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Abstract

Spectral Imaging (SI) combines spectroscopy and imaging, enabling the acquisition

of a stack of images at narrow spectral bands comprising the so-called spectral cube. A

complete spectrum can be calculated for every image pixel from the multidimensional

spatio-spectral space of the cube. This study aims at identifying the concentration of

solvents in mixtures of multiple biochemical stains with overlapping spectral signatures.

More specifically, a series of experiments has been undertaken via experimental design

arrangements (full factorial, face-centered & half factorial) employing both spectrum

acquisition by spectrophotometer and spectral imaging acquisition. Furthermore, an

extensive number of algorithmic methods, based on Beer Lambert’As law generalization,

including Classical Least Squares (CLS), Inverse Least Squares (ILS) with forward or

backward selection, Principal Components Regression (PCR) and Partial Least Squares

(PLS) has been implemented and applied to both simulated and experimental data.

It was found that PLS can predict the concentrations in mixtures of two and three

solvents with high accuracy on the datasets of spectral images. The combination of SI

with concentration prediction algorithms can provide a valuable tool for quantitative

assessment of the uptake of biological stains in histochemistry applications.
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Chapter 1

Introduction

1.1 Thesis Contribution

This thesis studies the decomposition of optical spectra from biomedical stain mixtures

for chemometrics and especially quantitative analysis. Its main contribution resides in

the quantification,in other words, the estimation of the individual dissolved substances’

concentrations and, thus, it provides a solution using four methods based on least squares

regression (CLS, ILS, PCR, PLS). It also contributes a comparison among these four

methods, highlighting their advantages and disadvantages in the concentration estimation

process and which of them reciprocates better for our thesis’ purposes. In order to achieve

this, some error metrics, such as root mean squared errors and standard error of regression

have been employed.

Furthermore, another contribution of this thesis is that an experimental design has

been constructed and followed for the preparation, acquisition and processing of mixtures

of two, three, four and five components. More specifically, this design can be used in

datasets acquired with a spectrometer or in simulated data, as well as in hyperspectral

images acquired with a microscope and its greatest advantage is that it built in order to

incorporate the most information with the fewest inputs. Thus, it would be important

to follow it for future experiments in Optoelectronics lab.

The system that has been created has great potential in process analysis, in vivo

diagnostics, security-related detection systems and many other areas, especially biomed-

ical engineering. This lies in the use of biomedical stains that aid the designation of

biomarkers of diagnostic importance, especially in the field of immunohistochemistry.
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1. INTRODUCTION

1.2 Thesis Outline

Chapter 2 provides general information about the theoretical background of the problem,

including spectroscopy and spectral imaging, but it also analyses more specific issues

connected to our work, such as the Beer-Lambert Law, Chemometrics field, previous

related work and applications.

Chapter 3 is concerned with the problem specifications, such as the hardware de-

vices used for the experimental process and their features. Furthermore, in this chapter

we describe the biomedical dyes used in the experimental stage,the experimental design

followed, the experimental data acquired from the above devices (pure solutions or mix-

tures) and the simulated data used. The chapter is also concernced with the inevitable

and critical to the processing stage errors that occur during data acquisition.

In Chapter 4 we discuss all the methods applied in this thesis. First, we make a brief

reference to the calibration process and its significance, beginning with univariate and

continuing to multiple and multivariate calibration. Subsequently, we analyze the four

calibration/regression methods that result in the mixture concentration prediction. In

the last part of the chapter we mention the concentration and overall regression errors

calculated to validate the procedure.

Chapter 5 is the most critical one, because it presents the results obtained after the

methods and their algorithms are applied on the various experimental (spectral, or image)

data or the simulated data. A plethora of tables and figures are provided to cover the

topic.

Finally, in Chapter 6 we summarize the conclusions we were guided towards and the

possible future research directions on the problem.
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Chapter 2

Theoretical Background

2.1 Electromagnetic Radiation

Electromagnetic radiation is a transverse wave, consisting of an oscillating electric field

E and an oscillating magnetic field M. The two fields are perpendicular to each other as

well as to the propagation direction of the wave. The wave is described by a wavelength

λ, which corresponds to the physical length of a full oscillation and a frequency v, which

corresponds to the number of oscillations per second. Electromagnetic radiation exhibits

properties of both waves and particles. This wave-particle duality was initially understood

by Albert Einsten who expressed it as a continuous flow of particles or wave energy

packages, also known as photons [1].

One photon carries energy equal to:

Ephoton = hv =
hc

λ
(2.1)

where h is Planck’s constant (6.6261×10−34 Js), c is the speed of light, v is the frequency

and λ is the wavelength of the radiation.

For reasons of convenience, the electromagnetic spectrum is divided into a number

of spectral bands, each one of which interacts with matter in a different way. The visi-

ble spectrum constitutes a small part of the total radiation spectrum [2]. Most of the

radiation that surrounds us cannot be seen, but can be detected by dedicated sensing in-

struments. The electromagnetic spectrum ranges from very short wavelengths (including

gamma and x-rays) to very long wavelengths (including microwaves and broadcast radio

waves) as shown in figure 2.1.
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2. THEORETICAL BACKGROUND

Spectral Band Wavelength

γ rays ¡ 0.03 nm

X-rays 0.03-10 nm

Ultraviolet 10-400 nm

Visible light 400-800 nm

Near Infra-red 0.8-2.5 µm

Mid Infra-red 2.5-15 µm

Far Infra-red 15-200 µm

Microwaves 0.2-7 mm

Radio waves 100-10000 m

Figure 2.1: Spectral bands of Electromagnetic Radiation

2.2 Spectroscopy/Spectrometry

Spectroscopy is the study of the interaction between electromagnetic radiation and matter

as a function of wavelength (λ). In fact, historically, spectroscopy referred to the use of

visible light dispersed according to its wavelength, e.g. by a prism. Later, the concept

was expanded greatly to comprise any measurement of a quantity as function of either

wavelength or frequency. Thus, it can also refer to interactions with particle radiation or

to a response to an alternating field or varying frequency (v). A further extension of the
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2.2 Spectroscopy/Spectrometry

scope of the definition added energy (E) as a variable, once the very close relationship

E = hv for photons was realized.

Spectrometry is the spectroscopic technique used to assess the concentration or amount

of a given species. In those cases, the instrument that performs such measurements is a

spectrometer or spectrograph.

Spectroscopy/spectrometry is often used in physical and analytical chemistry for the

identification of substances through the spectrum emitted from or absorbed by them.

Spectroscopy/spectrometry is also heavily used in astronomy and remote sensing. Most

large telescopes have spectrometers, which are used either to measure the chemical com-

position and physical properties of astronomical objects or to measure their velocities

from the Doppler shift of their spectral lines [3].

2.2.1 Analytical Spectroscopic Methods

The type of spectroscopy depends on the physical quantity measured. Normally, the

quantity that is measured is intensity, either of energy absorbed or produced. Most

spectroscopic methods are differentiated as either atomic or molecular based on whether

or not they apply to atoms or molecules. Along with that distinction, analytical methods

of spectroscopy/spectrometry can be classified on the nature of their interaction as follows

[4] :

Classic: Related to mass. These are either Gravimetric (Weighing scales) or Volumetric

(calibrated glassware).

Instrumental: Related to energy. These are either Optical (electromagnetic radiation-

sample interaction - absorption, emission, scattering), Electrochemical (end point in

volumetric measurements with electrical devices) or Specialized (chromatographic,

immunochemical).

Optical methods are separated into Spectroscopic Techniques and Non-Spectroscopic

Techniques. Spectroscopic techniques are based on the ability of various substances

to emit or interact with radiation of typical frequencies and on spectral measure-

ments (wavelength, power-intensity of radiation). Non-spectroscopic techniques are

based on the interaction of electromagnetic radiation and matter, which entails
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2. THEORETICAL BACKGROUND

change in the direction or physical properties of radiation. It does not involve

spectral measurements.

There are four categories of Instrumental Optical Spectroscopic Techniques:

1. UV-Visible (UV-Vis). The absorption of visible or ultraviolet radiation

causes electron transitions of outer orbitals.

2. Infra Red (IR). The absorption of infra red radiation causes vibrational,

deformational and rotational stimulations to the bonds of molecules.

3. Nuclear Magnetic Resonance (NMR). Changes in nuclei’s energy.

4. Raman. Scattering radiation.

The following diagram summarizes the above distinction between the various methods

of spectroscopy:

Analytical Methods

Instrumental

SpecializedElectrochemicalOptical

Non-spectroscopicSpectroscopic

RamanNMRIRUV-Vis

Classic

In this diploma thesis we have dealt with instrumental, optical, visible spectroscopic

methods, and especially with absorption spectroscopy. Absorption spectroscopy is the

study of light absorbed by molecules. In it, white light is caused to pass through a sample

and then through a device (such as a prism) that breaks the light up into a spectrum.

When such light is passed through a sample, under the right conditions, the electrons of

the sample will absorb those wavelengths of light that can change them to other levels.

Thus, the light coming out of the prism will be missing those wavelengths corresponding

to the allowed energy levels of the electrons in the sample. We will see a spectrum with

black lines where the absorbed light would have been if it had not been removed by the

sample [5].
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2.3 Spectral Imaging

2.2.2 Absorption Spectra

An absorption spectrum is the representation of absorption, permeability, or intensity of

the radiation as a function of wavelength [4]. In this diploma thesis, in order to estimate

the concentrations of the spectral mixtures, we dealt with absorption spectroscopy and

we conducted experiments measuring absorption spectra at different wavelengths in the

visible spectrum area when the device allowed us, or measuring transmission spectra and

converting them into absorption spectra.

2.3 Spectral Imaging

Spectral imaging (SI) is a branch of spectroscopy which combines spectroscopy with

imaging. Hyperspectral imaging is part of spectral imaging and the difference with

multi-spectral imaging lies in the number of spectral bands under investigation. Spectral

imaging can be considered as the equivalent of color photography, but each pixel needs to

acquire many bands of light intensity data from the spectrum, instead of just the three

bands of the RGB color model displayed in figure 2.2.

2.3.1 Hyperspectral Cube

The Spectral Imaging (SI) systems acquire a 3-dimensional dataset of spectral and spatial

information, known as spectral or hyperspectral cube. The hyperspectral cube comprises

a set of images of a size of x × y pixels acquired at N different wavelengths. The 3-D

spectral and spatial character of the data (intensity I at 3 dimensions x,y and λ) and a

more analytical representation of the hyperspectral cube are illustrated in figure 2.3.

2.3.2 Spectral Signatures

Spectral signatures are a collection of pixels representing categories of materials with

different structural or chemical composition [6]. More specifically, for any given material,

the amount of solar radiation that reflects, absorbs, or transmits varies with wavelength.

This important property of matter makes it possible to uniquely identify different physical

or chemical substances or classes and separate them by their spectral signatures, as

shown in figure 2.4. For example, at some wavelengths, sand reflects more energy
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Figure 2.2: (Image data capturing and representation in color (a-c) and spectral (d-f)

cameras.

Figure 2.3: (Hyper)spectral Cube representing the spectral (λ) and spatial (x,y) character

of the data
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Figure 2.4: Spectral signatures of different physical substances.

than green vegetation but at other wavelengths it absorbs more (reflects less) than does

the vegetation. In principle, we can recognize various kinds of surface materials and

distinguish them from each other by these differences in reflectance [7].

2.4 Chemometrics and quantitative analysis

Quantitative analysis as used in chemistry, chemical engineering and physics is the

determination of the absolute or relative abundance (often expressed as a concentration)

of one, several or all particular substance(s) present in a sample.

Chemometrics is the use of statistical and mathematical techniques in order to ex-

tract information from chemical systems using multivariate statistics and applied math-

ematics to address problems in chemistry, biochemistry, medicine, biology and chemical

engineering. The field is generally recognized to have emerged in the 1970s as computers

became increasingly exploited for scientific investigation. The term chemometrics was

introduced by Svante Wold in a grant application 1971 and the International Chemo-

metrics Society was formed shortly thereafter by Svante Wold and Bruce Kowalski, two

pioneers in the field. Wold was a professor of organic chemistry at Umea University, Swe-

den, and Kowalski was a professor of analytical chemistry at University of Washington,

Seattle [8] [9] [10] [11]. Chemometrics is a relatively new branch of science and often
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involves using linear algebra methods to make qualitative or quantitative measurements

of chemical data.

In this diploma thesis, we have dealt with quantitative analysis and the field of chemo-

metrics in order to estimate the absolute abundances (concentrations) of chemical solu-

tions. The concentrations of such solutions are measured in Molarity (units: mol
L

or M),

which represents the number of moles of a dissolved substance per litre of solution [10].

Advances in computational hardware and the development and application of chemo-

metrics were necessary to transform the field of spectroscopy into a useful analytical

tool. This same combination of hardware and software tools must be further exploited

to analyze and extract the information contained in hyperspectral images.

2.5 Beer-Lambert Law

One of the keys to quantitative analysis in any scientific field is the assumption that

the amounts(concentrations) of the constituents of interest in the samples are somehow

related to the data from a measurement technique used to analyze them. The ultimate

goal is to create a calibration equation (or series of equations) which, when applied to

data of ”unknown” samples measured in the same manner, will accurately predict the

quantities of the constituents of interest. In order to calculate these equations, a set

of ”standard” samples are made which reflect the composition of the ”unknowns” as

closely as possible. The standards are then measured by an instrument. Together, this

collection of known data (the composition of each standard) and the measured data

from the instrument form what is known as a training set or calibration set. The

calibration equations that describe the relationships between these two sets of information

are calculated from this data. The exact equation or set of equations that make up the

calibration is also known as a model. Thus, this process is often called, ”solving the

calibration model.” One advantage of using spectroscopy as a measurement technique

is that the Beer-Lambert Law (also known as Beer’s Law) defines a simple linear

relationship between the spectrum and the composition of a sample. This law, which

should be familiar to all spectroscopists, forms the basis of nearly all other chemometrics

methods for spectroscopic data. Simply stated, the law claims that when a sample is

placed in the beam of a spectrometer, there is a direct and linear relationship between

the amount (concentration) of its constituent(s) and the amount of energy it absorbs.
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Figure 2.5: A beam of incident light of intensity I 0 passes through absorbing sample of

concentration c and of a pathlength d and exits with an intensity of I.

In mathematical terms [10]:

A = log(
I0
I

) = −log(T ) = log(1/T ) = εbC (2.2)

where

A= Absorbance of a sample as a function of wavelength. It’s a rational number.

I0= Intensity of the incident light.

I = Intensity of the transmitted light (see figure 2.5).

T = Transmittance ( I
I0

), usually expressed as a percentage %T.

C = the concentration of the sample’s solution measured in mol
L

or M (molarity).

b = the pathlength that the light beam has travelled inside the sample(in cm).

ε = the molar absorptivity of the solution, which is a constant number also proportional

to the respective absorbance wavelengths.

When referring to mixtures instead of single substance solutions Absorbance, molar ab-

sorptivity and concentration are matrices of the following sizes:

A is a d × n matrix, where n is the number of samples measured and d the number of

wavelengths.

E is a d× p matrix, where p is the number of chemical components in a sample and

C is a p×n matrix. In chapter 4.2 we will see how Beer-Lambert Law is associated with

the methods used for our problem solving.

The Beer-Lambert law is valid under the following conditions:
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• The solutions are not dense. The preferable absorbance should range between 0.1

and 1.

• The only mechanism for the interaction between a dissolved substance and radiation

is absorption.

• The incident radiation to a sample is monochromatic.

• The sample is in a cuvette (quartz glass in our case) with a uniform intersection.

• The absorbing molecules act individually and despite their number and kind (Atotal =

A1 +A2 + ...+An , where n is the number of dissolved substances in the mixture)

[4].

These limitations appeared to be useful during the construction of the experimental

design for this thesis( 3.2.2).

2.6 Related Work-Applications

Spectral Imaging in general is a widely known ”tool” with a large number of applica-

tions in various fields. Such fields are: analytical chemistry (qualitative and quantitative

analysis of a chemical solution), biochemistry, in vitro analysis, cartography and mate-

rial classification through geology and remote sensing, industrial applications (qualitative

analysis of products) and medicine, especially optical biopsy as a non-destructive, non-

invasive diagnostic method [1].

More specifically, going backwards, the problem of spectral decomposition originates

in the field of remote sensing [12]. This field has been motivated by a desire to extract

increasingly detailed information about the material properties of pixels in a scene for

both civilian and military applications. While multispectral sensing has largely succeeded

at classifying whole pixels, further analysis of the constituent substances that comprise

a pixel is limited by a relatively low number of spectral measurements. The recognition

that pixels of interest are frequently a combination of numerous disparate components has

introduced a need to quantitatively decompose, or unmix these mixtures. Collecting data

in hundreds of spectral bands, hyperspectral sensors have demonstrated the capability of

performing spectral unmixing. In hyperspectral imagery, mixed pixels are a mixture of

more than one distinct substance, and they exist for one of two reasons:
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1. If the spatial resolution of a sensor is low enough that disparate materials can jointly

occupy a single pixel, the resulting spectral measurement will be some composite

of the individual spectra.

2. Second, mixed pixels can result when distinct materials are combined into a homo-

geneous mixture. This circumstance can occur independent of the spatial resolution

of the sensor.

Analytical models for the mixing of disparate materials provide the foundation for

developing techniques to recover estimates of the constituent substance spectra and their

proportions from mixed pixels. The basic premise of mixture modelling is that within

a given scene, the surface is dominated by a small number of distinct materials that

have relatively constant spectral properties. These distinct substances (e.g., water, grass,

mineral types) are called endmembers, and the fractions in which they appear in a mixed

pixel are called fractional abundances. If the total surface area is considered to be di-

vided proportionally according to the fractional abundances of the endmembers, then

the reflected radiation will convey the characteristics of the associated media with the

same proportions. In this sense, there exists a linear relationship between the frac-

tional abundance of the substances comprising the area being imaged and the spectra

in the reflected radiation. Hence, it is called the linear mixing model(LMM). When M

endmembers exist, each having L wavelengths, the LMM is expressed as:

x =
M∑
i=1

aisi = Sa + w (2.3)

where x is the L×1 received pixel spectrum vector, S is the L×M matrix whose columns

are the L×1 endmembers, si, i = (1, . . . ,M), a is the M ×1 fractional abundance vector

whose entries are ai, i = 1, . . . ,M w is the L × 1 additive observation noise vector.

When N pixels are considered, block notation is utilized, such that X = SA + W,

X = [x(1)...x(N)], A = [a(1)...a(N)], and W = [w(1)...w(N)].

The above linear model is precisely proportional to the Beer’s Law model seen in

the previous section, although instead of reflectance spectra(LMM) there are absorption

spectra(Beer’s Law), instead of endmembers we refer to absorptivities, and instead of

fractional abundances we have absolute concentrations.
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There are many other applications of quantitative analysis, except for remote sensing.

In other words, hyperspectral imaging techniques provide an attractive solution for the

microscopic and macroscopic analysis of biological, agricultural and environmental mate-

rials. The various applications outlined show the benefits of these techniques for sample

characterization and chemical species distribution, for fruit and kernels and for food and

feed mixtures. Furthermore, the application of optical photography, MRI (magnetic res-

onance imaging), and FTIR (Fourier transform infrared) imaging in the study of solvent

diffusion in polymers, polymer dissolution, polymer crystallisation, and drug release from

pharmaceutical tables have been reviewed in previous art. Specific applications of mul-

tivariate techniques, such as PLS and CLS, have been used to analyse imaging datasets

obtained by ATR-FTIR (attenuated total reflectance-Fourier transform infrared) imaging

of tablet dissolution [13]. PCA has mostly been used and applied to perform different

statistical measurements or to perform quantitative analysis in combination with other

studies. This shows the potential and possibilities of using PCA as a method that with-

out kinetic assumptions can analyse the dynamic PET images/data aiming to explain

kinetic behaviour of the administered tracer in different regions of the brain by observing

its variation within the time sequence when it is accurately applied.

