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Abstract

We consider the problem of maximizing a quadratic form over the binary alphabet.

This problem is known as the unconstrained p´1, 1q-quadratic maximization problem or bi-

nary quadratic programming (in computer science terminology) and is an NP-hard combi-

natorial problem that can be solved through an exponential-complexity exhaustive search.

Recently, it has been shown that the exhaustive search is not necessary and this problem

is polynomially solved, if the rank of the quadratic form is constant (which is a case that

is met is certain optimization problems in communication theory). A few polynomial-time

algorithms have been reported from several research groups that differ in their actual space

and/or time complexity.

In this thesis, we focus on the case where the rank of the form is 4 and present an opti-

mal algorithm with complexity OpN3logpNqq that is based on novel ideas that combine

the auxiliary-angle framework developed in TUC and a few elements from computational

geometry. For completeness, we present our method for the cases of rank-2 and rank-3

quadratic forms, with complexity OpN logpNqq and OpN2logpNqq, respectively. For all

three cases, we show that our algorithm is the fastest known implementable one among

the several choices in the literature. Finally, we also comment on how our approach can

be generalized to any rank-D quadratic form and lead to an algorithm of complexity

OpND´1logpNqq.
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Chapter 1

Problem Statement

We consider a quadratic form

sTAs (1.1)

where A P RNˆN is a positive (semi)definite matrix parameter and s P RN is a vector

argument. The complexity of the maximisation of sTAs with respect to s, subject to a

norm constraint on s, depends on the feasible set S of s as well as the characteristics of

A. If S “ ts P RN : ‖s‖ “ c ą 0u, then sTAs is maximised by the appropriate scaled

maximum-eigenvalue eigenvector of A. If now S “ t˘1uN , then

sopt
∆
“ arg max

sPt˘1uN
sTAs (1.2)

widely knowns as the unconstrained p´1, 1q-quadratic maximisation problem or binary

quadratic programming, becomes NP-hard for an arbitrary matrix A and can be computed

by exhaustive search among all elements of S with complexity Op2N q since |S| “ 2N , an

approach that becomes intractable even for moderate values of N .

The above problem has a wide variety of applications including the adaptive design

of binary spreading codes [1], maximum likelihood (ML) coherent MIMO detection and

ML non-coherent SIMO detection [2], statistical physics and circuit design [3], [4], [5]

and limited-feedback MIMO beamforming [6], [7], [8], [9], [10], [11], [12], [13]. Further-

more, integer-least-squares optimization [14], [15] is equivalent to positive semi-definite

quadratic form maximization when the vector argument is binary. As a result multiuser

detection in CDMA [16] [17], or multicarrier CDMA systems [18], lattice-code decoding,

[19], [20], [21], soft decision decoding, [22], [23], [24], linear-dispersive [25], lattice-code [26]

and quasi-orthogonal [27] space-time block-code (STBC) decoding, signal detection upon

frequency-selective finite-impulse-response channel processing [28], peak-to-average-power
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ratio reduction in orthogonal frequency-division multiplexing (OFDM) systems [29], joint

detection and channel estimation in OFDM systems [30], equalization of block transmis-

sions [31] and signal detection in general multi-antenna MIMO systems [32] are examples

of optimization problems that involve positive (semi)definite quadratic form maximization

with a binary vector argument.

Since A is positive (semi)definite,

A “

N
ÿ

i“1

λiqiq
T
i , λ1 ě λ2 ě ¨ ¨ ¨ ě λN ě 0, ‖qi‖ “ 1 (1.3)

represents its eigendecomposition where λi and qi are the ith eigenvalue and normalised

eigenvector, respectively, of A. Now, if A is rank deficient, then an exhaustive search

over S “ t˘1uN is not necessary. For example, if A is of rank 1, then sopt in (1.2) can

be derived by inspection and is given by sopt “ sgnpq1q, where sgnp¨q is the vector sign

operation.1

Matrix A of rank D can be eigendecomposed as

A “

D
ÿ

i“1

λiqiq
T
i , (1.4)

where λi ą 0, i “ 1, 2, . . . , D. We define the weighted eigenvectors vi
∆
“
?
λiqi, i “

1, 2, . . . , D and concatenate them to form the N ˆ D matrix V
∆
“ rv1 v2 . . .vDs. Then

the rank-D quadratic form becomes

sTAs “ sT pλ1q1q
T
1 ` λ2q2q

T
2 ` ¨ ¨ ¨ ` λDqDq

T
Dqs

“ psTv1q
2 ` psTv2q

2 ` ¨ ¨ ¨ ` psTvDq
2 “ ‖VT s‖2.

(1.5)

Finally, sopt defined in (1.2) maximises also the square root of the quadratic form, we

turn our interest into the equivalent problem

max
sPt˘1uN

?
sTAs “ max

sPt˘1uN

b

‖VT s‖2 “ max
sPt˘1uN

‖VT s‖. (1.6)

1For any x P RN ,y “ sgnpxq is an N ˆ 1 vector with yl “

$

’

&

’

%

´1 xl ă 0,

1 xl ą 0,

, l “ 1, 2, . . . , N.
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Chapter 2

A summary of approaches

Solving (1.6) when A is a symmetric real matrix N ˆN is an NP-hard problem, though

some polynomially solvable cases do exist. The following table provides information con-

cerning the time and space complexity of the methods, as well as the size of the candidate

set S, when A is positive semi-definite and rank(A)= D (constant).

Algorithm
Size of Candidate

Set S
Time Complexity Space Complexity

[37], [38], [39] OpND´1q OpND´1q OpND´1q

[44] OpND´1q OpND´1logNq OpND´1q

[1], [41] (D=2, 3) OpND´1q OpND´1logNq OpND´1q

[1], [2], [42] (D ě 2) OpND´1q OpNDq OpNq

[43] OpND´1q OpNDq

[33], [34], [35] OpND´1q OpND`1q OpNRq

The above case was proven in [33] and an algorithm was created in [33], [34] based on

the reverse search in [35]. This algorithm creates a set of candidates S, which includes the

solution to (1.6), of size OpND´1q. This has a time complexity of OpNDLPpN,Dqq where

LPpN,Dq is the time required to solve a linear problem with N inequalities in D variables.

Work in [36] shows that LPpN,Dq “ OpNq, making the overall time complexity of the

reverse search based algorithm OpND`1q.
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Another approach to the solution of (1.6) was presented in [37]. The algorithm pre-

sented there is based on the incremental algorithm for cell enumeration in arrangements

[38], [39], and also has polynomial time complexity. Despite its time efficient(overall com-

plexity OpND´1q) construction of the set S whose size is |S| “ OpND´1q, this solution

becomes impractical as rank(A)= D increases. Even for moderate values of D, the incre-

mental construction of S requires memory proportional to |S|.

Following a different perspective, one we also analyse in-depth in the following chapters

and adhere to in our solution, and based on the auxiliary-angle approach originally intro-

duced in [40], efficient solutions for (1.6) have been proposed for D ě 2. [1] solves the D=2

case, [41] the D=3 one and [2] the Dą3, with complexity of OpN logNq,OpN2logNq and

OpNDq respectively. The algorithm uses D ´ 1 auxiliary angles to partition the pD ´ 1q-

dimensional hypercube into a set of distinct regions of polynomial size. Each region is

associated with a unique binary vector, while the set of binary vectors produced has the

same size with the one created by the reverse search methodology, |S|.

[40], [37], [42], [43] produce polynomial time solutions when s is an MPSK vector and

A is a hermitian positive semi-definite matrix of rank D. This includes our original case in

this chapter as a special case. More specifically, [40] introduces an algorithm for solving

the D=1 case with OpN logNq while [37], [42], [43] solve for D ě 1 with OpN2Dq.

The authors of [44] present an algorithm for solving the following two cases:

1. rank(A)= D (constant) and Aii ě 0, for any i P t1, 2, . . . , Nu.

2. rank(A)= D (constant) and |ti : Aii ă 0u| “ OplogNq.

with polynomial complexity. 2. includes 1. as a special case, while 1. includes the orig-

inal case at the start of the chapter as a special one. More specifically, [44] presents an

algorithm for solving the case in 1. by constructing a set S of size |S| “ OpND´1q that

includes the solution to (1.6) with a time complexity of OpND´1logNq and a space com-

plexity bound by the output size OpND´1q. Finally [44] shows the polynomial solvability

of 2.

