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Abstract 

 
 

Image processing has become a crucial part of current technology status quo, being used in 

many fields such as computer vision, computer graphics and other . In modern sciences and 

technologies, images also gain much broader scopes due to the ever growing importance of 

scientific visualization . Complex scenarios of data processing in a wide variety of scientific fields 

indicate the necessity to visualize large data structures in a most effective way. 

 

Considering the massive growth of internet , both as a scientific and industrial field, image 

processing is critical to the efforts of software developers as great part of information provided in 

the multimedia based computing industry contains some kind of image form. Think about all the 

images , videos, etc a person is brought upon in an average internet session every day, and you 

can estimate the vitality of image processing algorithms in the effort to make web faster and 

increase our productivity. 

 

In this thesis WebP was studied , a new image format that provides lossless and lossy compression 

for images on the web , aiming to increase its performance. Focusing on the more frequently 

used  lossy compression that VP8 encoder facilitates, the algorithm's hotspots were analyzed  and 

the critical functions were implemented in hardware using Xilinx's Vivado HLS( High Level 

Synthesis) . This tool's convenience of use compared to manual hardware design made it possible 

to quickly implement various architectures and designs for the hardware accelerated modules 

and then compare them to choose the most optimal solution. Finally, design space exploration 

was performed to evaluate the resources used and assess the system’s performance. 
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Chapter 1 
 

Introduction 
 

 

In this chapter a brief introduction in Digital Image Processing and its related applications is 

attempted , then  reconfigurable logic supported by FPGAs is introduced and finally ways  to 

improve performance of Image Processing applications using FPGAs is presented. 

 

1.1 Digital Image Processing 

 
Digital image processing [1] is an  expanding and dynamic area that impact our everyday life in 

various aspects with a large number of applications in fields such as computer graphics, computer 

vision , medicine, space exploration, surveillance, authentication, automated industry inspection and 

many more areas. 

 

Advances in digital image processing allow use of  increased complexity algorithms, and therefore, 

can offer both more sophisticated performance at simple tasks, and the implementation of methods 

which would be unlikely to be created by analog means. 

 

Specifically, digital image processing is the only practical technology for: 

 Classification 

 Image Compression 

 Feature Extraction 

 Pattern Recognition 

 Signal Analysis 

 

Some techniques used in digital image processing include: 

 

 Pixelation 

 Linear Filtering 

 Hidden Markov Models 

 Anisotropic Defusion 

 Partial Differential Equations 

 Neural Networks 

 Wavelets 
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Digital Images, specifically, play a significant role in present multimedia based computing 

industry.Being a popular mode of data representation, images have extensively been  used in almost 

all sorts of digital device including the mobile phones, tablet and handheld computers. Although the 

most popularly used image algorithms are  easy  to be performed by the powerful processors, still 

the small devices of less capable processors suffer a lot from encoding or decoding procedures. This 

is due to some complex computations required by these algorithms . As the production and usage of 

tablet and handheld computing devices with less capable or low power-consuming processors 

increased, the necessity of producing more efficient as well as less time consuming tasks for the low 

capacity processors of these devices  has been appeared . 

 

 

 

 

 

Figure 1.1  Image Processing Related Fields 
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1.2 Field Programmable Gate Arrays (FPGAs) 

 

Field-programmable gate arrays (FPGAs) [2] succeeded in bringing a revolution in computer 

software and hardware industry by combining the advantages of both worlds. Significant 

performance ,power , cost and other gains of hardware designs  can be maintained and additionally 

the strict nature of application-specific integrated circuits(ASICs) is surpassed as an FPGA-based 

system is reconfigurable and not bounded to the chip during manufacturing process. Despite the fact 

that FPGAs may not reach the highest performance levels achieved by ASICs and the systems 

designed on FPGAs are found to be larger regarding area , their flexibility and convenience of use 

can simplify the designing process as well as reduce the manufacturing time and cost .  

In Figure 1.2 we can see the internal structure of an FPGA , containing logic blocks that are 

connected through a general routing structure . Inside logic blocks we can find processing elements 

as well as flip-flops for implementing combinational and sequential logic and the routing structure 

enables the connection of the logic elements used in the most preferable way. The facilitated 

flexibility of such devices allows the implementation of very complicated systems and the usage of 

special elements  such as large memories , multipliers or even complete microprocessors, which are 

constructed into the silicon,  can assist us to implement complete systems in a single device with 

increased speed and capacity .  

Interconnection Resources

I/O

Cells

Logic Blocks

 

Figure 1.2 Abstract view of basic FPGA architecture, taken and modified from [2] 
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FPGAs have traditionally been configured by hardware engineers using a Hardware Design 

Language (HDL). The two principal languages used are Verilog HDL (Verilog) and Very High 

Speed Integrated Circuits (VHSIC) HDL (VHDL) which allows designers to design at various 

levels of abstraction.  

 

Reconfigurable computing is the basic concept towards exploiting reconfigurable hardware devices. 

Even though FPGAs are not specifically optimized for reconfigurable purposes and , consequently, 

they lack in the architectural advantages that reconfigurable computing specific-devices can offer , 

reduced (time and financial) cost and power consumption make it up for the lost potential and 

allowed FPGAs to be widely used for a variety of hardware implemented applications. 

 

The basic structure of an FPGA is composed of the following elements [3]: 

 

• Look-up table (LUT): Basic FPGA’s building block for logic operations. 

• Flip-Flop (FF): Register element for LUT’s result storage . 

• Wires: Interconnections for elements communication . 

• Input/Output (I/O) pads:  Physically available ports for data transition in and out of the FPGA. 

 

Contemporary FPGA architectures facilitate the above basic elements along with additional and 

more complicated computational and data storage blocks that can improve the computational 

density and efficiency of the device. These additional elements can be : 

 

• Embedded memories for distributed data storage  

• Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates 

• High-speed serial transceivers 

• Off-chip memory controllers 

• Multiply-accumulate blocks 

 
In Xilinx FPGAs there are also complex computational blocks such as DSP48 block, an arithmetic 

logic unit (ALU) embedded into the FPGA fabric , containing a series of 3 different  connected 

blocks : add/subtract unit , multiplier , final add/subtract/accumulate engine. This chain of blocks 

enables a  DSP48 block to implement functions of the following form: 

 

 

 

  cdbap   (1.1) 

 

)( dbap   (1.2) 
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Figure 1.3 Structure of a DSP48 Block [3] 

 

It is clear that modern FPGA technology can provide the designer with a large range of choices 

regarding computational and memory elements . With proper combination of those elements in the 

designing process along with communication optimization amongst them , even large systems with 

heavy computational load  can be efficiently mapped into FPGA fabric. 

 

1.3 Digital Image Processing on FPGA's 

 

Digital image processing applications , such as these mentioned before , involve different processes 

–for instance image enhancement and object detection- which include highly demanding 

mathematical expressions and operations. Implementing such applications on a general purpose 

computer can be easier, however additional constraints on memory and other peripheral devices 

lead to inefficient results considering time.  

 

Implementing digital image processing applications on FPGAs has become an attractive alternative 

for designers because of the increased flexibility and performance and the relatively low cost . 

Typical operations for image processing algorithms- for example image differencing, registration, 

recognition,etc -  usually present inherent parallelizable nature, operating concurrently on multiple 

rows or columns of pixels.   With recent advances in FPGA technology   fast , parallel processing of 

image pixels can be achieved by mapping applications of the previously discussed nature into the 

silicon fabric to take advantage of the provided capabilities. Consequently, custom  hardware 

implementation offers much greater performance and exceptional decrease in algorithm’s execution 

times can be achieved compared to the software version of the same application. [4] [5] 

 

Additionally to the fact that complex computation tasks can be accelerated by exploiting parallelism 

and pipelining , large software/hardware co-designs can be also implemented on a single device 

considering the microprocessors that are often embedded in them. The flexibility offered in the co-

desing approach [6] nests in the fact that only the time-critical and heavy computational load 

handling functions are implemented as hardware-accelerated modules , allowing the rest of the 

software implemented algorithm to run on the processor and call the functions normally with the 
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difference that they are now mapped into the FPGA . This way the time consuming procedure of 

designing the whole application in hardware description languages is eliminated, however the speed 

advantages are maintained. Considering the blend of embedded computing capabilities in FPGAs 

with the cost and performance production benefits that reside in them , FPGAs present a promising 

perspective for the programmable logic industry. 

 

However, performance and flexibility are not the only benefit. Reduced time-to-market cost, fast 

prototyping of complex systems and simplified debugging and verification are –amongst other- the 

primary reasons for the expanding use of custom hardware designs. Considering the variety of 

modern technologies and scientific efforts that include image processing -related processes, 

hardware implementation of such algorithms provides great advantages to the developers depending 

on their motivation . In figure below , the benefits of FPGA prototyping are presented  regarding the 

priorities the developers have claimed that urge them the most to use FPGAs for the prototype of 

their system. [7] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Furthermore, the mobile nature of modern devices designed for a variety of uses , either educational 

and scientific or  entertaining , indicates that power consumption facilitates a great factor towards 

hardware implementation . Considering that autonomy of those devices has rised as one of the most 

important parts when a consumer searches the market for a preferable device choice as modern way 

of living as well as upcoming trends in employment  contain the need for remote access to e-mail or 

the internet generally anytime and anywhere ,we can understand that  power consumption reduction  

has a major contribution to satisfy the more and more emerging necessity of mobile computing. 

Modern FPGA's can use power reduction techniques in order to facilitate mobile use , allowing 

designers to maintain a low-power profile across various implemented architectures on the 

reconfigurable fabric. 

Figure 1.4 Prototyping priorities listed in the 2012 CDT survey [7] 
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Chapter 2 

WebP 

 

In this chapter  basic image compression techniques used by the most popular image formats are 

briefly preluded . Subsequently, an introduction to WebP image format is made, describing the 

concept behind the developing of this new format as well as the main differentiation points between 

WebP and older formats ( for example JPEG). Finally, a closer look to the algorithm is presented, 

briefly analyzing the principals of its functionality.  

 

2.1 Image Compression 

 
Compression  is a process that is used to reduce the physical size of an information block. In other 

words, the files are coded in such a form that their size is smaller than the original size before 

compression. Coding means a way of representing data when they are stored in a file, memory ,  

etc. Each compression algorithm is designed so that it searches for and uses data compression for a 

given order in the stored data. This procedure can include the repeated character sequence, the 

frequency of occurrence of individual characters, the identification of large blocks of the same data 

and more. 

 

 The main parameters to compare the performance of compression algorithms are the compression 

ratio and the compression or decompression time. The compression ratio is usually expressed as the 

ratio between the size of the compressed and uncompressed data . The compression time is the time 

necessary to transform the original information in to the compressed form. The decompression time 

indicates the reverse process – it is the time needed to extract the compressed file to its original 

form.[8] 

 

Image compression  seperates into  2 main categories :  lossless and lossy  compression.[9] 

 

Lossless compression is an error-free compression . The recovered image is numerically the same as 

the original image, on a pixel-by-pixel basis . Despite this excellent feature , only a small amount of 

compression is possible and hence , the obtained compression ratio is low . For  applications that 

tolerate no loss in information , lossless compression is the only acceptable method of data 

reduction . These applications include : archival of medical images, because loss of any information 

may  affect diagnosis ; archival of bussiness documents where omitting information is illegal etc. 

 

Lossy (irreversible) image compression is based on compromising the accuracy of the recovered 

image in exchange for more compression. The reconstructed image contains distortion, which may 

or may not be visually apparent . Depending on the application , a significant compression can be 

achieved if the resulting degradation can be tolerated for that certain application. In contrast to 

lossless techniques , a very high compression could be accomplished.  

