An idealized such process generates an fBm-like random field that 

has a power-law semivariogram function. The power-law semivariogram is 

unbounded, while the Spartan and Matérn models reach a finite sill. This difference is 

not important on the short and intermediate distances that are important for 

interpolation. From a practical viewpoint, the size of the basin and the deposition-

removal increments is finite; hence, it makes sense that the semivariogram reach a sill 

at some large distance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PHYSICAL LAWS AND LOCAL GEOGRAPHIC FEATURES  

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 

HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

126 

 



STOCHASTIC SPACE-TIME MODELING OF GROUNDWATER LEVEL VARIATIONS  

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 

HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

127 

7. Stochastic space-time modeling of groundwater level 

variations in a Mediterranean basin 

 

7.1 Introduction 

 Classical geostatistical analysis deals with spatial data variability. 

Geostatistical modeling however often needs to address variables that change in space 

as well as in time, such as groundwater level or pollution transport in air or porous 

media. When data is distributed through time and space, a major advantage is that 

higher number of data support parameter estimation and prediction. In a statistical 

context, these data can be considered as random fields spread out in space and 

evolving in time (space-time random fields-S/TRF). Usually spatiotemporal 

interpolation is performed by applying the standard kriging algorithms extended in a 

space-time frame. A historic review of space-time methodology is provided in section 

2.3. 

 In this chapter we use stochastic methods for the spatiotemporal monitoring 

and prediction of the groundwater level in sparsely gauged basins. Sparsely monitored 

watersheds are not regularly monitored through space and time and therefore the data 

availability is not always appropriate for purely spatial or temporal analysis. 

Nevertheless the combination of the measured data can create a very useful dataset for 

spatiotemporal modeling and analysis by incorporating spatiotemporal correlations. 

 Time series of mean annual groundwater level data is available from ten 

boreholes that were monitored usually biannually in Mires basin (wet (April) and dry 

(September) period) between the years 1981 and 2003. Since then (2003-2010), data 

are available from two telemetric stations, (one of which belongs in the set of the 10 

boreholes) that operate in the basin. For the time span 2003-2006 biannual 

measurements at four of the ten boreholes are available (wet period only for 2006). 

Annual precipitation measurements and pumping rate data are also available for the 

time period 1981-2010. 

 First, we model the temporal variation of the mean annual groundwater level 

in order to assess the aquifer’s behavior during the last thirty years with respect to 

parameters that affect the water table fluctuations (e.g. precipitation, pumping). We 

use a discrete time autoregressive exogenous variable model (ARX) based on physical 
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motivation. The term “exogenous” denotes that the model equations incorporate 

information from auxiliary variables in addition to groundwater level. In this study 

precipitation measurements and pumping data are used. The ARX model is embedded 

in a discrete-time Kalman filter to estimate the model parameters and predict the 

optimal mean annual groundwater level. The ARX model is calibrated for the years 

1981 to 2006 and is then used to predict the mean annual groundwater level in the 

basin for the recent years (2007-2010). The ARX model is calibrated with data up to 

the year 2006 in order to include the extremes of the aquifer behavior, i.e. the 

groundwater level increase during 2002-2003 and the decrease in 2005-2006. The 

predictions are validated with the available annual averages reported by the local 

authorities. 

 Secondly, we conduct a spatiotemporal geostatistical analysis of the 

groundwater level using space-time Residual Kriging (STRK). A space-time 

experimental semivariogram is determined from the biannual groundwater level time 

series between the years 1981 and 2003 at the ten sampling stations. We model the 

empirical semivariogram with separable and non-separable theoretical spatiotemporal 

semivariogram functions. STRK is used to predict the groundwater level for selected 

hydrological periods at each sampling station (every six months in the time period 

2004-2010). The predictions are validated for the years up to 2006 (wet period). The 

average of the estimates is compared, for similar periods (2007-2010), to the 

groundwater level in the basin predicted by ARX and to the values reported by the 

local authorities based on the average of the two remotely sensed holes. 

 The ARX estimates are initially characterized by considerable initial 

fluctuations, err 9.6 m for 1981-1995, which are then reduced to err 5.8 m for 

1996-2006 (according to equation (7.1)). The optimal non-separable semivariogram 

function, based on the diffusion equation, delivers significantly more accurate STRK 

predictions than the separable function (product model). Both ARX and STRK 

provide satisfactory predictions, but in contrast with ARX STRK also provides 

spatially distributed estimates. 

 

7.2 Purely temporal variation analysis 

Groundwater has an important role in the water resources balance of hydrological 

basins as it replenishes streams or wetlands and is a primary source of drinking and 
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agricultural water. Groundwater level reduction has implications for the water cycle, 

because groundwater supplies the base flow in many rivers and supports 

evapotranspiration in high water table regions (Famiglietti 2008). Examination and 

modelling of temporal trends of groundwater monitoring wells or of basin averages 

provide useful information about the aquifer temporal response to different 

meteorological (e.g. precipitation extremes) or anthropogenic effects (groundwater 

over-exploitation). Therefore the temporal variation modelling of the groundwater 

level in sparsely monitored basins provide a useful management tool of the basin’s 

groundwater level that helps to assess the future trends. 

7.2.1 Background of Regionalized ARX model of groundwater level 

 A regionalized discrete time auto-regressive exogenous variable model 

(RARX) model that relates explicitly the precipitation surplus with water table depth 

was introduced by Bierkens et al. (2001) and Knotters and Bierkens (2001). The 

RARX-based approach is useful if the data are dense in time and sparse in space; for 

example, if sufficiently long time series of the water table depth are available at a 

limited number of locations. The RARX model is a linear time series model, the 

parameters of which depend on the location (this spatial dependence is referred to as 

regionalization). At locations where time series of water table depths are available, the 

RARX parameters are obtained from the model calibration process; which minimizes 

the error between the measured and the modeled value by adapting the parameter 

values. The parameters of RARX model are physically motivated. The spatial 

variability can be handled with classical geostatistics, such as kriging methods (OK, 

UK). The model parameters can also be estimated at other locations using auxiliary 

physical information, such as rainfall data and topography. Then, classical 

geostatistics approaches that incorporate auxiliary information can be used for 

regionalization (KED, RK) (Knotters and Bierkens 2001). 

The RARX model can be combined with the Kalman filter algorithm (Ljung 

1999, Knotters and Bierkens 2001). This approach permits (1) recursively 

determining the model parameters from the available data and (2) predicting water 

table depths in space and time conditionally on observed water table depths. 

Optionally, auxiliary information, such as meteorological variables and water usage 

can be incorporated in the model. The predictions are updated as new measurements 

of the water table depth are added to the time series. Updating is based on Bayes 
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theorem. This Bayesian updating property makes the Kalman filter attractive for water 

management purposes. The method also permits estimating the statistics of water 

table fluctuations. The accuracy of the estimates of the water table depth forward in 

time is evaluated as follows: expected depths are estimated for time periods with 

available observations, by also incorporating meteorological conditions (e.g. 

precipitation rates) during the monitoring period. The precipitation surplus is 

originally used as an exogenous variable in the RARX model. The parameters of the 

geostatistical model are estimated by treating the RARX model as an equation of state 

within the Kalman filter, and subsequently minimizing the mean square error of the 

filter innovations (i.e., the difference between the measured and predicted values). 

The root mean square prediction error is given by the following equation, i.e., 

 

2

1

1 ˆ( ) ( )
N

err s st
Z t Z t

N



  
  , (7.1) 

 

where ˆ ( )sZ t  is the predicted water table depth, ( )sZ t is the corresponding measured 

value, and N is the length of the time series. 

 

7.2.2 ARX Model for groundwater level in Mires basin 

 The regionalization approach is not applied for Mires basin due to the 

insufficient number of groundwater level monitoring wells (see section 7.1) that does 

not allow a reliable estimation of the model spatial variability at unmeasured 

locations. We therefore model the temporal variation of the mean annual groundwater 

level of the basin in order to simulate the historic groundwater level annual 

fluctuation that is determined from data reported by the regional department of water 

recourses management in Crete and Administration of Land Reclamation of the 

Prefecture of Crete for the basin (Figure 3.6). 

 We model the variation with a recursive discrete time auto-regressive 

exogenous variable model, (ARX) model. The ARX model is embedded in a discrete-

time Kalman filter to estimate the model parameters and predict the optimal mean 

annual groundwater level. The model is defined by equation (7.2), where precipitation 

surplus was used only as an exogenous variable, proposed by Knotters and Bierkens 

(2001): 
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 1 1( ) ( ) ( ) ( ),k k k k k kZ t c a Z t c bP t t t t t        , (7.2) 

 

where ( )kZ t  is the average groundwater level at time kt , t  is the time step i.e. 

1k kt t t     and ( )kP t  is the precipitation surplus over t . ( )kP t  is defined in terms 

of the annual precipitation *( )kP t  averaged over the nearby rainfall stations over the 

respective time interval minus the mean annual actual evapotranspiration, *( )kE P t , 

(see section 7.4.1) i.e.  

 

* *( ) ( ) ( )k k kP t P t E P t . (7.3) 

where, 

*( ) ( )
k

k

t

k

t t

P t dt P t


  , (7.4) 

 

and ( )P t  is the average daily precipitation. 

 The parameters a, b determine the dynamic response of the water table, and c 

is a parameter that determines the average water table depth if ( ) 0kP t  . The variable 

εt is a discrete white noise process with the following properties (where [ ]E   denotes 

the expectation operator): 

 

[ ( )] 0kE t  , (7.5) 

 

2[ ( ) ( )] ( , )k e k eE t u t u    , (7.6) 

 

where 2

  is the error variance and ( , )k et u  is the Kronecker delta defined by 

( , ) 1k et u   if e ku t  and ( , ) 0k et u   if e ku t . 

 Herein we propose and apply an extension of the original model (7.2) in order 

to model the temporal variation of the mean annual groundwater level,  

 

 1( ) ( ) ( ) ( ) ( ),k k k k kZ t c a Z t c bP t dA t t       (7.7) 
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where ( )kA t  is an estimate of the annual abstraction rate over t  and d an additional 

parameters that determine with a, b and c the dynamic response of the water table. 

 The order of the ARX model is defined by the triplet (1,0,0). The first entry 

denotes that equation (7.7), involves values of the water table depth with a maximum 

delay equal to one time step. The second and the third entry denote that the inputs, 

i.e., the precipitation surplus and the abstraction rate contain only one term with no 

delay.  

 The equation (7.2) has physical background. It describes the water table 

fluctuation for discrete time steps if zero surface runoff is assumed and a linear 

relation between water table depth and drainage from the groundwater zone to the 

surface water. Other variables that can be considered as exogenous (as the 

groundwater withdrawal rates herein or varying surface water levels) can also be 

incorporated in the model in a straightforward manner (Bierkens et al. 2001, Knotters 

and Bierkens 2001). It is assumed that the precipitation surplus ( )kP t  is a global 

variable, that is, space invariant. This assumption is reasonable for relatively small 

areas, such as the Mires basin. 

