
1

Technical University of Crete

Electronic and Computer Engineering Department

Microprocessor & Hardware Laboratory

Diploma Thesis

Implementation of WebP algorithm on FPGA

Author: Committee:

Foivos Anastasopoulos Supervisor: Associate Professor

 Ioannis Papaefstathiou

 Professor

 Dionisios Pnevmatikatos

 Professor

 Michalis Zervakis

Chania, 2014

2

Abstract

Image processing has become a crucial part of current technology status quo, being used in

many fields such as computer vision, computer graphics and other . In modern sciences and

technologies, images also gain much broader scopes due to the ever growing importance of

scientific visualization . Complex scenarios of data processing in a wide variety of scientific fields

indicate the necessity to visualize large data structures in a most effective way.

Considering the massive growth of internet , both as a scientific and industrial field, image

processing is critical to the efforts of software developers as great part of information provided in

the multimedia based computing industry contains some kind of image form. Think about all the

images , videos, etc a person is brought upon in an average internet session every day, and you

can estimate the vitality of image processing algorithms in the effort to make web faster and

increase our productivity.

In this thesis WebP was studied , a new image format that provides lossless and lossy compression

for images on the web , aiming to increase its performance. Focusing on the more frequently

used lossy compression that VP8 encoder facilitates, the algorithm's hotspots were analyzed and

the critical functions were implemented in hardware using Xilinx's Vivado HLS(High Level

Synthesis) . This tool's convenience of use compared to manual hardware design made it possible

to quickly implement various architectures and designs for the hardware accelerated modules

and then compare them to choose the most optimal solution. Finally, design space exploration

was performed to evaluate the resources used and assess the system’s performance.

3

List of Figures

Figure 1.1 Image Processing Related Fields ... 9

Figure 1.2 Abstract view of basic FPGA architecture, taken and modified from 10

Figure 1.3 Structure of a DSP48 Block ... 12

Figure 1.4 Prototyping priorities listed in the 2012 CDT survey .. 13

Figure 2.1 SSIM vs. BPP for kodim19.png from the Kodak dataset .. 17

Figure 2. 2 SSIM vs. BPP for Lenna .. 17

Figure 2.3 SSIM vs. BPP for RGB_OR_1200x1200_061.png from the Tecnick dataset 18

Figure 2.4 Overview of VP8 Encoding Process ... 21

Figure 2.5 VP8 Macroblock Coding .. 22

Figure 2.6 WebP's lossy compression basic stages ... 23

Figure 2.7WebP lossy compression prediction modes .. 24

Figure 4.1 WebP function call diagram ... 28

Figure 4.2 Hardware/Software Partitioning ... 34

Figure 4.3 Modules Schematic Description ... 35

Figure 5.1 Abstraction levels ... 37

Figure 5.2 Stages of synthesis .. 38

Figure 5.3 High-Level Synthesis use model ... 40

Figure 5.4 Co-simulation design Wrapper overview .. 41

Figure 5.5 Usable Clock Period and Clock Uncertainty ... 42

Figure 6.1 Zynq ZC706 Evaluation Board Block Diagram ... 45

Figure 7.1 System high-level architecture ... 61

file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981529
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981532
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981533
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981534
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981535
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981536
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981538
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981539
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981543
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981544
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981545
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981546
file:///C:/Users/FOIVOS/Downloads/ANASTASOPOULOS_Thesis_v4444.docx%23_Toc393981547

4

List of Tables

Table 2.1 Average file size for WebP /JPEG for the same SSIM index corresponding to JPEG Q=75

 .. 16

Table 2.2 Average bits-per-pixel for the three corpora using the different compression methods. ... 19

Table 2.3 Average encoding time for the compression corpora, and for different compression

methods. ... 19

Table 2.4Average decoding time for the three corpora for image files that are compressed with

different methods and settings. .. 19

Table 4.1 WebP critical functions execution time percentage .. 299

Table 4.2 Selected for HW acceleration functions execution time percentage 30

Table 4.3 Functions Software Execution Time .. 30

Table 6.1.1 Luma4x4_PredModes Optimization Directives .. 499

Table 6.1.2 Luma4x4_PredModes clock timing (ns) ... 49

Table 6.1.3 Luma4x4_PredModes design latency (clock cycles) .. 50

Table 6.1.4 Luma4x4_PredModes instantiated functions latency .. 50

Table 6.1.5 Pred_Modes4_Loop latency……………………………………………………………50

Table 6.1.6 Luma4x4_PredModes instantiated functions resource usage…………………………..51

Table 6.2.1 Luma16x16_PredModes Optimization Directives……………………………………..53

Table 6.2.2 Luma16x16_PredModes clock timing (ns)…………………………………………….53

Table 6.2.3 Luma16x16_PredModes design latency (clock cycles)……………………………….54

Table 6.2.4 Luma16x16_PredModes instantiated functions latency………………………………54

Table 6.2.5 Luma16x16_PredModes loops latency…………………………………………………54

Table 6.2.6 Luma16x16_PredModes instantiated functions resource usage………………………..54

Table 6.3.1 Chroma_PredModes Optimization Directives………………………………………… 56

Table 6.3.2 Chroma_PredModes clock timing (ns)………………………………………………..56

Table 6.3.3 Chroma_PredModes design latency (clock cycles)………………………………….. 57

Table 6.3.4 Chroma_PredModes instantiated functions latency…………………………………...57

Table 6.3.5 Chroma_PredModes loops latency……………………………………………………. 57

Table 6.3.6 Chroma_PredModes instantiated functions resource usage…………………………… 57

Table 6.4.1 Luma4x4_PredModes device utilization ... 58

Table 6.4.2 Luma16x16_PredModes device utilization ... 59

Table 6.4.3 Chroma_PredModes device utilization .. 59

Table 7.1 Overall device utilization on Zynq XC7Z045 (3 nsec clock period) 62

Table 7.2 Overall device utilization on Zynq XC7Z045 (5 nsec clock period) 62

Table 8.1 Clock cycles for hardware design execution ... 633

Table 8.2 Time needed for hardware design .. 633

Table 8.3 Speedup @200 MHZ ... 644

Table 8.4 Speedup @333 MHZ ... 644

Table 8.5 Overall Speedup ... 655

Table 8.6 Overall Speedup with overlapped I/O .. 666

5

Contents

Abstract .. 2

List of Figures .. 3

List of Tables .. 4

Contents ... 5

Acknowledgements .. 7

Chapter 1 .. 8

Introduction .. 8

1.1 Digital Image Processing ... 8

1.2 Field Programmable Gate Arrays (FPGAs) ... 10

1.3 Digital Image Processing on FPGA's ... 12

Chapter 2 .. 14

WebP .. 14

2.1 Image Compression.. 14

2.2 WebP Overview .. 15

2.3 WebP Evaluation .. 15

2.3.1 Compression Benefits (WebP vs JPEG) .. 15

2.3.2 Compression Density and Encoding/Decoding Speed (WebP vs PNG) 18

2.4 WebP Algorithm Specifics ... 20

2.4.1 VP8 Encoder ... 20

Chapter 3 .. 25

Related Work .. 25

Chapter 4 .. 27

WebP Profile Analysis .. 27

4.1 General Profiling Information .. 27

4.2 Profiling ... 29

4.2.1 Important Functions .. 29

4.2.2 Critical Functions and Hot Spots .. 31

4.2.3 Expected Speed-Up ... 33

4.3 Software/Hardware Partitioning .. 33

Chapter 5 .. 36

High Level Synthesis ... 36

5.1 Background .. 36

6

5.2 Vivado HLS (High Level Synthesis).. 39

Chapter 6 .. 43

Hardware Design and Optimizations ... 43

6.1 Source Code Modifications and C input validation ... 43

6.2 Hardware Modules Implementation... 45

6.2.1 Luma4x4_PredModes Module .. 46

6.2.2 Luma16x16_PredModes Module .. 51

6.2.3 Chroma_PredModes Module .. 54

6.3 RTL Verification ... 57

6.4 Modules Device Resource Utilization ... 58

Chapter 7 .. 60

Design Space Exploration .. 60

7.1 WebP System Architecture ... 60

7.2 Overall Device Resource Utilization ... 62

Chapter 8 .. 63

Hardware Performance Evaluation .. 63

8.1 Speedup @ 200 MHZ .. 64

8.2 Speedup @ 333 MHZ .. 64

8.3 Overall Speedup ... 65

8.4 Overall Speedup with overlapped I/O .. 66

Chapter 9 .. 67

Conclusions and Future Work .. 67

9.1 Conclusions Summary ... 67

9.2 Future Work ... 67

Bibliography... 68

7

Acknowledgements

I would like to express my appreciation to my supervisor professor Mr. Ioannis Papaeustathiou for

offering me the chance to be involved in this thesis intriguing subjects of study , as well as for his

cooperation and advice until the completion of the thesis.

Also , I would like to thank the rest of the comitee, professor Mr. Dionusios Pnevmatikatos and Mr.

Michail Zervakis for their time and effort to read the thesis and for taking part in the examination

presentation.

Finally, special thanks to Post Doc Research Assistant Mr. Antonis Nikitakis for his guidance and

assist through all the time needed to fulfill this thesis tasks.

8

Chapter 1

Introduction

In this chapter a brief introduction in Digital Image Processing and its related applications is

attempted , then reconfigurable logic supported by FPGAs is introduced and finally ways to

improve performance of Image Processing applications using FPGAs is presented.

1.1 Digital Image Processing

Digital image processing [1] is an expanding and dynamic area that impact our everyday life in

various aspects with a large number of applications in fields such as computer graphics, computer

vision , medicine, space exploration, surveillance, authentication, automated industry inspection and

many more areas.

Advances in digital image processing allow use of increased complexity algorithms, and therefore,

can offer both more sophisticated performance at simple tasks, and the implementation of methods

which would be unlikely to be created by analog means.

Specifically, digital image processing is the only practical technology for:

 Classification

 Image Compression

 Feature Extraction

 Pattern Recognition

 Signal Analysis

Some techniques used in digital image processing include:

 Pixelation

 Linear Filtering

 Hidden Markov Models

 Anisotropic Defusion

 Partial Differential Equations

 Neural Networks

 Wavelets

9

Digital Images, specifically, play a significant role in present multimedia based computing

industry.Being a popular mode of data representation, images have extensively been used in almost

all sorts of digital device including the mobile phones, tablet and handheld computers. Although the

most popularly used image algorithms are easy to be performed by the powerful processors, still

the small devices of less capable processors suffer a lot from encoding or decoding procedures. This

is due to some complex computations required by these algorithms . As the production and usage of

tablet and handheld computing devices with less capable or low power-consuming processors

increased, the necessity of producing more efficient as well as less time consuming tasks for the low

capacity processors of these devices has been appeared .

Figure 1.1 Image Processing Related Fields

10

1.2 Field Programmable Gate Arrays (FPGAs)

Field-programmable gate arrays (FPGAs) [2] succeeded in bringing a revolution in computer

software and hardware industry by combining the advantages of both worlds. Significant

performance ,power , cost and other gains of hardware designs can be maintained and additionally

the strict nature of application-specific integrated circuits(ASICs) is surpassed as an FPGA-based

system is reconfigurable and not bounded to the chip during manufacturing process. Despite the fact

that FPGAs may not reach the highest performance levels achieved by ASICs and the systems

designed on FPGAs are found to be larger regarding area , their flexibility and convenience of use

can simplify the designing process as well as reduce the manufacturing time and cost .

In Figure 1.2 we can see the internal structure of an FPGA , containing logic blocks that are

connected through a general routing structure . Inside logic blocks we can find processing elements

as well as flip-flops for implementing combinational and sequential logic and the routing structure

enables the connection of the logic elements used in the most preferable way. The facilitated

flexibility of such devices allows the implementation of very complicated systems and the usage of

special elements such as large memories , multipliers or even complete microprocessors, which are

constructed into the silicon, can assist us to implement complete systems in a single device with

increased speed and capacity .

Interconnection Resources

I/O

Cells

Logic Blocks

Figure 1.2 Abstract view of basic FPGA architecture, taken and modified from [2]

11

FPGAs have traditionally been configured by hardware engineers using a Hardware Design

Language (HDL). The two principal languages used are Verilog HDL (Verilog) and Very High

Speed Integrated Circuits (VHSIC) HDL (VHDL) which allows designers to design at various

levels of abstraction.

Reconfigurable computing is the basic concept towards exploiting reconfigurable hardware devices.

Even though FPGAs are not specifically optimized for reconfigurable purposes and , consequently,

they lack in the architectural advantages that reconfigurable computing specific-devices can offer ,

reduced (time and financial) cost and power consumption make it up for the lost potential and

allowed FPGAs to be widely used for a variety of hardware implemented applications.

The basic structure of an FPGA is composed of the following elements [3]:

• Look-up table (LUT): Basic FPGA’s building block for logic operations.

• Flip-Flop (FF): Register element for LUT’s result storage .

• Wires: Interconnections for elements communication .

• Input/Output (I/O) pads: Physically available ports for data transition in and out of the FPGA.

