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Abstract

The rheological response of commercial polydisperse polyolefins under various types
of deformation has been investigated in detail. A wealth of experimental data that has
been available in the literature was gathered and is presented in this work. These data
include several types of commercial polymer melts of varying microstructural architec-
ture that have been tested under various types of rheological deformation. In addition,
experimental data on two commercial polyethylenes provided by Eni S.p.A., the LDPE
Riblene FF20 and the HDPE Eraclene FA506, provide a direct insight into the similari-
ties and differences of the rheological response of commercial polyolefin melts under
different types of deformation. Finally, a number of molecular constitutive theories
are suggested in order to explain the results on a physical basis. This research aims
at gaining understanding in the relation between the molecular structure of polymers
and their rheological behaviour.

The modified rubber-like liquid theory, which is based on the permanent network
hypothesis, Boltzmann’s superposition principle, the concept of a fading memory and
the idea of the separation of time and strain effects, is used as the starting point of
this study. This simple phenomenological model that was initially proposed by Lodge
and was later modified by Wagner is then compared to recently suggested molecu-
lar constitutive theories that are based on direct physical criteria in order to explain
the experimental observations. The goal of this study is to prove that a representa-
tive physical basis can be the starting point of a successful rheological theory. In this
context, a damping function in the form of a simple power law is used to predict the
rheological response of commercial polypropylene blends tested under uniaxial exten-
sional flow. Analysis of the experimental results leads to the conclusion that a finest
description of the molecular structure of these melts is necessary in order to predict
the complex behaviour of polyolefin melts. The results are also compared against the
predictions of the same model for commercial polydisperse PE, PP and PS melts.

A modified version of the Doi and Edwards theory has been proposed by Tsenoglou
et al. and presented in this work for the first time. A nonlinear viscoelastic parameter
is introduced into the constitutive equation. This extended model provides a physical
explanation of the strain softening of commercial LDPE melts, which is observed un-
der large magnitudes of step-strain in shear deformation, as well as the appropriate
strain hardening, which is observed when polymer melts are tested against uniaxial
extensional deformation. The detailed research then follows aims at the way that this
parameter correlates with the branching content of the melts under consideration.

Mathematical methods that are commonly used to investigate the thermorheolog-



ical complexity of commercial PE’s are proposed and applied into the rheology of the
commercial Riblene and Eraclene melts. The efficiency of these methods to provide an
insight into the microstructural architecture of polymer melts is thoroughly examined.
In addition, molecular constitutive theories that are provided in differential form, such
as the eXtended Pom-Pom model, are also employed in order to make exact predic-
tions of the rheological behaviour of melts under various types of deformation. These
models are finally used in order to infer the molecular characteristics of commercial
polyolefins from rheological data.



Zuvoyn

Elcaywyn

YKOTIOG TN TapoUoaG UETATITUXLOKAC SLatplBrg gival n peAétn thg peoloyiag eurmo-
PLKWV TIOAUEPWYV, KOl CUYKEKPLUEVA OCWV AVIKOUV OTNV Katnyopio Twv moAuoledt-
VWV Kal N oUVOeon HECW BEWPNTIKWV UOVTEAWV TNG LAKPOCKOTILKIG TOUG LNXOVLKAG
QAIOKPLONG E TNV UKPOOKOTILKA Sopr Tou UAKOU. OL moAuoAediveg Omwg .. TO 1To-
AvatSuAévio avikouv og Pl eupuUTEPN Kathyopio UALKWV mou ovopalovtal depuo-
nmAaotika okpLBWC eMeLS otav BeppavBolv LETOTPEMOVTAL O UYPA KOL OTAV KPUW-
OOUV OVOKTOUV Kal TIAAL TIC OPXLKEC TOUC LBLOTNTEC. AuTr N TeAeutaia WBdTnTa TWV
BOepUOMAQOTIKWY UALKWY OTIWG Kol GAAEG TIOU OXETI(OVTAL APECA UE TNV ULKPOSOUN
TOU UALKOU €lval ToU KaBLoTA Ta UALKA QUTA TIPOTLUNTEQ O€ £val eydAo eUpog Slep-
Yaolwwv popdomnoinong Kal mopoywyns EUMOPLKWY TPOLOVIWY oo TAAOTIKO, KABwg
KOLL TO YEYOVOG OTL UIOPOUV va avakUKAwBoUv og peydho Babuo £ToL woTe va meplo-
pLoTel n emumA£ov opaywyr) mMAaoTikol To omoio Sev gival BloamolkoSour oo ondte
Kol €TL{AULO yLa To TtepLBAANOV.

Moplakn Aopn

O TEXVLKOG OPOC LAKPOUOPLO N UaKpouopLakl aAucida ) moAu-LepEg kaBlepwBnKe po-
ALc Tnv mpwtn Sekaetio Tou 20 atwva ard tov XNUké Hermann Staudinger ylo tnv me-
plypadn TNV LIKPOSOUNG TwV UAKWY aUTWwV. Ta UAKA aUTA artoTeAoUvTaL omd (UIKPEG
QUTOVOUEG XNULKEG LOVASEG OAEG OUOLEG UETAEY TOUG TIOU OTAV CUVEEOVTAL XNULKA
oxnMati{ouv LEYOAUTEPEG SOUEC, TO LOKPOMOPLA. ZTNV KOTNYOPLO TWV EUKAUTTWY Ua-
KPOLOPLwV OIVAKOUV OL TOAUOAEPIVEC OTIWG TO TOAUALIUAEVLO KO TO TTOAUTTPOTTUAEVLO
TIOU XPNOLUOTOLOUVTAL EUPEWG OTNV Blopnxavia yla TV mapackeun PoiovTwy Kaon-
UEPLVAC XPAONG OTIWG TL.X. CUCKEU OIS TpOdipwY, XNULKWY KTA., TTAAOTLKEG CAKOUAEG
Sladhopwv Xprnoswv, e€oPTAATA AUTOKLVATWY, OKapWV Kat TTOAAG GAAQ.

‘Eva MOAULLEPLKO UALKO amoteAeital amno éva Peyaho o aplOpd cUVOAO HaKpPOo-
plakwv aAucibwv oL omoieg umopolv Otav N mapaywyn YIVETOL 0€ ULKPEG TTOCOTNTEG
KOl KATW Omd auoTnpa eAEyXOUEVECG EPYAOTNPLAKEG CUVONKEG va £XoUV OAEC TO (610
unkoc, va arotehovvtal SnAadn amnd pakpopdpla ta onoia pépouv Tov iblo oxedov
aplBuod povopepwv. Qotdco oe Blopnxavikr KAlpaka n Wdotnta autr neplopiletal
SpapaTIKA KOl £T0L OAQL T EUTTOPLKA TIOAULEPH KATAARYOUV TEALKA val aroteAouvTal
amd JLoL KOTAVOUN UNKWV R 01w AéyeTal ouvnBwg uakpouoplakwyv Bapwv. To UEco



A

Ixnua 1: Ano aplotepd npog ta Se€ld : Mpapptko MoAvatBulévio YYnAng Mukvotntag (HDPE),
YPOUULKO MoAuatBuAévio XapunAng Mukvotntag pe kovteg StakAadwoelg (LLDPE) kat MoAvatBu-
Aévio XapnAng Mukvotntag LE HAKPLEG SLAKAASWOEL 0TOV KOPUO Kol otoug KAdSoug (LDPE).

kartd aptduo poptako Bapoc, M,, adopd atnv katavour Le Baon tov aptBpud twv aAu-
olOWwV e CUYKEKPLUEVO UNKOC, EVW TO UETO KaTd Bapog poplako Bapog, M, adopd
oTNV KATaVoUN He BAaon To Bapog ava povada oykou. O aplBuntikog Adyog autwy Twv
800 katavopwv, M,,/M,, avadEpetat cuxva we moAudtaomopd Kal ivat évag Ssiktng
NG EVPUTNTOC TNE KOTAVOUNG TWV UNKWV TwV HoKPOaAUGiSwV Tou UALKOU.

Katnyopieg MoAupepwv

Ta MAQCTIKA KATNYOPLOTIOLOUVTAL HE BACN TN XNHLWKN cUoTtacn TnG emavoAappavo-
MUEVNG HOVASAC, TNV TTUKVOTNTA, ThV Sladikacia mapaywyng Kat AAAEG LELOTNTEG ToU
adopolV oTNV APXLTEKTOVLKN SO TwV HakpoaAUowv. OLtoAuoAediveg elval pia Ka-
Tnyopia BepUOMAACTIKWY UAKWY, OL EMAVAAAUBOVOUEVEC LOVASEC TWV OTolwy gival
udpoyovavBpakes. Me Bdon thv Sladopd TNV MUKVOTNTA TA TILO EUPEWG XPNOLLO-
ToloUeva OAUREPN gival ta XaunAnc Mukvotntac MoAvatduAévia, LDPE, XaunAng
Mukvotntag MNpauutka MoAvatBuAévia, LLDPE kaw ta YynAric Mukvotntoac MoAvatGuAé-
via, HDPE. H Stadopd petafy autwv adopd otny muKvOTNTO KAL OTNV OPXLTEKTOVIKN
TWV pakpooAucidwv. Ta HDPE amoteAouvtal Katd KUPLo AOyo amnod ypauuIlkes aAuaoi-
6ec og avtiBeon pe ta LLDPE ota onola umtdpxouv cuvnBwe kovtol KAASoL XnuLKA cuv-
Sebdepévol atov kUpLo kopud A ta LDPE ota omola umtdpyouv LaKPLEG AAUGLEEG XNULKA
ouVOESEUEVEG OTOV KUPLO KOPUO, EVW TIAVW OE OUTEG UTIAPXOUV ETLITAEOV HAKPLEG
KOVTEG aAuoiSeg emiong xnuLka cuvdedepéveg (BA. Zx.1) £ToL woTe va dnpoupyouvtal
SopEC SLakAaSIOPEVWY LAKPOUOPLWV.

Tavuotég Mapapopdpwong kot Taong

MotV podnuatikn meptypadn TnS amokpLong eVOG TAYLOTOC TTOAULEPOUC O e€wTEPL-
KEG SLATAPAXEC XPNOLUOTIOLELTAL EVPEWG N TAVUCTLKY dAyeBpa o€ pLopdn KATAOTATIKAC
e€lowaong. TuykekpLUEVa 600V adopd TNV PEOAOYLA TIOAUEPLKWY TNYUATWY eVELOPE-



POUV TIPWTIOTWG OL TAVUOTEG TEMEPATUEVNG TTOPAUOPPWTNG

oL
kata Lagrange B = —xf , 4,5=1,2,3 (1)
ox;
oz
kota Euler Fiy; = Ti , ,7=1,2,3 (2)
Bx]-

omou dz/0x’ xapoktnpilel tov Adyo TeNKNG TTPOg apxLKrG Stdotaong. Amd autoug
TPOKUTITOUV avtioTolya Kal oL TavuoTéG Finger kat Cauchy péow Twv oxéoswv

ox; Ox;
cl= L =1,2,3 3
ij kzzlam'k ox, " ") )
3 Oz, Oz,
Cyi = Lk =1,2,3 4
=2 5, om0 @)

ol omolot tad£pouv amo Toug avtioTolyoug TNE TIEMEPACUEVNC TAPAUOPPWONG Ka-
Bwg bev meplEyouv mMAnpodopla ou va adopd oe otpodr aAd povaxa os kabapn
napapdpdwon. Opllovtal emiong KaL oL TAVUCTEG KALONG TayuTNTAG

Ov; i
axj’ )J

omou v elval To Slavuopa TG TaXUTNTAG OMWE AVTIOTOLXA KAl Tou pudUoU TapaUop-

Qpwong
2D = (Vo)" + Vo (6)

TéNog, 0 TavuaTr¢ Taong Sivetal amo Tnv oxéon
I'=-pl+g (7)

omnou p elval n udpoaotatikn rtiean, T', eivat 0 0Alkd¢ TavuoTh¢ Taong, o givat o téwdng

tavuotng taong kal I eivat o povadiaiog tavuaoTtic.

Kataotatikég EELowoelg

H amAolotepn Lopdr KATAOTATLKAG EEL0WOEWE oV Baciletal otnv apyn ¢ unépPe-
ong tou Boltzmann eival o ypaputko tEwS0eAAOTIKO LOVTEAOD TO OTIOLO GTNV TILO YEVLKN
TOU popdr) OTLC TPELG SLooTAoeLg SlveTal amo tnv oxéon:

t

o= /G(t—t’)Qth’, (8)

omou G(t — t') eivat to Statuntiko uétpo yaAdpwong kat Sivetat anod tny oxéon:

G(t) = Goexp (:_t) , )
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av xpnotpomnolnBel pévo évag ypovog yaAdpwaong, T 1 amo TV oxeon:

N —t
G(t) = Z G; exp <7) (10)
i=1 v

av xpnotpornolnBel éva dOpolopa amnod StodopeTikols XpOvoug XaAdpwaon .

H ouvaptnon pvhunc mou £16nxOn amno tov Boltzmann yia va neptypddeL tnv ypo-
voeéaptwevn amokplon Twv LEwS0eAAOTIKWY UALKWVY 1 SLadOpETIKA TWV UALKWV UE
uvrun Sivetal amo tnv oxéon

dG(t)
pt) =———
Kot eivatl ouvdaptnon tou Slatuntikol HETPOU XaAdpwong.

H arAn auth mepypadn eivat akptprig 6cov adopd otn yPoUULK LEWS0EAAOTLKN
ouUTEPLDOPA TWV TNYUATWY TIOAUEpWY, SNAadH otav n e€wteptkr dlatapayn lval
TIOAU ULKPN o€ évtaon i TOAU apyn o€ puBud. MNa peyaAlTEPEG I TILO YPHYOPEG MAPA-
HOPPWOELG N PEOAOYLKI) CUUTIEPLPOPA TWV LEWSOEAACTIKWY UALKWYV TTAPOUGCLALEL ON-
HAVTIKEG ATIOKALOELG Ao TV ypappkn Ewdoehaotikdtnta. Evag akoun Adyog yLo tov
OTIO(0 TO YPOUULKO LEWEOEAAOTIKO LOVTEAD SEV XpNOLUOTOLE(TOL OTNV pEOAOYia TNYUA-
TwV elval Kal to yeyovog ot ev oupumneplappavel oto Bewpntikd Tou ultdfabpo tv
HLKPOOKOTIKI SO TWV TTOAUUEPWY, 0 POAOG TNG OTolag TEAKA amoSELKVUETAL TTOAU
ONUAVTIKOC 600V adopd oTNV MPORAETTIKA LKAVOTNTA ULaG TARPouC Bewplag yla tnv
LEwdoelaotikotNnTa.

(11)

EAaotiké Psuoto tou Lodge

Ta 800 QUTA UELOVEKTHATA TOU YPOUULKOU HOVTENOU eTAUONKaV oTtadlakd. ApxLKA
€10NXOn amo tov Lodge pla véa kataotatikh e€lowan, To EAXOTTIKO PEUCTO 1) PEUCTO
Tou Lodge To omolo divetal amo tnv oxeon:

t

o= /u(t—t’)gfl(t’,t) dt’ . (12)

To povtélo Baoiletal o pia maAotepn Wea twv Green kal Tobolsky otnv onoia
TO TIOAUMEPLKO PEUCTO ATMOTEAELTOL OO LOKPOUOPLOKEG AAUGCISEC OL OTIOLEG TIEPLTAE-
Kovtal HeTafl TouG SNULOUPYWVTOC TPOOWPLVES SLATTAOKEG OL OTIoLEC TEAKA EUBUVOV-
TOL YLOL TNV LOKPOOKOTILKI) PEOAOYLKI) CUUTEPLOPA TWV TTOAU LEPLKWV TNYUATWY, SnA.
Poadidouv eAAOTIKO XAPAKTPA OTO PEVOTO, KOBWE CUYKPATOUV TO LOKPOUOPLOL LIE-
T TOoUg AAG Kol LEWEN XOPOKTNPLOTIKA KaBwWE gV €Xouv HOVIUN utdoTaon Kot
UIopoUV va Kataotpédovtal Kal va emavacxnuatifovratl. H pn-ypopuKn anokpilon
TOU UALKOU O€ YprYOPEG N LEYANEG TTAPAUOPDWOELG UTIOAOYIOONKE XPNOLUOTIOLWVTAG
™V apxl Tou SlaxwplopoU UETAED TwV XPOVOEERPTWUEVWY YPOUULKWY QUTOKPIOEWVY
Kall XpoVOoaVEEAPTNTWY UN-YPAUULKWY QITOKPIOEWVY HE TNV ELCAYWYH ULOC OUVAPTNONG
arooBeong otnv KataotoTikh e€iowan tou Lodge n omoia teAkd ypadetal s Afpn
Hopdn )

o= [ ut -0l Ho g\ t)dt (13)

— 00
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omnou Io-1 kat I Io-1 glvat avtiotoya n mpwtn kat SeUtepn avalloiwtn Tou TavuoTh
napapdépdwong tou Finger.

H kataotatik auth e€lowaon avadEpeTal CUXVA WG TO TPOTTOTTOLNUEVO EAQOTIKO
peUOTO. H cuvaptnon anooBeong otnv nepimtwon SLaTUnTikng napauopdwaong oi-
VETAL Ao TNV OXEoN

(7) = G(t,7)
G(t)
KoL amoteAel EvEelen amwAeLag puviung oto UALKO. MeplypAdEeL TOCOTIKA TNV ATIOKALON
TIOU TOLPOUCLATEL TO SLATUNTLKO PETPO EAACTIKOTNTOG TWV TTOAUUEPWY ATt TNV YPOLpL-
UK cupmepLpopa.

(14)

Zuvaptnon AnooBeong

Mo tv popodr Tng cuvaptnong anooPeong exouv npotabel S1adopeg AVOAUTIKES EK-
bpaoelg. Eva mapadeypa eivat n e§lowon tou Wagner:

h(IIg-1) = e "VIle173 (15)
w¢ ouvaptnon tng deltepng avaAlolwtng Tou Tavuotr tou Finger. H cuvaptnon autn
Talpvel TV avaAoyn padnuatikn popodr os kb nepintwon napapdpdwong. Ma tnv
€181KN mepintwon TN Bnuatikng alénong tng SLaTUNTLKAG tapapdpdwaong, n efiowan
Tou Wagner ypadetat otnv anirn popodn:

h’(’YO) =e "0 ) (16)

OTOU M €lval LA TIOPAUETPOG TIOU XOPOKTNPLZEL TNV UN-YPAUULKA CUUTEpLOPA TOU
TNYHATOG O LEYAAEG TAPAPOPPWOELG. TUUEG TN TTAPAUETPOU 7 YL THYLOTA EUTTOPL-
KWV MoAuaBuAeviwv mou umoBANBNKav o HETPAOELS XAAAPWONG TACEWY ETA QTO
Bnuatik avénon tng SlatuntikAig mapapopdwaonc amd tov Toevoyhou [9], divovtal
otov MNivaka 1.

Mo akOn IPOTACH yLa TNV ouvapTtnon anooPeong sival n e€ilcowon PSM (Papa-
nastasiou-Scriven-Macosko) mou Sivetal otnv nepintwon Babuwtng SLATUNTIKAG Tta-
papopdwaong amno tnv oxeon

«
h(y) = —22— | 17
('VO) Qpap ¥ 73 ( )

OTOU (tpap HLOL OTAOEPA.