 

 
 

Figure 7.1 Simplified demonstration of equation (7.7) inputs and output variables. 

 

7.2.3 Kalman filter identification of ARX model 

 A Kalman filter comprises two sets of equations: one set predicts the state at 

the next time step, and the other set updates the predictions using available state 

measurements. The filter can be applied to any system described by a linear discrete-
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time state-space equation given by the following general formulation (Van Geer and 

Van Der Kloet 1985, Eigbe et al. 1998, Ljung 1999): 

 

1
ˆ( ) ( ) ( ) ( ) ( ) ( )k k k k k kt t t t t tz F z B p w   , (7.8) 

 

where ˆ( )ktz  is the vector of system state variables at time kt , ( )ktF  is the state 

transition matrix from time moment 1kt   to time kt , ( )ktB  is the control matrix that 

represents the impact of external inputs ( )ktp  on the state of the system at time kt , 

while ( )ktw  is a Gaussian noise vector that accounts for random noise (Bierkens et al. 

2001). The noise properties are defined by, 

 

[ ( )] 0kE tw  , (7.9) 

 

[ ( ) ( ) ] ( ) ( , )T

k e k k eE t u t t uw w Q  , (7.10) 

 

where ( , )k et u  is the Kronecker delta defined above in section 7.2.2. ( )ktQ  is the 

covariance matrix of estimation errors. For any vector iw  multiplied by jw  it holds 

that  ,i j i jw w Q  . 

 The measurement equation relating the observed state variables and the true 

state of the system is expressed as (Van Geer and Van Der Kloet 1985, Eigbe et al. 

1998, Ljung 1999): 

 

ˆ( ) ( ) ( ) ( )k k k kt t t tz M z v  , (7.11) 

 

where ( )ktz  is the vector of observed state variables, ( )ktM is the observation matrix 

and ( )ktv  is the observation noise vector that accounts for measurement errors. If the 

element in row i of the vector ( )ktz  is the observation of the state variable ˆ( )ktz  

located in row j, then the element (i,j) of ( )ktM  is set to ‘‘1’’; all other elements of 

the row ( )ktM  are set to ‘‘0’’. The noise process ( )ktv  is assumed to be multi-
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dimensional Gaussian white random processes. The following equations define the 

statistical properties of ( )ktv : 

 

[ ( )] 0kE tv  ,  (7.12) 

 

[ ( ) ( ) ] ( ) ( , )T

k e k k eE t u t t uv v R  , (7.13) 

 

where ( )ktR  is the covariance matrix of the observation errors. It is usually assumed 

that the observation errors are independent, which means that ( )ktR  is a diagonal 

matrix whose elements equal the variances of the corresponding observation errors. 

The observation errors are also independent of the system noise, i.e.: 

 

[ ( ) ( ) ] 0 ( , )T

k e k eE t u t u w v . (7.14) 

 

 To execute the estimation procedure the matrices F, B, M, Q and R must be 

known. The calculations can be divided into two steps. First, a prediction is made for 

the state at time kt , based on measurements up to time 1kt  . Secondly at time kt  as the 

new measurement becomes available the prediction is corrected. This yields the 

optimal linear estimate for the state at time kt  based on measurements up to time kt . 

The matrices F and B are functions of the system parameters, which are not known a 

priori. Therefore the Kalman filter cannot be directly applied. The following set of 

equations describes the Kalman filter adaptation algorithm that estimates recursively 

the parameters and the state equation output of an ARX model (Ljung 1999). 

 

7.2.4 Kalman filter adaptation algorithm of ARX model 

 Linear model structures such as ARX that are equivalent to linear 

regressions can be expressed as (Ljung 1999, Lanzi et al. 2006): 

 

( ) ( ) ( ) ( )T

k k k kz t t t v tχ θ . (7.15) 
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In the above equation, ( )ktχ  is the gradient of the predicted model output ( )kz t  with 

respect to the parameter vector and represents the model’s regression vector, ( )ktθ  

represents the vector of the true parameters (true description of the system) and ( )kv t  

is the measurement error innovation. The predicted output is given by: 

 

1
ˆˆ( ) ( ) ( )T

k k kz t t tχ θ  (7.16) 

 

where ˆ( )kz t  is the prediction of ( )t kz t  based on parameters up to 1kt  and ( )ktχ  is a 

(n 1) vector of gradient values (regression vector) that represents the gradient of the 

predicted model output ˆ( )kz t  with respect to the parameters 1
ˆ( )ktθ . Since the true 

parameters of the system are unknown it is assumed that 1
ˆ( ) ( )k kt tθ θ . The 

estimation algorithm minimize the mean square prediction-error term 

 
2

ˆ( ) ( )k kE z t z t 
 

, which means that equation (7.16) is solved for all time steps 

using the parameters 1
ˆ( )ktθ . 

The general recursive parameter identification equation is: 

 

1
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )k k k k kt t t z t z tθ θ K , (7.17) 

 

where ˆ( )tθ  is a vector of the parameter estimates (n 1) at time kt , ( )kz t  is the 

observed output at time kt  and ˆ( )kz t  is the prediction of ( )kz t  based on observations 

up to time 1kt . ( )ktK  is the Kalman gain, a (n 1) vector, that determines how much 

the current prediction error ˆ( ) ( )k kz t z t  affects the update of the parameters estimate.  

The above formulation assumes that the true system parameters ( )ktθ  are 

described by a random walk: 

 

1( ) ( ) ( )k k kt t tθθ θ w ,  (7.18) 
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where ( )ktθw  is a Gaussian white noise with covariance matrix 

1( ) ( ) ( )T

k k kE t t tθ θw w R . 1( )ktR  is the covariance matrix (n n) of the parameter 

changes (error) for each time step kt . 

 The Kalman gain ( )ktK  is derived based on the Least Mean Square (LMS) 

parameter estimation algorithm and it has the following general form (Ljung 1999, 

Lanzi et al. 2006), 

 

( ) ( ) ( )k k kt t tK J χ , (7.19) 

 

where ( )ktJ  is given by, 

 

1

2 1

( )
( )

( ) ( ) ( ) ( )

k
k T

k k k k

t
t

R t t t t

P
J

χ P χ
 (7.20) 

and 

2 1( ) ( ) ( ) ( ) ( )T

k k k k kS t R t t t tχ P χ . (7.21) 

 

In the above equations ( )ktJ  is a (n n) covariance matrix, the (n n) covariance 

matrix 1( )ktP  corresponds to parameters estimation error at 1kt , ( )kS t  is the residual 

(innovation) covariance during the parameters update process and 2 ( )kR t  is the 

variance of the innovations ( )kv t in equation (7.15): 2

2 ( ) ( )k kR t E v t  (a scalar). 

 The (n n) covariance matrix ( )ktP  represents the parameter error covariance 

and is updated as follows: 

 

1 1
1 1

2 1

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

T

k k k k
k k k T

k k k k

t t t t
t t t

R t t t t

P χ χ P
P P R

χ P χ
. (7.22) 

 

 The Kalman filter algorithm is entirely specified by the sequence of data tz , 

the gradient ( )ktχ , the covariance matrix 1R , the variance of the innovations 2R , the 

true parameters ( )ktθ  or an initial guess and the parameter error covariance matrix 

0 ( )kP t . The recursive estimate of the parameters and of the output of an auto-
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regressive exogenous variable model, (ARX) model, is implemented in Matlab
®

 

programming environment using the ‘‘rarx’’ function after the appropriate coding of 

the state and measurement equations. 

For this application ˆ( )tθ  is the vector of the parameter estimates (4 1) ( a, b, 

c and d of the state equation (7.7)) at time kt , ( )ktK  is a (4 1) vector, ( )ktχ  is a 

(4 1) vector of gradient values (regression vector) corresponding to each variable 

input involved in the state equation (7.7) ( 1( ), ( ), ( )k k kZ t P t A t , unit value for 

parameter c), ( )ktJ  a (4 4) covariance matrix and ( )ktP  a (4 4) covariance matrix 

that corresponds to parameters estimation error. 

 

7.3 Spatiotemporal geostatistics 

 Spatiotemporal geostatistical models provide a probabilistic framework for 

data analysis and predictions which is based on the joint spatial and temporal 

dependence between observations (Kyriakidis and Journel 1999, Fischer and Getis 

2010). Initial approaches to spatiotemporal data modeling were based on separable 

covariance functions, obtained by combining separate spatial and temporal covariance 

models (Rodriguez-Iturbe and Mejia 1974, Rouhani and Myers 1990, Cressie 1993, 

Dimitrakopoulos and Luo 1994). The last two decades there is significant 

development of non-separable covariance functions. These models aim to improve 

spatiotemporal data modeling and prediction (Cressie and Huang 1999, De Iaco et al. 

2001, Gneiting 2002, Kolovos et al. 2004) by extracting in some case the covariance 

functions from physical laws such as differential equations and dynamic rules 

(Christakos and Hristopulos 1998, Christakos 2000, Gneiting 2002, Kolovos et al. 

2004). 

 The main goal of space-time analysis is to model multiple time series of data 

at spatial locations where a distinct time series is allocated. The time variable is 

considered as an additional dimension in geostatistical prediction. A spatiotemporal 

stochastic process can be represented by ( , )Z ts  where the variable of interest of 

random field Z is observed at N space-time coordinates ( , )i its ,…, ( , )N Nts , while the 

optimal prediction of the variable in space and time is based on ( , )i iZ ts ,…, ( , )N NZ ts  

(Cressie and Huang 1999, Giraldo Henao 2009). S/TRF ( , )Z ts  can be decomposed 
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into a mean component ( , )Zm ts  modeling the trend and a residual S/TRF component 

( , )tZ s  modeling fluctuations around that trend in both space and time according to 

the following equation: 

 

( , ) ( , ) ( , )ZZ t t tZms s s . (7.23) 

 

The trend can be calculated either deterministically and the fluctuation using 

a stochastic framework such as space-time kriging (Christakos 1991b, 

Kyriakidis and Journel 1999). 