Contemporary FPGA architectures facilitate the above basic elements along with additional and

more complicated computational and data storage blocks that can improve the computational

density and efficiency of the device. These additional elements can be :

• Embedded memories for distributed data storage

• Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates

• High-speed serial transceivers

• Off-chip memory controllers

• Multiply-accumulate blocks

In Xilinx FPGAs there are also complex computational blocks such as DSP48 block, an arithmetic

logic unit (ALU) embedded into the FPGA fabric , containing a series of 3 different connected

blocks : add/subtract unit , multiplier , final add/subtract/accumulate engine. This chain of blocks

enables a DSP48 block to implement functions of the following form:

  cdbap  (1.1)

)(dbap  (1.2)

12

Figure 1.3 Structure of a DSP48 Block [3]

It is clear that modern FPGA technology can provide the designer with a large range of choices

regarding computational and memory elements . With proper combination of those elements in the

designing process along with communication optimization amongst them , even large systems with

heavy computational load can be efficiently mapped into FPGA fabric.

1.3 Digital Image Processing on FPGA's

Digital image processing applications , such as these mentioned before , involve different processes

–for instance image enhancement and object detection- which include highly demanding

mathematical expressions and operations. Implementing such applications on a general purpose

computer can be easier, however additional constraints on memory and other peripheral devices

lead to inefficient results considering time.

Implementing digital image processing applications on FPGAs has become an attractive alternative

for designers because of the increased flexibility and performance and the relatively low cost .

Typical operations for image processing algorithms- for example image differencing, registration,

recognition,etc - usually present inherent parallelizable nature, operating concurrently on multiple

rows or columns of pixels. With recent advances in FPGA technology fast , parallel processing of

image pixels can be achieved by mapping applications of the previously discussed nature into the

silicon fabric to take advantage of the provided capabilities. Consequently, custom hardware

implementation offers much greater performance and exceptional decrease in algorithm’s execution

times can be achieved compared to the software version of the same application. [4] [5]

Additionally to the fact that complex computation tasks can be accelerated by exploiting parallelism

and pipelining , large software/hardware co-designs can be also implemented on a single device

considering the microprocessors that are often embedded in them. The flexibility offered in the co-

desing approach [6] nests in the fact that only the time-critical and heavy computational load

handling functions are implemented as hardware-accelerated modules , allowing the rest of the

software implemented algorithm to run on the processor and call the functions normally with the

13

difference that they are now mapped into the FPGA . This way the time consuming procedure of

designing the whole application in hardware description languages is eliminated, however the speed

advantages are maintained. Considering the blend of embedded computing capabilities in FPGAs

with the cost and performance production benefits that reside in them , FPGAs present a promising

perspective for the programmable logic industry.

However, performance and flexibility are not the only benefit. Reduced time-to-market cost, fast

prototyping of complex systems and simplified debugging and verification are –amongst other- the

primary reasons for the expanding use of custom hardware designs. Considering the variety of

modern technologies and scientific efforts that include image processing -related processes,

hardware implementation of such algorithms provides great advantages to the developers depending

on their motivation . In figure below , the benefits of FPGA prototyping are presented regarding the

priorities the developers have claimed that urge them the most to use FPGAs for the prototype of

their system. [7]

Furthermore, the mobile nature of modern devices designed for a variety of uses , either educational

and scientific or entertaining , indicates that power consumption facilitates a great factor towards

hardware implementation . Considering that autonomy of those devices has rised as one of the most

important parts when a consumer searches the market for a preferable device choice as modern way

of living as well as upcoming trends in employment contain the need for remote access to e-mail or

the internet generally anytime and anywhere ,we can understand that power consumption reduction

has a major contribution to satisfy the more and more emerging necessity of mobile computing.

Modern FPGA's can use power reduction techniques in order to facilitate mobile use , allowing

designers to maintain a low-power profile across various implemented architectures on the

reconfigurable fabric.

Figure 1.4 Prototyping priorities listed in the 2012 CDT survey [7]

14

Chapter 2

WebP

In this chapter basic image compression techniques used by the most popular image formats are

briefly preluded . Subsequently, an introduction to WebP image format is made, describing the

concept behind the developing of this new format as well as the main differentiation points between

WebP and older formats (for example JPEG). Finally, a closer look to the algorithm is presented,

briefly analyzing the principals of its functionality.

2.1 Image Compression

Compression is a process that is used to reduce the physical size of an information block. In other

words, the files are coded in such a form that their size is smaller than the original size before

compression. Coding means a way of representing data when they are stored in a file, memory ,

etc. Each compression algorithm is designed so that it searches for and uses data compression for a

given order in the stored data. This procedure can include the repeated character sequence, the

frequency of occurrence of individual characters, the identification of large blocks of the same data

and more.

 The main parameters to compare the performance of compression algorithms are the compression

ratio and the compression or decompression time. The compression ratio is usually expressed as the

ratio between the size of the compressed and uncompressed data . The compression time is the time

necessary to transform the original information in to the compressed form. The decompression time

indicates the reverse process – it is the time needed to extract the compressed file to its original

form.[8]

Image compression seperates into 2 main categories : lossless and lossy compression.[9]

Lossless compression is an error-free compression . The recovered image is numerically the same as

the original image, on a pixel-by-pixel basis . Despite this excellent feature , only a small amount of

compression is possible and hence , the obtained compression ratio is low . For applications that

tolerate no loss in information , lossless compression is the only acceptable method of data

reduction . These applications include : archival of medical images, because loss of any information

may affect diagnosis ; archival of bussiness documents where omitting information is illegal etc.

Lossy (irreversible) image compression is based on compromising the accuracy of the recovered

image in exchange for more compression. The reconstructed image contains distortion, which may

or may not be visually apparent . Depending on the application , a significant compression can be

achieved if the resulting degradation can be tolerated for that certain application. In contrast to

lossless techniques , a very high compression could be accomplished.

Compression methods regarding images usually adminstrate the trade-off between quality and

size , trying to save storage size or bandwith but at the same time keep the error rate between

decompressed data and the original picture at a reasonable level .

15

2.2 WebP Overview

WebP is an image format employing both lossy and lossless compression , developed by Google as

part of an overall project designed to improve the performance of web pages and make the web

faster by reducing image file sizes. Google estimates 65% of current internet traffic is image and

photo data, so a significant decrease in the amount of data sent across the web would increase

overall speed for all internet users. [10]

It is presented by the developer as a new standard for lossily compressed true-color graphics on the

web, producing smaller files of comparable image quality to the other formats used until now.

Specifically, Google claims that WebP lossless images are 26% smaller in size compared to PNGs

and WebP lossy images are 25%-34% smaller in size compared to JPEG images at equivalent

SSIM (Structural SIMilarity) index.

 WebP supports lossless transparency (also known as alpha channel) with just 22% additional bytes.

Transparency is also supported with lossy compression and typically provides 3x smaller file sizes

compared to PNG when lossy compresion is acceptable for the red/green/blue color channels. After

the first release of the format , developers published studies trying to prove the precision of their

allegations about the advantages of WebP .

2.3 WebP Evaluation

Since the WebP image format is destined to replace existing image formats used across the web , it

would be essential to verify that the announced advantages in theory have the expected practical

impact . The studies demonstrated below assess WebP's performance in contrast to known formats

facilitating both lossy and lossless compression, over quality as well as timing metrics during

encoding and decoding process.

2.3.1 Compression Benefits (WebP vs JPEG)

In this case , the study [11] focuses in the additional compression achieved by WebP at the same

quality level of JPEG . In particular, WebP images of same quality (as per SSIM index) as the

JPEG images are generated and then the file sizes of WebP and JPEG images are compared.

Structure SIMilarity(SSIM) [12] defines the quality degradation as the product of luminance ,

contrast and structural errors affecting the image structure. The structural error is defined as the

residual error in the image after its normalization with respect to luminance and contrast . The

general form of the SSIM between signal x and y is defined as :

           γβa
yx,syx,cyx,l=yx,SSIM  (2.1)

where a, b and g are parameters that define there lative importance of the three components.

Although its sensibility to relative translations, scaling and rotations of images, the SSIM index is

quite simple and it performs well across a wide variety of image and distortion types. It is able to

improve on the traditional PSNR by providing results which are more correlated with the image

quality as perceived by the Human Visual System.

16

The following are the list of data sets used in the experiments by the researchers participated in this

survey:

1.Lenna: widely used image Lenna (512 x 512 pixels).

2.Kodak: 24 images from the Kodak true color image suite .

3.Tecnick: 100 images from the collection available at Tecnick.com . The 100 original size RGB

color images are used.

4.Image_crawl: A random sample of PNG images from Google Image Search web crawl database

was collected. The majority of PNG images are icons, graphics, charts, scanned documents, etc.

However most images in the standard test collections are like photographs, rather than computer

generated images. To make this dataset of similar nature to the standard test suites, a face detection

algorithm over these PNG images was run and considered only those images (approximately

11,000) for this experiment, that passed this detection test.

5.

 Lenna Kodak Tecnik Image_crawl

WebP: Average File Size
(Average SSIM)

26.7 KB
(0.864)

46.5 KB
(0.932)

139.0 KB
(0.939)

9.9 KB
(0.930)

JPEG: Average File Size
(Average SSIM)

37.0 KB
(0.863)

66.0 KB
(0.931)

191.0 KB
(0.938)

14.4 KB
(0.929)

Ratio of WebP to JPEG
file size

0.72 0.70 0.73 0.69

Table 2.1 Average file size for WebP /JPEG for the same SSIM index corresponding to JPEG Q=75 [11]

From the table above, we can observe that WebP gives additional 25%-34% compression gains

compared to JPEG at equal or slightly better SSIM index.

In the second case, SSIM vs bits per pixel (bpp) plots for WebP and JPEG is analyzed. These plots

show the rate-distortion trade off for WebP and JPEG. The source PNG image is taken, compressed

to JPEG and WebP using all possible (0-100) quality values. Then for each quality value the SSIM

and bpp achieved for JPEG and WebP is ploted. Following figures show such SSIM vs bpp plots for

the 3 images chosen from the 3 public data sets used.

17

Figure 2. 2 SSIM vs. BPP for Lenna [11]

Figure 2.1 SSIM vs. BPP for kodim19.png from the Kodak dataset [11]

18

Overall, from the above plots we can observe that WebP consistently requires less bits per pixel

than JPEG to achieve the same SSIM index. These results indicate that WebP can provide

significant compression improvements over JPEG .

Another study conducted to assess WebP’s performance compared to image compression formats

such as JPEG, JPEG 2000 and JPEG XR is set under a subjective quality evaluation perspective ,

putting a number of participating subjects through a multi-staged testing procedure . WebP’s

performance is noticed to be competitive towards JPEG 2000 and JPEG XR in the most cases

except for limited occasions considering specific bit rate values and images. WebP consistently

outperforms JPEG under all test conditions and experiments. More information about this study can

be found in [13].

2.3.2 Compression Density and Encoding/Decoding Speed (WebP vs PNG)

In [14] , WebP’s lossless and lossy modes performance is evaluated for images that are usually

encoded as PNG images after the newly added alpha support for WebP. The study uses 3 image

corpora , a photographic image, a graphical image with translucency and finally 1000 randomly

collected PNG images with translucency crawled from the internet.

WebP is found to exceed compression density for both libpng(convert) and pngout , maintaining

Figure 2.3 SSIM vs. BPP for RGB_OR_1200x1200_061.png from the Tecnick dataset[11]

19

comparable encoding and decoding speeds to PNG as the tables below indicate.

Image Set Convert-

quality 95

pngout WebP lossless

(default settings)

WebP lossless

-q 0 m-1

WebP lossy

with alpha

photo 12.0 11.9 9.62 10.2 0.71

graphic 1.36 1.12 0.74 0.85 0.56

web 3.69 3.27 2.42 2.70 0.60

Table 2.2 Average bits-per-pixel for the three corpora using the different compression methods. [14]

Image Set Convert-

quality 95

pngout WebP lossless

(default settings)

WebP lossless

-q 0 m-1

WebP lossy

with alpha

photo 0.640 s 16.3 s 3.00 s 0.520 s 3.25 s

graphic 0.260 s 55.9 s 5.27 s 0.040 s 6.00 s

web 0.041 s 2.77 s 0.89 s 0.019 s 0.96 s

Table 2.3 Average encoding time for the compression corpora, and for different compression methods.

[14]

Image Set Convert-

quality 95

pngout WebP lossless

(default settings)

WebP lossless

-q 0 m-1

WebP lossy

with alpha

photo 0.130 s 0.130 s 0.060 s 0.060 s 0.010 s

graphic 0.120 s 0.120 s 0.010 s 0.010 s 0.010 s

web 0.038 s 0.040 s 0.006 s 0.006 s 0.005 s

Table 2.4Average decoding time for the three corpora for image files that are compressed with different

methods and settings. [14]

The survey reaches the conclusion that WebP is a simpler and more efficient replacement format for

PNG images , especially with the lossy compression with alpha support that can contribute to

speeding up image heavy websites.

