
Technical University of Crete
School of Electronic and Computer Engineering

SOFTware Technology and NETwork Applications Laboratory

Stochastic PageRank maintenance over

shared-nothing architectures

Ioakeim Perros

Submitted to the School of Electronic and Computer Engineering
in partial fulfillment of the requirements for the Master of Science

Thesis committee:

Professor Minos Garofalakis (Advisor)

Associate Professor Antonios Deligiannakis

Associate Professor Michail Lagoudakis

July 4, 2014

Research supported by: FP7-ICT-2011 Collaborative STREP
"LEADS - Large-Scale Elastic Architecture for Data-as-a-Service" Project

http://www.tuc.gr/3324.html
http://www.ece.tuc.gr/4481.html
http://titan.softnet.tuc.gr:8080/softnet/Controller?event=SHOW_HOME
http://www.leads-project.eu/

Abstract

PageRank is established as one of the leading ranking algorithms in the
web. To keep up with the increasing size of the web graph and the high fre-
quency of updates, recent research has focused on parallelizing PageRank
algorithms as well as the continuous maintenance of PageRank scores over
streaming updates. However, no work up to now has considered PageRank
maintenance over distributed shared-nothing architectures, such as the
large-scale clouds available in the Internet today. This work bridges this gap
by proposing the first known efficient stochastic algorithm for PageRank
maintenance over distributed shared-nothing architectures. The algorithm
effectively minimizes the amount of state per system node, enabling a
small communication and memory footprint. The algorithm’s correctness
is theoretically established. An extensive experimental evaluation with
real web and social network data shows the efficiency and accuracy of the
proposed approach, and its superiority compared to the state-of-the-art
competitors.

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor,
Professor Minos Garofalakis. His trust and encouragement have always
been a factor of strong motivation and his advice and sharp insight have
assisted me through every step of this work. I would also like to seize the
opportunity and thank him for his invaluable support and guidance during
the process of applying for a Ph.D. candidate’s position.

I would like to thank Professor Antonios Deligiannakis and Professor
Michail Lagoudakis for serving on my thesis committee, as well as for
their support and for our fruitful discussions concerning my future steps.

I would also like to thank Dr. Odysseas Papapetrou for his ideas and insight-
ful comments shaping some aspects of this thesis and for his continuous
support during the progress of this work.

Furthermore, I would like to thank my friends Ioannis Demertzis and Sofia
Nikolakaki for encouraging and supporting me in all of my pursuits, as
well as for making this two-year journey so enjoyable. I am also grateful to
all my friends, E. Alibertis, A. Chionis, D. Iliou, N. Kofinas, V. Lazaratou,
E. Orfanoudakis, E. Papalexakis, N. Pavlakis, S. Pavlioglou, E. Soulas,
A. Tsoubelis, for their support throughout this period. Each one of them
has aided my endeavors in his/her own unique way.

I would like to thank my dear Athena for constantly being there for me, for
believing in my abilities and for inspiring me to follow my dreams.

Last, but definitely not least, I would like to thank my parents, Manoussos
and Anastasia and my brother Iosif, for their unconditional love, and the
way this is expressed.

v

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Thesis Contributions . 3
1.3 Thesis Outline . 5

2 Background 7
2.1 Foundations of the PageRank model 7
2.2 Approximating PageRank 8

3 Related Work 13
3.1 Distributed PageRank computation 13
3.2 Continuous PageRank maintenance 14

4 Decentralizing streaming PageRank 19
4.1 Avoiding the shared-memory requirement 19
4.2 Enabling addition of new web-pages 19

5 Distributed Stochastic PageRank Maintenance 23
5.1 Overview . 23
5.2 The DSPM approach . 24

5.2.1 Initialization phase 24
5.2.2 Handling of updates 25

5.3 Enhancements . 30
5.3.1 Aggregate data exchange 30
5.3.2 Variance reduction 31

5.4 Analysis . 31

6 Experimental results 33
6.1 Setup . 33
6.2 Accuracy & Efficiency . 34
6.3 Memory requirements . 38

7 Conclusions and Future Work 41

Bibliography 43

vii

List of Figures

2.1 Depiction of the probabilistic interpretation of the PageRank
model . 9

2.2 Graph used as an example for Figure 2.1 9

3.1 Depiction of the real-time execution of the FIP method under
the shared-memory model . 15

5.1 A careful examination of the re-direction probabilities of the
state-of-the-art streaming PageRank method. 25

6.1 Spearman correlation coefficient versus the required useful
transfer volume of FIP Original, FIP Optimized and DSPM,
with R ∈ {5, 10, 15, 20, 25}. Each node is responsible for
maintaining 1K webpages. 35

6.2 Spearman correlation coefficient versus the required useful
transfer volume of FIP Original, FIP Optimized and DSPM,
with R ∈ {5, 10, 15, 20, 25}. Each node is responsible for
maintaining 10K webpages. 36

6.3 Spearman correlation coefficient versus the required useful
transfer volume of FIP Original, FIP Optimized and DSPM,
with R ∈ {5, 10, 15, 20, 25}. Each node is responsible for
maintaining 100K webpages. 37

6.4 Memory requirements of the FIP Original, FIP Optimized and
DSPM approaches with R ∈ {5, 10, 15, 20, 25}, for the whole
network . 39

ix

1Introduction

„It is great happiness to be praised by them
who are most praiseworthy.

— Sir Philip Sidney
English poet

1.1 Motivation and Problem Statement

The abundance of data originating from DNA sequences and particle col-
lision experiments to social and sensor networks has raised several Big
Data research challenges to prominence. Many of those huge modern
datasets are characterized by a network structure, thus they can naturally
be represented and handled as graphs. The most representative example
of those graphs is the World Wide Web, consisting of over one trillion links.
As of examples from social network graphs, Facebook consisted of over 800
million active users, with hundreds of billion friend links in January 2012,
while Twitter had over 41.7 million users with 1.47 billion social relations
in July 2009 [SK12]. Apart from their enormous size, the continuous
evolvement of such graphs over time (i.e. streaming nature) highlights
the importance of inventing new models and algorithms, in order both to
manage and extract knowledge from huge graph streams.

The enormous volume of graph time-evolving data, coupled with the
possible physical distribution of their sources (distributed crawlers or social
networks, IP-network monitoring, power-constrained wireless sensornets)
dictate the use of a real-time in-situ processing strategy (locally at the sites
where data is observed) [Gar+13]. Besides this, there is an increasing
availability of Cloud computing services (e.g. Amazon EC2 [Wal08]),
offering on-demand access to storage and computing services [Low+12].
As a result of both of these factors, it is crucial to devise and efficiently
implement novel algorithms which will be able to handle this massive
amount of distributed graph streams.

1

PageRank 1 [Pag+99] has been characterized as one of the most prominent1 The term comes from Larry Page,
co-inventor of the algorithm and
founder of Google [RU11]

algorithms for graph mining. It was initially focused on web-page ranking
and on combating spam web-pages. Its success in assessing a higher
importance score (PageRank measure) to web-pages serving users’ needs
established Google as the leading search engine of the World Wide Web.
The model’s main intuition is that one web-page is considered important, if
other web-pages pointing to it are considered important as well.

Besides being the core ranking measure of Google’ s web search engine,
the algorithm has been exploited in a variety of additional domains. For ex-
ample, in the domain of social networks, it has been frequently considered
as a baseline method for social influence measuring [Agg+11; Che+10].
Recently, the researchers’ intuition that the PageRank measure of authority
is closely connected with the measure of influence in a social network
has been theoretically verified [Xia+13]. It has also been exploited for
graph clustering. Andersen et al. in [And+06] implemented a modified
version of the PageRank algorithm (personalized PageRank), in order to
iteratively find a set of strongly related nodes, call them a group, remove
them from the graph and repeat until the graph becomes empty. PageRank
has even found applications in the bioinformatics field. For example, the
algorithm proposed in [Win+12] combines gene expression measurements
with a PageRank-based ranking of genes in a network built upon relations
between them. The target of this work is the outcome prediction of a
patient’s clinical status. Furthermore, it has been applied to the field of im-
munization and epidemics prevention. For example, in [Ada+13], Prakash
et al. proposed a method of allocating antidotes to hospitals, following
the order of their PageRank ranking. It is therefore not surprising that the
PageRank algorithm has been characterized as one of the most influential
algorithms in the area of data mining [Wu+08].