In a later chapter, we also focus on this (recursive) approach for solving (1.6). We

present and analyse the algorithm and its complexity and compare it to the our own

which makes use of auxiliary spherical coordinates.
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Chapter 3

Introducing spherical coordinates

Let us now focus on

max
sPt˘1uN

‖VT s‖. (3.1)

We recall that V is a full-rank N ˆD matrix, D ď N ´ 1. W.l.o.g. we assume that each

row of V has at least one nonzero element, i.e. Vl,1:D ‰ 01:D. Indeed, if there exists an

index P t1, 2, . . . , Nu such that Vl,1:D “ 01:D then neither sn “ `1 nor sn “ ´1 have an

effect on VT s in (3.1), implying that we can ignore the corresponding row of V, assign an

arbitrary value to sn “ ˘1, and reduce the size of the original problem from N to N ´ 1.

In addition, w.l.o.g. we assume that Vn,1 ‰ 0, n “ 1, 2, . . . , N , because for any V P RNˆD

there exists an orthogonal matrix U P RDˆD such that }VT s‖ “ }pVUqT s‖ and the NˆD

matrix VU contains no zero in its first column, i.e. rVUsn,1 ‰ 0, n “ 1, 2, . . . , N.

3.1 Rank-2 case

In order to solve the D “ 2 case, we introduce a single spherical coordinate φ P r´π
2 ,

π
2 s

and a hyperpolar vector cpφq “ rsinpφq, cospφqs. Thus, and by using the Cauchy-Swartz

inequality, the maximisation of }VT s‖ becomes the equivalent:

max
s
‖VT s‖ “ max

s
max
φ
tcT pφqVT su

“ max
φ

N
ÿ

n“1

max
s
tsnVn,:cpφqu.

(3.2)

Each term sn of the binary vector s is given by

snpφq “

#

`1, Vn,:cpφq ą 0

´1, Vn,:cpφq ă 0
, n “ 1, 2, . . . , N (3.3)
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π/2-π/2 P1P5P2P3P4 sL+1 = sign(V: ,1)
φ

Figure 3.1: A rank-2 example with N “ 5

and its value ˘1 is defined solely by the sign of Vn,:cpφq. (3.3) is equivalent to

snpφq “

#

´sgnpVn,1q, φ P p´π
2 , tan´1p´

Vn,2

Vn,1
qq

sgnpVn,1q, φ P ptan´1p´
Vn,2

Vn,1
q, π2 s

(3.4)

which in turn allows us to define the function

φn
∆
“ tan´1p´

Vn,2

Vn,1
q P p´

π

2
,
π

2
q

that partitions the 1-dimensional space into two regions with opposite values ˘1. In the

rank-2 case, the function φn defines points on the 1-dimensional space.

Figure 3.1 shows an example of the rank-2 scenario. For N “ 5 we can see that the

function φn defines 5 points on φ, each of which divides the 1-D space into two regions

with opposite values ˘1. While φ changes value, we can see the the regions that were

created can be associated with a unique binary vector that does not change value while

φ is in that region. By utilising this observation we can give a brief explanation of the

workings of the serial and parallel algorithms.

First we need to calculate and sort all points φn. Then the serial approach can use

the binary vector associated with the right-most region as a starting point. Since this

region is “right” of all the points φn, according to (3.4) its value is equal to signpVn,1q,

i.e. the sign of the values of the first column of V. Then by iterating over all points

φn and changing the sign of the corresponding element, the serial algorithm produces

all the necessary binary vectors. The parallelisable approach on the other hand, visits

each point φn independently to compute the value of the corresponding element in the

candidate binary vectors. By doing this it is able to keep the space complexity rank-

independent, OpNq. This can become a deciding factor as D grows (remember that the

space complexity of the serial algorithm is OpND´1q. Note also that the serial approach

is vulnerable to error propagation. If at some point an entry sn of a candidate vector is

erroneously computed, then this mistake will continue to have an effect on all candidates

that are created thereafter.
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Figure 3.2: A rank-3 example with N “ 5 curves

3.2 Rank-3 case

By increasing the rank D to 3, we need to introduce two spherical coordinates, φ1, φ2 P

r´π
2 ,

π
2 s, while the hyperpolar vector in this instance becomes

cpφ1,φ2q “ rsinpφ1q, cospφ1qsinpφ2q, cospφ1qcospφ2qs.

Once again, by using the Cauchy-Swartz inequality, the maximisation of }VT s‖ becomes

the equivalent:

max
s
‖VT s‖ “ max

s
max
φ
tcT pφqVT su

“ max
φ

N
ÿ

n“1

max
s
tsnVn,:cpφqu

(3.5)

and each term sn of the binary vector s is given by

snpφq “

#

`1, Vn,:cpφq ą 0

´1, Vn,:cpφq ă 0
, n “ 1, 2, . . . , N (3.6)

and its value ˘1 is only defined by the sign of Vn,:cpφq. (3.6) is equivalent to

snpφq “

#

´sgnpVn,1q, φ P p´π
2 , tan´1p´

Vn,2 sinpφ2q`Vn,3 cospφ2q
Vn,1

qq

sgnpVn,1q, φ P tan´1p´
Vn,2 sinpφ2q`Vn,3 cospφ2q

Vn,1
q, π2 s

(3.7)

which in turn allows us to define the function

φn
∆
“ tan´1p´

Vn,2 sinpφ2q `Vn,3 cospφ2q

Vn,1
q P p´

π

2
,
π

2
q

Note that the function φn has changed and now defines a curve on the 2-dimensional

space defined by φ1, φ2. Despite this, its functionality remains the same: it divides the

2-dimensional space into two regions with opposite values ˘1.
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Figure 3.3: Solving the ambiguity at an intersection

Figure 3.2 depicts an example of a rank-3 scenario where N “ 5. The function φn

defines 5 curves creating regions with opposite vectors. Note also that the curves φn

intersect two at a time creating a series of intersections. It is shown in [2] that the polarity

of the intersection with regard to all curves is the same as the polarity of all points of

the cell that lies “above” it. Also, each cell is associated with a unique candidate vector

(given by the polarity) that remains unchanged for all points in the cell. It is sufficient

to search among the candidate vectors in this arrangement in order to find the optimal

one. All elements of the binary vector that is associated with a cell are well defined at

an intersection, with the exception of the two elements associated with the intersecting

curves.

The execution of the parallel algorithm remains the same. By visiting each intersection

independently it is able to calculate the necessary binary vectors and continues to keep

a low space complexity of OpNq. The ambiguity that arises for the intersecting curves is

solved at φ2 “
π
2 as can be seen in figure 3.3. Point A yields the sign for curve φ2 (green)

while point B the sign for φ1 (blue).

On the other hand the serial algorithm starts by executing a rank-2 case at φ2 “ ´
π
2

and saves all N ` 1 candidate vectors. This set of N ` 1 candidates is continuously kept

and updated throughout the execution of the algorithm. By moving along φ2 towards π
2 ,

it visits each intersection in an iterative fashion. At each intersection, the algorithm finds

the cell that lies “beneath” the intersection. Then by only flipping the sign of the elements

of its binary vector that are associated with the two intersecting curves, it produces the

candidate that is associated with the cell that lies above the intersection. The set of N `1

candidates is updated and the algorithm continues on to the next intersection until it has

calculated all possible candidates.
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Once again the serial algortihm suffers for the probability of error propagation, some-

thing that the parallel algorithm avoids, though at the cost of higher complexity. Another

problem arises for the serial algorithm that directly affects its time complexity; the reason

that it would be preferred over the parallel one. A serial search among the N `1 elements

of the saved set would have a complexity of OpNq. By doing this for all
`

N
2

˘

“ OpN2q

intersections we only achieve a complexity of OpN3q, which is larger than the theoretic

bound of OpN2logNq. The solution to this problem that arises during the implementation

of the serial algorithm is the starting point, and one of the innovations we introduce in

the next chapter where we present our approach to solving the problem.

A problem with the serial approach

3.3 Rank-D case

In this section we generalise the ideas presented in the rank-2 and rank-3 cases above into

a unified form, for the general rank-D case. For completeness, we also present the parallel

approach for solving this general case.