20

2.4 WebP Algorithm Specifics

As declared in [15] ,WebP is an image format that uses either (i) the VP8 key frame encoding to

compress image data in a lossy way, or (ii) the WebP lossless encoding. These encoding schemes

should make it more efficient than currently used formats. It is optimized for fast image transfer

over the network (e.g., for websites). The WebP format has feature equivalency (color profile,

metadata, animation etc) with other formats as well.

The WebP container (i.e., RIFF container for WebP) allows feature support over and above the basic

use case of WebP (i.e., a file containing a single image encoded as a VP8 key frame). The WebP

container provides additional support for:

Lossless compression. An image can be compressed without loss, using the WebP Lossless

Format.

Metadata. An image may have metadata stored in EXIF or XMP formats.

Transparency. An image may have transparency, i.e., an alpha channel.

Color Profile. An image may have an embedded ICC profile as described by the International

Color Consortium.

Animation. An image may have multiple frames with pauses between them, making it an

animation.

Due to better compression of images ,preserving though same quality levels, and support for all

these features, it can be an excellent replacement for most images: PNG, JPEG or GIF that most

usually focus on either lossy or lossless compression techniques , whereas WebP tries to handle

both . In this thesis we are focusing on the lossy part of WebP’s algorithm as it is used in a wide

range of applications and offers greater compression gains compared to lossless compression. On

top of that, most images used on the web are compressed lossily as the exact reconstruction of the

original image is not critical for the desired visual representation of the original picture . Also the

majority of these images demonstrate low resolution and as a result small bitrate and size and

WebP’s compression techniques offer certain benefits over other widely used formats considering

such low resolution images as presented in [16].

2.4.1 VP8 Encoder

WebP's lossy compression [17] uses the same methodology as VP8 for predicting (video) frames.

Figure 2.7 provides an overview for the VP8 encoding process [18]. VP8 is based on block

prediction and as any block-based codec VP8 divides the frame into smaller segments called

macroblocks. Within each macroblock, the encoder can predict redundant motion and color

information based on previously processed blocks. The image frame is ‘key' in the sense that it only

uses the pixels already decoded in the immediate spatial neighborhood of each of the macroblocks,

and tries to fill the unknown part of them. This is called predictive coding.

The algorithm adjusts the predicted blocks (as wells as synthesize the unpredicted blocks) using a

discrete cosine transform (DCT). In one special case, though, VP8 uses a “Walsh-Hadamard”

21

(WHT) transform instead of a DCT.

WebP algorithm as any similar compression system [19], reduce data rate by exploiting the

temporal and spatial coherence of most video signals. The frequency segregation provided by DCT

and WHT facilitate the exploitation of both spatial coherence in the original signal and the tolerance

of the human visual system to moderate losses of fidelity in the reconstructed signal. VP8 augments

these basic concepts with, amongst other, sophisticated use of contextual probabilities. The result is

a significant reduction in data rate at a given quality.

Unlike some similar schemes (MPEG formats), VP8 specifies exact values for the reconstructed

pixels. Specifically, the specification for the DCT and WHT portions for the reconstruction does

not allow for any “drift” caused by truncation of fractions. The algorithm is specified using fixed-

precision integer operations exclusively. This facilitates the verification of the correctness of an

encoder/decoder implementation as well as avoiding difficult to predict visual incongruities

between such implementations.

Figure 2.4 Overview of VP8 Encoding Process [18]

22

VP8 holds exclusively an 8-bit YUV 4:2:0 image formats. Each 8-bit pixel in the two chroma

planes (U and V) corresponds positionally to a 2x2 block of 8-bit luma pixels in the Y plane;

coordinates of the upper left corner of the Y block are of course exactly twice the coordinates of the

corresponding chroma pixels.

As usually, pixels are simply a large array of bytes stored in rows from top to bottom , each row

being stored from left to right. This raster-scan order is reflected in the layout of the compressed

data as well.

Internally, VP8 decomposes each frame into an array of macroblocks , square arrays of pixels

whose Y dimensions are 16x16 and U and V dimensions are 8x8. Macroblock-level data in a

compressed frame occurs and must be processed in a raster order similar to that of pixels

comprising the frame.

Macroblocks are further decomposed into 4x4 subblocks . There are 16 Y sublocks, 4 U sublocks

and 4 V sublocks in every macroblock. Again, sublock-level data occurs and are processed in raster

order within the containing macroblock.

Figure 2.5 VP8 Macroblock Coding

Pixels are always treated, at a minimum, at the level of subblocks, which could be parallelised as

the “atoms” of the VP8 algorithm. Particularly, the 2x2 chroma blocks corresponding to 4x4 Y

subblocks are never treated explicitly in the data format or in the algorithm specification. DCT and

WHT always operate at a 4x4 resolution.

The redundant data can be subtracted from the block, which results in a more efficient compression.

We are only left with a small difference called residual, to transmit in a compressed form. After

being subject to a mathematically invertible transform (DCT), the residuals typically contain many

23

zero values, which can be compressed much more effectively. The result is then quantized and

entropy-coded. In fact, the quantization step is the only one where bits are discarded in a lossy way.

All other steps are invertible and lossless.

The following diagram shows the steps involved in WebP lossy compression. The differentiating

features compared to JPEG are circled in red.

WebP uses block quantization and distribute bits adaptively across different image segments: fewer

bits for low entropy segments and higher bits for higher entropy segments. WebP uses arithmetic

entropy encoding achieving better compression compared to the Huffman encoding used in JPEG

encoding.

A VP8 encoder [20], [21] uses two classes of prediction:

 Intra prediction uses data within a single video frame

 Inter prediction uses data from previously encoded frames

Figure 2.6 WebP's lossy compression basic stages [17]

24

The residual signal data is then encoded using other techniques, such as transform coding, as we

already discussed. When it comes to image compression ,only intra prediction is used as obviously

a single frame is encoded/decoded.

VP8 Intra-prediction Modes

VP8 intra-prediction modes are used with three types of macroblocks:

4x4 luma

16x16 luma

8x8 chroma

Four common intra-prediction modes are shared by these macroblocks:

H_PRED (horizontal prediction). Fills each column of the block with a copy of the left column, L.

V_PRED (vertical prediction). Fills each row of the block with a copy of the above row, A.

DC_PRED (DC prediction). Fills the block with a single value using the average of the pixels in

the row above A and the column to the left of L.

TM_PRED (TrueMotion prediction). A mode that gets its name from a compression technique

developed by On2 Technologies. In addition to the row A and column L, TM_PRED uses the pixel

P above and to the left of the block. Horizontal differences between pixels in A (starting from P) are

propagated using the pixels from L to start each row.

The diagram below illustrates the different prediction modes used in WebP lossy compression.

Wu

For 4x4 luma blocks, there are six additional intra modes similar to V_PRED and H_PRED, but

correspond to predicting pixels in different direction

Figure 2.7WebP lossy compression prediction modes [17]

25

Chapter 3

Related Work

This chapter contains a synopsis of studies related to this thesis subject. There is a variety of

hardware designs implementing versions of DCT/Inverse DCT and quantization process used in

popular codecs such as JPEG and H.264 , however it was not possible to find an implementation

that handles exactly the same scope with the hardware accelerated modules that will be presented in

the following chapters of this thesis.

In [22] , the authors propose two different architectures for the hardware acceleration of DCT and

blocks quantization of the H.264 compression standard on FPGA fabric . The first architecture

focuses in optimized area results maintaining the natural sequential execution of the algorithms,

whereas the second one aims to achieve high throughput and fast processing by facilitating a

parallel architecture . The reason for these 2 different solutions is to create appropriate designs for

both low power or high performance devices. The achieved FPGA throughput is estimated to be

11M and 32M pixels/sec for DCT and Quant area optimized implementations and 1719M and

1551M pixels/sec for the speed optimized architecture respectively.

Additionally for H.264 hardware implementations, in [23] a novel hardware architecture containing

intra-prediction, integer transform, quantization, inverse integer transform, inverse quantization and

mode decision processing blocks is proposed for the H.264 macroblock engine. The main

improvement in the specified design is a method to reduce cycle overhead for intra16 prediction

modes by pre-computing the quantized values of DC coefficients, resulting in reduced latency. The

modules are implemented using Verilog Hardware Description language and they run at 54 MHZ

using Hynix 0.35 μm Triple Layer Metal library, whereas all types of macroblocks can be processed

in 927 clock cycles.

Authors in [24] present an efficient hardware solution for H.264 4x4 forward and inverse transform

coding and quantization/rescaling blocks with reduced complexity as the rescaling stages are

merged into the quantizer and as a result the number of necessary multiplications for the processing

is decreased. The modules are synthesized with TSMC 0.35 μm technology and the implemented

encoder can achieve 256 M samples/sec at 32 MHZ.

A high performance architecture for the hardware implementation of simplified 8x8 transfromation

and quantization facilitated in H.264 standard is developed in [25]. The concept has to do with

pipelined operations in the design to decrease accesses in memory that cost resources as well as

time and increase throughput. The system is mapped into XC2V4000 device of Xilinx’s Virtex 2

family and the implemented architecture satisfies the real-time constraints for even high resolution

video formats.

26

Regarding JPEG hardware implementations, a low cost JPEG Encoder hardware module is

demonstrated in [26] that processes an image as a stream of 8x8 blocks. The necessary divisions in

quantization stage are replaced with a combination of multiplications and shifts with the appropriate

usage of quantization tables and DCT step is structured in a way that the usual need of a zigzag unit

is eliminated. The JPEG Encoder is implemented on Xilinx Spartan-3 XC3S200 and the reduced

complexity leads in minimal usage of FPGA resources, setting the specific proposal ideal for low-

cost FPGAs.

Researchers of [27] present a 2D-DCT hardware accelerator design for a FPGA-based SoC using a

single 1D-DCT pipeline apparted by 7 stages and special memories , resulting in a 80 clock cycle

design running at 107 MHZ that imlements a complete 8x8 2D DCT. JPEG algorithm is found to

be significantly accelerated when implemented in HW/SW co design on Microblaze soft core

processor and the XC2VP30 board compared to the complete software system running on the same

processor.

In next study [28], implementations of DCT and Inverse DCT used in many compression standards

–for instance JPEG, MPEG and H.26X- are targeted on Memec Virtex II Pro Development Kit so

as to optimize the processing time of the system by implementing a SW/HW co-design based on the

embedded processor cooperation with the customized hardware accelerators. The DCT core is

presented to compute a 8x8 block in about 0,7 μsec running at 100 MHZ , whereas the 2-D DCT

calculation of a 32x32 pixels gray level image can be completed in around 12 μsec.

Considering VP8 Encoder hardware implementations , [19] proposes a cost effective VP8 hardware

encoder by reusing H.264 hardware IP already developed in industry. Feature parity between VP8

and H.264 allows the adaptation of most of H.264 hardware implementation in the encoder’s

architecture, resulting in comparable quality to the reference VP8 Encoder in relatively low HW

cost and increased flexibility and effectiveness.

27

Chapter 4

WebP Profile Analysis

In the following chapter a profile analysis for the WebP algorithm is presented , identifying the

most time-consuming functions that will be implemented in hardware along with a description of

their functionality. Furthermore , the partitioning of the original program is demonstrated,

specifying the software and hardware accelerated stages of the implementation, and the expected

speed-up is calculated.

4.1 General Profiling Information

Profiling took place in a 64 bit AMD triple core processor , running at 3 GHZ . The operating

system was Ubuntu 12.04 (64 bit) and version 0.2.1 of WebP was studied , released in August

2012. For the profiling purposes of this thesis gprof was used, a performance analysis tool for

UNIX applications, and the generated flat profile and call graph was unified in a diagram using

gprof2dot python script.

To increase the reliability of the profiling we experimented with various pictures of different size

and resolution and their profiling results. More specifically, images from 400x400 pixels (Lenna) up

to 4096x2034 pixels were converted to WebP format using 3 different quality factors 50,75 and 100

(75 considered the default quality factor). WebP algorithm presents similar behaviour for all

images and quality factors with minor variations in the time used by the critical functions. A

representative diagram of the algorithm's function calls is the following in Figure 4.1, showing the

profile analysis of WebP algorithm regarding conversion of Lenna.jpg image to WebP image format

with a quality factor of 75 :

28

Figure 4.1 WebP function call diagram

29

4.2 Profiling

4.2.1 Important Functions

Focusing on the time-consuming in the operative level functions , as for functions that actually

perform computational tasks and not assign them to the function below in the hierarchy, the

following profiling results are collected:

Function Execution Time Percentage (%)

QuantizeBlock 29,79

ITranform 17,02

TTranform 12,77

FTransform 12,77

GetSSE 8,51

GetResidualCost 4,26

Table 4.1 WebP critical functions execution time percentage

Functions of mathematical nature seem to occupy the majority of algorithm's computation

weight ,for instance TTransform, FTransform, ITransform , as well as quantization through

QuantizeBlock.

The vast majority of calls to the above functions are performed during the reconstruction of the

image’s blocks (calls to QuantizeBlock, ITransform, FTransform) as well as the texture distortion

measurement of the reconstructed pixels compared to the original ones (calls to TTransform) .