 

Compression methods regarding images usually adminstrate the trade-off between quality and  

size ,  trying to save storage size or bandwith but at the same time keep the error rate between 

decompressed data and the original picture at a reasonable level .  
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2.2 WebP Overview  

 

WebP is an image format employing both lossy and lossless compression , developed by Google as 

part of an overall  project  designed to improve the performance of web pages and make the web 

faster by reducing image file sizes.  Google estimates 65% of current internet traffic is image and 

photo data, so a significant decrease in the amount of data sent across the web would increase 

overall speed for all internet users.  [10] 

 

It is presented by the developer as a new standard for lossily compressed true-color graphics on the 

web, producing smaller files of comparable image quality to the other formats used until now. 

Specifically, Google claims  that WebP lossless images are 26% smaller in size compared to PNGs 

and  WebP lossy images are 25%-34% smaller in size compared to JPEG images at equivalent 

SSIM ( Structural SIMilarity) index.  

 
 WebP supports lossless transparency (also known as alpha channel) with just 22% additional bytes. 

Transparency is also supported with lossy compression and typically provides 3x smaller file sizes 

compared to PNG when lossy compresion is acceptable for the red/green/blue color channels. After 

the first release of the  format , developers published studies trying to prove the precision of their 

allegations about the advantages of  WebP . 

 

2.3 WebP Evaluation 

 
Since the WebP image format is destined to replace existing image formats used across the web , it 

would be essential to verify that the announced advantages in theory have the expected practical 

impact .  The studies demonstrated below assess  WebP's performance in contrast to known formats 

facilitating both lossy and lossless compression, over quality as well as timing metrics during 

encoding and decoding process.  

2.3.1 Compression Benefits (  WebP vs JPEG) 

  

In this case , the study [11] focuses in the additional compression achieved by WebP at the same 

quality level of JPEG . In particular,  WebP images of same quality (as per SSIM index) as the 

JPEG images are generated and then  the file sizes of  WebP and JPEG images are compared. 

 

Structure SIMilarity(SSIM) [12] defines the quality degradation as the product of luminance , 

contrast  and structural errors affecting the image structure. The structural error is defined as the 

residual error in the image after its normalization with respect to luminance and contrast . The 

general form of the SSIM between signal x and y is defined as :   

 

           γβa
yx,syx,cyx,l=yx,SSIM                                          (2.1)   

 
where a, b and g are parameters that define there lative importance of the three components. 

Although its sensibility to relative translations, scaling and rotations of images, the SSIM index is 

quite simple and it performs well across a wide variety of image and distortion types. It is able to 

improve on the traditional PSNR by providing results which are more correlated with the image 

quality as perceived by the Human Visual System.  
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The following are the list of data sets used in the experiments by the researchers participated in this 

survey: 

 

1.Lenna: widely used image Lenna ( 512 x 512 pixels).  

2.Kodak: 24 images from the Kodak true color image suite .  

3.Tecnick: 100 images from the collection available at Tecnick.com . The 100 original size RGB 

color images are used.  

4.Image_crawl: A random sample of PNG images from Google Image Search web crawl database 

was collected. The majority of  PNG images are icons, graphics, charts, scanned documents, etc. 

However most images in the standard test collections are like photographs, rather than computer 

generated images. To make this dataset of similar nature to the standard test suites, a face detection 

algorithm over these PNG images was run and considered only those images (approximately 

11,000) for this experiment, that passed this detection test. 

5. 

 

 Lenna Kodak Tecnik Image_crawl 

WebP: Average File Size 
(Average SSIM) 

26.7 KB 
(0.864) 

46.5  KB  
(0.932) 

139.0 KB  
(0.939) 

9.9   KB  
(0.930) 

JPEG: Average File Size 
(Average SSIM) 

37.0 KB 
(0.863) 

66.0 KB 
(0.931) 

191.0 KB 
(0.938) 

14.4 KB 
(0.929) 

Ratio of WebP to JPEG 
file size 

0.72 0.70 0.73 0.69 

 

Table 2.1 Average file size for WebP /JPEG for the same SSIM index corresponding to JPEG Q=75 [11] 

 

From the table above, we can observe that WebP gives additional 25%-34% compression gains 

compared to JPEG at equal or slightly better SSIM index.  

 
In the second case,  SSIM vs bits per pixel (bpp) plots for WebP and JPEG is analyzed. These plots 

show the rate-distortion trade off for WebP and JPEG. The source PNG image is taken, compressed  

to JPEG and WebP using all possible (0-100) quality values. Then for each quality value  the SSIM 

and bpp achieved for JPEG and WebP is ploted. Following figures show such SSIM vs bpp plots for 

the 3 images chosen from the 3 public data sets  used.  
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Figure 2. 2  SSIM vs. BPP for Lenna [11] 

Figure 2.1 SSIM vs. BPP for kodim19.png from the Kodak dataset [11] 
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Overall, from the above plots we can observe that WebP consistently requires less bits per pixel 

than JPEG to achieve the same SSIM index. These results indicate that WebP can provide 

significant compression improvements over JPEG .  

 

Another study conducted to assess WebP’s performance compared to image compression formats 

such as JPEG, JPEG 2000 and JPEG XR is set under a subjective quality evaluation perspective , 

putting a number of participating subjects through a multi-staged testing procedure . WebP’s 

performance is noticed to be competitive towards JPEG 2000 and JPEG XR in the most cases 

except for limited occasions considering specific bit rate values and images. WebP consistently 

outperforms JPEG under all test conditions and experiments. More information about this study can 

be found in [13]. 

 

2.3.2 Compression Density and Encoding/Decoding Speed (  WebP vs PNG  ) 

 

In [14] ,  WebP’s lossless and lossy modes performance is evaluated for images that are usually 

encoded as PNG images after the newly added alpha support for WebP. The study uses  3 image 

corpora , a photographic image, a graphical image with translucency and finally 1000 randomly 

collected PNG images with translucency crawled from the internet. 

WebP is found to exceed compression density for both libpng(convert) and pngout , maintaining 

Figure 2.3 SSIM vs. BPP for RGB_OR_1200x1200_061.png from the Tecnick dataset[11] 
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comparable encoding and decoding speeds to PNG as the tables below indicate. 

 

 

Image Set Convert- 

quality 95 

pngout WebP lossless 

(default settings) 

WebP lossless 

-q 0 m-1 

WebP lossy 

with alpha 

photo 12.0 11.9 9.62 10.2 0.71 

graphic 1.36 1.12 0.74 0.85 0.56 

web 3.69 3.27 2.42 2.70 0.60 

 

Table 2.2 Average bits-per-pixel for the three corpora using the different compression methods. [14] 

 

 

Image Set Convert- 

quality 95 

pngout WebP lossless 

(default settings) 

WebP lossless 

-q 0 m-1 

WebP lossy 

with alpha 

photo 0.640 s 16.3 s 3.00 s 0.520 s 3.25 s 

graphic 0.260 s 55.9 s 5.27 s 0.040 s 6.00 s 

web 0.041 s 2.77 s 0.89 s 0.019 s 0.96 s 

 

Table 2.3 Average encoding time for the compression corpora, and for different compression methods. 

[14] 

 

 

Image Set Convert- 

quality 95 

pngout WebP lossless 

(default settings) 

WebP lossless 

-q 0 m-1 

WebP lossy 

with alpha 

photo 0.130 s 0.130 s 0.060 s 0.060 s 0.010 s 

graphic 0.120 s 0.120 s 0.010 s 0.010 s 0.010 s 

web 0.038 s 0.040 s 0.006 s 0.006 s 0.005 s 

 

Table 2.4Average decoding time for the three corpora for image files that are compressed with different 

methods and settings. [14] 

  
The survey reaches the conclusion that WebP is a simpler and more efficient replacement format for 

PNG images , especially with the lossy compression with alpha support that can contribute to 

speeding up image heavy websites. 
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2.4 WebP Algorithm Specifics     

 

As declared in [15] ,WebP is an image format that uses either (i) the VP8 key frame encoding to 

compress image data in a lossy way, or (ii) the WebP lossless encoding. These encoding schemes 

should make it more efficient than currently used formats. It is optimized for fast image transfer 

over the network (e.g., for websites). The WebP format has feature equivalency  (color profile, 

metadata, animation etc) with other formats as well.  

 

 

The WebP container (i.e., RIFF container for WebP) allows feature support over and above the basic 

use case of WebP (i.e., a file containing a single image encoded as a VP8 key frame). The WebP 

container provides additional support for: 

 

Lossless compression. An image can be  compressed without loss, using the WebP Lossless 

Format. 

Metadata. An image may have metadata stored in EXIF or XMP formats. 

Transparency. An image may have transparency, i.e., an alpha channel. 

Color Profile. An image may have an embedded ICC profile as described by the International 

Color Consortium. 

Animation. An image may have multiple frames with pauses between them, making it an 

animation. 

 

Due to better compression of images ,preserving though same quality levels,  and support for all 

these features, it can be an excellent replacement for most images: PNG, JPEG or GIF that most 

usually focus on either lossy or lossless compression techniques , whereas WebP tries to handle 

both  . In this thesis we are focusing on the lossy part of WebP’s algorithm as it is used in a wide 

range of applications and offers greater compression gains compared to lossless compression. On 

top of that, most images used on the web are compressed lossily as the exact reconstruction of the 

original image is not critical for the desired visual representation of the original picture . Also the 

majority of these images demonstrate low resolution and as a result small bitrate and size  and 

WebP’s compression techniques offer certain benefits over other widely used formats considering 

such low resolution images as presented in [16]. 

 

2.4.1  VP8 Encoder  

WebP's lossy compression [17] uses the same methodology as VP8 for predicting (video) frames. 

Figure 2.7 provides an overview for the VP8 encoding process [18].   VP8 is based on block 

prediction and as any block-based codec VP8 divides the frame into smaller segments called 

macroblocks. Within each macroblock, the encoder can predict redundant motion and color 

information based on previously processed blocks. The image frame is ‘key' in the sense that it only 

uses the pixels already decoded in the immediate spatial neighborhood of each of the macroblocks, 

and tries to fill  the unknown part of them. This is called predictive coding. 

 

The algorithm adjusts the predicted blocks (as wells as synthesize the unpredicted blocks) using a 

discrete cosine transform (DCT). In one special case, though, VP8 uses a “Walsh-Hadamard” 
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(WHT) transform instead of a DCT.  

 

 

 

WebP algorithm as any similar compression system [19], reduce data rate by exploiting the 

temporal and spatial coherence of most video signals. The frequency segregation provided by DCT 

and WHT facilitate the exploitation of both spatial coherence in the original signal and the tolerance 

of the human visual system to moderate losses of fidelity in the reconstructed signal. VP8 augments 

these basic concepts with, amongst other, sophisticated use of contextual probabilities. The result is 

a significant reduction in data rate at a given quality. 

 

Unlike some similar schemes (MPEG formats), VP8 specifies exact values for the reconstructed 

pixels.  Specifically, the specification for the  DCT and WHT portions for the reconstruction does 

not allow for any “drift” caused by truncation of fractions. The algorithm is specified using fixed-

precision integer operations exclusively. This facilitates the verification of the correctness of an 

encoder/decoder implementation as well as avoiding difficult to predict visual incongruities 

between such implementations. 

 

Figure 2.4 Overview of VP8 Encoding Process [18] 
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VP8 holds exclusively an 8-bit YUV 4:2:0 image formats. Each 8-bit pixel in the two chroma 

planes ( U and V ) corresponds positionally to a 2x2 block of 8-bit luma pixels in the Y plane; 

coordinates of the upper left corner of the Y block are of course exactly twice the coordinates of the 

corresponding chroma pixels.  

 

As usually, pixels are simply a large array of bytes stored in rows from top to bottom , each row 

being stored from left to right. This raster-scan order is reflected in the layout of the compressed 

data as well. 

 

Internally, VP8 decomposes each   frame into an array of macroblocks , square arrays of pixels 

whose Y dimensions are 16x16 and U and V dimensions are 8x8. Macroblock-level data in a 

compressed frame occurs and must be processed in a raster order similar to that of pixels 

comprising the frame. 