Despite its success, the original PageRank algorithm relied on power itera-
tions and was therefore difficult to scale with the expanding web graph size.
Accordingly, a large number of algorithms for computing PageRank scores
has been proposed that improve on efficiency and scalability of the original
algorithm. The most prominent family of these algorithms focuses on scal-
ing the PageRank computation by distribution, e.g., [IT10; Par+06]. These
algorithms typically operate on web graph snapshots, i.e., static graphs.
Since in real-life, the vast majority of domains where PageRank is useful
produces streaming, dynamic, graphs (e.g. continuous web-crawling, on-
line social networks), these algorithms have to be continuously re-executed
in order to handle the updates. Another direction considered in the lit-

2 Chapter 1 Introduction

erature for increasing scalability relies on the premise that continuous
maintenance of the PageRank scores is more cost-effective than periodic
full re-computation. The majority of these works again incorporates linear
algebraic methods, and is therefore difficult to scale, e.g., [LM04; McS05;
Ton+08]. Notable recent exceptions include the Monte-Carlo PageRank
algorithms [Bah+10; Sar+08], which approximate PageRank scores by
simulating the random surfer model through the construction of random
walks over the web graph. These algorithms are shown to be approximately
an order of magnitude more efficient (on the number of web links) than
prior linear algebraic methods [Bah+10], precisely due to their stochastic
nature. Still, these works have two main limitations: (a) they require a
static set of web pages; only web links between the web pages that already
exist at the initialization of the algorithm can be added or removed, and,
(b) they are still, by nature, either centralized, or parallelized over the
shared-memory model, and therefore have a limited scalability.

1.2 Thesis Contributions

Interestingly, though, there currently exists no algorithm that combines dis-
tributed computation and continuous maintenance of PageRank scores over
a dynamic graph. The main reason for this gap is that the algorithms en-
abling maintenance over dynamic web graphs typically need a holistic view
of the web graph to handle the updates, which is a limiting factor for dis-
tribution. With this work, we fill the gap by proposing DSPM (Distributed
Stochastic PageRank Maintenance), a novel algorithm to maintain the
PageRank scores for dynamic graphs over large-scale distributed networks.
Unlike previous algorithms, DSPM does not rely on the shared-memory
model. It is therefore much more applicable to modern cloud-based archi-
tectures, such as Amazon’s EC2 [Wal08], and to globe-scale clusters being
either general-purpose (e.g. Planetlab [Spr+06]) or focused on wide-scale
stream processing [LY08]. As such, it has better scalability properties, and
can even be used by SMEs with small upfront investment.

The core of DSPM is a Monte-Carlo algorithm that allows approximating
PageRank with minimal state maintenance. Similar to previous Monte-
Carlo PageRank algorithms [Avr+07; Bah+10], DSPM constructs random
walks over the web-graph, and uses the number of visits at the nodes (web-
pages) to estimate PageRank. The stark difference of DSPM with previous
algorithms for dynamic graphs [Bah+10; Sar+08], however, is that DSPM
does not require the accurate maintenance of all the random walk segments,
in order to enable future updates on the web graph. This is achieved by

1.2 Thesis Contributions 3

an advancement in the theoretical analysis, and enables us to drastically
reduce both the memory and network requirements of the algorithm,
increasing its scalability on the targeted architectures. Furthermore, DSPM
allows streaming updates on both the set of web links and the set of
web-pages, whereas previous works always assumed a static set of web
pages.

The contributions of this thesis can be summarized as follows.

• This work is the first to investigate the problem of continuous main-
tenance of PageRank scores over a distributed shared-nothing ar-
chitecture. The considered streaming web graph model enables the
addition or removal of both nodes in the web graph (i.e. web-pages),
and edges (i.e. links).

• This work proposes several extensions of the state-of-the art Monte-
Carlo algorithm [Bah+10] for decentralized PageRank maintenance
in order to lift its shared-memory requirement, and examine its
constraints and scalability potentials.

• This work presents DSPM, the first Monte-Carlo algorithm for dis-
tributed maintenance of PageRank scores that does not require a
shared memory model and can be fully integrated in any decentral-
ized web crawling engine (even the ones that are widely distributed
over the Internet). Unlike the state-of-the-art Monte-Carlo algo-
rithms for streaming updates, DSPM does not assume a static set
of web-pages, i.e., it enables adding/removing both web pages and
links in the web graph. The algorithm’s correctness is theoretically
established.

• The performance and accuracy of DSPM is compared to the state-
of-the-art counterparts. The experiments are executed on publicly
available real data sets, originating from two different domains: (a)
the World Wide Web, and, (b) social networks. The experimental
results demonstrate the good scalability properties of DSPM, as well
as its superiority compared to alternative approaches, both in terms
of network requirements and memory footprint.

4 Chapter 1 Introduction

1.3 Thesis Outline

In Chapter 2 the necessary background is provided and in Chapter 3 the
related work is discussed. Naturally, the discussion evolves more around
the state-of-the-art Monte-Carlo algorithms, since these are shown to be
substantially more efficient than prior linear algebraic methods. Chap-
ter 4 shows how the state-of-the-art Monte-Carlo algorithm for continuous
PageRank maintenance can be adapted to shared-nothing architectures,
whereas Chapter 5 discusses our main contribution, the DSPM algorithm.
A thorough experimental comparison with real data sets will be presented
in Chapter 6. The conclusion as well as a brief discussion on future work is
provided in Chapter 7.

1.3 Thesis Outline 5

2
Background

2.1 Foundations of the PageRank model

PageRank ranks web-pages by exploiting the web graph structure. Its key
intuition is that the importance of each web-page is recursively determined,
through the importance of the web pages pointing to it. Formally, let
G(V,E) denote the web graph, with V representing the set of web-pages,
and E the set of links between all web-pages in V . With outDeg(i) is
denoted the out-degree of page i, and with n the number of web-pages in
V . In its original form, the hyperlink matrix P of size n× n is defined as
follows: pij = 1

outDeg(i) if (i, j) ∈ E, and pij = 0 otherwise.

The founders of the PageRank vector defined it as the stationary distribution
of a Markov chain whose state space is the set comprising of all the web-
pages. In order to ensure existence and convergence to the stationary
distribution, they forced some transformations to P so as to be used as
the transition matrix of the underlying Markov chain. The first such
transformation is that if a page i has no outgoing links (row full of zeros),
then pij = 1

n , i.e. the outgoing links of page i are uniformly distributed
across all web-pages. The transformed matrix is now row-stochastic (each
one of its rows corresponds to a probability distribution). Another desired
property of the Markov chain’s transition matrix is irreducibility, which
is proven to be obtained when the directed graph corresponding to this
matrix is strongly-connected (i.e. every vertex is reachable from every
other vertex) [LM03]. As a result, the transition matrix is transformed as
follows:

P̃ = (1− ε)P + ε

n
Jn,

where Jn is the all-ones matrix of size n× n and ε is the probability that a
surfer moves to a random web-page, empirically set to 0.15 [Pag+99]. The
matrix P̃ is both stochastic and irreducible. Thus, the Perron-Frobenius the-
orem states that its principal eigenvector 1 π exists and that the dominant 1 eigenvector corresponding to the

maximum eigenvalue

7

eigenvalue associated with it is equal to 1 [Eld07]. Thus, the following
eigenvector problem is formed:

πP̃ = π,
∑
i

πi = 1

The vector π satisfying the above set of equations is called the PageRank vec-
tor and the traditional method of acquiring it is the Power Method [Pag+99],
which dictates the repetitive calculation of the vector-matrix multiplication
πP̃ until convergence.

2.2 Approximating PageRank

Following the original PageRank paper, and motivated by the practical
importance and success of the algorithm in combination to its scalability
limitations on web-scale data, several algorithms have been proposed
(cf. Chapter 3). The following simple re-formulation of the PageRank
eigenvector problem gave rise to a family of those algorithms, named as
Monte-Carlo, because of their randomized nature:

πP̃ = π

=⇒ 0 = π − πP̃

= π − π
[
(1− ε)P + ε

n
Jn

]
= π[I − (1− ε)P]− ε

n
πJn

(a)= π[I − (1− ε)P]− ε

n
1T

=⇒ π = ε

n
1T [I − (1− ε)P]−1

(b)= 1T

∞∑
k=0

(1− ε)kP k

n
ε

, (2.1)

with 1 denoting a column vector of all ones. (a) follows from the fact that
multiplying the probability distribution π of size 1 × n with an all-ones
matrix of size n× n results in an 1× n all-ones vector. (b) follows from the

basic property of the Neumann series: (I − αS)−1 =
∞∑
k=0

(αS)k, where S is

a bounded operator on a normed vector space [Cal+08].