Consequently, ascending a level in the function hierarchy above the time consuming functions and

implementing in hardware the below functions can play a significant part in accelerating the

algorithm:

 ReconstructIntra4()/Disto4x4 ()

 ReconstructIntra16()/Disto16x16()

 ReconstructIntraUV()

Fortunately, by applying minor modifications in the WebP algorithm Reconstruct and Disto

functions can be connected to operate sequentially and communicate by passing the output of the

first as input to the second one .As a result it is more efficient to map the hardware accelerated

implementations of them one next to the other ,as it will be further analysed later in the system

architecture section.

Additionally, it is possible to implement more that one function call to the above modules , as long

as the necessary data are loaded to the board from the processor. As it is already mentioned in the

VP8Encoder section of Chapter 2, the above function modules are executed in groups, depending

on the prediction modes number of the specific block . There are 10 different prediction modes for

30

4x4 luma blocks and 4 prediction modes for 16x16 luma blocks as well as chroma blocks. More

details about the implemented design will be discussed in following chapters.

Function Execution Time Percentage (%)

ReconstructIntra4 38,10

ReconstructIntra16 13,31

ReconstructUV 6,42

Disto4x4 9.08

Disto16x16 3,69

Total 70,60

Table 4.2 Selected for HW acceleration functions execution time percentage

The functions selected for hardware implementation consume around 70,60 % of the total execution

time of the algorithm , a rather significant proportion.

In terms of execution time, considering strictly computation time , using functions from the time

library the results below are collected. Since Reconstruct / Disto functions are destined to be

implemented in the same module for intra4x4/16x16(luma) reconstruction as they normally

operate sequentially in software, the time they consume is calculated cumulatively. The execution

time column of the following table regarding all prediction modes contains the time consumed for

all modes of the corresponding block type(4x4/16x16 luma , chroma) and the last column displays

a quite accurate approach of the total execution time of the specific modules during Lenna image

conversion to WebP format in real conditions. The execution time is initially calculated through

multiplication of the selected functions execution time for all prediction modes with the total

number of calls to the modules.

Function Execution Time (μsec) /

function call

Execution Time (μsec) /

All prediction modes

Execution Time (sec) /

Lenna image

ReconstructIntra4

/Disto4x4

 1,33 13,3 0,276

ReconstructIntra16

/Disto16x16

 23 92 0,127

ReconstructUV 7.5 30 0,0405

Total - 135,3 0,4435

Table 4.3 Functions Software Execution Time

Using the appropriate option available in the WebP conversion options , the program displays the

input as well as the encoding time that the conversion demands . In order to convert Lenna , WebP

needs 0,025 sec to read the input image and 0,651 sec for encoding. Considering profiling indicated

that the above modules consume 70,6 % of total encoding time , the time required is about 0,456

31

sec , a very close value to the estimated execution time of the above table and a reassuring factor for

the accuracy of the calculations.

4.2.2 Critical Functions and Hot Spots

This section extends the brief analysis of VP8 Encoding , as presented in section 2.4.1. The reader

can resort to [18] ,[19] ,[20]and [29] to take a more detailed view in the discussed subjects.

Transforms

Discrete Cosine Transform

VP8 applies transform coding to the residue signal after intra prediction, . A standard image frame

submitted for encoding is divided in macroblocks , and each macroblock contains a 16x16 block of

luma pixels (Y) and 2 8x8 blocks of chroma pixels (U,V). Since transform functions operate

strictly on 4x4 level , luma and chroma blocks are further divided into 4x4 blocks, applying a

discrete cosine transform to these 4x4 luma and chroma blocks to convert the residue signals into

transform coefficients. DCT is an orthogonal transform independent of the input signal that has fast

implementations in its two dimensional form and VP8 facilitates a 2-D DCT as the basic transform

coding technique of the signals and the corresponding inverse 2-D DCT to inverse transform the

quantized residuals. The formal definition of the 4x4 DCT and 4x4 Inverse DCT are given in

Equations (4.2),(4.3), however , VP8 facilitates an alternative form that uses multiple passes of the

one dimensional version of the 2D-DCT.









 

 

ujuijifCuCvvuF
i j

)
2

1
(

4
cos])

2

1
(

4
cos[),(

4

1
),(

3

0

3

0


 (4.1)

 ])
2

1
(

4
cos[])

2

1
(

4
cos[),(,

3

0

3

0

ujuivuFCuCvjif
i j

 
 


 (4.2)

Values Cu and Cv are scaling coefficients defined below:

𝐶𝑥 = {

1

√2
 𝑖𝑓 𝑥 = 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.3)

Walsh-Hadamant Transform

DCT positions the most significant coefficients in the top left of the matrix, with the first coefficient

known as the DC coefficient and the rest 15 as AC coefficients. In order to reduce the redundancy

of the DC coefficients in 16x16 luma blocks predicted with 16x16 luma prediction modes, a 4x4

Walsh-Hadamant Transform is applied to the 4x4 block formed by the DC coefficients in each of

the 16 4x4 luma blocks that exist in the macroblock. The WHT is defined as following:

32

𝐻𝑚 =
1

√2
(

𝐻𝑚−1

𝐻𝑚−1

𝐻𝑚−1

−𝐻𝑚−1
) (4.4)

Where Hm is a 2m x2m matrix and H0=1.

Quantization

Since transforms coding follows a bit-exact pattern, quantization is the only actually lossy step of

the encoding algorithm. Quantization stage divides the already transformed block by a quantization

matrix, removing high frequency data from the residuals. The quantization matrix is formed

depending on the quantization parameter chosen in the encoding process in order to achieve the

desired quality levels and it is the same for all macroblocks of a particular image frame. However,

VP8 supports a region adaptive quantization scheme , offering the capability to categorize

macroblocks of a frame into 4 different segments having a separate quantization parameter.

Reconstruction

ReconstructIntra(4x4/16x16 luma, chroma) functions calculate the difference between source and

reference samples based on prediction type and modes , then perform a DCT transform to the

coefficients and continues with quantization of the blocks processed . In luma 16x16 blocks , a

WHT is also performed to the DC coefficients before quantization and the corresponding Inverse

WHT after Finally back- transforms the macroblocks using inverse DCT and gives as output the

reconstructed blocks and the quantization levels .

Distortion

Through Disto4x4 , Disto16x16 the algorithm intends to match the weighted spectral content

between original and reconstructed samples after reconstruction of the macroblocks for Intra4x4 or

Intra16x16 prediction mode respectively . The input arguments are the source and the reconstructed

pixel values and a defined array used for distortion measurement . These functions perform 2

Hadamand transforms returning the weighted summary of the absolute value of transformed

coefficients , source and reconstructed , and the output is the absolute value of the subtracted and

shifted distortion weight summaries .

33

4.2.3 Expected Speed-Up

Accelerating the mentioned functions that occupy 70,6 % of the time by implementing them in

hardware and leaving the rest of functions in software can give an important speed-up.

We can calculate the expected overall speed-up of the algorithm using Amdahl's Law equation[30]:

 
3

3

2

2

1

1
0,7061

1

x

f
+

x

f
+

x

f
+

=
imeExecutionT

imeExecutionT
=Speedup

new

old
overall



 (4.5)

where f1,f2,f3 is the fraction of time that ReconstructIntra4/Disto4x4 , ReconstructIntra16/

Disto16x16 and ReconstructUV are executed and x1,x2,x3 is the speed-up of the hardware

implemented version of them respectively.

4.3 Software/Hardware Partitioning

Considering the profile analysis of WebP and the overview of VP8 Encoding process displayed in

Figure 2.7 , we decided to partition the execution of the algorithm as following :

Software

 Block generation

 Intra Prediction

 Entropy Encoding

Hardware

 Reconstruction

◦ DCT Transform

◦ Walsh-Hadamant Transform (luma 16x16 blocks)

◦ Block Quantization

◦ Inverse Walsh-Hadamant Transform (luma 16x16 blocks)

◦ Inverse DCT Transform

 Texture Distortion

◦ Hadamant Transform

34

Software Hardware

ARM CORTEX-A9 Zynq Fabric

 Block Generation

 Intra Prediction

 Entropy Encoding

Reconstruction
 DCT Transform

 WHT Transform (luma 16x16)

 Block Quantization

 Inverse WHT Transform (luma 16x16)

 Inverse DCT Transform

Texture Distortion
 Hadamant Transform

Figure 4.2 Hardware/Software Partitioning

In order to accelerate as much computational load as possible, the selected functions are grouped

depending on the type of block they are destined to process. ReconstructIntra and Disto functions

are executed sequentially in software , thus, they can be mapped together in hardware, avoiding

unwanted transactions between the CPU and the circuit. Furthermore , the fact that these functions

are always executed in loops containing as many iterations as the number of prediction modes of the

particular block type and every iteration/function call is independent to the next one gives the

opportunity to boost the system’s performance by implementing in hardware a parallelized

architecture that reconstructs the input block as well as computes the texture distortion between the

reconstructed and the original pixels for all the prediction modes available for this block. It must be

noted here that at least until the release of the studied 0.2.1 version of WebP , texture distortion

measurement through Disto function is performed only for the luma blocks.

In other words, software execution computes reconstructed pixels and distortion compared to the

source pixels for every prediction mode separately and then calculates the cost to decide for the best

mode , whereas in the proposed hardware implementation the circuit pre-computes reconstructed

pixels and the corresponding distortion for all the prediction modes and subsequently sends back the

results to the processor to continue with the best mode decision and the rest of the processing stages

of the algorithm. Schematically, the modules destined for hardware acceleration are the following:

35

 for (n=0.. PredModesLuma16){ //4 Modes

 Step1:Reconstruct Luma 16x16 Block
Step2:Calculate Distortion

}

for (n=0.. PredModesChroma){ // 4 Modes

 Step1:Reconstruct Chroma Block

}

Luma4x4_Modes
Module

Luma16x16_Modes
Module

Chroma_Modes
Module

for (n=0.. PredModesLuma4){ // 10
Modes

 Step1:Reconstruct Luma 4x4 Block

Step2:Calculate Distortion
}

Figure 4.3 Modules Schematic Description

36

Chapter 5

High Level Synthesis

This chapter contains an introduction to High Level Synthesis , briefly setting the concept of

producing RTL designs from high level synthesis languages and the benefits that occur during this

process in contrast to manual design. The primary characteristics of Xilinx's Vivado High Level

Synthesis tool , which is used in this thesis, are presented next.

5.1 Background

Each new FPGA generation is implemented on new silicon process technology but maintain low

manufacturing and market cost compared to ASICs. Nowadays, implementing complex processing

applications such as image and video coding applications on embedded systems is a subject of great

challenge. Indeed, increased complexity of the designs for FPGAs demands deep analyzing and

advanced requirements regarding timing and area restrictions . Traditional manual hardware design

includes hardware description languages [31] (VHDL, Verilog) which require deep hardware

knowledge ,despite their high level nature , and provide advanced control over hardware

implementation and limited uncertainty about synthesis results.

Nevertheless, manual optimization in the logic level as well as debugging hardware issues can be a

long and painful procedure when it comes to complex and large systems. On top of that, results

verification and validation require HDL test benches making comparison with the original software

model difficult. Another issue would be portability of the hardware designs along the different

FPGA types.

These reasons, amonst others, led the industry to seek alternative ways of hardware implementation

as the complexity of the designs rose. Necessity for increased productivity and efficiency of the

design teams considering the progression in FPGA technology has also contributed to thorough

efforts to find a more automatic procedure for the designing process , allowing the designer to

control the overview of the implementation and its various constraints but keeping many possibly

confusing details away from his scope.

Electronic system-level (ESL) design automation [32] is ought to fulfill this gap , boosting

productivity for the hardware industry , where high-level synthesis (HLS) is the primary axis. HLS

assists in the automatic synthesis of high-level, untimed or partially timed specifications(C,

SystemC) for cycle-accurate RTL specifications and efficient implementation in application-

specific integrated circuits (ASICs) or FPGAs. The designs can be further optimized regarding

performance ,power and cost of a particular system.

37

Complexity of the designs as wells as time-wasting verification procedure create a bottleneck for

image processing applications and developing implementations by raising the abstraction level to

the ESL assists in sooner time-to-market. System level is the highest abstraction level , where the

system is overviewed as a whole, studying the communication amongst components. At the

component level, an RTL description is synthesized from a high-level language algorithm, this is

the HLS stage. Many tools can perform HLS automatically, taking an C,C++ or SystemC input

model and creating a corresponding RTL implementation in harware description language such as

VHDL or Verilog.

HLS handles a number of tasks[33] and allows the designer to focus on other aspects of the process.

Analysing the source code leads to resource allocation, specifying the types and number of

operators and memory elements needed. Then, scheduling takes place assigning each source code

operation to a certain time slot (clock cycle). Finally, software operations and data elements are

assigned to operators and memories in resource binding. Interface syntesis can be issued by high-

level synthesis also, creating a suitable interface regarding data and control signals between the

generated circuit and its peripherals.

Figure 5.1 Abstraction levels

38

Design abstraction is considered to be one of the most effective ways to control complexity and

improve design productivity. Modern HLS tools allow the designer to handle the trade-off between

performance/power/cost and time , reducing the design time in expense of results or reaching

performance relevant with hand-written RTL depending on the goals.