7.3.1 Spatiotemporal two point function 

 Set ( , ),  ( , )    ,Z t t D Ts s    a second-order stationary space–time random 

field.  RdD  is the spatial domain (d is the space dimensions) and  R T  is the 

temporal domain, with expected value (Myers et al. 2002): [ ( , )]  0,E Z ts   

( , )    t D Ts    and covariance function: 

 

 ( , ) ( ,  ) ( , ) ( ,  ) ( , )ST s t j s j t i i j s j t i iC r E Z t r Z t E Z t r E Z tr s r s s r s            , (7.24) 

 

where  s i jr s s  ,  t i jr t t  , , 1, ,i j N  . The covariance function depends 

only on the lag vector  ,s trr r  and not on location or time, while it must satisfy the 

positive-definiteness condition in order to be a valid covariance function. Hence, for 

any ( , )    ,i it D Ts    any real ia , , ,1i N   and any positive integer N, STC  must 

satisfy the following inequality: 

 

1 1

( , ) 0
N N

i j ST i j i j

i j

a a C t t
 

   s s
5
. 

 If [ ( , )]E Z ts  is constant and ( , )ST s tC rr  depends only on the lag vector 

 ,s trr r : 

 

                                                 
5
 positive-definiteness condition is often presented also as non-negative definiteness condition, i.e. 0  



STOCHASTIC SPACE-TIME MODELING OF GROUNDWATER LEVEL VARIATIONS  

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 

HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

139 

 ( ( , ; , )) ( , ) ,i j i j ST i j i j ST s tCov Z t t C t t C rs s s s r    . (7.25) 

 

the S/TRF ( , )Z ts  is characterized as second-order stationary. Spatial and 

spatiotemporal geostatistical prediction methodologies generally rely on stationarity 

(stationary mean and covariance or semivariogram).  

 In addition the field is isotropic if , 

 

   , ,ST s t ST s tC r C rr r , (7.26) 

 

meaning that the covariance function depends only on the length of the lag. 

 Under the weaker intrinsic stationarity assumption the increment 

 ( ,  ) ( , )j s j t i iZ t r Z ts r s    is second order stationary for every lag vector ,s trr  

instead of the random field. Then ( , )Z ts  is called an intrinsic random function and is 

characterized by: 

 

 ( ,  ) ( , ) 0j s j t i iE Z t r Z ts r s    , (7.27) 

and 

 
1

( , ) var ( ,  ) ( , )
2

ST s t j s j t i ir Z t r Z tr s r s       (7.28) 

 

where the term var denotes the variance. The function ( , )ST s trr  only depends on the 

lag vector  ,s trr r . The quantity  
1

var ( ,  ) ( , )
2

j s j t i iZ t r Z ts r s    is called the 

semi-variance at lag  ,s trr r . 

 The random field ( , )Z ts  has an intrinsically stationary semivariogram if it is 

intrinsically stationary with respect to both the space and the time dimensions. The 

( , )Z ts  has a spatially intrinsically stationary semivariogram if the semivariogram 

depends only on the spatial separation vector sr  for every pairs of time instants ,i jt t  

and it has temporally intrinsically stationary semivariogram if depends only on the 

temporal lag tr . Equation (7.28) provides the space-time stationary semivariogram 
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function (Gneiting et al. 2007). Under the stronger assumption of second-order 

stationarity, the semi-variance is defined as: 

 

( , )  (0,0) ( , )ST s t ST ST s tr C C rr r   . (7.29) 

 

 The primary concerns when modeling space–time structures, is to ensure that 

the chosen model is valid and that the model is suitable for the data. The space-time 

kriging estimator can be applied if the space-time covariance function satisfies the 

positive definiteness condition, STC >0 explained above (Cressie and Huang 1999). 

The model’s suitability is ensured by testing a series of available structures on the 

data. The semivariogram function must be conditionally negative definite to ensure 

that the space-time kriging equations have a valid unique solution (Myers et al. 2002, 

De Iaco 2010). 

Space-time kriging is a well-established method for space-time interpolation 

(Christakos et al. 2001, De Cesare et al. 2001). It is however complicated, as the 

kriging system of equations needs to be solved at the same time for spatial and 

temporal weights (Skøien and Blöschl 2007). In addition, space-time kriging is data 

demanding, while often the number of locations where time series of groundwater 

level data are available is very limited. Also according to Bierkens (2001), space-time 

kriging may not be appropriate to analyze the change in groundwater level if climate 

change effects (rainfall shortage, intense rainfall periods, droughts) affect the area of 

study or changes of land use and surface water management occur. The kriging 

estimator and the kriging equations have the same form for spatiotemporal problems 

as for spatial problems. The difference from spatial-only kriging is the covariance 

modeling. This is because the time component is not an extra dimension that can be 

used to form a single Euclidean space-time metric. The time axis is by nature different 

and not necessarily orthogonal to the three spatial axes. The time component has been 

proved to cause both theoretical and practical problems if it is treated as an additional 

space dimension (Rouhani and Myers 1990). Hence, in space-time variography the 

spatial lag, sr , and the temporal lag, tr , are treated as independent arguments γ( sr ; tr ). 

Space-time and purely spatial kriging methods were analytically presented and 

compared on simulated data by Bogaert (1996). He concludes that in the space-time 

context ordinary space-time kriging (OSTK) is preferable; nevertheless, it requires the 
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hypothesis of mean and variance homogeneity and is limited to second order 

stationary random fields. 

Two categories of models are used for semivariogram or covariance modeling. 

The first includes separable models whose covariance function is a combination of a 

spatial and a temporal covariance function; the second includes non-separable models 

in which a single function models the spatiotemporal data dependence. Separable 

models however, suffer from unrealistic assumptions and properties (Snepvangers et 

al. 2003, Hengl et al. 2011). Both space-time covariance models are valid according 

to (De Iaco et al. 2001, 2002b) and (Cressie and Huang 1999). 

Separable and non-separable covariance functions can describe the random 

field’s spatiotemporal continuity. Separable covariance functions are used if separate 

spatial and separate temporal covariance functions exist for the data (Gneiting et al. 

2007), 

 

 ( ( , ; , )) , ( , ) ( , )
s ti j i j ST s t i j r i jCov Z t t C r C C t trs s r s s  . (7.30) 

 

Separability provides many advantages, such as the simplified representation of the 

covariance matrix and consequently important computational benefits (Park and 

Fuentes 2008). The separable covariance models however, in spite of their simplicity 

are not usually physically motivated. Correlations that have separable spatial and 

temporal components are particularly useful when the correlations are inferred on the 

basis of existing data and not when they follow from a physical model (Christakos 

and Hristopulos 1998). When data (e.g. hydrologic, atmospheric, oceanographic) are 

influenced by dynamic processes spatiotemporal dependency structures are difficult to 

be modeled by a separable covariance function. Physically meaningful covariance 

models can be derived instead, based on environmental data dynamic processes 

(Christakos 1991b, Christakos and Hristopulos 1998, Gneiting 2002, Kolovos et al. 

2004). Covariance structures such these are non-separable. Modeling non-separable 

covariance functions is one of the keys for more reliable prediction in the 

environmental research fields (Gneiting et al. 2007). 

  The random field ( ,  )Z ts  has fully symmetric separable covariance if 

(Gneiting et al. 2007, De Iaco 2010):  
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( ( , ), ( , )) ( ( , ), ( , ))i i j j i j j iCov Z t Z t Cov Z t Z ts s s s , (7.31) 

 

for all ( , )i its , ( , )j jts . Non-separable covariance structures that are not fully 

symmetric have been proposed by Gneiting et al. (2007) e.g.: 

 

     
1 /2

, 1 / 1ST s t t s tC r r exp rr r
    

 
, 0 1.   (7.32) 

 

A significant part in the space-time process is the choice of the semivariogram 

or covariance model and the estimation of its parameters. Contrary to purely spatial 

prediction, where a well established set of semivariogram models exists, several 

spatiotemporal models have been developed for modeling space-time structures 

(Christakos and Hristopulos 1998, Kyriakidis and Journel 1999, De Cesare et al. 

2001, Gething et al. 2007). These models involve the product model (Rodriguez-

Iturbe and Mejia 1974), the sum model (Rouhani and T.J. Hall 1989), the metric 

model (Dimitrakopoulos and Luo 1994), the integrated product model (Cressie and 

Huang 1999, De Iaco et al. 2002a), the product–sum model (De Cesare et al. 2001, 

De Cesare et al. 2002), the integrated product–sum model (De Iaco et al. 2002a, b), 

Gneiting’s non-separable models (Gneiting 2002, Gneiting et al. 2007), a series of 

non-separable models reviewed in (Kolovos et al. 2004) and non-separable models 

expressed through the spectrum density function instead of the direct covariance 

function (Porcu et al. 2008).  

 

7.3.2 Spatiotemporal covariance or semivariogram models 

 A comprehensive description of some widely used spatiotemporal covariance 

or semivariogram models follows. 

The metric model is given by the following equation (Dimitrakopoulos and 

Luo 1994): 

 

   2 2

1 2,ST s t s tC r C rr r   , (7.33) 

or 
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   2 2

1 2,ST s t s tr rr r     , (7.34) 

 

where sr  is the Euclidean norm of the spatial lag vector and α1, α2 coefficients that 

weigh relatively the space and time contributions. For this model the spatial and 

temporal covariances used are of the same type. 

Another separable space-time covariance model is the sum model, in which 

spatial  S sC r  and temporal  T tC r  covariance functions are added (Rouhani and 

T.J. Hall 1989): 

 

     ,ST s t S s T tC r C C rr r  , (7.35) 

or 

     ,ST s t S s T tr rr r    . (7.36) 

 

In the above STC  is the spatiotemporal covariance and ST  is the spatiotemporal 

semivariogram respectively. According to Rouhani and Myers (1990), covariance 

matrices ( , )ST s tC rr  of certain configurations of space-time data can be singular. In 

this case the covariance function is only positive semi-definite 0STC   (De Iaco 

2010). The sum expression therefore is nearly an acceptable model as it only fails the 

strict definiteness condition. The resulting spatial-temporal form of covariance or 

semivariogram does not satisfy the strict definiteness conditions for the separate 

spatial and temporal covariances and the strict conditional negative definiteness 

condition for the separate spatial and temporal semivariograms (Myers and Journel 

1990, Rouhani and Myers 1990, Dimitrakopoulos and Luo 1994). Thus this model is 

unsatisfactory for optimal prediction (De Iaco 2010). 

The product model (Rodriguez-Iturbe and Mejia 1974) belongs to the separate 

space-time model category and is one of the simplest ways to model a covariance or 

semivariogram in space–time. The product of a space semivariogram and a time 

semivariogram is generally not a valid semivariogram; on the other hand, the product 

of a space covariance and a time covariance leads to a valid model. A semivariogram 

structure can then be determined by the product covariance model. Valid spatial and 
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temporal covariance models can be used in the product form below to create 

spatiotemporal models, 

 

     ,ST s t S s T tC r C C rr r . (7.37)  

 

If both components    ,S s T tC C rr  are strictly positive definite then  ,ST s tC rr  is 

strictly positive definite on Rd T . The covariance equation can be expressed in 

terms of the semivariogram as: 

 

             , 0 0ST s t T S s S T t S s T tr C C r rr r r       . (7.38) 

 

The product-sum space-time model (De Cesare et al. 2001, De Cesare et al. 