Prior to describing the randomized manner in which PageRank can be
approximated via Equation 2.1, we introduce the notion of a random walk
on a graph. It is briefly defined as the process followed by a particle
beginning at some vertex and at each time step moving to another vertex

8 Chapter 2 Background

∞∑
k=0

(1− ε)kP k =


1

1
1

1
1


︸ ︷︷ ︸

P 0:Initial visits

+(1− ε)


0 0.5 0.5 0 0

0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.5 0 0 0 0.5
0 0 0 1 0


︸ ︷︷ ︸

P 1(i,j):probability that
the random walk starting at web-page i

visits j at its 1st step

+(1− ε)2


0.2 0.2 0.2 0.2 0.2
0.18 0.18 0.18 0.28 0.18
0.18 0.18 0.18 0.28 0.18

0 0.25 0.25 0.5 0
0.5 0 0 0 0.5


︸ ︷︷ ︸

P 2(i,j):probability that
the random walk starting at web-page i

visits j at its 2nd step

+ . . .

Fig. 2.1 Depiction of the probabilistic interpretation of the PageRank model

randomly with a probability distribution governed by the transition matrix
of the underlying graph [Lov93].

The remarkable probabilistic interpretation of the PageRank vector in-
troduced by Equation 2.1 draws on the correspondence of the fraction’s
numerator to the expected number of visits of n random walks to each
web-page in the web graph and of its denominator to the expected number
of total visits of all n walks (as their length is geometrically distributed
with parameter ε).

a

b c

d

e

Fig. 2.2 Graph used as an ex-
ample for Figure 2.1

In Figure 2.1 (the corresponding graph is depicted in Figure 2.2), the first
few terms of the numerator’s sum of Equation 2.1 are expanded. In order
to clarify the aforementioned random-walk interpretation, we use the P 2

matrix and the walk initiated from web-page d as an example. The possible
1st step of this walk to a results in a 0.25 probability of propagating to
each of the web-pages b and c. Likewise, its possible 1st step to web-page
e results in a 0.5 probability of re-visiting d at its 2nd step (because of
the bi-directional link between web-pages d and e). The (1 − ε)2 term
multiplied by the matrix P 2 corresponds to the walks’ transition probability.
Thus, considering that a random walk, having an ε probability of stopping
at each step, is initiated from each page, the (i, j) position of the infinite
sum’s result will contain the expected number of visits to web-page j from
the walk started at page i. As a result, by finally multiplying with the
row vector of all-ones (1T), we extract the expected value of visit counts

2.2 Approximating PageRank 9

to each web-page j, which is divided by the expected value of the total
number of steps, as the length of each walk is geometrically distributed
with a mean of 1

ε . Finally, the probabilistic interpretation described above
can be trivially extended to the case when each web-page initiates R > 1
random walks. In this case, the normalization factor becomes nR

ε .

Monte-Carlo methods have two interesting properties concerning scalability.
First, they are an order of magnitude (on the number of edges in the web
graph) more efficient for dense graphs than the power iteration algorithm
and other linear algebraic methods [Bah+10], with only a minor decrement
on the PageRank accuracy. Second, they are naturally parallelizable, i.e.
they can be executed efficiently in multi-core shared-memory architectures.
As such, they are the preferred algorithm for computing PageRank on
Internet-scale data, like the web graph.

Even though the initial Monte-Carlo algorithms were focused on static
web graphs, two recent works enable maintenance of PageRank scores
over dynamic graphs, assuming that the edges of the graph (i.e. the links
between the web-pages) are observed in a streaming fashion [Bah+10;
Sar+08]. Here, the focus is on the latest of these works [Bah+10], which
is also the state-of-the-art. The main intuition of this work will be described
in the following and a more detailed explanation of its operation will be
provided in Chapter 3. The key idea of FIP (Fast Incremental PageRank) is
to use reservoir sampling [Vit85] over all stored random walks in order
to re-distribute the random walks evenly across the new and old links of
the web graph. More precisely, for a newly observed edge (u,w) (i.e. page
u now also points to page w), each of the random walks passing through
u is considered for redirection with a probability of 1/outDeg(u), with
outDeg(u) denoting the new out-degree of u. All selected random walks
are redirected through (u,w) and the visit counts of the affected web-pages
are updated accordingly (for all steps in the revoked segment of the random
walk decreased by one, and for all steps in the new segment increased by
one). Similar to the Monte-Carlo algorithm for static graphs [Avr+07], the
expected visit counts of the web pages maintained by FIP are proportional
to the true PageRank scores.

FIP is the best known algorithm for streaming PageRank maintenance,
having substantially lower complexity bounds than previous alternatives.
Due to its Monte-Carlo characteristics, it is also easily parallelized over
shared-memory architectures [Bah+10]. However, it has two substantial
limitations. First, it requires that all random walks are stored in order to

10 Chapter 2 Background

be able to revert their effect in case of redirection. This requirement can
be addressed by a shared-memory model, which however severely limits
the scalability of the algorithm. Second, the algorithm assumes that all
nodes in the web graph, i.e. all web-pages, are available during algorithm’s
initialization; only the links between the web pages can change. Clearly,
this is a rather unrealistic assumption for modern distributed crawlers
which dynamically update both sets of web-pages and links. This argument
holds for other domains of PageRank application as well (e.g. social
network real-time signing up of new users). We will come back to these
two requirements of FIP in Chapter 4, where we will describe an extension
of the algorithm that partially addresses them.

2.2 Approximating PageRank 11

3
Related Work

In recent years there has been a wealth of algorithms for computing PageR-
ank. We have already described in brief the Power Iteration method and
the state-of-the-art Monte-Carlo approaches in Chapter 2. For complete-
ness, we now briefly discuss other related algorithms. Due to the vast
amount of algorithms for the PageRank vector’s computation, we restrict
ourselves to only a few key representatives; a more complete discussion of
PageRank-related literature is provided in [Ber05], and in the more recent
work of [Bah+10].

3.1 Distributed PageRank computation

At first, we will refer to the subset of distributed approaches which are
based on the Monte Carlo method, as our approach does. A first approach
of this family of methods from the point of computing PageRank was given
in [FR04]. They approximated though the PageRank measure, by exploit-
ing no steps but the final ones of the performed walks (their destinations),
thus leading to limited accuracy. Fundamental work has been published
on Monte Carlo methods by Avrachenkov et al. [Avr+07] for static web
graphs. This work presents various algorithms for estimating the PageRank
vector via the total frequencies of the walks to each web-page and extends
the theoretical analysis, in order to efficiently handle the existence of dan-
gling pages (web-pages having no out-going edges). This approach though
assumes a static web-graph and cannot be applied for continuous PageRank
maintenance. Despite the fact that it has been mentioned in [Avr+07]
that the PageRank scores may be updated continuously, this work neither
provides any details of how exactly to perform these updates, nor give
any analysis about the efficiency of doing them [Bah+10]. Since the work
in [Avr+07] executes a geometrically distributed walk for each web-page,
its cost is Ω(nε), so a naive re-computation of PageRank with this method
for each edge arrival would result in a prohibitive cost

(
Ω(mnε)

)
.

13

Das Sarma et al. [DS+14] recently proposed a distributed PageRank com-
putation algorithm, based on the idea of performing a number of short
walks from each node, in order to facilitate the availability of truly inde-
pendent random walk segments, when those are actually computed. This
computation eventually takes place by performing a stitching of the al-
ready performed short walks. This work achieves an improvement in terms
of running time against the original Monte Carlo method in [Avr+07].
Despite this, it neither supports streaming updates and nor it is focused
on the communication efficiency, as it initiates many walk segments that
remain useless during the algorithm’s execution, in order to favour the
running time reduction.

Many other works attempt to tackle the distributed execution of linear-
algebraic methods such as in [IT10; Par+06]. Such works though do
not handle dynamic updates, apart from the ability of a trivial periodic
re-execution. For completeness, we mention that the original PageRank

work’s [Pag+99] cost is Ω
(

m
ln(1

1−ε)

)
, so over m edge arrivals the total cost

would be Ω
(

m2

ln(1
1−ε)

)
.

3.2 Continuous PageRank maintenance

As concerns the continuous maintenance of the PageRank vector, theoretical
work based on the Monte Carlo method under the shared memory model
is published in [Sar+08]. However, the time complexity of this work is
outperformed by Bahmani et al. [Bah+10] through their Fast Incremental
PageRank method. They introduced a method working under the shared
memory model which stores a number of initial random walk segments in
a database, during the algorithm’ s offline phase. During the online phase,
this approach examines only a subset of the random walk segments, so
as to update only those requiring a re-direction, in the case of an update
edge. For each newly-added edge (u,w), each of the stored segments
passing through the web-page u is examined and re-routed to the new
edge’s destination with a probability equal to 1

outDeg(u) , where outDeg(u)
is the new out-degree of u. This procedure is in fact analogous to the
well-known Reservoir Sampling technique [Vit85], designed to randomly
sample a stream, without being aware of its total size.