Kat oL U0 cuvaptRoelg anmdoPecng MOPEXOVTAL OE AVAAUTIKA popdn Kal arAo-
TIOLOUV TOUG UTtoAoyLopoUG. Qotdoo n neptypadn auth, map’ OAn Tnv anAdtnta mou
TIPOOPEPEL OTOUG UTIOAOYLOUOUG, TEALKA Bewpeitol e€apeTIKA amAomonTikn Kabwg,
OTIWG KOl TO YPAUULKO EWEO0EAAOTIKO HoVTEAND, iepLlypddel TNV datvopevoloyia Tng
peoloylog TwV TOAUUEPWY QYVOWVTAG OTIOLASATIOTE UIKPOCKOTIKY SO TOU UALKOU.
To yeyovog auto, aAAd Kal mTpoodaTteg MEPAUATIKEG eVEELEELG TIG omoieg 6ev gupme-
ptAapBavetl, .y. n neplypadn tou Wagner, odnynoav oe pia Stadopetiki popdn tng
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Mivakog 1: TYEG TNG MAPAPETPOU 1 TNG AIMANG EKBETIKAG cuvaptnong anooBeong tou Wagner
VL0t EUTTOPLKA TUXAia SLakAQS WHEVA KL YPAULKIG OPXLITEKTOVIKA G TToAVatBUAEvVLa. Ta Ssiypota
xapaktnpifovroal amno motkiia poplakwy Bapwv Kat mToAuSLacTopdc.

Sample M., PI T(°0) n
(Kofmot)  (Mw/p,)
LDPE.A2 451 27.5 150 0.134
LDPE.A4 305 30.3 150 0.11
LDPE.A7 268 24.6 110, 150 0.13
LDPE.B2 143 10.2 150 0.14
LDPE.C2 69 7.6 150 0.16
LDPE IUPACA 231 10.0 130, 150 0.18
HDPE.A 181 13.7 140, 150,170 0.34-0.38
HDPE.B 118 6.1 140,150 0.29
HDPE.C 113 11.2 150 0.28

ouvaptnong anoofeong mou mpotddnke and tov Toevoylou [6] kat Sivetal anod tnv
oxéon
h(A\) =A77# (18)

omou A = A(t, t) elvaw n oyetikr} mapapudpewon wg cuvapTnon Tou Xpovou Kat [ &i-
VL L0 TIOPARLETPOG TIOU XAPAKTNPLIEL TNV UN-YPAUULKNA LEwS0eAACTIKA cupnepldopd
ToU UALKOU Kal €€apTATal pHovaxa amo to péyebog tng mapapdpdwong. H eflowon
ToevoyAou Umopel va YeVIKEUTEL yLaot OAEC TG MOpapopPWOELS EHEAKUCUOU HECW TNG:

B~ B <2—exp{—\/7“(;f)'5}) : (19)

omnou n mapapetpog m, (—0.5 < m, < 1) xapaktnpilel Tov TUMO ePEAKUCTIKAG TTa-
pauopdwong.

Me Baon nelpapatika dedopéva amo tnv Stebvn BipAoypadia (BA. Mivaka 2) oL
Tsenoglou et. al. [14] katéAn§av 0TO CUUMEPACHLA OTL N TTAPAKETPOG 5 > 1 yLo ypapl-
MLIKA TIoAupEepn Kot 8 < 1 yio toAupepn pe Hakplég StakAadwoelg. AmokAloelg amnd
QUTOV TOV Kavova yla Ta YPOUULKA TIOAUUEPH Urtopel va odeilovtal og uPnAn moAu-
Sloomopd | otV Mapousia PLKPWY TTOCOTHTWY HOKPLWY SLOKAASWOEWY OTO THYHA
KATL TTOU €lval AOyLKO yLoL TNV TIEPIMTWON EUMOPLKWY YPAUULKWY TTOAUEPWY. Melpa-
HOTIKEG LETPAOELS EPEAKUCHOU OE TNYUOTO YPAUUIKWY Kal StakAadwuévwy PP (BA.
Mivaka 3 kat 4) ano toug Gotsis et al. [5, 6] €6s1€av otlL ol tpoavadepbeioec mapado-
XEC paypatL LoxVouv. Amo tnv gpyacia Twv cuyypadEwv MPOoEKUPE ULA AVaAUTIKA
OX£0N TIOU GUVOEEL TNV TTOPAUETPO [ UE TOV LECO apLOS HaKpLWV SLaKAASWOoEwWY 6T
tyua, By,

B, ~ 2exp (—au : Bn) (20)



13

Mivakog 2: TWEG TG Mapapétpou [ NG ouvaptnong andoBeong ToevoyAou yla ToAUoAediveg
S1adopeTIKAC XNULKAG cuoTaong, Hoplakol Bapoug Kat moAudlaomopdc mou unoBAnOnkav o
S10POPETIKEC TIELPOUATIKEG UETPROELG EPEAKUGHOU.

Ovopoaoia M (My/M,,)  Tewpetpia EdpeAkuopol, m,

Asgiypartog  (Kg/mol) (me=-0.5) (m.=0) (m.=1)
PS.50124 250 1.2 0.96 1.65
PS.606 180 2.5 0.66 1.21
IUPAC A 472 24.9 0.48 0.96 1.15
PS.1 398 2.9 0.80 1.16
LLDPE 158 12.5 1.04 1.17
HDPE.II 152 13 1.30 1.28
HDPE.S 104 5.5 0.85 0.92 0.92
PIB 120 2.2 1.17 1.49 1.33

omou B, elval o uéoog kata Bapog aptduUog YNULKWY SLHOTAUPWOEWY aVa UOKPOLUO-
plakn cAvoiba kal o, UL EAeVBEPN TOPAUETPOG. ATIO TNV OXETIKA AVAAUCH TWV TIEL-
POUATIKWVY amoteAéopdtwy (BA. ZX. 2 kal 3) Bp€OnKe oTL N MAPAUETPOG v, HEV MOPVEL
ULA povaSLkn T yia to VAKO Kol paivetal va e€aptdtal v yEVEL amo To peyebog tou
B,,. H yevikeuon TouAdxLOTOV yLa TO EUTIOPLKA TTOAUUEPT Apecou evlladEpovToc el
vat oAU SUokoAn KaBwG MOAUHEPN HE ToV 1510 aplBd XNHKWY SLaCTOUPWOEWY Ta-
poucLalouV onUavVTIKEG Sladopeg otov BabBuo ebeAKUOTIKAG EpyoakAnpuvong (BAéne
YX. 4). To CUUTIEPACHA ElvaL WG TIPETEL va. cUMTEPLANGOOUV Kal AANEC LELOTNTEC TOU
UALKOU OTIWG, TL.X., N KOTAVOUN TWV XNHWKWVY SLOCTAUPWOEWYV KaL TO OXETIKO HEYEBOG
TOUG WG TPOC To HEYeBOG TG KUpLag aAuaidag K.d., WOTE va KOTaoTel Suvath pa evo-
Tolnuévn mepypadn.

Moplaki Oswpia Doi-Edwards

MelpAUATIKEG LETPAOELS TNG PEOAOYLAC TNYUATWY TTIOAUUEPWY O SUVAULKA SlaTunon
Tou TpaypatonotiOnkav and tov Onogi [63] £6e1&av OTL TO SUVOULKO LETPO EAACTLKO-
TNTOG TWV MOAUHEPWV HETAPBAAAETAL PE TO PoPLaKkd BAPOG. ZUYKeKpLUEVA ESeL€av OTL
auAavovTag To LopLAKO BAPOG EVOG THYLATOG TIOAU LEPOUG, TTOU TTEPLAAUBAVEL YPOLULLLL-
KEC AAUGLOEC KaL yapaKkTnpileTal amo pikpr MoAUSLOOTOPA, TIAVW ATO VOl KATWTATO
oplo, Mg, epdaviletal éva mMAATO 0TO EAACTLKO TUAUO TOU SUuVOULKOU UETPOU gAa-
OTIKOTNTOG 1), OVTIOTOLXQ, 0TO SLOTUNTIKO HETPO XaAApwaong, Tou omolou to uéyebog
au€avel pe to popLako Bapog. H e€nynaon 660nke apxikd and tov de Gennes Kal ap-
yotepa amno toug Doi kat Edwards o€ popdn padnuatikng Bswplag Le eAEYELLES TIpO-
BAEPelc. Makplég aluoideg peyahou HoOpLOKOU BAPOUG TIEPLTTAEKOVTOL LETALY TOUG
SnuLoupywvTaC £ToL £va £160¢ PUGIKWV SLAMAOKWVY HETAED TwV aAuoidwv 0To TAYUA,
ol omoleg, TeEAIKA, uBUVOVTAL yLA TOUG apyoU g XpOVOUG LETABAONG TOU THYUATOG TNV
Loopporia PeTa amd e€wtepikr) mapapopdwaon. H Tdon kat, Kat' eMEKTAON, TO LETPO
XOAGpWoNG ToU THYHATOG e€APTWVTAL EV VEVEL Ao To HEYeBOG TG mapapopdwong.
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Mivakog 3: MopLakd XapoKTNPLOTIKA EUTOPLKWY TTOAUTIPOTIUAEVIWY HE TuXOia KATOVOUN Mo~
KPLWV SLOKAOSWOEWV TTOU TIOPACKEUACTNKAY OTIO TO AVTIOTOLXO YPAUULKO TTOAUUEPEG TIPOCOE-
TOVTaG 0TO TEAEUTALO SLADOPETIKA TTOCOOTA SLaoTaUPWTH, P-26 KL TLLES TNG MAPAETPOU 3 Kot
tou Seiktn epyockApuvong, SHI, 6nwg mpoodlopiotnkay and UETPrOELS Hovoatovikol ede-
KuouoU og Beppokpaoia T=190°C.

Sample P-26 My, (My,/M,,) B, B MFI SHI
(mmol) (Kg/mol) (230/2.16)
0 422 6.2 0 1 2.3 2
1 575 7.8 04 03 1.1 8
B 2 574 7.6 0.6 0.2 0.6 10.5
3 581 8.6 0.7 0.1 0.6 28
5 571 8.9 0.8 0 0.6 -
0 333 5.8 0 1.8 6 1.25
1 381 7.1 0.2 04 34 6
F93 2 413 7.8 04 0.25 2.5 15
3 456 7.9 0.5 0.15 2 16
5 458 7.7 0.6 0.2 1.8 19
0 314 7 0 0.7 12.2 2
1 363 8.1 0.1 05 8 4.2
F96 2 389 9.3 03 03 5.8 6.5
3 407 9.2 0.5 0.15 4.2 7.5
5 414 8.6 0.7 0.1 3.1 10

Mivakog 4: MopLaKG XOPAKTNPLOTIKA YPAUULKOU KOL UIYLATWY YPOUUIKOU Kol EUmopLkol Sta-
KAadLopévou moAumponudeviou o€ SLadopeTikeG avaloyieg. H mapdapetpog [ kal o deiktng
okAnpuvong, SHI, mpoodlopiotnkav yla kABe Seiypa amod MELPAUATIKEG LETPNOELG PONC deA-
KuouoU oe Bepuokpacio T'=190 °C.

PF My, (Mu/M,) B, 7 MFI SHI
(%)  (Kg/mol) (230/2.16)

0 422 6.2 0 1 2.3 2
12.5 388 6.3 02 08 3.2 2.7
25 400 6.4 0.4 0.4 3.0 3
50 485 8 1.7 03 2.7 6.4
75 569 7.9 33 02 3.2 9.6

100 629 9.5 5 0.2 4.6 14.7
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n

Branching number, B

0.0 0.2 0.4 0.6 0.8 1.0
Strain sensitivity parameter, B

Ixnua 2: Mooooto StakAadwong, By, wg cuvdpTnon TG Mopapétpou 5 yla ta dsiypata tou
Mivaka 3

n

Branching number, B

0.0 0.2 0.4 0.6 0.8 1.0

Strain sensitivity parameter, p

Ixnua 3: Nooootd StakAddwong, B, wg ouvaptnon tng moapapétpou S yla ta Selypata tou
Mivaka 4
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Ixnua 4: Metafolr tou Seiktn okAfipuvong, SHI wg cuvaptnon Tou MTocooTol SLaKAASWOEWY,
B, yla ta Selypata tou Mivoka 3.

OLmpoPAédelc tng Bewplog Sivovral anod tnv kataotatiki e€lowaon:

t
g:/ p(t =8 (t,t) dt’ (21)

omou u(t — t') elvat to xpovoefaptwpevo puépog (BA. EE. 3.83 kat 3.87) kat [CH IV
0 TAVUOTAG Tapapopdwaong §e0tepng Taéng Tou Larson kal otnv nepintwon Babuw-
TG SLATUNTIKAG TIOpOUOPpdWONG CUVSEETAL UE TV CUVAPTNGON AMOORECNC LEOW TNG
oxéonc:

Spe _ 15Q12(%0)

pE(Y0) ” TR (22)

omou Q12(70) elvat o tavuotri¢ napaudpewong twv Doi-Edwards®, oel. 89. Ol mpo-
BAEYELS TNG Bewplag yla TV mepimtwon Savikol TAYUOTOC YPAMLKOU TTOAULEPOUG
Tou udiotatat Bnuatikn Statuntikn mapapdépdwon Sidovral oto Mapdptnua B.
Qotdoo, mapolo Tou n Bewpia Sivel Ta CWOTA amOTEAECUATA YIA THYUOTA TTOU
MePAAUBAVOUV YPAUUIKEG AAUGCIEEC, TIELPOAUATLKEG LETPHOELG OE EUTMOPLKA THYHATA
TUXaLa SLACTAUPWUEVWY TIOAUEPWV LLE LAKPLEC AAUGLSEC amo Tov Toevoylou (BAEme
Mivaka 5) amokAivouv amnod tig mpoPAEPelg tng Bswplag. Evag VEOC HOPLAKOG HNXa-
VIOPOG TtpoTtadnke amd tov ToevoyAlou yla va e€nyroeL aUTr TNV cuunepLpopad Kat
ouvoliletal otnv Tpomomnotnuévn e€lowan ylo TNV cuvaptnon andoBeong THYUATOG

10 oplopdg Tou Q12 yia tuxovoo apapdpdwon Sivetal amd tny EE. 3.82
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Mivakag 5: Quotkeg LBLoTNTEG TwV oAU ALBUAEViwvY Tou ToevoyAou (BA. kat Miv. 1).

Sample M, b Js B, =z, no(150°C)
(kg/mol)  (10%) (kPa - s)
LDPE.A2 2.83 1.77 0.117 80 0.76 234.4
LDPE.A4 2.35 240 0.136 73 0.83 19.95
LDPE.A7 1.92 261 0.128 70 0.77 7.24
LDPE.B2 4.17 1.20 0.296 17 0.74 69.2
LDPE.C2 3.68 0.78 0.427 54 0.75 19.06

LDPE IUPAC A 4.85 1.03 0.261 24 0.65 478.6

mou udiotatal Babuwtr Statuntikr mapapdpdwon kat Sivetal amno Tnv oxéon:

hpe(v0) = <Z5Qlii7°)> <[(1 _%)i — ]2) : (23)

Eul)

Omou x sival n un-ypauuikn tEwS0EAQOTIKY TAPAUETPOC TIOU XOPAKTNPIlEL TNV ATO-
KALON TWV TELPAUATIKWY UETPAOEWY QTIO TNV YPOUULKI) CUUTEPLOPA KOL QVTLKOTO-
Ttpllel TO OXETIKO HEYEBOC TOU SLaKAASWHUEVOU UOKPOHOPLloU TTou CUUTEPLDEPETAL
e\aoTikd. Me autdv tov tpomo Sidetal pa puoikn e€nynon yla TLG mapatnpoUpe-
VEG amokAloelg anod tnv kablepwuévn ¢uotkn meplypadn tng KAaoLkAG Bewplag Twv
Doi kat Edwards (BA. 2x. 5). H e€aptnon ¢ mapapéTpou z,, amno tov Yéco Kotd Ba-
POC apLBUO XNUKWV SLaKAASWOEWY OTO THYHA avd pakpopdplo cuvolilovtal oto ).
6 OTIOU MAPOUGLATOVTAL TTELPOUATIKA ATIOTEAECOTA YL TAL EUTTOPLKA TTOAUALBUAEVLA
Tou ToevoyAou [9] aAAd Kat yla pelypata eUmoplkwy tuxaio StakAadwUéVwY TIoAU-
Boutadleviwv pe £va ypapuiko TTOAUEPEG (BLag XNULKNAE oLoTaonG o€ SLadOPETIKEG
avaloyieg ta onola mapaokeudoTnKav ano Toug Macosko kat Kasehagen (BA. Mivaka
3.5 ka1 6.2).

AToKALoELG OpWG amtd TNV IepLlypadr auTr IOPATNPOUVTAL UE BAON TTAVTA TA TIEL-
POUATIKA amoTteAéopota Tou ToevoyAou [9] Kal yLa EUTTOPLKA YPOLLULKA TIOAUEPT (BA.
Mivaka 3.10 kot 2x. 3.14, 3.15, 3.16 kot 3.17) yla ta omoio dpwe oL arokAioelg and
T1§ poPAEPeLg Tng Bewpiag twv Doi kat Edwards oe peydala pey£dn mapapopdw-
ongodeilovtal og Evav SLadOPETIKO XNIULKO UNXOVLIOLO TTOU OVOUATETOL KPUOTAAAWGN
TAYHATOG Kot opeIAETAL OTNV SUVATOTNTA TOU £XOUV TA YPAWMLKI G APXLITEKTOVIKAG TIO-
Aupepn va euBuypappilovtal pe to medio TaxvTNTAG Kot va oxnuatilouv TEPLOXEG
vPnAou BaBuou taktikotnTag. Ol MEPLOXEC QUTEG QUEAVOUV E TNV OELPA TOUG TNV
£AOOTIKOTNTA TOU THYHATOC KAl cUXVA euBUVOVTAL YLa TIC TTAPATNPOUUEVEC ATTOKAL-
oelg amd tig poPAEPeLg tng Bewplac.

H UETATPOMA TWV TELPAUOTIKWY SESOUEVWV TWV EUTIOPLKWVY TIOAUTIPOTIVAEVIWY
Twv Gotsis et al. og TIWEG TG TOPAMETPOU X,, OAV cuVAPTNon Tou B,, Sivovtal cuy-
KEVTPWTIKA oTo Xx. 7 (BA. kat Mivaka 6.3). Tuvolikd 6Aa ta Selypata twv Xx. 6 kot 7
SlvovTtal CUYKEVTPWTIKA 0TO XX. 8. ATO QUTO TO GUYKEVTPWTLKO ypddnua daivetal mwg
OLTLHEG X;, YLOL TAL TIOAUTIPOTIUAEVLA (UTTOAOYLOMEVEG amto SeSopéva epeAKUOHOU) elval
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IxAua 5: EEGptnon Tng mMapapETPOU &y, TNG TPOTIOTIONEVNG CUVAPTNONG amtooBeong Twv Doi-
Edwards amno to péyebog Slatuntikng mapapdpdwaong yia ta deiypata tou Mivaka 5.
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Ixnua 6: EEaptnon tnS MOPAUETPOU Iy, TNG TPOTIOMOLNUEVNG OUVAPTNONG ATtooBeang Twv Doi-
Edwards amno 1o nocooto Stakhadwaoewy, B, yla ta Seiypata tou Mivaka 5 kal ta tpomnonoin-
péva pe tuxaio katavoun pakpwyv SltakAadwoewyv epmoptkd moAuBoutadiévia twv Kasehagen
kat Macosko (BA. Mivaka 3.5 kat 6.2).
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IxAua 7: EEGptnon TNG MOPAUETPOU Xy TNG TPOTIONOLNUEVNG CUVAPTNONG ArtocBeang Twv Doi-
Edwards amno 1o nocooto Stakhadwoewy, B, yla ta dsiypata tTwv Mwvakwy 3, 4 kot 6.1.
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IxAua 8: EEaptnon TNG MOPAUETPOU Xy TNG TPOTIONOLNUEVNG OUVAPTNONG artooBeang Twv Doi-
Edwards amno 1o nocooto Stakhadwoewv, B, yla OAa ta deiypata Twy ZX. 6 Kot 7.
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VNAGTEPEG ATO TLG AVTIOTOLKEG Yia Ta TtoAuBouTtadiévia kal moAvatBulévia (umtoAo-
ylopéva amno dedopéva Babuwtng dtatunong). Qotdoo Sev elval Eekdbapo av autn
n dltadopa odeiletal otov Stadopetikd TUTO TTOAULEPOUG, SLaPOPEG OTNV APXLTEKTO-
VIKN S0 TwV LakpLwv SLakAadwoewv HeTAfl TwV SELYUATWY, TNV TIELPAUATIKH SLadt-
Kaola tou akoAouBnBnke oto ekAoTote Selypa yla tnv dnuloupyia pakplwv Stakia-
Swoewv | otov TUTO TG MapAUopdwaong (epeAkuoudc i Stdtpnon) amod Tov onoio
npoékuav oL TLMEG TNG TTOPAUETPOU X,,. Eival Aoyikod kol avapevopevo OtL to X, Ba
TPETEL va allpvel TRV (Sla TR avegdptnTta Tou TUTIoU Mapapopdwaong mou emAEye-
TOL YL TOV TPOOSLOPLOKO TOU (TOUAGXLOTOV YLol TTOAUMEPN 8Lag XNKLKAG ouoTaoN ).