Considering forgone applications of chemometrics in tissues, we could mention the

multispectral imaging application for the determination of astaxanthin concentration in

salmonoids, especially rainbow trout fillets [14]. The contribution of this research,though,

was not of biomedical significance but rather for quality evaluation of these products in

order to fulfill customers’ needs.

Another field of biomedical engineering where quantitative analysis has been applied

is quantitative pathology [15]. In this paper, a novel spectral microscope system was pre-

sented together with a method for the quantitative assessment of the uptake by histologic

samples of stains used in pathology to label tissue features of diagnostic importance.

From the bibliography ( [44], [45] and [46]) it seems that one of the most relevant

fields of biomedical engineering to quantitative analysis is immunohistochemistry. Im-

munochistochemistry it’s a process where antibodies labeled/stained with a fluorescent

or other stain can be bound to antigens (or biomarkers) which allow the detection and

isolation of a particular cell type and, thus, lead to the detection of abnormal cells in

tissues. Through this process and with the aid of deconvolution (or unmixing) of im-
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munochistochemical stains, cells with a particular phenotype which tends to contribute

to metastasis can be revealed( [45]).

Last but not least, there has previously been made an investigation of lung cancer

biomarkers by hyphenated separation techniques and chemometrics. In that work, quan-

titative analysis of Volatile organic compounds(VOCs) in the headspace of lung tissues

revealed that cancer cells released higher concentrations of ethanol, acetone, carbon disul-

fide, dimethyl sulfide, 1-propanol, 2-propanol, 2-butanone and 2-pentanone than healthy

tissues. The increase of concentration of the substances was observed in the breath of

patients with lung cancer in comparison to breath from healthy non-smoking volunteers.

In overall, this concluded to the fact that detection of lung cancer is possible by volatile

biomarkers analysis in breath [16], with the use of solid phase microextraction and gas

chromatography mass spectrometry. However, in this diploma thesis we are going to

develop different techniques from this particular one, and we are going to concentrate

upon absorption or transmission spectroscopy.
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Chapter 3

Problem Specifications

In this diploma thesis, we have encountered the problem of the decomposition of optical

mixture spectra of two, three (usually) or more chemical substances (later). In order to

handle the problem stated, we transferred the problem of spectral unmixing or spectral

decomposition from the domain of quantitative analysis in remote sensing to the domain

of quantitative analysis in chemometrics, and then from chemometrics to hyperspectral

imaging.

More specifically, the initial challenge was to create an experimental design and a

whole series of experiments in order to gather the necessary mixture samples from which

the individual concentration spectra would be identified. Subsequently, we encountered

the problem of finding and applying the most appropriate algorithmic methods that could

identify the concentrations of the individual substances (measured in Molarity, M), based

on an equation of known absorbance or transmission spectra and known or unknown

concentrations. As seen before, the mechanism that connects the absorbance of a sample

with its concentrations is the Beer-Lambert Law, so the object was to find the algorithms

that based on this law-equation would perform better for our problem . Thus, the need

for creation of a calibration regression model occurred and in this direction we moved in

order to implement the most appropriate algorithms. Finally, we encountered the need

for some validation ”tools” in order to decide which of these algorithms performed better.

In the following sections of this chapter we are going to develop the experimental

set-up and design, the devices needed for the experiments and the characteristics of the

chemical substances used and their exited individual and mixture spectra, after measured

with these devices.
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3.1 Acquisition System

For the purposes of this diploma thesis, two data acquisition systems have been used,

a UV-VIS Spectrophotometer and a Microscope. The first was used for the initial ex-

periments on 9-sample absorbance spectra datasets of two or three substance mixtures,

whereas the later was used for the acquisition of hyperspectral images (hyperspectral

data cubes 2.3.1).

3.1.1 Spectrophotometer configuration

Figure 3.1: Diagram of a spectroscope

Figure 3.2: A schematic representation of a simple spectrometer

There is a large variety of instruments used to perform spectroscopy. They differ
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greatly in the kinds of information they provide. What they all have in common is

the ability to break light up into its component wavelengths. Such instruments are

spectroscopes, spectrometers and spectrophotometers.

A spectroscope is the simplest of spectroscopic instruments. Its function is to take light

from any source and spread it into a spectrum for viewing with the unaided eye.Figure 3.1

is a diagram of a simple spectroscope. The light from the source passes through the slit

and into the prism where it is spread into a spectrum. The telescope is used to focus

on the light coming out of the prism. The third arm contains a wavelength scale that

can be superimposed over the spectrum by shining a white light into it.Spectroscopes are

useful for determining what wavelengths of light are present in a light source, but they

are not very useful for determining the relative amounts of light at different wavelengths.

Spectroscopes are most commonly used for qualitative emission spectroscopy.

A spectrometer is a spectroscope that has some sort of meter attached that can

measure the amount of light (number of photons) at specific wavelengths.Thus, it is

designed to provide a numerical measure of the amount of light emitted or absorbed at

a particular wavelength. It is constructed so that the wavelength can be varied by the

operator and the amount of radiation absorbed or transmitted by the sample determined

for each wavelength. In this way it is possible to learn which wavelengths of radiation are

present and in what relative amounts. Spectrometers are common in astronomy where

they are used to evaluate the light collected by telescopes. They are the only source of

information we have about the chemical composition of the universe outside our own solar

system. Figure 3.2is a schematic representation of a simple spectrometer.Light enters

the spectrometer via the entrance slit and then passes through several parts: an objective

lens, a grating, and an exit slit. This combination of parts functions as a monochromator,

a device which selects only one color (actually, a narrow band of wavelengths) from all

of the wavelengths/colors present in the source. A particular wavelength is selected,

using the wavelength control, by adjusting the angle of the grating. This works because

different wavelengths of light reflect off the grating at different angles. The net result

is the separation of white light into a ”rainbow” much like light transmitted through a

prism of glass. The selected wavelength is at the center of the narrow band of wavelengths

passing through the slit. The light then strikes a detector that generates a voltage in

proportion to the intensity of the light hitting it. That voltage is then used to drive a

read-out device that is designed to provide data in a useful fashion such as intensity.
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Figure 3.3: A schematic representation of a conventional spectrophotometer

Since spectrometers measure the amount of light entering the instrument, they are

most often used for emission spectroscopy. In order to perform absorption spectroscopy,

a light source of known intensity is required. An instrument that includes such a light

source is known as a spectrophotometer. It is constructed so that the sample to be studied

can be irradiated with light of known wavelength and intensity. The wavelength can be

varied and the amount of radiation absorbed or transmitted by the sample determined

for each wavelength. From this information, an absorption spectrum for a species can be

obtained and used for both qualitative and quantitative determinations. Figure 3.3 is a

schematic representation of a conventional spectrophotometer.

Usually a spectrophotometer is the best, but spectrometers are cheaper and faster in

data acquisition. However, the spectrophotometer provided to us by the Analytical and

Environmental Chemistry Laboratory had a stable set-up isolated from environmental

noise, and also with a better resolution. For all the above reasons, the use of a spec-

trophotometer seemed the most appropriate for our first series of experiments. The

type of Ultraviolet - Visible (UV-Vis.) spectrophotometer that we used was a model of

the brand Cary, namely Cary 1E, Varian, as it is illustrated in figure 3.4 and figure 3.5.

The device in general terms follows the basic configuration of a spectrophotometer an-

alyzed previously. For this instrument, the light source used inside is a Xenon lamp.

There is also a dual cuvette plate inside the instrument. Of the two cuvette holders on

it, the holder furthest inside the Cary is for a reference solution, which remains there

throughout the experiment; the holder closest to the front of the Cary is for establish-
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Figure 3.4: Representation of Cary 1E Varian UV-Vis. spectrophotometer

ing the blank baseline at the beginning of the experiments and for the sample itself

later on (figure 3.6). Further details about the inside of the device and the software used

for the data acquisition can be found in [17].

Experimental set-up

During the experimental procedure some steps are followed:

1. The essential samples for the experiments are prepared. The samples are put in glass

or plastic cuvettes of 4ml capacity with the aid of a glass pipette. One important

characteristic of such cuvettes is that regular glass is opaque below 350nm. Hence, if

measurements are to be made below 350nm, they must be made of quartz glass [5].

2. The Cary Uv-Vis. spectrophotometer is put into function. Two cuvettes with water

are placed in the baseline and reference cuvette holders, respectively.
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‘Plug-and-go’ lamp 
management 
Lamps are pre-aligned and 
easy to replace. The lamp 
management electronics 
accommodates a wide 
range of lamp designs.

Accurate measurements 
at low transmission levels 
Schwarzchild coupling 
optics ensure the 
maximum level of light 
throughput. 

Large sample compartment
Includes removable floor 
plate for maximum flexibility 
when mounting samples.

Unique LockDown 
mechanism
Position your accessories 
quickly and reproducibly in 
the sample compartment.

Silica overcoated optics
Protects optics from the 
environment and allows 
cleaning without damage 
to the reflective surface.

Excellent resolution
The out-of-plane double 
Littrow monochromator 
design minimizes photometric 
noise and stray light.

Sealed optics 
The Optical Isolation System 
incorporates a ‘floating’ 
solid aluminium casting that 
isolates the optics from 
external disturbances.

Separate purging 
The monochromator and 
sample compartments have 
separate nitrogen purging 
capabilities, allowing the 
sample compartment to be 
purged at a higher rate 
than the instrument.

Extended dynamic range 
The extended dynamic 
range of the Cary 
instruments is a result of 
its advanced electronics 
design. With reference 
beam attenuation, the 
instruments can typically 
measure absorbances 
beyond eight.

Flexibility 
The slits can be fixed in the 
NIR as well as the UV-Vis.

Superior detectors 
A choice of PbS or InGaAs
detectors provides flexibility 
in the NIR. Where other 
spectrophotometers need 
both a PbS and InGaAs 
detector to improve their 
performance in the NIR, 

the superiority of the Cary 
5000 PbSmart detector 
means only one is required. 
The Cary 6000i short 
wavelength InGaAs detector 
enables measurements to be 
made up to 8Abs in the NIR.

Figure 3.5: A schematic of the guts and the path the light takes through the instrument

3. The software program(Scan)connected to the spectrophotometer gets started. Some

regulations have to be made, according to the selection of Absorption or Transmis-

sion spectra gathering, the wavelengths’ range, the intervals between wavelengths

(for us 0.1nm), average scanning time(s) and scanning rate(nm/min). Subse-

quently, there has to be made a baseline correction in order to correct for any
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Figure 3.6: The cuvette holders of the spectrophotometer

absorbance that comes from the sample holder, substrate, solvent, etc., that is any

additional background noise that causes unnecessary peaks.

4. At this point, we have the arrangement ready for the beginning of the experimental

procedure. After establishing the blank baseline, we keep the cuvette in the ref-

erence holder, we remove the other and we begin putting our samples in order to

obtain the absorbance spectra we need. Finally, we can save the acquired spectra

in an file for further processing.

3.1.2 Microscope Configuration

Figure 3.7 illustrates a general overview of the components of the system used for hyper-

spectral images acquisition [18].

As the ”powering” component of the tunable light source we used a halogen lamp

white light source. In fact, it is a NAVITAR 1-60563 220 Volt fiber optic power supply

with a 150 Watts EKE halogen lamp and a 0.720” fiber receptacle.

The white light emitted by the halogen lamp is filtered by a linear filter which

is mounted on a ramp and moved by a NANOTEC - ST4118L1804 bipolar step-

per motor. The filter selected is a Linear Variable Filter (LVF); Schott, VERIL

BL200(figure 3.8). A LVF is a bandpass filter where the coating has been intention-
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PC 
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Specimen 
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Figure 3.7: System Overview for the acquisition of hyperspectral images

Figure 3.8: Linear variable bandpass filter, Schott - VERIL BL200

ally wedged in one direction. This wedge causes the center wavelength (nm) of the filter

to shift linearly across the length of the filter. Adjusting the filter orientation allows a

specific wavelength to be selected.

The filtered light, which ideally is monochromatic or with narrow bandwidth, passes

through a specimen of a microscope. We use an upright microscope for transmission
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Figure 3.9: OLYMPUS - BX51 for transmission/fluorescence microscopy

and fluorescence microscopy; OLYMPUS - BX51, which is depicted in Figure 3.9. This

specific microscope has the ability of operating in two modes. The first is the common

transmission microscopy where the light (generated from a halogen lamp located at the

lower-backside of the microscope) is transmitted through the specimen and then it is

depicted at PC monitor using a digital camera and/or seen by from the ocular (eyepiece)

lens. The second mode is the fluorescence (or epifluorescence) mode, where the light is

inserted using a ”special” lamp (arc lamp; mercury or xenon lamp) by the lamphouse

located at upper-backside of the microscope.

The transmitted light is captured and recorded as spectral data from a spectral

imager/camera. The spectral camera is what eventually combines spectroscopy and

imaging into spectral imaging.In this project we used POINT GREY RESEARCH (PGR)

- DragonFly2-13S2C-CS. This device is a full featured IEEE 1394a (FireWire) digital

spectral camera. Its CCD sensors can acquire both Black & White (BW/gray=-scale)

and color images. Both the filter movement and the camera settings are controlled via
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the same software using RS-232 communication for the filter and IEEE 1394 (FireWire)

for the camera again as presented in the System Overview figure.

3.2 Experimental Data Description

3.2.1 Biomarkers and Biomedical Stains

A biomarker, or biological marker [19], is in general a substance used as an indicator of a

biological state.It is a characteristic that is objectively measured and evaluated as an in-

dicator of normal biological processes, pathogenic processes, or pharmacologic responses

to a therapeutic intervention. Especially a Cancer Biomarker refers to a substance

or process that is indicative of the presence of cancer in the body. A Cancer Biomarker

may be a molecule secreted by a tumor or a specific response of the body to the presence

of cancer. Biomarkers are used in many scientific fields. Genetic, epigenetic, proteomic,

glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis, and epi-

demiology. In many areas of medicine, biomarkers are limited to proteins identifiable or

measurable in the blood or urine. In cancer research and medicine, biomarkers are used

in three primary ways: [20]

1. To help diagnose conditions, as in the case of identifying early stage cancers (Diag-

nostic)

2. To forecast how aggressive a condition is, as in the case of determining a patient’s

ability to fare in the absence of treatment (Prognostic)

3. To predict how well a patient will respond to treatment (Predictive)

More specifically, in medicine, a biomarker can be a substance that is introduced into

an organism as a means to examine organ function or other aspects of health. It can

also be a substance whose detection indicates a particular disease state, for example, the

presence of an antibody may indicate an infection.

It can also be a substance whose detection indicates a particular disease state, for exam-

ple, the presence of an antibody may indicate an infection. More specifically, a biomarker

indicates a change in expression or state of a protein that correlates with the risk or pro-

gression of a disease, or with the susceptibility of the disease to a given treatment.
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A biomarker can also be used to indicate exposure to various environmental substances

in epidemiology and toxicology. In these cases, the biomarker may be the external sub-

stance itself (e.g. asbestos particles or NNK (Nicotine-derived nitrosamine ketone) from

tobacco), or a variant of the external substance processed by the body (a metabolite).

In cell biology, a biomarker is a molecule that allows for the detection and isolation of

a particular cell type (for example, the protein Oct-4 is used as a biomarker to identify

embryonic stem cells).

In genetics, a biomarker (identified as genetic marker) is a DNA sequence that causes

disease or is associated with susceptibility to disease.

Biomarkers of diagnostic importance can be highlighted with the use of biomedical stains

or dyes, and that is the challenge we are asked to confront. For this thesis, we performed

a series of experiments with solutions of substances used as biomedical dyes or stains.

The difference between a stain and a dye is that stains are temporary whereas dyes are

permanent and can be removed after cell wall destruction. A dye is a coloring agent

used for general purposes and a stain is used for any biological specimal staining. As

stated in the introduction of this thesis, the use of biomedical stains aid the designa-

tion of biomarkers of diagnostic importance. The origin of these dyes or stains are solid

substances dissolved in deionized water so that they result in chemical solutions. Such

substances used are the following:

• Methyl Orange is a pH indicator frequently used in titrations (also known as

volumetric analysis) because of its clear and distinct color change. Unlike a uni-

versal indicator, methyl orange does not have a full spectrum of color change, but

has a sharper end point. Methyl orange has mutagenic properties [21].In a solution

becoming less acidic, methyl orange moves from red to orange and finally to yellow

with the reverse occurring for a solution increasing in acidity.

• Copper(II) sulfate, also known as cupric sulphate or copper sulphate, is the

chemical compound with the chemical formula CuSO4. The pentahydrate form

(CuSO4.5H2O), the most commonly encountered salt, is bright blue. It can be used

as a herbicide,a fungicide or pesticide, but also has applications in medicine, art,

etching and vegetable dyeing [22], [23], [24], [25].
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• Malachite Green is an organic compound that is used as a dyestuff and has

emerged as a controversial agent in aquaculture. Malachite green is traditionally

used as a dye for materials such as silk, leather, and paper. Although called mala-

chite green, the compound is not related to the mineral malachite - the name just

comes from the similarity of color. MG is active against the oomycete Saprolegnia,

which infects fish eggs in commercial aquaculture, and other fungi. Furthermore,

MG is also used as a parasiticide and antibacterial. [26] It is a very popular

treatment against ichthyophthirius in freshwater aquaria. The principal metabo-

lite, LMG, is found in fish treated with malachite green, and this finding is the

basis of controversy and government regulation.

• Fast Green FCF, also called Food green 3, FD& C Green No. 3, Green 1724,

Solid Green FCF, and C.I. 42053, is a sea green triarylmethane food dye (intensive

color dyes used as pH indicators). It is used as a quantitative stain for histones

at alkaline pH after acid extraction of DNA. It is also used as a protein stain in

electrophoresis. Its absorption maximum is at 625 nm. Fast Green FCF is poorly

absorbed by the intestines. Its use as a food dye is prohibited in European Union

and some other countries. It can be used for tinned green peas and other vegetables,

jellies, sauces, fish, desserts, and dry bakery mixes at level of up to 100 mg
kg

. In the

United States, Fast Green FCF is the least used of the seven main FDA approved

dyes [27].

• Thymol Blue(thymolsulphonephthalein) is a brownish-green or reddish-brown

crystalline powder that is used as a pH indicator. It is insoluble in water but

soluble in alcohol and dilute alkali solutions. It transitions from red to yellow at

pH 1.2–2.8 and from yellow to blue at pH 8.0–9.6. It is usually a component of

Universal indicator. For this thesis we have used the thymol blue solution at neutral

acid-base conditions, whose color is yellow.

• Cobalt(II) chloride is an inorganic compound of cobalt and chlorine, with the

formula CoCl2. It is usually supplied as the hexahydrate CoCl2•6H2O, which

is one of the most commonly used cobalt compounds in the laboratory. [28]The

hexahydrate is deep purple in color, that yields a pink solution when dissolved

in water, whereas the anhydrous form is sky blue. Because of the ease of the
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hydration/dehydration reaction, and the resulting color change, cobalt chloride is

used as an indicator for water in desiccants. Niche uses include its role in organic

synthesis and electroplating objects with cobalt metal. Another of its uses is as

invisible ink, therefore a good chemical dye.

• Methylene Blue (CI 52015) is a heterocyclic aromatic chemical compound with

the molecular formula C16H18N3SCl. It has many uses in a range of different fields,

such as biology and chemistry.At room temperature it appears as a solid, odor-

less, dark green powder, that yields a blue solution when dissolved in water. The

hydrated form has 3 molecules of water per molecule of methylene blue. Methy-

lene blue should not be confused with methyl blue, another histology stain, new

methylene blue, nor with the methyl violets often used as pH indicators. One of

its medical uses is as a dye or stain, therefore appropriate for the purposes of this

thesis. [29]

The diluted substances are illustrated in figure 3.10.

Figure 3.10: Second row (from left to right): Fast Green, Malachite Green, Methylene

Blue. Third row (from left to right): Methyl Orange, CuSO4, CoCl2, Thymol
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The substances above have been chosen in a way that no interaction could occur

among them. Seemingly, most of them are ph indicators, therefore chemical substances

that are added in small amounts to a solution so that the pH (acidity or basicity) of

the solution can be determined visually. Another important factor for the choice of

the substances was the peaks of their spectra. For this purpose, we collected a variety of

substances with peaks on the right, middle or left part of the optical spectrum and a use of

various combinations of them in the mixtures in order to allow the decomposition of close

or distant spectra, and observe the algorithms’ performance in both cases. Considering

the fact that for overlapping (close to each other) spectra the decomposition would be

more difficult, this was a challenging part of the problem we researched.