Figure 3.1 serves as an example of the operations performed by the FIP
method. It is assumed that the number of random walks started from each
web-page (parameter R) is equal to five and that during the online phase

14 Chapter 3 Related Work

a

b

c

d

e

f

g h

i

k

(a)Transition from graph instance G1 to G2 by incorporating the edge
arrival a→ g

ID Walks for G1 Walks for G2

a1 a → c→ f→ k a→ g→ h→ k
a2 a → c→ f a→ c→ f
a3 a → b→ e→ b→ e a→ b→ e→ b→ e
a4 a → b→ a → b a→ g→ i
a5 a → b→ d a→ b→ d
...

...
...

y3 . . .→ a → b→ e . . .→ a→ g→ h
z5 . . .→ a → c→ f→ k . . .→ a→ c→ f→ k

(b)Stored walk segments before and after the arrival of the update edge
a→ g

Fig. 3.1 Depiction of the real-time execution of the FIP method under the shared-
memory model

3.2 Continuous PageRank maintenance 15

of the algorithm, the edge a→ g arrives. As such, the occurrences of web-
page a are examined in order to update the walks stored in the database
containing it. These are marked with circles in Figure 3.1. Provided
that we have not selected a previous occurrence of a in the same walk
segment for rejection, we generate a uniformly random number for each
one of these occurrences. In the case of re-routing (drawn probability
less than 1

outDeg(a)), the remainder of the old random walk is rejected
(i.e. the corresponding visit counters are decreased) and a new random
walk is concatenated to the initial segment, starting from the new edge’s
destination g. The occurrences of a corresponding to the selected ones
for rejection are marked with a filled circle. It is worth underlining that
the second occurrence of a at the walk segment a4 is never examined for
re-direction, as the first appearance of a in this walk has already been
selected as a start point for re-routing the same walk. A symmetric update
procedure is used for handling edge deletions.

Despite its efficiency, the FIP algorithm considers a shared-memory database
as the underlying infrastructure which does not permit the distribution
of the updates’ input sources. On the contrary, in Chapter 4, we explore
how we could modify their algorithm in order to be able to support the
distribution of real-time updates and in Chapter 5, a novel lightweight
approach is proposed to substantially reduce both the transfer volume and
the amount of memory required to achieve it.

Linear algebraic methods focused on updating the PageRank vector have
been proposed as well, apart from the Monte Carlo ones, but neither of
them seems suitable to real-time applications so as to consider using it
as a baseline for decentralization. For example, the approach in [LM04]
needs a separation of the old links from the new ones after receiving
a set of updates. It also reports being susceptible to this separation of
the underlying network, by stating that a bad partitioning leads to a
performance as slow as the Power Iteration. Furthermore, the performance
of the work in [Ton+08] heavily depends on the structural properties of
the underlying graph, as it is rather inefficient (O(mn2) for m updates over
n vertices) when the two parts of the bipartite graph under consideration
share an equal number of nodes.

Finally, there is another line of research examining how the PageRank
vector evolves as edge updates arrive (e.g. the recent work in [Bah+12]).
Such works focus on an evolving graph’s model, where the algorithm is
unaware of the real-time updates and tries to probe the web-pages (so as

16 Chapter 3 Related Work

to gain knowledge about the most recent graph’s instance) in a way that
minimizes the total approximation error. We underline that this model is
different from the streaming and distributed model of computation that
we consider in this work.

3.2 Continuous PageRank maintenance 17

4Decentralizing streaming PageRank

As described in Chapter 2, FIP, the state-of-the-art algorithm for streaming
PageRank maintenance has two key limitations: (a) it requires a shared-
memory architecture for storing a repository of the random walks, and, (b)
it does not allow the addition of new web-pages. In this Chapter, we show
how to lift these two requirements, thereby making FIP more scalable.

4.1 Avoiding the shared-memory requirement

FIP needs to store all random walks in order to be able to revert their
effects in the case of random walk re-directions. The original algorithm
has assumed the existence of a distributed repository, which however
was implemented over shared memory [Bah+10]. In the absence of
shared memory, i.e. when the system nodes are scattered across the globe,
we can keep the walk-related information in the nodes as follows. The
node responsible for crawling and storing each web-page u also maintains
triples of < w, p, v >, where w denotes the walk id, p the position of u
in the random walk, and v a pointer on the next page in the walk. This
information is sufficient for reproducing the random walk starting from
any web-page, by exchanging of messages between the nodes. Segment
rejections of previous random walks are performed by constructing negative
random walks, which follow the original random walks, but decreasing the
visit counts of the visited web-pages. Both standard and negative random
walks are propagated in the network through message passing.

4.2 Enabling addition of new web-pages

Original FIP requires that the set of web-pages is static, and only the
links between the pages can change. This constraint stems from the
way the algorithm handles web-pages with no outgoing links; a random
walk reaching a sink web-page performs a random jump to another web-
page chosen with a uniform probability over all web-pages. In order to

19

ensure that all web-pages receive on expectation the same number of
random jumps from sink nodes, all pages need to be available during the
initialization of the algorithm. We avoid this requirement by changing the
way we handle sink pages.

To avoid this requirement, we exploit an alternate version of the Monte
Carlo PageRank approximation, proposed in [Avr+07]. This algorithm
dictates that the expected value of the approximation vector is equal to
the true PageRank vector, if the random walks initiated stop at dangling
web-pages and the normalization factor equals the total number of steps.
By emulating this technique, we freeze all random walks that reach sink
pages, as proposed in [Avr+07] for static networks. In our real-time setting,
these random walks will eventually continue as soon as the web-pages
get at least one outgoing link. We also need to adjust the normalization
factor accordingly, to account for the frozen walks: instead of dividing
the visit count of each page by nR

ε to find the corresponding PageRank
score, we divide it by the expected sum of total visit counts in the system.
Formally:

π = 1T

∞∑
k=0

(1− ε)kP k

n∑
i=1

Xi

,

where Xi is the visit count of web page i. Avoiding the random jumps
enables us to expand the web graph with new pages, since a newly dis-
covered web-page is guaranteed not to have lost any randomly distributed
visit counts.

Since the targeted setup is a distributed network, the above extension

requires an algorithm for continuous maintenance of
n∑
i=1

Xi
1. This can be1 Maintenance of

n∑
i=1

Xi is not neces-

sary if we are only interested in the
relative web-pages’ order.

inexpensively achieved by requesting each node to inform a coordinator
whenever the sum of its local Xi values deviates substantially from the
previously reported values. In practice, even though the visit counts of
individual web-pages may vary drastically, the sum all Xi values at each
node changes at a very slow pace. Therefore, as we will also demonstrate
in Chapter 6, this simple way of maintaining the sum performs well and
does not affect the scalability of the methods following this policy. It
is straightforward to show that the estimated PageRank scores of the
extended FIP algorithm are sharply concentrated around the true scores,
similar to the case of the original FIP algorithm [Avr+07].

Even though the extended FIP algorithm overcomes the two main con-
straints of FIP concerning the application domain, it still requires from

20 Chapter 4 Decentralizing streaming PageRank

the participating nodes to exchange detailed information regarding the
random walks, such that these can be fully reconstructed during re-routing.
As we will also demonstrate experimentally (cf. Chapter 6), the amount of
this data is significant. This contributes not only to the increased memory
requirements of the algorithm (which is clearly a limitation when han-
dling web-scale data), but also to an increase of the overall network cost
of the algorithm. In the next Chapter, we show how DSPM lifts these
requirements.

4.2 Enabling addition of new web-pages 21

5Distributed Stochastic PageRank

Maintenance

5.1 Overview

The estimation of the PageRank vector with limited information available
about the propagated random-walk paths is not a challenge on static
web graphs, since random walks never need to be retrieved (for example,
consider the algorithms proposed in [Avr+07]). However, on real-world
dynamic web graphs, adding or removing links between the web-pages
requires re-directing some previously executed random walks, as discussed
in the previous chapters.

Very briefly, the Distributed Stochastic PageRank Maintenance (DSPM)
approach re-routes the already propagated standard random walks by
constructing new random walks from the redirection point (we refer to
these as negative random walks, as discussed in Chapter 4). The challenge
of this approach is twofold. First, in the absence of the previously con-
ducted random walks, we need to find out the number of negative and
standard random walks that need to be initiated after each update, such
that the expected visit counts at the web-pages remain proportional to
their PageRank scores. This, as we will show in the following, is not a
trivial task, mainly due to the cycles, which are frequent in the web graph.
A second challenge is to reduce the variance of this approach.

