School of Electronic and Computer
Engineering

Technical University of Crete

Design and Implementation of a Game Theory
Application Toolkit for Handheld Devices
Android Mobile Application Development

Undergraduate Diploma Thesis

Author:
Juliana Peres Hernandes Sanches

Committee:
Georgios Chalkiadakis, Assistant Professor-Supervisor
Michail G. Lagoudakis, Associate Professor

Katerina Mania, Associate Professor

Acknowledgment

The author would like to thank her supervisor Prof. Georgios Chalkiadakis for his great
help with the idea of the thesis, for his continuous support and encouragement to this
day.

The author wishes to thank the members of my thesis committee, Prof. Katerina Mania
and Prof. Michael Lagoudakis, for their participation.

Special thanks to the people that have helped the author with their advices: To Dimitris
Theodoropoulos, for his great Android Development advices. To Maria Kalenteri, for
her great help. To all the generous people in The Intelligent Systems Laboratory
(Students and Staff).

The author wishes to express her gratitude and love to her beloved family; for their
understanding and patience, through the duration of her studies.

Table of Contents

FAY o A [AU T TP PUPRTO PP ORI 7
1] d o Yo ¥ ot o] o WERUT TR UO RPN 10
1.1. MOtivation @nd GOlcocueeiiiiiieiiieeee ettt e 10
1.2 Tools and Requirements - Android Development Tool INtro........ccccccvveeeecciieeeecciieeeeeineen, 10
1.3 Our “Game Theoretic” ANAroid APPS ..veeiccrieeeiiiiieeiciieeeeiireeessrreeessrreeessraeeeessreeesssreeees 13

D - 1 LT 1 a1 To T V7RSS 17
2.1 INTFOTUCTION ettt ettt b e s bt e sae e st e et e e sbeesbeesaeesaneeane 17
2,01 DEFINITION ettt sttt st b e b sae e sane e 17
2.0 2 HiS Oy e 18

2.2 NOIMAl FOMMS GAMEBS....uuiiiiiieeiiieniee ettt e sttt ettt e ste e sttt e sabeesbteessbeesbeeesabeesbeessseeesabeeesaseenns 19
2.3 PrisoNer’s DIlEMIMAcooiuiiiiiiieiee ettt ettt et e e st e e sabeesbeesbaeesabeeesareenns 20
2.4 Battle Of THe SEXES (BOS) ..cuveieiiieiiie ettt e etee et s e tte e st e et e e stae e e ba e e s beestaeesnseesnraeesareens 23
3) Android Platform FUNAameEntals.........cccuiiiiiiiiie ittt e et e e e e atae e e earaeaeeans 28
3.1 ANAIOIA APIS ..ttt s st s e e ne e s re e e anee e s reeennreean 28
3.2 AFCRIEECTUIE ittt ettt e b e sbe e sae e st e e be e sbe e sbeesaeesaneeane 29
N o To [o] o I I YT SR 29
3.2.1 Android Class SYSTEM = VIEWSuviiiiciiiieiiiiieeeciieeeeciveeessitree e ssaaee s ssasaeessssreeesssneeees 31

BB KEINEI e s et sane e 33
I TR =T o g T W [Ty ol T o1 4 o] o RS 33
I T A = o g T I 2T Yo i = R ST 34
3.3.3 KEINEI VEISIONS ...eoieiieiieiieie ettt ettt st ettt et e s bt e e sare e sabeesneeesareeesnneens 34

3.4 Android Runtime - Dalvik Virtual Machingcccccoeviriiriiiiieneneeeeeee e 35
3.5 AppPlication FramEWOrKcuviiiiiieeecctee ettt e e e e e e s aae e e e e nbae e e e eaeees 37
ROl Y o] o] [ToF= oY T IF= V=Y PR PRR 39
3.7 INStallation @Nd SETUP .eeeee i e e e e e e e e e e e rarraaaaeean 39
4) Android Application FUNDAmMENTalSc..eeiieiiiiiieiee e e e 45

g R O Y 0} (=) 4 PSP 45

A2 COMPONENTS cetttttttttttttrereretererertrererererereree—.——————..—..—. 46
4.2.1 Activity DefiNItION....ceiieiiee e e e 47
4.2.2 SEIVICES .eviiiiiiiiiiiiitiie ettt ettt st s s a e s s 48
4.2.3 BroadCast RECEIVETSc..ceeiiiieiiieiiie ettt ettt ettt e sat e st e s saee e s e e sneeesareesaneeesaneeas 48
4.2.4 CONEENT PrOVIAEIS ..eeeeeiee ettt ettt ettt st ettt e st e s e s e e sne e e sbeeesaneenas 50
4. 2.5 INTENTS oottt 53

4.3 ACHIVItIES AN TASKS «..eeruiieiiiiieiieee ettt st sttt st et ee e 54

O I T T o L P UU PO PTUPPTOPRRPRRRPRRPION 57

N oo 4 [@ [oTU Lo M1V F=E Y- =] o = RS PR 58

) B ®0e]) (=T T ol =Ty = { o RS 63

T N D LT ol g o) { [0] o ST PP PP OPTTPPPPON 63
5.1.1 Strategies in “Confess 0F NOT”ooocciiieieciiie e e e e e e aaeee s 64

5.2 GAME FIOW .ttt et ettt e b e s bt sae e sttt e b e bt e saeesane e 69

5.3 DS N i 72
5300 SIVEI'S SIOE ettt ettt ettt ettt ettt et e sab e s bt e e sabe e sbe e e sab e e sabeeebeeesbeeenareenas 74
5.3.2 CHENT'S SIA .ttt sttt et e et e e s bt e e sabe e sabeesbteesabeeesareenas 77

R 1T (=T g T=T o =Y o o PRSP 81

6) “LELS GO OUL” DESIZN ..nevvieeeeiieee ettt ettt e e ettt e e e ctte e e e ette e e e ebteeeeeebteeeeeassseassstseaeassssaseastanaeanns 85

6.1 DESCIIPLION c o 85

5.2 GAME FIOW ..ttt ettt ettt b e b e s bt e sae e et e et e e sbeesbeesaeesaneeane 86

o 21 D LT 14 o O PP PPT SRR 88
6.3.1 SEIVEI'S SIH@ ..eiiiiiiiieie ettt s st 89
6.3.2 ClENT'S SIH@ c..eeeeieieeeie ettt r e s s e ere e 90

Lo Ve Y] (=T g T=T o =Y o] o J U PST 93

.. 95
7) Conclusion and FUTUIE WOTK........cccuuiiiieiiiee ettt e et e e e et e e e e etteeeeeasaeesenseeaeenns 97
8) REIGTEA WOTK ..ttt ettt e e e bt e ee e e e e ebaee e e esbeeeeennbeeeesnnrees 101
9) BIDHOZIAaPNY ettt ettt et et e e e be e e e abe e srae e baeeeraeeanes 103
FAY o 01T T [SRR 110

Structure of Web Service file ..o 110

Structure of an example of a PHP file that applies the Webservices.........ccccceecvieeeeciineenns 112

Function isRegistered()

Table of Images

Figure 1 - “Confess or Not” payoff table........cuei i e 14
Figure 2 - Example of a “Let's g0 Out” payoff MatriX......ccccevecieriiiiiee e 15
Figure 3 - General form of Prisoner's Dilemma payoff matrix [12]ccoceieiiierieciiee e, 20
Figure 4 - Example of general payoff matrix with dominant strategies marked with asterisk.... 21
Figure 5 - Example of Battle of The Sexes payoff matriXccccccvevveeiiiiiei e, 23
Figure 6 - General form of payoff matrix in Battle of the Sexes [15]......ccccceevcieieeicieeeeciiee e, 23
Figure 7 - Battle of Sexes eXample [21]. ... e s e e 24
Figure 8 - Battle of The Sexes example with probabilities...........ccccceeiiiiiiiiciin e, 25
Figure 9 - Android Operating System Layers [29]ccooiiieiciiee et 31
Figure 10 - Android Widget Framework [30]ccooiiiiiiiiieciee et 32
Figure 11 - Example of View usage in “Confess or Not” 8amecccceeeecvieeeecciiee et 32
Figure 12 - APIs and Kernel Versions [36]cccueiiiciiie i i eciiee e eeitee et e eevee e e evee e e e nree e e e 34
Figure 13 - Dex file anatomy [37] ...t rre e s e bae e e e 36
Figure 14 - Comparison between ART and Dalvik performance [39]ccccceeeiieeieciee e, 37
Figure 15 - Screenshot of Eclipse IDE with Android Developer TOOols........ccccccveeeecciieeeecciiee e, 40
Figure 16 - Screenshot of Android DDMS debugger..........coovvieiiiiiieii i 41
Figure 17 - XML editor built-in with graphical SUPPOIT.......ccccciiiiiiiiiiece e 42
Figure 18 - Broadcast Receiver example indicating battery recharge [44]......c...ccccvveeeccienennen. 50
Figure 19 - Content provider and URI relation [46]cccueieieiieriiiiiee et seee e 52
Figure 20 - Content provider and URI relation [46]ccueeeiecieeeeciee et 52
Figure 21 - Activity LIfECYCIE [A7] oottt e e et e e e aae e e e 55
Figure 22 - Activity States table [48] ... e 56
Figure 23 - The GCM data flOWeueiiiiiee ettt et e e e e e e ebae e e e 59
Figure 24 - “Confess or Not” payoff MatriX.......ccccoccuiieieeiiiei e 63
Figure 25 - Tit for Tat strategy possible MOVES........c..ceiviiieiiiciie e 64
Figure 26 - Tit for Two Tats strategy possible MOVES..........ccocceiieiiiiii e 65
Figure 27 - Naive Peace Maker strategy possible Moves........cccccceccieiiicciie e, 65
Figure 28 - Random strategy pPoSSIibIE MOVESccueiiiiiiiiiiciee et e e 66
Figure 29 - Always Defect strategy possible MOVES...........cceeciiiiiiciiie e 66
Figure 30 - Always Cooperate strategy possible MOVES........cccceviiicieei e 66
Figure 31 - Grudger strategy possible MOVESccueiiiiiii i 67
Figure 32 - Gradual strategy possible MOVESeuviiiiiii i 67
Figure 33 - Suspicious Tit for Tat strategy possible MOVesccccveeiiviiiiccciee e 68
Figure 34 - Remorseful Prober strategy possible MOVEScccceeeiieiiiiiiie e 68
Figure 35 - Screenshot of GAmMe REQUEST..........uiiiiiiie ettt e 70
Figure 37 - SEttiNgs SCrE@NSNOT ... viiii it e e e eee e s s bre e e e eaeees 71
Figure 36 - Screenshot of receiving game reqUESL........cccveeiicciee e 71
Figure 36 - Screenshot of receiving game reqUESE.........ccueeeecieeiecciee e e 71
Figure 38 - Client-Server Interaction of Confess or Not Game of a requestercccccecvveeennnee. 73

file:///C:/Users/Juliana/Desktop/My%20project%20backups/aprilios/final%20presentatioon/Juliana%20Thesis%20document.docx%23_Toc392412849
file:///C:/Users/Juliana/Desktop/My%20project%20backups/aprilios/final%20presentatioon/Juliana%20Thesis%20document.docx%23_Toc392412864
file:///C:/Users/Juliana/Desktop/My%20project%20backups/aprilios/final%20presentatioon/Juliana%20Thesis%20document.docx%23_Toc392412866
file:///C:/Users/Juliana/Desktop/My%20project%20backups/aprilios/final%20presentatioon/Juliana%20Thesis%20document.docx%23_Toc392412867

Figure 39 - Client-Server Interaction of Confess or Not Game of a requested player................. 74

Figure 40 - Interaction of files of Confess or Not for the requesterccccecvvveiccieeiccciee e, 81
Figure 41 - Interaction of files of Confess or Not for the requested player.......ccccccocvivvivenennnnee. 82
Figure 42 - Let's go out example payoff table......ccvie i 85
Figure 43 - Screenshot of “Let's G0 OUL”couiei i 87
Figure 44 - “Let's go Out” client server interactioncccccveceriieciee s 88
Figure 45 - “Let's go Out” file interaction - reQUESLENccceecieeeiiiiee e e 94
Figure 46 - “Let's go Out” file interaction - requested player......cccccceeeeciiiiecciee e 95

Design and Implementation of a Game Theory Application Toolkit
for Handheld Devices

Abstract

In this thesis we developed two game-theoretic applications (applets) for Android-
compatible handheld computer devices. Game Theory, a widely studied research
domain, offers the formal tools for the analysis of the strategic interactions within a
multiagent environment. Android is one of the most popular operating systems for
handheld devices, and, with an 80% market share, it dominates the smartphones
market worldwide. Moreover, it is an open platform, which means that it is constantly
under improvement.

The first applet we developed is a variant of the well-known Prisoner’s Dilemma game.
This game contains the necessary features to play with another online player, or play
against pre-devised strategies. These strategies mirror those that appear in Robert
Axelrod’s book “The evolution of cooperation”. The second applet offers the ability to
the users to invite their online friends to go out by choosing and rating the places to go.
How can a user go to the place he likes but also certifies that he will have company to
go out? This is interesting from a game-theoretic perspective, since all Nash equilibria
of the game are problematic in some way. Moreover, the game requires player
coordination, since they are aware that not choosing the same place with their
opponent will result to mutual loss. Thus, it is not a foregone conclusion that a player
should actually select her most preferred outcome. This applet was based on the
famous “Battle of the Sexes” game.

Our work here resulted to a better understanding of important game theoretic
concepts, and to the gaining of experience in developing fully-fledged Android
applications. We believe that this thesis serves as a step towards popularizing game
theory, and introducing it to a young generation that uses handheld computer devices
and smartphones on a daily basis, for purposes ranging from recreation to business.

Ixediaon kat Avantuén prag Tviioyne Matyvio 0w pnTtik@wv
E@appoywv yia ®opntég TUGKEVEG

Mepidnym

e aut) ™ SUTAWMATIKY gpyacia avamtuxOnkav SUo TalyvIoBewpNTIKEG EDAPLOYECS
(applets) yia UTIOAOYLOTIKEC CUOKEUEC XELPOC oupPBATEC pe Asttoupytkd Android. H
Qewpla Mawyviwv, €vag €UPEWG UEAETWEVOC EPEUVNTIKOG TOMENG, TPOodEpPeL Ta
TUTILKA €pyaAsiat yla TNV avaAucon Twv otpatnylkwv alnAemibpdoswv o€ £va
neplBarlov moAAamAwyv Tpaktopwv. To Android €xel €bpawwBel w¢ €va amo ta
SnuodNéoTepa AEITOUPYLKA CUOCTALOTO YL CUOKEUEG XELPOC, KoL KUPLOPXEL OTNnV
Taykooulo ayopd twv smartphones (pe pepidlo ayopdg 80%). Amotelel &g pla
«avolytn mMAatdOpua», KATL TO OO0 ONUALVEL OTL UTTOKELTAL SLapKWCE O BEATIWOELC.

H mpwtn e&dapuoyn mou avamtuxbnke eival pla mapaAlayry tou Snuodiloug
navidlov "Prisoner's Dilemma". To malyvidL TEPLEXEL TIG QATAPALTNTEG AELTOUPYIEG
WOTE €vag XPNoTNng va maifel evaviiov evog aAou SLadIKTuaKoU TaiKTn, 1 evavtiov
TPOCXESLOOUEVWY OTPATNYLKWY TIOU OVTLOTOLYOUV OE OTPOTNYLKEG OQUTEC TIOU
napouotalovtat oto BiPAio tou Robert Axelrod “The evolution of cooperation”. H
Seutepn edpoappoyr PoohEPEL OTOUG XPNOTEC TN SuvaTOTNTA VA TIPOCKAAECOUV TOUC
Swadiktuakolg ¢iloug toug yla plo BoAta SwaAéyovtag kat Babuoloywvtag ta
Slabéopa pépn ya tnv €€0606 toug. Me ToLldv TpoTo Umopel €vag xpnotng va Byet oe
€va LEPOG TNG apeockeiag Tou aAldd tautoxpova va e€aodaliosl OTL Ba €xeL Kal tapEa;
AuTO amotelel pla evdladépovoa mepintwon ywa tn Oswpia Mayviwyv, SiotL 6Aa ta
Nash Equilibria autol tou epwtipato¢ — to omoio avrtikatontpiletoal oto Sldonuo
nayviélt "Battle of the Sexes" - elval «mpoBAnuotika» o€ kamowo Paduo.
ErunpooBEétwe, To matyvidl analtel To cuyXpovVIoUO TwV TalkTwy, adou elval eviuepoL
OTL N MR €mAoyn to (6lou pépoug He Tov avtimaAd toug, Ba obnynoel oe apolBaia
{nuia. Etol, dev eival mpodlayeypappévo OtL évag maiktng Ba emAé€el tnv mAEov
TIPOTLHWHEVN aTto ToVv (81o emAoyn Tou.

H nmapoloa epyacia pag odnynoe oe pla Babutepn Katovonon MOAWY GNHOVTIKWY
TALYVIOBEWPNTIKWY EVWOLWY, KOL OTNV OIOKTNON EUTEPLOC OTNV aVATTuén
oAoKANpwWHEVWY edappoywv oe Android. EmutpooBEtwg, MIOTEVOUMPE OTL AUT N
SutAhwpatiky epyacia cupPalel otn ekAaikevon ¢ Oswpiag Malyviwv, kabBwg v
ELOAYEL OE HLO VEQ YEVLA N orola XPNOoLUOTIOLEL UTTOAOYLOTIKEG CUOKEUEG XELPOG Kal
«€Eumva tnAédwvay og kabnueplvr) Baon, Kat yla éva eupu pacpa SpactnPLOTATWY —
yla TNV Puyaywyla tTng we Kal tnv epyacia tnge.

1)Introduction

The following chapter provides an introduction to Android Tools and their basic
structure. It also provides a general description of both applications presented in this
document.