 

Macroblocks are further decomposed into 4x4 subblocks . There are 16 Y sublocks, 4 U sublocks 

and  4 V sublocks in every macroblock. Again, sublock-level data occurs and are processed in raster 

order within the containing macroblock. 

 

 

Figure 2.5 VP8 Macroblock Coding 

 

Pixels are always treated, at a minimum, at the level of subblocks, which could be parallelised as 

the “atoms” of the VP8 algorithm. Particularly, the 2x2 chroma blocks corresponding to 4x4 Y 

subblocks are never treated explicitly in the data format or in the algorithm specification. DCT and 

WHT always operate at a 4x4 resolution.  

 

The redundant data can be subtracted from the block, which results in a more efficient compression. 

We are only left with a small difference called residual, to transmit in a compressed form. After 

being subject to a mathematically invertible transform (DCT), the residuals typically contain many 
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zero values, which can be compressed much more effectively. The result is then quantized and 

entropy-coded. In fact, the quantization step is the only one where bits are discarded in a lossy way. 

All other steps are invertible and lossless. 

The following diagram shows the steps involved in WebP lossy compression. The differentiating 

features compared to JPEG are circled in red. 

 

 

 

WebP uses block quantization and distribute bits adaptively across different image segments: fewer 

bits for low entropy segments and higher bits for higher entropy segments. WebP uses arithmetic  

entropy encoding achieving better compression compared to the Huffman encoding used in JPEG 

encoding.  

 

A VP8 encoder [20], [21] uses two classes of prediction: 

 Intra prediction uses data within a single video frame 

 Inter prediction uses data from previously encoded frames 

Figure 2.6 WebP's lossy compression basic stages [17] 
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The residual signal data is then encoded using other techniques, such as transform coding, as we 

already discussed. When it comes to image compression ,only intra prediction is used as obviously 

a single frame is encoded/decoded.  

 

VP8 Intra-prediction Modes 

VP8 intra-prediction modes are used with three types of macroblocks: 

4x4 luma 

16x16 luma 

8x8 chroma 

 

Four common intra-prediction modes are shared by these macroblocks: 

 

H_PRED (horizontal prediction). Fills each column of the block with a copy of the left column, L. 

V_PRED (vertical prediction). Fills each row of the block with a copy of the above row, A. 

DC_PRED (DC prediction). Fills the block with a single value using the average of the pixels in 

the row above A and the column to the left of L. 

TM_PRED (TrueMotion prediction). A mode that gets its name from a compression technique 

developed by On2 Technologies. In addition to the row A and column L, TM_PRED uses the pixel 

P above and to the left of the block. Horizontal differences between pixels in A (starting from P) are 

propagated using the pixels from L to start each row. 

 

The diagram below illustrates the different prediction modes used in WebP lossy compression. 

 

Wu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For 4x4 luma blocks, there are six additional intra modes similar to V_PRED and H_PRED, but 

correspond to predicting pixels in different direction 

Figure 2.7WebP lossy compression prediction modes [17] 
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Chapter 3 

 

Related Work 

 
This chapter contains a synopsis of studies related to this thesis subject. There is a variety of 

hardware designs  implementing versions of DCT/Inverse DCT and quantization process used in 

popular codecs such as JPEG and H.264 , however it was not possible to find an implementation 

that handles exactly the same scope with the hardware accelerated modules that will be presented in 

the following chapters of this thesis. 

 

In [22] , the authors propose two different architectures for the hardware acceleration of DCT and 

blocks quantization of the H.264 compression standard on FPGA fabric . The first architecture 

focuses in optimized area results maintaining the natural sequential execution of the algorithms, 

whereas the second one aims to achieve high throughput and fast processing by facilitating a 

parallel architecture . The reason for these 2 different solutions is to create appropriate designs for 

both low power or high performance devices. The achieved FPGA throughput is estimated to be 

11M  and 32M pixels/sec for DCT and Quant area optimized implementations and 1719M and 

1551M  pixels/sec for the speed optimized architecture respectively. 

 

Additionally for H.264 hardware implementations, in [23] a novel hardware architecture containing 

intra-prediction, integer transform, quantization, inverse integer transform, inverse quantization and 

mode decision processing blocks  is proposed for the H.264 macroblock engine. The main 

improvement in the specified design is a method to reduce cycle overhead for intra16 prediction 

modes by pre-computing the quantized values of DC coefficients, resulting in reduced latency. The 

modules are implemented using Verilog Hardware Description language and they run at 54 MHZ 

using Hynix 0.35 μm Triple Layer Metal library, whereas all types of macroblocks can be processed 

in 927 clock cycles. 

 

Authors in [24] present an efficient hardware solution for H.264 4x4 forward and inverse transform 

coding and quantization/rescaling blocks with reduced complexity as the rescaling stages are 

merged into the quantizer and as a result the number of necessary multiplications for the processing 

is decreased. The modules are synthesized with TSMC 0.35 μm technology and the implemented 

encoder can achieve 256 M samples/sec at 32 MHZ. 

 

A high performance architecture for the hardware implementation of simplified 8x8 transfromation 

and quantization facilitated in H.264 standard is developed in [25]. The concept has to do with 

pipelined operations in the design to decrease accesses in memory that cost resources as well as 

time and increase throughput. The system is mapped into XC2V4000 device of Xilinx’s Virtex 2 

family and the implemented architecture satisfies the real-time constraints for even high resolution 

video formats. 
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Regarding JPEG hardware implementations, a low cost JPEG Encoder hardware module is 

demonstrated in [26] that processes an image as a stream of 8x8 blocks. The necessary divisions in 

quantization stage are replaced with a combination of multiplications and shifts with the appropriate 

usage of quantization tables and DCT step is structured in a way that the usual need of a zigzag unit 

is eliminated. The JPEG Encoder is implemented on Xilinx Spartan-3 XC3S200 and the reduced 

complexity leads in minimal usage of FPGA resources, setting the specific proposal ideal for low-

cost FPGAs. 

 

Researchers of [27] present a 2D-DCT hardware accelerator design for  a FPGA-based SoC using a 

single 1D-DCT pipeline apparted by 7 stages and special memories , resulting in a 80 clock cycle 

design running at 107 MHZ  that imlements a complete 8x8 2D DCT. JPEG algorithm is found to 

be significantly accelerated  when implemented in HW/SW co design on Microblaze soft core 

processor and the XC2VP30 board compared to the complete software system running on the same 

processor. 

 

In next study [28], implementations of DCT and Inverse DCT used in many compression standards 

–for instance JPEG, MPEG and H.26X- are targeted on Memec Virtex II Pro Development Kit  so 

as to optimize the processing time of the system by implementing a SW/HW co-design based on the 

embedded processor cooperation with the customized hardware accelerators. The DCT core is 

presented to compute a 8x8 block in about 0,7 μsec running at 100 MHZ , whereas the 2-D DCT 

calculation of a 32x32 pixels gray level image can be completed in around 12 μsec. 

 

Considering VP8 Encoder hardware implementations , [19] proposes a cost effective VP8 hardware 

encoder by reusing H.264 hardware IP already developed in industry. Feature parity between VP8 

and H.264 allows the adaptation of most of H.264 hardware implementation in the encoder’s 

architecture, resulting in comparable quality to the reference VP8 Encoder in relatively low HW 

cost and increased flexibility and effectiveness. 
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Chapter 4 

 

WebP Profile Analysis 

 

In the following chapter  a profile analysis for the WebP algorithm is presented ,  identifying the 

most time-consuming functions that will be implemented in hardware along with a description of 

their functionality. Furthermore , the partitioning of the original program is demonstrated, 

specifying the software and hardware accelerated stages of the implementation, and the expected 

speed-up is calculated. 

 

4.1 General Profiling Information 

 
Profiling took place in a 64 bit AMD triple core processor , running at 3 GHZ  . The operating 

system was Ubuntu 12.04 (64 bit) and version  0.2.1  of WebP was studied , released in August 

2012. For the profiling purposes of this thesis  gprof  was used, a performance analysis tool for 

UNIX applications, and the generated flat profile and call graph was  unified in a diagram using 

gprof2dot python script. 

 

To increase the reliability of the profiling we experimented with various pictures of different size 

and resolution and their profiling results. More specifically, images from 400x400 pixels (Lenna) up 

to 4096x2034 pixels were converted to WebP format using 3 different quality factors 50,75 and 100 

( 75 considered the default quality factor ). WebP algorithm presents similar behaviour for all 

images and quality factors with minor variations in the time used by the critical functions.  A 

representative diagram of the algorithm's function calls is the following in Figure 4.1, showing the 

profile analysis of WebP algorithm regarding conversion of Lenna.jpg image to WebP image format 

with a quality factor of 75  : 
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Figure 4.1 WebP  function call diagram 
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4.2 Profiling 

 

4.2.1 Important Functions 

 
Focusing on the time-consuming in the operative level functions , as for functions that actually 

perform computational tasks and not assign them to the function below in the hierarchy, the 

following profiling results are collected:  

 

 

Function   Execution Time Percentage (%) 

QuantizeBlock  29,79 

ITranform  17,02 

TTranform  12,77 

FTransform  12,77 

GetSSE    8,51 

GetResidualCost    4,26 

Table 4.1 WebP critical functions execution time percentage 

 

Functions of mathematical nature seem to occupy the majority of algorithm's computation 

weight ,for instance TTransform, FTransform, ITransform ,  as well as quantization through 

QuantizeBlock. 

 

The vast majority of calls to the above functions are performed during the reconstruction of the 

image’s blocks ( calls to QuantizeBlock, ITransform, FTransform)  as well as the texture distortion 

measurement of the reconstructed pixels compared to the original ones ( calls to TTransform) . 

Consequently, ascending a level in the function hierarchy above the time consuming functions and 

implementing in hardware the below functions can play a significant part in accelerating the 

algorithm: 

 

 ReconstructIntra4()/Disto4x4 () 

 ReconstructIntra16()/Disto16x16() 

 ReconstructIntraUV() 

 

 

Fortunately, by applying minor modifications in the WebP algorithm Reconstruct and Disto 

functions can be connected to operate sequentially and communicate by passing the output of the 

first as input to the second one .As a result it is more efficient to map the hardware accelerated 

implementations of them one next to the other ,as it will be further analysed later in the system 

architecture section. 

 

Additionally, it is possible to implement  more that one function call to the above modules , as long 

as the necessary data are loaded to the board from the processor. As it is already mentioned in the 

VP8Encoder section of Chapter 2, the above function modules are executed in groups, depending 

on the prediction modes number of the specific block .  There are 10 different prediction modes for 
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4x4 luma blocks  and 4 prediction modes for 16x16 luma blocks as well as chroma blocks. More 

details about the implemented design will be discussed in following chapters. 

 

 

Function   Execution Time Percentage (%) 

ReconstructIntra4  38,10 

ReconstructIntra16  13,31 

ReconstructUV    6,42 

Disto4x4    9.08 

Disto16x16    3,69 

Total  70,60 

Table 4.2  Selected for HW acceleration functions execution time percentage 

 

The functions selected for hardware implementation consume around 70,60 % of the total execution 

time of the algorithm , a rather significant proportion.  

 

In terms of execution time, considering strictly computation time ,  using  functions from the time 

library the results below are collected. Since Reconstruct / Disto functions are destined to be 

implemented in the same module for intra4x4/16x16( luma)  reconstruction as they normally 

operate sequentially in software, the time they consume is calculated cumulatively. The execution 

time column of the following table regarding all prediction modes contains the time consumed for 

all modes of the corresponding block type( 4x4/16x16 luma , chroma) and the last column displays 

a quite accurate approach of the total execution time of the specific modules during Lenna image 

conversion to WebP format in real conditions. The execution time is initially calculated through 

multiplication of the selected functions execution time for all prediction modes with the total 

number of calls to the modules. 