Moplakn Oswpia XPP

Kataotatikég e€Lowaelg mou Teplypddouv TV peoAoyLK) GUUITEPLPOPA TWV TTOAU LE-
PLKWV TNYMATWV KL TAUTOXPOVO CUVSEOUV LAKPOCKOTILKEG TIAPATN P OLUES TIOCOTNTEG
HE HOPLAKA XOPAKTNPLOTIKA KOL UKPOUOPLAKOUG UNXAVIOUOUG HITOPOUV VO QVATTTU-
xBouv kot og Stadopikr popdr). Eva mapddelypa ival to povieAo XPP | eKTETAUEVO
Hovtédo pom-pom kat Baociletal otnv Bswpia Pom-Pom mou avémtuéav ot McLeish
Kat Larson [72, 47]. H mpokumtouca taon ota mAaiola tou povtélou autou Sivetatl
amnd tnv oxéon

Ji +7(0i) 01 = 2G:D (24)
n omola eivat tumou Upper Convected Maxwell, 6ou n MOpAPETPOC TTOU AVTLOTOL-
Xl atov xpovo ) Toug xpdvoug XaAdpwaong £XEL AVTIKATOOTABOEL amd éva cuvaptnolo-
€16€¢, T(ﬁ)il. To ocuvapPTNOLOELSEG T(@f1 miep\UBAVEL TTIOPOUETPOUG TIOU OVTL-
OTOL(OUV OE HOPLAKOUC UNXAVIOHOUC KAt EUBUVOVTOL yLot TNV HOKPOOKOTIKY pEONO-
VKA cupmepldopd tou UALkoU. To povtélo XPP xpnoluomolel Baoikd otowyeia tng
Bewplag twv Doi kat Edwards, avantuxbnke wotdoo € apxng oe dikn Tou Bewpn-
TN Baon. And TNV avaAuon Twv TELPOUATIKWY SESOUEVWY OE SELYATO EUMOPLKWY
moAvalBuleviwv pe xprion tou povtélou XPP Sladaivetal n LKAVOTNTA TOU va TePL-
ypadel emakpPwg tn peoloyia Twv TNYUATWY o opoafovikd epeAkuopd (BAEne 2.
5.17,5.18, 5.19 kat 5.20). Emiong e€etaletal n Suvatotnta o pnopsl va mpoodépet
n BewpnTkA Sopr Tou POVTEAOU GTNV AVAKTNON XPR oUWV TTANPodopLWY yLa TV Ho-
pLakr Soun Tou EKACTOTE TAYLUOTOG, OTIWG TL.X. O IPOCGSLOPLOUOG ToU Héoou aplBuol
XNHUKWY SL00TAUPWOEWV OTO THYHO Lovo amo Sedopéva peoloyiag, KATL TO omnoio &i-
val toAU SUCKoAO va eTIITEVLYOEL pe LeBOSOUC AAAEG EKTOG ATIO AUTAY TOU PEOAOYLKOU
XapaKTNPLopoU.

Moplakni Oswpia Rolie-Poly

Mua akoun kataotatikr e€iowaon (oe Stadopikn popdr)) xpNoLUonoLOnKe yla va Te-
plypalel Tnv peoloyikn cupumepldopd ypappkwy toAvoAedvwy. To povteélo Rolie-
Poly adopd povaxo oe ypapuLkd ToAUUEPN KAl amoTeAel pLa amAomolntikr ekdoxn
€VOC TTLO OAOKANPWUEVOU PoVTEAOU TTou avarmtuxBnke amo toug Likhtman kat Graham
(7, 62].
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Mivakog 6: MopLakd xapaKTnPLOTIKA TwV epmoplkwy delypdtwy Riblene kat Eraclene mou e€e-
TAoONKAV MEPAUATIKA 0 SLATUNOoN Kot EGEAKUOUO.

LDPE Riblene®FF20  HDPE Eraclene”FA506

MFI (2.16/190) (gr/10 min) 0.8 -
MFI (5/190) (gr/10 min) - 0.6
MFI (21.6/190) (gr/10 min) - 15
Density (25°C)(gr/cm?) 0.921 0.939
Melting Point (°C) 112 129
M, (kg/mol) 13.4 12.3
M., (kg/mol) 160.3 196.6
M, (kg/mol) 841.1 1536.0
M,, /M, 12.0 16.0
q. 0.612 -
s 0.612 -
B, 8.8 -

Nepapatiko MEpog

2TO MELPAUOTIKO LEPOG XpnoLomoLnBnkav dUo eumopikd Seiypota moAualbuleviou,
£VaLXaUNANG TTUKVOTNTAG TTOAUALBUAEVLO [E TUXOLLO KOTAVOLT LAKPLWV SLaKAOSwoswv
Ka punopikr) ovopaoia Riblene®FF20 kat éva ypappikd VPNARC TUKVOTNTOG TOAUAL-
BuAévLo e epmoptkr} ovopacio Eraclene’FAS06. To LOPLAKS XOPOKTNPLOTIKA KAl TWV
800 Setypatwy divovrat otov Mivaka 6.

Katta 600 Seiypata urtoBARBnKav o HETPAOELS SLATUNONG KAt edeAKUCHOU. ZUy-
KekpLéva To Seiypa Riblene® unoARBnke oe BabBpwtr Stdtpnon, Suvaptkni StdTpnon
KoLl Lovoa€ovikd edeAKUOUO evw To Eraclene’oe SuvauLKr SLETNON KAt LOVOAEOVIKO
edeAkuopo.

To Selypato mapackeUAOTNKAV UE CUUTTLECT TWV MEAAETWV OE BEpUALVOUEVN TTPECA
oe popdn maparnAeninedng mAdkag. Ma TG LETPHOELG SLATUNGNG KOTINKAY Ao ThV
TAGKa KUKAka Selypota Stapétpou 2R, ~ 25 mm Kot ndxoug 0.5 - 1.0 mm. la T
HETPROELS EdbeAKUGHOU KOTINKAV opBoywvia Seiypata Staotdoswv 60 x 10 x 15 mm3.
OL LETPNOELG O0€ SUVAULKNA SLATUNTLKA por) Kot yia Ta Suo delypata Eywvav oe Slado-
PETIKEC OEPOKPACIEG EVW OL PETPNOELG EdeAKUOUOU TTpaypatomnolnénkav os Beppo-
kpaoia 150°C yia to Riblene’kat 170°C yio to Eraclene®. Mol TG PETPHAOELS PNILOTIKAC
Slatunong xpnotuomnolndnke pévo £va Selypa evw yLa TI¢ LETPAOELG SUVAULKAG SLa-
TUNONG XpnoLuomolBnke éva delypa yla kabe Bepuokpacia Hétpnong.

Mpw TtV évapén Twv PETPHOEWVY TIPAYHATOMOLONKE UETPNON YLA TOV TPOodLo-
PLOUO TOU YPAUULIKOU 0oplou amokplong Kal Twv U0 UAKwy. MetprnBnkav ta pEtpa
ghaotikotntag G’ kat G twv 8o Selypdtwy os cuxvotnta 1 rad/s kat mpoodlopi-
oOnke to péyloto MAATog TaAdvtwaong oto omoio ta dUo Seiypota cupnepipépovral
YPOUUIKA. To MEYLOTO TTAATOG TOAGVTWONG Yl YPAUULKN cupmnepldopd kabopiletal
Ww¢ TO péyLoTo AATog oto onoio ta G’ kat G petaBdrlovtal pe tov iSlo pubud. Kat
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yla ta SUo Seiypota opiobnKe MELPAPATIKA TO YPOUMLKO dplo o =~ 0.05 - 0.1 povadeg
SloTuNTKAG mapapopdwaong.

ot TLG LETPNOELS BNUATIKAG AUENONG TNG SLATUNONG XpNOoLomolBnKe To pedpe-
Tp0o ARES-I1I°Tng Rheometric Scientific pe avdAuon 2-2000 mNm og Stdtagn KWvou-
eninedng mAdakag. MpaypoatonolBnkav HETPrOEL 0€ €va eUPOC SLATUNTIKWY Tapo-
popdwoewv 0.01 - 2.0 émou n mapapdpdwon opiletal HEow TG OXEONG:

Y0 = % ) (25)

OMoU ¢, €lval n ywvia otpéPng Letagl kwvou Kal otabepng mMAGkag kot 5. givat n

ywvia mou oxnMatilel 0 KWVOG KE TNV TTAAKA. TNV CUYKEKPLUEVN Ttepimtwon [, ~

0.1 rad. Kpatwvtag otabepr tnv napapdpdwaon, LETPATAL N TACH WG CUVAPTNGON TOU

XPOVOU LECW TNG

_ 3M;,
27TRp3 ’

omou M; pomn otpedPng HeETpoUEeVN HEOw TNS SUVAUNG TTOU AOKE(TAL 0TO GKPO TNG
nAdkag kaL Ry, n aktiva Tng KUKALKAG TAAKAG,

oL TLG LETPROELS SUVAULKAG SLATUNONG XpNOoLoToLBnKe To (610 peOUETPO O SLA-
tagn mAAKag-MAAKAG Kat andotaon KeETafd mAakwy 1.0 - 1.5 mm. Ol LETPrOELG Eylvav
og eUpog ouxvotAtwy 0.1 - 100 rad/s kat o Stadopetikég Osppokpaoieg, 120 °C- 190
°C yia 1o Riblene’kat 150 °C- 200 °C yia 1o Eraclene’. H cuxvotnTa SLOTUNTIKAG Tta-
pauopdwong divetal anod tnv oxéon:

o12 (26)

(27)

omnou hy, n andotacn petafy twv mAakwv. H mpokumtouca tdon unoloyiletal and
v oxéon:

o12 (28)

Mt |: dZTLMt:|

277Rp3 ’
omnou M; n mpokUMTouca Porr| oTPEYNC LETPOUMEVN TTAVTA HECW TNG SUVAUNG TTOU
0lOKE(TOL 0TO UALKO OTO AKPO TNC TTAGKALG.

Mo Tig petprioelc epeAkuopoU XpnoLomoLiOnke To pedpetpo RME tng Rheometrics
Scientific pe avaAuon 0.1 - 200 mN. MNpayuatonoldnkav HeETPHOEL LoVoaEoViKoU
edpeAkuopol o€ g0pog pubpwy eperkuopol 0.01 - 2.0 s~ kat yia ta Svo Seiypata.
KpatrnBnkov povaxa oL LETPROELG OL OTIOLEG NTav €yKupeG. TEAOG €ylvav oL amapaitn-
TeC oLUdwWva Ue Ta poTuna S1opBwoeLg 6oov apopa ToV PAYUOTLKO pUBUO edeAKU-
opoU KaBWE auTog SladEpeL eV YEVEL A0 TOV TTPOKAOOPLOUEVO Ao TOV XPHOTH ava-
Aoya pe Tov TUmo Selypatog Katl tov pubuo eperkuopol. H 516pBwan £yve HeTpwvTag
TNV EAATTWON TOU MAATOUG ToU SOKLUIOU ava TaKTA Xpovikd Staothpata urtoAoyilov-
TG £TOL TOV TIPAYHATIKO puBUS eperkuopoU. H tdon umoloyileTal amno tnv oxéon:

_F@) _ F®)
olt) = W o Age—ét

dinsy

(29)

émou F(t) n petpolpevn SUvaun epehkuopol kat Age ~ < xapaktnpileLtnv ehdttwon
Tou KAaBetou otov dfova edpeAkuopoU euBadol Tou Sokiuiou pe Tov XpOvo yla Tov
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£KAOTOTE PUBUO edelkuapoU, é. To L€wdeg eheAKUOUOU WG CUVAPTNON TOU XPOVOU
umoAoyiletal anod tnv oxéon:

ne (t) = —0 (30)

Mkpég SlopBwoaoelg yvav Kat yla ta SUo Seiypata, urtodoyilovtag TG mpaypatL-
KEG OPXLKEG SLAOTAOELG TWV SOKLUIWY HETPNONG adoU Ta teeuTaia untéotnoav dLoy-
Kwaon Adyw Twv VPNAwY BEPUOKPACLWY TWV UETPHOEWV.

AnoteAéopata

Ta anoteAéopata Kal N BewpnTiky avaAucn OAWV TWV ELPAUATIKWY LETPHOEWV b1
vovTtal EExwpLoTta yla kaBe Selypa otoug Mivakeg Kal Ta avtioTtoya Zxnuota tou Ke-
dalaiou 5. Tuykekplpéva otov Mivaka 5.3 Sidovtal oL MapAUETPOL TOU GACUATOC X~
Aapwong twv dVo Setypdtwy. 2tov MNivaka 5.1 Sidovtal oL TAPAUETPOL TOU LOVIEAOU
tou Cross yla o LEwoeC w¢ cuvaptnaon Tng ouxvotnTag SLAtUnong yla S1adopeTIKES
Beppokpaoiec. 2tov Mivaka 5.4 Sivovtal oL KplowloL Xpovol, t., yla KaBe Bepuokpa-
ola pétpnong kat yla ta Vo Selypata mou avtlotolyoUv 6Toug Xpdvoug i avtiotolya
OTLG OUXVOTNTEG OTLG OTIOLEC Tat Suvapikd pétpa ehaotikotntag G’ kat G” e€lowvovral.
Ytov MNivaka 5.2 (kat ypadikd oto 2x. 5.9) sidovtal ol otabepég avp o€ KABe Bepokpa-
ola kat yla ta Vo Seiypota mou MPOKUTOUV Ao TNV UTEPOBECN TWV SUVOULIKWV HEé-
TPWV EAQOTIKOTNTAG TWV U0 TTOAUUEPWV. ATIO TIC TUUEG QUTEC KAl UE XPHON YPOAUULKAG
TaPEUPBOANG TIPOKUTITEL ULat LECH EVEPYELA EVEPYOTIOINONG YLa KABE delypa, ~ 50.4 kJ
yla to Riblene’kat ~ 32.5 kJ yia o Eraclene’. Ot mapEUETPOL TOU TPOTOMOLNUEVOU
povtélou Tou Lodge BpéBnkav va eivat n = 0.25 yia 1o Riblene’kat 7 = 0.28 yia to
Eraclene’6mwc mpokUMTouV amd TNV IPOCOPHOYr TOU HOVIEAOU OTA OMOTEAECHATOL
wbdoug oav cuvaptnon tng Beppokpaciag. AvtiBeta Bpébnke étLn = 0.23 and Ta
nelpaparta Babuwtng Statunong ya to Riblene. OLTIUEG TNG ouvApTnONG anmocoBeong
yta To Riblene®ivovtat otov Mivaka 5.5 Kat ypadikd oTo £x. 5.9. ATO TG LETPAOELS
£dpeAKUOHOU UTTOAOYLOTNKE N EKOETIKA TOPAETPOC TOU povtEAou TagvoyAou Kal Bpé-
Onke 8 = 0.25 yla o Riblenekat 5 = 0.40 yia to Eraclene®. OLTLpég TG ouvApTNONG
andoBeong Sivovtal atoug Mivakeg C.3 kat C.4 tou Mapaptripatog C kat ypodikd oto
2X. 5.16 katl yta ta dUo Selypata. O deiktng epyookAnpuvong, SHI, urtoloyiotnke yla
To Riblene amo tnv melpapatikn KAUmUuAn edeAkuoTikoU LEwdoug oe pubuo edeAku-
opoU € = 0.081 (sec™!) kat BpéBnke ~ 10.2. Ztouc MNivakeg 5.6 kat 5.7 Sivovtal ot
TAPAUETPOL TNG TPOCAPHOYNG Tou Hovtédou XPP ota dedopéva epeAkuopol yla To
Riblene”kat to Eraclene’ avtiototya. OLmpoPAEPelg Tou povtéhou Rolie-Poly Sivovtat
ota 2X. 5.21 kat 5.22. TéAog oL mpoBAEPELG TOU TpOTOMOLNUEVOU HOVTEAOU TwV Doi
kat Edwards kat yud ta Suo Selypata Sivovral ota 2y. 6.4, 6.5, 6.6, 6.7 kAL 6.8.

Tulntnon / Zupunepacpata

H mopAdueTpog n g amAng ekOeTIKAG ouvaptnong tou Wagner, maipvel thv Tl n =
0.23 yia o Seiypa Riblene”omd ta melpdpato BRHOTIKAS SLATUNTIKAC TApapdpdw-
ong. Otav xpnowonotnBei n Bewpia Tou Tpomonolnuévou povtélou tou Lodge, tote
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SXAKa 9: Oeppopeoloyikr toAurhokdTnTa ota Selypata (a) Riblene” kat (b) Eraclene” pe Bdon
v texvikn Twv Wood-Adams kat Costeux.
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TXAHa 10: Oeppo-peoloyikr oAumhokotnta ota Seiyporta Riblene” kat Eraclene’ pe Bdon ty
TeXVIKN Twv VanGurp kot Palmen.

Ta nepapatika dedopéva Ewdoug otabepol pubuoy SLATUNONG WG TIPOG CUXVOTNTA
Slvouv n = 0.25. H pkpn auth Stadopd auth ekTipatal mwe 6ev opelleTal o€ meL-
papatiko AdBog oUte og AavOaopévn xprion tng Bewpiag. AvtiBeta, av cuykpivoupe
TQ TELPAPOTIKG SeSopéva BaBpwthc Stdtpnong yia to Riblene®pe ta avtiotoya yla
Ta moAvalBuAévia Tou Toevoylou, mapatnpoUpe OTL yia Ta TEAeUTald N HéyLoTn ma-
papdpdwon Eemepvd mavta Tig 20 LoVASEC SLATUNONG eVW yla To Riblene’n péytotn
Statunon ATav povo 2. MNa va UTtoAOYLOTEL CWOTA N eKBETIKN MapAapeTpog tou Wagner
XpeLadovtol BnUaTikéG mapapopdWwoelg ToUAdxLoTov €we 10 povadeg Stdtunong, mou
gival epimou Kol To avwTaTo 6pLo 6To omoio N eKBETIKA cuvapTnon anodcBeong mepL-
YPADEL LUE LKOVOTIOLNTLKN OKPLBELA T TELPAUATIKA armoTeEAECUATA. ATIO TO TIELPOLA-
Tka Sebopéva dlamoTwOnke OTL Ta UMOPLKA TTOAUALBUAEVLIA XAUNARG TTUKVOTNTAG
£XOUV LKPOTEPEC EKOETIKEC MAPAUETPOUG 0 SLATUNON oIt’ OTL T AVTioTOLKA YPOAU-
ULKA TtoAualBuAévia. AuTh n mapatpnon LoXUEL YEVIKA yLa TIG TToAUOAEDIVEG Kal o€
Telpapato epeAKUGOU, OMOU 0 TIPOCSLOPLOOG TNG TTOPAUETPOU B TNG oUVAPTNONG
andoBeong tou TaevoyAou yla toAupepr SLadopeTIKAC XNULKAG oUOTACNG KAl LopLa-
KNG OpXLTEKTOVLKNG SelXveL OTL S > 1 yla ypOoUULIKA TTOAUEPT eV 5 < 1 yla oAU pEpn
pe SlakAadwoeLg.