3.2.2 Experimental Design

Experimental Design or Design of Experiments(DOE) remains a core area of study in

chemometrics and several monographs are specifically devoted to experimental design in

chemical applications.

Although the actual significance of following one of the experimental designs men-

tioned in bibliography is about how the factors interact with each other, and what a

factor can be, we adapted some types of already existing experimental designs and came

up with exemplified ones, considering that, for example the existence of 2 factors means

that there are 2 components in a mixtures, 3 factors mean 3 components, etc. Hence,

each one of the designs for the construction of the experimental datasets is more of a

symbolic experimental design, and not following word-for-word the designs described in

bibliography.

For this reason, we are going to make some conventions. First of all, when the word

factors is mentioned, we refer to the different constituents contained in a mixture (2

factors for 2 components, 3 factors for 3 components etc) and when mentioning factor

levels, low or high, we refer to the lowest or highest admissible absorbance 2.5, and

therefore concentration that a sample was obtained at, respectively.

Some types of experimental designs generally used are the following [30] [31] [32]:

• Full factorial design or complete factorial design is when the response variable

(here Absorbance or transmission) is measured for all possible combinations of the

chosen factor levels. In this type of design, the number of possible combinations,
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that is possible samples or experiments in order to form an experimental dataset is

2m, where m ≥ 2 is the number of factors or chemical components, e.g. for 2 factors

there are 4 combinations, for 3 factors there are 8 combinations, for 4 factors there

are 16 combinations etc. A more representative example of full factorial design for

3 factors is displayed in table 3.1. For the highest possible concentration we set ’1’

and for the lowest admissible one we set ’0’.

• Fractional factorial design, which is either half-fractional, 1-quarter fractional,

1-eighth fractional etc. The individual experiments in the fractional design must

be carefully chosen to ensure that they give the maximum information. This type

of design involves 2(m− 1) experiments (samples). A more representative example

of a half-fractional factorial design for 4 factors is presented in table 3.2. Also, an

example of a quarter-fractional factorial design for 5 factors is presented in table 3.3.

• Face-centered design is a type of design including a full factorial design but instead

of two levels (low and high) it also includes a central point. As seen for the full

factorial design, the first 2m experiments are the same as for a Factorial Design.

Then, the next 2m experiments are obtained by keeping all the variables except

one at their central level (a Star Design). A more representative example of a

half-fractional factorial design is presented in table 3.4. For the lowest possible

concentration we set ’-1’, for the central one ’0’ and for the highest admissible we

set ’1’.

• Mixture design is a type of design usually applied in pharmaceutical industry,

food products beverages, paintings, method optimization. The reason that it is not

applicable in our diploma thesis is that in a mixture we must cope with the implicit

constraint that the sum of all the components must be 1 (or 100%). The number

of components under study in a mixture design is not higher than four [30].

When applied to single spectra, the above designs correspond to a dataset of single

experiments, whereas for the Hyperspectral Image experiments they correspond to whole

images, each one consisting of many repeats of the same (as far as possible) single spec-

trum. In other words, for example, for two factors the applied experimental design for

Fani Abatzi 31 July 2014



3. PROBLEM SPECIFICATIONS

Table 3.1: Complete factorial design for three factors

Sample Number A compound B compound C compound

1 1 1 1

2 1 1 0

3 1 0 1

4 1 0 0

5 0 1 1

6 0 1 0

7 0 0 1

8 0 0 0

spectrometer data provides a dataset of 9 samples or 9 spectra, whereas for the micro-

scope data, it provides a dataset of 9 images, each image consisting of xy (size of the

image) same spectra!

To summarize, for a particular number of factors we followed a specific design, con-

sidering the fact that we would like a sufficient number of experiments for each number

of factors combination, but not too many, as shown below:

• 2 factors: face-centered 9-sample dataset design

• 3 factors: full factorial 8-sample dataset design

• 4 factors: half-factorial 8-sample dataset design

• 5 factors: quarter-factorial 8-sample dataset design

3.2.3 The individual components’ spectra

As mentioned before in 2.4, the concentration of a chemical substance dissolved in water

is measured in Molarity (units: mol
L

or M), which represents the number of moles of a

solute per litre of solution. The concentration C is defined as follows:

C =
n

V
(3.1)
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Table 3.2: Half-factorial design for four factors

Sample Number A compound B compound C compound D compound

1 1 1 1 1

2 1 1 0 0

3 1 0 1 0

4 1 0 0 1

5 0 1 1 0

6 0 1 0 1

7 0 0 1 1

8 0 0 0 0

Table 3.3: Quarter-factorial design for five factors

Sample Number A B C D E

1 0 0 0 0 0

2 0 0 1 0 1

3 0 1 0 1 1

4 0 1 1 1 0

5 1 0 0 1 1

6 1 0 1 1 0

7 1 1 0 0 0

8 1 1 1 0 1
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Table 3.4: Face centered design for two factors

Sample Number A compound B compound

1 -1 -1

2 +1 -1

3 -1 +1

4 +1 +1

5 -1 0

6 +1 0

7 0 -1

8 0 +1

9 0 0

where n is the moles (molecular weight) of the solute(mol) and V is the volume of the

solution(L).

For the purposes of this diploma thesis some solutions based on the substances an-

alyzed above were provided. At first, we obtained an adequate quantity of chemical

solutions prepared by the graduate students of the Analytical and Environmental Chem-

istry Laboratory of Technical University of Crete. These solutions were based on the

solid substances mentioned in previous section with known molecular weight. We are

not going to develop the preparation chemical procedure, because it is not concerning

this thesis. Secondly, and before mixing the substances and prepare our experimental

datasets, we measured with the spectrophotometer the absorbance spectra of the indi-

vidual components with the initial concentrations given. Subsequently, we diluted the

solutions further, adding 1 or 2ml of water in 3ml of a solute, according how ”heavy”

or ”light” the substance was, in order to reach a solution whose absorbance was close to

the upper absorption limit according to Beer-Lambert law 2.5. The term close means

that in our experiments, and by extension for the whole problem solution, the mixtures

were of a greater importance than the individual components solutions, as well as when

preparing a mixture of 2, 3 or more components, the individual concentration of each is

further diminished. Therefore, we could have an individual component spectrum with
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an absorbance a little bit above 1 (1.1-1.2) at some wavelengths which mathematically

does not have a big influence. Furthermore, after acquiring the first admissible solution,

we continued diluting the solutions to a greater extent, so that we obtained a number of

individual component absorbance spectra in different concentrations, until reaching the

lower admissible spectrum limit according to Beer-Lambert law.

The equation from chemistry that connects initial and final concentration of a solu-

tions is presented below:

C1V1 = C2V2 (3.2)

where C1 is the initial concentration of the substance before the dilution, V1 its initial

volume, C2 is the final concentration and V2 is the final total volume of the solution (V1

+ Vwater).

Further down(figure 3.11), the absorbance spectra of the individual component solu-

tions are displayed. As stated above, the indexes next to the concentrations appearing

below are connected to the first admissible concentration we kept for the specific sub-

stance. We also include in the diagrams the first concentration given beyond which the

dilutions were made. It should be noted that the dilutions for Methyl Orange, CuSO4,

Malachite Green, Fast Green and Methylene blue were prepared with 3ml(V1) of solution

and 2ml(V2=5ml) water, whereas for CoCl2 and Thymol were prepared with 3ml(V1) of

solution and 1ml(V2=4ml) water.

3.2.4 The mixtures

The chemical equation for the mixtures is the same as for the individual spectra (see

equation (3.2)) except that it is calculated for each one of the substances individually.

We should note that the mixtures of 2 components were prepared with 2ml of each

component (total of 4ml), whereas the mixtures of 3 components were prepared with

1ml of each component (total of 3ml).

Further down(figures 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20), the absorbance

spectra of the mixtures, which follow the experimental designs for 2 and 3 components,

are displayed.
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Figure 3.11: Individual Components’ Spectra
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Figure 3.12: Methyl Orange - CuSO4 mixtures absorbance spectra
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Figure 3.13: Thymol - CoCl2 mixtures absorbance spectra
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Figure 3.14: Thymol - Fast Green mixtures absorbance spectra
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Figure 3.15: CoCl2 - Malachite Green mixtures absorbance spectra
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Figure 3.16: Methylene Blue - CuSO4 mixtures absorbance spectra
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Figure 3.17: Methylene Blue - Fast Green mixtures absorbance spectra
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Figure 3.18: CoCl2 - Methylene Blue mixtures absorbance spectra
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Figure 3.19: Methyl Orange - Fast Green - CuSO4 mixtures absorbance spectra
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Figure 3.20: Thymol - Malachite Green - Methylene Blue mixtures absorbance spectra
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3.2.5 Hyperspectral Image Data

For this part, we have collected two hyperspectral cubes using the microscope configura-

tion. These cubes contained the images from the experimental designs for two and three

components. For the two components dataset, we collected the mixtures of Methylene

Blue and Fast Green compound solutions, whereas for the three components dataset,

we collected mixtures of CoCl2, Fast Green and CuSO4. The first dataset spectra were

gathered with a sampling of 5nm, whereas the second were gathered every 10nm.

It should be noted that the CCD sensors of the spectral imager/camera of the micro-

scope might introduce some three main sources of noise which could lead to errors in the

image acquisition. These are the following:

1.Readout Noise: It appears during the reading of the signal. This kind of noise is

dependent to the inherent CCD preamplifier, which differs from one CCD model to

another, and to the speed with which the charge is transferred and transmitted from

the preamplifier. The bigger the transferring and transmission speed the greater

the noise.

2.Dark Current Noise: CCDs build up ”dark current” whether the CCD is being ex-

posed to light or not. Dark current is caused by thermally generated electrons that

build up in the pixels of all CCDs. The rate of dark current accumulation depends

on the temperature of the CCD but will eventually completely fill every pixel in

a CCD. Managing dark current is particularly important for astrophotography be-

cause of the long exposures typically required for night sky imaging. The pixels in

a CCD are cleared before beginning an exposure, but dark current starts accumu-

lating again immediately. The rate of dark current build up can be reduced by a

factor of 100 or more by cooling the CCD. The remaining dark current is subtracted

from an image using dark frames.

3.Photon Noise of Photon Shot Noise: Shot noise is caused by the random arrival

of photons. This is a fundamental trait of light. Since each photon is an independent

event, the arrival of any given photon cannot be precisely predicted; instead the

probability of its arrival in a given time period is governed by a Poisson distribution.

With a large enough sample, a graph plotting the arrival of photons will plot the

familiar bell curve. Shot noise is most apparent when collecting a relatively small
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number of photons. It can be reduced by collecting more photons, either with a

longer exposure or by combining multiple frames.
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3.3 Source of Error

There are three types of error that occur from mistakes in data acquisition [9], gross

error, systematic error and random error .

The first type of error, gross error , is usually connected to an analyst’s mistake in

weighing, calibration or even calculation during the experiment. Repeating the experi-

ment might show up this error. It may be possible to identify such an error and remove

that result from further consideration, but there is no other way we can usefully employ

the result once this error has occurred. It must be noted that careless and unrecorded

expunging of results could amount to scientific fraud. However, because of its unique

nature, gross error cannot guide our future actions.

This second type of error, systematic error , is a permanent deviation from the true

result. When applied to an instrument, systematic error is known as bias. The reason

why we obtain such an error may be due to a flawed measurement method. Systematic

error can be estimated by measuring a reference material a large number of times. The

difference between the average of the measurements and the value of the reference mate-

rial is the systematic error. It is always desirable to know the sources of systematic error

in an experiment and to correct them in measurements.

As seen in the paragraph above, in order to estimate the systematic error, it is sug-

gested that the experiment be repeated a large number of times. This is necessary because

of the contribution of another source of error, namely random error . Despite your best

efforts, having considered and removed or corrected for sources of systematic error, hav-

ing ironed out gross errors, repeating experiments always seems to give slightly different

answers. There are a myriad of factors that can contribute to random error: the inability

of the analyst to exactly reproduce conditions, fluctuations in the environment (temper-

ature, pressure), rounding of arithmetic calculations, brief gusts of wind, or a shake of

the analyst’s hand. What do not contribute to random error are changes in conditions

such as the regular drift in baseline of an instrument and the aging of a chromatography

column.

Apart from all of the above, we must consider an important factor, the clarity of the

solutions used. Samples containing solid material, or which are cloudy, are difficult to

analyze using a spectrophotometer,so anyone must be very careful before beginning the

absorption analysis.
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Figure 3.21: Uncertainties and errors in delivering 10 ml by a pipette.

An example - pipetting

Considering why we might not deliver exactly 10 ml using a 10 ml pipette is instructive

(figure 3.21).We shall identify three contributing factors to the problem.

1. The manufacturer will admit that the pipette used,when filled properly to the mark

at 20◦C, is only guaranteed to have a volume somewhere between 9.98 and 10.02

ml. Luckily,perhaps an analyst will have a 10.00 ml pipette, but perhaps not. Any

error of this type is a systematic error.

2. When you use a pipette, it may be difficult or even impossible to really fill it exactly

to the same mark each time. A series of 10 experiments of filling a pipette with

distilled water and weighing what runs out, gives a range of values from 9.95 to

10.04 ml. Thus, the analyst’s contribution to the error is definitely random.
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3. It should be noted that during the experiments the temperature in the laboratory

fluctuates between 19.2 and 23.1◦C, and the volume of 10 ml of water will increase

by 0.0021 ml approximately for every degree centigrade rise in temperature. If the

experiments take long enough to allow the temperature to change in a random

fashion about some average, then these changes will be included in the results. In

addition, unless the average temperature during the experiments was exactly 20◦C

there will also be a systematic error arising from the difference.

3.4 Simulated Data

For the requirements of this diploma thesis, except for the experimental data, the use of

some sets of simulated data has been employed. The ultimate reason for this, was that

the spectrophotometer could not allow the use of larger cuvettes, thus, in order to check

what happens for mixtures of 4 or 5 constituents we needed to use simulated data from an

excel file. Another reason was to observe what happens when the data are devoid of any

gross, systematic or random errors analyzed in the section above, and if the algorithmic

methods deliver in the same way.

The simulated datasets were obtained from the RegressionDemo.ods file from the

following website [33]. The individual and mixture spectra in the file are following a

normal distribution and random noise can be added in them. The file also contains the

pure spectra (spectra at unit concentration) for each component used.

Further down(figure 3.22, 3.23, 3.24, 3.25, 3.26, 3.27, 3.28) the absorbance spectra

of the simulated data mixtures, which follow the experimental designs for 2,3,4 and 5

components, are displayed.
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Figure 3.22: Absorbance mixture spectra for 2 components (Simulated data)
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Figure 3.23: Absorbance mixture spectra for 2 components with random noise=0.01

(Simulated data)
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Figure 3.24: Absorbance mixture spectra for 2 components with random noise=0.02

(Simulated data)
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Figure 3.25: Absorbance mixture spectra for 3 components (Simulated data)
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Figure 3.26: Absorbance mixture spectra for 3 components with noise=0.01 (Simulated

data)

0 200 400 600 800 1000
0

0.5

1

1.5

wl (nm)

A
b

s

 

 
1M − 0.9M − 0.8M − 1.2M

Comp1

Comp2

Comp3

Comp4

Mixture

0 200 400 600 800 1000
0

0.5

1

1.5

wl (nm)

A
b

s

1M − 0.9M − 0.2M − 0.4M

 

 

0 200 400 600 800 1000
0

0.5

1

1.5

wl (nm)

A
b

s

1M − 0.2M − 0.8M − 0.4M

 

 

0 200 400 600 800 1000
0

0.5

1

1.5

wl (nm)

A
b

s

1M − 0.2M − 0.2M − 1.2M

 

 

0 200 400 600 800 1000
0

0.5

1

wl (nm)

A
b

s

0.3M − 0.9M − 0.8M − 0.4M

 

 

0 200 400 600 800 1000
0

0.5

1

1.5

wl (nm)

A
b

s

0.3M − 0.9M − 0.2M − 1.2M

 

 

0 200 400 600 800 1000
0

0.5

1

1.5

wl (nm)

A
b

s

0.3M − 0.2M − 0.8M − 1.2M

 

 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

wl (nm)

A
b

s

0.3M − 0.2M − 0.2M − 0.4M

 

 

Figure 3.27: Absorbance mixture spectra for 4 components (Simulated data)
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Figure 3.28: Absorbance mixture spectra for 5 components (Simulated data)
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Chapter 4

Methods and System Validation

4.1 Calibration

All scientific activities, and more specifically many chemical problems and applications

of chemometrics involve calibration. This is to make sure that the reported measurement

results are reliable and to make an estimate of accuracy and precision. The calibration

activity in a laboratory pertains to a wide range of actions. Examples are: obtaining pure

water at the correct temperature and pure dry chemicals to make standard solutions with

the aid of an analytical balance (calibrated and with all necessary corrections made) and

calibrated flasks [13]. Furthermore,the calibration of an instrument is associated with

the selection of reference standards with known values to cover the range of interest.

Calibration is a concept used in the context of chemometrics: calibration data and

calibration models are used to allow the prediction of dependent(response) variable values

from related independent (predictor) variables. Actually, it is the creation of a math-

ematical model in order to relate the output of an instrument (eg absorbance) to the

properties of a sample(eg concentration of the analytes) [34]. Whereas with prediction,

we use the model to predict properties of a sample, given the instrument output.

Of course, as we are going to observe further down in this chapter, we have created

calibration models not only for classical few-sample datasets but for whole hyperspectral

images. The importance of image calibration over classical calibration is that because in

hyperspectral imaging we can have many more sample, it enables more opportunities for

statistical testing, for example by making histograms of residuals. Another advantage of

images is that all samples as object have spatial coordinates; this makes it possible to
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construct images from prediction or residual values enabling additional visual inspection

and interpretation.

The main advantages of the use of multivariate calibration techniques is that fast,

cheap, or non-destructive analytical measurements (such as optical spectroscopy) can

be used to estimate sample properties which would otherwise require time-consuming,

expensive or destructive testing.

Univariate Calibration

The simplest form of a linear calibration model is yi = b1xi+ei, where yi represents the re-

sponse (dependent) variable, normally the concentration of the ith calibration sample, xi

denotes the corresponding instrument reading, the explanatory (independent) variable,

normally the absorbance for the ith sample; , b1 symbolizes the calibration coefficient

(slope of the fitted line), and ei signifies the error associated with the ith calibration sam-

ple, assumed to be normal distributed random, N(0, 1). A single instrument response,

e.g., absorbance at a single wavelength, is measured for each calibration sample [35].

In matrix algebra notation, the model is expressed as:

y = xb1 + e (4.1)

and depicted as: 
y1
y2
...
yn

 =


x1
x2
...
xn

 b1,
where n is the number of calibration samples. The above is the simplest calibration

model that has a slope and no intercept. It is a simple linear regression, in which a single

x -variable (because we have one wavelength) is linked to a single y -variable. However,

when there are more than one response variables in the model, e.g. the absorbance

of a spectrum at many wavelengths, then we are talking about a Multiple Linear

Regression(MLR) model, which in matrix form is expressed as [36]:

y = Xb + e (4.2)
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and (without an intercept depicted as:
y1
y2
...
yn

 =


x11 x12 . . . x1d
x21 x22 . . . x2d
...

...
. . .

...
xn1 xn2 . . . xnd



b1
b2
...
bd

 ,
where n is the number of calibration samples and d is the number of wavelengths.

Multivariate Calibration

Univariate calibration is specific to situations where the instrument response depends only

on the target analyte concentration. With multivariate calibration, model parameters can

be estimated where responses depend on the target analyte in addition to other chemical

or physical variables and, hence, multivariate calibration corrects for these interfering

effects [35].