1.1. Motivation and Goal

In the latest years, millions of smartphones were sold. Smartphone usage is rising, and
thousands of applications are being developed at this moment. [1] In 2008, Google
made a great entrance in the market with Android open-source operating system.
Many people use their Smartphone for gaming.

The idea of our applications was to popularize some Game Theory Games. To make
those games accessible to users to play and understand the logic of theoretical games.
Both games are simultaneous move games.

The first implementation is a game “Confess or Not” which is a game based on
Prisoner’s Dilemma game. The second implementation is a game called “Let’s go out”
that offers the user the ability to make an invitation to a friend to go out in the city of
Chania by giving their preferences in the available places to go and ratings.

1.2 Tools and Requirements - Android Development Tool Intro

In the implementation we make use of the Android Development Tool (ADT) that is a
platform to native Android Development. Android applications are written in the Java
programming language. The graphical layout can be written either in Java or in XML.
Android is based on a modified Linux Kernel. In a single package, the ADT Bundle
includes everything required to development [2]:

e Android Platform-tools
e The latest Android platform
e The latest Android system image for the emulator

e Eclipse + ADT plugin

10

Android SDK Tools (Software Development Kit)

ADT bundle requirements regarding the Operating Systems:

Windows XP (32-bit), Vista (32- or 64-bit), or Windows 7 (32- or 64-bit)
Mac OS X 10.5.8 or later (x86 only)
Linux (tested on Ubuntu Linux, Lucid Lynx)

= GNU C Library (glibc) 2.7 or later is required.
* On Ubuntu Linux, version 8.04 or later is required.
* 64-bit distributions must be capable of running 32-bit applications.

ADT bundle requirements regarding the Eclipse IDE(Integrated Development

Environment) [3]:

Eclipse 3.6.2 (Helios) or greater

Eclipse JDT (Java Development Tools) plugin, that is included in most Eclipse IDE
packages

JDK 6 (Java Development Kit)
Android Development Tools plugin
Not compatible with GCJ (GNU Comepiler for Java)

The Android SDK tools compile the code along with any data and resource files into an
APK, and Android package. APK file contains all the contents of an Android App. It is the
file used to install the app onto Android —powered devices. The Android project comes
with a pack of files and folders necessary to development. The main folders and files in
a project are:

/src/- This folder contains the java files.

/gen/- This folder contain the generated files such as the R file that links the
java classes with XML.

/assets/-A required folder where uncompiled file resources can be included in
the project

/bin/-Output directory of the build. Here is the final .apk file and other compiled
resources.

/libs/-Contains private libraries.

/res/-Contains the resource files that will be explained in following paragraphs.
default.properties—A generated build file used by Eclipse and the Android

ADT plug-in.

Android Manifest File-The main configuration file.

11

There is a resource file in the SDK project that is provided in the resource
directory(res/). All the resources are accessed through subclasses of the R file. The R
file is a system-made file that contains the addresses of each resource in memory. The
resource files of an Android Project are:

e Animation Resources - Define the pre-determined animations.

e Color State List Resource- Define a color resource, it is saved in res/color/

o Drawable Resource-It stores anything that has to do with graphics such as
bitmaps or XML. It is saved in /res/drawable/

e Layout Resource-Define the layout for the application Ul. It is saved in
res/layout/

e Menu Resource-Define tha content of application menus. It is saved in
res/menu/

e String Resources-Define strings, string array. Include string formatting and
styling. It is saved in res/values/

e Style Resources-Define the look and format for User Interface elements. Saved
in /res/values/

e More Resources Types-Define values such as integers, Booleans , dimensions,
colors .Saved in res/values/

Every application has an AndroidManifest.xml file in its root directory. This file gives
important information about the application to the Android System and it consists of
the central configuration file for the application. Among important information, this file
names the Java packet with a unique identifier for the application. It describes all the
components of the application such as activities, services, broadcast receivers and
content providers. It also declares the permissions and the minimum level of Android
API that the application requires. Additional information regarding the Application’s
components is given in chapter 4.

The SDK tool also provides a graphical interface to design the application layout. The
developer can write in XML and then check the design in the Graphical Layout Section.
Also the developer can drag and drop some features such as buttons, widgets and
layouts.

Netbeans® [4] software was used for local server testing and implementation and
Godaddy.com [5] for remote server testing. Regarding the local hosting test, XAMMP®
[6] software served as the local database server while PHP [7] was the language used
for coding.

12

1.3 Our “Game Theoretic” Android Apps

Our first implementation is a game entitled “Confess or Not”, which is a game app
based on the (Iterated) Prisoner’s Dilemma (IPD) game. That means that the user can
choose to confess a committed crime (defect) or not to confess (cooperate), perhaps
also taking into account the past behavior of her! opponent. There is a random option
for playing and also the user can choose to play a preselected strategy. The user can
play with an auto-mated agent (i.e., against her own smartphone device), or with a
friend. Though there exist many online implementations of the IPD game (for example,
one can be found at [8]); up until now there was no android device app corresponding
to this famous game.

The first time a player chooses to play the game, she has to register in an online server.
Online playing in the “Confess or Not” game is conducted between two registered
users after a game request a player sends to another, which is received by the second
player at his android device. After the notification of a game request is sent and
acknowledged, the game starts. The game is played over a random number of rounds
with the number lying within a pre-selected range of rounds. This range is specified by
the user (who chooses among the ranges of “5-10”,“10-20”, “20-40” and “40-60”) in
case that she is facing her device — or corresponds to the preset range 10 - 30 when
two real users are facing each other. Note that the number of game turns “has to be”
random, because, if the actual number of rounds to be played is known in advance, the
rational equilibrium strategy prescribes to always defect (not confess).

The applet provides the following strategies that are popular IPD strategies that
appeared in the famous Axelrod’s tournament [9], or were developed thereafter: Tit
for Tat, Tit for Two Tats, Suspicious Tit for Tat, Naive Peace Maker, Random 50/50,
Always Defect, Always Cooperate, Grudger, Gradual, Remorseful Prober Strategy, or
Random. Tit for Tat always repeats the opponent’s last choice.

Tit for Two Tats defects if the opponent has defected two times in a row. Suspicious Tit
for Tat is the same as Tit for Tat but opponent begins by playing “confess”. Naive Peace

' The female gender term is widely used among Game-theorists.

13

Maker is the same as Tit for Tat, but randomly chooses to cooperate. The Grudger
strategy cooperates until the opponent defects. After this, the strategy will always
defect. The Gradual strategy cooperates until the opponent defects. If the opponent
defects, the strategy will defect the total number of times the opponent has defected
during the game so far, and then cooperates twice. The Remorseful Prober Strategy,
mimics Tit for Tat, but defects randomly. If the opponent defects after a random
defection by the strategy, the strategy will cooperate once.

plip2 confess not confess
confess 11 5,0
not confess 0,5 3,3

Figure 1 - “Confess or Not” payoff table

The payoff matrix used in the application for a given stage-game is as in figure above.
At the end of the IPD game, the total numbers of points accumulated by the agents
over all rounds are counted. The score for each player is calculated as the number of
total points scored by the player divided by the maximum possible player outcome.

Moreover, a “mutual outcome” rating corresponding to the combined scores achieved
by both players as a percentage of the best possible combined score is also calculated
and displayed, as done in [8].

The second game implementation, is a game called “Let’s go out” that simulates an
invitation to a friend to go out tonight. Players indicate their preference ratings (in a
range of 1- 10) regarding places to visit during a night out, and, if manage to coordinate
on a place, they enjoy the corresponding benefits—otherwise they stay at home with a
payment of zero. The game flow is as follows: at the moment user chooses and ranks,
the values are stored in a server’s database. Also the values for the friend are stored
after the friend makes her choices. The preferred choices of the two players are
compared, and the common choices are displayed. These correspond to potential
venues the friends might visit tonight—i.e., they are the options available to the players
facing each other in a dynamically generated, 2-player, n x n matrix game (with n being
the number of common choices between the player and his friend). The n x n table is
displayed to each player. The preferences of each player are displayed in a payoff
matrix with user preference ratings corresponding to player rewards for the
“coordinated outcomes” matrix cells, while the appearance of zeroes in the cells
corresponds to uncoordinated outcomes. For instance, say the row player tonight
wants to go to a Whiskey bar with preference rating 9, a Vodka bar which she rates as a
7, or a Rum bar which she assigns 4 stars only; while the column player wants to go to

14

either a Martini bar with preference rating 8, a Vodka bar with rating 6 or an Whiskey
bar which she rates as a 5. The dynamically created game matrix will be as below:

plip2 Whiskey wodka
Whiskey 95 0,0
Yodka 0,0 7,6

Figure 2 - Example of a “Let's go Out” payoff matrix

The game matrix is actually a generalization of the 2 x 2 matrix of a Battle of The Sexes
[10] game. Battle of the Sexes is a 2-player coordination game, where players receive
zero for not coordinating while having only two choices available. In our case, the
number of options available to a player in the matrix game depends on the number of
preferred venues the two players indicated they have actually in common (during this
game’s instantiation).

Following the game’s matrix presentation, the player tries to guess which place his
friend might choose. As stated, the goal of each player is to go out together; therefore,
it is not a foregone conclusion that a player should actually select his most preferred
outcome. If the players pick the same outcome, they enjoy a night out together (albeit
to a different extent each); otherwise they stay home receiving zero reward and
regretting their choices.

15

16

2) Game Theory

This chapter provides the theoretical game-theoretic background that motivated the
creation of the applications. The chapter’s section 2.1.1 begins by giving a definition for
Game Theory, games, strategies and etc. In section 2.1.2, a brief historical background
of Game Theory is introduced. Normal form games are explained in section 2.2. The
Prisoner’s dilemma and The Battle of the sexes games are described in section 2.3 and
2.4 respectively.

2.1 Introduction
2.1.1 Definition

Game theory is a mathematical theory to model phenomena that can be observed
when two or more decision agents have an interaction [11]. The theory provides the
explanation of conscientious and objective decision processes involving more than a
one single individual.

A game is a situation where the participants (players) make decisions in order to
maximize their individual outcomes (payoffs). Every player has a set of strategies. A
strategic game is composed by a set of players .The action profile of a player is formed
after each player chooses his strategy. The game involves conflict between the
participants.

More specifically, a pure strategy game has the following basic elements [12]. There is
a finite set of players, represented by G = {g, g, gn}. Each player g, € G has a finite
set §; = {511,5i2,....,5imi} of options, named as pure strategy of player g;(m; = 2). A
vector = {S1j,,S2j,, -+» Snj,} » Which Sij, is a pure strategy for player g; € G is a pure

strategy profile. The set of all pure strategy profiles forms the Cartesian product:

n
S=1_[Si=51XSZX"'XSn’
i=1

And this is the pure strategy space of game. For the player g; € G, there is a utility
function:

17

u; S - R
s — u;(s)

That associates the payoff u;(s) of player g; to each pure strategy profile s € S.

2.1.2 History

The earliest approaches to the study of game theory are traced in the 18th century
[10]. In the 1920s, Emile Borel (1871-1956) and John von Neumann (1903-57)
contributed with their work to the major development of the theory. A very important
event in the development of the theory was the publication of the book Theory of
games and economic behavior (1944) by John von Neumann and Oskar Morgenstern.
The book contains the mathematical game theory based on strategic games and it
established Game Theory as a field. A few years later (1950s), game-theoretic models
were being used in economic theory and political science. During that period,
psychologists began the study of human subjects’ behavior in experimental games.

In the 1970s, Game Theory was first used as a tool in evolutionary biology.
Consequently, game theoretic methods were beginning to predominate in
microeconomic theory (and in many other fields of economics), being used also in a
wide range of social and behavioral sciences.

A remarkable event in Game Theory history was the awarding of Nobel Prize in
Economic Sciences to the game theorists John C. Harsanyi (1920-2000), John F. Nash
(1928-), and Reinhard Selten (1930-). Specifically, they were awarded for their
pioneering analysis of equilibria in the theory of non-cooperative games [13].

Game Theory is also used in the research of issues such as election, auctions, genetic
evolution, etc. Recently game theory has been drawing attention in computer science
and engineering [14].Some of the game-theoretic problems studied by computer
scientists are:

e The computation of "price of anarchy", that reveals how the measurement of
the efficiency of a system can be lowered due to selfish behavior of its agents.

e Algorithms and learning tools for computing or designing equilibria.

e Designing and management of recent network protocols.

18

2.2 Normal Forms Games

In Game Theory, normal form is a way to describe a game. The representation of a
normal form game is a matrix known as payoff matrix. A payoff matrix is very useful to
identify the strictly dominant strategies and the Nash Equilibria (N.E.) of the game. A
strict dominant strategy is a strategy that provides a greater payoff regardless of what
the other players do and provides the worse payoff regardless of what the other
players do. An iterated elimination of strictly dominated strategies may lead the game
to a single outcome. This single outcome is the Nash Equilibrium of the game [15].

A definition of Nash Equilibria from the view of the players, states that if all of them
choose their strategies and no player can benefit by changing his/her strategy while the
other players keep theirs unchanged, then the current set of strategy choices and the
corresponding payoffs constitute Nash equilibrium [16].

Other important concept regarding the outcomes is Pareto Efficiency. Pareto
Optimality, its synonym, is a measure of efficiency. It was named after Vilfredo Pareto
(1848-1923), an Italian economist. An outcome, by definition is Pareto efficient if it is
not possible to improve the payoff of one player without lowering the payoff of
another player. An outcome A Pareto dominates outcome B if the payoff of one or
more player is higher and none are lower in outcome A. A Strategy profile s (i.e. a set of
strategies for all players which fully specifies all actions in a game) is Pareto optimal, or strictly

Pareto efficient, if there does not exist another strategy profile s € S that Pareto dominates s
[17].

This definition can lead to some conclusion regarding the Pareto Efficient (Optimal)
strategy profiles such as:

e Every game must have at least one such optimum.
e At least one Pareto optimum, in which all players adopt pure strategies, must
always exist.

Also some games will have multiple optima. For example, in zero-sum games, all
strategy profiles are strictly Pareto efficient and this definition is valid due to the fact
that in zero-sum games the sum of both players’ payoffs is zero in all strategies.
Consequently, any change of strategy that benefits one player certainly involves other
player’s payoff decreasing [12]. In the case of pure coordination games (common-
payoff games), the Pareto Optimal strategy profiles have the same payoff. Coordination

19

games are games that all players have the same payoff for every action profile,
meaning that players don’t have conflicting interests.

2.3 Prisoner’s Dilemma

One of the most popular games in game theory is Prisoner’s Dilemma (PD). PD is an
example of non-zero sum game [18]. In a non-zero sum game there is no single optimal
strategy that is preferable to all others, such as in the coin game, for example. A non-
zero-sum game is a situation where on one hand, a player’s win doesn’t mean
another’s loss, but on the other, a player's loss does not necessarily mean that the
other player wins. Therefore, the players involved in a non-zero sum game have some
complementary interests and but also some conflicting interests.

PD describes a situation in which two suspects are arrested for the same crime. Both
are interrogated in separate rooms (simultaneous game) [10]. They have 2 choices
(strategies), they can either confess the crime (defect) or stay quiet (cooperate). Player
1 (p1) has to build a belief about what choice Player 2 (p2) will make and, afterwards,
choose the best strategy. A generalized form of a payoff matrix for the game [12] is
represented as follow:

pl/p2 C D
C a,a b,c
D c,b dd

Figure 3 - General form of Prisoner's Dilemma payoff matrix [12]

The relation between the payoffs is ¢ > a > d > b. The relations seen in the matrix show
that mutual cooperation has the best payoff for the social welfare, whereas mutual
defection is social welfare’s worst scenario. Regarding each player’s personal gain, the
best payoff is attributed to the player who chooses defection when the other one has
chosen cooperation. If there is a mutual defection, the payoff gives a poor social
welfare for both but it is not the worst payoff a player can individually achieve. From a
player’s individual view, it is impossible to achieve the worst payoff possible if he
defects. Because of the symmetry of the matrix, this rule applies to both players. A
strategy is dominant if the strategy earns a player a larger payoff than any other
independently of what the other player chooses. Therefore, defection is the dominant

20

strategy for both players. An example matrix of the above general form is presented in
the following matrix:

pl/p2 Cooperate [Defect
Cooperate 3,3 0 ,5%
Defect 5*%,0 1*,1*

Figure 4 - Example of general payoff matrix with dominant strategies marked with asterisk

When the dominant strategies of all players in a game matches the same row(s) in
matrix as seen in figure 4, then in this/those row(s) is/are the Nash Equilibrium/a of the
game. The asterisks in the table above are the dominant strategies. If both players have
dominant strategies in the same row, this strategy’s match is the Nash Equilibrium. This
is a visual definition of Nash Equilibrium based on dominant strategies and applies for
pure strategy games such as this one. A far more precise definition [19] of Nash
Equilibria is the following. Let (S, u) be a game with n players. Where §;is the strategy
set for player i, S =S5; xS, x... x S, is the set of strategy profiles and u=(u;(s),...,un(s)) is
the payoff function for s € 5. A strategy vector s €S is said to be a Nash equilibrium if
for all players i and each alternate strategy s; €S;, we have that u; (s;, s-i) 2 u; (si, s-i).
Based on at least one of the definitions, it is conclusive that the Nash Equilibrium (NE)
of the Prisoner’s Dilemma (PD) is mutual defection.

Pareto Optimality (Pareto efficiency) implies that a change in strategy may improve a
player’s own payoff but at the same time the payoff of the opponent is not decreased.
The Pareto efficiency assures the improvement of social welfare as a whole by
bettering a group of players, without worsening the position of any other.

Which outcome is Pareto Optimal in PD? An outcome of cooperate-cooperate offers
the social welfare as mentioned previously, a definition that matches the Pareto
Optimality criterion. No player would change strategy if he/she could be able to guess
that their opponent would certainly cooperate. But that is an altruistic choice. In
Prisoner’s Dilemma, two purely rational self-interested prisoners would betray the
other one based on their own wellness.