2002) is a generalization of the product and the sum model, while it constitutes the 

starting point for its integrated product sum versions. It is defined as: 

 

         1 2 3,ST s t S s T t S s T tC r k C C r k C k C rr r r   . (7.39) 

 

,S TC C  are purely spatial and temporal covariance models with 1 0k  , 2 0k  , 

3 0k  . If  S sC r  and  T tC r  are strictly positive definite, then  ,ST s tC rr  is strictly 

positive definite on Rd T . In terms of the semivariogram, the above equation is 

expressed as: 

 

               1 3 1 2 1, 0 0ST s t S T t T S s S s T tr k C k r k C k k r        r r r , (7.40) 

 

where S , T  are purely spatial and temporal semivariogram models. (0)SC  and 

(0)TC  are the sills of the spatial and temporal semivariograms respectively. Each 

space-time model (sum, product) separately have limitations which their combination 

does not have. The semivariogram structure can be expressed alternatively as follows 

(De Iaco et al. 2001): 

 

         , ,0 0, ,0 0,ST s t ST s ST t ST s ST tr r rr r r       , (7.41) 
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where     0  K 1/ max sill ,0  ,  sill 0,ST s ST trr   . 

The Cressie-Huang models (Cressie and Huang 1999) are non-separable 

spatiotemporal stationary covariance functions defined by, 

 

     , ,
T
si

ST s t tC r e r k d
r ω

r ω ω ω  , (7.42) 

 

where  , ω  is a continuous auto correlation function Rd ω  and  k  a positive 

function with   0k ω  and  k d  ω ω . Bochner’s theorem is used to derive non-

separable space-time covariance functions of this type. 

 Gneiting (2002) proposed a wide class of non-separable covariances derived 

from the following equation: 

 

 
22

2 /2 2
,

[ ( )] ( )

s
ST s t d

t t

C r r
r r

r


 

 
 
 
 

,  , Rd
s tr Tr   , (7.43) 

 

where d is the number of spatial dimensions, ( )  , 0  , is a completely monotone 

function and ( )  , 0  , is a positive function (i.e. Bernstein function or 

equivalently a variogram) with a completely monotone derivative. A real and positive 

function :[0, ] [0, ]f     is called completely monotone if and only if, 

( )( 1) ( ) 0N Nf   , for any positive integer N (Porcu et al. 2006). Examples of such 

functions are given in Gneiting (2002). The spatial and temporal structures are 

determined by φ and ψ respectively. However, contrary to the Cressie-Huang models 

the Gneiting models do not recall the Bochner’s theorem. 

A similar approach to the Cressie-Huang models can be formulated for the 

product (7.37) and product-sum (7.39) constructions. Their integration also gives 

valid spatiotemporal models (De Iaco et al. 2002a, Myers et al. 2002) as follows: 

 

     , ; ; d ( )ST s t S s T t
V

C r kC a C r a ar r   , (7.44) 
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where 0k  , ( )a is a positive measure on RU  ,    ; , ;S s T tC a C r ar  are valid 

covariance functions in RdD  and RT   respectively for each a V U  , and 

   ; ;S s T tC a C r ar  is integrable with respect to the measure μ on V for all ,s trr . The 

integrated product model generates non-separable and non-integrable models. 

 In terms of the semivariogram structure the above equation is rewritten as: 

 

         

   

, 0; ; 0; ;

; ; d ( )

ST s t T S s S T t
V

S s T t

r k C a a C a r a

a r a a

  

  

 

 

r r

r
. (7.45) 

 

Similarly for the product-sum model one obtain: 

 

         1 2 3, ; ; ; ; d ( )ST s t S s T t S s T t
V

C r k C a C r a k C a k C r a ar r r      , (7.46) 

 

where        1 2 3; ; ; ;S s T t S s T tk C a C r a k C a k C r ar r   is integrable with respect to the 

measure μ on V for all ,s trr  given 1 0k  , 2 0k  , 3 0k  . Separate structures in space 

and time are used to generate the product-sum model and integrated product-sum 

models. In addition, the integrated product-sum model (7.46) and the product-sum 

model (7.39) are non-integrable with respect to sr  and tr  and non-separable. Equation 

(7.46) can be written in terms of a semivariogram structure as:  

 

           

   

1 3 1 2

1

, 0; ; 0; ;

; ; ( )

ST s t S T t T s s
V

S s T t

r k C a k r a k C a k a

k a r a d a

  

  

   

 

r r

r
, (7.47) 

 

where  0;SC a  and  0;TC a  are the corresponding sill values of the spatial and 

temporal semivariograms. Both space-time semivariogram structures are valid if 

 ;S s ar  and  ;T tr a  are valid spatial and temporal semivariogram models. 
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7.3.3 Spatiotemporal models’ summary of characteristics 

 The metric model in spite of its nice asymptotic features has restrictive 

assumptions. As previously mentioned the same type of covariances describe the 

spatial and temporal correlation, they have the same sill (if the model is bounded) and 

it can be used only for processes, whose space–time correlation is described by a 

model with geometric anisotropy. Finally, it is the only model that requires a space–

time metric (De Iaco 2010). 

The product model, the product-sum model, their integrated versions and the 

sum model are produced by separate space and time functions. The main advantage of 

such models is their ease of use in modeling and estimation. Because the sum model 

is separable, anisotropy can be incorporated in the spatial component. The product 

model is separable and integrable; its integrated version can generate non-separable 

and non-integrable models. In contrast the product-sum model is non-integrable with 

respect to sr  and tr , and it is non-separable as the integrated version of the product-

sum model. On the other hand, the Cressie–Huang and Gneiting models are 

alternative choices to the separable models. However the φ and ψ functions in the 

Gneiting model can be chosen so that separable models are obtained. Finally, 

anisotropic covariance or semivariogram versions of the functions described can be 

constructed by inserting anisotropy in the spatial component of the semivariogram 

function (Myers et al. 2002, De Iaco 2010). 

 The space-time semivariogram models described above, except for the metric 

function, are typically used to model the space-time experimental semivariogram 

because an arbitrary space-time metric is not required and the fitting process is similar 

to that for spatial semivariograms (Gething et al. 2007, De Iaco 2010). 

 

7.3.4 A Spatiotemporal covariance function derived from a physical law 

An alternative covariance function suitable for space-time semivariogram 

modeling is proposed by (Christakos and Hristopulos 1998, Kolovos et al. 2004). It is 

an extension of a non-separable spatiotemporal covariance inspired from the diffusion 

equation. A covariance model derived from a physical differential equation, such as 

the diffusion equation is of the form (Christakos 2000):  
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     
2 2, 4 exp / 4

n

ST s t t s tC r r rr r 


  ,  α >0. (7.48) 

 

An extension of this equation can be obtained following Gneiting’s proposition to add 

constants after the time lag in space-time formulations. (Hristopulos 2002) proposed a 

similar approach for the spatial-only case. Therefore the equation can be modified to: 

 

      
2

2 2 2, 1 exp / 1
n

ST s t t s tC r r rr r
  



    , 0 1, 0 1     , (7.49) 

 

where β, γ are the function’s parameters and n are the dimensions. This covariance 

class has been used in the area of fluid mechanics (Monin and Yaglom 1975). 

 

7.3.5 Spatiotemporal geostatistical analysis and prediction 

 Under the second-order stationarity hypothesis, the semivariogram and the 

covariance function are equivalent. For reasons of convenience the semivariogram 

structure is preferred. The appropriate semivariogram structure (separable or non-

separable) is fitted to the experimental spatiotemporal model given by: 

 

   

2

,

1
ˆ ( , ) ( , ) ( , )

2 ,
Z

s t

s t i i j s j t

N rs t

r Z t Z t r
N r

      
r

r s s r
r

, (7.50) 

 

where sr = ||si –sj||, tr = |ti – tj|, and N( ,s trr ) is the number of pairs in N( ,s trr ). The 

space–time experimental semivariogram is estimated as half the mean squared 

difference between data separated by a given spatial and temporal lag ( ,s trr ). 

 Geostatistical prediction is then achieved using space-time Ordinary Kriging 

(STOK) (Christakos 1991b, Goovaerts 1997). The STOK estimator with respect to 

residual data notation is given below: 

 

   
0

0 0 { : , }
,ˆ ,

i i
i i ii t

tZ Z t
s

s s


  , (7.51) 
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 0 0
ˆ , tZ  s  is the unsampled location-time,  ,i iZ ts  are the sampled location-time 

neighbors and i  are the corresponding space-time kriging weights.  

 

0
0 0 0{ : , }

( , ; , ) ( , ; , ), 1 ,,
i

Z Z
i

i i j i j j ji t
Nt t t t j    

    s
s s s s , (7.52) 

 

{ , }0:
1

i ti i
i
 s

, (7.53) 

 

where 0N  is the number of points within the search neighborhood of 0s , 

( , ; , )Z i j i jt t  s s  is the semivariogram between two sampled points si  and s j  at times 

it  and jt , 0 0( , ; , )Z j jt t  s s  the semivariogram between s j , jt  and the estimation point 

0s , 0t  and  is the Lagrange multiplier enforcing the zero bias constraint.  

 The STOK estimation variance is given by the following equation, with the 

Lagrange coefficient μ compensating for the uncertainty of the mean value: 

 

2
,0 0 0 0{ : , 0}

( ) ( , ; , )E Z j ji i ti
it t t   

   s
s s s . (7.54) 

 

 The prediction is also described in matrix notation below where the system 

Γ λ c  is solved to estimate the spatiotemporal weights λ : 

 

0 0

0 0 0 0 0 0

1 1 1 1 1 1

1 1

ˆ ˆ( , ) ( , ) 1

ˆ ˆ( , ) ( , ) 1

1 1 0

Z Z

Z Z

N N

N N N N N N

t t t t

t t t t

 

 

 

 

    
 
 


    
 
 
 

s s s s

Γ
s s s s

 

 

0

1

N

λ







 
 
 
 
 
 
 

, (7.55) 

 



STOCHASTIC SPACE-TIME MODELING OF GROUNDWATER LEVEL VARIATIONS  

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 

HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

150 

0 0

0 1 0 1

0 0

ˆ ( , )

ˆ ( , )

1

Z

Z N N

t t

t t









  
 
 
  
 
 
 

s s

c
s s

 

 

where Γ  is the matrix of the spatiotemporal semivariogram between the observed 

space-time data locations, λ  are the spatiotemporal weights and c the matrix of the 

spatiotemporal semivariogram between the observed space-time data locations and 

the space-time estimation location. 