 

 

Function Execution Time (μsec) / 

function call 

Execution Time ( μsec) / 

All prediction modes 

Execution Time (sec) / 

Lenna image 

ReconstructIntra4 

/Disto4x4 

 1,33 13,3 0,276 

ReconstructIntra16 

/Disto16x16 

 23 92 0,127 

 

ReconstructUV  7.5 30 0,0405 

Total - 135,3 0,4435 

Table 4.3  Functions  Software Execution Time 

 

Using the appropriate option available in the WebP conversion options , the program displays the 

input as well as the encoding time that the conversion demands . In order to convert Lenna , WebP  

needs 0,025 sec to read the input image and 0,651 sec for encoding. Considering profiling indicated 

that the above modules consume 70,6 % of total encoding time , the time required is about 0,456 
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sec , a very close value to the estimated execution time of the above table and a reassuring factor for 

the accuracy of the calculations. 

 

4.2.2 Critical Functions and Hot Spots 

  

This section extends the brief analysis of VP8 Encoding , as presented in section 2.4.1. The reader 

can resort to [18] ,[19] ,[20]and [29] to take a more detailed view in the discussed subjects. 

 

Transforms 
 

Discrete Cosine Transform 

 

VP8 applies transform coding to the residue signal after intra prediction, . A standard image frame 

submitted for encoding is divided in macroblocks , and each macroblock contains a 16x16 block of 

luma pixels (Y) and 2 8x8 blocks of chroma pixels ( U,V). Since transform functions operate 

strictly on 4x4 level , luma and chroma blocks are further divided into 4x4 blocks, applying a 

discrete cosine transform to these 4x4 luma and chroma blocks to convert the residue signals into 

transform coefficients. DCT is an orthogonal transform independent of the input signal that has fast 

implementations in its two dimensional form  and VP8 facilitates a 2-D DCT as the basic transform 

coding technique of the signals  and the corresponding inverse 2-D DCT to inverse transform the 

quantized residuals. The formal definition  of the 4x4 DCT and 4x4 Inverse DCT are given in 

Equations (4.2),(4.3), however , VP8 facilitates an alternative form that uses multiple passes of the 

one dimensional version of the 2D-DCT. 
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Values Cu and Cv are scaling coefficients defined below: 

 

𝐶𝑥 = {

1

√2
 𝑖𝑓  𝑥 = 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

             (4.3) 

 

 

Walsh-Hadamant Transform 

 

DCT positions the most significant coefficients in the top left of the matrix, with the first coefficient 

known as the DC coefficient and the rest 15 as AC coefficients. In order to reduce the redundancy 

of the DC coefficients in 16x16 luma blocks predicted with 16x16 luma prediction modes,  a 4x4 

Walsh-Hadamant Transform is applied to the 4x4 block formed by the DC coefficients in each of 

the 16 4x4 luma blocks that exist in the macroblock. The WHT is defined as following: 
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𝐻𝑚 =
1

√2
(

𝐻𝑚−1

𝐻𝑚−1
    

𝐻𝑚−1

−𝐻𝑚−1
)                                                                                                    (4.4) 

 

Where Hm is a 2m x2m matrix and H0=1. 

 

 

Quantization 

 
Since transforms coding follows a bit-exact pattern, quantization is the only actually lossy step of 

the encoding algorithm. Quantization stage divides the already transformed block by a quantization 

matrix, removing high frequency data from the residuals. The quantization matrix is formed 

depending on the quantization parameter chosen in the encoding process in order to achieve the 

desired quality levels and it is the same for all macroblocks of a particular image frame. However, 

VP8 supports a region adaptive quantization scheme , offering the capability to categorize 

macroblocks of a frame into 4 different segments having a separate quantization parameter. 

 

 

Reconstruction 
 

ReconstructIntra(4x4/16x16 luma, chroma)  functions calculate the difference between source and 

reference samples based on prediction type and modes , then perform a DCT transform to the 

coefficients and continues with quantization of the blocks processed . In luma 16x16 blocks , a 

WHT is also performed to the DC coefficients before quantization and the corresponding Inverse 

WHT after Finally back- transforms the macroblocks using  inverse DCT and gives as output the 

reconstructed blocks and the quantization levels .  

 

 

Distortion  
 

Through Disto4x4 , Disto16x16 the algorithm intends to match the weighted spectral content 

between original and reconstructed samples after reconstruction of the macroblocks for Intra4x4 or 

Intra16x16 prediction mode respectively . The input arguments are the source and the reconstructed 

pixel values and a defined array used for distortion measurement . These functions perform 2 

Hadamand transforms returning the weighted summary of the absolute value of transformed 

coefficients , source and reconstructed , and the output is the absolute value of the subtracted and 

shifted distortion weight summaries .  
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4.2.3 Expected Speed-Up 

 

Accelerating the mentioned functions that occupy 70,6 % of the time by implementing them in 

hardware and leaving the rest of functions in software can give  an important speed-up.  

 

We can calculate the expected overall speed-up of the algorithm using Amdahl's Law equation[30]: 
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where f1,f2,f3 is the fraction of time that ReconstructIntra4/Disto4x4 , ReconstructIntra16/  

Disto16x16 and ReconstructUV are executed and x1,x2,x3 is the speed-up of the hardware  

implemented version of them respectively.  

 

4.3  Software/Hardware Partitioning 

 
Considering the profile analysis of WebP and the overview of VP8 Encoding process displayed in 

Figure 2.7 ,  we decided to partition the execution of the algorithm as  following : 

 

Software 

 Block generation 

 Intra Prediction 

 Entropy Encoding 

 

 

Hardware  

 Reconstruction 

◦ DCT Transform 

◦ Walsh-Hadamant Transform ( luma 16x16 blocks) 

◦ Block Quantization 

◦ Inverse Walsh-Hadamant Transform ( luma 16x16 blocks) 

◦ Inverse DCT Transform 

 Texture Distortion 

◦ Hadamant Transform 
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Software Hardware

ARM CORTEX-A9 Zynq Fabric

 Block Generation

 Intra Prediction

 Entropy Encoding

Reconstruction
   DCT Transform

   WHT Transform ( luma 16x16 )

   Block Quantization

   Inverse WHT Transform (luma 16x16 )

   Inverse DCT Transform

Texture Distortion
   Hadamant Transform

 

Figure 4.2 Hardware/Software Partitioning 

 

In order to  accelerate as much computational load as possible, the selected functions are grouped 

depending on the type of block they are destined to process. ReconstructIntra and Disto functions 

are executed sequentially in software , thus, they can be mapped together in hardware, avoiding 

unwanted transactions between the CPU and the circuit. Furthermore , the fact that these functions 

are always executed in loops containing as many iterations as the number of prediction modes of the 

particular block type and every iteration/function call is independent to the next one gives the 

opportunity to boost the system’s performance by implementing in hardware a parallelized 

architecture that reconstructs the input block as well as computes the texture distortion between the 

reconstructed and the original pixels for all the prediction modes available for this block. It must be 

noted here that at least until the release of the studied 0.2.1 version of WebP , texture distortion 

measurement through Disto function is performed only for the luma blocks.  
 

In other words, software execution computes reconstructed pixels and distortion compared to the 

source pixels for every prediction mode separately and then calculates the cost to decide for the best 

mode , whereas in the proposed hardware implementation the circuit pre-computes reconstructed 

pixels and the corresponding distortion for all the prediction modes and subsequently sends back the 

results to the processor to continue with the best mode decision and the rest of the processing stages 

of the algorithm. Schematically, the modules destined for hardware acceleration are the following: 
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    for ( n=0.. PredModesLuma16){  //4 Modes
  

  Step1:Reconstruct Luma 16x16 Block
Step2:Calculate Distortion 

}

for ( n=0.. PredModesChroma){  // 4 Modes
  

  Step1:Reconstruct Chroma Block

}

Luma4x4_Modes
Module

Luma16x16_Modes
Module

Chroma_Modes
Module

for ( n=0.. PredModesLuma4){  // 10 
Modes

  
  Step1:Reconstruct Luma 4x4 Block

Step2:Calculate Distortion 
}

 

Figure 4.3 Modules Schematic Description 
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Chapter 5 

 

High Level Synthesis 

 
This chapter contains an introduction to High Level Synthesis , briefly setting the concept of 

producing RTL designs from high level synthesis languages and the benefits that  occur during this 

process in contrast to manual design. The primary characteristics of Xilinx's Vivado High Level 

Synthesis tool , which is used in this thesis, are presented next. 

 

 

5.1 Background 

 
Each new FPGA generation is implemented on new silicon process technology but maintain low 

manufacturing and market cost compared to ASICs. Nowadays, implementing complex processing 

applications such as image and video coding applications on embedded systems is a subject of great 

challenge. Indeed, increased complexity of the designs for FPGAs  demands deep analyzing and  

advanced requirements regarding timing and area restrictions . Traditional manual hardware design 

includes hardware description languages [31] (VHDL, Verilog) which require deep hardware 

knowledge ,despite their high level nature , and provide advanced control over hardware 

implementation and limited uncertainty about synthesis results. 

 

Nevertheless, manual optimization in the logic level as well as debugging hardware issues can be a 

long and painful procedure when it comes to complex and large systems. On top of that, results 

verification and validation require HDL test benches making comparison with the original software 

model difficult. Another issue would be portability of the hardware designs along the different 

FPGA types. 

 

These reasons, amonst others, led the industry to seek alternative ways of  hardware implementation  

as the complexity of the designs rose. Necessity for increased productivity and efficiency of the 

design teams considering the progression in FPGA technology has also contributed to  thorough 

efforts to find a more automatic procedure for the designing process ,  allowing the designer to 

control the overview of the implementation and its various constraints but keeping many possibly 

confusing details away from his scope.  

 

Electronic system-level (ESL) design automation [32] is ought to fulfill this gap , boosting 

productivity for the hardware  industry  , where high-level synthesis (HLS) is the primary axis. HLS 

assists in the automatic synthesis of high-level, untimed or partially timed specifications( C, 

SystemC)  for cycle-accurate RTL specifications and  efficient implementation in application-

specific integrated  circuits ( ASICs) or FPGAs. The designs can be further optimized regarding 

performance ,power and cost of a particular system. 
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Complexity of the designs as wells as time-wasting verification procedure  create a bottleneck for 

image processing applications and developing implementations by raising the abstraction level to 

the ESL assists in sooner time-to-market. System level  is the highest abstraction level , where the 

system is overviewed as a whole, studying the communication amongst components. At the 

component level, an RTL description is synthesized from a high-level language algorithm, this is 

the HLS stage. Many tools can perform HLS automatically, taking an C,C++ or SystemC input 

model and creating a corresponding RTL implementation in harware description language  such as 

VHDL or Verilog. 

 

HLS handles a number of tasks[33] and allows the designer to focus on other aspects of the process. 

Analysing the source code leads to resource allocation, specifying the types and number of 

operators and memory elements needed. Then, scheduling takes place assigning each source code 

operation to a certain time slot (clock cycle). Finally, software operations and data elements are 

assigned to operators and memories in resource binding. Interface syntesis can be issued by high-

level synthesis also, creating a suitable interface regarding data and control signals between the 

generated circuit and its peripherals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Abstraction levels 
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Design abstraction is considered to be  one of the most effective ways to control complexity and 

improve design productivity. Modern HLS tools allow the designer to handle the trade-off between 

performance/power/cost and time , reducing the design time in expense of results or reaching 

performance relevant with hand-written RTL depending on the goals. 