The outcomes from defect-cooperate and cooperate-defect reveal that not only a
change in strategy doesn’t worsen the opponent’s payoff but instead it increases the
opponent’s payoff. So these outcomes are also Pareto Optimal. The NE of the game is
Pareto dominated by the mutual cooperation, since both players have their outcome
decreased, which means, as mentioned, a worst social welfare scenario.

What if PD is played for more than one time? A player would “remember” a previous
choice of the opponent. This would result in the Iterated Prisoner’s Dilemma, whose

21

strategies are formed from opponent’s previous choices. A repeated game can be
analyzed in two different cases distinguished by the number of times the game is
played, either finite or infinite.

If the game is played n times and the number of times is known by the players, then in
round n, both players have a motivation to defect. Armed with this knowledge, the
players will also have motivation to defect in n-1, and so on. Backward induction can be
used to determine a sequence of optimal actions. In this case, defection is a rational
choice.

In the next case, cooperation is a rational choice when the number of turns is unknown
to the players. The rational choice theory says that the decision maker chooses the best
action according to his preferences, i.e. the action chosen by a decision-maker is at
least as good, according to her preferences, as every other available action. So, clearly,
it is best for the whole group if all players cooperate. However, each player individually
is better off by defecting in any given situation. Therein lies the paradox. [10]

What if the number of players is more than two? Is there an optimal heuristic strategy?
In 1984, Dr. Robert Axelrod, professor of political science at the University of Michigan,
held a tournament of PD with various strategies. He invited many game theorists to
provide their strategies, which were fed in a computer. During the tournament,
programs played games against each other and themselves repeatedly for over 100
turns. The strategies were programmed algorithms based in previous self and
opponent’s moves. All the entries and a totally random strategy were paired with each
other in a round robin tournament. [9] [10]

The winner strategy was one of the simplest, Tit for tat. This strategy consists of
repeating opponent’s previous choices. In Axelrod’s tournament, Tit for Tat usually did
best because it could establish and maintain cooperations with many other players
(agents). This strategy could prevent malicious players from taking advantage of it. [20]
There are other possible strategies that can be found in the book “The selfish Gene” by
Richard Dawkins that had not been submitted in the tournament but they are also
interesting. Tit For Two Tats — it is Like Tit For Tat except that the opponent must make
the same choice twice in a row before it is reciprocated. Suspicious Tit for Tat is the
same as Tit for Tat but the opponent begins by defecting. Naive Peace Maker is the
same as Tit for Tat, but randomly chooses to cooperate. The Grudger strategy
cooperates until the opponent defects. After the first defection, the strategy will
always defect. The Gradual strategy also cooperates until the opponent defects. If the
opponent defects, the strategy will defect the total number of times the opponent has
defected during the game so far, and then cooperates twice. The Remorseful Prober

22

Strategy, mimics Tit for Tat, but defects randomly. If the opponent defects after a
random defection by the strategy, the strategy will cooperate once.

2.4 Battle of The Sexes (BoS)

The Battle of the Sexes game is a simultaneous game that describes a situation in which
a husband and a wife want to go out together. The game is also called Bach or
Stravinsky [10]. BoS is a two-player coordination game. Example of BoS game:

plipz? Left Right
Up 3,2 0,0
Down' o,0 2,3

Figure 5 - Example of Battle of The Sexes payoff matrix

The non-zero payoffs are their preferences. The payoff for choosing different places is
zero since they are both interested in going out together. The wife (pl) has a
preference to go out to a place of her choice. The same applies to the husband (p2).
BoS is an example of a game that combines elements of cooperation and competition.

In the Prisoner’s Dilemma the main issue is whether or not the players will cooperate.
In the BoS, the players agree that it is better to cooperate, i.e. choose the same place
to go out, than not to cooperate.

The general form of payoff matrix of BoS is:

pl/p2 Option 1 |Option 2
Option 1' A,b C,c
Option 2' C,c B,a

Figure 6 - General form of payoff matrix in Battle of the Sexes [15]

The relations between the values are A>B>C > 0 and a>b>c > 0.This relation leads to an
affirmation that a player would prefer a place of his own preference. Regardless of the
specific values, the players are trying to coordinate at the same location, though their
individually most preferred outcome is different. The values in capital letters and the
values in lower case can be either equal or different. In our application “Let’s go Out”,
as shown in the following chapters, the common choices (Option 1-Option 1’, Option 2-
Option 2’) are filled with players’ preferences while any other choice is zero.

23

Concerning the Pareto optimality in BoS, an example is given as follow:

Football Opera
Foothall 41 0.0
Upera 0,0 1.4

Figure 7 - Battle of Sexes example [21]

Let’s examine the pure strategies and the mixed strategies of the BoS. A pure strategy
provides a complete definition of how a player will play a game. In particular, it
determines the move a player will make for any situation he or she could face. In BoS,
the pure strategies Nash Equilibria are all the non-zero values. If any of the players
switch their options there will be the worst payoff for both of them since they want to
go out together.

In the 2x2 BoS game in this example, there are two pure strategy Nash equilibria (4,1
and 1,4). A pure strategy, in this case, defines the nature of the choices of each player.
In BoS each player has a place he/she would rather prefer. A different pure strategy
equilibrium is preferred by each player. However, either equilibrium is preferred by
both players to any of the non-equilibrium outcomes. In the case of each equilibrium,
any deviation would imply in worse choice for both players. Even if there is the
intention, for example, from one player to just not achieve the other player’s choice (“I
am staying at home because | only want to go out to a place of my choice”), this player
loses by staying at home. Thus, both equilibria are Pareto optimal since agreeing in
going to one place Pareto-dominates the choice of staying at home. In the example,

player 2 choosing left is a good result for both players.

A mixed strategy of a player in a strategic game is a probability distribution over the
player's pure strategies [22]. This allows for a player to randomly select a pure strategy.
To specify a mixed strategy of a player that prefers to go to the Opera, as example, we
need to calculate the probability it assigns to each of this particular player’s actions.

There are some incentives to cooperation for both players in order to show up in the
same place. However their preferences are different, so there is a motivation to
compete against each other. Are they going to cooperate due to this mismatch in
preferences? And further, which is the probability a player would change his
preference since there is no clear equilibrium? This question can be answered after an

24

http://www.gametheory.net/dictionary/Equilibrium.html
http://www.gametheory.net/dictionary/ParetoOptimal.html

analysis of a mixed strategy profile. Mixed strategies are helpful to understand how to
solve this kind of games. BoS is a game where two NE appear, meaning that no real
equilibrium can be found. In this case, knowing your opponent’s strategy will not help
you decide on your own course of action, and there is a chance that an equilibrium may
not be reached. The way to solve this dilemma is through the use of mixed strategies,

in which we look at the probability of our opponent choosing one or the other strategy
and balance our pay off against it.

Let’s suppose that the player that prefers the Opera (a woman) is inclined to choose
Football with probability g and Opera with probability (1-g). Similarly, the man is
inclined to choose Football with a probability of r and Opera with a probability of (1-r).
In that case, the outcome results are:

e Football-Football: g r

e Opera-Football: (1-r) g
e Football-Opera: r (1-q)
e Opera-Opera: (1-q) (1-r)

WA
Faootball Dpera
Foottall r
AN 41 0,0
Cpera 0,0 1.4 1-r
¥ 1-q

Figure 8 - Battle of The Sexes example with probabilities

The man’s chances of going to a Football match, his expected utility (calculated by
taking the weighted average of all possible outcomes), will be 4r (payoff*probability)
and, of Opera, 1-r (because his utility from Opera is 1), therefore 4r = 1-r => r=1/5.

Equivalently, for the woman, g=4(1-q) => q= 4/5. Now she must balance what g (the
man’s chances of valuing his own happiness over hers) really is. If r>1/5, they’ll go to a
Football match. If r=1/5, either could happen, and if r<1/5, the woman will get her own
way and they’ll go to the Opera. This is a simultaneous game as mentioned, which
means that both have to balance their decisions carefully. If any side makes a mistake
in evaluating the other’s probability, both might achieve less utility. In this case, they
could end spending the weekend apart.

25

To calculate the mixed strategy of the generalized form of BoS (figure 8) we have to
find the expected utility for both option 1 and option 2 [15]. Let EU be the expected
utility and o to represent the probability that a player plays a particular pure strategy.
So, for some percentage of the time, a player chooses ¢ with ¢ probability and the rest
of the time a player chooses b with (1-o) probability. In such a case the relation
between the EU and o is

EUOption 2 = f(UOption 1’) = Ooption 1’ () + (1'00ption 1)(b)
EUOption 1= f(UOption 1’) = Ooption1' (@) + (1'00ption 1)(c)

EUOption 2 = EUOption 1

R
- (a+b-2¢)

Ooption1 > 0 . Because a>b>c, 0 < 0p,ri0n 1 < 1. The same applies to the opponent

After the solution of those equations we have o, 1/ for a+b-2c # 0 and

player.

Interestingly, all Nash equilibria of the game are problematic: The two pure strategy
equilibria are unfair, since they allow one player to consistently do better than the
other; while the mixed NE is inefficient. [23] The Nash Equilibria in BoS can’t be solved
using the iterated deletion of strictly dominated strategies. There is no dominant (or
dominated) strategy in BoS. If the woman chooses Opera, he would rather choose
Opera. If she chooses Football, he would rather choose Football. The same applies to
the man. So it is not possible to delete any strategies from the payoff table during an
iterated deletion in such case.

26

27

3) Android Platform Fundamentals

This chapter introduces Android platform by offering an introduction to its
fundamentals, as well as its basic and more advanced features. It begins by describing
in section 3.1, the importance of Android APIs. In the next sections 3.2 and 3.3, the
architecture of android OS and its kernel are explained. The Android Runtime, which
forms an essential part of the Android platform, is explained in section 3.4. The
Application Framework that provides the foundation to application building is
explained in section 3.5. The Application Layer and Setup settings are explained in
sections 3.6 and 3.7 respectively.

3.1 Android APlIs

The Application Program Interface (API) can be defined as a set of protocols, routines
and tools for building software applications. The APIs specify how software
components should interact and they are used when programming graphical user
interface (GUI) components [24].

The API level on Android is associated with a release version and indicates all the
available capabilities of the specific version. Native and third-party applications are
written with the same APIs and executed on the same run time. API levels, from a
developer’s point of view, means that it is possible to communicate with the devices'
built-in functions and manage their functionality. As the API level increases, its
functionality increments. Older APIs functions may become deprecated. [25]

The Android platform provides a framework APl which applications can use to interact
with the underlying Android system. [26] The framework API consists of:

o A set of XML elements and attributes for :
o declaring a manifest file
o declaring and accessing resources
e A core set of packages and classes
e Aset of Intents (further explained in section 4.2.5)
o Aset of permissions:
o That can be requested by applications during the installation.

28

o That are permission’s enforcements included in the system i.e. high-level
permissions that restricts access to entire components of the system or
the application.

As the development of Android Operating System continues, new APls are added and
old APIs become obsolete and are eventually erased. Each Android version has its own
API level. During the application development, the developer can define a minimum,
maximum and preferred API level in their manifest file (described in section 1.2).

3.2 Architecture

The Android architecture provides the ability to publish and share Activities, Services,
and data with other applications. It encourages the concept of component reuse. The
access to those components are managed by security restrictions, in which
(restrictions) are set during the application's development. This tool allows the
developers to produce a replacement phone dialer or contact manager that can let
them expose their application components. Subsequently, other developers can create
new Ul front ends and functionality extensions and also build on them [27]. In the
following sections, each of the Android architecture layers will be described.

3.2.1 Android Layers

Android Operating System is a set of software components which is composed by five
sections and four main layers of functionality as shown in figure 9 [28] .Those sections
are:

e Linux Kernel - This section/layer provides basic system functionality such as
memory management, process management and device management (ex.
camera, keypad, bluetooth). The kernel also handles the networking.

e Android Runtime - This section, part of the second level, provides the Core
Libraries and the Dalvik Virtual Machine.

e Libraries - This section, part of the second level, is a set of libraries written in
C/C++ that includes:

29

o WebKit - Provides tools for browsing the web i.e. to display html
content.

o SQlLite - Contains the SQLite database management classes that an
application would use to manage its own private database.

o Libc - the library libc is a derivation of BSD’s (Berkeley Software
Distribution) standard C library code, originally developed by Google for
Android OS.

o SSL - The Security Socket Layer is a common building block for encrypted
communication between clients and servers.

o OpenGL - This library is a cross-platform graphics APl that specifies a
standard software interface for 3D graphics processing hardware.

o Surface Manager - This library manages access to the display subsystem
and composites 2D and 3D graphic layer for multiple applications.

Application Framework - This framework provides the foundation for building
applications. Developers have full access to the same framework APIs (ex. The
Activity Manager) used by the core applications. This application architecture is
designed to simplify the reuse of components and consists of classes for
application creation, hardware access, as well as user interface and resource
management. This set of capabilities also includes:
o An extensive set of Views (explained in chapter 4) including lists, grids,
text boxes and buttons.
o Content providers that enable applications to share their own data and
also access data from other applications.
o A Notification Manager that enables applications to display custom
alerts in the status bar.
An activity Manager that manages the lifecycle of applications.
An Android Resource Manager that manages the all the resource types
of Android described in section 1.2.

Applications - This is a set of the core applications that includes the SMS
management, calendar, email client, browser, maps and others. Those
applications are written in Java. It is important to note that a java application
written for Android is not compatible with java programs written for the Java SE
and Java ME platforms.

30

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Telephony Resource Location Notification

Package Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries

Framework
OkVircaal

OpenGL | ES FreeType WebKit Machine

SSL libc —‘

LINUX KERNEL

Display Camera Diiver Flash Memory Binder (IPC)

Driver Driver Driver

WiFi Driver Audio Power

Keypad Driver Drivers Management

Figure 9 - Android Operating System Layers [29]

3.2.1 Android Class System - Views

This section describes a very important class group that is responsible for displaying
onscreen features such as buttons, text, clock, progress bar, widgets and others.
Widgets are used to create interactive Ul components (buttons, text fields, etc) [30].

Additionally, this group contains classes that are responsible for the way all those
contents will be displayed such as Frame Layout, Linear Layout and Relative Layout.
The user interface of the Android application is composed by one or multiple forms
such as windows or displays (ex. Dialog window). Each window is controlled by an
Activity object that has a complex lifecycle explained in detail in section 4.6. The visual
elements of the Activity instance are constructed using ViewGroup and View objects.
The View class is the parent class of a large hierarchy of visual controls and widgets
such as textboxes, checkboxes, buttons and others.

The ViewGroup class stands as the parent class for an hierarchy of layouts, used to

manage collections of widgets and to define the layout architecture (linear, relative) of
the window.

31

DatePicker

Framelayout TimePicker

CalendarView

TableLayout

LinearLayout

RadioGroup

RelativeLayout

EditText
TextView : CompoundButton
AnalogClock CheckedTextView
RatingBar
AbsSeekBar
SeekBar
ImageButton

QuickContactBadge

SurfaceView VideoView

Figure 10 - Android Widget Framework [30]

CheckBox

RadioButton

The diagram above describes part of the Android widget framework that has at its root

the View class. Below, there is an indicated usage of those classes in “Confess or Not”.

® Wl

confessornot

(lomess OR NOT?

Computer Action

ScrollView

_ P

\ r
Con(n»s Not

SETTINGS

Figure 11 - Example of View usage in “Confess or Not” game

32

3.3 Kernel

3.3.1 Kernel description

A stripped down Linux Kernel lies at the base of the Android environment. This kernel is
responsible for the process creation, device’s drivers and file system management etc.
The environment’s current release uses Linux kernel version 2.6. Android OS does not
utilize a standard Linux kernel and should not be named as a Linux solution. A Linux
kernel is used for communication between the device’s hardware and processors.
Android OS supports multiple device processors. Some of the Android specific kernel
enhancements include [31]:

e Android Binder - It is the core subsystem of Android OS and it is used instead of
Inter-Process Communication (IPC- such as sockets and pipes2 used in Linux
kernels) [32]. With Binder, one Android process can call a routine in another
Android process by identifying the method to invoke and pass the arguments
between processes.

e Android Shared Memory Driver (ashmem) - It is a component of the Android OS
that simplifies memory sharing and conservation [33].

e Alarm Driver — This driver provides timers to wakeup devices.

e Low Memory Killer (LMK) - Every application a user opens remains in the
Random Access Memory (RAM) of the device. This mechanism decreases the
time needed to reload an application. When the RAM overloads, the LMK
deallocates some memory by shutting down the application(s) that are no
longer needed.

e Android Power Management (PM) - Android OS requires that applications and
services request CPU resources with "wake locks"(i.e. a way to keep the device
working) through the Android application framework and native Linux libraries.
If there are no active wake locks, Android will shut down the device’s CPU. It is a
more intrusive approach than the Linux’s PM solution [34].

o Kernel Debugger and Logger.

2 Inter-process communication (IPC) is the transfer of data among processes. Socket is a data stream sent
over a network interface, either to a different process on the same computer or to another computer.
Pipe is a two-way data stream interfaced through standard input and output and is read character by
character. [65]

33

3.3.2 Kernel Booting

The Android Kernel boot is initialized after these two earlier general boot steps:

e Boot ROM — It starts when the power supplies are stable.

e Boot Loader — It is used to set up initial memories and load the kernel to RAM.
During the kernel boot, there is a core kernel initialization where memory and /O areas
are initialized. Interrupts are started, and the process table is initialized. Then the
driver is initialized. Kernel daemons (threads) are started. The root file system is then
mounted [35]. The kernel then runs /init process which is the parent of all processes on
the system and the first user-space process (a set of locations where normal user
processes run) is started.