H BepopeoAoyLk TTOAUTTAOKOTNTA, XAPAKTNPLOTIKO TWV EUTIOPLIKWY TIOAUUEPWY,
QATELKOVIOTNKE PE TNV BonBela piag pabnuUatikng TEXVLKIG TTOU TIPOTABNKE oo TOUG
Wood-Adams kat Costeux (BA. Zx. 9). XpnoLlomolwvtag Ta MELPAUATIKA SeSopéva
artd T HETPAOELS SUVALKNG SLATUNONG Kat Yo ta SUo Seiypata, urtohoyioTnkay mpwta
TA PLyadIka LETPA EAAOTIKOTNTOG YLo KABe Beppokpaaia Kal 0TV CUVEXELD OTTELKOVI-
oBnKkav w¢ cuvapTNoNn TOU YIVOUEVOU TNG CUXVOTNTAG SLATUNGNG UE TO LEWEES -
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Sevikol puBuov Sldtunong. Mo éva YpaupLko TOAUEPEG OL TIPOKUTITOUCEG KOUTU-
Aeg uneptiBevrtal mMANpwe evw yla Ta Vo Selypata Tng mapovoag epyaciog auto dev
Atav ebtkto. Ma 1o Stakhadwpévo moAuatBulévio Riblene’n pn-unépBeon twv mpo-
KUTTTOUGWV KOUTUAWVY Eival avapevopevn. AvtiBeta yla To ypappiko Eraclene’n pn-
umtépBeon amotelel £vbelén LMOPENG HakpwV KAASWVY 0To TOAUPEPES. To yeyovog
autd Sev mpokael £KMANEN KaOWC o EUMOPLKA SElyUATA YPALULKWY TIOAUUEPWY N
noAuSlaomopd oto Seilypa aAAG Kal UTtapEn HKPWY TTOGOTATWY HOKPWY SlakAadw-
oewv elval avopuevopevn.

Mot aKOWN TEXVLKN TIOU EPAPHOOTNKE ElvVaL AUTH TIOU TPOTABNKe amnod toug Van
Gurp kat Palmen (BA£me 2. 10) kal otoxeVEL emiong otnv avadelén tng BeppopeoloyL-
KNG TOAUTTAOKOTNTAG TTOU CUVAVTATAL € Selypata epmoptkwy toAvoAedvwy. Qotdoo
n péBodog auth Baciletal otV cUYKPLON TTAPOUOLWY TIELPOUATIKWY KOUUTTUAWY oo
Selypata moAupepwv pe SLadOoPETLKN APXLTEKTOVIKT. ZUYKPLTIKA Ue Thv uéBodo mou
npotaBnke anod toug Wood-Adams kat Costeux n teleutaia ev anattel cuykpLon Ue
Sebopéva alwv melpapdTwy kal Baociletal povayo otnv mapadoxny OTL 0 uTtoAoyL-
OUOG Tou LEwS0oUG undevikol pubuou, 1y TOU XPNOLUOTIOLELTAL YL TNV KATAOKEUT) TOU
ypadiuatog elval akpLpig.

To povtého XPP XpnoLUOTIOBNKE YLOL TOV TPOOSLOPLOUO LOPLOKWY XOPAKTNPLOTL-
KWV, OTIWG, TL.X., TOV OPLOUO TWV XNUKWY SLA0TAUPWOEWY, 0TO Selyua Twv SelyUdTwy
Riblene’kat Eraclene’and SeSopéva peoloyiac. Eva Seiypa TS TPoPAETIKAS LKOVO-
TNTOG TOU HOVTEAOU MAPOUGCLATETOL LECW TWV OMOTEAECUATWY TwV Mvakwy 5.6 Kat
5.7 kal Twv oxnuatwv 5.17, 5.18, 5.19 kat 5.20. Amno6 ta dedopéva twv Mvakwy au-
TWV KO CUYKEKPLULEVA a0 TIG TIOPOUETPOUG, ¢; Yo KABe Selypa daivetat OTL Kat yLa
Ta SU0 TMoAUUEPH ONa TaL ¢; # 1, KATL TTOU SV EVAL AVAUEVOLEVO YLOL YPOALLULKA TIO-
Aupepn. T o epmoptkd ToAupepés Eraclene’to amotéAeopa autd onpatodotel Ty
uTapén pokpwv KAadwv oto deiypa, og cupdwvia pe Ta anoteAéopata Twy ypadn-
patwv Wood-Adams-Costeux kot VanGurp-Palmen. To moocootd StakAadwoswv oTto
YPOUULKO Selypa Sev SamiotwOnke pe kapio dGAAN péBodo ektog amd authy Tou pe-
OAOYLKOU XOPOKTNPLOUOU. ETOL N EYKUPOTNTA TWV AMOTEAECUATWY TOU HOVTEAOU XPP
Sev umnopei vo emikupwdel mepattépw. Qotdco ylo To LDPE Riblene’o péoog aplo-
HOG pakplwv Stakhadwoewv ipocaSlopiodnke pe tnv uéBodo GPC kat Bpebnke ~ 8.8
evw oL tpoPAEYELS TOu povtélou XPP gival 10 < B, < 12. Ot 800 MELPAUATIKES
TWEG yla to B, gival apKeTd KovTd, evioxUovTag £ToL TV untoBeon Twg To MOG0oTO
pakplwv SLakAAdWoEWV 0To THYUA UMopEl va TipoodLloploBel apKETA LKAVOTIOLNTIKA
povaya anod dedouéva peoloylag.

I8Laitepn éudaon 666nke oTig Sladopég LeTtagy tTnG cuvaptnong andoBeong Tou
Wagner kat Tou JoviéAou ToevoyAou yla MEpAPATO Povoafovikou edpeAkuopol. H
npwtn elval éva ¢avouevoloyLlkd HOVTENO TToU OTOXO TOU £XEL TNV TtEpLypadr TG
peoloylag oe edpehkuopd Selypudtwy moAupepols. AvtiBeta n mpotach ToevoyAou
adopd otnV Hikpodoun Tou SelyaTOG KAl CUVOEEL ULKPOOKOTILKEG LOLOTNTEG TWV TO-
AULEPWV LLE LAKPOOKOTIKA TIOPATNPNOLUA pEOAOYIKA dedopéva. Emiong éva akdun
TIAEOVEKTN O TNC OUVAPTNONC amocBecn Tou ToevoyAou elval n YeVIKEUGN TTOU UITo-
pei va eruteuyBei yia 6Aoug toug TUTOUG EHEAKUOTIKAG Mapauopdwaong mpoodEpov-
Tag £T0L £va eviaio Aaiolo yia Thv eplypacdr TS peoAoyiag MOAUUEPIKWY TYUATWY
o€ ouvOnkeg epeAkuaOU.

TéNog, 6oov adopad To TpomonoLlnuévo Lovtélo Twv Doi kat Edwards e€etdotnke n
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LKAVOTNTA TOU Vo TIPOPBAETEL TNV TN TN MAPAUETPOU ., AveEGPTNTA Ao TOV TUTO
NG mapapdpdpwong. Qotdoo, yia to Ssiypa Riblene” z,, ~ 0.38 and SeSopéva Bn-
MOTIKAG SlaTunTkng mapapopdwong, evw z,, ~ 0.92 and edopéva povoafovikol
gbehkuopol (BA. Zx. 6.4 kat 6.5). Na to Seiyua Eraclene” z,, ~ 0.26 anoé Sedopéva
Slatpntkng mapapdpodwong, evw x,, ~ 0.79 and dedopéva povoaovikou epeAku-
opoU (BA. Zx. 6.4 kal 6.8). Mwd cUvtopn Bepuoduvapikn avaluon Twy MELPAUOTIKWY
QIMOTEAECUATWY Kal yla Ta U0 Selypato o8Aynce 0TO CUUMEPACUA OTL TO LOVTEAD
Twv Doi kat Edwards givat apketd anmAomolntikd 6cov adopd tnv BepuoSuvapikn me-
pypacdn tTnG MopaUopdwaong oTa THYHATO TIOAUMEPWV.
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ANMOGCLEVOELG KOL TTAPOUCLACELG OE CUVESPLA TTOU TTPONA-
Oav and tnv napovoa epyaocia

Méxpt otyuns (2 OePBpouvapiou, 2015) amoé tnhv mapoloa epyacia £XOuV YIVEL TPELS
TAPOUCLAOELG o€ SLeBvr ouVESpLA Kal elval o€ TpoeToLacia pia Snpoocieuon ot me-
PLOSLKO:

1. “Nonlinear Viscoelasticity of Commercial Low Density Polyethylenes : The Effect
of Long Chain Branching in the Presence of Entanglements”, pe tov Chris Tsenoglou
kaL tov Alexandros D. Gotsis oto 90 Etriolo Eupwrmaiko Tuvédplo Peoloyiag,
Anpiliog 2014

2. “Rheology of Commercial Polyolefines : Relating the Viscoelastic Behaviour to
Microstructure”, nootep e Tov Chris Tsenoglou kat tov Alexandros D. Gotsis oto
70 AleBvég 2uvédplo tng EAANvikNG Etatpiag Peoloylag, lovAtlog, 2014

3. “Nonlinear Viscoelasticity of Commercial Low Density Polyethylenes : Relaxation
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Nomenclature

Acronyms

DM A Dynamic Mechanical Analysis
GPC Gel Permeation Chromatography
HDPE High Density Poly-Ethylene

LCB Long Chain Branches

LDPE Low Density Poly-Ethylene
LLDPE Llinear Low Density Poly-Ethylene
MFI Melt Flow Index

MW D Molecular Weight Distribution

PB Poly-Butadiene

PC Poly-Carbonate

PI Polydispersity Index

PIB Poly-lIso-Butylene

PP Poly-Propylene

PS Poly-Styrene

PTFE Poly-Tetra-Fluoro-Ethylene

SCB Short Chain Branches

SHI Strain Hardening Index

UCM Upper Convected Maxwell
UHMW PE Ultra High Molecular Weight Poly-Ethylene

X PP eXtended Pom-Pom
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Greek Symbols

« parameter of Wagner’s damping function in uniaxial elongation
aq pressure dependent viscosity model parameter (Pafl)

o parameter of the PSM damping function

ar temperature dependent time shift factor

ay equillibrium length or tube diameter in the DE model (m)

Qy parameter of Eq.3.66

Oy parameter of the XPP model

T2 steady state shear viscosity (Pa - s)

ME steady state uniaxial extensional viscosity or Trouton viscosity (Pa - s)
15} strain sensitivity parameter of the power law damping function

Be cone angle (rad)

Br temperature dependent modulus shift factor

Bu parameter of Eq.3.66

ox present infinitesimal vector notation (m)
ox’ past infinitesimal vector notation (m)

] loss angle (rad)

é uniaxial elongational strain rate (s—1)

A shear rate (s~ 1)

€ strain or ratio of change in length to undeformed length
€f critical strain under the Considere criterion
€11 logarithmic or Hencky strain

7 dynamic viscosity (Pa - s)

n" elastic part of the complex viscosity (Pa - )
n viscosity (Pa - s)

n* complex viscosity (Pa - s)

75 time dependent growth of shear viscosity (Pa - s)

n,me  scalar functions of the invariants of 2D
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time dependent growth of uniaxial elongational viscosity (Pa - )
critical shear strain in the Doi-Edwards theory

backbone tube stretch in the XPP model

extension or ratio of deformed to undeformed length

ratio of the number of branch points per molecule to molecular mass (mol /K g)
Boltzmann’s memory function (Pa/s)

number of entropic springs or strands per unit volume
parameter of the XPP model

number of internal configurations of the macromolecular chain
angular or rotational frequency (rad/s)

critical relaxation frequency (rad/s)

angle of rotation (rad)

constant (/= 3.14159...)

gaussian distribution function of the end-to-end distance

first normal stress difference coefficient (Pa - s2)

second normal stress difference coefficient (Pa - s?)

density (K g/m?)

relaxation time (s)

averaged relaxation time (s)

longest relaxation time (s)

backbone orientation relaxation times in the XPP model (s)
critical relaxation time (s)

disengagement time (s)

time of path equillibration (s)

characteristic relaxation time (s)

stretch relaxation times in the XPP model (s)

7(0;)”" relaxation time tensor in the XPP model

a

extra or viscous stress tensor
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Vs specific volume (m?/Kg)

o zero shear rate viscosity (Pa - s)

Noo high shear rate viscosity (Pa - s)

o* critical stress for the Cross viscosity model (Pa)
Roman Symbols

22 rate of deformation tensor

2W vorticity tensor

R?)  time averaged mean square end-to-end distance (m?)

—~

Q total rate of heat (J/s)

w total work done (J)

[G] Larson’s second order orientation tensor

Larson’s second order orientation tensor in the IAA

Cauchy tensor

Q‘l Finger deformation tensor

E inverse of the deformation gradient tensor
F deformation gradient tensor

I unitary tensor

L velocity gradient tensor

Q Doi-Edwards universal orientation tensor
T total stress tensor

U finite strain tensor

F entropic spring force (V)

F, body forces (N)

F surface forces (V)

g gravitational constant (=~ 9.80m/s?)
q local heat flux (J/s - m?)
R end-to-end distance of the macromolecular chain (m)



cN
De

end-to-end distance of the primitive step (m)

end-to-end distance of the initial step in the primitive chain (m)
unit vector

velocity vector (m/s)

parameter of Eq.3.48

function of the principal stretch ratio

time dependent cross sectional area of sample during elongation (m2)

average backbone bond length (m)

pressure dependent viscosity model parameter (°K 1)
length of the Kuhn segment (m)

weight averaged number of branches per molecule
constant of Eq.2.8

Flory’s characteristic ratio

centi-Newton (1072 N)

Deborah number

elongational modulus of elasticity (Pa)

total specific energy or energy per unit mass (J/Kg)
flow activation energy (J/mol)

branch point functionality

function of the principal stretch ratio

time dependent force during elongation (V)

F(t,M) relaxation function in Eq.3.98

flo)™!

G

GI

G//
/!

9s

In

extra function in the XPP model

shear modulus of elasticity (Pa)
time-dependent elastic or storage modulus (Pa)
time-dependent viscous or loss modulus (Pa)
molecular size ratio defined in Eq.2.12

number of generations per tree-like polymer
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IIo
IITp
IITo
Jo

Ky
Ky

plateau shear modulus of elasticity (Pa)

molecular size ratio defined in Eq.2.11

gram-force-meter (= 0.02 N with g = 9.80m/s?)

damping function

time dependent height of sample at elongation (m)

gap between plates in the plate-plate geometry (m)

first invariant of the rate of deformation tensor

first invariant of the relative Finger strain tensor

second invariant of the extra or viscous stress tensor (Pa2 - 52)
second invariant of the rate of deformation tensor

second invariant of the relative Finger strain tensor

third invariant of the rate of deformation tensor

third invariant of the relative Finger strain tensor

steady state compliance (m?/N)

pressure dependent viscosity model parameter (Pa - )
temperature dependent viscosity model parameter (Pa - s)
Boltzmann’s constant (1.380 - 10723 J /°K)

contour length of the macromolecular chain (m)

time dependent length of sample at elongation (m)

initial sample length (m)

final sample length (m)

parameter of Wagner’s damping function in uniaxial elongation
molecular weight of monomer (K g/mol)

average molecular weight of branch (K g/mol)

critical molecular weight (K g/mol)

molecular weight between entanglements (K g/mol)
parameter of Eq.3.61

number averaged molecular weight (K g/mol)
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sgm

torque (N - m)

weight averaged molecular weight (K g/mol)

z-averaged molecular weight (K g/mol)

number of independently directed steps in the primitive chain
parameter of Wagner’s single exponential damping function in shear
degree of polymerization or number of backbone bonds

first normal stress difference (Pa)

second normal stress difference (Pa)

Avogadro’s constant (6.022 - 10%*mol ")

number of monomers in each step of the primitive chain
number of equivalent Kuhn segments

parameter of Eq. 2.15

hydrostatic pressure (Pa)

time-dependent diffusion function in the Doi-Edwards theory
parameter of the XPP model

universal gas constant (8.31441 JK ~mol ™)

radius of gyration (m)

plate radius (m)

entropy (J/°K)

number of segments per generation of a tree-like polymer
temperature (°C or °K)

present time (s)

past time (s)

first normal stress difference (Pa)

second normal stress difference (Pa)

continuous molecular weight distribution

time dependent width of sample at elongation (m)

non-linear viscoelastic parameter of the modified DE damping function
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<R92>b time averaged mean square radius of gyration for the branched polymer (m?)

<R92>z time averaged mean square radius of gyration for the linear polymer (m?)

(Ez)l/g root of the mean square end-to-end distance (m)

G* complex shear modulus (Pa)

K. cross viscosity model parameter (s)

My power law viscosity model parameter (Pa - s)
Ne cross viscosity model parameter

Np power law viscosity model parameter

Other Symbols
\ del or nabla



Chapter 1

Introduction

Rheology is the science that deals with the way materials deform when forces are ap-
plied to them. The term is most commonly applied to the study of liquids and liquid-like
materials, i.e. materials that flow, although rheology also includes the study of general
deformation of (visco)elastic materials, even of those that cannot flow in regular time
scales, as, for example, cross-linked elastomers.

The two key words in the above definition of rheology are deformation and force.
In order to learn anything about the rheological properties of a material, we must
either measure the deformation resulting from a given force or measure the force re-
quired to produce a given deformation.

There are two principal aspects of rheology [33]. One involves the development
of quantitative relationships between deformation and force for the material. The in-
formation for the development of such a relationship is obtained from experimental
measurements. For linear, elastic rubbers or Newtonian fluids, the simplest obser-
vations are sufficient to establish a general equation describing how the material will
respond to any type of deformation. Such an equation is called a constitutive equa-
tion or a rheological equation of state. However, for more complex materials such
as molten plastics, the development of a constitutive equation is a much more com-
plex task that requires data from several types of experiment. The second aspect of
rheology is the development of relationships that show how rheological behaviour is
influenced by the structure and composition of the material as well as the tempera-
ture and pressure. ldeally, one would like to know how these parameters affect the
constitutive equation.

Many materials of major commercial importance are examples of soft matter, a
category of materials that includes molten polymers, colloids, foams and gels. When
being deformed, these materials exhibit complex rheological behaviour. Their rheo-
logical properties are of central importance in their industrial processing behaviour
and/or their end-use applications.

Polymers that become pliable or mouldable above a specific temperature and so-
lidify upon cooling are called thermoplastics. These are nearly always converted to
end-use products by means of melt forming operations, including profile extrusion,
several moulding techniques, etc. In all these processes, the rheological properties of
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the molten polymer are of crucial importance and must be taken into account in the
design of processing equipment and selection of operating conditions.

Rheological data are also useful for polymer characterisation. This is because the
viscoelastic behaviour of a melt is very sensitive to molecular weight distribution vari-
ations and branched structure details. Thus, melt rheology can often provide an accu-
rate picture of molecular structure.

1.1 The Molecular Structure of Polymers

The widespread recognition of molecules as a class of materials only dates from about
1908, and the concept of very large molecules, or macromolecules, followed about 20
years later through the work of Hermann Staudinger. He was the first to test the hy-
pothesis of a “long-chain-molecule” through his pioneering studies in novel synthetic
paths for the chemical substance isoprene. His hypothesis proved to be correct in
1920’s. Six years later he predicted that long molecules would be important in bi-
ology. The term macro-molecular association was first used in 1922 and later in 1924,
the word makromolekul was finally established to describe the nature of these mate-
rials.