We now describe the crawling model targeted by DSPM, and explained how
DSPM is integrated. The crawling network is composed of a set of nodes,
scattered around the world (much like a P2P network). Nodes communi-
cate via message passing. A distributed crawler runs on top of this network,
assigning URLs to nodes in a consistent manner (e.g. via consistent hash-
ing on the domain names). Approaches focused specifically on streaming
graph partitioning may also be used, such as the ones proposed in [SK12].
Due to the physical distribution of the nodes, communication between them
is expensive and should be reduced. Additionally, the crawling process may

23

involve low-cost commodity machines possessing a limited amount of mem-
ory, thus memory requirements should also be reduced. For the purpose of
PageRank, each node maintains the set of crawled web-pages, and, for each
web-page, the set of its out-going links. Therefore, both the web graph and
the PageRank computation are fully distributed. The particular crawling
model has an interesting property: it does not require a shared-memory
architecture. This makes the model widely applicable, even over modern
elastic architectures such as [Wal08]. Note however that this (minimal-
requirements) crawling model is not a prerequisite for the functionality of
DSPM. The algorithm would also offer substantial cost reduction when ex-
ecuted over P2P networks, in clouds charging based on network resources,
and generally in any resource-constrained infrastructure.

Unlike the aforementioned extensions of the FIP method, the DSPM ap-
proach enables the updates over the Monte-Carlo method by minimizing
the dependency on the knowledge of previously conducted random walks,
thus decreasing both the transfer volume and the memory requirements.
In this Chapter, we will present the bits and pieces of this contribution,
by providing both the mathematical analysis establishing it, as well as
optimizations improving its efficiency.

5.2 The DSPM approach

5.2.1 Initialization phase

The initialization phase is useful when there already exists a crawled
subset of the web graph, e.g. from a previous crawl. This phase is a direct
distributed implementation of the Monte-carlo algorithm for static datasets
stopping at dangling nodes [Avr+07], using message passing. Let P(n)
denote all web-pages assigned to node n, and N (p) the node responsible
for page p. For the purpose of DSPM, nodes need to maintain only the set
of outgoing links and a single counter (the visit count) for each assigned
web-page. Then, each node nx initiates R random walks from each web-
page with termination probability ε, and increases the visit counts of all
visited web-pages in P(nx) by one. Whenever a random walk reaches
a page u that does not belong to P(nx), a message is sent to the node
responsible for u. Notice that all decisions taken by the above algorithm
for continuing or terminating the random walk are identical to the ones
taken by [Avr+07] (assuming the same random seeding). Therefore, the
visit counts (and the PageRank vector) generated by the end of this process
are identical to the ones of [Avr+07].

24 Chapter 5 Distributed Stochastic PageRank Maintenance

5.2.2 Handling of updates

At first glance, it may seem straightforward to decide about the number
of re-directions needed in case of an update edge, even in the absence of
the stored random walk segments. Exactly as the FIP method examines
(after an update u→ w) each transition of u with a re-direction probability
of 1

outDeg(u) , it may seem feasible to emulate this re-routing process by
examining each visit count of u with the same probability and re-direct the
resulting number of walks through the new edge (following the notion of
negative random walks we have already introduced).

a u

w y

s x

t

(a)Two simple graph instances, G1 lacking s→ u link and G2 containing
it. On both instances, we consider that u → w arrives as an update
edge.

Graph G1 without s −→ u Graph G2 with s −→ u
u −→︸︷︷︸

1
outDeg(u)

s −→ t u −→︸︷︷︸
1

outDeg(u)

s −→ u −→︸︷︷︸(
1− 1
outDeg(u)

)
outDeg(u)

s

u −→︸︷︷︸
1

outDeg(u)

s −→ t u −→︸︷︷︸
1

outDeg(u)

s −→ u −→︸︷︷︸(
1− 1
outDeg(u)

)
outDeg(u)

s −→ u −→︸︷︷︸(
1− 1
outDeg(u)

)2

outDeg(u)

s −→ t

u −→︸︷︷︸
1

outDeg(u)

s −→ x

u −→︸︷︷︸
1

outDeg(u)

s

u −→︸︷︷︸
1

outDeg(u)

s −→ t

(b)A possible distribution of visits to walks passing through u in both
G1, G2 graph instances. Each step passing through u is annotated with
its respective re-direction probability, as concerns the FIP method.

Fig. 5.1 A careful examination of the re-direction probabilities of the state-of-
the-art streaming PageRank method.

Figure 5.1 illustrates the reason why this policy would not lead to an
unbiased estimator of the number of re-directions required. We consider
a simple example of a u → w update edge and two graph instances, G1

5.2 The DSPM approach 25

lacking s → u link and G2 containing it. Figure 5.1b depicts a possible
distribution of walks and visits of u in both graph instances, along with
the respective re-direction probability of each transition. It is apparent
that the cycles existing in a given graph directly affect these re-direction
probabilities. As concerns a specific random walk, each subsequent visit to a
web-page u will only be considered for re-direction iff a previous occurrence
of u has not already been selected for re-routing from its respective point.
Thus, we highlight that the task of real-time re-routing of random walks
with limited information available about their original paths, is challenging
and not straightforward at all.

Driven by this challenge, we propose Algorithm 1 and prove that it outputs
an unbiased estimator of the PageRank vector. We formulate a connection
between a web-page’s return probability (i.e. the probability that a random
walk visiting a web-page returns to it) and the expected number of random
walk re-directions required in order to update the PageRank scores, in the
case of a u→ w update.

Algorithm 1 Streaming algorithm handling an update edge u→ w
Input: u→ w, Xu, outDeg(u), du, XFIP u

Output: Xv∀v ∈ V
1: R̃u = 1− du/XFIP u

2: prob←
(
(1− ε)(1− R̃u)

)
/
(
outDeg(u)(1− R̃u) + 1

)
3: i← 0, ctr ← 0
4: while i < Xu do
5: Generate a uniformly random number α ∈ [0, 1]
6: if α < prob then
7: ctr ← ctr + 1
8: i← i+ 1
9: RWNeg(u, ctr)

10: Add new edge: u→ w
11: RW(w, ctr)

Xu denotes the visit count of web-page u, R̃u denotes an estimator of
the probability that a random walk reaching u returns to u after a finite
number of steps and outDeg(u) the number of out-going links of u. An
estimate for R̃u is maintained by emulating a single out of the R random
walks of our approach, using the extension of the FIP algorithm, proposed
in Chapter 4. We exploit the knowledge of those FIP-based walk segments,
by using their visits as samples of the event of returning back to a web-page,
as a result of a graph’s cycle. More precisely, if du denotes the number of
distinct FIP walks that go through a web-page u and XFIP u the total visits
that those walks have added to Xu, then: R̃u = 1 − du/XFIP u . The fact
that this is an unbiased estimator of a walk’ s return probability is trivial,

26 Chapter 5 Distributed Stochastic PageRank Maintenance

as it is an equivalent formulation to the division of the returning visits to u
(XFIP u − du) by the total visits of those FIP-based walks to u (XFIP u). The
du term may obviously be greater than one (thus providing our estimator
with more samples), as walks initiated from different web-pages may pass
through a specific web-page. Notice that apart from the single FIP-based
walk initiated from each web-page, the rest R − 1 walks do not transfer
any information about their paths or origin. Since those random walk
segments do not need to be linked (this property stems from the stateless
property of random walks), the messages corresponding to them contain
only the url of the message’s receiver (or a unique page id, if this is made
available to the algorithm).

The following theorem mathematically establishes our result and consti-
tutes our main theoretical contribution:

Theorem 5.2.1. If π̃v denotes our PageRank estimator for an arbitrary web-
page v, then it holds that: E[π̃v] = πv.

Proof. At first, we decompose the visits comprising the visit count of each
web-page as follows:

Xu = XuI +XuC (5.1)

XuI corresponds to the sum of initial steps of the walks passing above
u (i.e. the first R steps from the walks starting from u plus the first
occurrences of u in walk segments propagated due to links of the form
(y,u)). XuC reflects the visits to u which originate from the cycles in which
u participates. We define the indicator variable Ru as follows:

Ru =

1, if a walk reaching u returns to u.

0, otherwise.