 

Hardware design flow is benefited in various ways through the use of HLS. First of all, designers 

are required to write much more smaller amount of code , limiting mistakes and speeding up the 

process.A study from NEC[34] shows the benefits of HLS in the designing process of an one 

million gates circuit. At the RTL level about 300K lines of code are required to describe the system 

whereas the behavioral description would demand only 40K , limiting the simulation and debugging 

time and improving the performance. Moreover,  a design can optimized by HLS tool options and 

tweaks, creating opportunities for extended design space exploration. Automated HLS flow 

designers to conceive the system's functionality in high-level languages such as C/C++ and rapidly 

experiment with different hardware/software boundaries and explore various 

performance/area/power tradeoffs from the same functional specification .Finally, reusing test data 

for the verification of the design aside from the validation of the source code though HLS tools 

generated test benches assist in limiting the verification time, which is sometimes even exceeding 

the design time of the traditional manual hardware design flow. Especially for FPGA based 

embedded systems , moving to a higher abstraction level enables controlling increasing design 

complexity without the need to insert hardware architecture and timing into the algorithm manually 

and ,therefore , hardware accelerators for embedded software can be implemented with minimal 

effort. HLS and FPGAs together are a vital step towards  faster prototyping and quick time to 

market. 

 

For software developers specifically, recent FPGA's advances have made reconfigurable computing 

platforms more attractive for the implementation of many high-performance computing (HPC) 

applications , such as image and video processing , financial analytics , bioinformatics and scientific 

computing applications. This is because of the fact that the majority of software application 

developers consider HDL languages as unacceptable for their purposes and seek a highly automated  

compilation/sythesis flow from C/C++ to FPGA's. The inherent paralellism of FPGA  harware is of 

vital contribution to accelerate software applications and HLS tools help to improve  performance 

Figure 5.2 Stages of synthesis[35] 
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advantages of exploiting the parallelism in FPGA's fabric ease of use and access for those with 

limited hardware knowledge. 

 

5.2 Vivado HLS (High Level Synthesis) 

 

 

Software is in the core of applications all across different industry fields such as entertainment, 

games, communication or medicine. Besides advancements in software-related technologies to 

enhance algorithmic performance , interest in parallelization and concurrency raised due to the 

progression in application-specific integrated circuit ( ASIC ) and FPGA design. FPGA's are 

generally preferable to designers ,except for very large circuits, because of performance and power 

consumption gains and reduced cost and complexity. 

 

Initially[3], increased processor clock frequency and use of specialized processors were the primary 

ways to increase software performance.  Progressions in both standard and specialized processors 

led to replacing clock frequency as a speedup factor by adding more processing cores per chip, 

introducing program parallelization as a software performace boosting technique. The obstacle now 

for unifying software and hardware design was the  programming model,  high level programming 

languages for software applications and register-transfer level (RTL) descriptions for FPGA's .  

Vivado High-Level Synthesis compiler facilitates the same functionality for C/C++ programs 

targeted to FPGA's just  as  other compilers from high level languages to different processor 

architectures. The differnce is that HLS compiler exceeds the sequential nature of processor 

architectures as well as cache and memory space restrictions and exploits the parallel processing 

capabilities of the FPGA reconfigurable fabric. 

 
In the process of extracting the best ciruit-level implementation of the software program input 

considering throughput and memory bandwith , the HLS compiler works through the following 

basic stages: 

 

 Scheduling different operations of the algorithm respectively with any data dependecies 

involved , then grouping and overlaping them accordingly. 

 Pipelining the design, increase the level of parallelism in the hardware implementation and 

improve throughput and performance. 

 Dataflow, another digital design technique, which expresses parallelism in the funtion level 

based on the communication of inputs and outputs between them. 

 

 

Vivado HLS compiler facilitates a similar programming environment with standard and specialized 

processors , sharing technology for the interpretation, analysis and optimization of C/C++ 

applcations but differentiates by targeting an FPGA s the execution platform. This assists a software 

engineer to implement computationally intensive software algorithms in an optimized way in terms 

of throughput, latency and power exceeding possible performance bottleneck due to software 

programming limitations .The compiler analyzes programs regarding operations, conditional 

statements , loops , functions, arrays and other logic structures and can perform various 

optimizations upon them based on the user's directives and constraints. 

 
However[36], a number of transformations are required to the original C code  , restructuring data 

as well as organizing them in a more suitable way for the tool to understand  in order to remove any 
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unnecessary dependencies or unsupported formats such as dynamic memory allocation and  

recursive or system calls, that can prevent Vivado from extracting  an optimal parallelized 

implemention.  Performing these modifications in a high level environment provides obvious 

benefits compared to hand-written RTL code as it is easier and errors can be avoided . Furthermore, 

FPGA's can facilitate arbitrary-precision data types through the tool's supported features, reducing 

unnecessary resource usage and improving performance. The designer then can direct Vivado HLS 

to produce RTL HDL code implementing the specified functionality , providing an estimate of clock 

frequency and resource utilization for this initial design . This way the user can evaluate the 

implementation and by   tweaks in the high-level representation can perform early design 

exploration in terms of performance and resource usage. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High-Level Synthesis applies two differnet types of synthesis to the input software model: 

 

 Algorithm Synthesis, synthesizing the function contents and statements into RTL statements 

over a number of clock cycles. 

 Interface Synthesis, transforming the function arguments into RTL ports by implementing 

specific timing protocols to them and this way enabling communication of the design with 

other designs. There are differnet types of interfaces supported such as wire, register , bus, 

FIFO,RAM, one/two way handshakes. 

 

 

Figure 5.3 High-Level Synthesis use model [35] 
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The design implementation and verification [37] is accelerated significantly by directly synthesizing 

C/C++/SystemC programs into VHDL or Verilog, after exploring a variety of micro-architectures 

considering the requirements set by the designer. Simulation of the functionality of the program is 

perfromed in C, a much faster way compared to hardware description languages simulation. A C-

test bench can be included in the input and can be used to verify both the C functionality of the 

specification and the output  RTL, removing the need of RTL test benches. HLS automatically 

creates the adapters and wrappers to instantiate the RTL implementation into the C test bench and 

use co-simulation of C and HDL to verify the design. 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

Co-simulation guarantees that the hardware design produced preserve the correct functionality of 

the software algorithm and parallelization directives applied by the designer did not compromise it. 

 
Aside from simulation/verification, the design flow[38] can be categorized in the following parts: 

 

Software Optimization 

 

Transform the C code in a way that will best fit an FPGA platform and benefit by the provided 

advantages.  Examples of common techniques for optimization of software programs destined for a 

hardware imlemantation are: 

 

 Inlining, flattening the hierarchy of the component and allowing increased reuse of 

resources. 

 Memory allocation,  arranging arrays and other elements accordingly to prevent increase in 

resource and power consumption. 

 

Interface Generation 

 

The tool provides a convenient and direct way for the user to attach interfaces to the implementation 

arguments or even functions , connecting them appropriately with the rest of the system through 

Figure 5.4 Co-simulation design Wrapper overview [35] 
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standard Xilinx bus architectures and other  interfaces like BRAM and FIFO.  

 

Architecture Implementation 

 
Determine the nature of the design architecture depending on the desired  area of focus: 

 

 Parallel , if performance is demanded and resource consumption is a minor issue 

 Sequential, to minimize resource usage 

 Semi-parallel, combining high throughput of parallel designs with limited usage of 

resources. 

 Pipelining, improving throughput and latency between processed inputs  that can be applied 

to the refered architectures. 

 

 
Optimization directives and settings used in Vivado HLS will be described in a more thorough way 

during the process of implementing the necessary modules in the following chapter. 

 
High-Level Synthesis uses clock uncertainty to support a user defined timing margin. The timing of 

operations in the design is estimated , but the final component placement and net routing is 

unknown and so are the exact delays. The tool will use the usable clock period to schedule the 

design's operations which can be calculated by subtracting the clock uncertainty from the clock 

period defined in the implementation settings. By default the clock uncertainty is 12,5% but can be 

changed by the user . More details about different architectures generated by changing the clock 

period will be discussed in the implementations section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Usable Clock Period and Clock Uncertainty [35] 
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Chapter 6 
 

Hardware Design and Optimizations 
 

 

 

In this chapter the implemented modules are described in details  regarding targeted board ,clock 

timing and optimization directives. Specifically, the designing procedure in High Level Synthesis  

environment  is overviewed ,from any necessary source code transformations and C code validation 

to synthesizing the design and apply various optimizations to explore new architectures. Finally, the 

optimal solution is verified using the featured  C/RTL Co-Simulation and  device utilization of the 

implemented modules is presented.  

 

6.1 Source Code Modifications and C input validation 

 

When it comes to the critical functions modules , transformed functions were validated with the 

appropriate C test benches through C Simulation ,  then synthesized to RTL design as well as 

optimized in terms of timing, latency and area  and finally the hardware implementation of each 

module was verified in the same  Vivado HLS environment . 

 
Source code modifications 

 
High-Level Synthesis tools generally and Vivado HLS specifically still operate with some certain 

restrictions on what they can accept as input in C/C++ language and tranlate it to RTL design. 

Complex data structures and/or pointers may cause problems in the process of producing a 

functional design in hardware if they are not treated cautioutly . Especially array pointers have to be 

declared of their specific dimensions because the tool has to know in advance for example how 

many registers or BRAMs would have to commit for this array. 

 

 In functions ReconstructIntra4/ ReconstructIntra16 / ReconstructUV the input 

VP8EncIterator  struct process was replaced with all the array and array pointers that this 

specific struct was containing and would be read or computed inside the body of the 

function. This helps also  regarding the C test bench that comes with the design destined for 

synthesis as it is much more easier to take data from the software execution of the algorithm 

to use as input in the test bench for validation and ensure that the same exact functionality is 

implemented. The algorithm and a look to its operations makes it clear that array pointers 

can be transformed  to arrays with specific dimensions that will be easier to handle in a 

high-level synthesis environment through the use of directives. Some complex array 

indexing methods also were substituted by a more traditional indexing way as the HLS 

compiler stumbled upon certain malfunctions .  

 In Disto4x4 , Disto16x16  functions  the only necessary modification was the same with 

above for array pointers in the function input arguments that were changed to finite arrays 

and the alternate indexing method for array accessing. 
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Arbitrary-precision data types 

 
Arbitrary-precision data types can be used to limit the size of elements if for example a variable 

needs 17 bits for storage then we do not have to  commit 32 bits for this purpose as Vivado HLS 

supports arbitrary widths. Fortunately, data types used in our modules are restricted to 8-bit 

boundaries of C-based native data types( 8 ,16,32 bits) so we can avoid the increase in the 

complexity of the design as well as the amount of time the tool processes the user's directives and 

constraints to result in a functional RTL design that comes with using arbitrary-precision data types. 

 

Unsupported C language constructs 

 

Possible system calls , dynamic memory allocation functions or recursive functions must be 

removed from the design code before synthesis . This I because of the fact that the design submitted 

for synthesis must contain all the required functionality and specify the exact resources needed as 

during the synthesis process the implying resources are created and released during runtime. As a 

result , the C input function must include all necessary information to implement the demanded 

functionality without interventions for tasks executed in the operating system. 

 

Function Inlining 

 
Very small functions are automatically inlined by Vivado HLS , removing the function hierarchy . 

The benefit that is granted through this feature is that typically there is a cycle overhead to enter and 

exit functions, so removing function hierarchy may improve latency and throughput as well as area 

by allowing better sharing of the components that this function consists.  