A macromolecule (or polymer) is a large molecule composed of many small simple
chemical units, generally called structural units, connected together mostly by cova-
lent bonds. In some polymers each structural unit is connected to precisely two other
structural units and the resulting chain structure is called a linear macromolecule.
In other polymers most structural units are connected to two other units, although
some structural units connect three or more units, and we talk of branched molecules.
Where the chains terminate, special units called end groups are found. For some
macromolecular materials, all structural units are interconnected resulting in a three-
dimensional cross-linked or network structure rather than in separate molecules. Such
materials (e.g. cross-linked rubber), however, generally have no fluid phase.

Aside from minor corrections from end groups and branch points, the molecular
weight of a macromolecule is the product of the molecular weight of a structural unit
and the number of structural units in the molecule. Typical synthetic polymer macro-
molecules may have molecular weights between 10000 and 1000000 gr/mol. Even
higher molecular weights have been achieved for some synthetic polymers of special
importance. Typical examples of UHMWPE (Ultra High Molecular Weight Polyethylenes)
include the Spectra®(Dyneema”) fibres used for marine ropes, industrial applications,
ballistic armour, impact resistant panels and electronics, Gur”used for orthopedic im-
plants, etc.

A polymer sample in which the molecular weight of all macromolecules is the same
is called monodisperse. Synthetic monodisperse or “almost monodisperse” polymers
may be prepared by special techniques, but are rarely used commercially. In contrast,
most commercial polymers are polydisperse, that is, they contain molecules of many
different molecular weights. Thus, one may talk of a distribution of molecular weights.

In order to describe molecular weight distributions in simple quantitative terms,
various molecular weight averages have to be introduced. To cacllualate the number-
average molecular weight of a given polymer sample each fraction of different molec-
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ular weight is multiplied by the number of corresponding moles, the products are
summed and the sum is divided by the total number of moles:

_ N, M;
Mn:ZZ e .
ZiNi

The number-average molecular weight, M,,, is particularly sensitive to additions of
small amounts of low molecular weight fractions. An alternative form, is the weight-
average molecular weight, for which the summation is done over all fractions of dif-
ferent molecular weights, each multiplied by the corresponding weight, and then the
sum is divided by the total weight:

(1.1)

i = 2w 3, N}

w - .
Zi Ww; Zl N; M;

In contrast to M,,, the weight-average molecular weight, 1., is more sensitive to

the high molecular weight fractions. One may further define molecular weight aver-
ages by taking ratios of higher moments of the molecular weight distribution,

(1.2)

34
7 Zz NiMz’ i

Mz‘ﬁ‘j = Zi N1M12+'7 (1.3)

For j = 0, the z-average molecular weight is defined. For j > 0 (j=1,2 ...), the z+j-
average molecular weight is defined. For monodisperse samples, all these averages
are equal, whereas for polydisperse samples, M,, < M,, < M, < M., ... etc.

The ratio Mq,,/Mn, known as the dispersion ratio or polydispersity index, is often
taken as a simple measure of the polydispersity of a sample. Sometimes the hetero-
geneity index, (M,, / M,,) — 1, is used. The variance of the weight distribution, defined
as the ratio (M, — M,,)/M,, is also used, as well as the rheological polydispersity,
M_M,,/M?2. These various measures of distribution breadth vary in their sensitiv-
ity to the different parts of the distribution. Thus, Mw/JV[n depends more strongly on
the low molecular weight tail, whereas Mz/Mw depends more strongly on the high
molecular weight tail.

1.2 Polyolefins : Examples of Branched Polymers

Polyolefins are products of the polymerisation of olefins (alkenes). Polyethylenes (PE)
and polypropylene (PP) are common polyolefins and they are the most widely used
group of thermoplastic polymers today. Even though polyolefins are chemically simple
macromolecules consisting of carbon and hydrogen atoms, they show a large diversity
in mechanical properties in both the solid and the melt states. This is due to the variety
in their molecular architecture as described by their molecular weight, their molecu-
lar weight distribution and the number, distribution and length of branches on their
molecular chain backbone [4, 40].

Ethylene-based materials produced by the radical polymerisation of ethylene in re-
actors under low-pressure conditions with transition metal catalysts of various types
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Table 1.1: Some synthetic olefinic polymers, their monomers and their structural units.

Monomer Structural Unit Common Name  Acronym
H H H H
/CC\ C C Polyethylene PE
H .
H H
H\ CH3 H CHs
/CC\ I C Polypropylene PP
H H ‘ ‘
H H

have predominantly linear chain structure. This subgroup includes high-density (HDPE),
medium-density (MDPE) and linear low-density (LLDPE) polyethylenes. The use of
higher a-olefins like butene, hexene and octene as comonomers results in the for-
mation of short-chain branches (SCB) along their linear backbone chain. The use of
catalysts, on the other hand, may result in long-chain branches (LCB). HDPE shows the
typical rheology of a (mostly) linear chain polymer. The long linear chain of a typical
LLDPE is composed of ethylene units with SCB. It has no LCB and a relatively narrow
molecular weight distribution. The rheology of LLDPE is very similar to that of a linear
chain polymer.

Polyethylenes produced under in reactors under high-pressure conditions with oxy-
gen or peroxides as chain initiators have predominantly long-chain branched structure.
This group includes the low-density poly-ethylenes (LDPE) which have many long-chain
branches on the main chain and on the branches. Their highly branched molecular
structure results in reduced crystallinity and increased melt elasticity when compared
to their linear cousins, the HDPEs.

Propylene-based polymers are produced with transition metal heterogeneous cat-
alysts (PP) and have linear chain structure with stereospecific arrangement of the propy-
lene units (isotactic). Several commercial branched grades are also available, mostly
produced by grafting long-chain branches on the linear PP chains either by electron
beam irradiation or in the melt by using peroxides with relatively low decomposition
temperature. These methods produce LCB-PP with broadened molecular weight dis-
tribution, complex branched structure and increased elasticity when compared to its
linear cousin.

Long-chain branches in polymers are defined [4] as the branches of mostly the
same chemical species as the long linear macromolecular chain on which they are



1.3. THE SCOPE OF THE THESIS 41

rooted. These branches are long enough to be able to form at least 2-3 entanglements
each or they have lengths of at least 2.5 times the molecular weight at the onset of en-
tanglements, M¢, of the polymer chain. This is in contrast to short-chain branches
which have a length of the order of a few repeating units. Because of their length, the
long branches act locally as individual molecules, are flexible and produce entangle-
ments but are restrained in their motions by their roots on the backbone chain. The
hydrodynamic volume of the branched chain, at least in theta conditions, is smaller
than a linear chain with the same molecular weight. On the contrary, short chains
cannot provide entanglements and can even reduce the main-chain flexibility protect-
ing the individual backbone chain from it’s environment.

1.3 The Scope of the Thesis

The scope of the current thesis is to investigate the influence of the polymeric mi-
crostructure on the rheological response of the molten material. In order to achieve
this goal, a wealth of experimental data on the rheology of commercial polymers of dif-
fering chemical composition and microstructural architecture had to be gathered for a
comparison between the rheological properties of these materials. The criteria for the
selection were the accuracy and integrity of the published data, as well as the variety
of the types of rheological deformation. This lead to a spherical view of the macro-
scopic rheological response of commercial polyolefin melts and insight in the way that
the macroscopic behaviour is related to different aspects of the microstructural archi-
tecture. In addition, experimental investigation of some commercial PE melts under
various types of deformation was deemed appropriate in order to have access to raw
experimental data.

Mathematical modelling of the rheological behaviour of the melts had been con-
ducted using constitutive equations of the integral and the differential forms. This
was done in order to compare these two mathematical formalisms, as well as to make
use of theoretical features that are only available in one of the two forms. Constitutive
modelling had also been used in an attempt to make predictions about microstructural
features of the melts under investigation, when the only means of characterisation was
that of rheological testing.

The main goal of the thesis is to evaluate the damping function of the melts, which
is appropriate for different flows. Thus, the damping function was evaluated using
shear step-strain experiments and uniaxial extensional flow. The relaxation spectrum
of the melts was evaluated by small angle oscillatory shear flow and used for the anal-
ysis of both shear and elongational flows. Attempts were made to relate the form of
the damping function and the evaluated parameters of the constitutive equations with
the molecular structure of the polymers.
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Chapter 2

Structure and Fluid Mechanics of
Polymers

2.1 The Random Coil Model

Common polymers such as the polyolefins consist of macromolecules. These are long
chains of repeating groups of atoms connected together by covalent bonds. It is in-
frequent though that these chains (even those of linear architecture) assume long-
stretched rod-like conformations. In the melt, these macromolecules have the form of
random coils. Following the contour of such a macromolecule is similar to a walk that
changes direction often in a random manner.

The picture of chain molecules as physical embodiments of random walks emerged
in the early 1930’s, during the period when Staudinger’s macromolecular hypothesis
was beginning to gain acceptance. Shortly thereafter, Guth and Mark and Kuhn were
explicitly associating polymer conformations with random walks, thus leading to pre-
dictions relating molecular dimensions to chain length. The concept of the random
walk evolved quickly from a tentative suggestion to the canonical model for flexible
polymers. The random walk still remains the starting point for basic understanding of
the polymeric liquid state.

2.1.1 Random Walks

Flexible molecules permit rotational motions of one bond about another so that a com-
binatorially huge number of configurations is accessible. On length scales much larger
than that of a single monomeric unit, the details of distribution of allowed bond angles
average out, producing a configuration distribution in the melt equivalent to that of
a random walk. Because of their flexibility these macromolecules remain unoriented
or isotropic at equilibrium in the densely packed melt state. Thus for long polymeric
molecules the time-averaged mean-square distance, (EQ) separating one end of the
molecule from the other obeys the random-walk formula

(R?) = Nob* (2.1)
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Figure 2.1: A self-avoiding random walk consisting of 10000 steps in (a) three dimensions and
(b) its projection in two dimensions.

where N is the number of backbone bonds composing the chain and b is an average
bond length. This mathematical description of polymer chains is the simplest model of
an ideal polymer and it is known as the freely jointed chain model with constant bond
length and no correlations between the directions of neighbouring bond vectors. It
resembles that of a random walk, where each vector corresponds to a step in the walk
and each step direction is independent of the location and direction of all other steps.
The contour length of the whole chain corresponds to a full path of a random walk (see
Fig. 2.1).

The bonds in a real polymer chain, however, do not have complete rotational free-
dom. Because of bond angle restrictions there are correlations between the orienta-
tion of one bond and that of its near neighbours. Since bond angle restrictions make
the average coil size (R*) more expanded than would otherwise be the case, a sim-
ple unified description is provided by the equivalent freely jointed chain model. The
equivalent chain has N freely-jointed effective bonds of length bx. This effective
bond length b is called the Kuhn length or Kuhn statistical segment. These segments
are considered to be made up by a number of monomer units. The mean-square end-
to-end distance of the equivalent chain, is,

(R?) = Ngb% = Cou Ngb? | (2.2)

where C is called Flory’s characteristic ratio and it is a relative measure of the flexi-
bility of the chain. For a freely jointed chain, C's. = 1. For real chains, the bond angle
restrictions lead to values of C' in the range of 5 - 10. Therefore, the equivalent freely
jointed chain has,

L2
Ng = —— 2.3
A (2.3)
equivalent bonds (Kuhn segments) of length,
Coo Nob?
b = —207 (2.4)

L )
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where L = Ngbg is the contour length of the chain.

The root-mean-square end-to-end distance of a flexible polymeric macromolecule
, 1/2 . 1/2 . . ,
is (R?) /2 _ Ng'?by. A quantity related to (R?) / is the radius of gyration, R,
which is defined as the root-mean-square average distance separating a monomer
from the centre of mass of the chain. For a flexible chain this is given by

2\1/2
R, = <R\/>6 . (2.5)

2.1.2 Conformational Distributions

At equilibrium, the distribution of conformations of polymeric chains, in the melt, is
given by a set of random walks, or equivalently, by the conformations of the freely
jointed chain. If one end of the freely jointed chain with N links, each of length,
bk, lies at the origin, then the probability, wodR?’, that the other end lies at a position
between R and R+dR is given by a Gaussian function:

3 3/2 3R-R
o - () o {-avat )

The second moment of this distribution function is the mean square end-to-end dis-
tance of the chain, that is,

(2.6)

(R?) = /R%/)O(E)dRS = Nkb% , (2.7)

where the integration is done over the whole space. The root-mean-square end-to-
end separation distance of an undistorted coil scales with molecular weight according

to a power-law, (Ez>1/2 o« MO-3,

2.1.3 The Hookean Spring

The elasticity of flexible polymer molecules can be predicted from the configuration
distribution function, 1o (R). Suppose the ends of the polymer chain are held fixed so
that the end-to-end vector of the chain is B. The number of internal configurations,
), of the chain that satisfies this constraint is,

Q= co(R) (2.8)
with ¢ a constant. The entropy of the chain, .S, then is defined as,
S = kglnQ, (2.9)

where kg is Boltzmann’s constant. One can show [57] that in order to pull one end
of the chain to increase the end-to-end distance, R, the force we need to exert to
overcome the entropic spring force of the chain, is

R
F= %BT(NTibi() , (2.10)
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where T is the absolute temperature. An increase in the separation distance, R, re-
duces the number of allowed configurations; the macromolecule resists this action
with a force proportional to R. A Gaussian chain therefore, acts like a Hookean spring.

2.1.4 GPC Characterization of LCB in Polymers

Gel Permeation Chromatography, (GPC) is a type of Size Exclusion Chromatography,
(SEC) that separates analytes on the basis of size. Separation occurs via the use of
porous beads packed in a column. The technique is often used for the analysis of poly-
mers and allows for the determination of the polydispersity index (PDI) as well as the
molecular weight averages (i.e. M,,, M, and M,,).

A branched molecule has a smaller hydrodynamic volume than a linear molecule
with the same molecular mass. Smaller molecules can enter the pores more easily and
therefore spend more time in these pores, increasing their retention time. Conversely,
larger molecules spend little if any time in these pores and are eluted quickly. The
decrease in size is described by the structure parameter or molecular size ratio, gs,
defined as

<E§>br

2
<E9>lin

gS = ’ (211)

where (Ef)m, is the mean square radius of gyration of the branched molecule and
(E?])lm is the corresponding quantity for a linear molecule with the same molecular
mass in the unperturbed state. This in turn is related to [69]

gy= o ang g = grosos, (2.12)

[n]zm

where [n],,. is the intrinsic viscosity of the branched sample and [1)],;,. is the intrinsic
viscosity of a linear sample of the same molecular mass distribution. Intrinsic viscosity
measurements may be performed, e.g., by installing an Ubbelohde viscometer on-line
with the SEC-equipment. Lecacheux et al. [16] has proposed an exponent of 1.2 in Eq.
2.12, while Kulin et al. [34] assumes that all possible values of the exponent should fall
within the limits of 0.5 and 1.5.

The theory of Zimm and Stockmayer [8] is often used in order to translate the GPC
data into a measure of branching content in the melt. The following analytical expres-
sions are used in the case of (3-functional) random branching

3/ 7\ 5
R - 2.1
gs 2<Bn) 5B, (2.13)
BA\Y? 4p,]1 "
gs = (1+7"> + 9; : (2.14)

where B,, is the branching number or weight average number of branch points per
molecule, in the melt and 7=3.14159. One more analytical expression of this kind (3-
functional random branching) is frequently encountered

6 Nw Ny + 1
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where n,, = 1/(2/B,,) + 1. The branching number, B,, may then be expressed as
[34]
B, = My . (2.16)

The ratio of number of branch points per molecule to molecular mass is expressed by
Ap [34]. It corresponds to the number of branch points per unit molecular weight and
can be used to evaluate the average molecular weight of a branch [9]

1
My =—. 2.17
b= o (2.17)
Finally, the branching frequency [34] can be evaluated through
B,
LCB/(1000C) = 1000MOM , (2.18)

w

corresponding to the number of branch points per 1000 C atoms and M, is the molar
mass of the monomer.

2.2 The Stress Tensor

The total stress tensor, z in a flow field is written as the sum of the isotropic pressure,
pl and the extra or viscous stress tensor, g,

T'=-pl+go (2.19)

It is very often the case that the principle of conservation of angular momentum for
isotropic materials is invoked. This in turn implies that ¢ is symmetric, thatis o;; = 0;.
Polymeric melts are highly disordered liquids, thus they are considered isotropic at
rest. It is also very frequent, when dealing with fluid mechanics, that the polymeric
liquids be treated as incompressible fluids. Any deviation from the simple Hookean or
Newtonian behaviour due to nonlinear dependence on deformation or deformation
history are usually much greater than the influence of compressibility.

Constitutive equations are usually written in terms of g. However, experimentally
we can measure only forces which when divided by the area give components of the
total stress. This presents no problem for the shear stress components because T;; =
0;; but the normal stress components will differ by p because T;; = —p+ 04;. Normal
stress differences are used to eliminate p since

Ty —To = 011 — 022 Ty —T33 = 092 — 033 (2.20)

For the special case of simple shear flow we call T1; — T = N1 and Thy — T33 = No
as the first normal stress difference and second normal stress difference respectively.

2.2.1 The Polymer Stress Tensor

In the special case of a polymeric liquid, the polymer contribution to the extra stress
tensor (assuming the Gaussian chain assumption for the macromolecules in the fluid)
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Figure 2.2: A fluid element (a) before and (b) after a general three-dimensional deformation
seen from a Lagrangian point of view (see Eq.2.22).

results from the Hookean entropic spring force idea. To obtain the polymer contribu-
tion to the extra stress tensor, g, for a fluid containing a large number of springs, a
summation is carried out over the forces exerted on all different springs. For Gaussian
chains, one may obtain [57]

(RR)
(Nkbyk)

where v, is the number of springs per unit volume. Thus, viscoelastic stresses are
produced by distortions of the distribution of polymer configurations. Mechanical
stresses can therefore be attributed to anisotropies in molecular orientations, due to a
finite macroscopic deformation. In simple shearing of polymer melts, for example, the
primary normal stress difference, N1, is positive, implying that there is a higher degree
of orientation in the direction of flow. The second normal stress difference, N5, in en-
tangled melts of flexible polymer chains, is usually a factor of 3-10 times smaller in
magnitude than N; and negative in sign, implying that the orientation in the velocity
gradient direction is depleted of polymer orientations relative to the vorticity direction
[57].

a =3kpTv (2.21)

2.3 Finite Deformation Tensors

As mentioned in the previous section, the state of stress at any point in a material is de-
termined by using the stress tensor. In an analogous way, a mathematical description
of arbitrary deformations is needed in order to determine the deformation history of
the material. The mathematical notation followed and the corresponding definitions
are those recommended by IUPAC and can be found in Kaye et al. [1].

Considering a lump of fluid material, let a point in it at some past time ¢’ occupy
position z’ and let 0z’ be a vector embedded in the fluid element, with one end of
the vector (the tail) at position 2’ and the other end (the vector’s head) at position
x’ + dz’. Between times t' and ¢, the vector is stretched and rotated along with the
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fluid element in which it is embedded, and at time ¢ the embedded vector is éz. For a
general three-dimensional deformation
ox; . .
E;; = a/—},z,j =1,2,3 (2.22)
zj
and the ratio dz/z’ is the stretch ratio. The tensor E contains information not only
on the stretching but also on the rotation of the fluid element in each of its three
dimensions. This is the Lagrangian description in which the reference configuration
is the configuration at ¢’ = 0. The inverse tensor I = £—1 is usually called the
deformation gradient tensor
or’
F; = 8:):1- ,,7=1,2,3 (2.23)
J
This is the Eulerian description in which the current configuration is taken as the refer-
ence configuration. Since material response is determined only by stretching or rate
of stretching and not by a solid body rotation, we would not expect the rotation to
change our results. This principle is called frame indifference. In order to remove the
rotation from the gradient deformation tensor, we introduce a new tensor, called the
Finger tensor

3 0x; Ox
-1 _ i ory oo
Gy = Z oz, : ax;’l’j =1,2,3 (2.24)
k=1
which is the inverse of the Cauchy tensor
3
or, Ox
Cij = B =1,2,3 2.25
! kz—l 31”4 8Ij 105 e ( )

In tensor notation 0231 =FE- QT. The Finger tensor describes the change in shape
of a small material element between times t’ and ¢, not whether it was rotated during
this time interval.