 Space-time predictions are usually based on a space-time neighborhood which 

encloses observations inside a search radius in space and in time; the search radii 

depend on the space and time correlation lengths ,s t  estimated from the 

semivariogram fitting process. For small datasets the entire dataset is used for 

predictions. Figure 7.2 presents a schematic representation of the space-time domain 

and the space-time search neighborhood. 

 

 

Figure 7.2 Representation of the space-time domain and of the space-time search neighborhood (after 

(Hengl 2007)) 

 

 In STRK the estimate of the head, groundwater level, is expressed as: 
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0 0 0 0 0 0( , ) ( ,ˆ ˆ) ( , )ZZ Zt m t ts s s , (7.56) 

 

where 0 0( , )Zm ts  is the estimated trend function, and 0 0
ˆ ( , )Z ts  is the interpolated 

residual by means of STOK (Hengl 2007). The trend function herein is modeled based 

on equation (7.59). 

 

7.3.6 Spatiotemporal prediction of groundwater level data in Mires basin 

 Mires basin of the Mesara valley is a sparsely monitored basin. Since 1981 

where a rapid increase of drip irrigation and increased pumping were started, only 10 

wells were consistently monitored biannually until the year 2003. Since then a 

telemetric network is operating in the area consisting of two monitoring wells while 

some selected measurements were taken in specific boreholes. The basin is 

consistently overexploited and the result is a great drawdown of the water table; more 

than 35m since 1981. The water resources availability in the area and especially the 

groundwater are encountering great shortage. Therefore the area is of spatially and 

temporally groundwater analyses need. Using spatiotemporal geostatistics the limited 

groundwater level dataset can be usefully exploited in order to identify the historic 

spatiotemporal behavior of the aquifer and to take useful information regarding the 

space-time data correlations for future predictions. 

 Space-time geostatistical analysis and predictions are made following the steps 

denoted below: 1) approximation of the spatio-temporal trend, 2) Space-time 

semivariogram calculation of the residuals, 3) application of space-time residual 

kriging (STRK) - STOK for prediction of fluctuations adding the predicted trend at 

the desired locations and 4) estimation of prediction accuracy. In the following, the 

above steps are addressed in detail. 

As it was stated in section 7.3 (Eq.(7.23)) the random field can be decomposed 

in trend and fluctuations. Therefore, the initial geostatistical analysis step is to 

approximate the spatiotemporal trend of the field data. The spatiotemporal trend 

approximation involves the separate temporal and spatial trend removal. For the first 

the exponentially weighted moving average filter (Roberts 1959, Pham 2006, 

Nist/Sematech 2009) is used on the mean bi-annual groundwater level of the 10 

available wells. This model is selected because it can provide discrete estimates of 
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future biannual groundwater level trends based on the previous period trend value and 

the groundwater level value of the desired estimation time. The equation that 

describes the model follows: 

 

       1
ˆ ˆ1z i i z im t z t m t     ,    1 1

ˆ
zm t z t . (7.57) 

 

where ˆ
zm  is temporal trend and z  the groundwater level measurement and 0 1   

is the weight of the temporal model. 

 The spatial trend approximation is based on the closest distance of the wells 

from the river traversing the basin (see section 6.3.1). This approach using closest 

distance from the river root as auxiliary information is a new geostatistical tool that 

proved effective for the purely spatial analysis (section 6.4.4). The river bed can be 

seen as a curve, therefore we model the river by means of a river curve, herein 

represented by a second-order polynomial, 2

0 1 2( )y x w w x w x  . As it is well-

known and analytically presented in section 6.3.1, the closest distance of any given 

point from a curve is the perpendicular distance between the point and the tangent at a 

unique point of the curve. The shortest distance of the wells is first calculated and 

then the function (7.58) is applied to obtain the spatial trend. The spatial trend 

obtained for the time *t , wet period of the hydrological year 2002-2003, when the 

most reliable measurements were taken is given by, 

 

*( , ) ( )zm t f d g s s , (7.58) 

 

and is adopted as the reference year period spatial trend. In the above equation zm  is 

the trend, d is the well’s distance from the river bed, f and g are coefficients of the 

linear spatial model. 

 We present a model for spatiotemporal trend  ,zm ts  which is obtained by 

multiplying the spatial with the temporal trend and dividing by the reference temporal 

trend: 
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 
   

 

*

*

ˆ ,
,

ˆ

z z

z

z

m t m t
m t

m t

s
s  , (7.59) 

 

The first component of the numerator  ˆ
zm t  is the temporal trend, which is 

approximated by applying an exponentially weighted moving average filter (7.57) as 

discussed above (Roberts 1959). The second term,  *,zm ts , is the spatial trend 

model. The denominator  *ˆ
zm t  denotes the temporal trend for the reference year 

period of the most reliable measurements (wet period of the hydrological year 2002-

2003). This period is the basin’s last regularly monitored period. The temporal trend 

values are divided with the temporal trend of the reference year period, obtained from 

the same function, to produce coefficients without units. This is necessary in order the 

spatiotemporal trend to retain units in meters. 

 Based on Eq. (7.59) it follows that, 

 

   * *, ,z zm t m ts s , (7.60) 

 

confirming that Eq. (7.59) yields the spatial trend model at *t . Another property of 

Eq. (7.59) is that the average spatiotemporal trend  ,zm ts  for a given time span t  is 

equal to the average spatial trend of the reference year period  *,zm ts  multiplied by 

the ratio of temporal trend at time t  over the reference temporal trend. 

 

   
 

 
*

*

ˆ
, ,

ˆ

z
z z

z

m t
m t m t

m t
s s  . (7.61) 

 

 The spatiotemporal residuals are calculated simply by subtracting the 

groundwater level of each well at a specific time step from the corresponding 

spatiotemporal trend. The temporal trend remains constant for every time step while 

the spatial changes with the distance of each well from the river bed. Then, the space-

time Residual Kriging (RK) method (7.56) is applied as it combines a trend function 

for the data, obtained by an appropriate model, with the interpolation of the residuals. 
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First, we need to determine the experimental semivariogram of the residuals. 

Then we model the experimental semivariogram with separable and non-separable 

theoretical spatiotemporal semivariogram functions. The simplest permissible space-

time covariance function is the product model, where the separate spatial and 

temporal covariances models are simply multiplied while the semivariogram is 

obtained from the spatiotemporal covariance (7.37). The product space-time 

semivariogram model does not require the calculation of other parameters than only 

of the chosen spatial and temporal models (7.38). The product model which can be 

considered a special case of the product sum model is characteristic, as the whole 

class, for it’s flexibility in modeling and in estimation (Gething et al. 2007, De Iaco 

2010). The Matérn semivariogram model is chosen to simulate the spatial and 

temporal continuity of the data with the separable product space-time model. The 

purely spatial geostatistical analysis of groundwater level data in preceding chapters 

shows that the Matérn describes well the spatial correlation of the observed data. In 

particular it delivers similar cross validation estimates as the Power-law and the 

Spartan semivariogram (Hristopulos 2002, Hristopulos and Elogne 2007). Preliminary 

tests showed that spatiotemporal prediction results with the Power-law model are 

inferior to those with the Matérn. 

 

7.3.6.1 Separable product space-time semivariogram using Matérn model  

 The separable spatial and temporal Matérn semivariograms are presented 

below (Matérn 1960): 

 

1
1

1
1

1
2

11

2
( ) 1

( )
Z Z

s s
s










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    
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r , (7.62) 
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, (7.63) 
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2

Z >0 is the variance, ξ is the range parameter,  >0 is the smoothness parameter, Γ is 

the gamma function, Κ is the modified Bessel function of the second kind of order  , 

sr  is the space lag vector and tr  is the time lag. These are inserted in the product 

space-time semivariogram, (7.38). 

 

7.3.6.2 Non-separable space-time semivariogram 

 The non-separable covariance model obtained from the diffusion equation is 

also used herein because a) it is a covariance structure that has not been used before in 

geo-hydrological data and b) it is similar in concept to Gneiting’s model that has 

successfully been applied to wind data in the past. The space-time covariance 

structure presented in equation (7.49) is used. According to equation (7.29), the 

resulting semivariogram is: 

 

      
2

2 2 2 2, 1 1 exp / 1Z Z

n

s t t s tr r r    
     

  
r r , (7.64) 

 

where 0 1, 0 1      and n the number of spatial dimensions. 

 

7.4 Results 

7.4.1 Purely temporal analysis  

 Temporal groundwater level fluctuations modeling and analysis for the Mires 

basin is aiming on the representation of the aquifer behavior locally or as a unit 

through time in conjunction with physical quantities (precipitation, pumping) that 

affects the aquifer’s water table level. Useful information therefore can be extracted 

regarding correlations of mean annual groundwater level, annual precipitation and 

annual pumping for future predictions. 

 The input data for the Mires basin include the time series of mean annual 

groundwater level, the annual abstraction and the annual precipitation surplus. The 

mean annual groundwater level is obtained from a spatial average over 10 boreholes 

in the Mires basin from 1981 to 2003. At each location, usually bi-annual and often 

bi-monthly data of groundwater level are averaged over each hydrological year (from 
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October to October). Since 2003 the mean annual groundwater level is derived from 

two telemetric stations that operate in the basin, while for the period 2003-2006
6
 the 

average also includes biannual measurements of four of the ten set boreholes (leading 

to an average over six locations) due to selective measurements for this time period. 

The data used for the model calibration span the interval from the hydrological year 

1980-1981 to 2005-2006. The annual average of the groundwater level is used, 

because only annual reliable values of the precipitation were available at this point. 

The ARX model was used by (Bierkens et al. 2001) with a time step equal to 

one day. Here we use a considerably larger time step (one year). Hence we use a 

coarse-grained version of the original model based on the linearity of the equation. As 

we show below, the model predictions are in good agreement with the data after the 

initial period of parameter adaptation.  

 The groundwater level is predicted consecutively for the hydrological years 

2006-2007, 2007-2008, 2008-2009 and 2009-2010. The model is ran separately to 

predict the groundwater level for each year period as the number of time steps is small 

(25) for optimal parameters prediction that represent the process accurately. Therefore 

each time the model is ran; the optimal parameters of the system at the last time step 

are calculated. Based on these parameters the next period prediction regarding 

precipitation surplus and pumping estimate is provided. For every validated period the 

groundwater level is added consecutively in the model in order to test the next 

period’s prediction accuracy. Therefore the system for each tested time period is 

updating the optimal parameters. 

 We have added as opposed to the initial model that the precipitation surplus is 

only used as an exogenous variable (Bierkens et al. 2001), a term proportional to the 

annual abstraction rate (7.7). The model parameters determined using the Kalman 

filter without and with pumping terms are presented in Table 7.1 and Table 7.2. The 

average groundwater levels and the annual precipitation and abstraction rates for the 

above time periods are known. Therefore, the groundwater levels predicted by the 

model can be validated against the real values as shown in Table 7.3 and Table 7.4. 