To develop an efficient method for the maximisation in (3.1), we introduce the spherical

coordinates φ1 P p´π, πs, φ2, . . . , φD´1 P p´
π
2 ,

π
2 s and define the spherical coordinate vector

φi,j
∆
“ rφi, φi`1, . . . , φjs

T (3.8)

and the hyperpolar vector

cpφ1:D´1q
∆
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

sinφ1

cosφ1 sinφ2

cosφ1 cosφ2 sinφ3

...

cosφ1 cosφ2 . . . sinφD´1

cosφ1 cosφ2 . . . cosφD´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.9)

A critical equality for our subsequent developments is

max
sPt˘1uN

‖VT s‖ “ max
sPt˘1uN

max
φ1:D´1Pp´π,πsˆp´

π
2
,π
2
sD´2

tsTVcpφ1:D´1qu (3.10)

which results from the Cauchy-Schwartz Inequality, since for any a P RD

aT cpφ1:D´1q ď ‖a‖ ‖cpφ1:D´1q‖
loooooomoooooon

“1

(3.11)
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with equality if and only if φ1, . . . , φD´1 are the spherical coordinates of a. Interchanging

the maximisations in (3.10) we obtain the equivalent problem

max
φ1:D´1Pp´π,πsˆp´

π
2
,π
2
sD´2

N
ÿ

n“1

max
sn“˘1

tsnVn,1:Dcpφ1:D´1qu. (3.12)

For fixed spherical coordinates φ the maximising argument of each term of the sum in

(3.12) is defined as

slpφ1:D´1q
∆
“ arg max

sn“˘1
snVn,1:Dcpφ1:D´1q, l “ 1, 2, . . . , N, (3.13)

and is determined only by

Vn,1:Dcpφ1:D´1q ≷
snpφ1:D´1q“`1

snpφ1:D´1q“´1 0, l “ 1, 2, . . . , N. (3.14)

For any φ, the corresponding optimal binary vector is defined as

spφ1:D´1q
∆
“ rs1pφ1:D´1qs2pφ1:D´1q . . . sN pφ1:D´1qs

T . (3.15)

We note that spφ1´π,φ2:D´1q “ ´spφ1,φ2:D´1q, because cpφ1´π,φ2:D´1q “ ´cpφ1,φ2:D´1q

for any φ1:D´1 P p´π, πs ˆ p´
π
2 ,

π
2 s
D´2. Since opposite binary vector s and ´s result in

the same value of the quadratic form in (1.2), it suffices to search over φ P ΦD´1 where

Φ
∆
“ p´π

2 ,
π
2 s. Finally we collect all possible vectors spφ1:D´1q in the set

S 1 ∆
“

ď

φ1:D´1PΦ
D´1

tspφ1:D´1qu

“ ts P t˘1uN : @φ1:D´1 P ΦD´1such thatspφ1:D´1q “ su

(3.16)

and note that sopt P S 1. Returning to (3.14) we find that

snpφ1:D´1q “

#

´sgnpVn,1q, φ P p´π
2 , tan´1p´

Vn,2:Dcpφ2:D´1q

Vl,1
qq

sgnpVn,1q, φ P ptan´1p´
Vn,2:Dcpφ2:D´1q

Vn,1
q, π2 s

(3.17)

We define the function

φnpφ2:D´1q
∆
“ tan´1

˜

´
Vn,2:Dcpφ2:D´1q

Vn,1

¸

P

˜

´
π

2
,
π

2

¸

(3.18)

that is equivalent to VT cpφ1:D´1q “ 0, and stands since Vn,1 ‰ 0, l “ 1, 2, . . . , N . The

hypersurface pφnpφ2:D´1q,φ2:D´1q partitions ΦD´1 into two regions that correspond to

the opposite values snpφ1:D´1q “ ˘1. By creating all N hypersurfaces we effectively

partition the domain ΦD´1 into a set of cells each of which defines a unique binary vector

scpφ1:D´1q. This set of vectors is sufficient for the maximisation of the quadratic form.
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A parallelizable approach for solving rank-D

In this section we will discuss the approach presented in [2]. The authors show that

each subset of D ´ 1 hypersurfaces has either a single intersection or uncountably many

intersections in ΦD´1 and also that the following hold true:

(i) spVNˆD;φ1:D´2,
π
2 q “ spVNˆpD´1q;φ1:D´2q,

(ii) spVNˆD;φ1:D´2,´
π
2 q “ ´spVNˆD;´φ1:D´2,

π
2 q,

(iii) spVNˆD;φ1:D´3,
π
2 , φD´1q “ spVNˆpD´2q;φ1:D´3q,

(iv) spVNˆD;φ1:D´3,´
π
2 , φD´1q “ ´spVNˆD;´φ1:D´3,

π
2 , φ

1
D´1q,@φ

1
D´1 P Φ

(v) spVNˆD;φ1:D´3,˘
π
2 , φD´1q “ spVNˆD;´φ1:D´3,˘

π
2 , φ

1
D´1q,@φ

1
D´1 P Φ

for any φ1, φ1, . . . , φD´1 P Φ, where spVNˆD;φ1:D´1q is a binary vector mapped to the

point φ1:D´1. If the intersection of D ´ 1 hypersurfaces is uniquely defined then the

vector φinters that holds the spherical coordinates of that intersection leads a cell Cφinters

(associated with a binary vector sC) that is above it, in the sense that φinters is the single

point of Cφinters for which φD´1 is minimised. We collect all the above binary vectors in

a set J whose size is |J | “
`

N
D´1

˘

. In other words, set J contains |J | “
`

N
D´1

˘

binary

vectors, each associated with a cell in ΦD´1 that minimises its φD´1 component at the

point given by the intersection of the corresponding D ´ 1 hypersurfaces.

Using the equalities that hold true presented above, we can ignore the vectors that are

associated with cells created for φD´2 “ ´
π
2 , set φD´2 “

π
2 , ignore φD´1 and identify the

cells that are determined by the reduced size matrix VNˆpD´2q over the hypercube ΦD´3.

This means that the set S 1 of all possible vectors is:

S 1pVNˆDq “ J pVNˆDq Y J pVNˆpD´2qq Y ¨ ¨ ¨ Y J pVNˆpD´2tD´1
2

uq
q (3.19)

whose cardinality is shown to be |S 1| “
řD´1
d“0

`

N´1
d

˘

. To summarise, D ´ 1 auxiliary

spherical coordinates were used to partition the hypercube ΦD´1 into |S 1| regions that

are associated with the same number of distinct binary vectors. Finding sopt now costs

OpND´1q upon construction of S 1. An efficient algorithm for the construction of S 1 is

presented next.

According to (3.19) the construction of S 1pVNˆDq is reduced to the parallel construc-

tion of all J sets. J pVNˆ1q, J pVNˆ2q and J pVNˆ3q can be obtained with complexity

OpNq, OpN logNq and OpN2logNq [1], [41], [45]. So what remains, is to describe a way

of constructing J pVNˆdq for d ą 3. Also the construction of J can be fully parallelised,
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since each candidate vector can be produced independently for each set of intersecting

hypersurfaces. So it is only needed we present a way for the computation of each xc.

Consider a certain value of d P t3, 4, . . . , Du and a certain set of indices Id´1 Ă

t1, 2, . . . , Nu such that d´1 hypersurfaces SpVi1,1:dq, SpVi2,1:dq, . . . , SpVid´1,1:dq intersect

at φinters. The cell Cφinters that is “led” by φinters is associated with the binary vector

sCφinters . For the N elements of this binary vector we observe:

1. For any l P t1, 2, . . . , Nu ´ Id´1 the corresponding element of sCφinters maintains its

value at φinters hence is determined by spVn,1:d;φintersq.

2. For any l P Id´1 the corresponding element of sCφinters cannot be determined at

φinters, but maintains its value at the intersections of the remaining d´ 2 hypersur-

faces, hence is determined by s pVn,1:d; φpVNˆd´1; Id´1 ´ lqq.

The above observations suggest that if l P t1, 2, . . . , Nu ´ Id´1 the corresponding hyper-

surface SpVn,1:dq does not pass through φinters implying that the polarity of φinters with

respect to SpVn,1:dq is the same as the polarity of any point in the cell Cφinters with respect

to the same hypersurface. This means that the sign of the corresponding element of the

binary vector sCφinters is “well-determined” at the leading point. On the other hand, if

l P Id´1 then an ambiguity arises concerning the corresponding element sn;Cφinters
. This

ambiguity is resolved if we exclude SpVn,1:dq and consider the intersection of the remaining

d ´ 2 hypersurfaces at φd´1 “
π
2 . The polarity of any point in cell Cφinters with respect

to SpVn,1:dq is the same as that of φpVNˆd´1; Id´1 ´ lqq with respect to the same hyper-

surface. Thus the sign of the corresponding element of the binary vector is well defined

through point 2. above.