So far, deformation has been defined in terms of extension, the ratio of deformed
to undeformed length, A=L/L. Thus when deformation do not occur, the extensions
are unity and C~! = I. Frequently deformation is described in terms of strain, the

ratio of change in length to undeformed length

L—-L
When there is no deformation, the strains are zero. A finite strain tensor can be defined
by subtracting the identity tensor from g_l thus

¢ =A—1 (2.26)

u=c'-1 (2.27)

2.4 The Rate of Deformation Tensor

Along with the stress and deformation gradient tensors, the velocity gradient in any
direction at a point in the fluid must be defined. Since the deformation gradient tensor



50 CHAPTER 2. STRUCTURE AND FLUID MECHANICS OF POLYMERS

determines the relative displacement between points in a fluid element, the velocity
gradient tensor determines the relative rate of displacement. The velocity gradient
tensor represents the instantaneous rate of separation of points at present times and
results from taking the limit as the past displacement is brought up to the present
leading to

8’[}1‘ ..
axj b 7/7 j

In tensor notation L = (Vu)T. The velocity gradient Vv describes the steepness of
velocity variation as one moves from point to point in any direction in the flow at a
given instant in time. The rate of deformation tensor, 2D is a symmetric tensor and is
defined as

Lij =

=1,2,3 (2.28)

2D = (Vo)" + Vo (2.29)

The vorticity tensor, 2W is not symmetric and is defined as
2W = (Vo))" — Vo (2.30)
From the above definitions we conclude that

L=D+W=(Vu)" (2.31)

2.5 The Newtonian Fluid

In the Newtonian view “resistance” in flow depends on the “velocity by which parts
of the fluid are being separated”. This “resistance” means local stress whereas “ve-
locity by which parts of the fluid are being separated” means velocity gradient or the
change of velocity with position in the fluid. The proportionality between them is the
viscosity or “lack of slipperiness”. The rate of deformation tensor, 2D is the proper
three-dimensional measure of the rate by which the parts of the fluid are being sepa-
rated. Thus using ¢ and 2D one can formulate an appropriate tensor relation between
those tensors o

ag=mn2D (2.32)

In terms of the total stress
T =—pl+n2D (233)

In these expressions the dilatational term has been omitted since polymeric melts are
often treated as incompressible fluids.

Although polymeric melts are generally treated as non-Newtonian liquids, many
problems in polymer processing are initially solved using the Newtonian assumption,
because these solutions provide simple results that help gain insight into the nature
of the process as well as quick, rough, quantitative estimates. Yet, for an accurate so-
lution in polymer processing, the non-Newtonian character of the material must be
considered. To proceed, one must replace Newton’s constitutive equation with some
new constitutive “law”, that is, one that is mathematically tractable and yet appro-
priate for the complex fluid whose flow one wishes to analyse. This new "law” must
then be solved along with the momentum balance and mass balance equations. The
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Figure 2.3: A fluid element under (a) uniaxial extension and (b) shear deformation. The uniaxial
extensional rate across the “1”-direction is defined as é = v1 /4z;, whereas the shear rate across
the same direction as % = 1 /da,.

methods required to solve such equations depend on the mathematical structure of
the constitutive law needed to represent the complex fluid.

2.6 The Generalised Newtonian Fluid

The Newtonian constitutive equation is the simplest rheological equation of state that
describes accurately the rheological behaviour of low molecular weight liquids and
high polymers at very low shear rates of deformation. However, the viscosity can be a
strong function of the rate of deformation for polymers and complex fluids.

The general viscous fluid model assumes that the stress depends only on the rate
of deformation. Expanding the Newtonian constitutive relation in a power series and
using the Caley-Hamilton theorem one gets

T = —pI + (I Lop, I1155)2D + o (ITop, IT15p)(2D)° (2.34)

where 171 and )5 are scalar functions of the invariants of 2D. This constitutive equation
is also known as the Reiner-Rivlin fluid [15]. The Newtonian fluid is simply a special case
with 01 (Ilop, I1I5p) = 7 (constant) and 1y = 0. The second term, 7 gives rise to
normal stresses in steady shear flow, that is N; = 0 and Ny = 772ﬁ2.

These predictions are not in qualitative agreement with experimental observa-
tions. In steady simple shear flow nearly all fluids that exhibit normal stresses show
a positive normal stress difference N7 and a much smaller, typically negative second
normal stress difference N5. Since the 1y term gives qualitatively the wrong result, it
is usually discarded. Therefore, the general viscous fluid reduces to

z = —p£+ ﬂl(IIQD,IIIQD)QD

(2.35)

In simple shear flows, 11, = 0, thus only the dependence of n; on Ilsp is usually
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kept and the generalised Newtonian fluid is further reduced to

2 = —p£+ nl(IIQD)QD or g = 27]1([[2D)D (236)

2.6.1 Power Law

The most widely used form of the general viscous constitutive relation is the power
law model

e = DR(2D;5) (2.37)

035 = mp‘IIQD

This model is most often applied to shearing flows. The absolute value of the second
invariant of 2D becomes |IIsp| = 42, thus for steady shear the power law gives
0192 = 091 = mpﬁ'”l’ and

m = myiyme Y (2.38)

with no other stress components. The m,, parameter usually represents a function of
temperature. One obvious disadvantage of the power law is that it fails to describe
the low shear rate region. Since n,, is usually less than one for most polymeric melts
that show shear thinning behaviour, at low shear rate 7; goes to infinity rather than to
a constant value, 7.

2.6.2 Cross Model

In order to add a Newtonian plateau at low shear rates, the Cross model has been
proposed

M =N _ 1

M~ Teo 1+ (K2 |[IIzp|)* ~ "

(2.39)

Once 11 > 7 for the steady simple shear flow, the Cross viscosity model reduces to

7o

m=

The parameter K. depends on the critical shear stress * at which 7, transitions from
the Newtonian plateau 7 to the Power law regime.

Various other viscous models have been proposed (i.e. Yasuda, Carreau, Ellis etc.)
and these are thoroughly reviewed elsewhere [15, 79].

2.6.3 Extensional Thickening Models

Viscosity measured in extension can be qualitatively different from that measured in
shear. In contrast to the steady simple shear flow where |IIrp| = 42 and | [T I;p| = 0,
in uniaxial extension |IIop| = 3¢2 and |I11,p| = 2¢% is nonzero. However, several
models that only depend on 2D or 2W have been proposed and are thoroughly pre-
sented in the book of Macosko [15].
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2.6.4 Temperature and Pressure Dependence of Viscosity

Temperature dependence of the viscosity can often be as important as its shear depen-
dence for non-isothermal processing problems. For all liquids, the viscosity decreases
with increasing temperature and decreasing pressure. A useful empirical model for
both effects on the limit of low shear rate is

no = Ky exp (b1T) exp (a1p) (2.412)

This equation is valid over a temperature range of about 50 °K and small pressure
changes of the order of 1 kbar for polymers. Typical values of b; range from -0.03 °K~!
for polyolefins to -0.1 °K~! for polystyrene and a;=1-4 kbar—! for the same materials.
A relation that is valid over a wider temperature range is the Andrade-Eyring equation

E
= Ksexp{ — 2.42
7o 2 €Xp { RT} (2.42)
Polymer melts obey this equation at temperatures well above their glass transition.
The flow activation energy, E, ranges from = 25 kJ/mol for PE to ~ 60 kJ/mol for PS
and =~ 85 kJ/mol for PC and PVC.

2.7 Characterisation of Viscoelasticity

Polymeric fluids are not Newtonian or ideal fluids. They show an intermediate be-
haviour between ideal solids and ideal liquids. That is, except their viscous character
they also show considerable elasticity. To evaluate their elastic and viscous character
one often conducts small angle oscillatory (dynamic) shear measurements and shear
step strain experiments.

2.7.1 Linear Dynamic Measurements

During dynamic measurements the sample is deformed sinusoidally in shear, in an
oscillatory mode, and the resulting stress is monitored as a function of time. The strain
amplitude of the oscillations is kept sufficiently low so that the melt does not show an
non-linear behaviour

~v = 7o sin(wt) (2.43)

The stress also oscillates sinusoidally at the same frequency but, in general, it is shifted
by the phase angle, 4, with respect to the strain wave

g =0y sin(wt + (5) s (244)

where w is the rotational frequency of the applied deformation.

For Newtonian liquids § = 90°. Ideal elastic solids show no phase angle hysteresis,
6 = 0°. The data of the viscoelastic fluids are analysed by decomposing the stress wave
into two waves of the same frequency, one in phase with the strain wave and one out
of phase with this wave, thus,

o =0 +0" =ajsin(wt) + o cos(wt) . (2.45)
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The tangent of the phase angle is defined as

1"
tand = 20 (2.46)
%0

This decomposition suggests the definition of two dynamic moduli: the in-phase stor-
age or elastic modulus; and the out-of-phase viscous or loss modulus respectively:

G == (2.47)
Yo
1

q" =20 (2.48)
Y0

Then the resulting stress and the tangent of the loss angle may be rewritten in terms
of these two moduli:
o = |G sin(wt) + G” cos(wt)] (2.49)
o
The total response of the material to this time dependent flow is described by the
complex modulus, G* = G’ + iG”; its magnitude is:

7 =2 =Vaeriar, (2.51)

Yo

tand =

(2.50)

The energy per unit volume dissipated per cycle of the sinusoidal deformation is

t 27"/w
/ o: Ddt = / ofdt = G2 . (2.52)
0 0

The shear strain rate is the derivative of strain with respect to time. For the sinusoidal
deformation this becomes:

d
4= d;ty = ow cos(wt) = g cos(wt) . (2.53)
The dynamic viscosity and the elastic part of the complex viscosity are defined as:
" G//
=20 (2.54)
Yo w
/ G/
g =20 - (2.55)
Yo w

while the magnitude of the complex viscosity becomes

G*
|n*| _ /77/2 +77//2 — |w | ) (2.56)

The above equations have been used for the characterisation of the viscoelastic be-
haviour of the materials tested in the present work at the limit of small deformations.
But this characterisation is not enough, as one needs to probe also the non-linear char-
acter of the melts at larger deformation, i.e. in flow.
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2.7.2 Non-linear strain dependence

The small amplitude dynamic experiments measure the small deformation behaviour
of the material. As it will be extensively described below, at large deformations poly-
mers may show non-linear behaviour (damping of the stresses). That is, the stresses
needed for these deformation may be lower than what linearity, as measured by small
amplitude dynamic experiments, would dictate.

The non-linearity of the stress - strain - rate of strain relations is usually given by
the damping function. This will be defined in detail in Section 3.4. It suffices to state
here that it describes the weakening of the resistance of the material to deformation
as the deformation itself (-y in shear flow or ¢ in elongational flow) increases above the
linearity limit.

The method to obtain information about the non-linear viscoelastic character of a
material is through single step-strain and stress relaxation experiments: A shear defor-
mation of magnitude ~ is applied instantaneously to the material and kept constant
in time, while the stress response of the deformed material is monitored as it relaxes.
The nonlinear shear relaxation modulus is defined as:

o12(%, 7
G(t,70) = Z2L70) (2.57)
Yo
The ratio of the nonlinear shear relaxation modulus over G (t) gives a measure of
the deviation of the behaviour of the material from the linear:
G(t,7)
h(v0) = (7~ - (2.58)
Go(t)
This ratio is called damping function and it should be only a function of the deforma-
tion. It has values < 1 where the equal sign holds for linear materials and very low
values of deformation. Thus, the relaxation modulus is given by the product of the
linear part, which is a function of time, G (t), and the deformation dependent h(7):

G(t,7) = h(y)Gol(t) . (2.59)

In practise, the damping function is evaluated by conducting step-strain and stress
relaxation measurements at different values of strain, v;, and measuring the differ-
ences between the resulting curves G(;,t) and the curve at very low value of the
strain vq.

The same experiment may be done also in elongational flow but this is much more
difficult to implement. This gives:

E(t7 60)

h(eo) = o) (2.60)

where F is the extensional relaxation modulus.

2.7.3 Simple shear flow

Steady state shear flow at a constant shear rate, g, is very useful experiment to gain
information both on the viscous character of the fluid and on its elasticity. This flow
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is usually implemented between the cone and the plate apparatus, described in the
experimental section. This geometry warrants the constant shear rate everywhere in
the flow field.

The general form of the stress tensor, g, in such a flow is:

o1 o120
g: 0921 022 0 . (2.61)
0 0 033

Since this is essentially a 2D flow with velocity in the “1” direction and velocity gradient
in the “2” direction, the symmetric rate of strain tensor, ¥, is:

coF

0 0
5= |4 0l . (2.62)
= 0 0

Thus, the shear stress 015 = 17g is found by measuring the torque needed to
rotate the cone. Conducting these measurements at different shear rates we can eval-
uate the viscosity of the fluid as a function of the shear rate.

For Newtonian fluids there is no other component of the stress tensor for this flow,
except o15. For viscoelastic fluids, however the stresses 011, 025 and o33 are not zero.
The stress differences N1 = 011 — 092 and Ny = 099 — o033 are called primary and
secondary normal stress differences or normal forces. N, results in a force pushing the
upper plate/cone. It is evaluated by measuring this force in experiments at different
shear rates.

The existence of non-zero normal forces is a characteristic of viscoelasticity. The
shape of the function N () is often used to test the proposed rheological equations
of state.

2.8 Balance Equations in Newtonian Flow Fields

The balance equations can be formulated over a specified macroscopic volume, such
as an extruder, or a microscopic volume taking the form of a differential field equation
that holds at every point of the medium. In the former case, the balance holds over
the extensive quantities of mass, momentum and energy whereas in the latter case,
it holds over their intensive counterparts of density, specific momentum and specific
energy. In the microscopic formulation the molecular nature of matter is ignored and
the medium is viewed as a continuum [79].

2.8.1 Mass Balance

The macroscopic mass balance equation reads as

g/pdV —&—/py-gdS =0, (2.63)
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where V' denotes the control volume and S the control surface of integration, u is
the unit vector normal to the surface of integration and p the density of the fluid.
The mathematical statement of the conservation of mass in the case of any arbitrary
control volume in space yields the equation of continuity

Ip

LAV =0 2.64

i pr =70, (2.64)
where V is the vectorial operator known as del or nabla. This form states the mass
conservation principle as measured by a stationary observer. The partial derivative 9/a¢
is evaluated at a fixed point in space and this is referred to as the Lagrangian point of
view. It can be rewritten in terms of the substantial derivative as

Dp

o =1V, (2.65)
where P/pt = 9/at + v - V. In this latter form states the conservation principle as
measured (reported) by an observer who is moving with the fluid. This is referred to as
the Eulerian point of view. In the case of incompressible fluids, the density is constant,
that is it does not change with time or spatial position and therefore the equation of
continuity reducesto V - v = 0.

2.8.2 Momentum Balance

The macroscopic linear momentum balance equation reads as

ﬁ/ pvdV +/pw-@d5 =F,+IF,, (2.66)
ot Jy s

where ', are the body forces such as gravitational force and F', the surface forces or
viscous forces that are acting on the control volume. The mathematical statement of
the conservation of momentum in the case of any arbitrary control volume in space,
yields the equation of motion

ov

p§+py-Vy:V-£+pg (2.67)
or in terms of the substantial derivative
Dv
—=V-T , 2.68
Py T+ pg (2.68)

which is recognised as Newton’s Second Law. The equation of motion is very impor-

tant in that it gives rise to another important equation in fluid mechanics. Substitut-

ing Newton’s constitutive equation into the equation of motion, one gets the Navier-
Stokes equation

ov

Port

in Lagrangian viewpoint, or

+pv-Vo=—-Vp+nViu+ pg (2.69)

Dv

U 2
== 2.70
Py Vp +nV-u+ pg (2.70)
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in Eulerian viewpoint. The symbol defined as V2 is called the Laplacian. In these
forms the Navier-Stokes equation holds for Newtonian fluids and incompressible flows.
Polymer processing flows are always laminar and generally creeping type flows. In the
latter case, viscous forces predominate over forces of inertia and acceleration, thus
the Navier-Stokes equation reduces to

v
pop =~V +nViutpg, (2.71)
whereas in the former case of negligible viscosity, reduces to

a
P ot

which is the well-known Euler equation.

+pv-Vu=-Vp+pg, (2.72)

2.8.3 Energy Balance

Polymer processing operations are non-isothermal. The deforming viscous polymer
melt constantly undergoes heating by internal viscous dissipation. Therefore we need
to account for non-isothermal effects via appropriate equations. The macroscopic total
energy balance equation reads as

dFE 0 : ;
E‘&/Vpedv +/Spey~yd5' =Q+W, (2.73)

where e is the total specific energy or energy per unit mass, Q is the total rate of heat

added to the control volume through the control surfaces and E is the total rate of
work done on the control volume through the control surfaces (including gravity). In
differential form the total energy balance equation is formulated as

B VetV gtV Tou-pgeu, (2.74)
where ¢ is the local heat flux and g is the gravitational constant. It is important to
notice that the macroscopic energy balance gives rise to important equations such
as the Bernoulli equation and the thermal energy equation which coupled with the
mass and momentum conservation relations provide the mathematical structure for
the study of polymer processing flows. Solutions of such problems is complicated by
the fact that viscosity also depends on temperature and thus shear heating can change
the velocity profile. Then the energy and momentum equations are coupled through
the temperature-dependent viscosity.
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Constitutive Equations for
Polymer Melts

3.1 Linear Viscoelasticity

When polymeric materials are loaded in shear or extension an instantaneous defor-
mation, as expected for a Hookean solid, is followed by a continuous, time dependent
deformation or “creep”. When the load is removed, part of the deformation is re-
covered instantly, more is recovered with time, while a small amount is dissipated, in
other words, not recovered at all. This time-dependent response is called viscoelastic-
ity. Another common way to measure the phenomenon is by stress relaxation. When
a purely viscous liquid is subject to a step increase in strain, the stress relaxes instantly
to zero as soon as the strain becomes constant. An elastic solid subjected to the same
deformation, would show no relaxation. However, that is not the case for polymeric
liquids; in such systems the stress relaxes in an exponential fashion of the form

o(t) = opexp (j) , (3.1)

where 7 is commonly referred to as the relaxation time of the material under consid-
eration. If we convert stress relaxation data to a relaxation modulus

Gy = 20 (3.2)

all the data for small strains, typically v < v, =~ 0.5 for polymeric liquids, fall on
the same curve. This linear dependence of stress relaxation on strain is called linear
viscoelasticity.

Another concept that is closely tied to that of elasticity, is the concept of “memory”.
A material that has no memory cannot be elastic since it has no way of remembering
its original shape. Hence fluids exhibiting elastic properties as well, are often referred
to as memory fluids.