Hardware design flow is benefited in various ways through the use of HLS. First of all, designers

are required to write much more smaller amount of code , limiting mistakes and speeding up the

process.A study from NEC[34] shows the benefits of HLS in the designing process of an one

million gates circuit. At the RTL level about 300K lines of code are required to describe the system

whereas the behavioral description would demand only 40K , limiting the simulation and debugging

time and improving the performance. Moreover, a design can optimized by HLS tool options and

tweaks, creating opportunities for extended design space exploration. Automated HLS flow

designers to conceive the system's functionality in high-level languages such as C/C++ and rapidly

experiment with different hardware/software boundaries and explore various

performance/area/power tradeoffs from the same functional specification .Finally, reusing test data

for the verification of the design aside from the validation of the source code though HLS tools

generated test benches assist in limiting the verification time, which is sometimes even exceeding

the design time of the traditional manual hardware design flow. Especially for FPGA based

embedded systems , moving to a higher abstraction level enables controlling increasing design

complexity without the need to insert hardware architecture and timing into the algorithm manually

and ,therefore , hardware accelerators for embedded software can be implemented with minimal

effort. HLS and FPGAs together are a vital step towards faster prototyping and quick time to

market.

For software developers specifically, recent FPGA's advances have made reconfigurable computing

platforms more attractive for the implementation of many high-performance computing (HPC)

applications , such as image and video processing , financial analytics , bioinformatics and scientific

computing applications. This is because of the fact that the majority of software application

developers consider HDL languages as unacceptable for their purposes and seek a highly automated

compilation/sythesis flow from C/C++ to FPGA's. The inherent paralellism of FPGA harware is of

vital contribution to accelerate software applications and HLS tools help to improve performance

Figure 5.2 Stages of synthesis[35]

39

advantages of exploiting the parallelism in FPGA's fabric ease of use and access for those with

limited hardware knowledge.

5.2 Vivado HLS (High Level Synthesis)

Software is in the core of applications all across different industry fields such as entertainment,

games, communication or medicine. Besides advancements in software-related technologies to

enhance algorithmic performance , interest in parallelization and concurrency raised due to the

progression in application-specific integrated circuit (ASIC) and FPGA design. FPGA's are

generally preferable to designers ,except for very large circuits, because of performance and power

consumption gains and reduced cost and complexity.

Initially[3], increased processor clock frequency and use of specialized processors were the primary

ways to increase software performance. Progressions in both standard and specialized processors

led to replacing clock frequency as a speedup factor by adding more processing cores per chip,

introducing program parallelization as a software performace boosting technique. The obstacle now

for unifying software and hardware design was the programming model, high level programming

languages for software applications and register-transfer level (RTL) descriptions for FPGA's .

Vivado High-Level Synthesis compiler facilitates the same functionality for C/C++ programs

targeted to FPGA's just as other compilers from high level languages to different processor

architectures. The differnce is that HLS compiler exceeds the sequential nature of processor

architectures as well as cache and memory space restrictions and exploits the parallel processing

capabilities of the FPGA reconfigurable fabric.

In the process of extracting the best ciruit-level implementation of the software program input

considering throughput and memory bandwith , the HLS compiler works through the following

basic stages:

 Scheduling different operations of the algorithm respectively with any data dependecies

involved , then grouping and overlaping them accordingly.

 Pipelining the design, increase the level of parallelism in the hardware implementation and

improve throughput and performance.

 Dataflow, another digital design technique, which expresses parallelism in the funtion level

based on the communication of inputs and outputs between them.

Vivado HLS compiler facilitates a similar programming environment with standard and specialized

processors , sharing technology for the interpretation, analysis and optimization of C/C++

applcations but differentiates by targeting an FPGA s the execution platform. This assists a software

engineer to implement computationally intensive software algorithms in an optimized way in terms

of throughput, latency and power exceeding possible performance bottleneck due to software

programming limitations .The compiler analyzes programs regarding operations, conditional

statements , loops , functions, arrays and other logic structures and can perform various

optimizations upon them based on the user's directives and constraints.

However[36], a number of transformations are required to the original C code , restructuring data

as well as organizing them in a more suitable way for the tool to understand in order to remove any

40

unnecessary dependencies or unsupported formats such as dynamic memory allocation and

recursive or system calls, that can prevent Vivado from extracting an optimal parallelized

implemention. Performing these modifications in a high level environment provides obvious

benefits compared to hand-written RTL code as it is easier and errors can be avoided . Furthermore,

FPGA's can facilitate arbitrary-precision data types through the tool's supported features, reducing

unnecessary resource usage and improving performance. The designer then can direct Vivado HLS

to produce RTL HDL code implementing the specified functionality , providing an estimate of clock

frequency and resource utilization for this initial design . This way the user can evaluate the

implementation and by tweaks in the high-level representation can perform early design

exploration in terms of performance and resource usage.

High-Level Synthesis applies two differnet types of synthesis to the input software model:

 Algorithm Synthesis, synthesizing the function contents and statements into RTL statements

over a number of clock cycles.

 Interface Synthesis, transforming the function arguments into RTL ports by implementing

specific timing protocols to them and this way enabling communication of the design with

other designs. There are differnet types of interfaces supported such as wire, register , bus,

FIFO,RAM, one/two way handshakes.

Figure 5.3 High-Level Synthesis use model [35]

41

The design implementation and verification [37] is accelerated significantly by directly synthesizing

C/C++/SystemC programs into VHDL or Verilog, after exploring a variety of micro-architectures

considering the requirements set by the designer. Simulation of the functionality of the program is

perfromed in C, a much faster way compared to hardware description languages simulation. A C-

test bench can be included in the input and can be used to verify both the C functionality of the

specification and the output RTL, removing the need of RTL test benches. HLS automatically

creates the adapters and wrappers to instantiate the RTL implementation into the C test bench and

use co-simulation of C and HDL to verify the design.

Co-simulation guarantees that the hardware design produced preserve the correct functionality of

the software algorithm and parallelization directives applied by the designer did not compromise it.

Aside from simulation/verification, the design flow[38] can be categorized in the following parts:

Software Optimization

Transform the C code in a way that will best fit an FPGA platform and benefit by the provided

advantages. Examples of common techniques for optimization of software programs destined for a

hardware imlemantation are:

 Inlining, flattening the hierarchy of the component and allowing increased reuse of

resources.

 Memory allocation, arranging arrays and other elements accordingly to prevent increase in

resource and power consumption.

Interface Generation

The tool provides a convenient and direct way for the user to attach interfaces to the implementation

arguments or even functions , connecting them appropriately with the rest of the system through

Figure 5.4 Co-simulation design Wrapper overview [35]

42

standard Xilinx bus architectures and other interfaces like BRAM and FIFO.

Architecture Implementation

Determine the nature of the design architecture depending on the desired area of focus:

 Parallel , if performance is demanded and resource consumption is a minor issue

 Sequential, to minimize resource usage

 Semi-parallel, combining high throughput of parallel designs with limited usage of

resources.

 Pipelining, improving throughput and latency between processed inputs that can be applied

to the refered architectures.

Optimization directives and settings used in Vivado HLS will be described in a more thorough way

during the process of implementing the necessary modules in the following chapter.

High-Level Synthesis uses clock uncertainty to support a user defined timing margin. The timing of

operations in the design is estimated , but the final component placement and net routing is

unknown and so are the exact delays. The tool will use the usable clock period to schedule the

design's operations which can be calculated by subtracting the clock uncertainty from the clock

period defined in the implementation settings. By default the clock uncertainty is 12,5% but can be

changed by the user . More details about different architectures generated by changing the clock

period will be discussed in the implementations section.

Figure 5.5 Usable Clock Period and Clock Uncertainty [35]

43

Chapter 6

Hardware Design and Optimizations

In this chapter the implemented modules are described in details regarding targeted board ,clock

timing and optimization directives. Specifically, the designing procedure in High Level Synthesis

environment is overviewed ,from any necessary source code transformations and C code validation

to synthesizing the design and apply various optimizations to explore new architectures. Finally, the

optimal solution is verified using the featured C/RTL Co-Simulation and device utilization of the

implemented modules is presented.

6.1 Source Code Modifications and C input validation

When it comes to the critical functions modules , transformed functions were validated with the

appropriate C test benches through C Simulation , then synthesized to RTL design as well as

optimized in terms of timing, latency and area and finally the hardware implementation of each

module was verified in the same Vivado HLS environment .

Source code modifications

High-Level Synthesis tools generally and Vivado HLS specifically still operate with some certain

restrictions on what they can accept as input in C/C++ language and tranlate it to RTL design.

Complex data structures and/or pointers may cause problems in the process of producing a

functional design in hardware if they are not treated cautioutly . Especially array pointers have to be

declared of their specific dimensions because the tool has to know in advance for example how

many registers or BRAMs would have to commit for this array.

 In functions ReconstructIntra4/ ReconstructIntra16 / ReconstructUV the input

VP8EncIterator struct process was replaced with all the array and array pointers that this

specific struct was containing and would be read or computed inside the body of the

function. This helps also regarding the C test bench that comes with the design destined for

synthesis as it is much more easier to take data from the software execution of the algorithm

to use as input in the test bench for validation and ensure that the same exact functionality is

implemented. The algorithm and a look to its operations makes it clear that array pointers

can be transformed to arrays with specific dimensions that will be easier to handle in a

high-level synthesis environment through the use of directives. Some complex array

indexing methods also were substituted by a more traditional indexing way as the HLS

compiler stumbled upon certain malfunctions .

 In Disto4x4 , Disto16x16 functions the only necessary modification was the same with

above for array pointers in the function input arguments that were changed to finite arrays

and the alternate indexing method for array accessing.

44

Arbitrary-precision data types

Arbitrary-precision data types can be used to limit the size of elements if for example a variable

needs 17 bits for storage then we do not have to commit 32 bits for this purpose as Vivado HLS

supports arbitrary widths. Fortunately, data types used in our modules are restricted to 8-bit

boundaries of C-based native data types(8 ,16,32 bits) so we can avoid the increase in the

complexity of the design as well as the amount of time the tool processes the user's directives and

constraints to result in a functional RTL design that comes with using arbitrary-precision data types.

Unsupported C language constructs

Possible system calls , dynamic memory allocation functions or recursive functions must be

removed from the design code before synthesis . This I because of the fact that the design submitted

for synthesis must contain all the required functionality and specify the exact resources needed as

during the synthesis process the implying resources are created and released during runtime. As a

result , the C input function must include all necessary information to implement the demanded

functionality without interventions for tasks executed in the operating system.

Function Inlining

Very small functions are automatically inlined by Vivado HLS , removing the function hierarchy .

The benefit that is granted through this feature is that typically there is a cycle overhead to enter and

exit functions, so removing function hierarchy may improve latency and throughput as well as area

by allowing better sharing of the components that this function consists.

C Simulation

Before synthesis, the C input program has to be checked that it implements the desired

functionality. For this C simulation the tool needs a test bench file to verify the function destined for

hardware implementation. High-Level Synthesis compiles the input and the test bench using a

version of gcc, however there is also an alternative compiler . The test bench needs to be self-

checking, comparing the results of the generated circuit with the original software execution results

that are retrieved and stored in a file. The same C test bench can be used later to verify the hardware

design through the C/RTL co-simulation feature of Vivado HLS , simplifying the process and

saving us a lot of time used to be devoted to manual verification of the implementation by creating

RTL test benches .

45

6.2 Hardware Modules Implementation

Initially ,Xilinx's Zynq XC7Z045 device residing in the ZC706 evaluation board was targeted for

the modules hardware implementation , with the corresponding block diagram given in Figure 6.1

[39] .After some early experimentation the clock period was set at 3 nsec, as despite of the fact that

a slight increase was noticed in the design’s latency compared to higher clock period designs, the

overall execution time of the circuits was significantly improved. In the next chapters alternative

implementations with different clock period are studied , so as to evaluate performance of the

hardware modules at more than one frequencies and to explore additional parallelization

possibilities , taking advantage of the architecture exploration capabilities Vivado HLS provides.

Figure 6.1 Zynq ZC706 Evaluation Board Block Diagram[39]

46

6.2.1 Luma4x4_PredModes Module

In this section the designing procedure for Luma4x4_PredModes module is described , focusing on

the optimization decisions that had the biggest impact in terms of performance and area. In the end

of the section the optimization directives summary is demonstrated , along with the final design’s

latency details.

Design Basics

Initially the design is synthesized with the default HLS interpretation of C language constructs that

will produce an architecture defined by the dependencies in code without any optimization

directives. The clock period was set at 3 nsec and after synthesis the tool resulted in a design that

facilitates similar sequential nature with the original software program and as a result is rather slow

in terms of latency.

Interface Synthesis

When the tool synthesizes the C input program to RTL design , top level function arguments are

synthesized into RTL data ports with specific interface protocols set by the designer . Interface

synthesis applies differently to functions and function arguments, as in the first case adds control

signals to the function/block to control the start of operation , when the data is ready and when the

block completes its operation and in the second case an interface protocol is attached to the function

argument port , for instance ap_memory, ap_bus or ap_fifo if we want to implement this specific

port as a single interface for memory , bus or fifo respectively.