For this diploma thesis, multivariate calibration would be helpful when the subject

of concern is two or more target analytes. In fact, the type of calibration models we

have dealt with are based on a multiple multivariate calibration model (multiple =

for many wavelengths, multivariate = for many components). The goal of a multivariate

calibration is to establish a connection between a multivariate signal X and one or more

physical or chemical properties Y . In other words, in a multiple multivariate regression

system, with n calibration samples, d wavelengths and m constituents, we have data

matrices X (n× d ) and Y (n×m ) for the equation:

Y = XB (4.3)

In general, multivariate analysis is appropriate when the spectra of the constituents

overlap so that their concentrations cannot be determined without previous chemical

separation. In order to calibrate the system a number of specimens containing different

mixtures of the analytes are taken and the spectrum is measured for each specimen [31].

Non-zero intercepts and Mean-Centering

Equation 4.2 assumes that the instrument response provides a value of zero when the

analyte concentration is zero. Nonetheless, in reality the instrument response (e.g. ab-

sorbance) usually has no good correlation with the components, so a non-zero intercept
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should be added to the model. This constant term when added provides the calibration

model a place to discard the ”garbage” from this bad correlation [37]. All is needed to

do to add a non-zero intercept is inserting a column of 1’s to the original X matrix, as

follows: 
1 x11 x12 . . . x1d
1 x21 x22 . . . x2d
...

...
. . .

...
1 xn1 xn2 . . . xnd


An intercept of zero for a model can be obtained if y and x are mean-centered to

respective means before using equation 4.2. It should be noted that while the calibration

line for mean-centered y and x as an intercept of zero, inherently, a nonzero intercept

is generally involved. The nonzero intercept is removed by the mean-centering process.

Thus, mean-centering y and x to generate a zero intercept is not the same as using the

original data and constraining the model to have an intercept of zero. In the absence of

mean centering, it is possible to include a nonzero intercept, b0, in a calibration model,

by expressing the model as:

yi = b0 + xi1b1 + ...+ xikbd (4.4)

In the following lines a representation of the centering for the response and predictor

variables is shown.

Let x be a n×1 given column of X, y a n×1 given column of Y and 1 a n×1 vector

of 1’s. We can center x and y by subtracting their means:

ẋ = x− 1x̄ ⇒ x = ẋ− 1x̄ (4.5)

ẏ = y − 1ȳ ⇒ y = ẏ − 1ȳ (4.6)

The column-wise centered X and Y are:

Ẋ = X− 1x̄ (4.7)

Ẏ = Y − 1ȳ (4.8)
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4.2 Classical Calibration Methods

There are two main categories associated with multivariate calibration analysis, Classical

Least Squares model and Inverse Least Squares Model. The first one is based on

Beer-Lambert law 2.5, whereas the second is based on the inverse Beer-Lambert. A

graphical representation of the methods related to these models and the reason to choose

each of theme, is illustrated in figure 4.1 [34]. Classical Least Squares is an individual

method itself whereas Inverse Least Squares is distinguished in MLR model, Principal

Component Regression(PCR), Partial Least Squares(PLS), as shown in figure 4.1.

Although, due to our experimental datasets, we know all of the analytes, for some

methods (like PCR, PLS in the sections below) according to 4.1 this is not necessary. Each

one of these calibration methods is divided in further algorithmic approaches, depending

on whether the data are mean-centered or not or whether there is a non-zero intercept

in the calibration model.

4.2.1 Classical Least Squares (CLS)

The first spectroscopic quantification method analysed and applied is Classical Least

Squares (CLS) method, also known as Direct Least Squares, Beer’s law method, K-

matrix and is more closely related to the way chemists & spectroscopists think about

spectra, and not so much how mathematicians or statisticians perceive them.

This method is based on Beer-Lambert law 2.2, although it is a multi-component Beer-

Lambert law. Matrix B (or K) emerges from A=εbC where ε=b=1, thus A=ε, which

means that for unit concentration and unit pathlength the absorbance response is equal to

the ”absorptivities” [38]. More specifically, the columns of B (from MLR model 4.2)are

the pure component spectra at unit concentration and unit pathlength (absorptivity-

pathlength products). Thus, if the pathlength is kept constant and concentration matrix

C is not equal to 1, then the CLS model can be expressed as:

X = YA, (4.9)

where X is the n × d matrix of absorbance mixture spectra,where n is the number of

samples and d is the number of wavelengths Y is the n× p matrix of concentrations (for

p components) and A is the p× d K-matrix of absorbances for pure component spectra

or ”absorptivities” or calibration coefficients.
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Constraints: A constraint that must be counted for the CLS method is n ≥ p, that

is, the number of mixture calibration samples must be equal or larger than the number

of components in the mixture. Otherwise, the system is underdetermined and no unique

solution is possible.

Advantages and Disadvantages of CLS [10]: Classical least squares is a fast

full-spectrum technique, meaning that it does not require wavelength selection. As long

as the number of wavelengths exceeds the number of constituents, any number can be

used, even the entire spectrum. In addition, using a large number of wavelengths tends

to give an averaging effect to the solution, making it less susceptible to noise in the spec-

tra. However, this technique requires knowing the complete composition (concentration

of every constituent) of the calibration mixtures and is not useful for mixtures with con-

stituents that interact. CLS is also known as ”total calibration” because all components

are evaluated simultaneously.

Direct Classical Least Squares (DCLS)

In this type of Classical Least Squares method, the calibration coefficients should be

already known, either by being measured directly or by mathematical calculations. The

first case is almost impossible to achieve at most times, because the coefficients should be

measured for unit concentrations of the analytes as previously declared, to whit, solutions

may be very dense, at a non-liquid state,making it impossible to be prepared. Thus, in

that case we have in our disposal the simulated data. An implementation of DCLS, with

the absorbancies and pure spectra already available is applied only for the simulated

datasets and not for the other ones.

However, using mathematical calculations, we tried to measure the pure spectra of our

components. For this reason, we obtained some absorbance spectra from the spectropho-

tometer, each one related to a different concentration (all for the same compound). We

did the same for the other components we used in the mixtures. Subsequently, we cre-

ated a fitted line between the absorbances of a compound and its concentrations and from

the slope of this regression line, we found the ”absorptivities”, also known as regression

coefficients or pure spectra.
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Indirect Classical Least Squares (ICLS)

In this approach of CLS, the regression coefficients (pure spectra) are not available, thus,

they must be estimated from the model itself. Therefore, we solve equation (4.9) for A

(K-matrix):

Â = Y+X (4.10)

Other solutions for this system, apart from using the pseudo-inverse, can be seen in

section 5.3. Once this equation is solved, it can be used to predict concentrations of

unknown samples, as follows:

Ŷ = X/A (4.11)

If X, Y are mean-centered, the model is expressed as follows [36]:

Ẋ = Ẏ A (4.12)

The concentrations of the individual spectra can be predicted through the following

procedure:

Â = Ẏ
+
Ẋ ⇒ (4.13)

Ẏ = ẊA
`

(4.14)

We know that (4.14) = (4.8), thus for concentration prediction we have:

Ŷ = ẊA
`

+ y (4.15)

where X is the n × d matrix of absorbance mixture spectra,where n is the number of

samples and d is the number of wavelengths Y is the n× p matrix of concentrations (for

p components) and A is the p× d K-matrix of absorbances for pure component spectra

or ”absorptivities” or calibration coefficients.

Overall, CLS is an extremely useful model for spectroscopic analysis because it pro-

vides quantitative and interpretative chemical information.
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4.2.2 Inverse Least Squares (ILS)

This method is known as Inverse Least Squares (ILS), or Multiple Linear Regression

(MLR, here as Multivariate Multiple Linear Regression) or P-matrix.

Inverse Least Squares is generally based on sequential feature (wavelength) selection,

in Multiple Linear Regression via Step-wise Regression and in Multivariate Linear

Regression via Forward Selection or Backward Elimination. Step-wise regression

is a sequential process for fitting the least squares model, where at each step a single

explanatory variable is either added to or removed from the model in the next fit(see

[39]). For the purposes of our problem, forward selection and backward elimination are

applied on the data with the existence or not of a non-zero intercept.

Forward selection

Forward selection procedure begins with no explanatory variable in the model and

sequentially adds a variable at each step, using a so-called wrapper method implement-

ing a learning algorithm and applying cross-validation in order to select features. The

goodness of features (criterion function) is either measured by the Mahalanobis distance

or by the Euclidean distance, (or the square root of the Residual Sum of Squares, as

in our case) [35]. This procedure has two limitations. Some of the variables never get

into the model and hence their importance is never determined. Another limitation is

that a variable once included in the model remains there throughout the process, even if

it loses its stated significance, after the inclusion of other variable(s) [40].

Backward elimination

The backward elimination procedure begins with all the variables in the model and

proceeds by eliminating the least useful variable at a time using a similar method as this

applied for forward selection and the Euclidean distance criterion. The disadvantage of

Backward selection is that it requires more computation time than Forward selection.

The ILS method is actually expressed in the same way as the MLR model (see equa-

tion (4.3)). Thus, if we solve (4.3) for B, we will get:

B̂ = X+Y (4.16)
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where X is the n × d matrix of absorbance mixture spectra,where n is the number of

samples and d is the number of wavelengths Y is the n× p matrix of concentrations (for

p components) and B is the d× p P-matrix of absorbances for pure component spectra

or ”absorptivities” or calibration coefficients. Once this equation is solved, it can be used

to predict concentrations of unknown samples, as follows:

Ŷ = XB̂ (4.17)

If X, Y are mean-centered, the model is expressed as follows [36]:

Ẏ = ẊB + F (4.18)

The concentrations of the individual spectra can be predicted through the following

procedure: First, we solve for B:

B̂ = Ẋ
+
Ẏ (4.19)

Thus,

Ẏ = ẊB̂ (4.20)

We can easily observe that (4.14) = (4.20) ⇒ B̂ = A`

Thus, from (4.20) = (4.8), we have for concentrations prediction ⇒

Ŷ = ẊB + y (4.21)

Constraints: Unlike the classical least squares methods, inverse least squares is not a

full-spectrum method, but requires careful selection of the wavelengths of the absorbances

that are used in the calibration model. The number of wavelengths selected should not

exceed the number of calibration samples and usually it is smaller than the number of

chemical components in the mixtures, that is n >= d if there is a zero intercept and

n >= (d+ 1) if a non-zero intercept exists.

Advantages and Disadvantages of ILS: A disadvantage of wavelength selection

over full-spectrum techniques is the ability to detect unusual samples because of the elim-

ination of variables. Moreover, wavelength selection can be difficult and time consuming.

However, ILS is relatively fast and allows calibration of very complex mixtures since only

knowledge of constituents of interests (and not of all components) is required.
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4.2.3 Principal Components Regression (PCR)

The Principal Components Regression method combines the Principal Components

Analysis (PCA) spectral decomposition with an Inverse Least Squares (ILS) regression

method to create a quantitative model for complex samples. Unlike quantification meth-

ods based directly on Beer’s Law, which attempt to calculate the absorbtivity coefficients

for the constituents of interest from a direct regression of the constituent concentrations

onto the spectroscopic responses, the PCR method regresses the concentrations on the

PCA scores. We consider the principal components of X>X.

PCA: There are several ways of finding the principal components of the X>X matrix.

One possibility is to apply the SVD method to X , writing the reduced form of SVD as

follows:

X = UDPT, (4.22)

where U is the n × f left singular values (LSV) matrix, D is the f × f singular values

(SV) matrix and P is the d× f right singular values (RSV) matrix, or loadings matrix,

where f is the number of PCA eigenvectors. Let the scores matrix be defined by

T = UD, (4.23)

a matrix with orthogonal, but not necessarily orthonormal columns [41]. In fact

T>T = DU>UD = D2 = Λr, (4.24)

where Λr = diag {λ1, . . . , λr} contains the non-zero eigenvalues of X>X in its diagonal.

We assume that the eigenvalues are in decreasing order, λ1 ≥ · · · ≥ λr > 0. In this

diploma thesis, we performed the singular value decomposition on the covariance matrix

of X. It should be noted that when X is a centered data matrix, then X>X/(n− 1) is

the covariance matrix of X .

Since

X = TP> (4.25)

we find that X>X = PT>TP> = PΛrP
>, which is the spectral decomposition for

X>X, except that columns of P corresponding to zero eigenvalues have been left out.

By using that P is orthogonal, we may also write (4.25) as follows:

T = XP , (4.26)
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which follows by noting that XP = TP>P = T . To sum up, the columns of T are

known as scores, and those of P as loadings.

We can find the principal components of X>X or the eigenvalues, choosing the first

g columns of T and the first g columns of P , such as we form matrices T g and P g

respectively.

In order to help rationalize the choice of g , the relative size of the eigenvalues are

expressed as a percentage of the sum of all eigenvalues,

λ1
λ1 + · · ·+ λr

× 100 (4.27)

and this percentage is interpreted as the percent variation explained by the corresponding

principal component. Often, the accumulated percentages are used, so that the percent

variation explained by the first g components is

λ1 + · · ·+ λg
λ1 + · · ·+ λr

× 100 (4.28)

As a rule, g should be chosen so that at least about 80-90 percent of the variation is

explained.

The basic idea in Principal Components Regression (PCR) is that after choosing a suit-

able value for g, the important features of X have been retained by T g. We then perform

the MLR with T g in place of X for an n×m calibration data matrix Y ,

Y = T gC + F . (4.29)

The least squares method then gives

Ĉ =
(
T>g T g

)−1
T>g Y, (4.30)

where T>g T g, being diagonal, is easy to invert. The fact that we have left out the

loadings matrix P g in (4.29) is of no consequence for prediction, because the scores are

linear combinations of the columns of X, and the PCR method amounts to singling out

those linear combinations that are best for predicting Y .

For prediction with PCR, it is necessary to turn to X again, and using (4.26) we may

write the regression equation as follows:

Y = T gC + F = XP gC + F (4.31)
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Thus, the concentrations are predicted using the following equation:

Ŷ = XPgĈ + y, (4.32)

where P gĈ is called the regression matrix, and may be compared with the B̂ matrix of

MLR.

Advantages and Disadvantages of PCR: This method does not require wavelength

selection. Any number can be used; usually the whole spectrum. A larger number of

wavelengths gives averaging effect, making model less susceptible to spectral noise. PCR

can be used for very complex mixtures since only knowledge of constituents of interest is

required and can sometimes be used to predict samples with constituents (contaminants)

not present in the original calibration mixtures. Nonetheless, PCR calculations are slower

than most classical methods. Generally, a large number of samples are required for

accurate calibration, but collecting calibration samples can be difficult, because collinear

constituent concentrations must be avoided.

4.2.4 Partial Least Squares (PLS)

The PCR method from the previous module represents a considerable improvement over

MLR and CLS. By using latent variables (scores), it is possible to use a large number of

variables (frequencies), just as in CLS, but without having to know about all interferences.

Problems may arise, however, if there is a lot of variation in X that is not due to the

analyte as such. PCR finds, somewhat uncritically, those latent variables that describe

as much as possible of the variation in X. But sometimes the analyte itself gives rise to

only small variations in X, and if the interferences vary a lot, then the latent variables

found by PCR may not be particularly good at describing Y . In the worst case important

information may be hidden in directions in the X-space that PCR interprets as noise,

and therefore leaves out.

Partial Least Squares Regression (PLS) is able to cope better with this problem, by

forming variables that are relevant for describing Y [36] [42] [36].

PLS1

The PLS1 algorithm starts with the initialization j = 1 , X1 = X and y1 = y . The

algorithm then proceeds through the following steps to find the first g latent variables:
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1. Let wj = X>
j yj/

∥∥X>
j yj

∥∥.

2. Let tj = Xjwj.

3. Let ĉj = t>j yj/t
>
j tj.

4. Let pj = X>
j tj/t

>
j tj.

5. Let Xj+1 = Xj −tjp>j and yj+1 = yj −tj ĉj.

6. Stop if j = g ; otherwise let j = j + 1 and return to Step 1.

Now form the two d × g matrices W and P and n × g matrix T with columns wj , pj

and tj , respectively, and form a column vector ĉ (g × 1 ) with elements ĉj . Let

X̂ = TP> =

g∑
j=1

tjp
>
j (4.33)

and

ŷ = T ĉ = XW (P>W )−1ĉ, (4.34)

which are the predicted values of X and y , respectively. The matrix W is orthogonal,

and T has orthogonal columns.

It should be noted that, in spite of the similarities with the NIPALS algorithm, the

PLS1 algorithm is recursive and requires exactly g steps, whereas the NIPALS algorithm

is iterative, the number of iterations cannot be determined in advance, and is dependent

on the choice of a stopping criterion. In this sense, the PLS1 algorithm is simpler than

the NIPALS algorithm.

After the g runs have been completed in step 6, the following relations hold:

X = TP> + Xg+1y = T ĉ + yg+1. (4.35)

Prediction for the PLS1 method is slightly more complicated, than for PCR, in spite of

the algorithm being simpler. Consider a new prediction sample z (1 × d vector) and

predicted value −→y (both uncentered). Note the new notation for the predicted value.

Let x (d× 1 ) and y be the calibration sample averages. The prediction is performed by

essentially retracing the steps of the algorithm, letting the row vector z − x follow the

same steps as a row of the X matrix.
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Let W , T , P and ĉ be the matrices and vector formed after applying the PLS1

algorithm to the calibration data. Initialize by taking j = 1 and xj = z − x . Then

proceed through the following steps:

1. Let tj = xjwj.

2. Let xj+1 = xj −tjp>j .

3. Let j = j + 1 , and repeat Steps 1 to 3 until j = g.

Now form the row vector t̂ = (t1, . . . , tg) , and complete the prediction as follows:

−→y = y + t̂ĉ. (4.36)

It is possible, though, to summarize the prediction in a matrix formula as follows:

−→y = y + (z − x)> b̂, (4.37)

where b̂ , the so-called regression vector, is

b̂ = W
(
P>W

)−1
ĉ. (4.38)

PLS2

As already mentioned, one may use PLS1 separately for each analyte ( Y -column), which

allows a separate optimal model to be constructed for each analyte. It may, however,

be advantageous to include information from other analytes when predicting any specific

analyte. This may be done by constructing an overall model describing Y as a function

of X , and for this purpose we may use the PLS2 method.

When several analytes are to be predicted simultaneously, the situation becomes more

complicated than for the PLS1 algorithm. Suffice it to say that separate application of

the PLS1 algorithm to each column of Y would lead to different sets of scores being

formed for each Y -column. In PLS2, these separate scores are in effect reconciled into

a single set of scores, but this extra constraint implies a more complex algorithm. Note

that such a complication does not arise in connection with PCR, because PCR does not

take Y into account when forming the scores.
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The principle behind the PLS2 algorithm may be outlined as follows. Similar to PLS1,

we form a model for X namely

X = TP> + Xg+1 (4.39)

when g scores are to be used. The scores (columns of T ) is the single set of scores alluded

to above. But now we form a similar model for Y , namely

Y = UQ> + Y g+1. (4.40)

This includes a second set of scores for Y , namely the columns of U . These two equations

are linked by an inner relationship,

U = TC + U g+1, (4.41)

meaning a relationship that holds between latent, rather than observed variables. The

two matrices U and T are both n × g , and T has orthogonal columns. P is a d × g
matrix, Q is an p× g matrix whose columns are unit vectors, and C is a g × g diagonal

matrix of regression coefficients. Similar to PLS1, we will also need the d× g orthogonal

matrix W .

The three ‘error’ terms Xg+1 Y g+1 and U g+1 are supposed to represent noise. Hence

g should be chosen large enough to make the term Xg+1 useless for predicting Y g+1 ; in

other words, Xg+1 and Y g+1 should be approximately uncorrelated. Ignoring the error

terms in (4.40), (4.41) and using the estimated value of C , we obtain the predicted

value of Y as follows:

Ŷ = T ĈQ>. (4.42)

We now proceed to describe the actual PLS2 algorithm, which, like the NIPALS algo-

rithm, is iterative, rather than just recursive. The algorithm starts with the initialization

j = 1 , X1 = X and Y 1 = Y , and then proceeds through the following steps to find

the first g terms:

1. The vector uj is initialized to be an arbitrary column of Y j.

2. Let wj = X>
j uj/

∥∥X>
j uj

∥∥.