59
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3.2 The General Linear Viscoelastic Model

In an attempt to model experiments on viscoelastic solids, Boltzmann suggested that
small changes in stress equal small changes in the modulus times the strain

do = ~vdG . (3.3)
A new function, the memory function, can be defined as the time derivative of G(t)

u(t) = —%(f) : (3.4)

Since the relaxation modulus decreases with time, the derivative will be negative. Thus
the minus sign was added to make p(t) a positive function. Substituting this expression
for the memory function in Eq. 3.3 gives

do = —p(t)y dt . (3.5)

If the relaxation modulus and, thus, the memory function depend only on time, we
can make up any larger deformation (but deformations still within the linear range of
the material) by summing up all the small deformations. This can be expressed as the
integral over all past time

o t
/do— =0=- / pu(t — )y dt", (3.6)
0 —o00

where t’ is the past time variable running from the infinite past —oo to the present
time t. This summation integral over all past times till present, is commonly referred
to as the Boltzmann superposition principle.

In an analogous way, we can write the model directly in terms of the relaxation
modulus. Considering a small change in stress due to a small change in strain

do=Gdy = Gi% dt = G¥dt (3.7)

and performing the integration

o t
/da =0= / G(t -ty dt". (3.8)

0

Thus, the stress is an integral over all past times of the relaxation modulus times the
rate of strain. This is the form that is most frequently used because G(t) can be mea-
sured directly.

The form of the measured relaxation modulus suggests an exponential decay func-
tion

G(t) = Gpexp (T) , (3.9)
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where T is the relaxation time of the material. Substituting this expression for the
relaxation modulus into Eq. 3.8 gives the single relaxation or simple Maxwell model

—(t—=t)

t
o= / Goexp {} A(t) dt’ . (3.10)

T

A single exponential term does not fit typical relaxation modulus data very well. A
logical improvement on this model is to try a series of relaxation times, 7; multiplied
by the weighting constants G;

al —t
G(t) = E G exp (T> ) (3.11)
i=1 v

Substituting the above series into Eq. 3.8 gives the general linear viscoelastic model

toy ,
o= Gie tf At dt (3.12)
[ Roee {51

. 3
—00 i=1

Use of the extra stress tensor, gforthe shear stress and the rate of deformation tensor,
2D for the rate of strain in order to accommodate various types of deformations in
three dimensions, leads to

IS}

t
= / G(t—t)2Ddt . (3.13)

In the case of simple shear, there are only two components of 2D, so that 2D5 =
2Dy1 = 7. Thus, the linear viscoelastic model does not predict normal stresses in
steady shear flow, the viscosity is independent of 4 but o2 is time dependent. A fluid
at rest at times ¢’ < 0, is suddenly set into simple shear flow for ¢ > 0. The velocity
gradient in such a case is simply 7, thus,

t
y[GE—t)dt' t'>0
0 .

012 =
0 ' <0
The time dependent shear viscosity at the onset of simple shear flow is defined as
012 t
Ma(t) = ﬁ( ) (3.14)

Substitution of the stress component into Eq.3.14 gives

al —t
M (t) = ; GiTi {1 — exp (7) } : (3.15)

At steady state, the zero shear viscosity is defined

t—o0

N
o= lim nh(t) =Y G . (3.16)
=1
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3.3 The Lodge Equation for a Rubber-Like Liquid

Polymer stresses due to flow or deformation can be calculated using Eq. 2.21 if the
distribution function for that particular flow or deformation can be predicted. In or-
der to make such predictions, a molecular theory of polymer dynamics is required.
Conceptually, the simplest theory is the classical rubber elasticity theory, which ap-
plies to rubbers made up of cross-linked polymer chains. The theory was developed
by Wall, Flory and Rehner, James and Guth and Treloar in the early 1940’s. Cross-link
points were considered to be evenly spaced along each polymer chain. The portion of
polymer between two neighbouring cross-links is called a strand. For any given defor-
mation history it can be shown using Eq. 2.21 that [57, 56, 45]

o=vkgTC ' =GC', (3.17)

where, G = vkgT is the modulus, v, is the number of strands per unit volume and
C~Lis the relative Finger deformation tensor. This equation describes a purely elastic
material, that is, one that dissipates no energy during or after deformation. It applies
to any given volume-conserving deformation with the additional constraint of being
affine; that is the cross-link points are convected with the macroscopic deformation.

Green and Tobolsky (1946) proposed a theory appropriate for molten polymeric
liquids that was inspired from the rubber elasticity theory. This model is based on the
notion that polymer chains that are not chemically cross-linked nevertheless inter-
act with each other to form a transient network. These temporary cross-links or con-
straints are believed to be caused by entanglements; that is, topological constraints
arising because one chain cannot pass through another. When the material is de-
formed, each strand is stretched affinely until it breaks (slips) free from its junction.
After it breaks free another relaxed strand becomes entangled. However, there will
be an amount of strands during deformation that survive without breaking. The con-
tribution do to the extra stress from those strands that meet both of these conditions
leads to the constitutive equation of the form

t

o= /u(tft’)g’l(t’,t) dt', (3.18)

—0o0

where p(t — t') = (G/7)exp{(t' —t)/7} is the memory function assuming only a
single relaxation process and G = vkpT is the modulus of elasticity with v the number
of strands per unit volume. The key assumptions of this temporary network model of
Green and Tobolsky are :

1. The strands are Gaussian (i.e. they follow Gaussian statistics).
2. The strands deform affinely until they break.

3. The strands break with a constant probability per unit time, independent of the
network deformation.

4. The strands re-form as fast as they break in configurations typical of equilibrium.
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Green and Tobolsky recognised that their approach could be extended to multi-
ple relaxation processes. The extension was carried out independently by Lodge and
Yamamoto. However, Lodge gave the clearest derivation of the model with multiple
relaxation modes and the constitutive equation resulting from the molecular model of
Green and Tobolsky has thereby come to be named after him.

The memory function (¢ — t') can accommodate any number of independent re-

laxation processes
N
Gi —(t—1t)
t—t) = — |e —_— . 3.19
plt =) X;(J xp{ - (3.29)

With this choise for u(t — ¢') the storage, G'(w) and loss moduli, G”(w) can be ob-
tained through a Fourier transform integral

w/G sin(wt) dt G" (w w/G cos(wt) dt (3.20)
0 0

leading to the expressions

N N
1
E: 1 T and G"( E: o w2 2 , (3.21)

By choosing a discrete set of values for 7; distributed over a time interval and then
fitting Egs. 3.21 to experimental data for G'(w) and G”(w), the weighting constants
G; can be obtained. The constitutive equation with multiple relaxation modes is the
Lodge equation for a rubber-like liquid. The set of values of 7; and G; are referred to
as the relaxation spectrum. In order to solve Eq. 3.18 for a particular flow history one
must compute the components of the relative Finger deformation tensor, C~! and
carry out the integration. B

In this way, the Lodge equation predicts many of the qualitative phenomena of
viscoelastic flow, including a positive first normal stress difference in shear, gradual
stress relaxation after cessation of flow, and elastic recovery of strain after removal of
the stress. It predicts that the time-dependent extensional viscosity, ng, rises steeply
to infinity whenever the elongation rate, ¢, exceeds 1/27¢, where 71 is the longest
relaxation time. This prediction is accurate for some melts, namely ones with multiple
long side branches. For melts composed of unbranched molecules, the rise in 77;5 is
much less dramatic.

In quantitative detail, Lodge’s equation is often inaccurate. Contrary to experi-
ment, it predicts unlimited growth in elongational viscosity whereas the data must
eventually approach to a maximum value or level off. In steady shearing, it predicts
that both the shear viscosity 712 and the first normal stress coefficient, ¥4, are inde-
pendent of shear rate; in experiments both decrease with increasing . It also over-
predicts elastic recovery. The Lodge equation, thus, overemphasises the elasticity of
viscoelastic fluids.
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Figure 3.1: Frequency dependence of the (a) storage and (b) loss modulus of LDPE “Melt |” at
constant 7'=150°C as represented by a sum of eight terms (see Table 3.1).
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Table 3.1: Spectrum of relaxation modes for “Melt 1”, a LDPE with LCB architecture with M,, =
482 kg/mol, (M., /My) = 28.1, MFI (190/2.16) = 1.33 and E, = 54 kl/mol, determined at T" =
150°C [27].

Mode Number,i 7 (s) G, (Pa)

102 1.00-10°
102 1.80 - 102
10 1.89-10°
10°  9.80-10°
1071 2.67-10%
1072 5.86-10%
10~% 9.48.10*
107* 1.29-10°

oONOOULD WN B

Start-Up of Shear Flow

A simple shear flow with constant shear rate, v suddenly applied at ¢ = 0 and at
constant volume, can be described in terms of the shear deformation v = ~(t/,t)
accumulated between times ¢’ and t and the relative Finger strain tensor C~* (¢, t).
In steady simple shearing (t',t) = #(t — ), and the Finger tensor becomes

1+52(—t)2 At —t)

0
2 _ 4
C_l(t/,t) _ ’7(t 3 ) 1 SI-)

c 0 0 (3.22)

If the sample is completely relaxed in a state of equilibrium until time ¢ = 0 and then
steady shear flow begins at time ¢ = 0, the components of the Finger tensor are

. {1+"y2(tt')2 >0

1+ A2()? <0
1 ¢¥>0
-1 -1
_ _ At —t') t'>0
0121 = 0211 =93. ’ .
y(t) t'<0

Note that for # < 0 the shear rate is independent of ¢’ since the sample is not being
sheared at that portion of the time spectrum. If we define the following relations for
the shear viscosity and primary normal stress difference coefficient

012 011 — 022
Nh=— U= (3.23)

¥ 52
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then it is only a matter of proper integration of Eq. 3.18 to obtain the components
o;; of the extra stress tensor. It is convenient, though, that the integration of the
Lodge equation be performed with a single relaxation mode for the memory function,
wu(t — t'), and then generalise the final result for the multimode memory function.
Calculating the components of the extra stress tensor, o;;, and substituting the results

in Eqs. 3.23 gives
al —t
+
t) = Gl 91l —e — 3.24
niz(t) ; T{ xp(ﬂ_)} (3.24)

Uy (t) = 2§:Gm2 {1 - [1 + (f)} exp (;t)} . (3.25)

It follows from Figs. 3.3 that in the case of the shear viscosity, 77;“2(75), only the linear
viscoelastic start-up curve, and in the case of the primary normal stress coefficient
U (t) only the second order start-up curve are predicted by the theory. No stress or
normal stress overshoot is predicted (see Figs. 3.4). With increasing shear rate, 7, the
measured values of 0}, (t) and ¥y (¢) are increasingly lower than those computed. This
is due to the shear viscosity, 771+2(t) and the primary normal stress coefficient, ¥ (¢),
which are predicted by this theory to be independent of shear rate, while experiments
indicate that they are decreasing functions of the rate. The strong dependence of
;5 (t) and Wy (t) on the shear rate indicates a change of the structure of the temporary
polymer network.

Start-Up of Extensional Flow

A uniaxial elongation with constant extension rate, ¢, suddenly applied at ¢ = 0 and at
constant volume can be described in terms of the stretch ratio A\ = A(¢/,¢) accumu-
lated between times ¢’ and ¢ and the relative strain Finger tensor C~*(#',t). In steady
uniaxial extension \(#',t) = exp {¢(t — t')}, and the Finger tensor becomes

exp {2¢(t — ')} 0 0
g_l(t/’ b= 8 o {—ﬁét - exp {—é(zt -t} (3.26)

Suppose the sample is completely relaxed in a state of equilibrium until time ¢’ = 0,
and then steady uniaxial elongation begins. The components of the Finger tensor are

. {exp{Qé(t—t’)} >0

- exp {2¢t} t' <0

22 — L33 —

I {exp{é(tt’)} >0

" exp {—ét} t' <0

Note that for ¢ < 0 the stretch ratio A(¢', t) = exp (ét), is independent of ¢/, since
the sample is not being elongated at that portion of the time spectrum. Substituting
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Table 3.2: Spectrum of relaxation modes for “Melt I”. The ten constants 7; and GG; were deter-
mined by curve fitting the elongational data at ¢=0.001 s—* [43].

Set A Set B
Mode Number,i 7;(s) G, (Pa) 7 (s)  G; (Pa)
102 1.903-10° 10°  1.601-10!
10! 2.306 - 10 102 1.926 - 102
6.241-10% 10! 1.723 - 103
107! 3.299-10* 10° 6.640 - 103
10=2 3.720-10* 10~! 3.972-10%

U P WN -
—
<

the Finger tensor into Eq. 3.18 and integrating, one can obtain the components o;; of
the extra stress tensor in the case of extensional flow

N

N 7(1 - QGTZ)t Gl 7(1 - 267’1)15

o11(t, €) = ; {Gi exp [ . + o, 1—exp —
(3.27)

(14 ém)t G; —(14ém)t
(t, 1-— _ .
wt=F {22 oo (22
(3.28)
An extensional viscosity is then defined as

nh(t,e) = lon —onf(t,6) (3.29)

é
Note that if € > 1/27y, 011 diverges exponentially as time increases. If, however,
¢ < 1/27y, a steady state is reached in which

N
. G
(&)=Y g (3.30)
i=1 !
N
. Gi
CEDY e (3.31)
i=1 ¢

and the uniaxial extensional viscosity in this steady state is

G;1;
= . 3.32
(€)= 3 Z (1—2ém)(1 4 €ér) ( )

In the limit of small extension rates, (¢ — 0), the Trouton viscosity assumes the form

N
ni(t,é —0)=3 Z Gy {1 —exp (Tt) } (3.33)

=1
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and the Trouton limit is approached for the steady state elongational viscosity
N
e =3y G (3.34)
i=1

A comparison between the predictions of the rubber-like liquid theory of the ex-
tensional viscosity curves produced with the aid of the constants G; and 7; of “Set B”
from Table 3.2 and the eight constants of Table 3.1 is given Fig. 3.2. It can be seen that
only differences of minor importance are introduced with the change of the relaxation
spectrum used to infer the prediction curves. The experimenter is free to choose an
appropriate set of constants in order to fit the experimental data and make use of the
theory. However, it has ever since been argued that this arbitrary choice of a discrete
relaxation spectrum with multiple relaxation modes has no direct physical meaning. A
quotation from Laun [27] reveals such a scepticism :

Another disadvantage of the series representation of the memory func-
tion is the fact that the relaxation strengths G; have no direct physical
meaning, because the choice of the ; is arbitrary. However, this repre-
sentation makes it possible to describe the linear viscoelastic behaviour
over a wide range of time scale by means only of a few constants.

The integration of Eqg. 3.18 is simplified in all types of simple deformations examined
and the contribution of each relaxation time to the material functions can easily be
surveyed.

3.4 Non-Linear Viscoelasticity

The time-dependent rheological response of polymer melts in a processing flow is
characterised by a dimensionless number, called the Deborah number defined as

De = T

=TW, (3.35)
temp

where 7 is a characteristic relaxation time of the melt and tep = 1/wortey, = 1/%is
the time scale of the processing flow. This ratio reflects the ability of the macromolec-
ular system to flow like a viscous fluid when De << 1 or respond like an elastic solid
able only to undergo deformation and not flow when De >> 1. Between these two
extremes the rheological behaviour of polymer melts is characterized as viscoelastic.
Since both w and # represent rates of change of deformation it is not surprising that
the viscosity is rate dependent and shear-thinning. The equality between the rates of
shearing deformation, w and + is only valid for some types of polymer melts and it can
be verified through an empirical rule called the Cox-Merz rule.

The time-dependent non-linear behaviour of polymer melts plays an important
role in high Deborah number processes like extrusion through short dies, injection
moulding, calendering, spinning and film blowing, where the material undergoes fast
changes in strain by shear, elongation or a combination of both over a time scale, which
is comparable to the fluid relaxation time. One of the most illustrative methods to
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Figure 3.2: Elongational viscosity, ng(t, €) as a function of time and deformation rate, after
start-up of steady uniaxial extension for the LDPE “Melt I” at T=150°C. Solid lines are the predic-
tions of the rubber-like liquid theory using the 8 modes of Table 3.1 while dashed lines are the

predictions of the same theory using the 5 modes of “Set B” from Table 3.2.

obtain information about the nonlinear viscoelastic character of a material is through

single step-strain in shear relaxation experiments. A shear deformation of magnitude

7o is applied to the material instantaneously and kept constant through time, while

the stress response of the deformed material is monitored as it relaxes. The nonlinear

shear relaxation modulus is defined as

Gy (t,0) = ‘712(7”0) . (3.36)
0

The principle of time-deformation separability suggests that the nonlinear viscoelas-
tic response of polymeric materials should be separated in a time-dependent linear
response that is governed by the memory function, (¢ — t’) and a strain-dependent
nonlinear response that depends only on the magnitude, 7, of the shear deformation
imposed on the material. The strain-dependent damping function is defined as

Got0) | (3.37)

It reflects the deviation of the response of the shear relaxation modulus from the linear
viscoelastic regime. In terms of the temporary network theory, the damping function
describes the gradual dissolving of the temporary entanglements as the material is
stretched to higher magnitudes of shear and is characterized by considerable strain
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softening, that is, h(yo) decreases with increasing y. On the other hand, the tempo-
rary network model and the corresponding Lodge equation suggest no strain softening,
since this theory predicts that h(vo) = 1 for all ~o.

3.5 The Modified Rubber-Like Liquid Model

The constitutive relation derived for the Lodge rubber-like liquid is a valid description
of polymer melt behaviour in the second order fluid limit only and it fails outside this
range, i.e. at higher strains. In the context of the modified rubber-like liquid theory
[45], this failure is attributed to the fact that temporary junction networks disentangle
with increasing deformation, in contrast to the basic assumption of Lodge’s theory that
the deformation has no effect on the formation or dissolution of temporary network
junctions. To account for the change in polymer network structure with increasing
deformation a hypothesis is postulated that there are two independent decay mecha-
nisms for network strands:

1. Thelinear viscoelastic (time-dependent) relaxation, with the probability of a net-
work strand to survive a time difference (¢ — t') being exp {—(t — t')/7}.

2. Disentanglement due to deformation; the probability of a network strand to sur-
vive a relative deformation between times ¢’ and t is proportional to a damping
function, h(Ig-1(t',t), [Io-1(t',t)), where Io-1 and IIo-1 are the first and
second invariant of the relative Finger strain tensor, respectively.

Thus the total probability of a network strand to survive a time difference (¢t — t’) and
a given deformation characterised by the invariants I-1 and IIo-1 is equal to the
product exp{—(t — t')/7} - h (Ig-1,IIc-1). This hypothesis leads to the following
constitutive equation

t
o= /u(tft')h([cq,Ifcfl)gfl(t’,t) dt’ . (3.38)

—0o0

This modified rubber-like liquid constitutive equation is a special form of the Kaye and
Bernstein-Kearsley-Zapas (K-BKZ) class of equations [45]. The function h(Ic-1, [Io-1)
is a deformation-dependent damping function; it describes purely geometrical effects
and it is temperature independent [27].

3.5.1 The Wagner-l Equation

The first analytical expression for the damping function was proposed by Wagner [42]

h(IIp-1) = exp {—n\/uc_l — 3} (3.39)

and was used to model the rheology of the LDPE “Melt I”.
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Shear Stress Relaxation

Using a method of rapid strains, i.e. stress relaxation tests with varying step height
Yo, it is possible to determine experimentally the damping function, h(~o) for a given
polymeric melt. If at time ¢’ = 0 a shear strain of magnitude -y, is applied suddenly and
held constant thereafter, then y(¢',t) = 7o and the Finger tensor for this step-strain
in shear becomes

1+45 7 0
cit )= 1 o], (3.40)
0 0 1

while the components of the relative Finger strain tensor for this particular deforma-
tion history are

_ 1 t'>0
0111 = 2
1+~ V<0
1 ¢>0
Cot =05l =
22 33 {1 ¥ <0
_ _ 0 t>0
0121 = 0211 = ’ .
v t'<0

The invariants of the Finger tensor are
I (t, V) =g (t,t) =3 +77 (3.41)

while ITI--1(t,t') = 1, due to the constant volume assumption. Wagner’s damping
function then takes the simple form

h(vo) = exp (—nvo) (3.42)

and it is a function of the shear deformation, ~g.