3.3.3 Kernel Versions

version release date APl level Android versions Kernel
1.0 23/9/2008 1 = -
1.1 9/2/2009 2 - -
1.5 30/4/2009 3 Cupcake 2.6.27
1.6 15/9/2009 4 Donut 2.6.29
2.0 26/10/2009 5 Eclair 2.6.29
2.01 3/12/2009 6 Eclair 2.6.29
2.1 12/1/2010 7 Eclair 2.6.29
2.2-2.2.3 20/5/2010 8 Froyo 2.6.32
2.3-23.2 6/12/2010 9 Gingerbread 2.6.35
2.3.3-
2.3.7 9/2/2011 10 Gingerbread 2.6.35
3.0 22/2/2011 11 Honeycomb 2.6.36
3.1 10/5/2011 12 Honeycomb 2.6.36
3.2 15/7/2011 13 Honeycomb 2.6.36
Ice Cream
4.0-4.0.2 19/10/2011 14 Sandwich 3.01
4.0.3- Ice Cream
4.0.4 16/12/2011 15 Sandwich 3.0.1
4.1 9/7/2012 16 Jelly Bean 3.0.31
4.2 13/11/2012 17 Jelly Bean 3.4.0
4.3 24/7/2013 18 Jelly Bean 3.4.39
4.4 31/10/2013 19 KitKat 3.4.39

Figure 12 - APIs and Kernel Versions [36]

34

Each version of the API contains its own kernel. Users can change the kernel but it
implies some risks if it’s not properly configured. Overclocking the kernel in order to get
better performance is an example of a possible differentiation of the kernel’s initial
settings.

3.4 Android Runtime - Dalvik Virtual Machine

Android runtime is a defining component at the core of the Android software stack. It
consists of the Dalvik core libraries and the Dalvik Virtual Machine (VM). Android
runtime is what powers and handles the running of applications and provides the basis
for the Application Framework. The Dalvik core libraries are a set of C/C++ code
libraries that provide key functionality for applications. They implement general
purpose’ APIs used by code written in the Java programming language.

Android OS usually runs in devices that have some limitations such as limited
memory/processor speed, OS without swap space and battery powered devices. Given
those limitations, it was not possible to use a standard Java virtual machine. Google
made the decision to create a new virtual machine Dalvik, the best answer to these
limitations. Dalvik is essentially a Google’s version of Java VM. In Android OS, each
application runs in a separate process in its own Dalvik instance within a Linux process.

Dalvik virtual machine runs its own version of a compressed file. Instead of
compressing and packaging the resulting class files into a .jar file, they are translated
into .dex (Dalvik executable) files by the dx tool. The Dalvik VM executes .dex files. A
.dex file is composed by taking the compiled Java .class or .jar files and consolidating all
the constants and data within each .class file into a shared constant pool. After the
conversion, the .dex file has a significantly smaller file size. This format is optimized to
save memory [37]. A comparison between a .jar file and a .dex file after the translation
is shown in figure 13. Heterogeneous constant pools are converted in separated types.

* General purpose APls can be redefined during development.

35

Dex File Anatomy .

jar file

-class file
heterogeneous i
constant pool ! | .dex file
string_ids
other data - |_constant pool
— type_ids
— E constant pool

class file . eIy |~ proto_ids
! - e, constant pool

heterageneous : |
constant pool | | = 5 field_ids
= - = constant pool
other data - 3= method_ids
= - e constant pool
S s, -

.class file

a2 e
heterogeneous | other data
constant pool
other data

Figure 13 - Dex file anatomy [37]

Android applications use the Dalvik core libraries both directly and indirectly for data
structures, networking, concurrency, 1/O, and more. The Dalvik libraries break down
into two categories:

e Dalvik VM-specific libraries: The VM specific libraries handle the VM specific
information by enabling its request or modification. The code in those classes is
only portable across Dalvik-based systems. The VM-specific Dalvik packages
include the dalvik.annotation, dalvik.bytecode and dalvik.system.

e Java programming language interoperability libraries: This category of libraries
provides a familiar environment for programmers writing code in the Java
programming language. Much of the implementation of this code comes
from Apache Harmony software, which is a modular Java runtime with class
libraries and associated tools.

During compilation, Dalvik uses a just-in-time compiler (JIT). The JIT compilation is done
during the execution of a program rather than prior to the execution. Suppose a user
downloads and installs an app to his device. The app is allocated in the device until it is
launched. During this process, Android pulls all the uncompiled data together, compiles
them, and loads the application into RAM memory. During execution, all data is loaded
to RAM. If the user uses a task killer, manually kill the app, or navigate away and load
up other apps, the first app is unloaded, freeing up the RAM it had been using. When
the user goes back to the initial application, it must go through the whole process all
over again.

36

Recently, Android has added the ART (“Android Runtime”)4 to the version of Android
4.4 [38]. The ART uses ahead-of-time (AOT) compilation which pre-compiles an
application during the installation. This pre-compilation allocates more memory space
on a device and also initial installation takes longer time comparing to Dalvik.
Meanwhile, applications launch and execute faster when using ART. As a result,
because of the decreased use of the processor, battery life is increased. In Android 4.5,
ART completely substitutes Dalvik.

In figure 14, a benchmark’ of Quick Sort algorithm executed on an Android device with
ART and Dalvik shows that ART is more time efficient than Dalvik.

p
Quick Sort - Integer Array(Android 4.4 emulator -
aosp_arm)

350
300
250 N
" N (11
é 200 e
€ 150 st ’LH;IN
= 111 N = dalvik
- 100 ﬂ' ”WU-J
.,f'i‘ »s e It
50 A
0
O O O O O OO0 OO0 0O 00 00000 00O OO0 OO o o o
O O O O O OO0 O OO0 00 00000 00O 0O OO o o o
O OO0 OO0 0000000000000 O0O0OO0OO0O OO o o
N O O T 0N OO TN OO ST OoON OO S OoN OO I 0
A A A N AN MO NI T NN N O ONNNOOOODOOOO
Array Size

Figure 14 - Comparison between ART and Dalvik performance [39]

3.5 Application Framework

The Application Framework is a collection of services that incorporate the environment
in which Android applications can be managed and run. This framework implements
the concept that Android applications are composed of replaceable, interchangeable
and reusable components [40].

* This is the name of the new Android runtime. It is different from the previously explained Android
Runtime.
> The source code for this test is provided in the cited site.

37

This concept is taken a step further in that an application is also able to publish its
capabilities along with any corresponding data so that they can be found and reused by
other applications. The Application Framework layer provides many higher-level
services to applications in the form of Java classes. Application developers are allowed
to make use of these services in their applications.

The Android framework includes the following key services:

= Activity Manager — Controls all aspects of the application lifecycle and activity
stack. Interacts with the overall activities running in the system.

= Content Providers — In Android OS, there is no common shared space of data
which any android package could access. Content providers store and recover
data to make it accessible (by request) to another application. It is the interface
that connects data in one process with code running in another process.

= Resource Manager — It is a class for accessing an application's resources. It
provides access to non-code assets such as color settings, user interface layouts
and strings.

= Notifications Manager — Allows applications to display alerts and notifications
to the user. Programmatically, it is a class to notify the user of events that
happen. This is how the user is informed of something happened in the
background. A notification is a message you can display to the user outside of
your application's normal Ul. When you tell the system to issue a notification, it
first appears as an icon in the notification area.

= View System —The View System contains the View and the ViewGroup subclass
explained previously on section 3.2.1.

= Package Manager — It is a way the applications can find out information about
other applications installed on the device.

= Telephony Manager — Provides information to the application about the
telephony services available on the device such as status and subscriber
information.

* Location Manager— Provides access to the location services allowing an
application to receive updates about location changes.

38

3.6 Application Layer

The applications are at the topmost layer of the Android stack. An average user of the
Android device would mostly interact with this layer (for basic functions, such as
making phone calls, accessing the Web browser etc.). Developed Applications can be
installed on this layer exclusively [41].

Several standard applications are installed by default on any Android device:

e SMS client app

e Dialer

e Web browser

e Contact manager

e Any Application downloaded
e Any Application developed

3.7 Installation and Setup

The ADT Bundle provides everything needed to start developing apps, including a
version of the Eclipse IDE with built-in ADT (Android Developer Tools) to streamline the
Android app development [42]. It can be downloaded from Google’s Android developer
website. Setting up the bundle after downloading is quite simple. The user can unzip
the file and start by clicking on Eclipse. The framework contains all the necessary
plugins to start development.

39

1) Java - letsgooutonline/sre/comflet: oo ut/Comman_Choice_Activityjava - ADT

File Edit Refactor Source Mavigste

.
-

|2 Package Explorer 52
4 32 Confess Or Mot
» = Android 4.2.2
» =k Android Private Libraries
» = Referenced Libraries
s sic
> 28 gen [Generated Java Files]
> B assets
> & bin
s 2 libs
e res
Al AndraidManifestml
™ ic_launcher-neb.png
[Z] proguard-project.bt
project.properties
51 Copy of Canfess Or Mok report inside
1 dynamictable
1 DynamicTableFormatting
> 52 letsgooutaffline
1 letsgoautold
> 12 letsgooutonline
£ SubMenuOptionhenullsinghL

Search Project Run

SaE U d N0 EFE® Y PO

Window Help

&S
=% T = 8 | [common_Choic. 52 | [J] loginActivi.. 1] PlayActivity... > =8
AlertDialoghanager alert = new AlertDislogManageri); o s

AsyncTaskevold, Void, Void> mRegisterTask;
String regld,uid,msg_name;
int position;

.9

= @SuppressLint("NewApi) =
@override
protected void onCreate(Bundle savedInstancestate) {
#J TODO puto-genersted method stub
super.onCreate(savedInstancestate);
setContentView(R. layout. connon_choice);

(233

imt SDK_INT = android.os.Build. VERSION.S0K_INT;

"

(SDK_INT>16){
StrictMode. ThreadPolicy policy = new StrictMode. ThreadPol:

strictMode. setThreadroticy (policy);

GCMRegistrar. checkDevice(Commen_Choice Activity.this);

JJ Mske sure the manifest was properly set - comment out i

// while developing the app, then uncomment, it when it's @ = 4

GCHRegistrar. checkianifest(Commen_Cheice Activity.this);

registerReceiver (mHandleMessageReceiver, new IntentFilter:
BISPLAY_MESSAGE_ACTION));

regld = GCMRegistrar. getAegi strationId(Common_Choice Act: 4
Log. #{"regID", regld);
if (regld.equals(™)) {
GCMRegistrar. registerithis, SENDER_ID);
T else { -
< I »

Problems lavadoc Declaration Search

Console 30 LogCat 52

Call Hierarchy

Writable

EF.-T¢ ¢ " o[m]® © G w]o ¢ O &

Figure 15 - Screenshot of Eclipse IDE with Android Developer Tools

The Eclipse environment contains:

Quick Access

8% Outline 22

[= []
7 | (@7 ave | %5 Debug &5 DOMS

EAR®R e 70
com.letsgoout
Common_Choice_Activity
4 lIstChoice : Listiiew
narme ; Stringl]

id : String[]

waluel: Stringl]
valuez: Stringl]
choiceCount : int
count : int
vaid : String
aid : String
random : Random

appsutility : AppLitlity
alert: AlertDizloghlanager
mRegisterTask | fsync Task <Void, Yoid, Void»
regld : Siring
uid : String
msg_name : String
position : int
. onCreate(Bundle) : void
@ newAsyncTask(..}
o & new OnltemClickListenerd {..}

a
a
a
a
a
a
a
a
&
& mainlist : ArrayList <HashMap <String, String> >
a
a
&
a
a
a
a
Fe

, @ loadlob

o F mHandleMessageReceiver : BroadeastReceiver
o @ newBroadeastReceiver0 [}
& a onDestroy(: void

e Java development where java code can be developed and built.

e Debugger where it’s possible to run step-by-step Android Application.

e Dalvik Debug Monitor Server (DDMS), which provides port-forwarding services,

screen capture on the device, thread and heap information on the device,

logcat (a filtered system message error display), several processes (as seen in

figure 16), radio state information (log radio data), incoming call and SMS

spoofing, location data spoofing, and more.

40

(£ DDMS - letsgooutonline/src/com/iet: o oaut/AppUtility java - ADT
Run Window Help

File Edit Source Refactor Mavigate

Search Project

i H-O-UI® T

Q Devices i3

L3

#@aol/Fd olal @

Marne

4 g ernulator-3554
system_process
com.androidinputmethod.latir
com.android.phaone
com.android.systernui
com.android.launcher
cormandroid.settings
com.google process,gapps
android.process.acore
android.process.media
corm.google.android.apps.map
corm.android.defcontainer
com.android.email
corm.android.deskclock

cove andraid aniclcaarchbe

4

B LogCat 52 B Console

Sawved Filters L

All rmessages (no filters)
plch

==

I
I

Online
61
136
140
142
149
1849
204
207
261
301
317
43

355
27N

Time

B
2

@

= 0

hyPhaor
2600
4601/ 8
4602
4603
2604
4605
4606
2607
4604
8612
8613
2615
2618
ar1a

04-07 16:41:36.982
04-07 16:41:38. 962

-

-

m

Figure 16 - Screenshot of Android DDMS debugger

The ADT Bundle contains also several features such as:

- - = - |
%, Threads 32 ([F Heap (@ Allocation Tracker Metwork Statistics File Explarer
o] Tid Status utirme stirme Marme
1 136 Mative a2 23 main
*2 137 Wmiait 2 24 HeapiWorker
*3 157 Wmiilait] 2 GC
*4 158 Wmiait 0 Sighal Catcher
*5 160 Runnable 11 23 IDwp
* 162 Wmiait 1 0 Compiler
7 169 Mative 0 0 Binder Thread #1
g 172 Mative 0 0 Binder Thread #2
9 195 Wait 0 1 AsyncTask #1
10 197 Wait 0 0 AsyncTask #2
Refresh | hon &pr 07 19:41:42 EEST 2014
at dalvik.system, MativeStart. run(Mative Method)
Search for messages, Accepts lava reqexes, Preficwith pid:, app:, tag: or texd: to limit scope,
FID TID Application Tag Text
&6l 114 s¥stem pr... ActivityManager Dis
343 345 com. andro... dalvikvm GC
K,

e An edition of user interface with graphical features including a drag and drop

tool explained further in the following pages.

e Android Virtual Device Manager where a virtual device (emulator) can be

configured from scratch or is possible to make use of existent device

configurations. System configuration varies from SD card size to device CPU.

e Android SDK Manager where all updates are available for all APIs.

¢ Integrated documentation for Android framework APIs. Developers can access

documentation by hovering over classes, methods, or variables.
e Updates for the ADT plugin.

The code editors available in ADT, in addition to Eclipse's standard editor features, are

custom XML editors to help developers create and edit Android manifests, resources,

menus, and layouts in a form-based or graphical mode already mentioned [42]. Double-

clicking on an XML file in Eclipse's package explorer opens the appropriate XML editor.

There is the option to edit the code in Graphical Layout or the in the XML markup code.

41

) Javs - letsgooutoffline/resflayout/co i ron_choice xml - ADT =]

File Edit Refactor Navigate Search Project Run Window Help

. BE B Q-G HFFE-® - By | Quick Access B |[@ v | % Debug @YOOMS 4 W
[# Package Explorer &2 ER-S A = |cll common_choic.., 520 ratingdialo.. [show_matrix_... 1<) show_rmati,. 1l lets_go_with.., 73 = B 5= Outline &2 = B8
> G src - « Palette —— 4[] LinearLayout
> 85 gen [Generated Java Files) 5 Palette <[4 ‘| @ Nexus One '| 8 " NoTiteBar ~ | @ Common_Choice_ " ® ‘| 4[] LinearLayout
& assets N _ > [LinearLayout
4 & bin - >] LinearLayout
b @ dexedlibs g "

s Pl =]

& Andraidhanifestaml

jarlist.cache

(oo OUT

Itemn 1
ub Iter

sgoout.apk
[letsgooutoffline.apk

|5 resources.ap_
a = libs
android-suppart-wdjar Item 2

a e e

b & drawable

» & drawable-hdpi
(= drawable-Idpi

b (= drawable-mdpi

» = drawable-xhdpi

Brope 2| 15| 5| B B

!

Item 3
ub Iter

.
("] Text Fields Item 4
P —— ub Iten

b > drawablesxhdpi Dlayous
4 = layout |S1Compocit=— Item 5
A cemmon_chaicexml () Images & Media ki TR
1 lets_go_with_friend xml Time & Date s}
ol hormateh_resultiaml e il
£l ratingdialag sl S Transitions |
| screenzxml (7 Advanced Tterm 7
1 show_matri listaml [Custom &Library Yiews || <
£ show_ mataixin] Graphical Layout| (=] commen_choiceami| il
i spleshaml
b & menu = - S
G values Problemns @ Javadoc [, Declaration ' Search [Console 52 33 LagCat %= Call Hierarchy Bxpll # B~riv= 8
b values-swEi0dp . DDMs

BN e ene o (8 fenenalalErEErEe A al=lelnl o 2] 0| ANCEECT—T.

Figure 17 - XML editor built-in with graphical support

ADT provides the following custom, form-based XML editors:

e Graphical Layout Editor - In this editor developers can edit and design their
XML layout files with a drag and drop interface. The layout editor renders the
interface as well, offering developers a preview as they design their layouts.
This editor is invoked when an XML file is opened (usually declared in
res/layout).

e Android Manifest Editor - An editor for Android manifest file with a simple
graphical interface. This editor is loaded when an AndroidManifest.xml file is
opened.

e Menu Editor - When an XML file with a menu is opened , this editor is invoked.
The menu feature is an auxiliary feature for the creation and editing of menus.

This interface provides direct access to a previously created menu item.

e Resources Editor - Editor for the resources with a simple graphical interface.
This editor is opened when an XML file with a <resources> tag is opened.

42

e XML Resources Editor - Editor for XML resources. This editor is opened when an
XML file is opened.

In order to install an .apk , that is the executable of android, there are some ways such
as:

e By publishing and downloading it from the Android Market.

e By copying it on the SD card and using another app to install it (many file
managers offer this feature).

e By using the Android Debug Bridge (adb) that is a command line tool that allows
the connection with an Android emulator or device.

43

44

4) Android Application Fundamentals

This chapter explains some important features of Android Application development’s
structure. It begins by explaining the concept of Context in section 4.1. In section 4.2,
the main components are described. The lifecycle of an Android activity and those
functions are described in section 4.3. A crucial element in Android development is the
use of threads that are explained in section 4.4. And finally, an important service for
message exchanging, Google Cloud Messaging is described in section 4.5.