The last step that need describing is how the vector of the spherical coordinates of

the intersections is computed efficiently. Recall that φinters represents the intersection of

SpVi1,1:dq, SpVi2,1:dq, . . . , SpVid´1,1:dq, i.e. the solution of

VId´1,1:dcpφ1:d´1q “ 0pd´1qˆ1. (3.20)

The above equation has a unique solution φinters which consists of the spherical coordinates

of the zero right singular vector of VId´1,1:d. This solution yields the coordinates of

the intersections we are seeking. The complete MATLAB code for the construction of

S 1pVNˆDq is provided below.
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function X=compute_candidates(V)

% X=compute_candidates(V) returns a matrix whose columns are the

% corresponding binary vector candidates x for the maximisation of

% x’*V*V’*x

[N,D]=size(V);

if D>2

combinations=nchoosek(1:N,D-1);

X=zeros(N,size(combinations,1));

for i=1:length(combinations)

I=combinations(i,:);

VI=V(I,:);

c=find_intersection(VI);

c=c*determine_sign_par(c);

X(:,i)=sign(V*c);

for d=1:D-1

c=find_intersection(VI([1:d-1 d+1:D-1],1:D-1));

c=c*determine_sign_par(c);

X(I(d),i)=sign(VI(d,1:end-1)*c);

end

end

X=[X compute_candidates(V(:,1:D-2))];

elseif D==1

X=sign(V);

else

phi_crosses=atan(-V(:,2)./V(:,1));

[phi_sort,phi_ind]=sort(phi_crosses);

X(phi_ind, 1:N+1)=(repmat(-sign(V(phi_ind,1)),[1 N+1]))...

.*(2*tril(ones(N,N+1))-1);

end

end
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---------------------------------------------------------------------

function c=find_intersection(V)

% c=find_intersection(V) returns the zero right singular vector of V

[junk1, junk2, C]=svd(V);

c=C(:,end);

---------------------------------------------------------------------

function sign_c=determine_sign_par(c)

D=length(c);

phi=zeros(D-1,1);

for phi_ind=1:D-1

phi(phi_ind)=asin(c(phi_ind)/prod(cos(phi(1:phi_ind-1))));

end

if (phi(D-1)*c(D-1))==0

sign_c=1;

else

sign_c=sign(tan(phi(D-1))*c(D-1)*c(D));

end

Complexity Analysis

Recall that the cardinality of S 1 is OpND´1q. This means that the same amount of

intersections will be calculated and visited so as to compute the resulting candidate binary

vector. The calculation of the zero right singular vector of VId´1,1:d costs Opd2q while the

conversion into spherical coordinates Opdq. The operation signpVn,1:duq costs Opdq for

any u P Rd Since u’ P Rd´1 is computed for each l P Id´1, the cost of the procedure for

each Id´1 is Opd2q ` pN ´ d ` 1qOpdq ` pd ´ 1qpOpd2q ` Opdqq “ Opd3 ` Ndq “ OpNq,

since we have fixed D ď N ´ 1. Hence the overall complexity of the algorithm becomes

OpND´1qOpNq “ OpNDq.
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Chapter 4

Our approach

In this section we will discuss the algorithm we developed to solve (1.6). The approach

we took is based on the work presented in [41]. We built on the ideas presented there and

created a scalable algorithm which can be used to solve (1.6) independently of the rank

of A. Below we present and discuss the solutions for A matrices of rank 2, 3 and 4.

We start by presenting the solution for D “ 2 for two reasons. Firstly it the most

straightforward of the three cases to use as a base for explaining the conceptual building

blocks of our algorithm. Secondly, the procedure used for the solution of the rank 2 case,

will be implemented as a base when we describe the procedure for solving the D “ 3 case.

It follows that the rank-3 solution will be the base for the solution of the D “ 4 case.

4.1 The rank-2 case

In this instance matrix V is a N ˆ 2 matrix while the φl in (3.18) define N points on

the domain φ P r´π
2 ,

π
2 q of the 1-dimensional space. φn divide φ into N ` 1 cells, each

of which is defines a binary vector. The collection of these vectors is the set S 1 above is

which we will search for sopt. We continue this section by presenting a pseudo-code for

the algorithm that solves this case and by conducting a step-by-step examination of its

functions.

Pseudo-code 1.

1. Compute and sort into a set F in ascending order the values φn for all n “

1, 2, . . . , N .

2. Set sopt “ sFpNq`1 “ signpV1:N,1q and calculate its metric according to (1.6).
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3. Set the above metric as the winning one and the FpNq ` 1 binary vector as the

optimal one.

4. For i “ FpN ´ 1q : ´1 : Fp1q do:

• Produce si by changing the sign on the soptpFpiqq entry.

• Compare their respective metrici to the current winner metric.

If metrici ą winning metric:

winning metric “ metrici

winner “ i.

5. i “ FpN ´ 1q : ´1 : winner do:

• Produce si by changing the sign on the soptpFpiqq entry.

6. Return sopt.

Step 1 lies at the heart of this procedure. By calculating and sorting in ascending

order the values φn, we effectively partition Φ1 into N ` 1 segments (i.e. cells), each of

which is described by a unique binary vector si that characterises the relationship of the

cell with the points φn according to (3.17). In Step 2 we create the first binary vector we

will utilise as the base for our iterative process to produce all si. sFpNq`1 describes the

segment rφFpNq`1,
π
2 q, where FpNq ` 1 points to the φn with the largest value. Since this

is the first binary vector we create, we also assign its value to sopt and set a pointer to its

position (i.e. N ` 1) to denote it as the optimal one.

The main concept of the algorithm is to break down the identification and the produc-

tion of the optimal binary vector into two separate operations. The first time we visit each

cell our purpose it twofold. First we produce the binary vector that characterises it and

second we calculate the new metric in order to compare it with the one kept as the optimal

(i.e. of largest value). This is done by adding twice the value p´VT
n,1:DsFpNq`1pFpiqqq to

the previous metric. If the new metric is larger that the (temporary) optimal one, the new

one is saved as optimal and the iteration in which it was found saved. This way, we are

able to produce all N ` 1 metrics, identify the metric of the optimal candidate and save

its position.

Producing the candidate vector for each new cell is a simple task once we take into

account the knowledge from (3.18). Since the hypersurface (in this instance a point),
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partitions the domain into two regions with opposite values slpφq “ ˘1, all that is needed

is to “flip” the sign of the appropriate entry in the last produced candidate. The entry

whose sign needs to be changed is denoted by the index i of the sorted vector that holds

φn, where i is the value of the current iteration.

Now we have identified where the optimal candidate vector is, our last action is to

produce and return it. During its second iteration over the cells, our algorithm begins

with sFpNq`1 and its sole purpose is to produce the next candidate vector up to the point

where the first run identified the largest metric. Once the i-th candidate vector si has

been produced, the execution ends and si is returned as the optimal solution.

Complexity Analysis

Step 1 is the most computationally demanding part of the algorithm as the ordering of N

values takes time OpN logNq. Step 2 has both time and space complexities of OpNq. The

calculation of the metric for each new binary vector has fixed cost Op1q, since the amount

of computations required are proportional to D which in this case is equal to 2, resulting

in OpDq. Fixed are also the cost and memory requirements of Step 3, while Step 4 and 5

have time complexity OpNq since only one entry is altered during each iteration (during

both steps) and the process of writing the winners is Op1q. Note that step 5. adds the

need for OpNq space to store an extra vector of size Nˆ1, since we must have the original

sFpNq`1 to make the iterations a second time. Step 6. adds no extra space complexity

since the iterative changes take place on a single vector. So, our algorithm returns the

optimal candidate vector with time complexity OpN logNq using OpNq space.

4.2 The rank-3 case

The solution for the D “ 3 case follows the same basic principles as the one in the previous

section, though some key differences do arise. Here we consider an input of a matrix V of

size Nˆ3. The hypersurfaces defined in (3.18) are curves on D1ˆD2, where D1
∆
“ r´π

2 ,
π
2 s

and D2
∆
“ r´π

2 ,
π
2 q. Figure 3.1 that follows is an example that will help illustrate the above

and serve as a reference in some aspects of the analysis that follows. Note that in this

example we have matrix V of size 5ˆ 3.