3. Let tj = Xjwj.

Fani Abatzi 65 July 2014



4. METHODS AND SYSTEM VALIDATION

4. Let qj = Y >j tj/
∥∥Y >j tj∥∥ .

5. Let uj = Y jqj.

6. If uj is unchanged continue with Step 7; otherwise go back to Step 2.

7. Let ĉj = t>j uj/t
>
j tj .

8. Let pj = X>
j tj/t

>
j tj .

9. Let Xj+1 = Xj −tjp>j and Y j+1 = Y j −ĉjtjq>j .

10. Stop if j = g ; otherwise let j = j + 1 and return to Step 1.

Now form the matrices W , T , Q , U and P with columns wj , tj , qj , uj and pj

, respectively, and form the g × g diagonal coefficient matrix Ĉ with diagonal elements

ĉj . After g runs through the algorithm, the relations (4.39), (4.40), (4.41), (4.42) are

satisfied. In the special case p = 1 , PLS2 reduces to the PLS1, because then qj in Step

4 is 1, and uj = yj in Step 5.

Prediction for the PLS2 method is quite similar to the case of PLS1, as long as we

take the extra elements of the PLS2 algorithm into account. Consider, as before, a new

prediction sample z (1 × k ) and predicted value ŷ(z) (1 ×m ) (both uncentered), and

let x and y be the calibration sample averages.

In order to follow the steps of the PLS2 algorithm, now for the purpose of prediction,

we initialize by taking j = 1 and x1 = z−x . The prediction then proceeds through the

following steps:

1. Let tj = xjwj.

2. Let xj+1 = xj −tjp>j .

3. Stop if j = g ; otherwise let j = j + 1 , and go back to Step 1.

Now form the row vector t̂ = (t1, . . . , tg) , and complete the prediction as follows:

ŷ(z) = y + t̂ĈQ>. (4.43)

It is also possible to write the prediction in matrix form, as follows:

ŷ(z) = y + (z − x) B̂, (4.44)
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where the regression matrix B̂ is

B̂ = W
(
P>W

)−1
ĈQ>. (4.45)

Differences between the two methods: For PLS1 the first equation remains as it

is, but in the second equation c and f are vectors and we obtain a set of equations for each

constituent in the mixture. This makes PLS1 more time-consuming in calculations,

since a separate set of eigenvectors and scores must be generated for every constituent

of interest. For training sets with a large number of samples and constituents, the in-

creased time of calculation can be significant. PLS1 may have the largest advantage

when analyzing systems that have constituent concentrations that are widely varied. If

the concentration ranges of the constituents are approximately the same, PLS1 may have

less of an advantage over PLS2 and will definitely take longer to calculate. However, like

the PCR method, PLS2 calibrates for all constituents simultaneously. In other words,

the results of the spectral decomposition for both of these techniques give one set of

scores and one set of eigenvectors for calibration. Therefore, the calculated vectors are

not optimized for each individual constituent. This may sacrifice some accuracy in the

predictions of the constituent concentrations, especially for complex sample mixtures. In

PLS1, a separate set of scores and loading vectors is calculated for each constituent of

interest. In this case, the separate sets of eigenvectors and scores are specifically tuned

for each constituent, and therefore, should give more accurate predictions than PCR

or PLS2.

Advantages and Disadvantages of PLS: PLS method provides a single step de-

composition and regression; thus, eigenvectors are directly related to constituents of

interest. Also, calibrations are generally more robust provided that the calibration set

accurately reflects range of variability expected in the unknown samples. An additional

advantage to this method is that it can be used for very complex mixtures since only

knowledge of constituents of interest is required. Moreover, it can sometimes be used to

predict samples with constituents (contaminants) not present in the original calibration

mixtures. However, PLS has its disadvantages, too. One of them is that the calcula-

tions are slower that most Classical methods, especially in PLS1. The models are more

abstract, thus more difficult to understand and interpret. Generally, a large number of

samples are required for accurate calibration, but collecting calibration samples can be

difficult, because collinear constituent concentrations must be avoided.
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4.3 Performance Evaluation

In order to evaluate the algorithms’ results and be able to highlight the best, some error

metrics had to be used, which we are going to analyze further down in this section.

4.3.1 Error Estimation

There are two types of errors associated with performance validation of calibration (re-

gression) models for concentration estimation. The first category is about Root Mean

Squared Errors (RMSEs) and the second one is the standard error of regression,

sy/x. The later can be used only in CLS and ILS methods, whereas the first one can be

used in every method used in this diploma thesis.

RMSEs as used in our problem solving are associated with the concentrations because

we want to know how close to the initial concentrations are the concentrations estimated.

RMSEs can be absolute values or can be expressed in percentages. The second way of

expressing them is easier to interpret from an analyst’s perspective, because it indicates

how much (in terms of %) we are close to the desirable result. A low percentage of an

RMSE means the desired estimated concentration is closer to the initial one, than a high

percentage of RMSE. However, the standard error of regression is only expressed as an

absolute value and the goal is to be as close to ’0’ as possible, because the smaller this

error is, the better the regression fit is.

The first RMSE error applied for the validation of our system was a training error,

which we name Root Mean Squared Error of Prediction (RMSEP), because it emerges

from our training data, which in our case are all the calibration samples used in a specific

experimental design dataset and it is the following:

RMSEP =

√∑
n(C−Cpred)2

n
(4.46)

where n are the samples in the calibration model and the relative % RMSEP is:

rRMSEP =

√∑
n(

C−Cpred

C
)2

n
100% (4.47)

The second RMSE error, Root Mean Squard Error of Calibration (RMSEC) describes

the degree of agreement between the calibration model estimated concentration values
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for the calibration samples and the accepted true values for the calibration samples [35]

and it is the following:

RMSEC =

√∑
n(C−Cpred)2

dof
(4.48)

and the relative % RMSEC is:

rRMSEC =

√∑
n(

C−Cpred

C
)2

dof
100% (4.49)

where dof are the degrees of freedom.

In statistics, the number of Degrees of Freedom (d.o.f.) is the number of values in

the final calculation of a statistic that are free to vary. More specifically, in chemometrics

the degrees of freedom are the number of data minus the number of parameters calculated

from them. For example,in multiple regression with p independent variables, the standard

error has n− p− 1 degrees of freedom. This happens because the degrees of freedom are

reduced from n by p+ 1 numerical constants b0 , b1 , b2 , . . . , bp , that have been estimated

from the sample [39]. This happens when a non-zero intercept exist in the equation

or the data are mean-centered, thus b0 exists. Otherwise the degrees of freedom are

n− p. More specifically, when referring to RMSEC, we take into account the number of

chemical components in the model or the number of any factors existing, depending on

the algorithmic method applied to the data. Therefore, the correct number of degrees of

freedom for each of the four calibration methods are the following [37]:

• For CLS the number of dof is equal to the number of samples,n, minus the number

of components modeled, c, minus 1 if there isn’t a non-zero intercept or minus 2 if

there is a non-zero intercept or the data are mean-centered.

dof = n− c or dof = n− c− 1

• For ILS the number of dof is equal to the number of samples minus the number

of wavelengths, w, used in the calibration (i.e. the number of columns in the P

matrix) minus 1 if there isn’t a non-zero intercept or minus 2 if there is a non-zero

intercept or the data are mean-centered.

dof = n− w or dof = n− w − 1
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• For PCR the number of dof is equal to the number of samples,n, minus the number

of the factors, f , used for the basis space minus 1 if there isn’t a non-zero intercept

or minus 2 if there is a non-zero intercept or the data are mean-centered.

dof = n− f or dof = n− f − 1

• For PLS the number of dof (approximately) is the number of samples, n, minus the

number of factors (latent variables), f , minus 1 if there isn’t a non-zero intercept

or minus 2 if there is a non-zero intercept or the data are mean-centered.

dof = n− f or dof = n− f − 1

The last RSME error is a more complicated one and it’s called the Root Mean Squared

Error of cross-Validation (RMSECV or RMSEV). This kind of error metric emerges from

a cross-validation procedure, also known as Leave-One-Out Cross-Validation (LOOCV).

During this procedure, the n-sample calibration dataset breaks into a n−1-sample train-

ing set and an 1-sample test set. The procedure is iterative and it finishes when the

calibration set has been split in every possible combination. At each step, an RMSEP

error is calculated, as well as a relative RMSEP% 100 and then the RMSEV is the mean

of all these errors divided by the size of the dataset, n.

As seen before, another error metric is the standard error of regression, sy/x,

which is a statistic for the estimation of the random errors in the y-direction of a general

y = ax calibration model [31] [9] and it is expressed as follows:

sy/x =

√∑
i(yi − ŷi)2
dof

(4.50)

Apart from the above, other validation tools can be diagrams associated with the

depiction of the differences between initial and estimated concentration C (meaning the

estimated concentration for each compound individually), as well as initial and estimated

Absorbance (using the estimated coefficients Aest = Cinitcoeff est) spectra. The smaller

the differences, the better the performance of the particular algorithm. In the next

chapter 5 we will discuss about these differences in absorbance spectra, which concluded

in discarding candidate ”unwanted” samples from our experimental datasets.
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Is the System simple

and are all of the

analytes known?

Clasical Least

Squares (CLS)

Inverse Least

Squares (ILS)

Are the pure

spectra readily

available?

Direct CLS (DCLS)

Indirect CLS (ICLS)

Is the number of

variables small or is

the goal to reduce the

number of variables?

Multiple Linear

Regression (MLR)
Use Either

Method

Principal Components

Regression (PCR)

Partial Least

Squares (PLS)

Yes

No

Yes

No

Yes

No

Figure 4.1: Multivariate Calibration Methods Decision Tree
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Chapter 5

Implementation and Results

5.1 Software tools

The software tool used to process the experimental, simulated, and hyperspectral image

data, implement the algorithmic methods and extract the results was MATLAB R© 7.9 (re-

lease name R2009b). Also, for the processing of the microscope hyperspectral images and

the initial extraction of the hyperspectral cubes we used the ElGreco GUI environment,

a software tool developed by George Epitropou in his Diploma Thesis [3].

5.2 Preprocessing

Before applying the algorithmic methods on the data, we insert the useful matrices with

the absorbance or transmission mixture spectra and their concentrations into a MATLAB

script and perform preprocessing. This preprocessing step includes wavelength selection,

which for our thesis was from 450nm to 750nm (visible spectrum area), curve fitting in

order to reduce noise and sampling per 1nm. Subsequently, we run the algorithms and

obtain the results with an accuracy of 4 significant digits. Similarly, for the simulated

data, the spectra extend from 0nm to 1000nm, which in real world wouldn’t be possible,

but for this kind of data it is used for testing reasons. Finally, for the hyperspectral

image data, a Wiener filter was applied before the application of the algorithms in order

to achieve a smoothing effect (noise suppression) on the images, the gathered spectra

were divided by 255 in order to obtain the normalized spectra from the grayscale ones
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and the initial transmission spectra were converted into absorbance spectra through 2.2

equation.

5.3 Implementation Details

In this section we are going to briefly describe the implementation methods used for the

applications of the various algorithms described in the previous chapter. First of all, as

stated before ( 4.2) the CLS method can be approached through DCLS or ICLS.

More specifically, for DCLS, apart from the simple equation used, another imple-

mentation had to do with using the slope of the regression fit between Absorbance and

Concentration matrices. For this reason, the Matlab creatFit.m custom function was

used in order to estimate the matrix of absorptivities (regression coefficients K).

As for ICLS, many implementation approaches have been applied, such as CLS with

or without a non-zero intercept, data mean-centering, Matlab function mvregress.m and

for all of these and especially for the non-mean-centered data or those without a non-zero

intercept, the coefficients’ (K-matrix) estimation could be achieved either through the

simple Matlab equation solving (K = C\A) or using the lsqnonneg.m Matlab function

for NNLS (Non-negative Least Squares) or even the following formula to compute the

least squares approximate solution [43]:

K = (C>C)−1C>A or K = inv(C ′C)C ′A

mathematically and in Matlab, respectively, which translates into the following, using

the pseudo-inverse:

K = C+A or K = pinv(C)A

In this case, the pseudo-inverse is needed because C may not be a square matrix; therefore

if it’s a singular (non-square) matrix, its inverse cannot be calculated.

The above implementation approaches have been used for the other methods, too.

However, for time-consuming reasons it must be noted that mean-centered data and

data with a non-zero intercept export the same results (because in mean-centered data

the non-zero intercept is hidden) and for the non-mean-centered data the least squares

equation solving also exports the same results either using ”pinv”, or ”nnls, or ”\”.
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Another thing to notice is that we applied only the PLS1 algorithm on the obtained

datasets, and not PLS2. The reason for this was that the so-called PLS2 algorithm may

be used for the case of more than one column in Y . The PLS2 algorithm, however, is

more complicated than PLS1 and even when several columns are available in Y , it may

be preferable to apply PLS1 separately to each column of Y [36].

In the following section, where the results for the various algorithmic methods are

presented, some abbreviations are used for brevity, such as DCLS for Direct Classical

Least Squares, DCLS(T.S.) for DCLS through slope, ICLS for plain Indirect Classical

Least Squares, ICLS(W.I.) for ICLS with non-zero intercept intercept (or if the data

are mean-centered), ILS(F.S.) for plain Inverse Least Squares through forward selection,

ILS(F.S.W.I.) for ILS through forward selection with non-zero intercept, ILS(B.E.)

for plain ILS through backward elimination, ILS(B.E.W.I.) for ILS through backward

elimination with non-zero intercept, PCR for plain Principal Components Regression,

PCR(M.C.) with mean-centered data, PLS for Partial Least Squares regression of type

1 and 2, and PLS(M.C.) for the mean-centered version of PLS.

For more implementation details and more a analytical explanation of the algorithms

look up [41] and [36].

Last but not least, because the data from the microscope are extracted in the form of

transmission spectra, before applying the algorithmic methods associated with Absoption

spectroscopy we need to make a conversion from transmission to absorbance, using the

following equation:

Abs = log
1

%T
(5.1)

5.4 Data from Cary: Results

In the following sections, the performance results for the various methods and their algo-

rithms are presented. It should be noted that before extracting the results using the esti-

mation errors, the simple CLS algorithm was applied on the datasets obtained from the

spectrophotometer and the diagrams for the Absorbance versus the estimated Absorbance

spectra for each sample of each dataset were presented. In doing so, it could be possible to

understand whether the absorbance spectra were estimated correctly for each sample and

which sample of the specific dataset enclosed the bigger error (during data acquisition).

Fani Abatzi 75 July 2014



5. IMPLEMENTATION AND RESULTS

Thus, this sample was removed. In figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,the dia-

grams for the A-Aest are presented. Observing these diagrams we extracted the following

samples: sample number 8 from Methylene Blue - Fast Green dataset, sample number

4 from CoCl2 - Methylene Blue dataset and sample number 8 from Thymol - Malachite

Green - Methylene Blue dataset. It might be interesting to note that although removing

these specific samples the results for the corresponding dataset were improved, it is not

so clear if the biggest error is connected with this sample specifically or with the fact

that the datasets contain a few samples.

Following the figures, the tables with the results from the estimation errors for each

dataset are presented (tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9), along with some

histograms( 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18) that better represent

the algorithms’ performance and the ones tha yield the smallest errors.
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Figure 5.1: Methyl Orange - CuSO4, A-Aest spectra
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Figure 5.2: Thymol - CoCl2, A-Aest spectra
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Figure 5.3: Thymol - Fast Green, A-Aest spectra
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Figure 5.4: CoCl2 - Malachite Green, A-Aest spectra
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Figure 5.5: Methylene Blue - CuSO4, A-Aest spectra
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Figure 5.6: Methylene Blue - Fast Green, A-Aest spectra
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Figure 5.7: CoCl2 - Methylene Blue, A-Aest spectra
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Figure 5.8: Methyl Orange - Fast Green - CuSO4, A-Aest spectra
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Figure 5.9: Thymol - Malachite Green - Methylene Blue, A-Aest spectra
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Table 5.1: Dataset 1, 2 factors - RMSE and standard deviation errors

RMSEP RMSEC RMSEV

Methyl Or.-CuSO4 C1 C2 C1 C2 C1 C2

ICLS 1.1 × 10−7 0.001228 1.248 × 10−7 0.001392 1.347 × 10−7 0.001323

ICLS(W.I.) 1.062 × 10−7 0.001175 1.301 × 10−7 0.001439 1.477 × 10−7 0.001583

DCLS(T.S.) 2.095 × 10−6 0.001346 2.565 × 10−6 0.001649

ILS(F.S.) 1.091 × 10−7 2.117 × 10−8 3.274 × 10−7 6.35 × 10−8 1.487 × 10−6 2.884 × 10−7

ILS(F.S.W.I.) 7.483 × 10−8 4.507 × 10−5 2.245 × 10−7 0.0001352 7.113 × 10−7 0.0002009

ILS(B.E.) 8.243 × 10−8 3.543 × 10−6 2.473 × 10−7 1.063 × 10−5 2.304 × 10−6 9.904 × 10−5

ILS(B.E.W.I.) 5.409 × 10−8 0.000514 1.623 × 10−7 0.001542 2.551 × 10−7 0.002444

PCR 1.1 × 10−7 0.001226 1.247 × 10−7 0.00139 1.344 × 10−7 0.001319

PCR(M.C.) 1.062 × 10−7 0.001173 1.301 × 10−7 0.001437 4.19 × 10−7 0.001837

PLS 1.099 × 10−7 0.001226 1.247 × 10−7 0.00139 1.340 × 10−7 0.001319

PLS(M.C.) 1.062 × 10−7 0.001173 1.3 × 10−7 0.001437 8.983 × 10−8 0.001061

rRMSEP(%) rRMSEC(%) rRMSEV(%)

Methyl Or.-CuSO4 C1 C2 C1 C2 C1 C2 sy/x

ICLS 4.189 7.726 4.75 8.761 3.557 8.167 0.1268

ICLS(W.I.) 4.343 10.55 5.319 12.92 4.208 12.15 0.1133

DCLS(T.S.) 27.83 7.528 34.09 9.22 0.5374

ILS(F.S.) 3.017 0.0001038 9.05 0.0003113 37.22 0.002819

ILS(F.S.W.I.) 2.082 0.3283 6.245 0.985 9.917 1.508

ILS(B.E.) 3.631 0.02185 10.89 0.06556 47.77 0.7001

ILS(B.E.W.I.) 0.873 4.926 2.619 14.78 7.184 13.64

PCR 4.247 7.565 4.816 3.552 8.02 2.673

PCR(M.C.) 4.409 10.06 5.4 12.32 9.826 8.718

PLS 4.246 7.569 4.815 8.582 3.543 8.08

PLS(M.C.) 4.406 10.06 5.397 12.32 2.648 8.018
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Figure 5.10: rRMSEP(%) error performance representation for Methyl Orange-CuSO4

dataset
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5. IMPLEMENTATION AND RESULTS

Table 5.2: Dataset 2, 2 factors - RMSE and standard deviation errors

RMSEP RMSEC RMSEV

Thymol-CoCl2 C1 C2 C1 C2 C1 C2

ICLS 1.789 × 10−6 0.001932 2.028 × 10−6 0.00219 1.536 × 10−6 0.002483

ICLS(W.I.) 1.76 × 10−6 0.001911 2.156 × 10−6 0.00234 1.877 × 10−6 0.002619

DCLS(T.S.) 1.893 × 10−6 0.00192 2.319 × 10−6 0.002352

ILS(F.S.) 6.732 × 10−7 4.255 × 10−7 2.02 × 10−6 1.276 × 10−6 8.963 × 10−6 5.665 × 10−6

ILS(F.S.W.I.) 2.194 × 10−7 3.594 × 10−5 6.581 × 10−7 0.0001078 1.159 × 10−6 0.0001644

ILS(B.E.) 1.121 × 10−6 1.558 × 10−5 3.362 × 10−6 4.674 × 10−5 2.41 × 10−5 0.0003351

ILS(B.E.W.I.) 1.077 × 10−6 0.0001255 3.23 × 10−6 0.0003765 9.007 × 10−6 0.0005762

PCR 1.771 × 10−6 0.001915 2.008 × 10−6 0.002172 1.436 × 10−6 0.002386

PCR(M.C.) 1.741 × 10−6 0.001889 2.132 × 10−6 0.002313 1.977 × 10−6 0.002206

PLS 1.77 × 10−6 0.001897 2.007 × 10−6 0.002151 1.427 × 10−6 0.002369

PLS(M.C.) 1.739 × 10−6 0.001871 2.13 × 10−6 0.002291 1.237 × 10−6 0.001573

rRMSEP(%) rRMSEC(%) rRMSEV(%)