4.1 Context

The Context class is an abstract class® provided by the Android system [2]. It allows
access to local files, application-specific resources and classes, class loaders (associated
to the environment), databases, and services (including system-level services).This class
also allows upcalls for application framework’s level operations such as launching
activities, broadcasting and receiving intents (explained in 4.2.5), etc. An activity is a
handle to the environment a certain application is currently running in. Further
information on activities is given in sections 4.2.1 and 4.4.

From a developer’s point of view, context is an entity that represents various
environment data. It is an interface to global environment’s information. In simple
words, it is the context of an application’s/object’s current state. It lets newly created
objects to understand the program’s state at a given moment. Typically it is called to
get information regarding another part of the program such as an activity, a package or
an application.

Context is the base class for Activity, Service, Application and others. Developers can
get the current context by invoking in the code getApplicationContext(), getContext(),
getBaseContext() or this (when it is inside the activity class).

Typical uses of context [43]:

e Creating New objects such as views, adapters and listeners. Views are objects
seen in graphical interface. The Adapter provides access to the data items. An
event listener is an interface in the View class that contains a single callback

® An abstract class is a class that is declared abstract—it may or may not include abstract methods.
Abstract classes cannot be instantiated, but they can be subclassed, as seen in [67].

45

method. These methods will be called by the Android framework when the
View to which the listener has been registered is triggered by user interaction
with the item in the Ul. It needs the current context as input. One example of an
event listener is onClick() method that is required to Button View object.

e Accessing Standard Common Resources between activities , such an example
can be the “Shared Preferences”, that are variables shared through all activities
when invoked.

e Accessing Components Implicitly, regarding content providers, broadcasts and
intents.

e Activity Handling, an Android application has activities. Activity is a Java code
that supports a screen or a Ul. In other words, the building block of the user
interface is the activity. The activity object inherits the Context object. Context
is used during launching of a new activity.

e Obtaining system service, such as security, memory management, process
management and network stack.

A practical example of using the context class could be the case of creating a view
dynamically in an activity class. Developers may want to dynamically create a TextView
from Java code instead of creating it using XML layout. In such case, the TextView class
can be instantiated. The constructor for the TextView class takes a context object, and
because the Activity class is a subclass of context, the keyword “this” (as in
conventional Java programming) can represent the context object. Each Activity is a
context and each View needs a context so it can retrieve whatever resources it needs.

Context is very important because in Android programming, there is no static variable
that would tell the developer the current global context of their application. The
method getApplicationContext() is the closest way to get a “static” context of

application.

4.2 Components

Android applications do not have a static entry point like a main() function. Android is
designed in a component-based way. This means that an Android application can use
another application or part of an Application. Components are the essential building
blocks of an Android application. These components are declared by the application

46

manifest file AndroidManifest.xml which describes each component of the application
and how they interact among them.

When an application starts another application, or a component of it, a message from
the requiring application is sent to the framework .This message is called Intent and will
locate, instantiate, pass data and start a component based on some criteria. Those
criteria can be packaged in the Intent. In order to start a component, it must be running
and an instance of that component must be available.

There are four main components that can be used within an Android application:

Components Description

o They define the Ul and handle the user interaction to the
Activities .
device screen

) They handle background processing associated with an
Services L
application.

. They handle communication between Android OS and
Broadcast Receivers .
applications.

Content Providers They handle data and database management issues.

4.2.1 Activity Definition

An Activity represents the presentation layer of an Android application, a single screen
with a user interface. For example, an email application might have one activity that
shows a list of new emails, another activity to compose an email, and another activity
for reading emails. An Android application can have several activities and it can switch
between them during runtime of the application. An activity is implemented as a
subclass of the Activity class [2].

Usually, a complete application consists of multiple activities that are bound to each
other. In most cases, one activity in an application is specified as the "main" activity.
The main activity is the first launch screen presented to the user. Each activity is able to

47

start another activity in order to perform different actions. Each time a new activity
starts, the previous activity is stopped, but the system preserves the activity in a stack
known as the "back stack". This name was taken from the back button, present in all
Android devices that navigates the user to the last activity. When a new activity starts,
it is pushed onto the back stack and takes user focus. The back stack abides to the basic
LIFO stack mechanism, so, when the user is done with the current activity and presses
the Back button, it is popped from the stack, it is destroyed and the previous activity
resumes. An activity has a lifecycle that are state paths of the activity. More details
concerning the activity’s lifecycle can be found in section 4.6 of the present document.

4.2.2 Services

A service is a component that runs in the background to perform long-running
operations without direct interaction with the user. A service has no user interface,
that means that it is not bound to the lifecycle of an activity. For example, a service
might play music in the background while the user is in a different application, or it
might fetch data over the network without blocking user interaction with an activity.

Services, in general, are used for repetitive and potentially long running operations that
are crucial to keep the user interface responsive. For example, service tasks as Internet
downloads, data processing and checking for new data. They can also be used to
update the content providers. A content provider manages access to a central
repository of data and will be further explained in section 4.2.4.

In comparison with activities, a service can run with higher priority than invisible or
inactive activities. It is also possible to assign the same priority to services as
foreground activities, i.e. visible activities to the user. In such case, a visible notification
to the user is required. For example, during a file download, a dialog containing the
download progress is seen and the foreground activity waits for the download to end.

Another one of services’ advantage is that they can also be configured to be restarted
in case they get terminated by the Android System. The restart can be achieved once
there will be sufficient system resources available.

4.2.3 Broadcast Receivers

48

Broadcast Receivers [44] are Android’s components that respond to broadcast
messages from other applications or from the system. For example, applications can
also initiate broadcasts, i.e. send messages to let other applications know that some
data has been downloaded to the device and is available for them to use. This message
is defined as broadcast and the component in charge of responding to this message is
defined as Broadcast Receiver. In the example given, the broadcast receiver will
intercept the communication between the sender and the receiver and will initiate an
appropriate action.

A broadcast receiver is implemented as a subclass of the BroadcastReceiver class. Each
message is broadcasted as an Intent object. An Intent is a messaging object you can use
to request an action from another app component and will be further explained in
section 4.2.5.

A practical example can be whenever the device's battery is low, Android OS sends a
message (broadcast) to the whole system informing that the battery charge is low. The
applications that are interested in receiving this message, consequently, will be able to
execute a determined action from this information. The Android system itself, has a
component to respond to this message by displaying a dialog box on the screen
informing the user that it is necessary to connect his device to the charger. The
component that responds to this message is a Broadcast Receiver. In addition to the
example cited above, there are several other events in Android that send a broadcast
to the system, for example, when the device screen is off, when the charger is plugged
into the device, when a headset is connected to the device, when a telephone call is
received, when the system starts and several others.

A broadcast can be sent either by native Android applications either by the applications
that are developed from the beginning. These broadcasts are sent via Intents, as
mentioned before, in the same way as we do to invoke an Activity. So, the Intent
Resolution is responsible for informing which Broadcast Receivers are interested in
responding to the broadcast. The figure below illustrates an example of a broadcast
sent by Android through intent, stating that the battery charge is low.

49

Broadcast Recelver

Broadcast Receiver

Android
ACTION_BATTERY LOW \UhiSatdiial

Broadcast Receiver

The battery is getting low.

1% remaining
g

Figure 18 - Broadcast Receiver example indicating battery recharge [44]

In order to create a Broadcast Receiver, it is necessary to create a class that inherits the
class BroadcastReceiver and implements the onReceive() function. Later in Activity
Lifecycle section (4.6), it will become clear at which moment in an activity cycle the
Broadcast Receiver is implemented.

The OnReceive() function is called by Android OS itself and takes as argument an object
of type Context and an Intent object. This function enables the Broadcast Receiver to
use the methods of these two classes and also allows the receiving of parameters
through an Intent. Any code that a developer wishes to be executed in background by
the Broadcast Receiver is implemented in OnReceive() function.

A Broadcast Receiver can be configured both statically and dynamically, i.e. editing the
Android Manifest file or editing the code in Java inside an application’s class. In static
configuration, a Broadcast Receiver can be invoked even if the application is closed.

4.2.4 Content Providers

Content Providers store and recover data making them available to other applications.
The data may be stored in the database, the file system or somewhere else entirely.
Content Providers are needed because Android System doesn’t have a shared location
to store the applications’ data and share this data among all Android packages (i.e. the
Application). An example can be the shared contacts that can be used from both the
phone dialer application and the calendar application. Content Providers can be

50

developed for any application inside any application’s class in the source code. The
class containing the Content Provider has to be implemented as a subclass of
ContentProvider class and has to implement a standard set of APIs that enable other
applications to perform transactions [45].

A content provider presents data to external applications as one or more tables that
are similar to the tables found in a relational database. A row represents an instance of
some type of data the provider collects, and each column in the row represents an
individual piece of data collected for an instance.

The Android System has a lot of Content Providers as in the example above. A newly
installed application can obtain the user’s contact list if the user allows this operation.
In such case, the list can also be edited. A content provider is not needed for handling
data in a unique application, but if the content is shared among other applications, a
Content Provider is required.

A content provider component supplies data from one application to others on
request. Such requests are handled by the methods of the ContentResolver class. This
class provides applications’ access to the content model, i.e an interface to the content.

Also, the Content Resolver’s role is to receive requests from the clients and solve them,
i.e., sends the request to another Content Provider. The ContentResolver has CRUD
(create, read, update, delete) functions that correspond to the abstract functions of
Content Provider such as insert, delete ,query, update. Each function takes as
parameter a Uniform Resource Identifier (URI) [46] specifying the address of the
Content Provider to interact with. In figure below, each application accesses the
Content Provider by the matching URI.

51

Figure 19 - Content provider and URI relation [46]

Application

ContentProvider

The lifecycle of a data retigure 20 - content provider and URI relation [46] 1 in five steps:

1. An application calls function getContentResolver().query(Uri, String, String,
String, String), this call executes the function “query” of Content Resolver.

2. When the call is made, the Content Resolver interprets the received URI (with

the syntax starting with “content://”). Then the path of the requested Content
Provider is extracted.

52

3. The Content Resolver redirects the request to the Content Provider (the path is
known from the previous step). This is done when “query” function from
Content Provider is called.

4. When the Content Provider executes the function “query”, a cursor is returned
(or an exception) to the Content Resolver. A Cursor represents the result of the
query and basically points to one row of the query result. The data model used
by the Content Provider is a simple database table, where each row is a record
and each column is data of a certain type.

5. The Content Resolver returns the result received from the Content Provider
back to the Application.

One may wonder: Why don’t applications access data directly from a database instead
of using the Content Provider? It is possible for the Applications to use a database, but
it is even better to use the Content Provider because the way the data is recorded
should be clear to the Application. In this case, the Application can focus on user
interactivity instead of focusing on data retrieving. It is also possible to create Shared
Content Providers that are “public” and seen from many applications such as the
SMS/MMS Content Provider that allows any application to read received messages in a
mobile device.

4.2.5 Intents

As previously explained on section 4.2.1, an Activity is related to a task that an
application can perform. But how such a task is connected to a next possible task?
They can be “connected” through messages called intents.

Intents are asynchronous messages which allow the application to request functionality
from other services or activities. Intent is an abstract description of an operation to be
executed. There are two main primary categories of intents:

53

e Explicit Intents are sent to a specified component. So the class to be run is
provided as a parameter and the application calls directly a service or an
activity. This is the way for an application to launch any activity that is visible
and interacts with the user.

e Implicit Intents does not run on a specified component. The intent, in order to
reach any destination (i.e. a component), must include enough information for
the Android system to determine which of the available components is best to
run for that intent.

For example the application could ask via intent for a contact application. Applications
register themselves to intent via an IntentFilter.

A far more practical view of an Android Intent is that it is an object carrying
an intent i.e. a message from one component to another component with-in the
application or outside the application. The intents can be sent to any of the three core
components of an application such as the activities, the services and the broadcast
receivers .An example code of the use of Intent is presented as follows:

1- Call an application activity to be displayed on screen

1. Intentintent = new Intent(this,ClassActivity.class);
2. intent.putExtra("Message Name", "Mymessage");
3. startActivity(intent);

2-To open a browser

// Adress to be open

Uri uri = Uri.parse(http://www.tuc.gr);

// Creates the intent for the given address

Intent intent = new Intent(Intent. ACTION_VIEW, uri);
// Send the intent to OS.The OS will handle the intent.
startActivity(intent);

o v s wN e

4.3 Activities and Tasks

An activity is a visual component that you see on a screen. Each screen with some
associated logic can manage its life cycle and navigation [2]. Each screen is a separated
Java class. An application generally consists of several activities. When, for example, a
user changes a screen by pressing a button, he is changing to the activity linked to that

54

button. Each activity is defined as a subclass of android.app.Activity library, and must
be declared in the manifest file. The activity also has a lifecycle, responding to the
following state machine:

starts

Y

onCreate()

-

"User navigates
back to the

. activity)

onStart() - onRestart()

- i)

Activity is
running

" The activity |
comes to the
|_foreground |

[Another activity comes |
l_ in front of the activity

" The activity |
[Other applications | comes to the
|__need memory onPause() |_foreground |

¥

(The activity is no longer visible)

Y

onStop()

Y

onDestroy()

l
()

Figure 21 - Activity Lifecycle [47]

Each state’s function can be edited and used during the development. For loading an
activity and displaying a layout on screen, it is necessary to set the content View (load
the xml layout) in oncreate() function. An example is as follows:

55

http://dab1nmslvvntp.cloudfront.net/wp-content/uploads/2011/07/activity_lifecycle.png

At line 1, the on Create activity state is loaded. At line 2, this line is activating Dalvik VM
to run the developed code in addition to the existing code in the onCreate(). At line 3,
setContentView sets the activity content to an explicit view. So the R.layout.login
screen is loaded.

Each state is described in the following table:

Callback Description

onCreate() This is the first callback and called when the activity is first created.

onStart() This callback is called when the activity becomes visible to the user.

onResume() This is called when the user starts interacting with the application.
The paused activity does not receive user input and cannot execute

onPause() any code and called when the current activity is being paused and
the previous activity is being resumed.

onStop() This callback is called when the activity is no longer visible.

onDestroy() This callback is called before the activity is destroyed by the system.

onRestart() This callback is called when the activity restarts after stopping it.

Figure 22 - Activity States table [48]

When an activity is on screen, it is in a running state (shown as green box in figure 21).
When the Android switches between the activities, the current activity will be paused.
Developers should take into account that their programs should be able to stop any
CPU heavy processes that are running when the onPause() method is called.

Android may also request that an Activity should be stopped in order to recover
memory. When this happens, the activity may be stopped. Also, after the onStop()
method, the memory allocated for the application that has been stopped should be

56

released. The onCreate(), onStart() and onResume() methods are used when the
activity is brought to its running state.

Any activity may be started or restarted at any time. The information of a state of an
activity can be saved at any moment. For example, when the screen rotates, the
current activity is re-created so the activity can use a different layout and components.
The user notices that the objects/Views are repositioned.

An example of the activity’s state functions’ usage can be seen in loginActivity in
Confess or Not source code. The login activity displays an email and a password field
for the users to fill the form in. Then it checks the correctness of the user’s input
format. A “Play” button is displayed under the login field. In the onCreate() function,
the layout is displayed on screen with the login field and button. In the OnResume()
function, the “Play ” button is activated and has its own functionality, in this case, it
switches to another activity. As mentioned in figure 22, the OnResume() state is called
when the user interacts with the activity. In this example, the interactions are both the
email/password entries and the pressing of the button.

4.4 Threads

Threads are fundamental for the multitasking operating systems [2]. They are mini-
processes running simultaneously with a main process. The purpose of threads is to
enable the appearance of parallel execution path within the applications.

When any Android application is first started, the runtime system creates a single
thread in which all application components will run by default. This is the main thread
and its role is to handle the user interface. Any additional components that are started
within the application will, by default, also run on the main thread.

Any component within an application that performs a time consuming task using the
main thread, may cause the stall of the entire application. The application will wait until
the task is completed. This will typically result in the operating system displaying an
“Application is unresponsive” warning to the user. This is a very unfortunate execution
of an application. To avoid this kind of problem, it is recommended to launch a “heavy”
task in a separated thread.

One of the key rules of application development is never to perform time-consuming
operations on the main thread of an application. Another equally important rule is that
the code within a separate thread should never directly update elements related to the

57

user interface. All the changes in the user interface should be performed in the main
thread. For example, the Services (explained in section 4.2.2) are started in the
application main thread by default. Services perform background operations that may
delay the main thread. The solution would be to assign the Service to another thread.
With the correct use of threads, the user can execute background code without the
danger of application’s crashing.

4.5 Google Cloud Messaging

Google Cloud Messaging for Android (GCM) is a free service offered by Google that
enables developers to send data from the servers to their Android applications on
Android devices, and messages from the user's device back to the cloud [47]. This could
be a lightweight message telling the Android application that there is new information
to be brought from the server. In the projects presented in this document, GCM is used
to register the user and also to send push notifications i.e. requests to other registered
users. The GCM service handles all parts of the queueing of messages and their delivery
to the target Android application running on the target device.

The GCM Cloud Connection Server (CCS) is a connection server based on Extensible
Messaging and Presence Protocol (XMPP). The XMPP is an open, XML-based protocol
for server-to-server near-real-time extensible instant messaging.

An installed Android application doesn’t need to be running to receive messages.
Google Cloud Messaging will deliver the message regardless of the application’s status.
The system will wake up the Android application via Intent broadcast when the
message arrives. In the applications developed for this project, the broadcast receiver
was set up so that the registered user is able to receive messages. In order to receive
those messages, all proper permissions must be set in the manifest (configuration) file.