The N “ 5 curves partition D1 ˆD2 into
´

NpN`1q
2 ` 1

¯

“ 16 cells that correspond to

the same amount of candidate binary vectors. Each curve corresponds to a φnpφ2:D´1q
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Figure 4.1: Partitioning of D1 ˆD2 into regions

which for D “ 3 is defined as

φnpφ2q
∆
“ tan´1

˜

´
Vn,2 sinpφ2q ` Vn,3 cospφ2q

Vn,1

¸

P

˜

´
π

2
,
π

2

¸

(4.1)

and as with the rank-2 case, partitions D1 ˆD2 into two regions, each of them associated

with a unique snpφ1, φ2q “ ˘1. Searching among the
´

NpN`1q
2 ` 1

¯

binary vectors will

yield the one that maximises the quadratic form.

The first and most important difference we perceive is that in the 2-dimensional space

is that the hypersurfaces φnpφ2q are now curves (instead of points) that intersect. [41]

shows that each pair φlpφ2q, φjpφ2q, l ‰ j intersect only once and that the solution to

φlpφ2q “ φjpφ2q is given by

φ2pl, jq
∆
“ tan´1

˜

´
Vl,1Vj,3 ´ Vj,1Vl,3
Vl,1Vj,2 ´ Vj,1Vl,2

¸

. (4.2)

In addition one of the following statements is true.

1. If φlpφ2q ă φjpφ2q for φ2 P r´
π
2 ,φ2pl, jqq then φlpφ2q ą φjpφ2q for φ2 P pφ2pl, jq,

π
2 q.

2. If φlpφ2q ą φjpφ2q for φ2 P r´
π
2 ,φ2pl, jqq then φlpφ2q ă φjpφ2q for φ2 P pφ2pl, jq,

π
2 q.

We collect all coordinate θ of the intersections between lines into the set

Θ
∆
“ tθ P D2 : D j “ 1, 2, . . . , N, k “ 1, 2, . . . , N, j ‰ k, such that θ “ φ2pl, jqu

and note that |Θ| ď
`

N
2

˘

“
NpN´1q

2 . In [2] the authors have shown that each intersection

θ is the leading point for the cell that lies above it, as we move in D2 from ´π
2 to π

2 . Note
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also that the binary vector of the cell it describes (i.e. the cell above) is the same as the

one of the cell below, altering only the sign of the entries slpφ1, φ2q and sjpφ1, φ2q [41].

It follows from the above that provided we have a base of N ` 1 binary vectors that

characterise the cells for θ P r´π
2 , θ1q

1, if we sort all elements of Θ in ascending order and

visit each intersection we will produce the candidate binary vectors that characterise all

the cells in D1ˆD2. We continue by presenting the pseudo-code (and its analysis) for the

algorithm that solves the D “ 3 case.

Pseudo-code 2.

1. Create and sort by ascending order all elements θ in set Θ.

2. Execute the rank-2 case for φ2 “ ´
π
2 , creating the base of N+1 candidate vectors.

3. Produce the N ` 1 metrics for the above candidates and set the one with the

highest value as the winner (optimal).

4. For i “ Θp1q : Θpendq do:

• Find the common cell between the intersecting curves.

• Locate the vector in the base that is connected to that cell and create the

new candidate vector si.

• Calculate the metrici of the new vector and compare it with winner.

If metrici ą winning metric:

winning metric “ metrici

winner “ i.

• Update the associations (see below).

5. For i “ Θp1q : Θpwinnerq do:

• Find the common cell and create the new candidate vector si.

• Update the associations.

6. Return spwinnerq as the optimal candidate.

As can be seen, the concepts of the solution to the rank-2 case remain, but as we will

elaborate below, a series of new challenges (and solutions) arise. The procedure behind

1θ1 is the element of Θ with the smallest value, i.e. the first intersection
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Step 1. is the same as in the D “ 2 case though this time we need to sort the intersections

developed by (4.2). After this is done we must construct our base of N ` 1 binary vectors

so as to have the necessary build blocks to implement the changes brought forth by the

intersecting of the curves φnpφ2q’s. To achieve this in Step 2, we modify the algorithm

used in the previous case (D “ 2) and execute it on the 1-dimensional space that arises

when we set φ2 “ ´
π
2 . This enables us to produce and store all the candidates that arise,

along with their respective metrics. We also need to save the position of the winning

metric.

Recall now that in the D “ 2 case the changes produced by the points φn were serial,

i.e. by moving along Φ1 all points would be visited in a successive fashion by the iterative

process. This meant that all changes would be produced on one binary vector(the latest

one produced), thus only one needed to be saved. Unfortunately the introduction the

second dimension D2 nullifies the certainty of serial changes. In layman’s terms, we do not

know which of the N ` 1 candidates of our base will by affected by the changes produced

at the θ intersection. This also renders the determining of the optimal vector problematic.

The solution to this is two-fold and is a key process of our algorithm for D ą 2.

In order to identify which cell, and in turn candidate vector, was to be affected we

created an association of “adjacency” between two sets: the curves φnpφ2q and the cells

that appear in D1 ˆ D2. In the D “ 3 case exactly two cells are adjacent to any curve

φnpφ2q for any φ2 P D2.

Visiting an intersection

Let us now return to Figure 4.1 and focus on a single intersection, in this scenario between

curves c2 and c3. We arbitrary number the cells 4, 5, 6 and 5’. As we can see φ2pφ2q

(curve c2) is associated to cell 4 and cell 5 while φ2pφ2q (curve c3) with cell 5 and cell 6,

for any θ ă φ2pl, jq (i.e below the intersection). As we move along D2 from ´π
2 towards π

2

and cross the intersection, the common cell 5 gives its place to 5’ and the associations of

lines and cells flip.

For any θ ą φ2pl, jq, c2 is now associated with cells 5’ and 6, while c3 with 4 and 5’. In

other words the common cell (5) is the one that is replaced by the new one, while the other

two cells exchange associations. Using this knowledge, we can successfully create the new

candidate vector linked with the newly created area 5’ and correctly depict the associations

of curves and cells between any two intersections. One last step is now needed to identify

the position of the candidate that needs to be altered in the base of N `1 vectors in order
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Figure 4.2: A closer look at an intersection

to produce the new one.

We create a vector of size 1ˆ
´

NpN`1q
2 ` 1

¯

and store pointers to the base cells in the

first N ` 1 entries. In Step 4., for each iteration i over all the intersections θ we visit, we

identify the common cell and place in the pN ` 1q ` i-th entry the pointer to the position

of the “original” one in the base. We then alter the binary vector placed there by changing

the sign of the entries denoted by the two curves that intersect. In doing this, we have a

structure that correctly describes the candidates after each intersection θ we visit. Finally

we calculate (and compare to the winning one) the new metric based on the changes made

to the previous one. Similarly to the rank-2 case the new metric is calculated by adding

twice the values VT
l,1:Dsl and VT

j,1:Dsj to the previous one, where l, j the indexes of the

curves cl and cj that intersect. If the new metric is larger, we save the iteration as the

winner.

In Step 5. we follow the same iterative procedure, this time only producing the next

binary vector up until the iteration we have saved as the winner in Step 4. Finally we

return the last one produced as the optimal one.

Complexity Analysis

As with the previous case, Step 1. is the one that defines the overall complexity of the

algorithm. Recall that |Θ| ď
`

N
2

˘

“
NpN´1q

2 . This means that Step 1. has an overall

complexity OpN2logNq while the size of Θ gives us a space requirement of OpN2q. Step
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Figure 4.3: Partitioning of D1 ˆD2 ˆD3 into regions

2. introduces the structure with the largest memory requirement. The base we construct

consists of N ` 1 binary vectors of size N ˆ 1 each, yielding an overall space requirement

of OpN2q while writing the entries can be completed in time of the same complexity.

The vector that hold the metrics in Step 3. can be constructed in time OpNq and has a

memory requirement of the same complexity. Steps 4. and 5. run for OpN2q iterations

with calculations of fixed complexity Op1q while the vector that holds the pointers to

the base candidates has time and space requirements of OpN2q. Writing the changes of

association is done in trivial time, while no additional memory is needed throughout these

operations. The computation of the metrics is proportional to the rank D “ 3 so are

completed in fixed OpDq time.

This means that our approach operates within the theoretic bounds set in chapter 2

with time complexity OpND´1logNq and space complexity of OpND´1q.

4.3 The rank-4 case

In this section we consider the case where rank(A) is D “ 4. The idea of associating

hypersurfaces and cells brought forth in the previous section are utilised once more, while

the base of candidate vectors we need as the starting point of our algorithm is now produced

by executing the procedure for the D “ 3 case on the bottom of the 3-dimensional space,

i.e. for φ3 “ ´π
2 . The rank-3 algorithm executed there has also been modified with

additions that will provide necessary data for the current procedure.