We assume a graph without self-loops, as they are counter-intuitive to the
notion of PageRank’s endorsement strategy [CM08]. We define the return
probability to u as the sum of the probabilities of the tours connecting u to
itself as follows:

Prob(Ru = 1) =
∑

t∈{u u}
(1− ε)L(t)

L(t)−1∏
i=0

1
outDeg(yi)

, (5.2)

where L(t) denotes the length of each tour t of the form y0 → y1 →
· · · → yL(t) and outDeg(yi) denotes the out-degree of web-page yi. We

5.2 The DSPM approach 27

additionally define Pv,u as the probability of reaching u, given the event of
reaching a web-page v pointed by u:

Pv,u =
∑

t∈{v u}
(1− ε)L(t)−1

L(t)−1∏
i=1

1
outDeg(yi)

(5.3)

By exploiting the fact that the first step of each tour in Equation 5.2
corresponds to a step through an out-going edge of u, we have:

Prob(Ru = 1) = 1− ε
outDeg(u)

∑
v∈Nu

Pv,u,

where Nu is the set consisting of the web-pages pointed by u. Thus:
E[Ru] = 1−ε

outDeg(u)
∑

v∈Nu

Pv,u. As a result, the expected number of first

returns to u is as follows:

E[
XuI∑
i=1

Ru] =
XuI∑
i=1

E[Ru] = XuI
1− ε

outDeg(u)
∑

v∈Nu

Pv,u

Therefore, the expected second returns to u are:

XuI

 1− ε
outDeg(u)

∑
v∈Nu

Pv,u

2

Thus, the expected total returns to u (i.e. the total visits originating from
cycles) are:

XuC = XuI

∞∑
i=1

 1− ε
outDeg(u)

∑
v∈Nu

Pv,u

i

= XuI


1−ε

outDeg(u)
∑

v∈Nu

Pv,u

1− 1−ε
outDeg(u)

∑
v∈Nu

Pv,u

 ,
through the geometric series, by assuming that:∣∣∣∣∣∣ 1− ε

outDeg(u)
∑

v∈Nu

Pv,u

∣∣∣∣∣∣ < 1

Thus, by replacing into Equation 5.1, we have:

Xu = XuI

1− 1−ε
outDeg(u)

∑
v∈Nu

Pv,u
(5.4)

28 Chapter 5 Distributed Stochastic PageRank Maintenance

We now define the two settings involved in our proof: we denote by G1 a
graph instance containing no self-loops and no sink web-pages. Let G2 be
the instance G1 by adding the edge (u,w) to it. Let outDeg(u) denote the
out-degree of u on graph G2 and N

′
u the set of out-going neighbours of u

by excluding web-page w.

1. The first setting assumes the execution of the Monte-Carlo static
algorithm on graph G2, by considering though the link (u,w) as
inactive, i.e. the flow of visits crossing (u,w) is considered as pending
until this link becomes active. This event is assumed to happen at
time t + 1. Because of the fact that the visits to u originating from
cycles could have returned to u from a webpage v other than w (as
the link (u,w) is still inactive), the visit count of u at time t is as
follows:

X
′t
u = XuI

1− 1−ε
outDeg(u)

∑
v∈N ′u

Pv,u
(5.5)

2. The second setting assumes the execution of the same static algorithm
on graph G1, as part of the DSPM initialization procedure. The on-
line phase of our algorithm starts with the edge arrival of (u,w) at
time t+ 1. The visit count of u at time t is as follows:

Xt
u = XuI

1− 1−ε
outDeg(u)−1

∑
v∈N ′u

Pv,u
(5.6)

The main difference between the previous two amounts lies in the fact that
in the static approach’ s setting, the probability of choosing each one of the
neighbours of u apart from w is equal to 1

outDeg(u) . However, during the
propagation of steps in the off-line phase of our approach, the probability
of going through each edge of u is 1

outDeg(u)−1 , as web-page u has not
received the (u,w) link since time t+ 1. By combining equations 5.5 and
5.6, we have:

X
′t
u =

1− 1−ε
outDeg(u)−1

∑
v∈N ′u

Pv,u

1− 1−ε
outDeg(u)

∑
v∈N ′u

Pv,u
Xt

u (5.7)

The amount of re-directions required on our setting is equal to the expected
number of steps that will be propagated through the edge (u,w) on the
first setting at time t + 1, when this edge becomes active. Since each of
the X

′t
u will be propagated through u with a probability of 1− ε and will

5.2 The DSPM approach 29

choose to visit w with a probability of 1
outDeg(u) , the expected amount of

re-directions required on our setting is equal to:

1− ε
outDeg(u)X

′t
u = 1− ε

outDeg(u)− 1

outDeg(u)− 1− (1− ε)
∑

v∈N ′u
Pv,u

outDeg(u)− (1− ε)
∑

v∈N ′u
Pv,u

Xt
u

At this point, we exploit the fact that, as concerns our setting, the expected
value of the indicator variable Ru is equal to: E[Ru] = 1−ε

outDeg(u)
∑

v∈N ′u
Pv,u.

Thus, we end up to our main result about the expected number of re-
directions required in our real-time setting for each update edge (u,w):

(1− ε)(1− R̃u)
(outDeg(u)− 1)(1− R̃u) + 1

Xt
u, (5.8)

where R̃u is our estimator for a walk’ s return probability. Since dur-
ing the execution of our algorithm we choose each of the visits of u to
initiate a re-direction through the new edge (u,w) with a probability of

(1−ε)(1−R̃u)
(outDeg(u)−1)(1−R̃u)+1 , then the expression in 5.8 provides the expected
amount of re-directions initiated from the DSPM approach. After having
provided the required expected number of re-directions needed in case
of an update edge, it is straightforward that the expected PageRank on
an arbitrary web-page will remain the same on the two settings at time
t+ 1, since in expectation the random walks initiated from a web-page are
evenly distributed to the web-page’s out-going links.

Note that our algorithm can handle at once multiple edges sharing the same
source (a feature incorporated to our implementation) but for simplicity
and brevity, we focus our analysis on the single-edge update algorithm.

5.3 Enhancements

5.3.1 Aggregate data exchange

Our solution does not prerequisite the explicit storage of any random
walk segment, apart from the ones used for the estimation of the return
probability. The significance of avoiding this requirement is that nodes
no longer need to exchange data for keeping track of the full random
walk segments; instead, nodes can exchange compact, aggregate data.
For example, instead of having to transmit k steps from the node holding
page a to the node holding page b, along with their different random walk

30 Chapter 5 Distributed Stochastic PageRank Maintenance

identifiers and positions at these random walk segments, it is sufficient to
send a single message < b, k >, from the node responsible for page a to
the node holding b. Another direct consequence of our method is the lack
of need to store the random walk segments explicitly in the memory of the
nodes responsible for the web-pages present in the graph.

5.3.2 Variance reduction

Our policy of minimizing the number of full random walk segments ex-
changed poses a fundamental challenge concerning the accuracy of nega-
tive random walks, because of the lack of explicit knowledge of the paths
of their regular counterparts. We devised an enhancement that enables
us to accurately and efficiently reject a previously propagated regular ran-
dom walk without being aware of the exact path it followed. This feature
is feasible by solely exploiting pieces of knowledge that are available to
the algorithm at no cost (i.e. without the need of any additional data
transfer).

To this direction, we track the regular steps passing through each web
page and store them in a Map structure. For each web-page u of the
network, this structure maintains the destination of all regular random walk
steps passed through u, in an aggregate manner. For example, consider
a web-page u, pointing to web-pages x and y. If out of the 10 steps
continuing their route through u, 6 of them have chosen x and 4 of them
have chosen y as their next step, our structure for web-page u would have
the form: < x, 6 >,< y, 4 >. By enriching our knowledge of the route
followed by the regular walks, for each negative random walk in the update
phase, we choose each step with probability proportional to the steps sent
through each neighbour of the current web-page. This means that in the
aforementioned example, as concerns a negative step passing through u,
we would choose x with a probability of 0.6 and y with a probability of 0.4
as the next negative step (decreasing the visit count). This procedure is
equivalent to propagating a walk on a weighted graph.

5.4 Analysis

As long as the number of re-directions initiated on behalf of our method is
proven to be the same as from the algorithm in [Bah+10], the worst-case
message complexity of DSPM is the same as in the FIP method. Under the
random arrival model of update edges [Bah+10], this cost is on the order

5.4 Analysis 31

of O(nRlnm
ε2). As concerns the space complexity of our method, it is on the

order of O(m+ n+ n
ε), whereas the FIP extensions maintain space on the

order of O(m+ n+ nR
ε), where m stands for the out-links’ maintenance

and n for the maintenance of the visit counts. The third term corresponds
to the space needed to store the complete random walk paths (which in
our case is limited to the storage of the paths used for the estimation of
the return probability).

32 Chapter 5 Distributed Stochastic PageRank Maintenance

6Experimental results

6.1 Setup

Our experiments were executed on a server running Ubuntu SMP, sharing
31 Intel Xeon processing units at 2.1 GHz and 28 GB of available main
memory.