When the message is received by the device or the application on the device, it brings
the system to ’alert status. After GCM has completed the task by transmitting the
“source data” to the application, the application will process the aforementioned data
so that the end-user understands and assimilates them. Depending on the settings
chosen by the user, the application will either display a notification symbol or
synchronize the data received. In “Confess or Not”, the registered device receives a
notification request to play a game, various notifications during the game and a
notification to end the game. In “Let’s go Out”, the registered device also receives a

7 Through wake up locker file. This file is mentioned in chapter 5 and 6.

58

notification request as an invitation to go out, various notifications such as a
notification containing the venues the other player had chosen and a notification with
the final choices.

The GCM’s device registration in both games is processed as follows:

e The Android application sends the sender’s id and the application’s id to the
GCM server for registration.

o Afterregistration, the GCM server issues a registration id to the Android device.

o After receiving the registration id, the Android application will send the
registration id to his server.

e The server stores the registration id to the database.

|
|
Conressonvor 1|

|

Figure 23 - The GCM data flow

After registration, all the registered users will be displayed in the player’s list in the
game, and whenever user A clicks on the player’s displayed email, a notification
message will be sent to user B. In this case, the server sends a message to the GCM
server along with the device’s registration id, which is already stored in the database. In
both applications, “Confess or Not” and “Let’s go out”, the same steps are applied and
each one has its own project number. The project number is obtained when the

59

developer creates a project on a Google API console [48]. The GCM messaging has a

lifecycle flow, comprised by the main processes involving the message exchange:

e Enable GCM: This can be achieved by an Android application running on a mobile

device that registers to GCM in order to receive messages. When the Android

application uses for the first time the messaging service, it calls the Google

Cloud Messaging method register(). The register() method returns a registration
ID. The Android application should store this ID for later use.

e Send a message: A sequence of events occurs when a 3rd-party application

server sends messages to the device:

o

o

o

The application server sends a message to the GCM servers.

Google checks and stores the message in case the device is offline.

In case the device is online, Google sends the message to the device.

On the device, the system broadcasts the message to the specified
Android application via Intent broadcast with proper permissions, this is
necessary because the message should be received only by the targeted
Android application. This broadcast wakes the Android application up.
An android application can receive a message even when the target
application is inactive.

The Android application processes the message. If the Android
application is doing non-trivial processing, power manager .wakelock
component can be added to the implementation in order to prioritize an
application.

An Android application can unregister GCM if it no longer wants to
receive messages

¢ Receive a message: Whenever an Android application receives a message from

a GCM server:

o

The system receives the incoming message and extracts the raw
key/value pairs from the message payload. Contingent upon the
presented project, the message payload is in JSON format.

The system passes the key/value pairs to the targeted Android
application in a com.google.android.c2dm.intent.RECEIVE Intent as a set
of extras.

The Android application extracts the raw data from the
com.google.android.c2dm.intent.RECEIVE Intent by key and processes
the data.

In order to use the GCM library, the devices should be running Android 2.2 or higher.

The devices also should have the Google Play Store application pre-installed, or an

60

emulator running Android 2.2 with Google APIs. This application requires that the user
has his device registered with a google email account (for pre-3.0 devices). A Google
email account is not prerequisite for devices running Android 4.0.4 or higher.

61

62

5) “Confess or Not” Design

This chapter describes the “Confess or Not” game’s functionality. It begins with a
general overview of the game. In section 5.1.1, the strategies used in the game are
described using automata. The section 5.2. contains the flow of the game. The section
5.3 contains the description of the classes and methods used in both server’s and
client’s side. The section 5.4 is composed of the implementation’s diagrams with the
interaction of “Confess or not” game’s files.

5.1 Description

The idea of the Prisoner’s Dilemma, as mentioned in section 2.3, is that a player and
his/her partner are caught by the police. Both are interrogated simultaneously. They
have the choice to confess (defect) or not confess (cooperate). In “Confess or Not”
game is played with a number of iterations. This number of iterations must be random
as mentioned in section 1.3. In the game, the user can set a range of possible iterations
when playing with the computer.

The payoff matrix with the points earned for each player for each iteration of “Confess
or Not” is presented as follow:

pl/p2 confess not confess
confess 1,1 5,0
not confess 0,5 3,3

Figure 24 - “Confess or Not” payoff matrix

For each iteration the sum of points is displayed as the score. In the final iteration, the
sum is displayed. The values of Mutual Outcome and each user outcome ratings are
also displayed. The Mutual Outcome rating represents the combined scores achieved
by both players compared to the best possible combined score. The user outcome
represents the percentage of points achieved divided by the maximum possible sum of
points. The basic idea of the game, even the score system, is inspired from an online
version of Prisoner’s Dilemma [49].

The user can set a specific strategy or even a random strategy. In case the user selects a
random strategy, when pressing the button “play strategy “, the user can play an

63

unknown random strategy. If the user chooses specific strategy, the button “play
strategy” gives the result of the selected strategy.

In this game there are 10 different strategies as described in section 1.3: Tit for Tat, Tit
for Two Tats, Suspicious Tit for Tat, Naive Peace Maker, Random 50/50, Always Defect,
Always Cooperate, Grudger, Gradual and Remorseful Prober Strategy. All the possible
player’s moves are illustrated as State Diagrams for each strategy with the acronyms C
and N meaning Confess and Not Confess analogously. For example, for the CC (Confess-
Confess) acronym, the first C means the choice of a player playing a strategy, while the
second C is the choice of the opponent playing a random one. In those State Diagrams,
we show all possible moves of a player playing strategy against a player playing
random. The arrows in some diagrams mean that the strategy has 2 possible initial
states. Some strategies have an initial move such as Suspicious Tit for Tat, that is
repeating the opponent’s last choice but starting with defection (confess) [50].

5.1.1 Strategies in “Confess or Not”

Those strategies’ automata are based in automata seen in [51]:

e Tit for Tat - Repeat opponent’s last choice. Start by cooperation. Tit for tat was
introduced by Robert Axelrod, who developed a strategy where each
participant in an iterated prisoner's dilemma such as “Confess or Not” follows a
course of action which is consistent with their opponent's previous turn. In such
case, if provoked, a player will subsequently respond with retaliation, but if they
are not provoked, the player will subsequently cooperate.

L) ()
()

Figure 25 - Tit for Tat strategy possible moves

o Tit for Two Tats - If opponent defects two times in a sequence, then defect.
Otherwise, cooperate. Start by cooperation.

64

Figure 26 - Tit for Two Tats strategy possible moves

e Naive Peace Maker (Tit For Tat with Random Co-operation) - This strategy
consists of repeating opponent's last choice, but sometimes settles with co-
operating instead of defecting. Cooperation is randomly achieved.

Random
interventian

Figure 27 - Naive Peace Maker strategy possible moves

e Random 50/50 - Every turn is randomly played by a random generator with 50%
probability. So any combination of subsequent plays, confess or not, is possible
as seen in the diagram.

65

Figure 28 - Random strategy possible moves

e Always Defect - This strategy can achieve a Nash Equilibrium if the number of

plays is known. In the case of Confess or Not, the user knows the range of the

number of turns he/she is limited to. So if the user guesses the exact amount of
turns, this is an optimal strategy.

T

Figure 29 - Always Defect strategy possible moves

e Always Cooperate - In an iterated prisoners dilemma game, as Confess or Not,

Cooperation can be a rational strategy (i.e., maximizes payoffs).

S

Figure 30 - Always Cooperate strategy possible moves

e Grudger - Begin by Cooperation. Cooperate until the opponent defects, and

then defect unforgivingly.

66

Figure 31 - Grudger strategy possible moves

e Gradual - Co-operates until the opponent defects. In such case, the player
defects the total number of times the opponent has defected during the game.
Followed up by two co-operations. Note that in this case, a pair of plays such as
Not Confess-Confess cannot be repeated as seen in diagram.

Figure 32 - Gradual strategy possible moves

e Suspicious Tit for Tat - It’'s the same strategy as Tit For Tat except that it begins

by defecting. So it can start with a (player 1/player 2) Confess/Confess or
Confess/Not Confess.

67

Figure 33 - Suspicious Tit for Tat strategy possible moves

e Remorseful Prober (Tit For Tat with Random Defection) - Repeat opponent's last
choice but sometimes probe by defecting instead of co-operating. If the
opponent defects in response to probing, then the player will co-operate once.

Figure 34 - Remorseful Prober strategy possible moves

68

5.2 Game Flow

The game flow of the game is illustrated with real game screenshots. In those following
screenshots, a Virtual Device emulator (provided with ADT framework) is playing
remotely against a phone device (Samsung® Galaxy).

During a game request, if the opponent’s device is switched off, the notification will be
sent whenever the opponent turns on his device. The bellow example in figure 35
represents the case of the player being the requester for online playing.

69

W = wl ke 431
confessornot |[condfessornot |confessornot

CoNkess or NOT? Conress or N0T T Oniine prayer

P ———

Play With Coeryputer

e ~
Onliree Playwrs

Conress or NoT?

ONURNE
o PLAYERS
The splash screen ... the game is

loading A a screen display different options,
the player selects "Online Players"

Alist is displayed with the
registered users

confessornot

eONless OR NOT ? Online Player

i
confessornot

Conress or NoT?

emulator@gmall.com]cl:’s:lmsung@gmaul.

fessarmot
Conress or NoT?

= usam sung@gmaul.
emulatcrérgmall.com jamsungEgm

ONLUINE
PLAYERS

The user thEn SEIECt a friend to The game startsJ the buttons are
play with. not visible , that means that is the
opponent's turn.

At the end of the game , the

Average Outcome Ratings are
displayed

Figure 35 - Screenshot of Game Request

70

" ® . wil W 5:29

.=!

; ‘confessornot

confessorn ot

Conress or Nor?

Conress or NoT?

¥ @
) confessornot emulator@gmall.com]Cx;s;rnsung.., gmaul.
Request juszmsung@gmaul.com 3

Frn JUSBMSUNE@E
maul.com

When the player accepts to play the
game interface is seen and hoth see
the same screen.

A game request notification is After the user press the notification,
received on device indicationg that a screen dialog is seen,
a friend wants to play.

Figure 36 - Screenshot of receiving game request

In case the device is the request receiver, a notification is shown in the notification field
of Android. If the notification message is selected, then the program loads. If the
program has been loaded before, it emerges from the background to the front. So after

the confirmation of a game request, the game commences.

& Y ol B eod
confessornot

Conress or NoT 2

elect Strategy to Play (gains

clect Range of Rounds

egy to Play With

OMUNE
PLATERS

Figure 37 - Settings screenshot

During offline gaming, the player selects the button PLAY and then “Play with
Computer” and a game screen is displayed for playing as in online gaming. In Settings,

71

the user can select the strategy to play against in offline playing, the range of turns, and
the strategy to use when playing. A menu of options is displayed in all cases. When the
user selects the strategy to play with, he can play the selected strategy by pressing the
button “Play Strategy” in the game interface. The player selections are stored even
when the application is switched off, either by killing the application or by turning off
the device.

5.3 Design

This section analyzes the server and client interaction at the moment the application is
installed and requires registration. In reality, the server files are accessed inside each
client’s file and they are not accessed during a screen transition.

Both figures show the data exchange between client and server in figure 38. In case the
user is already registered, the game skips the login page to game mode. In case a user
receives a game request, the client server interaction is depicted in figure 39.

72

Game is
displayed on
screen

Game is
played
accordinly to
Settings

Game Over

Registering for
Game using

name and
a-mail

Registration
5UCCESS
confirmation

A 4

Server stores
the new user A
in database

Server returns
list of players

Server sends
and receive
notifications
with players’
option

Rounds

Finished
?

Game Over

List of online
players
displayed on
device

Player A
selects
opponent

Server receives
opponent address
and number of
rounds from
player's device A
and sends a
request to player’s
device B

Confirmation
received,game
loaded in both

devices

Figure 38 - Client-Server Interaction of Confess or Not Game of a requester

73

Notification
message is
received with a
game request

Adialog is
displayed
asking user to
play

Server raceives
answerand
sendsitto
requester

Server Se_nds Confirmation
and receive Rounds .

.. o received,game
notifications Finished .

) , loaded in both
with players ? :
: devices
option

Game Over

Figure 39 - Client-Server Interaction of Confess or Not Game of a requested player

5.3.1 Server’s Side

This section describes some of the functionalities of each file stored in server. Server
files were developed in PHP ("PHP: Hypertext Preprocessor"). This language was
originally designed for web development to generate dynamic content to the World
Wide Web. A basic object oriented programming style is used for the server.

Posting in PHP is a way of transferring data to a server. For example, in a webpage if a
user fills out a name form, the name will be stored in a variable. At the moment the
user presses the “ok” button or “enters” in the keyboard, a PHP code reads that
variable that the user filled and a “post” to the server is made. The post function is a
part of the PHP library.

74

Also, the data is exchanged in JSON format. JSON is the acronym of JavaScript Object
Notation. JSON is a light-weighted format widely used because of its simplicity. An
example of a JSON format can be seen bellow:

{
"employees": [
{"firstName":"John", "lastName":"Doe" },

n.n

{"firstName":"Anna" , "lastName":"Smith" },

n,.n n,.n

{"firstName":"Peter" , "lastName":"Jones" }

1}

JSON uses JavaScript syntax for describing data objects. Meanwhile, JSON is
independently used in any language or platform. JSON parsers and JSON libraries exists
for many different programming languages.

This section can be divided into two main categories such as common files and
interaction files. The common files are the files that are library files useful for execution
of interaction files. The interaction files are responsible to send and receive
information from each activity from the client’s side. Each of the main files was tested
for posting with Ajax JavaScript. An earlier approach for testing was writing some other
PHP files and making posts by filling the forms, but Ajax JavaScript was a far better
approach.

An important achievement of this part of development was the knowledge that things
should be kept simple in development. It is a fact that the amount of online
information could misguide a beginner into his journey of learning.

In the following paragraphs, a description of the most important files for the server will
be provided. In the implementation section (5.4), a diagram of how all those files are
connected will help the understanding of the whole design:

Interaction files:

e Accept Request: Confirms the availability of an opponent player during a game
the receipt of a game request. Receives as parameters the response of the
opponent that accepted to play the game, and his email. Sends through GCM
the message to the opponent so that the game can be started. Returns the
successful confirmation of the transaction.

e Get Group List: Makes an SQL request to display the list of registered users. It
returns the list of online players with their credentials.

75

e Get Register: During registration, it checks in database if the user is already
registered, if not a new entry is created. This file returns a confirmation of
successful registering.

e Game Platform: This file is responsible for the message exchange during the
game. The choice is sent to the server and the server sends the choice to the
mobile through the notification sender function. At every game play for both
player and opponent, the GCM registration id is retrieved from the database
and a message to the device with the action is sent.

e Send Request: This file is accessed when the user picks a name from the list of
players. It stores as parameters the game requester’s email, the opponent’s
email and the number of turns calculated in the client. The file checks for
opponent’s availability and sends the number of turns to the opponent if there
is an available one. The file returns a confirmation flag of a successful
transaction.

Common files:

e Webservice file: The web service file contains the functions that create and
manage the Webservice. This is a JSON/PHP web service. By the definition of a
web service, the creation of a web service is a creation of a service for
integrating web applications. In both “Confess or Not” and “Let’s go out”
games, the same web service is used. After a research of possible PHP web
services servers online and because of the availability of JSON library on
Android System, a model for initiating, serving and decoding JSON was needed.
Mostly of the core design of the Webservice was based on an example [52].

The web service object has its own parameters such as the function to be
accessed and the JSON variable to be initialized. The main functions of the file
are:
o initialize(): After a Webservice object is created , it must be initialized,
i.e. a JSON Webservice object must be created, setting it as a decoder
for JSON.
o serve(): This function decodes the given JSON parameter.
o register(): Sets a given method to the object.

e JSON file: This file has the functions to convert to and from JSON format i.e. it is

a JSON parser. This file is taken from the open source community [53]. The type
of JSON encoding can be configured as desired. In this application, this file was

76

used as a decoder. The functions are flexible enough to retrieve separated data
from a JSON object or a bundle of JSON objects.

Configuration file: Contains all the constants and the database connection links
to facilitate the use of same files in another server.

GCM file: It contains the necessary functions to send a notification to a device
from the server as long as the registration id is provided as a parameter. It uses
the cURL® Library that is a library supported by PHP widely used for accessing
third party addresses such as the GCM server. Given an address (i.e. the GCM
unique id) and a message field, the message can be sent to GCM online server
with HTTP protocol.

5.3.2 Client’s Side

This section describes the Android classes and it explores the each class’ functionalities.
Those classes are distinguished as the main activity’s classes and library ones. The main

activity’s classes are classes that hold the code of every function of each activity

possibly displayed on screen by the user. The library classes provide all the functions

needed for the interaction between the client and the server, for checking connectivity

and for other operations that will be described thoroughly. The main activity classes

are:

Login Activity Class: Checks the entry given by the user, i.e. the email and
password. Also checks if the entry is provided in the right format, and if not
provided at all prompts the user to make an entry. Stores email and password
to the next activity.

Play activity Class: In the OnCreate stage, i.e. the first action of an activity, the
function RegisterGCM() is called. This function is responsible for the registration
on the server. At first, it checks for internet connectivity. Then it retrieves the
data from the previous activity, i.e. the email and password. Then it checks the
device’s compatibility with Google Cloud Messaging (GCM) and confirm the

 pHP supports libcurl, a library created by Daniel Stenberg, that allows users to connect and
communicate to many different types of servers with many different types of protocols. Libcurl currently
supports the http, https, ftp, gopher, telnet, dict, file, and Idap protocols. Libcurl also supports HTTPS
certificates, HTTP POST, HTTP PUT, FTP uploading (this can also be done with PHP's ftp extension), HTTP
form based upload, proxies, cookies, and user/password authentication, as seen in [66] .

77

manifest file’s (configuration file) proper settings. A receiver is set so the device
can receive the unique ID from GCM. The receiver checks if the device is already
registered. If not, it receives the unique id. Also, this activity waits for a
notification containing a flag from the opponent’s device. If this notification
comes from a game request, the game’s display shifts to GameRequestReceive
activity. If this notification is a response to a game request, the game’s display
shifts to OnlineScoreActivity.