Figure 4.3 above demonstrates the partition of the 3-dimensional space described by

D1 ˆ D2 ˆ D3 where D1,D2,D3 P Φ3. A matrix V of size 5 ˆ 4 was used to produce the
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figure.

Each φnpφ2,φ3q is given by

φnpφ2,φ3q
∆
“ tan´1

˜

´
Vn,2 sinpφ2q ` Vn,3 cospφ2q sinpφ3q ` Vn,4 cospφ2q cospφ3q

Vn,1

¸

(4.3)

and defines a surface (as seen in Figure 4.3) that partitions the 3-dimensional space into

two regions with opposite snpφ1,φ2,φ3q “ ˘1. Following the reasoning used in the rank-3

case, we will move along φ3 from ´π
2 to π

2 searching for intersections of surfaces. In the

D “ 4 case though, only intersections of three surfaces at a time will produce a new cell

and thus a new candidate binary vector. The authors in [2] show that these intersections

are given by the spherical coordinates of the zero right singular vector of VID´1
where ID´1

denotes the subset of D ´ 1 indices that correspond to the hypersurfaces that intersect.

The set Θ that contains all coordinates θ of the triple intersection is of size |Θ| ď
`

N
3

˘

“
NpN´1qpN´2q

6 . Therefore provided we construct a base including all the candidate vectors

that exist for φ3 “ ´
π
2 , then by visiting each triple intersection and computing the new

candidate vector that occurs we only need to search among NpN2`5q
6 ` 1 candidates to

obtain the optimal one.

Visiting an intersection

In order to better explain the concepts of the process followed, we present figure 4.4 above

that contains two plots. These are two slices of the 3-dimensional space and depict the

space D1ˆD2 for φ3 “ φ3pl, j, kq´ e and φ3 “ φ3pl, j, kq` e, i.e. before and after a triple

intersection.

As D has grown, it is no longer enough to use associations between curves and cells to

locate the common one, in order to replace it with the new one that is produced. So we
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introduce the concept of the node which denotes the intersections between two surfaces

φnpφ2,φ3q. Since the triple intersections concern three surfaces, it follows that the number

of nodes produced by any single one is #nodes “
`

3
2

˘

“ 3. Also from the definition of

φnpφ2,φ3q we conclude that each node is associated with four cells.2 This in turn leads

us to the necessary additions we need to make to the algorithm use for the D “ 3 case.

We introduce two new structures into the design of the rank-3 case. The first is a

square matrix of size N ˆN and keeps the associations between any two curves and the

node they produce, while the second is used to keep track of the associations of nodes and

cells. We note at this point, that while the first structure once produced does not change,

the associations between nodes and cells which are saved in the latter do, giving it a

very dynamic nature. The process of initialising these structures is quite straightforward.

During the execution of the rank-3 algorithm at each intersection we visit, we store in

the appropriate entry of the former an index that corresponds to the intersection we are

visiting, and at the corresponding index of the latter we store the cells that are associated

with that intersection: the common one, the two “independent” ones and the new cell

that is created. In doing so we form a link between hypersurfaces, nodes and cells.

Returning to figure 4.4 let us now present in pseudo-code form what procedure we

follow once we visit a triple intersection to correctly compute the changes that occur.

Pseudo-code 3.

1. Retrieve the 3 nodes that are involved in the triple intersection.

2. For each node i=1:3 do:

• In the association matrix do:

– Replace common cell with the newly created one.

– Exchange the rest associations (see below).

We identify the nodes we need to examine by knowing the three surfaces that intersect

and looking up their relations to nodes in the first structure created above. Step 2. dictates

we identify the common cell in the surface-to-cell associations. A visualisation of this can

be seen in figure 4.4. The common cell (here number 7), lies “between” nodes a, b and

c which means it is associated with all three nodes. The last step of the process tells us

2Each φnpφ2,φ3q divides the n-dimensional space into two distinct regions.
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to update the associations so that when we reach the next triple intersection the correct

ones will be stored.

Recall that in the D “ 3 case this meant “exchanging” the associations of the areas

that were only related to a single curve. In the current case we need a two step process

in order to depict the correct associations after the intersection: remove the common cell

and place the newly created one in its place and link up each node with all three cells it

was not associated previously. This results in the following exchange for the example in

figure 4.4:

Before After

a Ñ 1, 2, 6, 7. a Ñ 3, 4, 5, 7’.

b Ñ 2, 3, 4, 7. b Ñ 1, 5, 6, 7’.

c Ñ 4, 5, 6, 7. c Ñ 1, 2, 3, 7’.

Let us now return to the problem of finding the optimal candidate. After the exchange

presented above is executed, the only thing that remains to be done is the correct iden-

tification and alteration of the candidate vector in our base, so that it expresses the new

vector that is created. As with the respective step in the rank-3 case we create a vector of

size 1ˆ NpN2`5q
2 `1 and store pointers to the candidates in the base in the first NpN`1q

2 `1.

Then by each time updating the correct entry with the pointer to the appropriate base

candidate we have a structure that accurately represent the candidate vectors after each

triple intersection. Calculating the metric of each new candidate is achieved the same way

it was in the previous case. This time we need to add 2 ˚VT
1:DsID´1

(three quantities),

each one representing the change of the entry sl given by the index of the surfaces that

intersect.

We present in the form of pseudo-code the complete process for solving the rank-4

case.

Pseudo-code 4.

1. Create and sort by ascending order all triple intersections θ in set Θ.

2. Execute the rank-3 case for φ3 “ ´
π
2 , creating the candidate vector base.

3. Produce and store all metrics for the base and set the one with the highest value

as the winner (optimal).

4. For i “ Θp1q : Θpendq do:
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• Find the common cell between the intersecting surfaces.

• Locate the vector in the base that is connected to the common cell and

create the new candidate vector si.

• Calculate its metrici and compare it with winner.

If metrici ą winning metric:

winning metric “ metrici

winner “ i.

• Run pseudo-code 3 in order to update associations.

5. For i “ Θp1q : Θpwinnerq do:

• Find the common cell and create the new candidate vector si.

• Run pseudo-code 3 in order to update associations.

6. Return spwinnerq as the optimal candidate.

Complexity Analysis

The steps presented in pseudo-code 2 for the D “ 3 case are the same we follow in our

approach for the solution of the D “ 4 one, so we use the same notation for our analysis

here. Step 1., the computation and sorting of the triple intersections is accomplished in

time OpN3logNq, since |Θ| is of size OpN3q. In Step 2. we execute the algorithm for

the rank-3 case on the base (φ3 “ ´π
2 ) of our 3-dimensional space to obtain a base of

candidate vectors. This structure consists of
´

NpN`1q
2 ` 1

¯

candidates of size 1ˆN and

requires both time and space complexities of OpN3q to fill.

Parallel to this we construct the vector saving the metrics of the base candidates. From

the size of the set |Θrank´3| (recall this is OpN2q) and the fact that the computations

required to determine a metric are of fixed OpDq complexity, this step is completed in

OpN2q while requiring space of the same amount. Again the amount of iterations in steps

4. and 5. is given by the size of Θ, which means that we complete OpN3q iterations with

a series of calculations (e.g. writing the new associations) with computational complexity

of Op1q. Finally we note again that the computation of the metric is fixed (proportional

to D “ 4) and thus costs OpDq for each iteration, not altering the overall cost of the

procedure. The iterations in step 5. cost even less since only the new candidate is produced

up until the one denoted as the winner.
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The above shows that we have successfully created an algorithm that solves (1.6) for a

rank D “ 4 matrix in time OpN3logNq using space of OpN3q. Aggregating all the results

brought forth by our proposal of a serial algorithm utilising spherical coordinates, we have

shown that our method is executed within the theoretic bounds of OpND´1logNq and

OpND´1q for time and space complexity respectively.

4.4 Expanding for any rank-D

In this section we will set the foundations for a serial algorithm that solves the general case

D ě 2. The procedure of calculating the intersections and sorting them in ascending order

will, of course, remain the same. This is also the most costly step of the algorithm since

the set Θ that holds all the intersections of will always be of size
`

N
D´1

˘

, i.e. OpND´1q,

thus their sorting operation yields a complexity of OpND´1logNq. Also, the execution

of the rank D ´ 1 case at the base of the respective problem does not effect the overall

complexity, as it always has complexity of OpND´2logNq.