In the specific module’s implementation add block-level handshakes must be added in the design

through ap_ctrl_hs interface to specify when the block operation can start and when it ends . In

addition to this we must ensure that all output ports use an interface that indicates when a write

operation is occurred. The above interfaces ensure that we can verify the RTL design without

creating RTL test benches through the C/RTL co-simulation feature in Vivado HLS , as a result

ap_ctrl_hs interface directive and an ap_memory interface directive are ensured to be attached to

the top level function and the output arrays respectively .

Pipelining

The primary target is to reduce the design latency and pipelining is a very useful technique to

parallelize operations for this purpose . Pipeline directives can be applied either on functions to
pipeline the operations in the function body or on loops level to explore concurrent execution of

these loops in order to reduce latency and improve throughput.

Function Pipelining

In Luma4x4_PredModes module pipeline directives are applied through Vivado HLS GUI to

functions that would be benefited from the issued parallelised execution . However, considering that

47

when a region is pipelined , inner loops of this region are unrolled to satisfy the optimization ,

pipelining must be treated carefully as unrolling loops of multiple operations and heavy

computational load can be a tricky task regarding design’s performance. The tool processes the

directives and produces a design with pipelined functions and the corresponding timing and

latency results. In some cases, significant reduction in latency comes with a necessary increase of

the clock period , because of the effort of the tool to pipeline the function .This means that Vivado

HLS pursues concurrent execution of the operations and if the defined clock period is not enough to

“fit” the scheduled operations the tool tries to extend it until it does.

In Luma4x4_PredModes module , functions ReconstuctIntra4 and Disto4x4 and the internal

FTransform4, ITransform4 , QuantizeBlock and TTransform4 respectively are mapped as instances

into the available logic resources and therefore , they are pipelined , whereas ITransformOne4 is

inlined in the hierarchy as instantiating it would not come with any benefits. This way we can also

avoid the latency overhead that transitions amongst the synthesized functions costs.

Loops Pipelining

Since the above instances are pipelined , all internal loops are unrolled and as a result the only

unrolled loop remaining in the design is the PredModes4 loop that executes reconstruction and

distortion measurement for 4x4 luma blocks.

Array Optimization

The bottleneck in the specific occasion is the arrays in the function arguments that are implemented

with a memory interface and their elements are grouped together . This prevents maximum

parallelization when pipelining as concurrent access in different elements of an array is not

possible. Even if dual port BRAMs are assigned to the input arrays difficulties occur in the effort

to improve initiation interval and consequently design latency . The solution to the problem is

partition directive that is featured and supports array partitioning, breaking the elements of an array

and implementing each one as a register in the RTL design . Arrays can be partitioned in as many

different small arrays as desired or even be scalarized totally which is the preferable choice for

maximum parallelization. This allows the tool to achieve the minimum initiation interval possible

for the function pipeline by scheduling multiple operations in the input arrays to take place at the

same time . Arrays containing 4 or less elements function are automatically partitioned by

default ,but for the function input arrays a config_array_partition command can be set through the

configuration settings of the implementation’s design solution. With this command all input port

arrays with an elements number smaller than the user specified threshold can be scalarized . The

impact in the design is radical latency reduction as the tool now can reach a lower initiation interval

for the function pipelines and remove the obstacle for reducing loop pipeline latency. Indeed the

clock cycles needed to execute the circuit droped around 100% in expense of area cost though,

however not in a restrictive manner .

48

Latency Constraints

We can specify the minimum and maximum latency that is acceptable for either functions or loops

as a constraint through the latency directive . When no further optimizations in terms of latency and

throughput seem to improve the design performance , the tool can be assigned to handle the

exploration of additional scheduling and binding alterations to satisfy the defined latency

constraints.

Function Dataflow Pipelining

Apart from pipelining operations inside a loop or function to improve throughput and reduce

latency , we can optimize the communication between functions with the dataflow directive applied

to the top level function . With this directive we can create a parallel process architecture for our

implementation to enable function call executions to overlap and achieve the lowest latency allowed

by data dependencies in the code . Considering that ReconstructIntra4 and Disto4x4 are mapped

together as data flow inside the design requires communication amongst the two generated

instances , dataflow pipelining can improve throughput by enabling the execution of Disto4x4

before ReconstructIntra4 finishes as long as data dependencies allow it.

Scheduling and Binding control

Scheduling and binding procedures can be controlled by the designer through the implementation

solution configuration settings . When selecting high effort levels for the tool , HLS will explore

alternative ways to schedule operations to result in a smaller or faster design consuming more time

and system memory as well as spend additional CPU cycles to determine different operation

implementations through the device technology library so as to provide better balance of timing and

area . Specifically, in the case that optimization decisions force a higher clock period that the

targeted high efforts levels in the scheduling process allow HLS to generate a RTL design with

acceptable clock period , finding ways to schedule the optimized operations in the program in order

to still satisfy the desired functionality and constraints but with a clock period close to the target

value.

49

Final Design

The following tables list the summary of optimization directives used in the specific module’s

optimal design , along with the final latency and resource usage details.

Optimization Directives

Directive Applied Region

% HLS DATAFLOW “Luma4x4_PredModes”

% HLS PIPELINE “FTransform4”

% HLS PIPELINE “ITransform4”

% HLS PIPELINE “QuantizeBlock”

% HLS PIPELINE “TTransform4”

% HLS PIPELINE “Disto4x4”

% HLS PIPELINE “ReconstructIntra4”

% HLS INLINE ITransformOne4

% HLS ARRAY_PARTITION -type block -

factor 10 -dimension 1

 uint8_t ref4[160]

Table 6.1.1 Luma4x4_PredModes Optimization Directives

The final design's timing and latency for Luma4x4_PredModes module are presented in tables

below , after the application of the optimizations used. Parallelization techniques helped us in order

to improve latency radically compared to the initial sequential scheduling of the module's

operations and at the same time keep the clock period in the acceptable range . Device utilization

also was maintained at low levels and the final resource usage of the fully optimized design is

presented in the device utilization section.

Clock Target Estimated Uncertainty

default 3.00 2.63 0,38

Table 6.1.2 Luma4x4_PredModes clock timing (ns)

50

Latency Interval Type

min max min max

961 961 961 961 none

Table 6.1.3 Luma4x4_PredModes design latency (clock cycles)

Information about functions below top level function in the function hierarchy are presented

separately if this function is not or cannot be inlined. These functions are implemented as

independent instances so that further optimizations could be applied either on the function level or

the operations inside its body such as loop pipelining , array optimization etc .

Instance

Latency Interval

Type

min max min max

ReconstructIntra4 74 74 75 75 function

Disto4x4 18 18 1 1 function

Table 6.1.4 Luma4x4_PredModes instantiated functions latency

Loops located in the top level function can also be treated separately when it comes to optimization

and the latency and pipelining information are produced by HLS always in connection with the

designer's directives and constraints. Considering loops in instantiated functions below top level in

the hierarchy, latency details are also presented in a specific section in the particular instance’s

synthesis report, for the convenience of the designer to locate any critical loops in need of

optimizations to boost performance.

Loop Name

Latency
Iteration

Latency

Initiation Interval

Count Pipelined
min max achieved target

 Pred_Modes4_Loop 960 960 96 - - 10 no

Table 6.1.5 Pred_Modes4_Loop latency

51

Finally , synthesis results include details for the resources required by the submitted design

instantiated functions below top level function in the function hierarchy.

Instance BRAM_18K DSP48E FF LUT

ReconstructIntra4 0 32 5081 4257

Disto4x4 0 128 12598 9779

Table 6.1.6 Luma4x4_PredModes instantiated functions resource usage

6.2.2 Luma16x16_PredModes Module

The same procedure was followed for all the implemented modules and this is the reason the other 2

modules design process is presented in a more brief way . The most optimization directives used as

52

well as the strategy followed in the optimization process were similar and any designing differences

are declared below . HLS micro-architecture exploration capabilities helped to assess various

designs for the implemented module before the optimal solution is selected . Optimization

directives used in this module are demonstrated in the end of the section along with the optimal

design’s latency and resource usage on Zynq XC7Z045 device.

Design Basics

The clock period for this module was initially set at 3 nsec resulting in a design that occurs from the

default HLS interpretation of the C input model.

Interface Synthesis

Data control signals were attached to the design's top-level function and the output arrays with ap_

ctrl_hs and ap_memory interface respectively , as a way to inform the tool about data operations

and keep combatibility with C/RTL co-simulation .

Pipelining

Instantiated functions in this module are ReconstructIntra16 and Disto16x16 containing

FTransform, ,ITranform, FTransformWHT, ITranformWHT, QuantizeBlock and Transform

respectively. It must be highlighted that 2 separate instances are created for QuantizeBlock because

of the existence of inner loops with variable loop bounds that prevent unrolling. QuantizeBlock is

called for both dc and ac quantization levels and execution differentiation points imply that

independent instances have to be created in order to allow pipeline of the function .The above

instances are pipelined whilst ITranformOne is inlined into ITranform as merging the two instances

improves latency.

Loops inside ReconstructIntra16 that apply 16 4x4 DCTs and inverse DCTs to cover the 16x16

processed block as well as quantization for ac levels are also pipelined as sequential execution

occupies a large number of clock cycles.

In the generated design, every loop transition in nested loops costs 1 clock cycle, so we can nearly

eliminate this delay by inlining DistoB function which is called 16 times inside two nested loops to

measure distortion across the 16x16 luma block . This way, HLS compiler will combine the nested

loops in one final loop without the intermediate transitions. Consequently we can pipeline this loop

with the pipeline directive allowing the design to process more data in every cycle and parallelize

operations.

Array Optimizations

As mentioned , input arrays allow limited number of accesses when implemented as memories and

this leads to not achieving the targeted initiation interval for the function and loops pipeline .

Partitioning the arrays guides the tool to implement a parallelized architecture with lower initiation

interval as more operations are allowed to operate concurrently , resulting in a 3 times faster circuit.

Function dataflow pipelining was also added to the implementation top level function to improve

53

communication with the rest functions of the design in a parallelized execution of function instances

that could boost the performance ..

Final Design

The following tables list the summary of optimization directives used in the specific module’s

optimal design , along with the final latency and resource usage details.

Optimization Directives

Directive Applied Region

% HLS DATAFLOW “Luma16x16_PredModes”
% HLS PIPELINE "ITransform"

% HLS PIPELINE "FTransform"

% HLS PIPELINE "ITransformWHT"

% HLS PIPELINE "FTransformWHT"

% HLS PIPELINE "TTransform"

% HLS PIPELINE "Disto16x16_inner_loop"

% HLS PIPELINE "QuantizeBlock"

% HLS PIPELINE "QuantizeBlock2"

% HLS INLINE "ITransformOne"

% HLS INLINE "DistoB"

% HLS PIPELINE "ReconstructIntra16_DCT_loop"

% HLS PIPELINE "ReconstructIntra16_ QuantizeBlock2_loop "

% HLS PIPELINE "ReconstructIntra16_IDCT_loop "

% HLS ARRAY_PARTITION -type

cyclic -factor 16 -dimension 1

uint16_t y_ac_levels[16][16]

% HLS ARRAY_PARTITION -type

block -factor 4 -dimension 1

uint8_t ref16[1024]

% HLS ARRAY_PARTITION -type

cyclic -factor 16 -dimension 1

uint8_t src16[256]

% HLS ARRAY_PARTITION -type

cyclic -factor 16 -dimension 1

uint8_t yuv_out16[256]

% HLS ARRAY_PARTITION -type

cyclic -factor 16 -dimension 1

"ReconstructIntra16" int16_t tmp[16][16]

Table 6.2.1 Luma16x16_PredModes Optimization Directives

Clock Target Estimated Uncertainty

default 3.00 2.63 0.38

Table 6.2.2 Luma16x16_PredModes clock timing (ns)

Latency Interval Type

54

min max min max

4529 4529 4529 4529 none

Table 6.2.3 Luma16x16_PredModes design latency (clock cycles)

Instance

Latency Interval

Type
min max min max

ReconstructIntra16 1052 1052 1052 1052 none

TTransform 20 20 3 3 function

TTransform_2 20 20 3 3 function

Table 6.2.4 Luma16x16_PredModes instantiated functions latency

Loop Name

Latency
Iteration

Latency

Initiation

Interval
Count

Pipeline

d
min max

achiev

ed
target

Pred_Modes16_Loop 4528 4528 1132 - - 4 no

--Disto16x16_inner_loop 72 72 28 3 1 16 yes

Table 6.2.5 Luma16x16_PredModes loops latency

Instance BRAM_18K DSP48E FF LUT

ReconstructIntra16 0 47 15038 32238

TTransform 0 12 3073 3130

TTransform_2 0 12 3073 3130

Table 6.2.6 Luma16x16_PredModes instantiated functions resource usage

6.2.3 Chroma_PredModes Module

Designing procedure for Chroma_PredModes module is presented next. Optimization directives

55

applied as well as the outcoming circuit’s latency and device utilization detiles are displayed in the

end of the section.