This class activates two buttons displayed on screen:

» Play with Computer: When the button is pressed, the Shared Preferences
(from Range Selection in Settings) are acquired, that means that the user’s
previous choice of the range of possible selections is stored and it is used to
select the right range. It is important to note that Shared Preferences are
stored variables and those can be retrieved by any activity on the
application. For example, if the user selects a range of 5 to 10 rounds, a
random number between 5 and 10 is generated. This concept is also applied
to all possible ranges that are 5-10, 10-20, 20-40 and 40-60. This generated
random number is stored and passed to the Score Activity, which means the
game itself.

» Play Online: When button is pressed it instantly redirects to Player Name
activity. This means that a list of existent players is displayed.

Player Name Activity Class: At the moment a player is selected, the number of
turns is retrieved randomly accordingly to a range pre-selected in Settings.
Then, the user id of the player, the user id of the selected opponent and the
number of turns are posted to a server file and a confirmation flag is received.
On another thread, the list of possible opponents is displayed to the user before
the selection. This list of players is retrieved, if available, and the registered
users are requested from the database.

Flag Variables Class: This is a helper class, used for Strategies’ round history.
Most of the strategies need a previous selection from both players so this class
provides an object that stores the player’s choice, the game’ and a defect flag.

Score Activity Class: This class is the game environment for offline playing,
when a player chooses to play with the device. In the onCreate stage, initUl
(initialize Interface) is called and the buttons are activated. The current score is
seen at each round. The buttons displayed are:

78

> Confess: When the user selects the confess button, a round is added to
a global counter and the player’s choice is stored in a Flag Variable
(number 1 in confess case) to be used for strategies. The strategy of the
opponent player is retrieved from the Settings.

» Not Confess: The same applies in this case, but the value is different for
flag (number 2 in not confess case) variable.

» Random: The same as the previous buttons but with a random number
stored in flag variables. The player can see the choice made by the
“random generator” by checking the messages displayed on screen.

» Play strategy: The player can play a strategy from the ones already
stored in the Settings.

The Score Activity class also contains all the strategies. With each button the
player presses the function applies the strategy accordingly if any, stores the
current choice for future playing and updates the count of rounds. The game
ends when the counted number of rounds reaches the number retrieved from
the previous intent from the class Play Activity. Afterwards, a dialog box is
displayed with the total points. Under the dialog box the mutual score
percentage, the player’s percentage on the game and the opponent’s
percentage are displayed on a table.

Online Score Activity Class: This class is the interface for the online playing of
both player and opponent.

Game Request Receive Activity Class: This class manages the notification
received when a player chooses an opponent to play against. If an opponent is
available, the opponent will receive a notification for a game request. There are
two buttons displayed, yes or no. If the opponent chooses yes, then a flag that
shows who is the receiver of the notification is sent to the next activity, i.e. the
game (Online Score Activity). This flag comes from the server that identifies the
sender and receiver.

GCMintent Service Class: This class holds the function that manages the
notification service. This service delivers the messages necessary to login and to
player’s selection, and any possible message between the devices and the
server. An important function in this class is the function isRegistered(), that is
called whenever a user needs to register their username on the as well as
register their device on the GCM server. As explained previously in GCM
functionality in section 4.7, a device must be checked if registered on GCM

79

server in order to register any user of the game. This check is conducted within
in this function.

Settings Activity Class: This is the activity where the user can choose the
desired range of the game’s turns, the opponent’s strategy in the case of offline
playing and the player’s own strategy to play against an opponent. All the
settings are stored as Shared Preferences.

Application Utilities Class: This is a configuration file that has the necessary
URLs of files in the server. Additionally it holds some functions that are helpful
for retrieving data and also some login support functions.

The library classes are used in both games; a description of those classes will be

presented in the following paragraphs and the same applies for the “Let’s go out”

design. Some of those classes were inspired from a very helpful tutorial, especially

in the beginning of the implementation [54]. This tutorial explains how to login in a

server using Android. This tutorial proved to be very useful and offered some strong

background. Each class is described as follows:

Connection Detector Class: This class contains the functions that check for
user’s connectivity on the internet.

JSON Parser Class: There are a lot of examples of JSON parser online, this JSON
parser was based on an example seen on [54]. This class contains the functions
necessary to send or receive data in JSON format. The POST functions are
request methods supported by the HTTP protocol used by the World Wide Web.

Server Utilities Class: Contains the basic necessary registering class to pair the
device with the server information. Also this file contains an unregistering

function and a post function to the server.

Wake Locker Class: Contains the necessary functions to “wake up” a device
when the device is idle. A power manager class is invoked.

80

5.4 Implementation

Alert Dialog Manager

. Splash Class
Common Utilities
Connection Detector
Json Parser

Wake Locker Login Class

Flag Variable

CNEREN

Play Class

Offline Online

Score Activity Get Group
Class List.php

Player List

Class

Platform Online Score Send
Game.php Activity Class Request.php

Figure 40 - Interaction of files of Confess or Not for the requester

The above diagram describes the interaction of the files with the helper classes. The
blue boxes are client files, and the white boxes are server files. As mentioned before, in
case the user is already registered, the Splash Screen skips registration. All necessary
information for the registration is stored in Shared Preferences. The following diagram
describes the file interaction from the requested player’s side. The GCM Intent Service
class manages the income messages, so that the device is ready to receive a Confess or
Not notification. The Request and Receive Class is called after the notification message
to the recipient player is displayed. After that, the game follows similar steps with the
ones depicted in the previous diagram.

Alert Dialog Manager

Game Request

Common Utilities .
and Receive

Connection Detector

Json Parser

Wake Locker Accept
request.php

BENEN

GCM Intent Service

Online Score

Activity Class

Platform
Game.php

Figure 41 - Interaction of files of Confess or Not for the requested player

Each server file was tested separately with Java Script. An initial approach from the
project’s client side was to design a complete module with all the necessary logic for
the game. This proved to be inefficient because the handling of separated threads was
impossible. This might could have been achieved, if it was possible to have a serial

82

execution of Android client, but that is not the case. Also, in Android OS there are no
global variables, so data has to be transferred from an activity to subsequent one.
Therefore, the game logic is split through the files and data is passed through intents.

83

84

6) “Lets Go Out” Design

This chapter describes the “Let’s go Out” game’s functionality. It begins with a general
overview of the game. In the section 6.2., the flow of the game is described. The
section 6.3 contains the description of the classes and methods used in both server’s
and client’s side. The section 6.4 is composed of the implementation’s diagrams with
the interaction of “Let’s go Out” game’s files.

6.1 Description

The goal of “Let’s go Out” application is to simulate an invitation to a friend to go out to
a place of their common choice, based on their evaluation on those places. After the
first login, the player can invite a registered friend to go out. Online friends are
displayed in a list. After both players have chosen the desired places to go out, a payoff
table is displayed with both preferences. A brief description of “Let’s go Out” was
already provided in section 1.3.

pl/p2 Ababa Dyoloux Hypopotamos
Ababa 8,10 0,0 0,0
DyolLoux 0,0 9,3 0,0
Hypopotamos 0,0 0,0 3,5

Figure 42 - Let's go out example payoff table

This table is based on the Battle of The Sexes game that is already described in section
2.4. A similarity is that both games present each player’s preferences in a payoff table.
In the payoff table, the preferences are displayed diagonally because the intention is to
go out together. That means that for non-matching choices, the values are zeroes. The
difference from a typical Battle of The Sexes game is that there can be more than two
places to go in “Let’s go out” i.e there are more than two strategies in the game. A user
may select a place that combines their best possible own preference and their friend’s
preference, because probably it would be a common choice in the end. After the payoff
table is displayed for both players, they will choose the place that they would go out
based on their preferences. If the place is a match, the result of the preferences is
displayed for both players.

85

6.2 Game Flow

The game flow in this section is illustrated with game screen shots. After installing the
application, the registration is made by filling a form, just like in “Confess or Not” game.
Similarly to “Confess or Not game”, there are two possible types of players, the
requested player and the requester. Let’s say that a player A requests player B to go
out. There are three possible situations involving the player’s choices:

e Both players match all the places to go out together. After the matrix
appearance, if their final choices are common, they will go out.

e Players match some places, so the intersection of their choices will appear on
screen.

e Players don’t match any place to go out after the ratings (figure 43 Rating Dialog
Screen) and a “You won’t go out today” dialog will appear.

86

-] =

(o OUT

(et OUT

Please choose a place
to go out today with
your friend

(s o0 OUT e

N\ N\
(HELP [NEXT |

Splash screen Login Screen Dialog screen

]

(o OUT 560 OUT

* mob

List of online Rating dialog Payoff table
players screen

(oo OUT

You can go with vour friend

e Mtinge

Choices Matched

Figure 43 - Screenshot of “Let's go Out”

87

6.3 Design

Registering
for game
using name

and email

Registration
success, next
button
appears

User chooses
a friend from
a list
displayed

Rating Dialog

appears, user
chooses and
rate places

Payoff table
of places and
ratings is
displayed

Player chooses

his final chaice

based on table
results

Store in
database the
user registry

Server sends
list of online
friends

Server sends
notification
to requested

player

Server receives
rating values
from both
playersand
comparesthem

Server sends
notification
to requested

player

Comparison
of result,
notifications
to players

Figure 44 - “Let's go Out” client server interaction

88

This section describes the file server interaction and contains a description of each of
the most important files in the Application. Figure 44 provides a server and client
interaction outline for the moment a user first installs the application and registration
is required. The darker green boxes are client’s actions. The lighter boxes are the
server’s actions. As mentioned in “Confess or Not” (section 5.3), the server files are
accessed inside each client’s file and they are not accessed during a screen transition.

6.3.1 Server’s Side

This section describes some of the functionalities of each file stored in the server. The
architecture is similar to “Confess or Not” Game. Server files were developed in PHP as
described in section 5.3.1.

In the case of “Let’s go Out”, all data is exchanged in JSON format as well as in “Confess
or Not”. Following the example of “Confess or Not” client-server communication, the
pack of files is also divided in two main categories: common files and interaction files.
The common files are the files that are library files useful for the execution of the
interaction files. The interaction files are responsible to send and receive information
from each activity from the client’s side. Each of the main files was tested for posting
with Ajax JavaScript.

In the following paragraphs, a description of the server’s most important files is
provided. In the implementation section (6.4), a diagram of how all those files are
connected is helpful to the understanding of the whole design.

Interaction files:

e Delete Record: This file erases all previous entries in the database that have
been used during a game session.

e Registration: During the registration, checks in database if the user is already
registered, if not a new entry is done. This file returns a confirmation of
successful registering.

e Select User: After the player selects the name and send notification request to

the friend. This file receives as parameters the user’s id and name and return
the GCM number of the friend’s device.

89

User list: This file retrieves the online users from the database, stores them to a
user’s list and sends this list through a notification to the requester.

Send Choice: This file takes the rating choices of the requester, decodes each
result from JSON format and inserts it into the database. The requester’s client
fills the table of the player’s ratings. Then it sends a notification to the
opponent (the requested) as a confirmation.

Send Choice 2: This file has similar function to the “Send choice” file but
handles the ratings of the requested player. The requested player’s client
updates the table of player’s rating choices.

Show Table: This file returns the list of common choices and ratings.

Send final choice: This file receives the requester’s final choice and checks for a
match with the friend’s option.

Send final choice 2: This file receives the requested player’s final choice and
checks for a match with friend’s option.

Request Response: This file receives the friend’s id from client and sends a
confirmation to the device using the GCM id retrieved from the database.

The Common files in “Let’s go Out” game, i.e. the files that are necessary for the Web

services, are the same files used in “Confess or Not” game. Those files were described

in section 5.3.1 of this document.

6.3.2 Client’s Side

This section describes the Android classes and functionalities of each class .Those

classes can be classified as the main activities classes, helper classes and library classes.

The main activities classes are classes that have the code for all functions of each

activity possible seen on screen by user. The library classes provides all the functions

needed for the interaction between client and server, checking connectivity and other

functions that will be described thoroughly.

90

e Login Activity Class: This class checks for internet connection and take the login
details from user. It checks for entry in right format and stores email and
password to next activity.

e Screen 2 Activity Class: This class displays a dialog, a next button on the
foreground and also displays a progress bar in case of delay. In the background,
it registers the device to GCM server, and stores the unique ID and clear
previous game entries in database.

e User list Activity Class: This class displays the friend’s list in the foreground. In
different thread, it runs the player’s friend selection. When the player selects a
friend to play, the request is sent and the activity waits to the friend’s response.
While the player waits for the confirmation, a progress bar is also displayed.

e Rating Dialog Activity Class: This class displays the rating dialog and stores the
user preferences and ratings. When the user presses the “Go toResult” button,
the choices are stored in a hashMap® instance variable so then can be sent as a
POST to server. The server then stores the results for both users in database.
The next activity starts when a confirmation (notification) that the user’s friend
has finished his choices is received.

e Show Table Activity Class: The stored user’s and friend’s preferences and
ratings are retrieved from database and encoded to a hashMap instance. This
instance’s data is used to allocate the rows dynamically in a payoff table. This is
executed on postExecute activity cycle because, at that moment, the data for
allocating the rows would be available. In case of delay, a progress dialog is
displayed.

e Common Choice Activity Class: This class displays the common choices of
players, i.e. the same places that are displayed in the payoff table. At the
moment a user chooses the place to go, by pressing the place’s name, the
choice is sent to server for comparison with the friend’s choice. If the player is
the requester, he waits for the opponent’s final choice. For the final result, both
players wait for confirmation (notification).

°A collection class that maps Java Object’s indexes.

91

Request Confirmation Activity: This class is loaded when the player is the
requested, at the moment he presses the notification request. The message in
notification contains the requester’s id. It loads a dialog for the player to choose
between accepting and rejecting his friend’s request. After the acceptance, the
client sends his own id and the requester friend’s id to server and sends
confirmation (notification) back to his friend.

GCMintent Service Class: This class has the function that manages the
notification service. This service delivers the messages necessary to login, select
player and any possible message between the devices and server. An important
function in this class is the function isRegistered() that is called whenever a user
needs to register his username on server as well as register his device on GCM
server. As explained previously in GCM functioning in section 4.7,a device must
be checked if registered on GCM server in order to register any user of game.
This check is made in this function.

Application Utilities class: This is a configuration file that has the necessary
URLs of files in server .And also have some functions that are helpful for
retrieving data and login support functions.

The library classes are used in both games, a description of those classes can be

found in section 5.3.1.

92

6.4 Implementation

Figure 41 describes the file interaction of the requester, and figure 43 describes the file
interaction of the requested player. The green boxes are client’s files, and the white
boxes are server’s files. In reality, the PHP files were accessed inside the class and not
during the transition between the activities. However, the diagrams show the PHP files
being accessed during the transition of the files to represent the data exchange
between them.

93

- Alert Dialog Manager
Requester Player

- Connection Detector
Splash
Class
- Json Parser

Delete

record.php
- Wake Locker

‘ Login Class

Delete
record.php

Userlist.php

SendChoice.php

‘ Show Table

Show
Table.php

Send Final
Choice.php

Figure 45 - “Let's go Out” file interaction - requester

94

- Alert Dialog Manager

Requested Player
- Json Parser

Request
Confirmation
Class

- Wake Locker

B GCM Intent Service Userlist2.php

Rating Dialog
Class 2

SendChoice2.ph

P
Show Table
Show

Table2.php

Common
Choice Class 2
Send Final
Choice2.php

Figure 46 - “Let's go Out” file interaction - requested player

95

96

7) Conclusion and future work

Android Development is a rapidly evolving field. During the projects' development,
more features were added to Android OS by its providers. The Android community is a
dynamic one and because it is an open source platform, there are many volunteers
reporting their problems and development ideas. This is a great hand for every
newcomer to practically apply any of their idea. Google also provides a great resource
of information on the official Android site.

On the journey of learning, a beginner developer on this field can have plenty of
experiences; some of them may prove to be encouraging while others disappointing.
The key is to understand the functionality of Android OS and its structure from the
beginning. A mistake a beginner usually makes is start programming using fragments of
knowledge without the deep understanding it requires. The experience of
programming on Android showed that an efficient design is valuable at the very
beginning of development. An efficient design in Android, first of all, is completely
directed towards usability. A developer has to be aware that his application can be
accessed through various devices of different sizes, so the size of a button and/or
distance between buttons or widgets play a significant role.

We are still in an intermediate era of mobile usage and development, if we make a
comparison of how many possibilities lie ahead. Developing of this project led to the
creation of a successful client-server communication with the assistance of a PHP
server and Goggle Cloud Messaging. The result achieved was a simple and stable
communication between two devices, so important to game playability.

The methods and procedures used for client-server communication, stand as a solid
example for other games in Game Theory, with two players and two strategies such as
in the case of "Confess or Not" game, or involving more strategies such as in the "Let’s
go out" game. The structure of an Android application, such as the fact that each
screen corresponds to an independent activity was both an advantage and a
disadvantage in some aspects. The fact that each screen can be developed as a
different module facilitates interface's editing, message sending to the server and
activity debugging. But this also means that data exchange between modules
(activities) have some special procedures, such as for sending data inside intents, using
a singleton™® class, using application singleton, static fields and hash Map. Also data can

% software engineering, the singleton pattern is a design pattern that restricts the instantiation of a
class to one object.

97

be shared through persist objects such as SQLite, Shared Preferences, file, etc. In the
projects, some of those methods were used accordingly to necessity.

Regarding Android Applications’ interface, it is important that some of its aspects adapt
to the Android needs. Android has a limited processor capability but much more
demanding users. Mobile application's users prioritize the quickness of an application’s
execution. This fact, looking back after concluding both projects, was quite a challenge.
Reminding that the slightest change in the structure of an application can be quite
costly if not properly designed. Every application's activity can be a set of asynchronous
tasks, background threads and services. All those must operate in agreement with the
Android activity cycle.