 

C Simulation 

 

Before synthesis, the C input program has to be checked that it implements the desired 

functionality. For this C simulation the tool needs a test bench file to verify the function destined for 

hardware implementation. High-Level Synthesis compiles the input and the test bench using a 

version of gcc, however there is also an alternative compiler . The test bench needs to be self-

checking, comparing the results of the generated circuit with the original software execution results 

that are retrieved and stored in a file. The same C test bench can be used later to verify the hardware 

design through the C/RTL co-simulation feature of Vivado HLS , simplifying the process and 

saving us a lot of time used to be devoted to manual verification of the implementation by creating 

RTL test benches . 
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6.2 Hardware Modules Implementation 

 
Initially ,Xilinx's Zynq XC7Z045 device residing in the ZC706 evaluation board was targeted for 

the modules hardware implementation , with the corresponding block diagram  given in Figure 6.1 

[39] .After some early experimentation the clock period was set at 3 nsec, as despite of the fact that 

a slight increase was noticed in the design’s latency compared to higher clock period designs, the 

overall execution time of the circuits was significantly improved. In the next chapters alternative 

implementations with different clock period are studied , so as to evaluate performance of the 

hardware modules at more than one frequencies and to explore additional parallelization 

possibilities , taking advantage of the architecture exploration capabilities Vivado HLS provides. 

 

 

 

Figure 6.1 Zynq ZC706 Evaluation Board Block Diagram[39] 
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6.2.1 Luma4x4_PredModes Module 

 

 

In this section the designing procedure for Luma4x4_PredModes module is described , focusing on 

the optimization decisions that had the biggest impact in terms of performance and area. In the end 

of the section the optimization directives summary is demonstrated , along with the final design’s 

latency details.  

 

Design Basics  

 
Initially the design is synthesized with the default HLS interpretation of C language constructs that 

will produce an architecture defined by the dependencies in code without any optimization 

directives.  The clock period was set at 3 nsec  and after synthesis the tool resulted in a design that 

facilitates similar sequential nature with the original software program and as a result is rather slow 

in terms of latency. 

 
 

Interface Synthesis 

 
When the tool synthesizes the C input program to RTL design , top level function arguments are 

synthesized into RTL data ports with specific interface protocols set by the designer . Interface 

synthesis applies differently to functions and function arguments, as in the first case adds control 

signals to the function/block to control the start of operation , when the data is ready and when the 

block completes its operation and in the second case an interface protocol is attached to the function 

argument port , for instance ap_memory, ap_bus or ap_fifo if we want to implement this specific 

port as a single interface for  memory , bus or fifo respectively.  

 

In the specific module’s implementation add block-level handshakes must be added in the design 

through  ap_ctrl_hs  interface to specify when the block operation can start and when it ends . In 

addition to this we must ensure that all output ports use an interface that indicates when a write 

operation is occurred.  The above interfaces ensure that we can verify the RTL design without 

creating RTL test benches through the C/RTL co-simulation feature in Vivado HLS , as a result 

ap_ctrl_hs interface directive and an ap_memory interface directive are ensured to be attached to 

the top level function and the output arrays respectively .   

 

 

Pipelining 

 
The primary target is to reduce the design latency and pipelining is a very useful technique to 

parallelize operations for this purpose . Pipeline directives can be applied either on functions to 
pipeline the operations in the function body or on loops level to explore concurrent execution of 

these loops  in order to reduce latency  and improve throughput.  

 
Function Pipelining 

 
In Luma4x4_PredModes module pipeline directives are applied through Vivado HLS GUI to 

functions that would be benefited from the issued parallelised execution . However, considering that 
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when a region is pipelined , inner loops of this region are unrolled to satisfy the optimization , 

pipelining must be treated carefully as  unrolling loops of multiple operations and heavy 

computational load can be a tricky task regarding design’s performance. The tool processes the 

directives and produces a  design with  pipelined functions and the corresponding  timing and 

latency results. In some cases,  significant reduction in latency comes  with a necessary increase of 

the clock period , because of the effort of the tool to pipeline the function .This means that Vivado 

HLS pursues concurrent execution of the operations and if the defined clock period is not enough to 

“fit” the scheduled operations the tool tries to extend it until it does. 

 

In Luma4x4_PredModes module , functions ReconstuctIntra4 and Disto4x4 and the internal  

FTransform4, ITransform4 , QuantizeBlock  and TTransform4 respectively are mapped as instances 

into the available logic resources and therefore , they are pipelined , whereas ITransformOne4 is 

inlined in the hierarchy as instantiating it would not come with any benefits. This way we can also 

avoid the latency overhead that transitions amongst the synthesized functions costs. 

 

 

Loops Pipelining 
 

Since  the above instances are pipelined , all internal loops are unrolled and as a result the only 

unrolled loop remaining in the design is the PredModes4 loop that executes reconstruction and 

distortion measurement for 4x4 luma blocks.  

 

Array Optimization 

 
The bottleneck in the specific occasion is the arrays in the function arguments that are implemented 

with a memory interface and their elements are grouped together . This prevents maximum 

parallelization when pipelining as concurrent access in different elements of an array is not 

possible.  Even if dual port BRAMs are assigned to the input arrays  difficulties occur in the effort 

to improve initiation interval and consequently design latency . The solution to the problem is 

partition directive that is featured and supports array partitioning,  breaking the elements of an array 

and implementing each one as a register in the RTL design . Arrays can be partitioned in as many 

different small arrays as desired or even be scalarized totally which is the preferable choice for 

maximum parallelization. This allows the tool to achieve the minimum initiation interval possible 

for the function pipeline by scheduling  multiple operations in the input arrays to take place at the 

same time . Arrays containing 4 or less elements function are automatically partitioned by 

default ,but for the function input arrays a config_array_partition command can be set through the 

configuration settings of the implementation’s design solution. With this command all input port 

arrays with an elements number smaller than the user specified threshold can be scalarized . The 

impact in the design is radical latency reduction as the tool now can reach a lower initiation interval 

for the function pipelines and remove the obstacle for reducing loop pipeline latency. Indeed the 

clock cycles needed to execute the circuit droped around 100%  in expense of area cost though, 

however not in a restrictive manner . 
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Latency Constraints 

 
We can specify the minimum and maximum latency that is acceptable for either functions or loops 

as a constraint through the latency directive . When no further optimizations in terms of latency and 

throughput seem to improve the design  performance , the tool can be assigned to handle the 

exploration of additional scheduling and binding alterations to satisfy the defined latency 

constraints. 

  

 

Function Dataflow Pipelining 

 

Apart from pipelining operations inside a loop or function to improve throughput and reduce 

latency , we can optimize the communication between functions with the dataflow directive applied 

to the top level function . With this directive we can create a parallel process architecture for our 

implementation to enable function call executions to overlap and achieve the lowest latency allowed  

by data dependencies in the code . Considering that ReconstructIntra4 and Disto4x4 are mapped 

together as   data flow inside the design requires communication amongst the two generated 

instances , dataflow pipelining can improve throughput by enabling the execution of Disto4x4 

before ReconstructIntra4 finishes as long as data dependencies allow it. 

 

 

Scheduling and Binding control 

 
Scheduling and binding procedures can be controlled by the designer through the implementation 

solution configuration settings . When selecting high effort levels for the tool  , HLS will explore 

alternative ways to schedule operations to result in a smaller or faster design consuming more time 

and system memory as well as spend additional CPU cycles to determine different operation 

implementations through the device technology library so as to provide better balance of timing and 

area . Specifically, in the case that optimization decisions force a higher clock period that the 

targeted high efforts levels in the scheduling process  allow HLS to generate a RTL design with 

acceptable clock period , finding ways to schedule the optimized operations in the program in order 

to still satisfy the desired functionality and constraints but with a  clock period close to the target 

value.  
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Final Design 

 
The following tables list the summary of optimization directives used in the specific module’s 

optimal design , along with the final latency and resource usage details. 

 

Optimization Directives 

 

Directive Applied Region 

% HLS DATAFLOW “Luma4x4_PredModes” 

% HLS PIPELINE  “FTransform4” 

% HLS PIPELINE  “ITransform4” 

% HLS PIPELINE  “QuantizeBlock” 

% HLS PIPELINE “TTransform4” 

% HLS PIPELINE “Disto4x4” 

% HLS PIPELINE “ReconstructIntra4” 

% HLS INLINE  ITransformOne4 

% HLS ARRAY_PARTITION -type block -

factor 10 -dimension 1  

 uint8_t ref4[160]   

Table 6.1.1 Luma4x4_PredModes Optimization Directives 

 

 

 
The final design's timing and latency for Luma4x4_PredModes module are presented in tables 

below , after the application of the optimizations used. Parallelization techniques helped us in order 

to improve latency radically compared to the initial sequential scheduling of the module's 

operations and at the same time keep the clock period in the acceptable range . Device utilization 

also was maintained at low levels and the final resource usage of the fully optimized design is 

presented in the device utilization section. 

 

 

Clock Target Estimated Uncertainty 

default 3.00 2.63 0,38 

 

Table 6.1.2 Luma4x4_PredModes clock timing  (ns) 
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Latency Interval Type 

min max min max 

961 961 961 961 none 

Table 6.1.3 Luma4x4_PredModes design latency (clock cycles) 

  

Information about functions below top level function in the function hierarchy are presented 

separately if this function is not or cannot be inlined. These functions are implemented as 

independent instances so that further optimizations could be applied either on the function level or 

the operations  inside its body such as loop pipelining , array optimization etc . 

 

 

Instance 

Latency Interval 

Type 

min max min max 

ReconstructIntra4 74 74 75 75 function 

Disto4x4 18 18 1 1 function 

Table 6.1.4 Luma4x4_PredModes instantiated  functions latency 

 

Loops located in the top level function can also be treated separately when it comes to optimization 

and the latency and pipelining information are produced by HLS always in connection with the 

designer's directives and constraints. Considering loops in instantiated functions below top level in 

the hierarchy, latency details are also presented in a specific section in the particular instance’s 

synthesis report, for the convenience of the designer to locate any critical loops in need of 

optimizations to boost performance. 

 

Loop Name 

Latency 
Iteration 

Latency 

Initiation Interval 

Count Pipelined 
min max achieved target 

 Pred_Modes4_Loop 960 960 96 - - 10 no 

 

Table 6.1.5 Pred_Modes4_Loop latency  
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Finally , synthesis results include details for the resources required by the submitted design 

instantiated functions below top level function in the function hierarchy. 

 

Instance BRAM_18K DSP48E FF LUT 

ReconstructIntra4 0 32 5081 4257 

Disto4x4 0 128 12598 9779 

Table 6.1.6 Luma4x4_PredModes instantiated functions resource usage 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

6.2.2 Luma16x16_PredModes Module 

 
The same procedure was followed for all the implemented modules and this is the reason the other 2 

modules design process is presented in a more brief way . The most optimization directives used as 
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well as the strategy followed in the optimization process were similar and any designing differences 

are declared below . HLS micro-architecture exploration capabilities helped to assess various 

designs for the implemented module before the optimal solution is selected . Optimization 

directives used in this module are demonstrated in the end of the section along with the optimal 

design’s latency and resource usage on Zynq XC7Z045 device. 

 

Design Basics  

 
The clock period for this module was initially set at 3 nsec resulting in a design that occurs from the 

default HLS interpretation of the C input model.   

 

Interface Synthesis  
 

Data control signals were attached to the design's top-level function and the output arrays with ap_ 

ctrl_hs and ap_memory interface respectively , as a way to inform the tool about data  operations  

and keep combatibility with C/RTL co-simulation .  

 

Pipelining 

 
Instantiated functions in this module are ReconstructIntra16 and Disto16x16 containing  

FTransform, ,ITranform, FTransformWHT, ITranformWHT, QuantizeBlock and Transform 

respectively. It must be highlighted that 2 separate instances are created for QuantizeBlock  because 

of the existence of inner loops with variable loop bounds that prevent unrolling. QuantizeBlock is 

called for both dc and ac quantization levels and execution differentiation points imply that 

independent instances have to be created in order to allow pipeline of the function .The above 

instances are pipelined whilst ITranformOne is inlined into ITranform as merging the two instances 

improves latency.  

 

Loops inside ReconstructIntra16 that apply 16 4x4 DCTs and inverse DCTs to cover the 16x16 

processed block  as well as quantization for ac levels are also pipelined as sequential execution 

occupies a large number of clock cycles. 