Moving on, the the double iteration over all intersections also remains unaltered. One

new candidate binary vector will occur for each new cell that is created by an intersection

and it will be calculated by changing the sign of the entries that correspond to the D ´ 1

hypersurfaces that intersect. These changes are also responsible for the altering of the

previous metric in order to gain the new one. Following the reasoning in the previous

chapters we need to add the D ´ 1 values 2 ˚ snVn,1:D of the respective intersecting

hypersurfaces.

All that remains, is to describe a generalised way of creating the necessary framework

to save and correctly update the associations between the types describing the intersections

(e.g. points, curves, nodes etc.) and the cells that surround them. By visiting the cases

2, 3 and 4 that we previously analysed we see a pattern forming. In the rank-2 scenario,

the hypersurfaces are points on a 1-dimensional plane while for the rank-3 case they form

curves. The intersection is between D´1 “ 2 curves each associated with two cells, one of

which they have in common. Increasing the rank to the D “ 4 case, our analysis showed

that we needed to define D´1 “ 3 nodes which take part in the intersection. These nodes

fully describe a 2-dimensional region which is the new cell that is created. To sum up a

new candidate vector is created as follows:

• Rank D “ 2 a single point divides the space into two discrete regions.

• Rank D “ 3 two curves create a single point, the intersection which produces a new
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vector.

• Rank D “ 4 three nodes (i.e. intersections above) create an area which is responsible

for the new vector.

If we continue expanding, it follows that for D “ 5 four areas, i.e. the ones defined

in the D “ 4 case, will surround a 3-dimensional region (the new cell) directly associated

with the new candidate. By observing the above, we see that for any rank D, we have D´1

intersecting hypersurfaces that create D ´ 2 structures (or types) that are immediately

correlated with the resulting intersection. Also note that each of these structures describes

one whole intersection of the D ´ 1 case. By finding the common area and following the

procedures in the D “ 3 and D “ 4 cases for “exchanging” associations between the

nodes, areas, 3-dimensional regions etc. one has all the tools one needs for the creation of

the algorithm.

Below we present a pseudo-code which could act as a basis for the construction of the

code that solved the general rank-D case.

Pseudo-code 5.

1. Create and sort by ascending order all triple intersections θ in set Θ.

2. Execute the rank-pD ´ 1q case for φD´1 “ ´π
2 , creating the candidate vector

base.

3. Produce and store all metrics associated with the base vectors,compare to find

and set the one with the highest value as the winner.

4. For i “ Θp1q : Θpendq do:

• Find the common cell between the D ´ 1 intersecting hypersurfaces.

• Visit the vector in the base that is connected to the common cell and create

the new candidate vector si by flipping the D´ 1 signs that correspond to

the intersecting hypersurfaces.

• Calculate its metrici and compare it with winner.

If metrici ą winning metric:

winning metric “ metrici

winner “ i.

• For all D ´ 2 structures/types do:
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– Replace the common area with the newly created one.

– “Exchange” the rest associations.

5. For i “ Θp1q : Θpwinnerq do:

• Find the common cell and create the new candidate vector si.

• For all D ´ 2 structures/types do:

– Replace the common area with the newly created one.

– “Exchange” the rest associations.

6. Return spwinnerq as the optimal candidate.

If all the above observations are taken into account, then future studies could focus

on the creation of a unified serial procedure for the solution of any rankpAq “ D ě 2

case. Another focus would be the optimisation of certain aspects of the algorithm, in

order to eliminate any unnecessary space or time redundancies in the procedures involving

secondary variables.
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Chapter 5

A recursive approach

In this chapter we take a closer look at the algorithm proposed in [44]. The authors

propose a solution, taking a recursive approach to solving (1.6). In the following we in-

vestigate this solution by analysing the proposed algorithm and study the complexities of

each step in order to confirm the short analysis presented in chapter 2.

5.1 Theoretic Developments

Using the matrix V defined in chapter 1 we can define N hyperplanes in RD : Hj “ ta P

RD|Vj ¨ a “
řD
i“1 aivij “ 0u, j P t1, 2, . . . , Nu. Notice now that there exists a one-to-one

correspondence between the vectors in t´1, 1uN for which there exists a vector a P RD

such that sj “ signp
řD
i“1 aivijq, with

řD
i“1 aivij ‰ 0 @ j P t1, 2, . . . , Nu and the cells in

(i.e. full dimensional regions) in RD of the hyperplane arrangement ApHq defined by the

hyperplanes pHj)
N
j“1. This is easier to grasp if we interpret the sign vector s as the position

vector of its corresponding cell with respect to an orientation of the space by the vector

Vj . The cell is above the hyperplane Hj iff sj ą 0 and under otherwise. For a general

arrangement in RD that is defined by L hyperplanes, the number of cells is upper-bound

by
řD
i“0

`

N
i

˘

, which is OpNDq. Since in our case, all hyperplanes contain the origin (i.e.

the arrangement is central), this is reduced to OpND´1q [39].

Lets start by defining I` “ ti P t1, . . . , Nu|si “ 1u and I´ “ t1, . . . , NuzI`. A vector

s P t´1, 1uN will correspond to a polyhedron that is defined by ta P RD|Vi ¨a ď 0, @ i P I´

and Vi ¨ a ě 0 @ i P I`. Recall that the cells in ApHq correspond exactly to the full

dimensional polyhedra of the latter type. The vectors sj that correspond to the cells

are defined in the following manner: starting with an initial vector s0 P t´1, 1uN and L
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a chained list of indexes Ind P t1, . . . , Nu that correspond to the variables si that are

multiplied by -1, we use the first subset of indices Ind in L and create s̄ P t´1, 1uN such

that Ind “ ti P t1, 2, . . . , Nu| si ‰ s̄iu. We then replace s0 with s̄ and iterating over all

the elements in L, we create a set of vectors in t´1, 1uN that fully describe the polyhedra

in ApHq mentioned above.

5.2 Algorithmic Developments

Two procedures were developed in [44]. The first deals with the case D “ 2 while the

second with the general case for D ě 2 utilising the first as a base.

The case D “ 2

We start by observing that since the arrangement is central, if a vector s P t´1, 1uN

represents a cell, so does the vector ´s. Thus, in order to determine all vectors associated

with cells it suffices to know only the ones that are on one side of the hyperplane, since

the rest can be produced by the component-wise opposite vectors.

Lets now assume that we have an N ˆ 2 matrix V and we want to determine the

full dimensional polyhedra in the arrangement ApHq they define. We start by finding

those that are above the hyperplane H1, by considering the arrangement that is defined

by H2, . . . HN in the affine subspace H 11 “ ta P R2|V1 ¨ a “ 1u, which is of dimension 1.

The cells of this arrangement have extremities that are either unbounded or correspond

to an intersection H 11 XHj for some j P t2, . . . , Nu.

These intersection are now determined as follows: by using the equation that defines

H 11 (and assume w.l.o.g. that v2,1 ‰ 0) we eliminate the variable a2 from the system of

equations Vj ¨ a “ 0, thus obtaining a new system V j ¨ a1 “ bj where V j , bj P R2 and

j P t2, . . . , Nu. We then create a new set F “
!

p
bj
V j
, jq | j P t2, . . . , Nu

)

. This is properly

defines since the assumption of non-collinearity of rows implies that V j ‰ 0.

Now we order the values in F and we note that these define N intervals in R. Note

also that any cell in ApHq that is above H1 has a point a, with a1 belonging to any such

interval. Assume that Int is an interval. Then for any a1 P Int we either have V j ¨ a ă 0

or V j ¨a ą 0 for any j P t2, . . . , Nu and this relation remains unchanging in Int. It follows

that Int corresponds to a cell in H 11 and the converse also holds.

Algorithmically speaking, after ordering the elements of F by increasing value we

proceed with the following. First we create the initial vector s0 that corresponds to the

interval
´

´ inf,min
bj
V j

¯

by setting:
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• s0
1 “ 1

• s0
j “ ´signpV jq @ j P t2, . . . , Nu.

The final step is the creation of the chained list L so that all cells will be represented. The

first elements of the lists are the N´1 indexes j of the ordered set F . We add the element

t1, . . . , Nu to the end of the list L. This will create a binary vector that represents the

first cell on the opposite side of H 11. Finally we add to the list, all the elements of L except

the last one (i.e. t1, . . . , Nu) but in reverse order. This will ensure that we will crate the

binary vectors necessary to represent all cells in the arrangement ApHq.