Thymol-CoCl2 C1 C2 C1 C2 C1 C2 sy/x

ICLS 8.762 14.64 9.935 16.6 7.637 16.73 0.1709

ICLS(W.I.) 9.549 14.53 11.69 17.8 10.66 18.07 0.1809

DCLS(T.S.) 11.84 12.08 14.5 14.79 0.2307

ILS(F.S.) 3.305 0.003187 9.916 0.00956 67.12 0.03261

ILS(F.S.W.I.) 1.85 0.1426 5.551 0.4279 5.895 0.9594

ILS(B.E.) 8.873 0.1583 26.62 0.4749 154.5 1.949

ILS(B.E.W.I.) 7.402 0.673 22.21 2.019 36.48 3.527

PCR 9.181 13.15 10.41 14.91 7.881 15.89

PCR(M.C.) 10.31 13.19 12.63 16.16 13.03 13.74

PLS 9.171 13.06 10.4 14.81 7.871 15.8

PLS(M.C.) 10.3 13.1 12.62 16.05 7.683 10.31
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Figure 5.11: rRMSEP(%) error performance representation for Thymol-CoCl2 dataset

Table 5.3: Dataset 3, 2 factors - RMSE and standard deviation errors

RMSEP RMSEC RMSEV

Thymol-Fast Green C1 C2 C1 C2 C1 C2

ICLS 5.833 × 10−7 9.896 × 10−8 6.614 × 10−7 1.122 × 10−7 7.264 × 10−7 1.087 × 10−7

ICLS(W.I.) 5.72 × 10−7 7.38 × 10−8 7.005 × 10−7 9.038 × 10−8 7.985 × 10−7 1.046 × 10−7

DCLS(T.S.) 1.473 × 10−6 1.195 × 10−7 1.804 × 10−6 1.464 × 10−7

ILS(F.S.) 1.941 × 10−7 7.04 × 10−8 5.824 × 10−7 2.112 × 10−7 2.486 × 10−5 1.724 × 10−6

ILS(F.S.W.I.) 4.147 × 10−8 4.879 × 10−9 1.244 × 10−7 1.464 × 10−8 2.011 × 10−7 3.572 × 10−8

ILS(B.E.) 8.491 × 10−10 2.568 × 10−9 2.547 × 10−9 7.704 × 10−9 1.378 × 10−8 4.168 × 10−8

ILS(B.E.W.I.) 3.971 × 10−8 2.433 × 10−8 1.191 × 10−7 7.3 × 10−8 3.031 × 10−7 1.558 × 10−7

PCR 5.829 × 10−7 9.885 × 10−8 6.61 × 10−7 1.121 × 10−7 7.304 × 10−7 1.067 × 10−7

PCR(M.C.) 5.714 × 10−7 7.374 × 10−8 6.998 × 10−7 9.032 × 10−8 9.563 × 10−7 1.175 × 10−7

PLS 5.829 × 10−7 9.882 × 10−8 6.609 × 10−7 1.121 × 10−7 7.304 × 10−7 1.064 × 10−7

PLS(M.C.) 5.713 × 10−7 7.374 × 10−8 6.997 × 10−7 9.031 × 10−8 5.176 × 10−7 6.383 × 10−8

rRMSEP(%) rRMSEC(%) rRMSEV(%)

Thymol-Fast Green C1 C2 C1 C2 C1 C2 sy/x

ICLS 3.904 7.308 4.426 8.287 4.25 6.19 0.0831

ICLS(W.I.) 3.903 6.294 4.781 7.709 4.905 6.879 0.06986

DCLS(T.S.) 10.95 13.54 13.42 16.58 0.2869

ILS(F.S.) 1.305 5.202 3.914 15.61 2.259 8.616

ILS(F.S.W.I.) 0.1863 0.4613 0.5589 1.384 0.9159 1.205

ILS(B.E.) 0.006095 0.249 0.01829 0.7471 0.06516 2.619

ILS(B.E.W.I.) 0.2208 1.396 0.6623 4.189 1.748 12.79

PCR 3.964 7.535 4.494 8.544 4.303 6.3

PCR(M.C.) 3.974 6.362 4.867 7.792 6.449 7.587

PLS 3.963 7.532 4.494 8.54 4.301 6.27

PLS(M.C.) 3.973 6.361 4.866 7.791 3.13 4.539
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Figure 5.12: rRMSEP(%) error performance representation for Thymol-Fast Green

dataset

Table 5.4: Dataset 4, 2 factors - RMSE and standard deviation errors

RMSEP RMSEC RMSEV

CoCl2-Malachite Green C1 C2 C1 C2 C1 C2

ICLS 0.001073 8.619 × 10−7 0.001217 9.773 × 10−7 0.0009893 8.525 × 10−7

ICLS(W.I.) 0.001058 6.901 × 10−7 0.001295 8.452 × 10−7 0.001319 8.741 × 10−7

DCLS(T.S.) 0.006491 2.291 × 10−6 0.00795 2.805 × 10−6

ILS(F.S.) 4.159 × 10−6 8.264 × 10−8 1.248 × 10−5 2.479 × 10−7 7.802 × 10−5 1.55 × 10−6

ILS(F.S.W.I.) 2.771 × 10−5 3.014 × 10−7 8.314 × 10−5 9.043 × 10−7 0.0001239 1.911 × 10−6

ILS(B.E.) 2.378 × 10−5 1.753 × 10−7 7.134 × 10−5 5.26 × 10−7 0.00079 5.824 × 10−6

ILS(B.E.W.I.) 8.328 × 10−5 9.318 × 10−8 0.0002498 2.795 × 10−7 0.0004189 5.833 × 10−7

PCR 0.001254 8.987 × 10−7 0.001422 1.019 × 10−6 0.001087 9.626 × 10−7

PCR(M.C.) 0.001147 7.056 × 10−7 0.001405 8.642 × 10−7 0.001309 8.344 × 10−7

PLS 0.001156 8.07 × 10−7 0.00131 9.151 × 10−7 0.000985 8.726 × 10−7

PLS(M.C.) 0.00106 6.476 × 10−7 0.001298 7.932 × 10−7 0.0008697 5.671 × 10−7

rRMSEP(%) rRMSEC(%) rRMSEV(%)

CoCl2-Malachite Green C1 C2 C1 C2 C1 C2 sy/x

ICLS 9.621 52.88 10.91 59.96 6.315 41.3 0.2978

ICLS(W.I.) 8.134 42.05 9.962 51.5 8.477 38.3 0.2591

DCLS(T.S.) 30.24 35.85 37.04 43.91 1.212

ILS(F.S.) 0.03732 8.002 0.112 24.01 0.4831 55.74

ILS(F.S.W.I.) 0.2655 21.27 0.7966 63.81 0.7462 108.9

ILS(B.E.) 0.2316 18.72 0.6947 56.17 4.74 128.1

ILS(B.E.W.I.) 0.6875 9.686 2.062 29.06 2.68 23.6

PCR 11.21 48.72 12.72 55.24 7.444 41.2

PCR(M.C.) 8.801 36.06 10.78 44.17 10.2 33.04

PLS 10.26 46.97 11.63 53.26 6.449 38.85

PLS(M.C.) 8.076 34.51 9.89 42.27 5.917 23.51
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Figure 5.13: rRMSEP(%) error performance representation for CoCl2-Malachite Green

dataset

Table 5.5: Dataset 5, 2 factors - RMSE and standard deviation errors

RMSEP RMSEC RMSEV

Meth. Blue-CuSO4 C1 C2 C1 C2 C1 C2

ICLS 5.629 × 10−7 0.0005446 6.383 × 10−7 0.0006175 4.59 × 10−7 0.000644

ICLS(W.I.) 4.119 × 10−7 0.0005424 5.044 × 10−7 0.0006643 5.002 × 10−7 0.0006828

DCLS(T.S.) 2.684 × 10−6 0.00281 3.288 × 10−6 0.003442

ILS(F.S.) 2.865 × 10−7 2.253 × 10−6 8.595 × 10−7 6.76 × 10−6 6.458 × 10−6 5.079 × 10−5

ILS(F.S.W.I.) 1.359 × 10−7 0.000163 4.077 × 10−7 0.0004889 5.451 × 10−7 0.0006227

ILS(B.E.) 4.827 × 10−8 4.062 × 10−7 1.448 × 10−7 1.219 × 10−6 8.464 × 10−7 7.121 × 10−6

ILS(B.E.W.I.) 5.975 × 10−8 1.766 × 10−5 1.793 × 10−7 5.297 × 10−5 4.664 × 10−7 0.000178

PCR 5.622 × 10−7 0.0005441 6.375 × 10−7 0.000617 4.994 × 10−7 0.0006429

PCR(M.C.) 4.111 × 10−7 0.0005421 5.035 × 10−7 0.0006639 6.417 × 10−7 0.001178

PLS 5.598 × 10−7 0.000544 6.348 × 10−7 0.0006169 4.979 × 10−7 0.000643

PLS(M.C.) 4.101 × 10−7 0.000542 5.022 × 10−7 0.0006638 3.538 × 10−7 0.0004226

rRMSEP(%) rRMSEC(%) rRMSEV(%)

Meth. Blue-CuSO4 C1 C2 C1 C2 C1 C2 sy/x

ICLS 9.965 3.232 11.3 3.665 7.606 3.322 0.2893

ICLS(W.I.) 14.16 3.305 17.34 4.048 14.36 3.636 0.2291

DCLS(T.S.) 64.74 16.92 79.3 20.72 1.306

ILS(F.S.) 10.66 0.02162 31.98 0.06487 157.3 0.4784

ILS(F.S.W.I.) 4.03 1.431 12.09 4.293 15.59 5.356

ILS(B.E.) 1.441 0.003527 4.322 0.01058 26.36 0.05095

ILS(B.E.W.I.) 2.659 0.1027 7.976 0.3081 14.16 1.521

PCR 9.832 3.237 11.15 3.67 8.26 3.324

PCR(M.C.) 13.4 3.267 16.41 4.002 13.23 6.8

PLS 9.786 3.238 11.1 3.671 7.70 3.325

PLS(M.C.) 13.36 3.267 16.37 4.002 9.703 2.233
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Figure 5.14: rRMSEP(%) error performance representation for Methylene Blue-CuSO4

dataset
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5.4 Data from Cary: Results

Table 5.6: Dataset 6, 2 factors - RMSE and standard deviation errors

RMSEP RMSEC RMSEV

Meth. Blue-Fast Green C1 C2 C1 C2 C1 C2

ICLS 5.355 × 10−7 2.891 × 10−7 6.184 × 10−7 3.338 × 10−7 7.08 × 10−7 3.467 × 10−7

ICLS(W.I.) 5.187 × 10−7 2.139 × 10−7 6.561 × 10−7 2.706 × 10−7 7.638 × 10−7 2.898 × 10−7

DCLS(T.S.) 1.646 × 10−6 6.041 × 10−7 2.082 × 10−6 7.641 × 10−7

ILS(F.S.) 3.166 × 10−8 2.591 × 10−10 8.954 × 10−8 7.328 × 10−10 4.458 × 10−7 3.648 × 10−9

ILS(F.S.W.I.) 2.167 × 10−8 2.074 × 10−8 6.13 × 10−8 5.866 × 10−8 9.134 × 10−8 8.055 × 10−8

ILS(B.E.) 2.759 × 10−9 2.002 × 10−9 7.803 × 10−9 5.663 × 10−9 3.944 × 10−8 2.863 × 10−8

ILS(B.E.W.I.) 5.671 × 10−8 4.248 × 10−8 1.604 × 10−7 1.202 × 10−7 2.751 × 10−7 1.835 × 10−7

PCR 5.369 × 10−7 2.892 × 10−7 6.2 × 10−7 3.339 × 10−7 7.077 × 10−7 3.66 × 10−7

PCR(M.C.) 5.195 × 10−7 2.15 × 10−7 6.572 × 10−7 2.719 × 10−7 7.162 × 10−7 3.333 × 10−7

PLS 5.327 × 10−7 2.864 × 10−7 6.151 × 10−7 3.307 × 10−7 7.034 × 10−7 3.38 × 10−7

PLS(M.C.) 5.135 × 10−7 2.12 × 10−7 6.495 × 10−7 2.681 × 10−7 4.747 × 10−7 1.79 × 10−7

rRMSEP(%) rRMSEC(%) rRMSEV(%)

Meth. Blue-Fast Green C1 C2 C1 C2 C1 C2 sy/x

ICLS 17.97 13.05 20.75 15.06 18.76 14.79 0.2528

ICLS(W.I.) 14.74 11.69 18.64 14.78 18.54 12.67 0.1887

DCLS(T.S.) 21.55 44.63 27.26 56.46 0.8809

ILS(F.S.) 1.328 0.01927 3.755 0.05451 10.37 0.2136

ILS(F.S.W.I.) 0.9563 1.722 2.705 4.871 1.714 6.611

ILS(B.E.) 0.1179 0.189 0.3334 0.5347 0.7398 1.373

ILS(B.E.W.I.) 2.389 1.943 6.756 5.497 5.04 6.12

PCR 19.01 13.86 21.95 16 19.32 16.61

PCR(M.C.) 15.98 11.53 20.21 14.59 23.11 15.12

PLS 18.87 13.78 21.79 15.92 19.28 16.53

PLS(M.C.) 15.78 11.37 19.96 14.39 12.14 8.301
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Figure 5.15: rRMSEP(%) error performance representation for Methylene Blue-Fast

Green dataset
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5. IMPLEMENTATION AND RESULTS

Table 5.7: Dataset 7, 2 factors - RMSE and standard deviation errors

RMSEP RMSEC RMSEV

CoCl2-Meth.Blue C1 C2 C1 C2 C1 C2

ICLS 0.0009304 6.507 × 10−7 0.001074 7.514 × 10−7 0.001136 7.176 × 10−7

ICLS(W.I.) 0.0008868 6.413 × 10−7 0.001122 8.111 × 10−7 0.001141 8.4 × 10−7

DCLS(T.S.) 0.002362 3.977 × 10−6 0.002988 5.03 × 10−6

ILS(F.S.) 1.588 × 10−8 2.837 × 10−8 4.493 × 10−8 8.023 × 10−8 2.085 × 10−7 3.723 × 10−7

ILS(F.S.W.I.) 0.0001862 6.51 × 10−7 0.0005266 1.841 × 10−6 0.001046 2.247 × 10−6

ILS(B.E.) 3.56 × 10−7 2.476 × 10−7 1.007 × 10−6 7.002 × 10−7 8.719 × 10−6 6.063 × 10−6

ILS(B.E.W.I.) 0.0001828 8.047 × 10−8 0.0005169 2.276 × 10−7 0.0009089 4.586 × 10−7

PCR 0.0009293 6.491 × 10−7 0.001073 7.495 × 10−7 0.001119 7.198 × 10−7

PCR(M.C.) 0.0008818 6.356 × 10−7 0.001115 8.039 × 10−7 0.001306 8.195 × 10−7

PLS 0.000928 6.48 × 10−7 0.001072 7.482 × 10−7 0.001123 7.1969 × 10−7

PLS(M.C.) 0.0008805 6.345 × 10−7 0.001114 8.026 × 10−7 0.0006367 5.13 × 10−7

rRMSEP(%) rRMSEC(%) rRMSEV(%)

CoCl2-Meth.Blue C1 C2 C1 C2 C1 C2 sy/x

ICLS 7.274 11.23 8.4 12.97 7.676 11.96 0.3534

ICLS(W.I.) 7.157 11.39 9.052 14.4 7.851 13.41 0.3814

DCLS(T.S.) 19.67 113.3 24.88 143.3 1.838

ILS(F.S.) 0.000112 0.9701 0.0003167 2.744 0.001442 6.169

ILS(F.S.W.I.) 1.042 23.72 2.948 67.1 8.215 62.47

ILS(B.E.) 0.003265 4.48 0.009234 12.67 0.03665 233

ILS(B.E.W.I.) 1.571 3.155 4.442 8.925 6.147 8.361

PCR 7.207 11.53 8.322 13.31 7.509 12.41

PCR(M.C.) 7.16 12.19 9.056 15.42 9.72 18.07

PLS 7.197 11.51 8.311 13.3 7.499 12.38

PLS(M.C.) 7.147 12.16 9.04 15.39 4.252 9.516
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Figure 5.16: rRMSEP(%) error performance representation for CoCl2-Methylene Blue

dataset
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5.4 Data from Cary: Results

Table 5.8: Dataset 8, 3 factors - RMSE and standard deviation errors

Methyl Or.-Fast Green- RMSEP rRMSEP(%)

CuSO4 C1 C2 C3 C1 C2 C3

ICLS 1.606 × 10−7 9.586 × 10−8 0.0008746 11.95 10.83 9.416

ICLS(W.I.) 7.79 × 10−8 8.217 × 10−8 0.0006648 4.817 12.04 10.14

DCLS(T.S.) 1.641 × 10−6 4.786 × 10−7 0.002068 25.59 38.88 11.94

ILS(F.S.) 7.051 × 10−8 4.441 × 10−7 8.789 × 10−8 5.504 52.48 0.001481

ILS(F.S.W.I.) 4.155 × 10−6 9.064 × 10−8 4.373 × 10−5 198.7 12.92 0.7464

ILS(B.E.) 7.408 × 10−8 3.136 × 10−8 1.629 × 10−6 5.106 5.216 0.03224

ILS(B.E.W.I.) 7.351 × 10−8 1.534 × 10−8 0.0001469 5.228 2.525 2.849

PCR 1.603 × 10−7 9.588 × 10−8 0.0008746 12.02 10.87 9.497

PCR(M.C.) 7.79 × 10−8 8.211 × 10−8 0.000664 4.873 12.36 10.45

PLS 1.592 × 10−7 9.507 × 10−8 0.0008656 11.95 10.78 9.402

PLS(M.C.) 7.781 × 10−8 8.176 × 10−8 0.0006607 4.865 12.29 10.39

Methyl Or.-Fast Green- RMSEC rRMSEC(%)

CuSO4 C1 C2 C3 C1 C2 C3

ICLS 2.032 × 10−7 1.213 × 10−7 0.001106 15.11 13.7 11.91

ICLS(W.I.) 1.102 × 10−7 1.162 × 10−7 0.0009402 6.812 17.03 14.34

DCLS(T.S.) 2.321 × 10−6 6.768 × 10−7 0.002925 36.19 54.98 16.88

ILS(F.S.) 1.994 × 10−7 1.256 × 10−6 2.486 × 10−7 15.57 148.4 0.004188

ILS(F.S.W.I.) 1.175 × 10−5 2.564 × 10−7 0.0001237 562.1 36.55 2.111

ILS(B.E.) 2.095 × 10−7 8.87 × 10−8 4.609 × 10−6 14.44 14.75 0.0912

ILS(B.E.W.I.) 2.079 × 10−7 4.34 × 10−8 0.0004155 14.79 7.142 8.058

PCR 2.027 × 10−7 1.213 × 10−7 0.001106 15.2 13.75 12.01

PCR(M.C.) 1.102 × 10−7 1.161 × 10−7 0.000939 6.891 17.47 14.77

PLS 2.013 × 10−7 1.203 × 10−7 0.001095 15.12 13.63 11.89

PLS(M.C.) 1.1 × 10−7 1.156 × 10−7 0.0009343 6.88 17.38 14.7

Methyl Or.-Fast Green- RMSEV rRMSEV(%)