As shown in Figure 7.3 and Figure 7.4 the agreement between predictions and 

measurements improves as more data are processed. The parameters of the last 

validation period are considered optimal for the process based on the available data 

                                                 
6
 wet period (October to April) only for the hydrological year 2005-2006) 
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and can be used for future predictions. In order to test their efficiency they are 

inserted as initial parameters in the ARX model. From Figure 7.5 it can be observed 

that the model’s adaption is faster and better. 

The actual evapotranspiration is a key variable for the model, because it enters 

in the calculation of the precipitation surplus. According to the regional department of 

water recourses management (Department of Water Resources Management 2000), 

the mean annual actual evapotranspiration *( )kE P t  on the island of Crete is 70% of 

the mean annual precipitation, while in low elevation areas, less than 300 meters 

above sea level, it is 75%. The mean annual actual evapotranspiration of the Mesara 

valley is estimated at 65% of the mean annual precipitation (Croke et al. 2000). 

However the Mires basin is only a part of the Mesara catchment, and its elevation is 

less than 300 meters above sea level. Therefore we consider three different values of 

mean annual actual evapotranspiration in the model, for which we compare the 

predicted groundwater levels. The 75% evapotranspiration level leads to the most 

accurate prediction. 

 

Table 7.1 ARX parameters, determined from Kalman filter approach, with Precipitation Surplus data 

input for each consecutive run. 

Year α b c 

2006-2007 0.3846 0.0181 0.0049 

2007-2008 0.3735 0.0328 0.0050 

2008-2009 0.3704 0.0458 0.0049 

2009-2010 0.3704 0.0490 0.0049 

 

Table 7.2 ARX parameters, determined from Kalman filter approach, with Precipitation Surplus & 

Pumping data inputs for each consecutive run. 

Year α b d c 

2006-2007 0.3900 0.0216 -0.0182 0.0049 

2007-2008 0.3766 0.0360 -0.0153 0.0050 

2008-2009 0.3754 0.0479 -0.0197 0.0049 

2009-2010 0.3756 0.0503 -0.0205 0.0049 
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Figure 7.3 ARX model results using precipitation surplus as exogenous variable. Red crosses denote 

the predicted values.  

 

Figure 7.4 ARX model results using precipitation surplus and pumping rate as exogenous variables. 

Red crosses denote the predicted values.  
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Figure 7.5 ARX model results using precipitation surplus and pumping rate as exogenous variables. 

Red circles denote the calibration results using as initial parameters the optimal calculated from the last 

step during the validation process, Figure 7.4 (a=0.3756, b=0.0503, d-0.0205, c=0.0049). 

 

Table 7.3 Temporal Validation Results-Absolute Error (AE), Absolute Relative Error (ARE) - ARX 

with Precipitation Surplus for each consecutive run. 

Year 2006-2007 2007-2008 2008-2009 2009-2010 

AE (m) 1.25 1.75 0.51 0.40 

ARE 0.125 0.16 0.04 0.02 

 
Table 7.4 Temporal Validation Results-Absolute Error (AE), Absolute Relative Error (ARE) - ARX 

with Precipitation Surplus & Pumping for each consecutive run. 

Year  2006-2007 2007-2008 2008-2009 2009-2010 

AE (m)   1.25    1.62  0.37  0.40 

ARE 0.125 0.157 0.03 0.02 

 

7.4.2 Spatiotemporal analysis  

 Spatiotemporal geostatistical analysis of Mires basin groundwater level data is 

applied in order to identify the spatiotemporal behavior of the aquifer since 1981 and 

to undertake future predictions based on the space-time data correlations. 

 A spatiotemporal trend model is developed to approximate the S/TRF 

spatiotemporal trend. Fitting of a spatiotemporal trend provides “trend-free” data 

(residuals) which yield more stable semivariograms as the semivariogram is reaching 
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easier a sill and the intrinsic hypothesis is satisfied (stationary mean value and 

semivariance) (Journel and Huijbregts 1978). 

 The spatiotemporal trend approximation (7.59) involves the separate 

estimation of temporal and spatial trend component. For the first the exponentially 

weighted moving average filter (7.57) is used on the mean bi-annual groundwater 

level from the 10 available wells. This trend model can provide bi-annual estimates of 

future groundwater level trends based on the previous period trend value and the 

groundwater level of the desired period. The trend fit is presented in Figure 7.6 and 

the optimal weight 0 1   of the temporal model is calculated equal to 0.6. This 

value was determined from the temporal trend fitting process and it is the one that 

under STRK prediction provided the most accurate results. Then the trend values are 

divided with the temporal trend of the reference year, obtained from the same 

function, to produce coefficients without units. This is necessary in order the 

spatiotemporal trend to retain units in meters. The spatial groundwater level trend 

approximation involves the closest distance of the wells from the river traversing the 

basin.  

 

 
Figure 7.6 Exponentially weighted moving average filter fit on mean bi-annual groundwater level 

measurements. 

 

The space-time experimental semivariogram is determined from the biannual 

(wet and dry period) groundwater level residuals (after trend removal) time series 
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between the years 1981 and 2003 at the ten sampling stations. Validation of the STRK 

estimates is performed for six wells, Figure 7.7, where biannual observations (wet and 

dry period) are available for the period 2003-2004 to 2005-2006 (wet period). The 

period after the hydrological year 2002-2003 is characterized by significant 

groundwater level increase in the wet period of 2003-2004 and by considerable 

groundwater level drop in the dry period of 2004-2005. Therefore we decided to 

assess the reliability of the space-time model (STRK) and estimated space-time 

semivariograms at these periods.  

 The theoretical space-time semivariogram model fitting on the experimental 

space-time semivariogram obtained from the observed data residuals is presented in 

Figure 7.8 and Figure 7.9. The respective parameters for the two semiovariogram 

types are 2
z  397, β = 0.0334 and γ = 0.0452 for the non-separable space-time 

semivariogram type and 2
z  46.57, 1 = 0.25 (≈ 3km), 1 = 0.7103, 2 = 0.1570 (≈ 2 

months), 2 = 1.5138 and nugget nariance c = 1.8336 for the separable type (product 

model) using the Matérn function. For the latter, the nugget terms is inserted in order 

to better fit to the experimental semivariogram. 

 

 

Figure 7.7 Topographic map showing the locations of the 10 monitored wells (triangles) in Mires basin 

along with the corresponding surface elevation and the temporary river path. With green color the wells 

monitored for the period 2003-2006 are presented. 
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Figure 7.8 Space time non-separable semivariogram fit. The upper space limit in real units is equal to 

4Km and the time limit 6.5 years. 

 

Figure 7.9 Space-time product semivariogram fit using the Matérn structure. The upper space limit in 

real units is equal to 4Km and the time limit 6.5 years. 
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 The prediction (extrapolation) involves STRK application using the 

appropriate semivariogram to estimate the residuals at the specified location and time. 

The corresponding trend is calculated from equation (7.59) where the spatial trend in 

a new location involves the calculation of its closest distance and the application of 

function (7.58). The temporal trend is determined using the adequate period’s mean 

groundwater level applying function (7.57) and dividing over the temporal trend of 

the reference year. The product of these functions delivers the spatiotemporal trend at 

the desired location-time, which is then added to the predicted residual to provide the 

groundwater level estimate. 

 The validation results for the absolute estimation error (AE)
7
 are presented in  

Table 7.5 and Table 7.6. The first table presents the groundwater levels’ estimation 

error for the wet period of hydrological year 2003-2004 using separable and non-

separable semivariogram while the second for the dry period of hydrological year 

2004-2005. As it can be seen the non-separable semivariogram delivers more accurate 

estimates compared to the separable.  

 

Table 7.5 Absolute Error (AE) of STRK estimates for the wet period of highest groundwater level 

increase after 2003 (i.e. the wet period 2003-2004). 

 
a) using the non-separable semivariogram model (7.64) 

Well No AE (m) 

G1 3.56 

G2 4.02 

G3 2.72 

G4 2.21 

G5 2.32 

G6 4.32 

 
b) using the separable semivariogram model type (product model) with the Matérn function 

Well No AE (m) 

G1 5.95 

G2 5.80 

G3 6.14 

G4 4.87 

G5 3.00 

G6 5.27 

                                                 
7
 AE error is only used as validation metric because we intent to present the physical quantity of the 

error regarding predictions. 
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Table 7.6 Absolute Error (AE) of STRK estimations for the dry period of highest groundwater level 

drop (i.e. the dry period 2004-2005). 

 

a) using the non-separable semivariogram model (7.64) 

Well No AE (m) 

G1 3.69 

G2 6.26 

G3 3.57 

G4 2.88 

G5 3.11 

G6 4.90 

 

c) using the separable semivariogram model type (product model) with  the Matérn function 

Well No AE (m) 

G1 6.35 

G2 7.87 

G3 7.07 

G4 2.59 

G5 3.76 

G6 5.83 

 

 After the hydrological year 2005-2006, the average of the biannual estimates 

(i.e. the estimated mean annual groundwater level) is compared with the groundwater 

level in the basin reported by the local authorities (based on the average of the two 

remotely sensed holes) and with the ARX predictions. The temporal model, as shown 

above gives very good agreement with the reported values (period 2007-2010). The 

AE of the estimates obtained with the optimal
8
 non-separable space-time 

semivariogram is presented in Table 7.7. 

 Interpolation maps are derived using STRK with the optimal non-separable 

spatiotemporal semivariogram structure for the wet period of 2003-2004 and the dry 

period of 2004-2005. For these periods, the accuracy of separable and non-separable 

semivariograms is tested (Table 7.5 and Table 7.6). The contour maps of groundwater 

level spatial variability in physical space are shown in Figure 7.10 and Figure 7.11. 

The maps are constructed using estimates only at points inside the convex hull of the 

measurement locations. 

                                                 
8
 The semivariogram model that delivers the most accurate estimations 
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Figure 7.10 Map of estimated groundwater level in the Mires basin using STRK (7.56), the non-

separable space-time semivariogram (7.64) on the residuals and spatiotemporal trend removal (7.59)

(wet period of 2003-2004 hydrological year). 

 
Figure 7.11 Map of estimated groundwater level in the Mires basin using STRK (7.56), the non-

separable space-time semivariogram (7.64) on the residuals and spatiotemporal trend removal (7.59) 

(dry period of 2004-2005 hydrological year). 
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Table 7.7 Absolute Error (AE) of STRK estimation error of prediction average using the non-separable 

semivariogram model (7.64) 

Year AE (m) 

2005-2006 7.35 

2006-2007 4.55 

2007-2008 6.75 

2008-2009 8.60 

2009-2010 9.00 

 

7.5 Discussion 

 The scope of this thesis’s chapter is to model spatiotemporally the Mires basin 

aquifer response since 1981. Reliable modeling provides the ground for 

spatiotemporal future groundwater level fluctuations prediction with the highest 

possible accuracy.  