Design Basics

Initially a 3 nsec clock period is set corresponding to 333 MHZ frequency and the tool quickly

results in an early design based on sequential processor-like execution without any parallelization

optimizations and as a result the amount of clock cycles needed for the implementation is large.

Interface Synthesis

This module is also designed with the intention to verify that functional correctness of the algorithm

was not compromised because of parallelization and other optimizations . As a result the necessary

block level control signals were added to the top level function as well as data validation signals to

the output arrays (ap_ctrl_hs, ap_memory), enabling the C/RTL co-simulation procedure to take

place inside the same HLS platform . C test benches used to validate the C input algorithm are used

again by the tool with the proper adaptation to ensure that RTL design generated produces the same

results with the software .

Pipelining

Instantiated functions inside Chroma_PredModes module main function (ReconstructUV) are

FTransform, ITransform and QuantizeBlock are executed in loops in order to reconstruct 8 4x4

chroma blocks (4 blocks for each plane ,U and V). Consequently , besides pipelining the instances

to implement a parallel architecture for the inner operations , the loops containing the function calls

can also be pipelined in order to enable reconstruction overlapping for the different 4x4 chroma

blocks .

After function -level and loop- level pipelining the conclusion that limited ports in the input arrays

block additional parallelization optimizations is reached and array partitioning discussed next will

increase throughput and allow more operations to overlap.

Array Optimizations

Pipelining has not resulted in the best possible design in terms of throughput and latency due to

restrictions issued by the input arrays memory interface . Limited concurrent accesses can occur and

as a result the design created is semi- parallel. Applying partition directives to the input arrays can

allow more operations to overlap with acceptable resources cost , resulting in a 4 times faster circuit

in terms of latency .

Final Design

The following tables list the summary of optimization directives used in the specific module’s

optimal design , along with the final latency and resource usage details.

56

Optimization Directives

Directive Applied Region

% HLS DATAFLOW “Chroma_PredModes”
% HLS PIPELINE "ITransform"

% HLS PIPELINE "FTransform"

% HLS PIPELINE "Disto16x16_inner_loop"

% HLS PIPELINE "QuantizeBlock"

% HLS INLINE "ITransformOne"

% HLS PIPELINE "ReconstructUV_DCT_loop"

% HLS PIPELINE "ReconstructUV_QuantizeBlock_loop
"

% HLS PIPELINE "ReconstructUV_IDCT_loop "

% HLS ARRAY_PARTITION -type cyclic -

factor 8 -dimension 1

uint16_t uv_levels[4+4][16]

% HLS ARRAY_PARTITION -type block -

factor 4 -dimension 1

uint8_t ref_uv[512]

% HLS ARRAY_PARTITION -type cyclic -

factor 8 -dimension 1

uint8_t src_uv[128]

% HLS ARRAY_PARTITION -type cyclic -

factor 8 -dimension 1

uint8_t yuv_out_uv[128]

% HLS ARRAY_PARTITION -type cyclic -

factor 8 -dimension 1

"ReconstructUV" int16_t tmp[8][16]

Table 6.3.1 Chroma_PredModes Optimization Directives

After the application of the above directives the generated circuit’s clock period needs fixing as it

exceeds the targeted 3 nsec value and using high effort levels for scheduling and binding procedure

through the configuration settings of the implementation guides HLS to explore more possibilities

in the process of scheduling groups of operations and binding the suitable operators and cores to

them. This way a more balanced design is expected to be produced and indeed after a longer

elaboration time the tool results in a pipelined and fully optimized design with an acceptable clock

period value . High level tool efforts during scheduling and binding has also slightly benefited the

design regarding resources used as the elements are allocated in a more effective way.

Clock Target Estimated Uncertainty

default 3.00 2,63 0.38

Table 6.3.2 Chroma_PredModes clock timing (ns)

Latency Interval

Type
min max min max

57

2201 2201 2201 2201 none

Table 6.3.3 Chroma_PredModes design latency (clock cycles)

Instance

Latency Interval

Type

min max min max

ReconstructUV 548 548 548 548 none

Table 6.3.4 Chroma_PredModes instantiated functions latency

Loop Name

Latency
Iteration

Latency

Initiation

Interval Cou

nt
Pipelined

min max
achiev

ed
target

ChromaPredModes_Loop 2200 2200 550 - - 4 no

Table 6.3.5 Chroma_PredModes loops latency

 6.3 RTL Verification

The hardware modules generated need to be verified for correct functionality opposed to the

software edition of them . Vivado HLS C/RTL co-simulation feature allows us to avoid generating

RTL test benches in hardware language to verify the design as it can use the already created C test

bench destined for C input software validation and automatically verify the RTL design using an

HDL simulator . As already mentioned , functions and output ports must be attached to specific

interface protocols during interface synthesis to set HLS able to handle the communication between

Instance BRAM_18K DSP48E FF LUT

ReconstructUV 0 15 6600 20022

Table 6.3.6 Chroma_PredModes instantiated functions resource usage

58

the C test bench and the generated RTL creating the necessary wrapper and adapters . The main

purpose of co-simulation is to check that parallelization optimizations defined by the designer

during high-level synthesis did not compromise the original functionality of the C input program

and this is the reason HLS tests RTL design's results against the original software function outputs

as retrieved during various executions of the program .

 6.4 Modules Device Resource Utilization

In the table below the overall utilization on Zynq XC7z045 device is listed for each implemented

module, The resources used are limited in a low range despite the extensive parallelization

pursued ,with the distinctive note of DSPs used in Luma4x4_PredModes module .Even though the

particular module is the smallest regarding instantiated functions computational load, the HLS-

produced design requires a relatively high number of DSP blocks to reach the achieved

performance.

Usage of distributed LUT memory in Luma16x16_PredModes is also high , considering the high

demands in array storage for the specific module in contrast to the other 2 modules as the size of the

blocks to process is 16x16 .

 Luma4x4_PredModes Module

Zynq XC7Z045

Name BRAM_18K DSP48E FF LUT

Expression - - - 1241

FIFO - - - -

Instance - 160 17679 14036

Memory - - - -

Multiplexer - - - 1865

Register - - 1897 -

ShiftMemory - - - -

Total 0 160 19576 17142

Available 1090 900 437200 218600

Utilization (%) 0 17 4 7

Table 6.4.1 Luma4x4_PredModes device utilization

59

 Luma16x16_PredModes Module

Zynq XC7Z045

Name BRAM_18K DSP48E FF LUT

Expression - - - 531

FIFO - - - -

Instance - 71 21184 38498

Memory - - - -

Multiplexer - - - 1119

Register - - 1302 1

ShiftMemory - - - -

Total 0 71 22486 40149

Available 1090 900 437200 218600

Utilization (%) 0 7 5 18

Table 6.4.2 Luma16x16_PredModes device utilization

 Chroma_PredModes Module

Zynq XC7Z045

Name BRAM_18K DSP48E FF LUT

Expression - - - 48

FIFO - - - -

Instance - 15 6600 20022

Memory - - - -

Multiplexer - - - 79

Register - - 93 -

ShiftMemory - - - -

Total 0 15 6693 20149

Available 1090 900 437200 218600

Utilization (%) 0 1 1 9

Table 6.4.3 Chroma_PredModes device utilization

60

Chapter 7

Design Space Exploration

This chapter focuses on the hardware accelerated modules interconnection as well as details about

their communication with the CPU. The system’s high-level architecture is presented along with

design space exploration discussion. Finally, different architectures on the targeted device are

studied by setting an alternative clock period for the synthesized design and the modules overall

device utilization is demonstrated

7.1 WebP System Architecture

The principal concept of the system is that each HW accelerated module will be executed

independently as reconstruction of different types of blocks (luma4x4/16x16, chroma) takes place at

separate time in the original software algorithm . Consequently, the data required for each module

must be sent from the CPU to the board and this costs some time that will be calculated in the

overall execution time of the module. Specifically, each module needs the source pixels block(4x4,

16x16. 8 x16)* and the already predicted reference blocks of the same size for all the available

prediction modes as well as the quantization matrices for the specific segment of the frame.

In numbers , 0.375 Kbytes need to be transferred for Luma4x4_PredModes module, 2.125 Kbytes

for Luma16x16_PredModes module and finally 1Kbyte for Luma4x4_PredModes module .

Supposing a 390 MB/sec bus transfer rate the data input time is estimated to be 0.939 , 5.321 and

2.504 μsec respectively for each module. When it comes to the results, data written back are

calculated to be 0.507, 3.14 and 1.257 Kbytes for each implemented module, resulting in a

corresponding delay of 1.27 , 7.86 and 3.14 μsec .

Fortunately the input data as well as the time needed to write the results back to the CPU that

handles the software-executed functions are the only data transaction delays ,as the internal HW

modules processing already has the necessary data to produce the fully reconstructed blocks and

the corresponding distortion for all prediction modes , taking advantage by the fact that the modules

internal instances are placed one next to other and no further communication with the CPU is

demanded since the flow has reached the computation stage. The system high level architecture is

demonstrated in Figure 7.1 below along with data flow across the modules.

*Chroma blocks are treated as 2 8x8 blocks , one for each plane (U,V)

61

CPU

WebP
Software
Functions

Data
Bus

Reconstruc
tIntra4

Disto4
x4

Reconstruc
tIntra16

Disto1
6x16

ReconstrucUV

RESULT

MEM Data

MEM

MEM Data

Chroma_PredModes

Luma16x16_PredModes

Luma4x4_PredModes

Figure 7.1 System high-level architecture

Taking as a fact that each image block processing in the implemented circuit is independent, the

proposed architecture can adopt a pipelining logic by placing appropriate memories right before and

after the hardware computation stage. This way software processing and data loading to the board

can overlap with the execution of the hardware accelerated modules .

Additionally, the reconstructed blocks as well as the distortion values can be written back to the

CPU while the next block is submitted to the design for processing . Considering that input data

loading and write back time are smaller but of a comparable scale with the strict computation time ,

any achieved reduction in communication delay can have a greatly positive impact on the design’s

performance.

Furthermore, as long as device utilization allows it , more than one module cores as well as the

necessary additional memories can be added to the implemented system in order to make the

simultaneous processing of multiple blocks possible.

62

7.2 Overall Device Resource Utilization

Tables below demonstrate overall device utilization on 2 different target boards as well as 2

different clock periods for each board , 5 and 3 nsec , corresponding to 200 and 333 MHZ

frequency respectively .

We notice that resource usage for the system is relatively low consuming as only LUT usage

exceeds 30% for the 3 nsec clock period architecture that ,as the performace evalutation

indicates ,offers the biggest performance speedup. This allows the implementation of more than

one instances of the modules created to achieve further acceleration of the system.

Zynq XC7Z045 (3 nsec clock period)

Module BRAM_1

8K

DSP48E FF LUT

Luma4x4_PredModes - 160 19576 17142

Luma16x16_PredModes - 71 22486 40149

Chroma_PredModes - 15 6693 20149

Total 0 / 1090

 (0 %)

246 / 900

(27 %)

49135 / 437200

(11%)

78485 / 218600

(35 %)

Table 7.1 Overall device utilization on Zynq XC7Z045 (3 nsec clock period)

The 5 nsec clock period architecture demonstrates slightly higher utilization on the targeted device

but addition of processing cores is still possible.

Zynq XC7Z045 (5 nsec clock period)

Module BRAM_1

8K

DSP48E FF LUT

Luma4x4_PredModes - 160 15205 16534

Luma16x16_PredModes - 73 15918 40073

Chroma_PredModes - 44 7455 18377

Total 0 / 1090

(0 %)

277 / 900

(30 %)

38958 / 437200

(8 %)

75997 / 218600

(34 %)

Table 7.2 Overall device utilization on Zynq XC7Z045 (5 nsec clock period)

63

Chapter 8

Hardware Performance Evaluation

In this chapter the performance of the hardware modules generated is evaluated ,compared to the

software version of them .

The following table demonstrates the clock cycles needed to execute the hardware accelerated

modules in our generated circuit . Clock periods set through the design process were transformed to

frequencies in order to express the board's clock rate. It is worth mentioning that since a new design

clock period is set , HLS tool performs synthesis process from the beginning and that is the reason

the generated circuit differs regarding clock cycles needed for its execution, as a totally new

architecture is produced that issues proper scheduling of the operations in the designing process , as

defined by the available clock period.

Module Clock Period (5 nsec) Clock Period (3 nsec)

Luma4x4_PredModes 681 961

Luma16x16_PredModes 3841 4529

Chroma_PredModes 1845 2201

Table 8.0.1 Clock cycles for hardware design execution

Based on the clock cycles table above , the time needed to execute the hardware modules is

calculated and presented in the following table for 2 different clock frequencies , 200 and 333

MHZ :

Module Time @200 MHZ(μsec) Time@333 MHZ (μsec)

Luma4x4_PredModes 3,405 2,883

Luma16x16_PredModes 19,205 13,587

Chroma_PredModes 9,225 6,603

Table 8.0.2 Time needed for hardware design1

*1 Not including data read/write from/to CPU

Speedup results over software execution are presented next.