CuSO4 C1 C2 C3 C1 C2 C3 sy/x

ICLS 2.104 × 10−7 1.321 × 10−7 0.001087 9.768 13.37 11.49 0.1653

ICLS(W.I.) 1.271 × 10−7 1.409 × 10−7 0.001039 5.837 16.22 12.27 0.1404

DCLS(T.S.) 0.7179

ILS(F.S.) 7.078 × 10−7 4.458 × 10−6 8.823 × 10−7 26.89 588.5 0.01127

ILS(F.S.W.I.) 1.91 × 10−5 3.734 × 10−7 0.0001427 979.6 35.65 1.641

ILS(B.E.) 8.026 × 10−7 3.398 × 10−7 1.765 × 10−5 34.31 41.79 0.1465

ILS(B.E.W.I.) 2.24 × 10−7 6.692 × 10−8 0.0006225 10.93 8.264 10.98

PCR 2.077 × 10−7 1.358 × 10−7 0.001112 9.764 13.65 11.76

PCR(M.C.) 6.588 × 10−7 1.798 × 10−7 0.001587 29.8 19.41 18.34

PLS 2.066 × 10−7 1.278 × 10−7 0.001012 9.757 13.56 11.01

PLS(M.C.) 6.29 × 10−8 6.982 × 10−8 0.0005146 2.989 8.101 6.222
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5. IMPLEMENTATION AND RESULTS
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Figure 5.17: rRMSEP(%) error performance representation for Methyl Orange-Fast

Green-CuSO4 dataset
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5.4 Data from Cary: Results

Table 5.9: Dataset 9, 3 factors - RMSE and standard deviation errors

Thymol-Mal Green RMSEP rRMSEP(%)

Meth. Blue C1 C2 C3 C1 C2 C3

ICLS 5.155 × 10−7 7.278 × 10−7 2.487 × 10−7 6.401 76.64 10.1

ICLS(W.I.) 4.642 × 10−7 4.972 × 10−7 2.495 × 10−7 4.43 22.01 10.82

DCLS(T.S.) 1.496 × 10−6 1.75 × 10−6 2.735 × 10−6 15.6 153.9 37.3

ILS(F.S.) 9.769 × 10−8 1.66 × 10−7 1.94 × 10−8 0.9533 19.47 1.244

ILS(F.S.W.I.) 1.115 × 10−7 3.005 × 10−7 1.246 × 10−7 1.27 34.78 9.246

ILS(B.E.) 1.079 × 10−7 2.548 × 10−8 8.938 × 10−8 0.972 2.928 5.234

ILS(B.E.W.I.) 4.208 × 10−8 2.251 × 10−7 1.73 × 10−7 0.5294 24.43 10.7

PCR 5.146 × 10−7 7.183 × 10−7 2.471 × 10−7 6.419 79.94 9.284

PCR(M.C.) 4.639 × 10−7 4.94 × 10−7 2.468 × 10−7 4.801 22.44 10.64

PLS 5.006 × 10−7 7.086 × 10−7 2.404 × 10−7 6.225 78.74 9.049

PLS(M.C.) 4.465 × 10−7 4.847 × 10−7 2.383 × 10−7 4.607 22.45 10.36

Thymol-Mal Green RMSEC rRMSEC(%)

Meth. Blue C1 C2 C3 C1 C2 C3

ICLS 6.82 × 10−7 9.628 × 10−7 3.29 × 10−7 8.468 101.4 13.36

ICLS(W.I.) 7.091 × 10−7 7.596 × 10−7 3.812 × 10−7 6.767 33.62 16.53

DCLS(T.S.) 2.285 × 10−6 2.674 × 10−6 4.177 × 10−6 23.83 235.1 56.98

ILS(F.S.) 2.585 × 10−7 4.392 × 10−7 5.132 × 10−8 2.522 51.52 3.291

ILS(F.S.W.I.) 2.951 × 10−7 7.951 × 10−7 3.297 × 10−7 3.36 92.03 24.46

ILS(B.E.) 2.855 × 10−7 6.741 × 10−8 2.365 × 10−7 2.572 7.748 13.85

ILS(B.E.W.I.) 1.113 × 10−7 5.956 × 10−7 4.578 × 10−7 1.401 64.63 28.32

PCR 6.808 × 10−7 9.502 × 10−7 3.269 × 10−7 8.492 105.7 12.28

PCR(M.C.) 7.086 × 10−7 7.546 × 10−7 3.77 × 10−7 7.334 34.28 16.25

PLS 6.622 × 10−7 9.374 × 10−7 3.181 × 10−7 8.235 104.2 11.97

PLS(M.C.) 6.82 × 10−7 7.404 × 10−7 3.639 × 10−7 7.038 34.29 15.83

Thymol-Mal Green RMSEV rRMSEV(%)

Meth. Blue C1 C2 C3 C1 C2 C3 sy/x

ICLS 8.187 × 10−7 1.038 × 10−6 3.795 × 10−7 7.794 60.8 12.07 0.244

ICLS(W.I.) 9.43 × 10−7 9.996 × 10−7 5.014 × 10−7 8.427 39.73 18.73 0.2141

DCLS(T.S.) 1.72

ILS(F.S.) 8.352 × 10−7 1.419 × 10−6 1.658 × 10−7 7.365 124.7 7.208

ILS(F.S.W.I.) 3.572 × 10−7 9.5 × 10−7 4.326 × 10−7 3.575 59.53 23.07

ILS(B.E.) 1.464 × 10−6 3.458 × 10−7 1.213 × 10−6 16.55 35.65 68.56

ILS(B.E.W.I.) 1.56 × 10−7 9.221 × 10−7 5.782 × 10−7 1.192 50.29 24.14

PCR 8.077 × 10−7 1.136 × 10−6 7.624 73.2 11.16 4.217

PCR(M.C.) 1.454 × 10−6 1.073 × 10−6 7.046 × 10−7 14.67 66.89 30.29

PLS 8.036 × 10−7 1.033 × 10−6 3.496 × 10−7 7.425 72.1 10.951

PLS(M.C.) 3.789 × 10−7 4.194 × 10−7 1.991 × 10−7 3.443 16.96 7.512
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5. IMPLEMENTATION AND RESULTS
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Figure 5.18: rRMSEP(%) error performance representation for Thymol-Malachite Green-

Methylene Blue dataset
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5.5 Simulated Data: Results

5.5 Simulated Data: Results

In this section the results for 2 and 3 components for the simulated datasets obtained,

with the addition or without the addition of noise, are presented (tables 5.10, 5.11,

5.12, 5.12, 5.13, 5.14 and histograms 5.19, ??). The results for 4 or 5 components are

presented in the Appendix 6.1 (tables 1, 2), as wells as the corresponding histograms.

Table 5.10: Dataset 1, 2 factors - RMSE and standard deviation errors

RMSEP RMSEC RMSEV

Comp.1-Comp.2 C1 C2 C1 C2 C1 C2

DCLS 0.0001002 8 × 10−5 0.0001137 9.072 × 10−5

ICLS 8.377 × 10−5 7.98 × 10−5 9.499 × 10−5 9.048 × 10−5 9.368 × 10−5 7.901 × 10−5

ICLS(W.I.) 7.665 × 10−5 7.677 × 10−5 9.387 × 10−5 9.402 × 10−5 9.21 × 10−5 9.052 × 10−5

DCLS(T.S.) 0.01281 0.01472 0.01569 0.01803

ILS(F.S.) 5.53 × 10−14 2.306 × 10−14 1.659 × 10−13 6.918 × 10−14 1.678 × 10−13 8.833 × 10−14

ILS(F.S.W.I.) 1.768 × 10−16 5.495 × 10−16 5.303 × 10−16 1.649 × 10−15 2.375 × 10−16 3.022 × 10−16

ILS(B.E.) 1.256 × 10−13 6.666 × 10−14 3.769 × 10−13 2 × 10−13 5.193 × 10−5 2.741 × 10−5

ILS(B.E.W.I.) 4.595 × 10−13 1.91 × 10−13 1.379 × 10−12 5.731 × 10−13 0.0001587 4.441 × 10−5

PCR 8.377 × 10−5 7.98 × 10−5 9.499 × 10−5 9.048 × 10−5 9.366 × 10−5 7.9 × 10−5

PCR(M.C.) 7.665 × 10−5 7.677 × 10−5 9.387 × 10−5 9.402 × 10−5 0.01316 0.01127

PLS 8.377 × 10−5 7.98 × 10−5 9.499 × 10−5 9.048 × 10−5 9.366 × 10−5 7.9 × 10−5

PLS(M.C.) 7.665 × 10−5 7.677 × 10−5 9.387 × 10−5 9.402 × 10−5 5.828 × 10−5 6.186 × 10−5

rRMSEP(%) rRMSEC(%) rRMSEV(%)

Comp.1-Comp.2 C1 C2 C1 C2 C1 C2 sy/x

DCLS 0.02824 0.02028 0.03202 0.023 0.004043

ICLS 0.02524 0.02046 0.02862 0.0232 0.02455 0.02005 0.002412

ICLS(W.I.) 0.02233 0.01813 0.02735 0.0222 0.02556 0.02226 0.002275

DCLS(T.S.) 4.402 5.03 5.391 6.16 0.2357

ILS(F.S.) 1.93 × 10−11 6.525 × 10−12 5.791 × 10−11 1.957 × 10−11 3.465 × 10−11 1.969 × 10−11

ILS(F.S.W.I.) 4.788 × 10−14 1.108 × 10−13 1.436 × 10−13 3.325 × 10−13 4.416 × 10−14 8.728 × 10−14

ILS(B.E.) 1.993 × 10−11 2.549 × 10−11 5.979 × 10−11 7.647 × 10−11 0.01672 0.004264

ILS(B.E.W.I.) 8.677 × 10−11 3.438 × 10−11 2.603 × 10−10 1.031 × 10−10 0.0431 0.008883

PCR 0.02524 0.02046 0.02862 0.02319 0.02456 0.02006

PCR(M.C.) 0.02233 0.01812 0.02734 0.02219 4.01 3.516

PLS 0.02524 0.02046 0.02862 0.02319 0.02456 0.02006

PLS(M.C.) 0.02233 0.01812 0.02734 0.02219 0.01584 0.01453
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5. IMPLEMENTATION AND RESULTS
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Figure 5.19: rRMSEP(%) error performance representation for 2 components of simulated

spectra
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Figure 5.20: rRMSEP(%) error performance representation for 2 components of simulated

spectra with 0.02 random noise
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5.5 Simulated Data: Results

Table 5.11: Dataset 2, 2 factors (with noise=0.01) - RMSE and standard deviation errors

RMSEP RMSEC RMSEV

Comp.1-Comp.2 C1 C2 C1 C2 C1 C2

DCLS 0.001107 0.001061 0.001255 0.001203

ICLS 0.0008994 0.001017 0.00102 0.001153 0.0009667 0.001174

ICLS(W.I.) 0.0008005 0.0009979 0.0009804 0.001222 0.001091 0.00124

DCLS(T.S.) 0.01276 0.01523 0.01562 0.01865

ILS(F.S.) 7.96 × 10−6 1.147 × 10−5 2.388 × 10−5 3.442 × 10−5 0.000133 0.0001917

ILS(F.S.W.I.) 7.766 × 10−5 0.0001067 0.000233 0.0003201 0.0003481 0.0004585

ILS(B.E.) 1.921 × 10−5 7.985 × 10−5 5.763 × 10−5 0.0002395 0.0004073 0.001693

ILS(B.E.W.I.) 0.0006752 0.0001317 0.002026 0.000395 0.00553 0.001192

PCR 0.0008995 0.001017 0.00102 0.001153 0.0009838 0.001166

PCR(M.C.) 0.0008006 0.0009981 0.0009805 0.001222 0.01337 0.01159

PLS 0.0008993 0.001017 0.00102 0.001153 0.0009832 0.001166

PLS(M.C.) 0.0008003 0.0009978 0.0009802 0.001222 0.0006835 0.0008191

rRMSEP(%) rRMSEC(%) rRMSEV(%)

Comp.1-Comp.2 C1 C2 C1 C2 C1 C2 sy/x

DCLS 0.2685 0.29 0.3044 0.3288 0.04512

ICLS 0.1702 0.2867 0.1929 0.325 0.1892 0.2835 0.03963

ICLS(W.I.) 0.1939 0.2827 0.2375 0.3463 0.246 0.3114 0.03911

DCLS(T.S.) 4.248 5.256 5.202 6.438 0.2501

ILS(F.S.) 0.002388 0.003226 0.007164 0.009679 0.02935 0.05636

ILS(F.S.W.I.) 0.01973 0.04056 0.05919 0.1217 0.08692 0.1308

ILS(B.E.) 0.00912 0.01968 0.02736 0.05904 0.0806 0.4257

ILS(B.E.W.I.) 0.2784 0.03712 0.8353 0.1114 1.239 0.3244

PCR 0.1694 0.2865 0.1921 0.3248 0.1972 0.2805

PCR(M.C.) 0.1937 0.2824 0.2373 0.3459 4.072 3.543

PLS 0.1694 0.2864 0.1921 0.3248 0.1972 0.2802

PLS(M.C.) 0.1937 0.2823 0.2372 0.3458 0.1527 0.205

Table 5.12: Dataset 3, 2 factors (with noise=0.02) - RMSE and standard deviation errors

RMSEP RMSEC RMSEV

Comp.1-Comp.2 C1 C2 C1 C2 C1 C2

DCLS 0.002644 0.001905 0.002998 0.00216

ICLS 0.002222 0.001806 0.002519 0.002048 0.002212 0.001916

ICLS(W.I.) 0.0022 0.001704 0.002695 0.002087 0.002729 0.002428

DCLS(T.S.) 0.009699 0.01317 0.01188 0.01613

ILS(F.S.) 7.491 × 10−6 2.094 × 10−5 2.247 × 10−5 6.281 × 10−5 0.0001101 0.0003076

ILS(F.S.W.I.) 0.00026 0.0001777 0.00078 0.0005331 0.001364 0.0008357

ILS(B.E.) 0.0002439 0.0005027 0.0007318 0.001508 0.004788 0.009867

ILS(B.E.W.I.) 0.001025 0.0004204 0.003075 0.001261 0.006792 0.002723

PCR 0.002222 0.001807 0.00252 0.002049 0.002204 0.001921

PCR(M.C.) 0.002201 0.001705 0.002696 0.002089 0.01411 0.01164

PLS 0.002221 0.001805 0.002518 0.002047 0.002198 0.001919

PLS(M.C.) 0.002199 0.001704 0.002693 0.002087 0.001715 0.0015

rRMSEP(%) rRMSEC(%) rRMSEV(%)

Comp.1-Comp.2 C1 C2 C1 C2 C1 C2 sy/x

DCLS 0.6912 0.7917 0.7838 0.8977 0.08703

ICLS 0.3471 0.7483 0.3936 0.8484 0.3607 0.5955 0.07436

ICLS(W.I.) 0.3503 0.5971 0.429 0.7313 0.4983 0.7211 0.07512

DCLS(T.S.) 3.726 4.33 4.564 5.303 0.2552

ILS(F.S.) 0.002092 0.007452 0.006277 0.02236 0.02852 0.08123

ILS(F.S.W.I.) 0.09557 0.03878 0.2867 0.1164 0.3768 0.2068

ILS(B.E.) 0.047 0.08699 0.141 0.261 1.449 3.297

ILS(B.E.W.I.) 0.188 0.1224 0.564 0.3673 2.305 0.8589

PCR 0.3486 0.7476 0.3953 0.8477 0.3414 0.6062

PCR(M.C.) 0.3526 0.5972 0.4319 0.7314 4.244 3.673

PLS 0.3484 0.7471 0.395 0.8471 0.3408 0.6049

PLS(M.C.) 0.3522 0.5966 0.4314 0.7307 0.2962 0.4275
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Table 5.13: Dataset 4, 3 factors - RMSE and standard deviation errors

Comp.1-Comp.2 RMSEP rRMSEP(%)

Comp.3 C1 C2 C3 C1 C2 C3

DCLS 0.0001063 6.152 × 10−5 7.901 × 10−5 0.03249 0.02035 0.01959

ICLS 7.236 × 10−5 5.223 × 10−5 5.422 × 10−5 0.02849 0.02062 0.01158

ICLS(W.I.) 3.705 × 10−5 4.989 × 10−5 1.085 × 10−5 0.01381 0.01735 0.00162

DCLS(T.S.) 0.01263 0.02985 0.01253 5.012 11.84 2.504

ILS(F.S.) 2.453 × 10−13 3.776 × 10−13 1.169 × 10−13 3.146 × 10−11 1.159 × 10−10 1.803 × 10−11

ILS(F.S.W.I.) 6.59 × 10−15 5.777 × 10−14 1.436 × 10−13 2.53 × 10−12 1.513 × 10−11 1.513 × 10−11

ILS(B.E.) 3.452 × 10−5 3.506 × 10−5 3.408 × 10−5 0.007621 0.01298 0.004144

ILS(B.E.W.I.) 2.742 × 10−14 1.746 × 10−14 5.017 × 10−14 8.192 × 10−12 4.251 × 10−12 9.378 × 10−12

PCR 7.236 × 10−5 5.223 × 10−5 5.422 × 10−5 0.02849 0.02062 0.01158

PCR(M.C.) 3.705 × 10−5 4.989 × 10−5 1.085 × 10−5 0.01381 0.01735 0.00162

PLS 7.236 × 10−5 5.223 × 10−5 5.422 × 10−5 0.02849 0.02062 0.01158

PLS(M.C.) 3.705 × 10−5 4.989 × 10−5 1.085 × 10−5 0.01381 0.01735 0.00162

Comp.1-Comp.2 RMSEC rRMSEC(%)

Comp.3 C1 C2 C3 C1 C2 C3

DCLS 0.0001345 7.782 × 10−5 9.995 × 10−5 0.0411 0.02574 0.02478

ICLS 9.153 × 10−5 6.606 × 10−5 6.858 × 10−5 0.03604 0.02608 0.01465

ICLS(W.I.) 5.24 × 10−5 7.055 × 10−5 1.535 × 10−5 0.01953 0.02454 0.002291

DCLS(T.S.) 0.01787 0.04222 0.01772 7.088 16.75 3.541

ILS(F.S.) 6.937 × 10−13 1.068 × 10−12 3.306 × 10−13 8.899 × 10−11 3.279 × 10−10 5.099 × 10−11

ILS(F.S.W.I.) 1.864 × 10−14 1.634 × 10−13 4.06 × 10−13 7.156 × 10−12 4.281 × 10−11 5.159 × 10−11

ILS(B.E.) 9.765 × 10−5 9.915 × 10−5 9.639 × 10−5 0.02156 0.0367 0.01172

ILS(B.E.W.I.) 7.756 × 10−14 4.937 × 10−14 1.419 × 10−13 2.317 × 10−11 1.202 × 10−11 2.653 × 10−11

PCR 9.153 × 10−5 6.606 × 10−5 6.858 × 10−5 0.03604 0.02608 0.01465

PCR(M.C.) 5.24 × 10−5 7.055 × 10−5 1.535 × 10−5 0.01953 0.02454 0.002292

PLS 9.153 × 10−5 6.606 × 10−5 6.858 × 10−5 0.03604 0.02608 0.01465

PLS(M.C.) 5.24 × 10−5 7.055 × 10−5 1.535 × 10−5 0.01953 0.02454 0.002292

Comp.1-Comp.2 RMSEV rRMSEV(%)

Comp.3 C1 C2 C3 C1 C2 C3 sy/x

DCLS 0.005218

ICLS 0.0001051 6.401 × 10−5 5.664 × 10−5 0.03171 0.0192 0.01026 0.002155

ICLS(W.I.) 6.056 × 10−5 7.393 × 10−5 1.782 × 10−5 0.01929 0.02225 0.002632 0.001768

DCLS(T.S.) 0.3875

ILS(F.S.) 2.898 × 10−13 1.746 × 10−13 4.319 × 10−13 6.038 × 10−11 5.509 × 10−11 7.967 × 10−11

ILS(F.S.W.I.) 6.182 × 10−14 5.372 × 10−14 9.195 × 10−14 2.167 × 10−11 1.985 × 10−11 1.424 × 10−11

ILS(B.E.) 0.000614 0.0006235 0.0006061 0.2393 0.224 0.1234

ILS(B.E.W.I.) 5.484 × 10−14 4.855 × 10−14 1.187 × 10−13 1.504 × 10−11 1.51 × 10−11 2.409 × 10−11

PCR 0.0001051 6.405 × 10−5 0.03171 0.01922 0.01026 0.003629

PCR(M.C.) 0.03429 0.02939 0.03918 10.48 9.183 6.53

PLS 0.0001051 6.405 × 10−5 5.666 × 10−5 0.03171 0.01922 0.01026

PLS(M.C.) 3.028 × 10−5 3.699 × 10−5 8.899 × 10−6 0.009656 0.01114 0.001313
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5.5 Simulated Data: Results