Those games are almost ready to be uploaded to Google Play Store. However there are
some security issues that must be evaluated prior to uploading to the online
community. For example, all users have access to any online user and this implies that
loads of notifications can be sent to anyone. A future idea that could be a solution for
this kind of problem is dividing the users in close groups of friends. The access to the
group would be restricted to unknown users. A search option for finding friends via
email or user name could be added. Another option for having only the desired friends
in the list of friends to play, could be implemented with the program searching for
Contacts stored in the device and checking if those contacts have installed the
application. Many widely known chat applications, such as WhatsApp© uses the
contacts already stored in the device. Those differentiations certainly require a more
profound server implementation and several changes in the client interface. These
could be applied for both games.

For future work ideas on "Confess or Not", it would be very useful to keep a log of the
played games and maybe store them to study the tendency of human player's choices
and winning strategies. The inclusion of more strategies of Axelrod Tournament would
give the user an even better experience in playing. Also, it would be very interesting if a
user could edit his strategy by changing some parameters such as the probability of a
strategy'! repetition, the number of consecutives repetitions of a strategy or the
duration of a strategy.

Regarding the "Let’s go Out" application it would be useful if the friends were loaded
from the user’s Facebook®© contacts. This can be achieved with a new tool offered by
Facebook [55]. Also login could be made using a Facebook account. A statistics screen
could be added with the friend’s previous choices. A user could also add a place of his

u Strategy in this case means as defined in game theory, i.e. any of the options a player can choose.

98

choice. The information about the places on a user’s list of places could be loaded from
third part website or application, such as Google© Maps [56].

99

100

8) Related Work

There are some related work concerning Game Theory and the possible applications
involving this field:

e Game Theory for education purpose:

o Math Jump, from concept to a published title: This work presents an
overview of game theory, gamification, and business opportunity as
the reasoning for the development of Math Jump, an educational
mobile game [57].

o Mobile Applications: Games that Transform Education: A mobile
app designed for the iPhone and Android operating systems that
focuses on teaching players SAT | math concepts using Nintendo’s
wildly popular Pokemon game design model [58].

e Prisoner’s Dilemma application:

o A Large Scale, Distributed, Iterated Prisoner’s Dilemma Simulation:
This work is concerned with implementing a large simulation of
mobile IPD players, across a network of machines [59].

o An online applet that plays Prisoner’s Dilemma as seen in [60].

e Online software tools for Game Theory:

o Gambit: It is an open-source collection of tools for doing
computation in game theory. With Gambit, a user can build, analyze,
and explore game models [61].

o Gamut: It is a suite of game generators designated for testing game-
theoretic algorithms [62].

o Game Theory Solving Applet: This applet is designed to find Nash
Equilibria in a simple game theory problem [63].

e Online downloadable mobile applications:
o Graphical simulation of the spatial iterated prisoner's dilemma:
This mobile application demonstrates the spread of 'altruism' and

'‘exploitation for personal gain' in an interacting population of
individuals learning from each other by experience.

101

o Youprisoner: A simple application that plays prisoner’s dilemma
against a Grim strategy.

There aren’t any mobile applications in any of the biggest online stores such as Google
Play, Amazon, Windows Mobile Store and even iTunes (iPhone applications) that have a
similar educational game-theoretic game as the projects described in this document.

The use of the combination of webservices and Android development can be found in
the essay “RESTful Mobile Application for Android : Mobile Version of Inspectera
Online”. This master’s thesis designs and develops a Web service-based mobile
application for Android platform following the constraints of REST architectural style
[64].

102

9) Bibliography

[1] D. Hardawar, "The magic moment: Smartphones now," [Online]. Available:
http://venturebeat.com. [Accessed june 2014].

[2] Google, "Android Developer," google, [Online]. Available: http://developer.android.com.
[Accessed june 2014].

[3] Google, "Google ADT," [Online]. Available: http://developer.android.com/tools/help/adt.html.
[Accessed june 2014].

[4] Netbeans, "Download NetBeans IDE 8.0," Oracle, [Online]. Available:
https://netbeans.org/downloads/. [Accessed 2014 june].

[5] Go Daddy, "Go Daddy Webhost," Go Daddy, [Online]. Available: www.godaddy.com. [Accessed
june 2014].

[6] Apache, "XAMMP Download," [Online]. Available:
https://www.apachefriends.org/download_success.html. [Accessed june 2014].

[7] The PHP Group, "Home Page," The PHP Group, [Online]. Available: http://www.php.net/.
[Accessed june 2014].

[8] W. Davis, "lterared Prisoners Dilemma Application," 22 March 2007. [Online]. Available:
http://www.iterated-prisoners-dilemma.net/. [Accessed June 2014].

[9] R. Axelrod, The Evolution of Cooperation, NY: Basic Books, 1984.
[10] M. J. Osborne, An Introduction to Game Theory, Toronto: University of Toronto, 2000.
[11] M. J. Osborne and R. Rubinstein, A Course in Game Theory, USA: MIT Press, 1994.

[12] K. L. Brown and Y. Shoham, Essentials of Game Theory: A Concise, Multidisciplinary
Introduction, Oregon: Ronald J. Brachman, Yahoo Research,Tom Dietterich, Oregon State
University, 2008.

[13] Nobel Media AB, "MLA style: "The Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel 1994"," nobelprize.org, [Online]. Available:
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1994/. [Accessed june
2014].

[14] H. Tembine, "Game Theory Meets Computer Science and Engineering," King Abdullah
University of Science and Technology, [Online]. Available: http://sri-

103

uqg.kaust.edu.sa/Pages/Seminar-33.aspx. [Accessed june 2014].
[15] W. Spaniel, Game Theory 101: The Complete Textbook, NY: Amazon Kindle, 2011.

[16] G. Chalkiadakis, "Mutiagent Reinforcement Learning: Stochastic Games with Multiple Learning
Players," University of Toronto, Canada, 2003.

[17] F. Carmichael, A Guide to Game Theory, UK: Pearson Education, 2006.

[18] E. Roberts, "Non-zero Sum Games," Stanford University, 2006. [Online]. Available:
http://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/game-
theory/nonzero.html. [Accessed june 2014].

[19] N. Nisan, T. Roughgarden, E. Tardos and V. V. Vazirani, Algorithmic Game Theory, UK:
Cambridge Press, 2007.

[20] D. S.Nau, "Game Theory," [Online]. Available: http://www.cs.umd.edu/~nau/cmsc421/game-
theory.pdf. [Accessed june 2014].

[21] Wikipedia, "Battle of the Sexes," [Online]. Available:
http://en.wikipedia.org/wiki/Battle_of the_sexes (game_theory). [Accessed 2014 june].

[22] T. P. team, "Mixed Strategies," [Online]. Available: http://www.policonomics.com/mixed-
strategy/. [Accessed june 2014].

[23] S. A. Schropp, Trade Policy Flexibility and Enforcement in the WTO:A Law and Economics
Analysis,page 55 notation 5, UK: Cambridge University Press, 2009.

[24] Webopedia, "API - application program interface," Quinstreet Enterprise, [Online]. Available:
http://www.webopedia.com/TERM/A/APIL.html. [Accessed june 2014].

[25] R. Kannan, "Android Applications," [Online]. Available:
http://androidappsdevelopmentss.blogspot.gr/2014/04/what-does-api-level-mean.html.
[Accessed june 2014].

[26] Google Android, "SDK elements," [Online]. Available:
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html. [Accessed june
2014].

[27] R. Meier, Professional Android Application Development, John Wiley & Sons, 2009.

[28] A. Misra and A. Dubey, Android Security: Attacks and Defenses, CRC Press, 2013.

104

[29] Mediawiki, "eLinux," [Online]. Available: http://elinux.org/Android_Architecture. [Accessed
june 2014].

[30] IT&C Solutions, "Android Tutorial (4) — Procedural vs. Declarative Design of User Interfaces,"
[Online]. Available: http://www.itcsolutions.eu/2011/08/27/android-tutorial-4-procedural-vs-
declarative-design-of-user-interfaces/. [Accessed june 2014].

[31] D. A. Heger, "Android Internals," [Online]. Available:
http://www.dhtusa.com/media/Androidinternals.pdf. [Accessed june 2014].

[32] J. Ahn, "Binder: Communication Mechanism of Android Processes," NHN Corporation, [Online].
Available: http://www.cubrid.org/blog/dev-platform/binder-communication-mechanism-of-
android-processes/. [Accessed june 2014].

[33] R. Martin, "An Introduction to Android Shared Memory," [Online]. Available:
http://notjustburritos.tumblr.com/post/21442138796/an-introduction-to-android-shared-
memory. [Accessed june 2014].

[34] Netmite, "Android Power Managment," Netmite, [Online]. Available:
http://www.netmite.com/android/mydroid/development/pdk/docs/power_management.html.
[Accessed june 2014].

[35] eLinux, "Android Booting," eLinux, [Online]. Available: http://elinux.org/Android_Booting.
[Accessed june 2014].

[36] Wikipedia, "Android Version History," [Online]. Available:
http://en.wikipedia.org/wiki/Android_version_history. [Accessed june 2014].

[37] D. Bornstein, "Google 1/0 Session Videos and Slides- Dalvik VM Internals," 2008. [Online].
Available: https://sites.google.com/site/io/dalvik-vm-internals/. [Accessed june 10'4].

[38] J. Levi, "Dalvik vs. ART: Android virtual machines and the battle for better performance," Pocket
Now, 13 november 2013. [Online]. Available: http://pocketnow.com/2013/11/13/dalvik-vs-art.
[Accessed june 2014].

[39] "Android Benchmark," [Online]. Available: https://code.google.com/p/android-benchmarks/.
[Accessed june 2014].

[40] N. Smith, Android 4.4 App Development Essentials-First Edition, eBookFrenzy, 2014.

[41] Edureka, "The Beginner's Guide to Android: Android Architecture," 2 january 2013. [Online].
Available: http://www.edureka.in/blog/beginners-guide-android-architecture/. [Accessed june
2014].

105

[42] Android Google, "Android Developer Tools," [Online]. Available:
http://developer.android.com/tools/help/adt.html. [Accessed june 2014].

[43] D. Smith, "Context,what context?," Double Encore, [Online]. Available:
http://www.doubleencore.com/2013/06/context/. [Accessed june 2014].

[44] Hachi Tecnologia, "Broadcast Receivers no Android," [Online]. Available:
http://blog.hachitecnologia.com.br/mobile/trabalhando-com-broadcast-receivers-no-android.
[Accessed june 2014].

[45] Tutorial Point, "Android Application Components," [Online]. Available:
http://www.tutorialspoint.com/android/android_application_components.htm.

[46] F. Silveira, "Content Providers," [Online]. Available:
http://www.felipesilveira.com.br/2010/05/content-providers/. [Accessed june 2014].

[47] Google Developers, "Google Cloud Messaging for Android," [Online]. Available:
http://developer.android.com/google/gcm/index.html. [Accessed june 2014].

[48] Google developers, "Google Api Console," [Online]. Available:
https://code.google.com/apis/console/. [Accessed june 2014].

[49] W. Danis, "Iterated Prisoners Dilemma," [Online]. Available: http://www.iterated-prisoners-
dilemma.net/ . [Accessed april 2014].

[50] L. Tesfatsion, "Notes on Axelrod’s Iterated Prisoner’s Dilemma (IPD) Tournaments," [Online].
Available: http://www2.econ.iastate.edu/classes/econ308/tesfatsion/axeltmts.pdf. [Accessed
june 2014].

[51] M. Wooldridge, "Computation and the Prisoner’s Dilemma," [Online]. Available:
http://commonsenseatheism.com/wp-content/uploads/2013/04/Woolridge-Computation-and-
the-Prisoners-Dilemma.pdf. [Accessed june 2014].

[52] S. Shulte, "The Sean Code," 19 May 2006. [Online]. Available:
http://seancode.blogspot.gr/2006/05/my-own-jsonphp-web-services.html. [Accessed june
2014].

[53] M. Migurski, "Package Information: Services_JSON," [Online]. Available:
http://pear.php.net/package/Services_JSON/download. [Accessed june 2014].

[54] R. Tamada, "Android Login and Registration with PHP, MySQL and SQLite," 31 january 2012.
[Online]. Available: http://www.androidhive.info/2012/01/android-login-and-registration-with-
php-mysql-and-sqlite/. [Accessed june 2014].

106

[55] Facebook Developers, "Facebook SDK for Android," [Online]. Available:
https://developers.facebook.com/docs/android/. [Accessed june 2014].

[56] Google Developers, "Google Maps Android APl v2," [Online]. Available:
https://developers.google.com/maps/documentation/android/. [Accessed june 2014].

[57] L. Tatu, "Math Jump, from concept to a published title-Bachelor's Thesis," march 2013. [Online].
Available: http://www.theseus.fi/bitstream/handle/10024/55158/Laine_Tatu.pdf. [Accessed
june 2014].

[58] L. Loeb and E. Y. Zhang, "Mobile Applications: Games that Transform Education-Dartmouth
Computer Science Technical Report," may 2013. [Online]. Available:
http://www.cs.dartmouth.edu/reports/TR2013-737.pdf. [Accessed june 2014].

[59] M. Townsley, M. Weeks, R. Ragade and A. Kumar, "A Large Scale, Distributed, Iterated
Prisoner’s Dilemma Simulation," p. 6, 2006.

[60] M. Shor, "Java applets, online simulations, and game theory demonstrations.," 2006. [Online].
Available: http://www.gametheory.net/applets/prisoners.html. [Accessed june 2014].

[61] T. Turocy, "The Gambit Project," University of East Anglia, [Online]. Available:
http://www.gambit-project.org/. [Accessed june 2014].

[62] Stanford University, DARPA's Transfer Learning Program, [Online]. Available:
http://gamut.stanford.edu/. [Accessed june 2014].

[63] J. Kaplan, “Game Theory Solving Applet,” University of Colorado, [Online]. Available:
http://spot.colorado.edu/~kaplan/econ4838/Projects/GameTheoryFinal.html. [Acesso em june
2014].

[64] S. A. Arman, "RESTful Mobile Application for Android : Mobile Version of Inspectera Online,"
Linkdpings universitet-University Essay, [Online]. Available:
http://www.essays.se/essay/9af51767d7/.

[65] Wikipedia, "Inter-process communication," [Online]. Available:
http://en.wikipedia.org/wiki/Inter-process_communication. [Accessed june 2014].

[66] The PHP Group, "The PHP Manual," [Online]. Available:
http://www.php.net/manual/en/intro.curl.php. [Accessed june 2014].

[67] Oracle, "Abstract Class," [Online]. Available:
http://docs.oracle.com/javase/tutorial/java/landl/abstract.html. [Accessed june 2014].

107

108

109

Appendix

Structure of Web Service file

<?php

/**

& Include the JSON encoder file.
=Y

require once ("JSON.php");

/**
C Connects to the Server
74
$con = mysql connect("localhost", "myName", "myCode") or die('Server

connection failed');

/**

* Connects to the Database

*/
$dbCon = mysql_select db('mydatabase') or die('Database connection
failed');

class SSWebService
{

var Smethods;
var S$json;

/**

* This function creates a JSON instance from JSON encoding file.
*

=/
function initialize ()
{
$this->json = new Services JSON (SERVICES JSON LOOSE TYPE) ;
}

/**
* This function adds a $name function to the server, so it can be

* accessed.
*

=
function register ($name)
{
Sthis->methods[$Sname] = true;

}
/**

* This function sets a registered $name function to be not
* accessed.

*/

110

function deregister ($name)
{

Sthis->methods[$name] = false;
}

/**
* This function executes the given method $name, passing its
single parameter ($param) .

* Then JSON encodes the returned value.
*

*

=Y
function call (Sname, S$param)
{
if (Sthis->methods[$name] == true)
{
Sevalstring = S$name." (\Sparam);";
eval ("\Srval=".$evalstring.";");

return $this->json->encode ($rval) ;
}
/**

* This function decodes the JSON parameter into a native object,
* and calls the given method($method) .It returns s JSON object.
74
function serve ($method, S$param)
{
Sobj = $this->json->decode (stripslashes ($param)) ;

if ($this->methods[$method] == true)
{
Sres = Sthis->call ($Smethod, $obj);
}
else
{
Sres = $this->json->encode ("Not a registered function.");

}

echo S$res;

111

Structure of an example of a PHP file that applies the Webservices

<?php

/**

* Include the web service file
&7

require once ('webservice.php');

/**
* Create a web service's instance
&7

Sserver = new WebService;

/**
* Call method to create a JSON instance.
*

*/

Sserver->initialize();

/**

* Define the function(in this file) to call.
=/

Smethod = 'MyFunction';

/**

* Set the parameter of the POST action to make.
*/
Sparam = $ POST['CommonVariable'];

/**
* Registration of the method via Webservice.
*/

Sserver->register ($Smethod) ;

/**
* Call the registered function (MyFunction)
*/

Sserver->serve (Smethod, $param);

/**
* Inside this function, any action can be made.
*

*/

function MyFunction (Spar) {

/**
* Do anything...
*
W
return $Something;
}
>

112

Function isRegistered()

This function is an example of how the data in parameters is encoded in JSON format and sent
to server. The data in the example is the email of the player and the action (confess or not).This
function returns the confirmation of a successful POST in PHP file.

static String getUrl=serverAddress+"CommonVariable.php";

public boolean isRegistered(Context context, String oponentemail, String
action) {

boolean isRegisteredSuccessfully = false;

JSONObject RegistrationResultJSONObject null;

ArrayList<NameValuePair> postParameters = null;

try {
postParameters = new ArraylList<NameValuePair>();
postParameters.add(new BasicNameValuePair("opponentemail™,
opponentemail));
postParameters.add(new BasicNameValuePair("action",
actionData));

RegistrationResultJSONObject = new JSONObject(

com.confess.utility.JsonParser.doFetchDataFromWebService (
AppUtility.geturtL,
"CommonVariable",
postParameters));

RegistrationResultJSONObject
=RegistrationResultJSONObject.getISONObject("getGroupList");

if (RegistrationResultJSONObject.getString("Status").equals("Yes")) {
isRegisteredSuccessfully = true;

}

} catch (Exception e) {
e.printStackTrace();
}

return isRegisteredSuccessfully;

113