We conducted experiments on real data, in order to evaluate the commu-
nication efficiency, the scalability and the memory footprint against both
distributed extensions of the FIP method presented in Chapter 4. The
datasets used in our evaluation are publicly available in https://snap.
stanford.edu/, and are either real snapshots of portions of the web graph
or portions from a social network friendship graph. A random permutation
of each dataset is performed before the execution. We considered a 10%
portion of each dataset as present during each algorithm’s start, in order
to emulate their initialization phase. The assumption that the original
FIP method is aware of the whole set of web-pages beforehand has also
been made. Despite the fact that this assumption is not necessarily realistic
under the streaming and distributed model of computation we consider, the
original FIP algorithm could not operate correctly otherwise. A description
of the employed datasets follows:

• BerkStan: The web-pages belong to the berkeley.edu and stan-
ford.edu domains. The dataset contains 685230 web-pages and
7600595 links.

• Google: The dataset contains general web-pages (not from a par-
ticular domain). The data was released in 2002 by Google as part
of Google Programming Contest, and contains a total of 875713
web-pages and 5105039 links.

• LiveJournal: The dataset contains a friendship graph from the Live-
Journal social network. It contains a total of 4847571 entities and
68993773 links.

33

https://snap.stanford.edu/
https://snap.stanford.edu/

6.2 Accuracy & Efficiency

The Spearman rank’s correlation coefficient (ρ) was chosen as a measure of
each method’s accuracy, using as a ground truth the ideal PageRank scores
extracted by the accurate, yet centralized, Power Iteration method. The
coefficient assesses how well the relationship between two variables can
be described using a monotonic function, and takes values in the interval [-
1,1], with 1 denoting perfect (linear) relationship. The inter-node transfer
volume of the messages involved in each computation is considered as
the measure of efficiency, as the intra-node communication is negligible
compared to the cost of transferring data in a distributed network.

The plots in Figures 6.1, 6.2, 6.3 depict the Spearman coefficient against
the required transfer volume for the three algorithms on all datasets, for
different R values (5, 10, 15, 20, 25). These experiments were also executed
for varying number of web-pages contained in each node’s subgraph, so as
to examine the scalability potential of the methods under consideration.

The superiority of the DSPM approach in comparison to the extensions of
the FIP method is evident, particularly when high Spearman coefficients
(i.e. good PageRank approximations) are desired. In particular, by com-
paring the transfer volume required for the highest possible same level of
accuracy, we notice a 6x− 24x improvement of the DSPM method against
the original FIP’ s extension. Additionally, a 2.2x− 3.6x improvement of
the DSPM against the optimized FIP approach is observed.

A useful remark is that the efficiency of the original FIP approach is sig-
nificantly deteriorated when the underlying graph available during the
initialization phase contains a non-negligible portion of dangling (sink)
web-pages. This behaviour is the consequence of performing random
jumps from sink web-pages that will eventually be deleted when those
pages acquire at least one out-going edge, during the online phase. This
case is particularly obvious in the Google dataset, which totally contains a
15% portion of dangling web-pages.

As concerns the DSPM approach, its improvement against the optimized
FIP method is caused by the minimization of the FIP-based walks involved,
which require the exact information about each walk segment to be ex-
changed, as well as by the ability to aggregate the steps of the rest R− 1
walks. As concerns the scalability potential, we notice that the cost with
all partitioning schemes is approximately the same, thus all methods are

34 Chapter 6 Experimental results

0.95 0.96 0.97 0.98 0.99 10

1

2

3
·104

Spearman ’s ρ

M
B

yt
es

BerkStan

FIP Original
FIP Optimized
DSPM

0.93 0.94 0.95 0.96 0.97 0.98 0.99 10

1

2

3
·104

Spearman ’s ρ

M
B

yt
es

Google

FIP Original
FIP Optimized
DSPM

0.96 0.97 0.98 0.99 10

0.5

1

1.5
·105

Spearman ’s ρ

M
B

yt
es

LiveJournal

FIP Original
FIP Optimized
DSPM

Fig. 6.1 Spearman correlation coefficient versus the required useful trans-
fer volume of FIP Original, FIP Optimized and DSPM, with R ∈
{5, 10, 15, 20, 25}. Each node is responsible for maintaining 1K web-
pages.

6.2 Accuracy & Efficiency 35

0.95 0.96 0.97 0.98 0.99 10

1

2

3
·104

Spearman ’s ρ

M
B

yt
es

BerkStan

FIP Original
FIP Optimized
DSPM

0.93 0.94 0.95 0.96 0.97 0.98 0.99 10

1

2

3
·104

Spearman ’s ρ

M
B

yt
es

Google

FIP Original
FIP Optimized
DSPM

0.96 0.97 0.98 0.99 10

0.5

1

1.5
·105

Spearman ’s ρ

M
B

yt
es

LiveJournal

FIP Original
FIP Optimized
DSPM

Fig. 6.2 Spearman correlation coefficient versus the required useful trans-
fer volume of FIP Original, FIP Optimized and DSPM, with R ∈
{5, 10, 15, 20, 25}. Each node is responsible for maintaining 10K web-
pages.

36 Chapter 6 Experimental results

0.95 0.96 0.97 0.98 0.99 10

0.5

1

1.5

2
·104

Spearman ’s ρ

M
B

yt
es

BerkStan

FIP Original
FIP Optimized
DSPM

0.93 0.94 0.95 0.96 0.97 0.98 0.99 10

1

2

3
·104

Spearman ’s ρ

M
B

yt
es

Google

FIP Original
FIP Optimized
DSPM

0.96 0.97 0.98 0.99 10

0.2

0.4

0.6

0.8

1
·105

Spearman ’s ρ

M
B

yt
es

LiveJournal

FIP Original
FIP Optimized
DSPM

Fig. 6.3 Spearman correlation coefficient versus the required useful trans-
fer volume of FIP Original, FIP Optimized and DSPM, with R ∈
{5, 10, 15, 20, 25}. Each node is responsible for maintaining 100K web-
pages.

6.2 Accuracy & Efficiency 37

considered scalable in terms of the number of web-pages present in each
node’ s sub-graph. Consequently, the main factor affecting their scalability
potential is the number of walks initiated per node. Additionally, we re-
mark that the policy (employed by both the optimized FIP method and the
DSPM approach) of requesting each node to inform a coordinator when
the local sum of its web-pages deviates substantially from the previously
reported value, only incurs a negligible overhead to the total cost.

6.3 Memory requirements

We calculated the amount of memory required by all the methods under
comparison, at the end of the real-time execution. The results are depicted
in Figure 6.4 and correspond to the cumulative memory requirements of
the whole network of web-pages. It is remarkable that the memory needs
of DSPM remain almost the same (horizontal line), in spite of increasing
the number of initiated walks per node. In particular, the gain of the DSPM
approach against both FIP extensions exceeds an order of magnitude when
improved PageRank accuracy is desired. Another point worth considering
is that both FIP extensions fail to execute for increasing R values in the
LiveJournal dataset, as a result of the lack of memory available in the
server used for our experiments. These results establish the DSPM method
as scalable and applicable to resource-constrained environments.

38 Chapter 6 Experimental results

6 8 10 12 14 16 18 20 22 24102

103

104

R

M
B

yt
es

BerkStan

FIP Original
FIP Optimized
DSPM

6 8 10 12 14 16 18 20 22 24102

103

104

R

M
B

yt
es

Google

FIP Original
FIP Optimized
DSPM

6 8 10 12 14 16 18 20 22 24103

104

105

R

M
B

yt
es

LiveJournal

FIP Original
FIP Optimized
DSPM

Fig. 6.4 Memory requirements of the FIP Original, FIP Optimized and DSPM
approaches with R ∈ {5, 10, 15, 20, 25}, for the whole network

6.3 Memory requirements 39

7Conclusions and Future Work

We provided the first, to the best of our knowledge, PageRank algorithm
focused on monitoring distributed graph streams, with the aim of mini-
mizing its requirements in both the transfer volume and the memory of
the nodes involved in the computation. We mathematically proved and
experimentally established that storing all random walks explicitly is not a
necessary route, in order to update a random-walk based model through
an incremental algorithm in a fully distributed environment. We believe
that our work will greatly influence many real-world massive scale social
network analysis problems, as the real-time tracking of a shift in the author-
ity of a distributed network could be utilized by social-influence measuring
or epidemics prevention applications. Furthermore, we believe that it will
pose an impact on the distributed monitoring of other random-walk based
measures, such as betweenness centrality [New05]. Another promising re-
search direction is the extension of this work to the continuous monitoring
of the top-k PageRank values in a distributed environment.