Table 5.14: Dataset 5, 3 factors (with noise=0.01) - RMSE and standard deviation errors

Comp.1-Comp.2 RMSEP rRMSEP(%)

Comp.3 C1 C2 C3 C1 C2 C3

DCLS 0.0009901 0.0009796 0.001101 0.4356 0.4314 0.2606

ICLS 0.0009056 0.0007398 0.0006459 0.3487 0.2522 0.1416

ICLS(W.I.) 0.0007168 0.0006621 0.0006454 0.321 0.2687 0.1426

DCLS(T.S.) 0.01514 0.02358 0.01142 5.919 9.416 2.245

ILS(F.S.) 9.556 × 10−5 0.0001554 7.618 × 10−5 0.03323 0.07217 0.01177

ILS(F.S.W.I.) 0.00056 0.0004385 0.0008081 0.1692 0.1693 0.1895

ILS(B.E.) 9.988 × 10−5 0.0002064 0.000154 0.03235 0.08185 0.02688

ILS(B.E.W.I.) 0.001549 0.0009253 0.001443 0.5818 0.3404 0.254

PCR 0.0009057 0.0007399 0.0006459 0.3488 0.2521 0.1417

PCR(M.C.) 0.0007169 0.0006621 0.0006454 0.3209 0.2689 0.1427

PLS 0.0009054 0.0007397 0.0006457 0.3487 0.252 0.1416

PLS(M.C.) 0.0007166 0.000662 0.0006452 0.3208 0.2688 0.1427

Comp.1-Comp.2 RMSEC rRMSEC(%)

Comp.3 C1 C2 C3 C1 C2 C3

DCLS 0.001252 0.001239 0.001392 0.551 0.5457 0.3296

ICLS 0.001145 0.0009358 0.000817 0.4411 0.3191 0.1792

ICLS(W.I.) 0.001014 0.0009363 0.0009127 0.454 0.38 0.2016

DCLS(T.S.) 0.02142 0.03335 0.01615 8.371 13.32 3.175

ILS(F.S.) 0.0002703 0.0004395 0.0002155 0.094 0.2041 0.03328

ILS(F.S.W.I.) 0.001584 0.00124 0.002286 0.4787 0.4789 0.536

ILS(B.E.) 0.0002825 0.0005839 0.0004357 0.09151 0.2315 0.07603

ILS(B.E.W.I.) 0.004381 0.002617 0.004083 1.646 0.9628 0.7185

PCR 0.001146 0.0009359 0.000817 0.4412 0.3189 0.1792

PCR(M.C.) 0.001014 0.0009364 0.0009127 0.4539 0.3803 0.2018

PLS 0.001145 0.0009357 0.0008168 0.4411 0.3188 0.1792

PLS(M.C.) 0.001013 0.0009362 0.0009125 0.4537 0.3802 0.2018

Comp.1-Comp.2 RMSEV rRMSEV(%)

Comp.3 C1 C2 C3 C1 C2 C3 sy/x

DCLS 0.05092

ICLS 0.001217 0.0009987 0.0008483 0.3732 0.2869 0.1458 0.03923

ICLS(W.I.) 0.001202 0.001036 0.001094 0.4568 0.3458 0.1993 0.03902

DCLS(T.S.) 0.3728

ILS(F.S.) 0.001359 0.002209 0.001083 0.4728 0.4852 0.1573

ILS(F.S.W.I.) 0.003227 0.002087 0.004131 0.9983 0.4609 0.7927

ILS(B.E.) 0.002146 0.004436 0.00331 0.7816 1.593 0.6935

ILS(B.E.W.I.) 0.004628 0.002471 0.006254 1.403 0.747 1.021

PCR 0.001206 0.001005 0.000826 0.3705 0.2871 0.1436

PCR(M.C.) 0.03429 0.02939 0.03918 10.46 9.179 6.531

PLS 0.001203 0.001003 0.000824 0.3704 0.287 0.1435

PLS(M.C.) 0.0005945 0.0005427 0.0005403 0.2278 0.1828 0.09925
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Observations:

• It should be noted that the standard error of regression (sy/x) was not calculated for

all of the algorithms, because it is based on the difference between the expected and

predicted value that each time represents the vertical axis. In CLS algorithms this

is associated with the Absorbance mixture values in the linear equation, whereas in

all of the other algorithms it is associated with the difference between the predicted

and the original C values, which is also estimated by the RMSE errors. Thus, there

is no need to include this error in every algorithm.

• In some algorithms, such as DCLS with the pure spectra available and DCLS

through slope the validation errors (RMSEP and rRMSEP(%)) are not calculated

for the reason that the coefficients used for the estimation of the predicted con-

centrations are already available (the pure spectra are also known as regression

coefficients) and there is no way to be re-estimated in order to perform leave-one-

out cross-validation.

Conclusions on the results from experimental and simulated datasets:

• In general, the ILS algorithm seems to yield the smallest error compared with the

other algorithms, although there may be big variances between the different versions

of it.This may have to do with the small number of most ”suitable” wavelengths

selected which makes ILS more efficient. On the other side, this wavelength selection

instead of using the whole spectrum may yield to larger errors due to the disability

of the algorithm to detect unusual samples.

• The CLS algorithm for these datasets of not so many samples, generally, extracts

the same results as PCR and PLS.

• As seen in the bibliography, as well as in practice, PLS indeed handles noisy data

better than PCR. In other words, under the absence of noise, PCR yields the same

results as PLS and PCR with mean-centered data the same results as PLS with

mean-centered data. This is better represented though simulated data, especially

when we add random noise on the already non-noisy data.
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5.6 Hyperspectral Image Data: Results

• The above fact may help reveal that some substances are more suitable for con-

centration quantification than others and some may be avoided, such as Methylene

Blue and the green ones (Fast Green and Malachite Green), especially when there is

overlapping of their spectra in the final mixed spectrum. This is best represented in

the histograms where some substances appear to usually cause the errors’ increase.

• Whether mean-centered data yield the best results or not compared to the non-

mean-centered corresponding ones is not consistent. Although according to the

literature mean-centered data are always preferred and forced to be used, this is not

a rule in the case of experimental data, but counts for simulated data. The reason

for the first category of data are the plethora of errors related to the experimental

process as seen before ( 3.3), as well as the sediments the solutions may have

developed.

• As for DCLS through slope, it seems to be the weakest and less efficient algo-

rithm with the highest error in almost all the datasets and may not be preferable

for further use (hyperspectral image processing) or in real world as the more the

components the biggest the error it yields (according to the simulated datasets).

5.6 Hyperspectral Image Data: Results

After the application of the algorithmic methods on Simulated and Spectrophotometer

data, we also applied the methods on the datasets acquired using the microscope con-

figuration. More specifically, we obtained 2 datasets of hyperspectral images, one with

mixtures of two components and the other with mixtures of three components. For every

dataset we selected a training set for each of its samples, consisting of 10, 50, 100, 200,

300 or 500 mixture spectra. We subsequently applied the algorithms on indicative train-

ing sets, and found that all of them provided much worse results than PLS. The reason

was that the PLS algorithm can deal with noisy data better than the other algorithms

and also because of its complexity and the fact that it takes into account the interfering

variables which may appear in the mixtures. Furthermore, with the increase of the latent

variables the errors in PLS algorithm decrease even more.

Further down we provide the results of PLS algorithm with mean-centered data for

different training sets and number of latent variables g.
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(a) Methylene Blue (b) Fast Green

(c) CoCl2 (d) Fast Green (e) CuSO4

Figure 5.21: %rRMSEV error for datasets of 2(top) and 3(down) components

After the use of PLS in a training set and the concentrations estimation, the initial

images were reconstructed and represented through thematic maps with pseudo-colors

close to the colors of the individual stains participated in the mixture, as below:

It should be noted that the last sample in third row of the map for 3 components is

blank because due to the full factorial design for 2 three components we have taken 8

mixtures to create this dataset.
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5.6 Hyperspectral Image Data: Results

(a) map for Fast Green (b) map for Methylene Blue (c) map for their mixture

(d) map for CoCl2 (e) map for Fast

Green

(f) map for CuSO4 (g) map for their mix-

ture

Figure 5.22: Concentration maps for the individual components and their mixtures in

the two datasets acquired by microscope. The brighter colors on the components maps

correspond to higher concentrations in the mixture
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Chapter 6

Conclusion

6.1 Future Work

The work in this thesis can be used as the basis for several future research directions,

some of which are listed below:

1. Creation of experimental designs and application of algorithmic methods analyzed

in chapter 4.2 for more than 5 constituents in a mixture.

2. Identification of individual spectra, based on spectra saved in spectral libraries,

instead of concentration quantification only.

3. Implementation of more complex algorithms based on non-linear relationships, in-

stead of only linear ones, like Support Vector Machines (SVM) and Analytic Neural

Networks (ANN). In this case, a more physical analysis of the system could be made,

considering the scattering effects of light into the samples.

4. Transferring the problem into brightfield microscopy and other types of spectroscopy,

such as Raman (scattering) Spectroscopy and Fluorescence (emission) Spectroscopy.

5. Research in the infrared area of the electromagnetic spectrum in order to detect

characteristics not visible with the naked eye.

6. Application in real tissue histochemical samples.
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Figure 1: rRMSEP(%) error performance representation for 4 components of simulated

spectra
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Appendix

Table 2: Dataset 2, 5 factors - RMSE and standard deviation errors

rRMSEP(%)

Comp.1-2-3-4-5 C1 C2 C3 C4 C5

DCLS 0.02704 0.02606 0.05389 0.04695 0.02935

ICLS 0.006329 0.01661 0.02875 0.0242 0.006055

ICLS(W.I.) 0.006542 0.009815 0.01917 0.005763 0.0001284

DCLS(T.S.) 2.655 11.06 3.737 13.99 1.842

ILS(F.S.) 4.814 × 10−11 5.407 × 10−11 5.007 × 10−11 4.573 × 10−11 7.342 × 10−11

ILS(F.S.W.I.) 0.2073 0.0002117 0.0005209 0.0008121 1.173 × 10−13

ILS(B.E.) 1.51 × 10−11 9.466 × 10−12 1.216 × 10−11 6.023 × 10−12 2.792 × 10−11

ILS(B.E.W.I.) 1.398 × 10−13 9.254 × 10−14 1.661 × 10−13 1.316 × 10−13 7.438 × 10−14

PCR 0.006329 0.01661 0.02875 0.0242 0.006055

PCR(M.C.) 0.006542 0.009815 0.01917 0.005763 0.0001284

PLS 0.006329 0.01661 0.02875 0.0242 0.006055

PLS(M.C.) 0.006542 0.009815 0.01917 0.005763 0.0001284

rRMSEC(%)

Comp.1-2-3-4-5 C1 C2 C3 C4 C5

DCLS 0.04416 0.04256 0.088 0.07666 0.04793

ICLS 0.01033 0.02712 0.04694 0.03951 0.009888

ICLS(W.I.) 0.01308 0.01963 0.03833 0.01153 0.0002568

DCLS(T.S.) 5.311 22.13 7.473 27.98 3.684

ILS(F.S.) 1.362 × 10−10 1.529 × 10−10 1.416 × 10−10 1.294 × 10−10 2.077 × 10−10

ILS(F.S.W.I.) 0.5864 0.0005988 0.001473 0.002297 3.318 × 10−13

ILS(B.E.) 4.27 × 10−11 2.677 × 10−11 3.44 × 10−11 1.704 × 10−11 7.898 × 10−11

ILS(B.E.W.I.) 3.955 × 10−13 2.617 × 10−13 4.698 × 10−13 3.721 × 10−13 2.104 × 10−13

PCR 0.01033 0.02712 0.04695 0.03951 0.009888

PCR(M.C.) 0.01308 0.01963 0.03834 0.01153 0.0002568

PLS 0.01033 0.02712 0.04695 0.03951 0.009888

PLS(M.C.) 0.01308 0.01963 0.03834 0.01153 0.0002568

rRMSEV(%)

Comp.1-2-3-4-5 C1 C2 C3 C4 C5 sy/x

DCLS 0.00727

ICLS 0.01959 0.0353 0.05401 0.04024 0.006495 0.002307

ICLS(W.I.) 0.02428 0.02606 0.06046 0.02073 0.0004589 0.001837

DCLS(T.S.) 0.6663

ILS(F.S.) 3.194 × 10−11 4.388 × 10−11 3.663 × 10−11 3.764 × 10−11 5.124 × 10−11

ILS(F.S.W.I.) 0.7699 0.0007456 0.001758 0.002785 9.217 × 10−13

ILS(B.E.) 1.17 × 10−11 7.634 × 10−12 2.238 × 10−11 6.2 × 10−12 8.646 × 10−12

ILS(B.E.W.I.) 1.153 × 10−13 1.161 × 10−13 1.708 × 10−13 1.128 × 10−13 1.434 × 10−13

PCR 0.01958 0.0353 0.05406 0.04024 0.006501

PCR(M.C.) 12.96 20.63 29.1 25.51 18.14

PLS 0.01958 0.0353 0.05406 0.04024 0.006501

PLS(M.C.) 0.006069 0.006515 0.01512 0.005182 0.0001147
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Figure 2: rRMSEP(%) error performance representation for 5 components of simulated

spectra
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In the following pages the experimental design for datasets of Cary and Simulated data

is presented.

Table 3: Experimental Design for Methyl Orange - CuSO4 dataset

Methyl Orange CuSO4

C6 C4

C6 C8

C11 C4

C11 C8

C6 C6

C8 C4

C8 C6

C8 C8

C11 C6

Table 4: Experimental Design for Thymol - CoCl2 dataset

Thymol CoCl2

C1 C1

C1 C6

C6 C1

C6 C6

C1 C3

C3 C1

C3 C3

C3 C6

C6 C3

Fani Abatzi 118 July 2014



Appendix

Table 5: Experimental Design for Thymol - Fast Green dataset

Thymol Fast Green

C1 C4

C1 C8

C6 C4

C6 C8

C1 C6

C3 C4

C3 C6

C3 C8

C6 C6

Table 6: Experimental Design for CoCl2 - Malachite Green dataset

CoCl2 Malachite Green

C1 C5

C1 C10

C6 C5

C6 C10

C1 C7

C3 C5

C3 C7

C3 C10

C6 C7
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Table 7: Experimental Design for Methylene Blue - CuSO4 dataset

Methylene Blue CuSO4

C1 C4

C1 C8

C5 C4

C5 C8

C1 C6

C3 C4

C3 C6

C3 C8

C5 C6

Table 8: Experimental Design for Methylene Blue - Fast Green dataset

Methylene Blue Fast Green

C1 C4

C1 C8

C5 C4

C5 C8

C1 C6

C3 C4

C3 C6

C3 C8

C5 C6
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Table 9: Experimental Design for CoCl2 - Methylene Blue dataset

CoCl2 Methylene Blue

C1 C1

C1 C5

C6 C1

C6 C5

C1 C3

C3 C1

C3 C3

C3 C5

C6 C3

Table 10: Experimental Design for Methyl Orange - Fast Green - CuSO4 dataset

Methyl Orange Fast Green CuSO4

C6 C4 C4

C6 C4 C8

C6 C8 C4

C6 C8 C8

C11 C4 C4

C11 C4 C8

C11 C8 C4

C11 C8 C8
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Table 11: Experimental Design for Thymol - Malachite Green - Methylene Blue dataset

Thymol Malachite Green Methylene Blue

C1 C5 C1

C1 C5 C5

C1 C10 C1

C1 C10 C5

C6 C5 C1

C6 C5 C5

C6 C10 C1

C6 C10 C5

Table 12: Experimental Design for 2 components, concentrations

C1 (M) C2 (M)

0.2 0.2

0.2 0.8

0.9 0.2

0.9 0.8

0.2 0.5

0.55 0.2

0.55 0.5

0.55 0.8

0.9 0.5

The pure components are obtained at C=1M. The individual spectra for the 1st compo-

nent are obtained at the following concentrations (in M): 0.2, 0.2875, 0.375, 0.4625, 0.55,

0.6375, 0.725, 0.8125, 0.9 and the individual spectra for the 2nd component are obtained

at the following concentrations (in M): 0.2, 0.275, 0.35, 0.425, 0.5, 0.575, 0.65, 0.725, 0.8
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Table 13: Experimental Design for 3 components, concentrations

C1 (M) C2 (M) C3 (M)

0.9 0.8 1.2

0.9 0.8 0.8

0.9 0.2 1.2

0.9 0.2 0.4

0.2 0.8 1.2

0.2 0.8 0.4

0.2 0.2 1.2

0.2 0.2 0.4

The pure components are obtained at C=1M. The individual spectra for the 1st compo-

nent are obtained at the following concentrations (in M): 0.2, 0.2875, 0.375, 0.4625, 0.55,

0.6375, 0.725, 0.8125, 0.9, the individual spectra for the 2nd component are obtained at

the following concentrations (in M): 0.2, 0.275, 0.35, 0.425, 0.5, 0.575, 0.65, 0.725, 0.8 and

the individual spectra for the 3rd component are obtained at the following concentrations

(in M): 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2
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Table 14: Experimental Design for 4 components, concentrations

C1 (M) C2 (M) C3 (M) C4 (M)

1 0.9 0.8 1.2

1 0.9 0.2 0.4

1 0.2 0.8 0.4

1 0.2 0.2 1.2

0.3 0.9 0.8 0.4

0.3 0.9 0.2 1.2

0.3 0.2 0.8 1.2

0.3 0.2 0.2 0.4

The pure components are obtained at C=1M. The individual spectra for the 1st compo-

nent are obtained at the following concentrations (in M): 0.3, 0.3875, 0.475, 0.5625, 0.65,

0.7375, 0.825, 0.9125, 1, the individual spectra for the 2nd component are obtained at the

following concentrations (in M): 0.2, 0.2875, 0.375, 0.4625, 0.55, 0.6375, 0.725, 0.8125,

0.9, the individual spectra for the 3rd component are obtained at the following concen-

trations (in M): 0.2, 0.275, 0.35, 0.425, 0.5, 0.575, 0.65, 0.725, 0.8 and the individual

spectra for the 4th component are obtained at the following concentrations (in M): 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2
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Table 15: Experimental Design for 5 components, concentrations

C1 (M) C2 (M) C3 (M) C4 (M) C5 (M)

0.3 0.3 0.2 0.2 0.4

0.3 0.3 0.9 0.2 1.2

0.3 1 0.2 0.8 1.2

0.3 1 0.9 0.8 0.4

0.7 0.3 0.2 0.8 1.2

0.7 0.3 0.9 0.8 0.4

0.7 1 0.2 0.2 0.4

0.7 1 0.9 0.2 1.2

The pure components are obtained at C=1M. The individual spectra for the 1st compo-

nent are obtained at the following concentrations (in M): 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,

0.6, 0.65, 0.7 the individual spectra for the 2nd component are obtained at the following

concentrations (in M): 0.3, 0.3875, 0.475, 0.5625, 0.65, 0.7375, 0.825, 0.9125, 1, the in-

dividual spectra for the 3rd component are obtained at the following concentrations (in

M): 0.2, 0.2875, 0.375, 0.4625, 0.55, 0.6375, 0.725, 0.8125, 0.9, the individual spectra for

the 4th component are obtained at the following concentrations (in M): 0.2, 0.275, 0.35,

0.425, 0.5, 0.575, 0.65, 0.725, 0.8 and the individual spectra for the 5th component are

obtained at the following concentrations (in M): 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2
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