 

In the generated design, every loop transition in nested loops costs 1 clock cycle, so we can nearly 

eliminate this delay by inlining DistoB function which is called 16 times inside two nested loops to 

measure distortion across the 16x16 luma block . This way, HLS compiler will  combine the nested 

loops in one final loop without the  intermediate transitions. Consequently we can pipeline this loop 

with the pipeline directive allowing the design to process more data in every cycle and parallelize 

operations. 

 

Array Optimizations 

 
As mentioned , input arrays allow limited number of accesses when implemented as memories and 

this leads to not achieving the targeted  initiation interval for the function and loops pipeline . 

Partitioning the arrays guides the tool to implement a parallelized architecture with lower initiation 

interval as more operations are allowed to operate concurrently , resulting in a 3 times faster circuit. 
 

 

Function dataflow pipelining was also added to the implementation top level function to improve 
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communication with the rest functions of the design in a parallelized execution of function instances 

that could boost the performance ..  

 

Final Design 

 
The following tables list the summary of optimization directives used in the specific module’s 

optimal design , along with the final latency and resource usage details. 

 

Optimization Directives 

 

Directive Applied Region 

% HLS DATAFLOW “Luma16x16_PredModes” 
% HLS PIPELINE  "ITransform" 

% HLS PIPELINE  "FTransform" 

% HLS PIPELINE  "ITransformWHT" 

% HLS PIPELINE "FTransformWHT" 

% HLS PIPELINE  "TTransform" 

% HLS PIPELINE  "Disto16x16_inner_loop" 

% HLS PIPELINE "QuantizeBlock" 

% HLS PIPELINE "QuantizeBlock2" 

% HLS INLINE "ITransformOne" 

% HLS INLINE "DistoB" 

% HLS PIPELINE "ReconstructIntra16_DCT_loop" 

% HLS PIPELINE "ReconstructIntra16_ QuantizeBlock2_loop " 

% HLS PIPELINE "ReconstructIntra16_IDCT_loop " 

% HLS ARRAY_PARTITION -type 

cyclic -factor 16 -dimension 1 

uint16_t y_ac_levels[16][16] 

% HLS ARRAY_PARTITION -type 

block -factor 4 -dimension 1 

uint8_t ref16[1024] 

% HLS ARRAY_PARTITION -type  

cyclic -factor 16 -dimension 1 

uint8_t src16[256] 

% HLS ARRAY_PARTITION -type 

cyclic -factor 16 -dimension 1 

uint8_t yuv_out16[256] 

% HLS ARRAY_PARTITION -type 

cyclic -factor 16 -dimension 1 

"ReconstructIntra16" int16_t tmp[16][16] 

Table 6.2.1 Luma16x16_PredModes Optimization Directives 

 

Clock Target Estimated Uncertainty 

default 3.00 2.63 0.38 

Table 6.2.2 Luma16x16_PredModes clock timing (ns) 

 

Latency Interval Type 
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min max min max 

4529 4529 4529 4529 none 

Table 6.2.3 Luma16x16_PredModes design latency (clock cycles ) 

 

Instance 

Latency Interval 

Type 
min max min max 

ReconstructIntra16 1052 1052 1052 1052 none 

TTransform 20 20 3 3 function 

TTransform_2 20 20 3 3 function 

Table 6.2.4  Luma16x16_PredModes instantiated  functions latency 

 

 

Loop Name 

Latency 
Iteration 

Latency 

Initiation 

Interval 
Count 

Pipeline

d 
min max 

achiev

ed 
target 

Pred_Modes16_Loop 4528 4528 1132 - - 4 no 

--Disto16x16_inner_loop 72 72 28 3 1 16 yes 

Table 6.2.5 Luma16x16_PredModes loops latency 

 

Instance BRAM_18K DSP48E FF LUT 

ReconstructIntra16 0 47 15038 32238 

TTransform 0 12 3073 3130 

TTransform_2 0 12 3073 3130 

Table 6.2.6 Luma16x16_PredModes instantiated functions resource usage 

 

 

 

6.2.3 Chroma_PredModes Module 

 

Designing procedure for Chroma_PredModes module is presented next. Optimization directives 
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applied as well as the outcoming circuit’s latency and device utilization detiles are displayed in the 

end of the section. 

 

Design Basics  

 
Initially a 3 nsec clock period is set corresponding to 333 MHZ frequency and the tool quickly 

results in an early  design based on sequential processor-like execution without any parallelization 

optimizations and as a result the amount of clock cycles needed for the implementation is large. 

 

Interface Synthesis  
 

This module is also designed with the intention to verify that functional correctness of the algorithm 

was not compromised because of parallelization and other optimizations . As a result the necessary 

block level control signals were added to the top level function as well as data validation signals to 

the output arrays ( ap_ctrl_hs, ap_memory), enabling the C/RTL co-simulation procedure to take 

place inside the same HLS platform . C test benches used to validate the C input algorithm are used 

again by the tool with the proper adaptation to ensure that RTL design generated produces the same 

results with the software .  

 

Pipelining 

 
Instantiated functions inside Chroma_PredModes module main function (ReconstructUV) are 

FTransform, ITransform and QuantizeBlock are executed in loops in order to reconstruct 8 4x4 

chroma blocks ( 4 blocks for each plane ,U and V). Consequently , besides pipelining the instances 

to implement a parallel architecture for the inner operations , the loops containing the function calls 

can also be pipelined in order to enable reconstruction overlapping for the different 4x4 chroma 

blocks . 

 

After function -level and loop- level pipelining the conclusion that limited ports in the input arrays 

block additional parallelization optimizations is reached and array partitioning discussed next will 

increase throughput and allow more operations to overlap.  

 

Array Optimizations 

 
Pipelining has not resulted in the best possible design in terms of throughput and latency due to 

restrictions issued by the input arrays memory interface . Limited concurrent accesses can occur and 

as a result the design created is  semi- parallel. Applying partition directives to the input arrays can 

allow more operations to overlap with acceptable resources cost , resulting in a 4 times faster circuit 

in terms of latency . 

 

 

 

 

 

Final Design 

 
The following tables list the summary of optimization directives used in the specific module’s 

optimal design , along with the final latency and resource usage details. 
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Optimization Directives 

 

Directive Applied Region 

% HLS DATAFLOW “Chroma_PredModes” 
% HLS PIPELINE  "ITransform" 

% HLS PIPELINE  "FTransform" 

% HLS PIPELINE  "Disto16x16_inner_loop" 

% HLS PIPELINE "QuantizeBlock" 

% HLS INLINE "ITransformOne" 

% HLS PIPELINE "ReconstructUV_DCT_loop" 

% HLS PIPELINE "ReconstructUV_QuantizeBlock_loop 
" 

% HLS PIPELINE "ReconstructUV_IDCT_loop " 

% HLS ARRAY_PARTITION -type cyclic -

factor 8 -dimension 1 

uint16_t uv_levels[4+4][16] 

% HLS ARRAY_PARTITION -type block -

factor 4 -dimension 1 

uint8_t ref_uv[512] 

% HLS ARRAY_PARTITION -type cyclic -

factor 8 -dimension 1 

uint8_t src_uv[128] 

% HLS ARRAY_PARTITION -type cyclic -

factor 8 -dimension 1 

uint8_t yuv_out_uv[128] 

% HLS ARRAY_PARTITION -type cyclic -

factor 8 -dimension 1 

"ReconstructUV" int16_t tmp[8][16] 

Table 6.3.1 Chroma_PredModes Optimization Directives 

After the application of the above directives the generated circuit’s clock period needs fixing as it 

exceeds the targeted 3 nsec value and using high effort levels for scheduling and binding procedure 

through the configuration settings of the implementation guides HLS to explore more possibilities 

in the process of scheduling groups of operations and binding the suitable operators and cores to 

them. This way a more balanced design is expected to be produced and indeed after a longer 

elaboration time the tool results in a pipelined and fully optimized design with an acceptable clock 

period value . High level tool efforts during scheduling and binding has also slightly benefited the 

design regarding resources used as the elements are allocated in a more effective way. 

 

 

Clock Target Estimated Uncertainty 

default 3.00 2,63 0.38 

Table 6.3.2 Chroma_PredModes  clock  timing (ns) 

 

 

Latency Interval  

Type 
min max min max 
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2201 2201 2201 2201 none 

Table 6.3.3 Chroma_PredModes  design latency (clock cycles ) 

 

 

Instance 

Latency Interval 

Type 

min max min max 

ReconstructUV 548 548 548 548 none 

Table 6.3.4 Chroma_PredModes  instantiated functions latency 

 

 

Loop Name 

Latency 
Iteration 

Latency 

Initiation 

Interval Cou

nt 
Pipelined 

min max 
achiev

ed 
target 

ChromaPredModes_Loop 2200 2200 550 - - 4 no 

Table 6.3.5 Chroma_PredModes loops latency 

 

 

 

 

 

 

 

 

 

 6.3 RTL Verification 

 

The hardware modules generated need to be verified for correct functionality opposed to the 

software edition of them . Vivado HLS C/RTL co-simulation feature allows us to avoid generating 

RTL test benches in hardware language to verify the design as it can use the already created C test 

bench destined for C input software validation and automatically verify the RTL design using an 

HDL simulator . As already mentioned , functions and output ports must be attached to specific 

interface protocols during interface synthesis to set HLS able to handle the communication between 

Instance BRAM_18K DSP48E FF LUT 

ReconstructUV 0 15 6600 20022 

Table 6.3.6 Chroma_PredModes instantiated functions resource usage 
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the C test bench and the generated RTL creating the necessary wrapper and adapters . The main 

purpose of co-simulation is to check that parallelization optimizations defined by the designer 

during high-level synthesis did not compromise the original functionality of the C input program 

and this is the reason HLS tests RTL design's results against the original software function outputs 

as  retrieved  during various executions of the program .   

 

 6.4 Modules Device Resource Utilization 

 

In the table below the overall  utilization on Zynq XC7z045 device is listed for each implemented 

module, The resources used are limited in a low range despite the extensive parallelization 

pursued ,with the distinctive note of DSPs used in Luma4x4_PredModes module .Even though the 

particular module is the smallest regarding instantiated functions computational load,  the HLS-

produced design requires a relatively high number of DSP blocks to reach the achieved 

performance.  

 

Usage of distributed LUT memory in Luma16x16_PredModes is also high , considering the high 

demands in array storage for the specific module in contrast to the other 2 modules as the size of the 

blocks to process is 16x16 . 

  

 

 Luma4x4_PredModes Module 

 

Zynq XC7Z045 

Name BRAM_18K DSP48E FF LUT 

Expression - - - 1241 

FIFO - - - - 

Instance - 160 17679 14036 

Memory - - - - 

Multiplexer - - - 1865 

Register - - 1897 - 

ShiftMemory - - - - 

Total 0 160 19576 17142 

Available 1090 900 437200 218600 

Utilization (%) 0 17 4 7 

Table 6.4.1 Luma4x4_PredModes device utilization 
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 Luma16x16_PredModes Module 
 

Zynq XC7Z045 

Name BRAM_18K DSP48E FF LUT 

Expression - - - 531 

FIFO - - - - 

Instance - 71 21184 38498 

Memory - - - - 

Multiplexer - - - 1119 

Register - - 1302 1 

ShiftMemory - - - - 

Total 0 71 22486 40149 

Available 1090 900 437200 218600 

Utilization (%) 0 7 5 18 

Table 6.4.2 Luma16x16_PredModes device utilization 

 

 

 

 Chroma_PredModes Module 

 

 

Zynq XC7Z045 

Name BRAM_18K DSP48E FF LUT 

Expression - - - 48 

FIFO - - - - 

Instance - 15 6600 20022 

Memory - - - - 

Multiplexer - - - 79 

Register - - 93 - 

ShiftMemory - - - - 

Total 0 15 6693 20149 

Available 1090 900 437200 218600 

Utilization (%) 0 1 1 9 

Table 6.4.3 Chroma_PredModes  device utilization 

 

 

 

 

 

 



60 

 

Chapter 7 

Design Space Exploration 
 
This chapter focuses on the hardware accelerated modules interconnection as well as details about 

their communication with the CPU. The system’s high-level architecture is presented along with  

design space exploration  discussion. Finally, different architectures on the targeted device are 

studied by setting an alternative clock period for the synthesized design and the modules overall 

device utilization is demonstrated 

7.1 WebP System Architecture 

 

 

The principal concept of the system is that each HW accelerated module will be executed 

independently as reconstruction of different types of blocks (luma4x4/16x16, chroma) takes place at 

separate time in the original software algorithm . Consequently, the data required for each module 

must be sent from the CPU to the board and this costs some time that will be calculated in the 

overall execution time of the module. Specifically, each module needs the  source pixels block(4x4, 

16x16. 8 x16)* and the already predicted reference blocks of the same size for all the available 

prediction modes as well as the quantization matrices for the specific segment of the frame.  