The case D ě 2

The basic principle behind the procedure for D ě 2 is the following: for an integer

q P t1, . . . , Nu, AqpHq is the arrangement in the subspace ta P RD | Vq ¨ a “ 0u that is

defined by the hyperplanes (in RD´1) Hj XHq | j P t1, . . . , Nu, j ‰ qu. Any cell (a region

of dimension D-1) in AqpHq is a facet of two cells c1 and c2 of ApHq, created in the D “ 2

case. We conclude that since each cell of ApHq intersects at least one hyperplane Hq, by

varying the value of q we will produce all cells in the arrangement at least once.

The proposed algorithm recursively calls itself while reducing the size (and thus the

rank D) of the input matrix V until it reaches the case where D “ 2. Then it calls the

procedure generated above and builds upon the the results returned. A more in-depth

look at the algorithm reveals the following.

If the rank of the input matrix V is 2, then apply the procedure presented above. Else

for each i P t1, . . . , Nu we express the system of equations Vj ¨ a “ 0, j P t1, . . . , Nu, j ‰

i, a P RDu in the subspace Hi “ ta P RD| Vi ¨ a “ 0u. By doing this, removing row i and

some column, we result in a new system of equations V ¨ a “ 0 where V P RpN´1qˆpD´1q

and a P RD´1. We then make a recursive call to the procedure with the matrix V as the

input. Each of the equations of the new system V ¨ a “ 0 defines a hyperplane of the

subspace Hi. The recursive calls result in a description ps̄0
i ,Liq of the cells in Hi that are

induced by the hyperplanes Hi XHj , i ‰ j.

After the description ps̄0
i ,Liq has been produced, we must express s̄0

i in RN by adding

one entry set to 1. This is placed according to the index i (removed from V when producing

V using the equation defining Hi). The next step is to edit the linked list Li so as to

represent the changes. For each subset of indexes Ind that is represented in Li we do the

following:
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• Increment by one all indices in Ind that are greater than or equal to i.

• Insert a set of indexes containing only tiu before Ind.

The addition of a singleton tiu after each element that is already in the list representing

a cell c in Hi, is used to create two cells: one above and another below Hi in the original

space, each of them having c as a facet. Moreover, because the description of cells in

Hi corresponds to a set of vectors in RD´1 we are required to adjust them for correct

representation in RD by adding one additional entry corresponding to the i-th component

of the description vectors in the original space. Last but not least we must adjust the

existing indices as follows: if j ă i then the j-th row of the system V ¨ a “ 0 corresponds

to the j-th hyperplane of the original system V ¨ a “ 0. But if j ą i then the j-th row of

V ¨ a “ 0 corresponds to the j ` 1-th row of the original system. Thus, indices greater of

equal to i in the list Li must be incremented by one.

The next steps involve the unification of all ps̄0
i ,Liq into a single output. Firstly we

need to add to the end of each list Li a set Ind that contains the positions at which the

last position vector of ps̄0
i ,Liq differs from the vector s̄0

i`1. To achieve this we must iterate

over all elements of all sets Ind in Li in order to achieve the production of the last position

vectors.

After this modification has been done for all i P t1, . . . , N ´ 1u we can set s0 “ s0
1 and

concatenate L1, . . . ,LN (in this order) into the single list LD so that all position vectors

that were in separate lists, are now in a single output. The procedure then returns ps̄0,LDq

as a complete representation of the set that contains the solution to the problem.

After obtaining ps̄0,LDq procuring sopt is a matter of iterating over all elements in LD

and calculating the metric produced by the newly created position vectors. The method

followed is the same presented in our approach in chapter 3.

Complexity Analysis

In order to verify the time and space complexity costs, as well as the size of the set |S|

presented in chapter 2, an analysis of the algorithm is presented below. For D “ 2 the

total number of indices that are in the output list of any call to the procedure is OpNq.

Also the total space required for the creation of the sets F and L is OpNq since their size

is proportional to N .

Moving on to the procedure for D ě 2 we can point out that the number of indices

contained in each list Li, increases by |Li| ` 1, with |Li| is the total number of sets of

indices contained in Li. This is OpND´2q and by concatenating the lists in order to
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produce LD we result in having a list containing OpND´1q indices. Another point we

must pay attention to in the search for the entries that differ between the last position

vector of ps̄0
i ,Liq and s̄0

i`1. By utilising the space needed for a single position vector and

iterating over the indexes in Li while applying the necessary changes on s̄0
i , we manage to

keep the space complexity within the set boundaries.

As for the time complexity of the procedure we deduce the following: in the procedure

for the case D “ 2 expressing each equation Vj ¨ a “ 0 in the affine subspace H 11 “ ta P

R2|V1 ¨a “ 1u and creating the initial vector s0 needs OpNq time. The addition of the sets

of indexes to L at the end of the procedure also needs OpNq time, which can be deduced

from the space complexity analysis above. The most costly part of the procedure is the

creation and ordering of the set F . For each j P t2, . . . , Nu we compute the values
bj
V j

and

order them. The latter takes times OpN logNq.

In the case where D ě 2 each recursive call take OpND´2logNq time while from the

space complexity analysis above we recall that the total number of indices in any list Li

is OpND´2q. By utilising the procedure for all i “ t1, . . . , Nu we conclude that the total

time needed for the creation of the set ps0,LDq and the returning of sopt is OpND´1logNq.
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Chapter 6

Comparisons

The focus of this chapter is the comparison of the actual time and space complexities

of the serial algorithm that utilises auxiliary spherical coordinates we developed and the

one proposed in [44] and described in the previous chapter. Recall in chapter 2 the table

that presents the summary of approaches for the solution of (1.6). By looking at the

table we see that the two approaches have the same theoretic time and space complexities,

OpND´1logNq and OpND´1q respectively. Furthermore, both approached produce a set

of candidate binary vectors |S| of size OpND´1q.

Despite the same theoretic complexities, differences do arise when the procedures are

simulated. The algorithms were coded in MATLAB and simulated in the same environ-

ment, while the computations were performed using double precision. The simulations

were run on a 2.3 GHz Intel Core i5 with 8GB of RAM. In the diagrams that follow we

illustrate the actual time and space complexities of the two procedures for ranks 2, 3 and

4 as N grows.

The figures below are plotted using a logarithmic axis y (vertical axis). In all figures

in addition to plotting the comparison data, we also include as a dotted line the respective

theoretic bound, so as to confirm that our algorithmic data follows the same slope as N

grows.

In the first set of figures we present the space complexities of the the two procedures and

are able to draw some interesting conclusions. The first thing we must note is that both

approaches do follow the slope of the theoretic bound OpND´1q thus also proving their

practical adherence to it. Secondly we clearly see that the serial algorithm using auxiliary

coordinates we developed, has a smaller memory requirement that the one proposed in

[44]. Focusing on this and by taking a closer look at the results for small cases of N , in

the rank 3 and especially in the rank 4 results, we can view another interesting finding.
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Due to a larger amount of secondary variables needed in our approach, we see that our

proposal starts with a slightly larger memory requirement (i.e. N – 5 for the rank 3 and

N – 7 for the rank 4 case). This is quickly overshadowed though by the overall space

requirements of the procedures as can be seen as N increases.

The next set of figures presents the actual time complexities of the two procedures.

As with the case of the space complexity plots above, we also plot the theoretic bound

OpND´1logNq (as a dotted line) to study their adherence to it.
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The situation here is more clear-cut. Both approaches follow the curve produced by the

theoretic bound but our algorithm is consistently below the recursive approach one. This

means that less overall calculations are used in our serial approach utilising the auxiliary

spherical coordinates.

An explanation for the appearance of the figures above can be sought in the size |S|

of the set of binary vectors each algorithm produces. While [44] even for the rank-2 case

produces a set whose size is substantially larger than N (i.e. 2N) the size of the set S,

only gets increasingly larger (bound by OpND´1q) as D increases. Recall that for every

call of the recursive function the size of each Li is increased by |Li|`1. On the other hand

our implementation produces N ` 1 binary vector candidates for the D “ 2 case while for

D “ 3 and D “ 4 we have a total of
´

NpN`1q
2 ` 1

¯

and
´

NpN2`5q
6 ` 1

¯

respectively. We

note that the multiplier of the ND´1-th element always has a divisor, so it follows that

the size |S| of our candidates set is always a fraction of ND´1 and thus our set smaller.

This, in turn, leads to a smaller amount of computations being needed, as can be seen in

the figures above. �
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