 The ARX model (7.7) used for the purely temporal mean annual groundwater 

level modeling delivers satisfactory predictions with low validation errors (Table 7.3, 

Table 7.4). We include in the ARX model training period the recent extreme 

groundwater level fluctuations in order to train the model more efficiently. As 

observed in Figure 7.3 and Figure 7.4 the accuracy of the estimates improves as more 

data are processed by the method while the recent extremes are captured reasonably 

by the model. The model is trained for the period 1981-2006 while the period 2007-

2010 is used as the validating period. The ARX model is embedded in a discrete-time 

Kalman filter, trained gradually until the previous year of prediction, calculating 

reliable model parameters and producing the reliable ARX estimations presented. 

 According to equation (7.7) the mean annual groundwater level value ( )kZ t  

estimation at time kt  depends on the previous year measured groundwater level value 

1( )kZ t   reliable estimations of rainfall and/or abstraction volume for the specified 

prediction year period kt  and the estimated parameters that describe the aquifer 

dynamic response and are calculated during the calibration process. For each value 

added in the data set the optimal parameters are gradually updated. The validation 

results show that the predicted value of each year forward form 2006 is very well 
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estimated and it can be substituted to the dataset as 1( )kZ t   in order to predict the 

parameters and the next year’s level. 

 ARX estimates are reliable only for one year forward, as long term or even 

short term predictions of rainfall intensity involve high uncertainty. In addition the 

abstraction volume rate is also uncertain, because it depends on anthropogenic 

activities that cannot be predicted accurately for longer than a year. The tables of 

results (Table 7.3, Table 7.4) and the figures (Figure 7.3, Figure 7.4) show that the 

incorporation of the abstraction rate in equation (7.7) improves the estimates; 

however, the improvement is not significant meaning that the driving variable for 

accurate estimation is the precipitation surplus. Nevertheless, so Figure 7.3 and Figure 

7.4 as mean square prediction error (7.1) show that after initial fluctuations the 

adaptation of the ARX model that includes in addition to precipitation surplus the 

abstraction rate is better, err 7.83  m, than the one including the precipitation 

surplus only err 8.06  m. Thus, the abstraction rate is significant for the modeling of 

the groundwater level temporal variability. 

A novel goal of this study is to assess the use of a recently proposed 

covariance function extracted from a physical differential equation such as the 

diffusion equation in real data; the aim of this test is more efficient spatiotemporal 

interpolation results. The non-separable space-time covariance structure tested herein 

delivers better estimates than the classic space-time product covariance function. The 

space-time semivariogram is calculated for the years 1981 to 2003, from the 

calculated residuals of the biannual groundwater level data of 10 wells. STRK 

estimates with non-separable semivariogram model are significantly more accurate 

for the year of highest groundwater level increase (74%) and for the year of the 

highest drop (44%). Similarly, the mean annual groundwater level (average of the 

biannual estimations) for 2006 to 2010 is more accurate using the non-separable 

space-time semivariogram in the STRK model. 

For the hydrological year 2005-2006 only wet period measurements are 

available. However, because of the unprecedented average level decline in this 

hydrological year a high estimation error is obtained for this period and for the 

hydrological year average. A common observation for the prediction averages after 

2005-2006 is that beyond the temporal limit (wet period of 2003) of the space-time 

semivariogram the estimation accuracy decreases consecutively (Table 7.7). This 
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means that the semivariogram is reliable only for short-time periodical estimations. 

The spatial correlation length is determined after the semivariogram fitting equal to 

almost 3km and the temporal length equal to almost 2 months. As shown herein the 

predictions of the wet period 2003-2004 which is the closer prediction period so to 

that temporal correlation length as to semivariogram temporal limit were the most 

accurate compared to the other periods tested. To predict future values reliably more 

temporal and spatial data are required. However the selected spatiotemporal trend 

simulation model in conjunction with the non-separable semivariogram function and 

STRK estimator provide reliable predictions, even for the two periods with the most 

intense fluctuations, wet period of 2003-2004 and dry period of 2004-2005 

respectively. The potential expansion of the data set will increase the model’s 

reliability and credibility. Tests with more space-time semivariogram structures can 

also provide a more general comparison of non-separable models and separable ones. 

The ARX model can be used in combination with a spatiotemporal 

geostatistical model to provide short-term (bi-annual) future predictions of the 

groundwater level spatial variability. A seasonal extension of the ARX annual average 

model can yield reliable estimates of the seasonal groundwater level that can be used 

in the exponentially weighted average filter to calculate the temporal trend value at a 

specific future time. Then, after applying equation (7.59), the spatiotemporal trend is 

determined for the desired location and time. Residuals are estimated for the same 

location and time using STOK and then added to the trend estimation. Reliable ARX 

predictions involve mainly reliable future rainfall estimations from a climate model or 

from a statistical approach. Improvement of both ARX and STRK models predictions 

should involve more spatiotemporal data on shorter time scales and knowledge of the 

pumping activity of the unauthorized wells operating in the basin. 
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8. Conclusions and future work 

 

8.1 Conclusions 

This thesis presents an integrated approach of interpolating groundwater level spatial 

and/or temporal variability in sparsely monitored basins. The performed research 

intergrades initial data exploratory analysis, anisotropy estimation methodologies, 

common and new data normalization transformation techniques, spatial data 

interpolation using well known and newly established geostatistical methods based on 

kriging essence, purely temporal groundwater level fluctuations modeling and 

spatiotemporal geostatistical analysis and interpolation of groundwater level data. 

Innovative geostatistical tools and methodologies developed in this thesis 

improve the accuracy of spatiotemporal interpolation of groundwater level data. The 

accurate representation of groundwater spatiotemporal variability in a basin is 

important for management purposes and for sound groundwater modeling. The 

analytical methodologies and tools introduced in this thesis contribute to applied 

geostatistical research. We apply these methods and tools to real data. In addition our 

analyses support the statement that there is not a globally best interpolation method. 

The performance, efficiency and suitability of the methods depend on the statistical 

properties of the dataset (e.g. skewness, kurtosis, trends, outliers) and on the specific 

validation measures discussed in chapter 2.6. 

 This thesis was initially motivated by the dramatic decrease of groundwater 

levels in Mesara valley in recent years due to overexploitation. In light of this 

development and the expected adverse effects of climate change on the basin’s water 

resources, accurate spatial modeling of the groundwater level variation is needed for 

two reasons: a) to identify “vulnerable” locations where an integrated groundwater 

resources management plan should focus and b) to provide accurate information for 

the calibration of numerical groundwater flow models for the basin, e.g. for the 

representation of initial groundwater level conditions. Modflow code interfaces 

(Visual, GMS, Groundwater Vistas) for groundwater level modeling integrate in the 

process geostatistical approaches for data interpolation but without providing a sense 

of quality of the geostatistical methods interpolation accuracy. For example transient 



 CONCLUSIONS AND FUTURE WORK  

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 

HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

170 

flow modeling requires accurate initial groundwater level conditions for efficient 

modeling results. 

This thesis present a comparison of stochastic (Ordinary Kriging-OK, 

Universal Kriging-UK, Delaunay Kriging-DK) and deterministic (Inverse Distance 

Weight-IDW, Minimum Curvature-MC) interpolation methods for groundwater level 

monitoring in sparsely gauged areas. For the hydraulic head data from Mires basin 

(Crete, Grecce), we established that the OK and UK interpolation methods overall 

perform better with respect to various cross validation measures, while DK and IDW 

show similar performance. However, no method is significantly superior to the others 

as the estimation error metrics are similar Table 4.3. The isolevel contours generated 

by DK and especially by IDW are rough contrary to smooth representations from OK, 

UK and MC. The stochastic methods provide guidance for the location of additional 

monitoring sites, based on the values of the kriging variance. Since the size of the 

Mires basin dataset is relatively small, computational limitations are irrelevant. For 

large datasets, computational time and memory usage for each method should also be 

investigated. 

 The advantages of the stochastic interpolation methods performance 

corresponds to the assessment of the specific dataset. However as it has also been 

shown in previous works, the stochastic methods perform generally better than the 

deterministic. Rough contours are a characteristic of the IDW method as also are the 

smooth contours delivered by the MC method. DK is expected to have rough contours 

because it is based on a small number of neighbors. OK and UK generally convey 

smooth contours. This happens because the estimates are based on correlated 

observations within a neighborhood. 

 The three-parameter Spartan semivariogram model is herein applied for the 

first time to hydrological data and yields the optimal cross validation performance 

among the investigated models. In addition, it delivers the estimates with the lowest 

standard deviation. The Spartan model is non-differentiable. We interpret this 

property as the result of a deposition-removal process that leads to an fBm-like 

behavior of the groundwater level surface. We also show that DK provides the best 

cross-validation estimate for the extreme low value, due to the localized nature of DK 

interpolation. 

Subsequently this thesis presents non-linear data normalizing methods for the 

improvement of kriging groundwater levels. The application field is the Mires basin 
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on the island of Crete (Greece). TGK
9
, GA

10
-OK, Box-Cox-OK and MBC

11
-OK, 

using the Spartan semivariogram model improve the mean absolute estimation error 

(MAE) compared to OK. For the first three methodologies the other estimation 

measures considered (RMSE, bias, MARE, R) are similar to those of OK, except for 

their inferior bias error. However, the MBC-OK also improves the RMSE, delivers 

the same low bias error and identical MARE and R. Overall, they deliver the most 

accurate estimation measures compared to the other methodologies tested and overall 

better than those of OK. The MBC method is applicable to both positive and negative 

values in contrast to the Box-Cox method that can be applied only to positive values. 

Normalization methods in general show that they can improve the effectiveness of the 

kriging interpolation method by reducing the estimation error compared to OK, thus 

leading to more accurate predictions. In this study, the normalization method (MBC) 

and the recently proposed spatial semivariogram structure (Spartan) are applied with 

OK for groundwater level interpolation. They obtain overall the most accurate cross-

validation results while; cross-validation estimates and interpolation estimates satisfy 

a wide range of statistical criteria. The correlation coefficient of the cross-validation 

estimates vs. the true values is equal to 0.91, the distribution of errors is symmetric 

with a low bias equal to 0.02 masl, the plot of cross-validation errors vs. estimates is 

centered about zero error, satisfying the “conditional unbiasedness” property, 

measurements histogram reproduction from cross validation estimates and 

experimental semivariogram reproduction from the interpolation estimates. 