 

In numbers , 0.375 Kbytes need to be transferred for Luma4x4_PredModes module, 2.125 Kbytes 

for Luma16x16_PredModes module and finally 1Kbyte for Luma4x4_PredModes module . 

Supposing a 390 MB/sec bus transfer rate the data input time is estimated to be 0.939 , 5.321 and 

2.504 μsec respectively for each module. When it comes to the results, data written back are 

calculated to be 0.507, 3.14 and 1.257 Kbytes for each implemented module, resulting in a 

corresponding delay of 1.27 , 7.86 and 3.14 μsec . 

 

Fortunately the input data as well as the time needed to write the results back to the CPU that 

handles the software-executed functions are the only data transaction delays ,as the internal HW 

modules processing already has the necessary data to produce  the fully reconstructed blocks and 

the corresponding distortion for all prediction modes , taking advantage by the fact that the modules 

internal instances are placed one next to other and no further communication with the CPU is 

demanded since the flow has reached the computation stage. The system high level architecture is 

demonstrated in Figure 7.1 below along with data flow across the modules.  

 

 

 

 

 

 

 

 

*Chroma blocks are treated as 2 8x8 blocks , one for each plane (U,V) 
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Figure 7.1 System high-level architecture 

 

 
 

Taking as a fact that each image block processing in the implemented circuit is independent, the 

proposed architecture can adopt a pipelining logic by placing appropriate memories right before and 

after the hardware computation stage. This way software processing and data loading to the board 

can overlap with the execution of the hardware accelerated modules .  

 

Additionally, the reconstructed blocks as well as the distortion values can be written back to the 

CPU while the next block  is submitted to the design for processing . Considering that input data 

loading and write back time are smaller but of a comparable scale with the  strict computation time , 

any achieved reduction in communication delay can have a greatly positive impact on the design’s 

performance.  

 
Furthermore, as long as device utilization allows it , more than one module cores as well as the 

necessary additional memories can be added to the implemented system in order to make the 

simultaneous processing of multiple blocks possible. 
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7.2 Overall Device Resource Utilization 

 

Tables below demonstrate overall device utilization on 2 different target boards as well as 2 

different clock periods  for each board , 5 and 3  nsec , corresponding to 200 and 333 MHZ 

frequency respectively .  
 

We notice that resource usage for the system is relatively low consuming  as only LUT usage 

exceeds 30% for the 3 nsec clock period architecture that ,as the performace evalutation 

indicates ,offers the biggest performance speedup.  This allows the implementation of more than 

one instances of the modules created to achieve further acceleration of the system. 

 
 

Zynq XC7Z045 ( 3 nsec clock period) 

Module BRAM_1

8K 

DSP48E FF LUT 

Luma4x4_PredModes - 160 19576 17142 

Luma16x16_PredModes - 71 22486 40149 

Chroma_PredModes -              15 6693 20149 

Total 0 / 1090 

 ( 0 % ) 

246 / 900  

( 27 %) 

49135 / 437200 

(11%) 

78485 / 218600 

(35 %) 

Table 7.1 Overall device utilization on Zynq XC7Z045 ( 3 nsec clock period) 

 

The  5 nsec clock period architecture demonstrates slightly higher utilization on the targeted device 

but addition of processing cores is still possible. 

 

Zynq XC7Z045 ( 5 nsec clock period) 

Module BRAM_1

8K 

DSP48E FF LUT 

Luma4x4_PredModes - 160 15205 16534 

Luma16x16_PredModes - 73 15918 40073 

Chroma_PredModes - 44 7455 18377 

Total 0 / 1090 

( 0 %) 

277 / 900 

( 30 %) 

38958 / 437200 

(8 %) 

75997 / 218600 

( 34 %) 

Table 7.2 Overall device utilization on Zynq XC7Z045 ( 5 nsec clock period) 
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Chapter 8 

 

Hardware Performance Evaluation 

 
In this chapter  the performance of the hardware modules generated is evaluated ,compared to the 

software version of them .  

 

The following table demonstrates the clock cycles needed to execute the hardware accelerated 

modules in our generated circuit . Clock periods set through the design process were transformed to 

frequencies in order to express the board's clock rate. It is worth mentioning that since a new design 

clock period is set , HLS tool performs synthesis process from the beginning and that is the reason 

the generated circuit differs regarding clock cycles needed for its execution, as a totally new 

architecture is produced that issues proper scheduling of the operations in the designing process , as 

defined by the available clock period. 

 

Module Clock Period ( 5 nsec) Clock Period (3 nsec) 

Luma4x4_PredModes 681 961 

Luma16x16_PredModes 3841 4529 

Chroma_PredModes 1845 2201 

Table 8.0.1 Clock cycles for  hardware design execution 

 

Based on the clock cycles table above , the time needed to execute the hardware modules is 

calculated and presented in the following table for 2 different clock frequencies , 200 and 333 

MHZ : 

 

Module Time @200 MHZ( μsec) Time@333 MHZ (μsec ) 

Luma4x4_PredModes 3,405 2,883 

Luma16x16_PredModes 19,205 13,587 

Chroma_PredModes 9,225 6,603 

Table 8.0.2 Time needed for hardware design1 

 

*1 Not including data read/write from/to CPU 

 

Speedup results over software execution are presented next. 
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8.1 Speedup @ 200 MHZ 

 

As the following table shows, the achieved speedup at 200 MHZ clock rate is slightly above 2X for 

Chroma_PredModes  and a little lower than 2,5X and 3X for Luma4x4_PredModes and 

Luma16x16_PredModes respectively. Calculated hardware time includes the communication delay 

between CPU and the hardware modules as well as the actual computation time consumed . 

 
Module Software Time (μsec) Hardware Time (μsec) Speedup2 

Luma4x4_PredModes 13,3 5,615 2,37 

Luma16x16_PredMod

es 

92 32,390 2,84 

Chroma_PredModes 30 14,878 2,02 

Table 8.0.3 Speedup @200 MHZ 

 

*2 Including data read/write from/to the CPU 

 

 

8.2 Speedup @ 333 MHZ 

 
When it comes to the design that can achieve a 333 MHZ clock rate, a significant improvement is 

noticed in all three hardware accelerated modules with a speedup  that reaches almost up to 3,5X for 

Luma16x16_PredModes and slightly above and lower than 2,5X for Luma4x4_PredModes and 

Chroma_PredModes respectively.  

 
Module Software Time (μsec) Hardware Time (μsec) Speedup3 

Luma4x4_PredModes 13,3 5,094 2,61 

Luma16x16_PredMod

es 

92 26,772 3,44 

Chroma_PredModes 30 12,256 2,45 

Table 8.0.4 Speedup @333 MHZ 

 

*3 Including data read/write from/to the CPU 
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8.3 Overall Speedup 

 
According to Amhdahl's law equation the overall speedup results are calculated and displayed in 

Table 8.5. Two different configurations were selected in order to relate the performance gains to as 

real as possible the studied conditions can be. More specifically, the selected configurations is a 

comparison of the execution time that the 3 modules accumulatively require in software or 

hardware accelerated version, taking into consideration the execution times calculations mentioned 

in the previous chapters.  

 

Considering around 70% of the WebP algorithm is hardware accelerated , the theoretical maximum 

speed up would be about 3,33 , leading to the conclusion that above half of the acceleration 

potential is exploited by the proposed implementation. 

 

 

Configuration Speedup @200 MHZ Speedup@333 MHZ 

Lenna Image (400x400) 1,71 1,82 

High Resolution Image(4096x2074) 1,59 1,67 

Table 8.0.5 Overall Speedup4 
 

*4 Including: I/O time for software 

             Data read/write from/to CPU for hardware 

 

 
The implemented modules that run at 333 MHZ can assist in speeding up the algorithm for Lenna 

image conversion up to 1,8X and a high resolution image up to 1,67X , showing a more promising 

perspective . 

 
Even though the architecture running at 200 MHZ presents slightly higher utilization in the targeted 

board and lower speedup performance for the studied configurations , it may result in a more 

efficient usage  for devices that operate under certain restrictions and have difficulties to reach a 

333 MHZ clock rate. 
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8.4 Overall Speedup with overlapped I/O 

 

Adopting the pipelined architecture described in section 7.1 can result in further increase of the 

expected speedup considering the proposed implementation. The time required for the data transfer 

from the CPU to the board is smaller than the processing time of the hardware accelerated modules, 

but the delay is still important considering that for a whole image the modules will be executed 

multiple times. The following table presents the speedup for the same configurations and clock 

frequencies when the input data transfer is overlapped with the processing stage in the hardware 

accelerated modules. It must be noted that the first data transfer to the design from the CPU can be 

ignored as the total number of calls to the modules will be several thousands. 

 

 

Configuration Speedup @200 MHZ Speedup@333 MHZ 

Lenna Image (400x400) 1,86 1,99 

High Resolution Image(4096x2074) 1.71 1,81 

 
Table 8.6 Overall Speedup with overlapped I/O 

 

 
The speedup results in this case follow a similar pattern as for Lenna the achieved speedup is larger 

than the second configuration, however for both configurations and board frequencies a significant 

improvement in accelerating the implemented modules in noticed. More specifically, a clock rate of 

200 MHZ can lead to a 1,86X speedup of the algorithm for Lenna and slightly higher than 1,7X for 

the high resolution image, whereas a design running at 333MHZ can reach a speedup factor of 

almost 2X for Lenna and above 1,8 for 4K image. The desired trade-off between performance and 

the achievable clock rate as well as possible power consumption limitations  are the factors that will 

determine the final design choice. 
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Chapter 9 
 

Conclusions and Future Work 

 

9.1 Conclusions Summary 

 

This thesis proposes an effective way to improve WebP algorithm’s performance. Time consuming 

functions that occupy around 70.6% of the total execution time as the applied profile analysis 

indicated are implemented into reconfigurable fabric using Xilinx’s Vivado High Level Synthesis as 

an efficient alternative to traditional manual hardware design in Hardware Description Languages.  

The achieved overall speed up calculated using Amhdal’s Law equation  reaches up to 1,99X  

regarding the studied configurations , maintaining a relatively low resources usage in the targeted 

device. 

 

9.2 Future Work 

 

Techniques proposed in section 7.1 considering communication overhead reduction between the 

CPU and the hardware accelerated modules can be expanded to a more complicated pipelined 

architecture to maximize parallelism in the design. In addition to this, adoption of a multi-core 

processing architecture in a suitable device can lead to further improve of the system’s performance.  

Furthermore, the power consumption of the implemented hardware design can be calculated and 

alterations in the modules and overall system architecture can be explored so as to satisfy the low 

power profile indicated by current trends in the related industry applications. 

Finally , the described system architecture can be implemented beyond the abstract level that this 

thesis presents by prototyping the embedded system and studying its behavior in real conditions. 
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