64

8.1 Speedup @ 200 MHZ

As the following table shows, the achieved speedup at 200 MHZ clock rate is slightly above 2X for

Chroma_PredModes and a little lower than 2,5X and 3X for Luma4x4_PredModes and

Luma16x16_PredModes respectively. Calculated hardware time includes the communication delay

between CPU and the hardware modules as well as the actual computation time consumed .

Module Software Time (μsec) Hardware Time (μsec) Speedup2

Luma4x4_PredModes 13,3 5,615 2,37

Luma16x16_PredMod

es

92 32,390 2,84

Chroma_PredModes 30 14,878 2,02

Table 8.0.3 Speedup @200 MHZ

*2 Including data read/write from/to the CPU

8.2 Speedup @ 333 MHZ

When it comes to the design that can achieve a 333 MHZ clock rate, a significant improvement is

noticed in all three hardware accelerated modules with a speedup that reaches almost up to 3,5X for

Luma16x16_PredModes and slightly above and lower than 2,5X for Luma4x4_PredModes and

Chroma_PredModes respectively.

Module Software Time (μsec) Hardware Time (μsec) Speedup3

Luma4x4_PredModes 13,3 5,094 2,61

Luma16x16_PredMod

es

92 26,772 3,44

Chroma_PredModes 30 12,256 2,45

Table 8.0.4 Speedup @333 MHZ

*3 Including data read/write from/to the CPU

65

8.3 Overall Speedup

According to Amhdahl's law equation the overall speedup results are calculated and displayed in

Table 8.5. Two different configurations were selected in order to relate the performance gains to as

real as possible the studied conditions can be. More specifically, the selected configurations is a

comparison of the execution time that the 3 modules accumulatively require in software or

hardware accelerated version, taking into consideration the execution times calculations mentioned

in the previous chapters.

Considering around 70% of the WebP algorithm is hardware accelerated , the theoretical maximum

speed up would be about 3,33 , leading to the conclusion that above half of the acceleration

potential is exploited by the proposed implementation.

Configuration Speedup @200 MHZ Speedup@333 MHZ

Lenna Image (400x400) 1,71 1,82

High Resolution Image(4096x2074) 1,59 1,67

Table 8.0.5 Overall Speedup4

*4 Including: I/O time for software

 Data read/write from/to CPU for hardware

The implemented modules that run at 333 MHZ can assist in speeding up the algorithm for Lenna

image conversion up to 1,8X and a high resolution image up to 1,67X , showing a more promising

perspective .

Even though the architecture running at 200 MHZ presents slightly higher utilization in the targeted

board and lower speedup performance for the studied configurations , it may result in a more

efficient usage for devices that operate under certain restrictions and have difficulties to reach a

333 MHZ clock rate.

66

8.4 Overall Speedup with overlapped I/O

Adopting the pipelined architecture described in section 7.1 can result in further increase of the

expected speedup considering the proposed implementation. The time required for the data transfer

from the CPU to the board is smaller than the processing time of the hardware accelerated modules,

but the delay is still important considering that for a whole image the modules will be executed

multiple times. The following table presents the speedup for the same configurations and clock

frequencies when the input data transfer is overlapped with the processing stage in the hardware

accelerated modules. It must be noted that the first data transfer to the design from the CPU can be

ignored as the total number of calls to the modules will be several thousands.

Configuration Speedup @200 MHZ Speedup@333 MHZ

Lenna Image (400x400) 1,86 1,99

High Resolution Image(4096x2074) 1.71 1,81

Table 8.6 Overall Speedup with overlapped I/O

The speedup results in this case follow a similar pattern as for Lenna the achieved speedup is larger

than the second configuration, however for both configurations and board frequencies a significant

improvement in accelerating the implemented modules in noticed. More specifically, a clock rate of

200 MHZ can lead to a 1,86X speedup of the algorithm for Lenna and slightly higher than 1,7X for

the high resolution image, whereas a design running at 333MHZ can reach a speedup factor of

almost 2X for Lenna and above 1,8 for 4K image. The desired trade-off between performance and

the achievable clock rate as well as possible power consumption limitations are the factors that will

determine the final design choice.

67

Chapter 9

Conclusions and Future Work

9.1 Conclusions Summary

This thesis proposes an effective way to improve WebP algorithm’s performance. Time consuming

functions that occupy around 70.6% of the total execution time as the applied profile analysis

indicated are implemented into reconfigurable fabric using Xilinx’s Vivado High Level Synthesis as

an efficient alternative to traditional manual hardware design in Hardware Description Languages.

The achieved overall speed up calculated using Amhdal’s Law equation reaches up to 1,99X

regarding the studied configurations , maintaining a relatively low resources usage in the targeted

device.

9.2 Future Work

Techniques proposed in section 7.1 considering communication overhead reduction between the

CPU and the hardware accelerated modules can be expanded to a more complicated pipelined

architecture to maximize parallelism in the design. In addition to this, adoption of a multi-core

processing architecture in a suitable device can lead to further improve of the system’s performance.

Furthermore, the power consumption of the implemented hardware design can be calculated and

alterations in the modules and overall system architecture can be explored so as to satisfy the low

power profile indicated by current trends in the related industry applications.

Finally , the described system architecture can be implemented beyond the abstract level that this

thesis presents by prototyping the embedded system and studying its behavior in real conditions.

68

Bibliography

[1] Wikipedia , “Digital Image Processing”.

[2] S. Hauck, A. Dehon,” Reconfigurable Computing: The Theory and Practice of FPGA-based

Computing “ , Elsevier 2008 , pp 26-36

[3] Xilinx,”User Guide 998,Introduction to FPGA Design Using High-Level Synthesis “.

[4] A. Manan, “ Implementation of Image Processing Algorithm on FPGA”, Akgec Journal of

Technology, Vol 2 , No 1.

[5] C.Shen, W. Plishker, S.S.Bhattacharyya, “Dataflow-based Design and Implementation of Image

Processing Applications”, Multimedia Image and Video Processing(2nd Edition), L. Guan, Y. He,

S.Kung , pp 609-629., ISBN: 978-1-4398-3087-1

[6] A. Boudabous , L. Khriji, A.Ben Atitallah, P. Kadionik, N. Masmoudi, “Efficient Architecture

and Implementation of Vector Median Filter in Co-Design Context”, Radioengineering, Vol 16 , No

3, September 2007.

[7] Chip Design Trends 2012 ,”ASIC/ASSP Prototyping with FPGAs“ survey.

http://chipdesignmag.com/sld/blog/tag/asic/

[8] D. Salomon, “Handbook of Data Compression”, 5th edition, Springer, 2010, 1383 p., ISBN

1848829027.

[9] Li R. Jung, K., Al-Shamakhi, N. 2002, “Image compression using transformed vector

quantization. Image and Vision Computing”, Volume 20, Issue 1, 1 January 2002, Pages 37-45

[10] WebP homepage, https://code.google.com/speed/webp/

[11] Webp Compression Study, https://developers.google.com/speed/webp/docs/webp_study

[12] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli,” Image quality assessment: from error

visibility to structural similarity”, IEEE Transaction on Image Processing 13 (4) (2004) 600–612.

[13] F. De Simone, L. Goldmann, J.Lee, T. Ebrahimi, “ Perfomance Analysis of VP8 image and

video compression based on subjective evaluations”, Proc. SPIE 8135 , Applications of Digital

Image Processing XXXIV (September 2011)

[14] J.Alakuijala, “Lossless and Transparency Encoding in WebP”, http://developers.google.com

/speed/webp/docs/webp_lossless_alpha_study.

[15] WebP Container Specification , https://developers.google.com/speed/webp/docs/riff_container

[16] M. Pintus, G. Ginesu, L. Atzori, D. Giusto, “ Objective Evaluation of WebP Image

Compression Efficiency”, 7th International ICST Conference, MOBIMEDIA September 2011,

Cagliari, Italy , pp 252-265.

http://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://developers.google.com/speed/webp/docs/webp_study

69

[17] WebP's Compression Techniques, https://developers.google.com/speed/webp/docs/compression

[18]] J. Bankoski, P. Wilkins, Y. Xu, Google Inc,” Technical Overview of VP8, an open source

video codec for the Web “, ICME '11 Proceedings of the 2011 IEEE International Conference on

Multimedia and Expo .

[19] Pankaj Kumar Bansal, Vijay Bansal, Mahesh Narain Shukla, Ajit Singh Motra , ” VP8 Encoder

- Cost Effective Implementation “, Software, Telecommunications and Computer Networks

(SoftCOM), 20th International Conference (2012)

[20] J. Bankoski, J. Koleszar, L. Quillio, J. Salonen, P. Wilkins, Y. Xu, Google Inc, “VP8 Data

Format and Decoding Guide “, http://datatracker.ietf.org/doc/rfc6386/ , November 2011.

[21]Inside WebM Technology: VP8 Intra and Inter

Prediction ,http://blog.webmproject.org/2010/07/inside-webm- technology-vp8-intra-and.html

[22] R. Kordasiewicz, S. Shirani, “ASIC and FPGA Implementations of H.264 DCT and

Quantization Blocks”, IEEE International Conference on Image Processing, Vol. 3, 2005, pp. 1020-

1023.

[23] K. Suh, S. Park, H. Cho,”An Efficient Hardware Architecture of Intra Prediction and TQ/IQIT

Module for H.264 Encoder”, ETRI Journal, Volume 27, No 5, October 2005.

[24] Heng-Yao Lin, Yi-Chih Chao, Che-Hong Chen, Bin-Da Liu, and Jar-Ferr Yang,” Combined 2-

D Transform and Quantization Architectures for H.264 Video Coders”, Circuits and Systems, 2005.

ISCAS 2005. IEEE International Symposium on, May 2005, pp 1802-1805 Vol. 2

[25] I. Amer, W.Badawy, and G.Jullien,” A High Performance Hardware Implementation of the

H.264 Simplified 8x8 Transformation and Quantization”, IEEE International Conference on

Acoustics, Speech, and Signal Processing 2005 (ICASSP'05), vol. 2, pp. ii/1137 -ii/1140,

Philadelphia, PA, 18-23 March 2005.

[26] Osman, H., Mahjoup, W., Nabih, A. , Aly, G.M.,”JPEG Encoder for low-cost FPGAs”,

Computer Engineering & Systems, 2007. ICCES '07. International Conference on, November 2007,

Cairo, pp 406-411.

[27] A. Tumeo, M. Monchiero, G. Palermo, F. Ferrandi, D. Sciuto,” A Pipelined Fast 2D-DCT

Accelerator for FPGA-based SoCs”, ISVLSI'07. IEEE Computer Society Annual Symposium on,

331-336.

[28] W. Elhamzi, T. Saidani, M. Atri and R. Tourki,” On Hardware Implementation of DCT/IDCT

for Image Processing”, Signals, Circuits and Systems, 2008. SCS 2008. 2nd International

Conference on , 7-9 November 2008.

[29] S. Cassidy, “An Analysis of VP8, a New Video Codec for the Web”, Rochester Institute of

Technology, 2011.

[30] S. Krishnaprasad, “Uses and Abuses of Amdahl’s Law,” J. Computing Sciences in Colleges,

vol. 17, no. 2, pp. 288-293, Dec. 2001.

https://developers.google.com/speed/webp/docs/compression
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6335511
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6335511
http://blog.webmproject.org/2010/07/inside-webm-
http://blog.webmproject.org/2010/07/inside-webm-
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9898
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9898
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4733847
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4733847

70

[31] G. Martin , G. Smith,” High-Level Synthesis: Past, Present, and Future “, Design & Test of

Computers, IEEE (Volume:26 , Issue 4) , July-Aug. 2009 , p 18-25

[32] J. Cong, B.Liu , S. Neuendorffer , J. Noguera , K. Vissers , Z. Zhang,” High-Level Synthesis

for FPGAs: From Prototyping to Deployment”, Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on (Volume:30 , Issue: 4) , April 2011 , p. 473-491

 [33] W. Meeus , K.,Van Beeck , T. Goedemé , J. Meel , D. Stroobandt,” An overview of today’s

high-level synthesis tools”, Design Automation for Embedded Systems, pp. 1-21, 2012

[34] K. Wakabayashi, “C-based behavioral synthesis and verification analysis on industrial design

examples,” in Proc. ASPDAC, 2004, pp. 344–348

[35] Xilinx,”User Guide 902, Vivado Design Suite : High Level Synthesis “, xilinx.com

[36] Berkeley Design Technology, Inc.,“An Independent Evaluation of High-Level Synthesis Tools

 for Xilinx FPGAs”

[37] Tom Feist, “Vivado Design Suite”, White Paper ,June 2012

[38] F.M. Sanchez, R. Mateos, E.J. Bueno, J. Mingo and I. Sanz , “Comparative of HLS and HDL`

Implementations of a Grid Synchronization Algorithm” in Industrial Electronics Society, IECON

2013 - 39th Annual Conference of the IEEE p 2232-2237

[39] Xilinx , “User Guide 954, ZC706 Evaluation Board for the Zynq-7000 XC7Z045 All

Programmable SoC “, July 13, Xilinx.com

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=54
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=54
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=54
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5737840
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6683943
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6683943