As this thesis focuses on the spatial analysis of groundwater level in sparsely 

monitored basins, two novel spatial trend models are proposed for groundwater level 

interpolation. In addition the Covariance Hessian Identity method for anisotropy 

estimation is for the first time applied to hydrological data. We establish that besides 

the interpolation methodologies tested previously two optimal approaches based on 

Residual Kriging-RK significantly improves groundwater level interpolation. The first 

method uses a novel trend model that incorporates, in addition to smoothed surface 

elevation, the shortest distance of the monitoring locations from the temporary river 

traversing the basin. The second trend model uses an analytical equation specifying 

                                                 
9
 Trans-Gaussian Kriging 

10
 Gaussian Anamorphosis 

11
 Modified Box-Cox 
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the head for a system of multiple pumping wells. The combination of the proposed 

trend models and RK implemented with the non-differentiable Spartan semivariogram 

and the new MBC data normalization method leads to optimal cross validation results. 

The optimal spatial models significantly improve the cross validation measures 

compared to other models tested. In particular, RK interpolation with the trend models 

T-RD-DEM-UGA and T-MW reduces the prediction error of the lowest value (9.4 

masl) by 20% and 29%, respectively, compared to the standard OK prediction. At the 

same time, the highest level of 62 masl is accurately estimated. The Spartan 

semivariogram provides the most accurate results from all the spatial models 

investigated in this thesis, while the stochastic methods overall perform better than the 

deterministic ones. An outline of the methods performance is presented in Table 8.1. 

 

Table 8.1 Cross validation measures for the stochastic and deterministic interpolation methods 

investigated. Results obtained with the “optimal” (in terms of cross validation measures) 

semivariogram model are presented. Optimal values are emphasized. 

Method Semi-

variogram 

MAE 

(masl) 
BIAS 

(masl) 
MARE RMSE 

(masl) 
R 

MC  4.01 0.10 0.17 6.18 0.87 

IDW  3.45 -0.17 0.15 5.58 0.89 

DK-SP SP 3.48 0.10 0.15 5.47 0.89 

UK-SP SP 3.40 0.13 0.14 5.23 0.91 

OK-SP SP 3.37 0.02 0.14 5.15 0.91 

Box-Cox-OK SP 3.30 0.10 0.14 5.14 0.91 

MBC-OK SP 3.30 0.02 0.14 5.12 0.91 

GA-OK SP 3.30 -0.3 0.14 5.14 0.90 

TGK SP 3.28 -0.1 0.14 5.14 0.91 

T-DEM 

MBC & RK 

SP 3.32 0.07 0.15 5.20 0.90 

T-DEM-UGA 

MBC & RK 

SP 3.21 0.03 0.14 5.08 0.90 

T-RD 

MBC & RK 

SP 3.11 0.08 0.12 4.86 0.92 

T-DEM-UGA-RD 

MBC & RK 

SP 3.02 0.07 0.12 4.79 0.92 

T-MW 

MBC & RK 

ws  =1.85 (masl) 

SP 2.75 0.07 0.11 4.57 0.93 

 

 Low Bias and the highest possible statistical accuracy (MARE, RMSE) are the 

objectives in comparing different methods performance apart from the MAE. 
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Comparing the deterministic with the stochastic methods the results can be 

characterized statistically different. The most efficient deterministic method (IDW), 

delivers clearly inferior statistical measures compared to the most efficient stochastic 

method (RK-T-MW). Comparing the stochastic methods efficiency from the least 

accurate to the most accurate consecutively, the results are not clearly statistically 

different for this sample. Most of the spatial models deliver overall close results. 

However, an important difference exists between the most accurate stochastic 

interpolation method (OK) and the most accurate spatial model (RK-T-MW) for this 

dataset. An accuracy improvement of around 60 cm in MAE, 3% in MARE, around 

60 cm in RMSE, similar bias and slightly improved correlation coefficient can be 

characterized statistically different and significant for groundwater modeling 

approaches or water resources management plans. 

The optimal approach of all the spatial methods tested is based on RK, 

includes a trend component based on the generalized Thiem’s equation for multiple 

wells, and employ as well as two newly established geostatistical tools: a) the flexible 

Spartan semivariogram family and b) the MBC data normalization transformation. 

Figure 8.1 presents the most accurate groundwater level spatial variability according 

to the statistical metrics evaluated. 

Finally this thesis also instigates the spatiotemporal and temporal-only 

modeling of groundwater level in a sparsely monitored basin. We use the ARX time-

series model to relate the groundwater level to precipitation surplus and/or the 

abstraction rate. The ARX temporal model for the groundwater level is embedded in a 

Kalman filter to estimate the model parameters. After initial considerable fluctuations, 

the model adapts well with the level’s temporal evolution and provides very accurate 

estimates. Based on the results of the predicted groundwater level, the ARX model 

estimates become progressively more accurate, as more data are incorporated and the 

model parameters are recursively refined during each update. The recursive nature of 

the parameter inference procedure implies that the model becomes more accurate as 

the length of the time series increases. As shown in Figure 7.3 and Figure 7.4, the 

groundwater level in the Mires basin has a definite declining trend. The model 

captures this trend, adapts well with the extremes and accurately predicts the 

groundwater level for the time periods 2007-2010. A reliable prediction of future 

groundwater levels for the Mires basin can lead to a scientifically sound management 

plan for the exploitation of the groundwater resources in the area. Meaning that 
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different scenarios can be examined regarding pumping activity and precipitation 

trends and also by taking account the real water needs of the area to control the 

pumping rates especially in years that groundwater level is expected to drop. 

 

 
Figure 8.1 Map of estimated groundwater level in the Mires basin using RK-T-MW spatial model, 

adapted on the real basin coordinates and location in the valley. 

 

The spatiotemporal groundwater level modeling involves the spatiotemporal 

trend approximation using an innovative approach. The temporal and the spatial trend 

are separately determined and then are combined to determine the spatiotemporal 

trend of the time series data. The combination involves first the multiplication of the 

temporal and of the spatial trend. Then the trend values are divided with the temporal 

trend of the reference year to produce coefficients without units which is necessary in 

order spatiotemporal trend to retain the assessed data units (meters). The product of 

temporal and spatial trend components is not new; however the use of the 

exponentially weighted moving average filter for the temporal trend and the use of a 

spatial component based on the distance from the riverbed are new elements. In 

addition the spatiotemporal approach involves the application of a spatiotemporal 

covariance function that is based on the diffusion equation. The non-separable 

spatiotemporal semivariogram structure obtained fits very well the experimental 

space-time semivariogram of the residuals. The STRK estimates based on this 

semivariogram are more accurate than those based on separable, product-type 

semivariograms. Figure 8.2 and Figure 8.3 present the groundwater level spatial 
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variability, obtained with the non-separable spatiotemporal semivariogram model, in 

Mires basin for the hydrological periods 2003-2004 (wet) and 2004-2005 (dry) 

adapted on the real basin coordinates and topographical location. These two periods 

are characteristic of the dataset as significant groundwater level increase occurs in the 

wet period of 2003-2004 and considerable groundwater level drop in the dry period of 

2004-2005. 

The non-separable semivariogram is shown to provide a reliable alternative in 

spatiotemporal semivariogram modeling. Another advantage is that it has fewer 

parameters (three) compared to the product of Matérn functions. Reliable STRK 

estimates are crucial for groundwater recourses management as they provide 

information for groundwater level spatiotemporal variability. The potential 

combination with the ARX model can lead to an integrated approach for stochastic 

spatiotemporal modeling and prediction of groundwater level in the basin. 

 

 

 

Figure 8.2 Map of estimated groundwater level in the Mires basin using STRK and the non-separable 

space-time semivariogram (wet period of 2003-2004 hydrological year) adapted on the real basin 

coordinates and location in the valley. 
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Figure 8.3 Map of estimated groundwater level in the Mires basin using STRK and the non-separable 

space-time semivariogram (dry period of 2004-2005 hydrological year) adapted on the real basin 

coordinates and location in the valley. 

 

8.2 Future work and perspectives 

 This thesis introduces new geostatistical tools and ideas for space-time 

mapping which contribute in applied geostatistics. In this section some ideas for 

future research are presented that emerged after the conclusion of the thesis. 

 A software tool can be developed based on the code written for this thesis. 

This is a Graphical User Interface (GUI) in Matlab
®
 that can give easy access to all 

the methodologies introduced and applied in this thesis. A GUI for isotropic and 

anisotropic semivariogram fitting and parameters calculation has been already 

developed (Figure 8.4). Thus the application of the complex space-time models could 

become user friendly and straightforward for non-expert users. 

The MBC data normalization method introduced in this thesis is optimal for 

the specific case study. Application of the method in association with kriging 

methodology to a wide range of datasets will lead to safer general conclusions for the 

suggested method’s efficiency. Further investigation of GA normalization method on 

the hydraulic head fluctuations derived by the spatial trend models presented in 



 CONCLUSIONS AND FUTURE WORK  

GEOSTATISTICAL ANALYSIS AND SPACE-TIME MODELS OF AQUIFER LEVELS: APPLICATION TO MIRES 

HYDROLOGICAL BASIN IN THE PREFECTURE OF CRETE 

 

177 

chapter 6 may lead to interesting conclusions for the method’s efficiency on residuals 

data that deal with negative values. 

 

 

Figure 8.4 Graphical User Interface (GUI) in Matlab
®
 for isotropic and anisotropic semivariogram 

fitting. 

 

 Further investigation is needed for the spatiotemporal trend variance due to the 

complex nature of its calculation. The variance of the spatial trend component is 

based on the predictors at the prediction location (i.e. shorter distance from the river) 

but the variance of the exponential weighted moving average filter for the temporal 

trend and the total trend variance of the spatiotemporal trend function need further 

investigation. This is necessary in order to calculate STRK estimations variance.  

A more extensive comparison of separable and non-separable spatiotemporal 

semivariograms interpolation efficiency is also necessary. Application of additional 

separable and non-separable space-time semivariogram functions (Kolovos et al. 

2004) should be tested. In addition new models based on SSRF’s (Hristopulos 2003b) 

can be developed and verified. 

Incorporation of a climate change or statistical stochastic (gamma distribution) 

model for the precipitation estimations in the ARX model, can lead to improved 

temporal groundwater level predictions depending on the models’ reliability. If 

groundwater level time series become available for individual wells of the basin, then 

the ARX model application can be extended for local predictions. 
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 Finally, enrichment of the available dataset with more space-time groundwater 

level data (additional measurements locations as well as more frequent and recent 

measurements) could lead to more representative spatiotemporal semivariograms. 

Consequently, more accurate estimates and reliable predictions of the spatial and 

temporal distribution of the basin’s groundwater level or fluctuations (residuals) can 

be expected. Additionally, a seasonal extension of the ARX model could provide the 

spatiotemporal trend model with information on the seasonal average of groundwater 

level and therefore to spatiotemporal trend predictions. 
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