41

Bibliography

[Ada+13] Lada A. Adamic, Christos Faloutsos, Theodore J. Iwashyna, B. Aditya
Prakash, and Hanghang Tong. „Fractional Immunization in Networks“.
In: SDM. 2013, pp. 659–667 (cit. on p. 2).

[Agg+11] Charu C Aggarwal, Arijit Khan, and Xifeng Yan. „On Flow Authority
Discovery in Social Networks.“ In: SDM. 2011, pp. 522–533 (cit. on
p. 2).

[And+06] Reid Andersen, Fan Chung, and Kevin Lang. „Local graph partitioning
using pagerank vectors“. In: Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on. IEEE. 2006, pp. 475–486
(cit. on p. 2).

[Avr+07] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. „Monte
Carlo Methods in PageRank Computation: When One Iteration is
Sufficient“. In: SIAM J. Numer. Anal. 45.2 (Feb. 2007), pp. 890–904
(cit. on pp. 3, 10, 13, 14, 20, 23, 24).

[Bah+10] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. „Fast Incre-
mental and Personalized PageRank“. In: PVLDB 4.3 (2010), pp. 173–
184 (cit. on pp. 3, 4, 10, 13, 14, 19, 31).

[Bah+12] Bahman Bahmani, Ravi Kumar, Mohammad Mahdian, and Eli Upfal.
„PageRank on an evolving graph“. In: KDD. 2012, pp. 24–32 (cit. on
p. 16).

[Ber05] Pavel Berkhin. „Survey: A Survey on PageRank Computing“. In: Inter-
net Mathematics 2.1 (2005), pp. 73–120 (cit. on p. 13).

[Cal+08] Jérôme Callut, Kevin Françoisse, Marco Saerens, and Pierre Dupont.
„Semi-supervised Classification from Discriminative Random Walks“.
In: Machine Learning and Knowledge Discovery in Databases. Ed. by
Walter Daelemans, Bart Goethals, and Katharina Morik. Vol. 5211.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008,
pp. 162–177 (cit. on p. 8).

[Che+10] Wei Chen, Chi Wang, and Yajun Wang. „Scalable Influence Maximiza-
tion for Prevalent Viral Marketing in Large-scale Social Networks“.
In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’10. Washington, DC, USA:
ACM, 2010, pp. 1029–1038 (cit. on p. 2).

43

[CM08] Prasad Chebolu and Páll Melsted. „PageRank and the random surfer
model“. In: Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithms. Society for Industrial and Applied Mathematics.
2008, pp. 1010–1018 (cit. on p. 27).

[DS+14] Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and
Eli Upfal. „Fast distributed PageRank computation“. In: Theoretical
Computer Science (2014) (cit. on p. 14).

[Eld07] Lars Eldén. Matrix Methods in Data Mining and Pattern Recognition.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2007 (cit. on p. 8).

[FR04] Dániel Fogaras and Balázs Rácz. „Towards Scaling Fully Personalized
PageRank“. In: WAW. 2004, pp. 105–117 (cit. on p. 13).

[Gar+13] Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. „Sketch-based
Geometric Monitoring of Distributed Stream Queries“. In: Proc. VLDB
Endow. 6.10 (Aug. 2013), pp. 937–948 (cit. on p. 1).

[IT10] H. Ishii and R. Tempo. „Distributed Randomized Algorithms for the
PageRank Computation“. In: Automatic Control, IEEE Transactions on
55.9 (2010), pp. 1987–2002 (cit. on pp. 2, 14).

[LM03] Amy Nicole Langville and Carl Dean Meyer. „Survey: Deeper Inside
PageRank“. In: Internet Mathematics 1.3 (2003), pp. 335–380 (cit. on
p. 7).

[LM04] Amy Nicole Langville and Carl Dean Meyer. „Updating pagerank with
iterative aggregation“. In: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters. ACM. 2004,
pp. 392–393 (cit. on pp. 3, 16).

[Lov93] László Lovász. Random Walks on Graphs: A Survey. 1993 (cit. on p. 9).

[Low+12] Yucheng Low, Danny Bickson, Joseph Gonzalez, et al. „Distributed
GraphLab: A Framework for Machine Learning and Data Mining in the
Cloud“. In: Proc. VLDB Endow. 5.8 (Apr. 2012), pp. 716–727 (cit. on
p. 1).

[LY08] Dionysios Logothetis and Kenneth Yocum. „Ad-hoc data processing
in the cloud“. In: Proceedings of the VLDB Endowment 1.2 (2008),
pp. 1472–1475 (cit. on p. 3).

[McS05] Frank McSherry. „A uniform approach to accelerated PageRank com-
putation“. In: Proceedings of the 14th international conference on World
Wide Web. ACM. 2005, pp. 575–582 (cit. on p. 3).

[New05] Mark EJ Newman. „A measure of betweenness centrality based on
random walks“. In: Social networks 27.1 (2005), pp. 39–54 (cit. on
p. 41).

[Pag+99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The PageRank Citation Ranking: Bringing Order to the Web. Technical
Report 1999-66. Stanford InfoLab, 1999 (cit. on pp. 2, 7, 8, 14).

44 Bibliography

[Par+06] Josiane Xavier Parreira, Debora Donato, Sebastian Michel, and Ger-
hard Weikum. „Efficient and decentralized pagerank approximation
in a peer-to-peer web search network“. In: Proceedings of the 32nd
international conference on Very large data bases. VLDB Endowment.
2006, pp. 415–426 (cit. on pp. 2, 14).

[RU11] Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets.
New York, NY, USA: Cambridge University Press, 2011 (cit. on p. 2).

[Sar+08] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. „Estimat-
ing PageRank on graph streams“. In: PODS. 2008, pp. 69–78 (cit. on
pp. 3, 10, 14).

[SK12] Isabelle Stanton and Gabriel Kliot. „Streaming Graph Partitioning for
Large Distributed Graphs“. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD
’12. Beijing, China: ACM, 2012, pp. 1222–1230 (cit. on pp. 1, 23).

[Spr+06] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. „Using Plan-
etLab for network research: myths, realities, and best practices“. In:
ACM SIGOPS Operating Systems Review 40.1 (2006), pp. 17–24 (cit. on
p. 3).

[Ton+08] Hanghang Tong, Spiros Papadimitriou, S Yu Philip, and Christos Falout-
sos. „Proximity Tracking on Time-Evolving Bipartite Graphs.“ In: SDM.
Vol. 8. 2008, pp. 704–715 (cit. on pp. 3, 16).

[Vit85] Jeffrey S. Vitter. „Random sampling with a reservoir“. In: ACM Trans.
Math. Softw. 11.1 (Mar. 1985), pp. 37–57 (cit. on pp. 10, 14).

[Wal08] Edward Walker. „Benchmarking Amazon EC2 for high-performance
scientific computing“. In: Usenix Login 33.5 (2008), pp. 18–23 (cit. on
pp. 1, 3, 24).

[Win+12] Christof Winter, Glen Kristiansen, Stephan Kersting, et al. „Google
Goes Cancer: Improving Outcome Prediction for Cancer Patients by
Network-Based Ranking of Marker Genes.“ In: PLoS Computational
Biology 8.5 (2012) (cit. on p. 2).

[Wu+08] Xindong Wu, Vipin Kumar, J Ross Quinlan, et al. „Top 10 algorithms
in data mining“. In: Knowledge and Information Systems 14.1 (2008),
pp. 1–37 (cit. on p. 2).

[Xia+13] Biao Xiang, Qi Liu, Enhong Chen, et al. „Pagerank with Priors: An
Influence Propagation Perspective“. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence. IJCAI’13. Bei-
jing, China: AAAI Press, 2013, pp. 2740–2746 (cit. on p. 2).

Bibliography 45

	Titlepage
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Thesis Contributions
	1.3 Thesis Outline

	2 Background
	2.1 Foundations of the PageRank model
	2.2 Approximating PageRank

	3 Related Work
	3.1 Distributed PageRank computation
	3.2 Continuous PageRank maintenance

	4 Decentralizing streaming PageRank
	4.1 Avoiding the shared-memory requirement
	4.2 Enabling addition of new web-pages

	5 Distributed Stochastic PageRank Maintenance
	5.1 Overview
	5.2 The DSPM approach
	5.2.1 Initialization phase
	5.2.2 Handling of updates

	5.3 Enhancements
	5.3.1 Aggregate data exchange
	5.3.2 Variance reduction

	5.4 Analysis

	6 Experimental results
	6.1 Setup
	6.2 Accuracy & Efficiency
	6.3 Memory requirements

	7 Conclusions and Future Work
	Bibliography