In this context, integration of Eq. 3.38 with respect to ¢’ gives exact analytical ex-
pressions for the relaxation of shear stress, o12(t) and primary normal stress differ-
ence, N1 (t) as a function of time

N
o12(t) = o exp(—ny) ; Giexp (j) (3.43)
al —t
Ni(t) = 72 exp(—n7y) ; G;exp (ﬂ) (3.44)

for amultimode relaxation spectrum. Introducing the non-linear shear relaxation mod-
uli, G, (t,v0) and G (t,70) defined by

0'12(75)
Y0

(3.45)

Go’(t7 ’70) =
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Table 3.3: Material parameter, n of the deformation-dependent damping function for commer-
cial polymeric melts of varying molecular architecture and molecular weight distribution at the
corresponding isothermal conditions. Data from Tsenoglou [9].

Sample M, M/M,, T(°C) n
(kg/mol)

LDPE.A2 451 27.5 150 0.134

LDPE.A4 305 30.3 150 0.11

LDPE.A7 268 24.6 110, 150 0.13

LDPE.B2 143 10.2 150 0.14

LDPE.C2 69 7.6 150 0.16
LDPE IUPACA 231 10.0 130, 150 0.18

HDPE.A 181 13.7 140, 150, 0.34-0.38

170
HDPE.B 118 6.1 140,150 0.29
HDPE.C 113 11.2 150 0.28

[o11 — 022 (1)
%
it is obvious that both shear relaxation moduli are equal

Gn(t,v) = (3.46)

a —t
Golt,70) = G (t70) = hr0)G(t) = exp(~n7) 3 Grexp () (3.47)

i=1 v

This result is known as the Lodge-Meissner rule. The time dependence of the non-
linear shear relaxation moduli, G, (t,v0) and Gy (t,7o) is not affected by the shear
strain, o providing a rational justification for the assumption of independent decay
mechanisms in time and deformation for network strands as postulated in the network
disentanglement hypothesis.

The way that G, (t,v0) and G (t, o) are related proves important in testing and
classifying constitutive equations. For models which are based on the Gaussian net-
work assumption it has been proven through Eq. 3.47 that G, (t,v) = Gn(t,70). On
the other hand, it has been suggested [49] that the relation between the two mod-
uli, when examined for a variety of constitutive models, including Lodge’s rubber-like
liguid model, is of the more general form

Gn(t,70) _ tan(Ay) (3.48)

Go(t,7) Ao
where 0.5 > A > 0. The partitioning of the relaxation modulus into a deformation-
dependent damping function and a time-dependent part identical to the linear relax-
ation modulus is therefore assumed to be a simplification of a more concise relation.
The material parameter, n, of the deformation-dependent damping function has
been experimentally determined for several commercial long-chain branched LDPEs
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Table 3.4: Temperature dependence of the damping function for the branched LDPE “Melt
1” determined from shear relaxation modulus measurements for various magnitudes of shear
strain, 7o at the isothermal conditions listed [27].

Sample T(°C) 120 150 210
o h(v0)
5 0.31 0.37 0.29
10 0.14 0.17 0.16
15 0.066 0.093 0.090
20 0.034 0.052 0.056

Melt |

and linear HDPEs studied by Tsenoglou [9] and the results are provided in Table 3.3.
These parameters were obtained by fitting Eq. 3.42 to the data of Tables C.1 and C.2 us-
ing a linear least squares routine. A comparison between the values of the parameter
n corresponding to branched and linear polymeric melts of varying molecular weight
distribution and polydispersity implies that the branched melts show much less damp-
ing in shear than do the linear melts. A theoretical explanation of this reduced strain
softening of the branched melts at large magnitudes of shear strain [9] suggests that
this phenomenon is the result of the complex branched topology of these melts in
direct contrast to polymers that are composed of linear chains.

The temperature invariance of the damping function is demonstrated in the case
of the branched LDPE “Melt I” [27]. Experimentally determined values of h(vy) are
provided in Table 3.4 for three different temperatures and at various magnitudes of
shear strain, 7o. The values of h(v) are quite similar in the whole range of o and for
all temperatures examined, thus demonstrating the invariance of damping in the non-
linear regime of the shear relaxation modulus response. This fact implies that, similar
to the linear viscoelastic response, the shift factor a can be used in the non-linear
regime to describe the influence of the temperature on the non-linear shear behaviour
of melts. Similar conclusions can be drawn out for the melts from Tsenoglou [9] (see
Tables C.1 and C.2 in Appendix C).

Start-Up of Shear Flow

In a simple shear flow, at constant shear rate, , suddenly applied at time ¢’ = 0, the
relative Finger strain tensor and the corresponding deformation history are given by
Eg. 3.22, the invariants of the Finger tensor for that particular flow history take the
form

Io—1(t,t) = Iaa(t,t) =52t — )2 +3, (3.49)

while the constant volume condition, implies that IT15-1(¢,t) = 1. Wagner’s damp-
ing function then takes the form

h(ye,r) = exp(—=nyie) - (3.50)
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Analytical expressions may be derived for the shear stress growth and primary normal
stress coefficient

N

wh(t,5) = Z(lfm) {11 =it mimlewe |-G+ mim D]}
- (3.51)
{1 — {1 + (1 + nyT; — ”%ta + n"yTi)2> (;)} exp {—(1 + nm)(é)} } :
(3.52)

A steady state shear viscosity, 712(7), and a steady state primary normal stress coeffi-
cient, ¥4 (¥) respectively

N
GiTi
Ma() =Y s (3.53)
— (1 + niyr;)?
N
GZ‘T-Q
U () =25 — il (3.54)

are obtained for (1 4+ n47;)(t/7;) >> 1. At small shear rates this is only true for
t >> 71, where 71 is the longest relaxation time of the memory function, u(t — t'),
whereas at high shear rates even for ¢t << 7 a steady state is reached if 4t >> 1/n.

Stress- and normal stress-overshoot are predicted correctly and the predictions for
both the shear viscosity and primary normal stress coefficient agree well with exper-
imental data in the whole range of measurements. Discrepancies occur at very small
shearing rates, ¥ < 0.1 s~1, for both the shear viscosity and the normal stress coef-
ficient. Additional discrepancies occur at very high shear rates, ¥ > 10 57!, in the
case of primary normal stress coefficient only. Finally, for both the shear viscosity and
normal stress coefficient the computed values reach a constant level for 4 > 1 s~ 1 at
long times, whereas no steady state is experimentally achieved.

Start-Up of Extensional Flow

Wagner’s initial proposal, in the context of the modified rubber-like liquid model [46,
44] was a single exponential approximation damping function of the form

h(et) = exp(—me ) (3.55)

with m = 0.30. According to his analysis on the LDPE “Melt 1”, this approximation is
valid for small strains, ¢ < 2. For larger strains, ¢ > 4 the damping function can be
approximated by

1
herw) = — exp(—2erv) (3.56)
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Figure 3.3: Solid lines are the predictions of the Lodge equation with Wagner’s damping function
using an exponent of n = 0.14 for the growth of the (a) shear viscosity, 7]1+2 (t,+) and (b) primary
normal stress coefficient, ¥+ (¢,) as a function of time, ¢ and rate of shearing deformation, 5§
at the inception of steady-shearing flow. Dashed lines in both (a) and (b) correspond to the
predictions of Lodge’s equation in the absence of a damping function.
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Figure 3.4: Solid lines are the predictions of the Lodge equation with Wagner’s damping function
using an exponent of n=0.14 for the (a) shear stress growth, O'E (t,) and (b) primary normal
stress difference, N1(t,+) as a function of time, ¢ and rate of shearing deformation, 7 at the
inception of steady-shearing flow. Dashed lines in both (a) and (b) correspond to the predictions
of Lodge’s equation in the absence of a damping function.
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Figure 3.5: Comparison between the predictions derived from Eq. 3.18 for the Lodge rubber-like
liquid (dashed lines) and the predictions corresponding to Eq. 3.38 of the modified rubber-like
liquid with the damping function of Eq. 3.57 (solid lines) of the elongational viscosity, 17;2 asa
function of time, ¢ and strain rate, ¢ after the start-up of uniaxial extension with constant strain
rate, ¢ for the LDPE “Melt I” at the reference temperature of T=150°C [46, 44].

with a = 0.0025. A combination of both limiting functions leads to

1
—— =aexp(2e,) + (1 — o) exp(meg ) . (3.57)
h(et_’t/)

The Finger strain tensor for that particular deformation history is provided by Eq. 3.26
and the corresponding tensile stress o (¢, €) = 011 (t, €) — o22(t, €) from

t

o(t,€) = h(t) [exp(2ét) — exp(—ét)] G(t) + /,u(s)h(s) [exp(2és) — exp(—és)] ds
0
(3.58)
with s = ¢t — ¢/ and G(¢), the linear viscoelastic relaxation modulus. In terms of the
memory function, i(s) the 8 mode relaxation spectrum from Table 3.1 has been used
and the resulting integral was solved numerically using a simple trapezoid integration
routine.

Nevertheless, because of the difficulty in reaching a steady state in many shear-free
flows of polymeric liquids it is not clear whether 75 exists for all materials and condi-
tions. Examples of unattainability of a steady state include a LDPE melt [46, 70, 28], the
commercial LDPE’s Lupolen 3020D [25, 26] and Lupolen 1840D [26], the PS.290k and
PS.550k polystyrene melts [54] etc. For these melts the characteristic strain harden-
ing behaviour is ending at a maximum in r];g, no steady state is observed even at the
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lowest applied strain rates and ng is decreasing at the highest values of strain. The
question remains of whether what is often considered as the beginning of the steady
state is indeed so or the beginning of the rupture of the sample.

The Considere criterion [24] states that homogenous uniaxial elongation of a vis-
coelastic filament is guaranteed provided the strain is less than that at which a maxi-
mum occurs in the force versus extension curve. The value of the strain at which the
force reaches a maximum is denoted as € and occurs at a relatively early stage of the
deformation. Beyond this critical value of the Hencky strain, the Considére criterion
states that the material cannot be elongated homogeneously and, instead, it may un-
dergo a dynamic failure event. However, even though the material is failing, numerical
simulations of filament stretching rheometers show that measurements of the tensile
force can still be used beyond the ¢ limit to accurately monitor the transient exten-
sional viscosity of the material, under particular considerations [24].

In light of these results, a novel approach in explaining the elongational data of
polymeric melts that is based on first principles [39, 9], is proposed and presented in
Section 3.5.3.

3.5.2 The PSM Damping Function

Besides exponential functions, sigmoidal functions are another type of analytical ex-
pressions that have been used to describe damping functions. Papanastasiou et al.
[3] proposed the PSM (Papanastasiou, Scriven, Macosco) damping function with the

following form:
(0%

p
—r (3.59)
ap + 78

h(v0) =
where o, is a specific parameter, generally found to be smaller for linear polymers than
for branched ones. This was demonstrated through the experimental investigation of
Kasehagen and Macosko [36] on the rheology of commercial linear and long chain
branched Polybutadienes (PB) under single step-strain in shear measurements. Their
results are summarised in Table 3.5 and in the values of the parameter, o, that best
fit the results from the step-strain in shear experiments.

The long chain branched PBs were prepared by Kasehagen et al. [37] by blending
a commercial long chain branched PB with a linear precursor at different proportions.
This procedure resulted in PB melts of varying branching content distributed randomly
in each sample [37, 36].

Both the Wagner-1 equation and the PSM damping function are considered to be
theoretical models of a phenomenological type. Both of these analytical expressions
succeed in predicting the rheology of commercial polymer melts under various types
of deformation, while no information is provided on the theoretical background for
the adjustable parameters that are used to fit the experimental data.

3.5.3 The Power-Law Damping Function

Elongational flow dominates processing technologies such as melt spinning, blow mould-
ing, sheet stretching, tube inflation, vacuum moulding, extrusion coating and foaming.
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Table 3.5: Molecular characteristics for the long-chain branched PB blends studied by Kaseha-
gen et al. [37, 36] along with the PSM parameter, o, that best fits the data from single step-
strain in shear experiments.

M., wt(%) Mo Bn Qp
(kg/mol) (Pa-s)
137 0 12400 0 3.9

10 28400 0.11 65
26 65900 0.30 8.0
39 3400000 0.49 145

Essential for the success of the above applications is choosing materials with substan-
tial elongational viscosity that shows strain hardening, that is, accelerated viscosity
growth beyond a characteristic strain, and high melt strength. The latter is defined
as the maximum force at which a molten thread can be drawn under standard condi-
tions before it breaks. Imparting such properties on the polymer is most effectively
accomplished by broadening the molecular weight distribution (MWD) and/or adding
long chain branches. Either molecular change is manifested with an increase in the
steady-state compliance, Jg [30].

In the context of the temporary network model (Lodge’s rubber-like liquid and its
modified version), the damping function in both shear and elongational flows, (7 +)
and h(ey ;) respectively, is expressed in terms of the first and second invariant of
the relative strain Finger tensor; that is, it describes purely geometrical effects due
to the deformation of the material under consideration. More recent theories, such
as the Doi-Edwards Theory, advance the concept of the temporary network model and
its modified version by introducing such microstructural molecular mechanisms that
prove to be responsible for the macroscopic rheological behaviour of polymeric fluids
under general deformation.

In this modern context the damping function, h, represents the extent of destruc-
tion of the temporary polymer network due to loss of chain entanglement density and
segmental orientation following a deformation. The strain invariants constitute the
objective variables of h because they quantify the average extent of chain retraction
after a sudden deformation, which is the main reason of entanglement dissolution and
loss of segment orientation. This is because +/I~-1/3 physically signifies the average
change in length of a line element in the material, averaged over all possible orien-
tations, \/Ic-1/3 = (dL'/dL). By analogy, \/IIo-1/3 signifies the average area
change on all planes in the material, \/I1c-1/3 = (dA’/dA). For monodisperse poly-
mer chains of uncomplicated linear architecture, the Doi-Edwards molecular-theory
suggests that h is due only to the survival of polymer segment orientation. Then h is
nearly a universal function of the strain invariants /-1 (mainly) and I1o-1.

However, material invariance of the damping function fails in the presence of broad
molecular weight distribution (MWD) and, most notably, in the presence of long chain
branching. This is primarily due to the fact that stress survival after a sudden strain is
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now not only due to segmental orientation but also due to some remaining segmental
deformation. Therefore, the type and degree of branching as well as the branch length
and relative location within the molecule (internal vs. external, i.e., crosslinked on both
ends vs. tethered) improve the connectivity of the temporary polymer network, reduce
entanglement destructibility upon deformation and, therefore, smooth the non-linear
viscoelastic character of the fluid.

A form of the damping function, h, has been introduced by Tsenoglou [4, 14] in
2001; it is an attempt to merge the relative degree to which the aforementioned mi-
crostructural molecular parameters affect the macroscopic rheological behaviour of
polymer melts with the simplicity and practicality of the modified rubber-like liquid
constitutive equation (separable time and strain contribution) in a coherent theoret-
ical framework. This power-law damping function is applicable to a range of degrees
of chain branching and therefore strain hardening and stress-thinning responses. It is

expressed as
h(A) =277, (3.60)

where A = A(t/,t) is the relative or principal stretch ratio. This is a function of the
present, t and past ¢’ time. 0 < 3 < 2is an adjustable parameter that depends on the
branching number, B,, (i.e. the weight average number of branches per molecule in
the melt). Increasing B,, leads to better network connectivity, improved resistance to
strain-induced network destruction and, therefore, to less stress damping and smaller
[ values. For 8 = 0 there is no stress damping and one recovers Lodge’s original
rubber-like liquid model. On the other hand, for 8 = 2, there is complete damping;
the elongational viscosity growth curve increases monotonically and reaches a steady
state value asymptotically.

Tsenoglou et al. have generalised this theory and modelled the nonlinear viscoelas-
ticity under a general deformation flow. The rate of strain tensor, D(¢, ) for an in-
compressible fluid in such a flow, is given by B

e O 0
D', t)=[0 mee 0 , (3.61)
0 0 —(1+mee

where —0.5 < m, < 1 defines the type of extensional flow. For uniaxial extension,
m.=-0.5, for planar extension (pure shear), m.=0 and for biaxial compression, m.=1.
The relative strain Finger tensor, Q‘l(t’, t), is then given by

A2 0 0
crtty=[0 A¥me 0 , (3.62)
- 0 0 )\—2(1+m€)

where A = A(t', t) is related to the Hencky strain, ey = €(t', t) accumulated between
times ¢’ and ¢, through A(t',t) = exp {é(t — t’)}. The first and second invariant of the
relative strain Finger tensor and for different types of extensional flows assume the
following form

T (t,t') = X2 4 A2me 4 \—2(14me) (3.63)

TTooi(t, ) = A72 4 X 72me 4 \2(4me) (3.64)
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Table 3.6: Extracted 3 exponents for the power-law damping function, h = )\fnf, their de-
pendence on extension geometry, m. and polymer species for the eight polymers examined by
Tsenoglou et al. [14].

Sample M, (M /M,,) Extension geometry, m,
(kg/mol) (me=-0.5) (m.=0) (m=1)

PS.50124 250 1.2 0.96 1.65
PS.606 180 2.5 0.66 1.21
IUPAC A 472 24.9 0.48 0.96 1.15
PS.I 398 29 0.80 1.16
LLDPE 158 12.5 1.04 1.17
HDPE.II 152 13 1.30 1.28
HDPE.S 104 5.5 0.85 0.92 0.92
PIB 120 2.2 1.17 1.49 1.33

with eigenvalues equal to the square of the principal stretch ratios. The (Ic-1—11g-1)
difference decreases with m. and is a measure of the alignment strength of the flow;
its relative value is often invoked as the reason of which flows of similar intensity but
different geometry generate dissimilar stress response.

Both extension geometry and molecular structure affect the extent of melt strain
damping. Deformations of similar magnitude but of different m,. may differ in their
ability of network connectivity destruction, either through extinction of molecular as-
sociations or loss of segmental orientation. The intensity of strain hardening follows,
in general, the order of uniaxial > planar > biazial, while the extent of strain
damping follows the reverse order, biaxial > planar > uniaxial. Tsenoglou et al.
[14, 4] suggest the following relation between 3 and m,

8~ B, {Q—exp (—,/meo“go'5>} : (3.65)

where (3, is a parameter that depends on the molecular structure of the correspond-
ing material. In their study, Tsenoglou et al. have investigated the dependence of the
viscoelastic nonlinearity exponent, (3, on the material character and molecular archi-
tecture, in a number of polymeric melts. The results of their investigation are sum-
marised in Table 3.6.

Increased molecular weight polydispersity is assumed to be the cause of the lower
[ value for PS.606 in comparison to PS.50124. In the case of the two high-density PE’s,
the HDPE.S melt shows less stress damping than HDPE.II despite its narrower molec-
ular weight polydispersity and it may therefore be suspect for the presence of some
long chain branching. Molecular factors improving network connectivity and slowing
chain retraction or rendering it incomplete cause 3 to decrease (e.g., short and, espe-
cially, long chain branching, trapped entanglements, gelation, etc.). This explains the
low 3 value for the long-chain branched LDPE IUPAC A, when compared with its linear
cousins [14].
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The correlation between the parameter 3 and the degree of branching, B,, has
also been subject to systematic experimentation by Gotsis et al. [5, 6]. Their results
are summarized in Tables 3.7 - 3.8. as well as in Figs. 3.6, 3.7, 3.8, and in the following
expression for the parameter 3,,[14, 4]

By~ 2exp <fozu : Bn) . (3.66)

Gotsis et al. [5, 6] have shown that values of the parameter 3,, > 1 correspond to lin-
ear polymers, devoid of branching (see Tables 3.7 - 3.8). This general rule also applies
in the case of the polymer melts presented in Table 3.6 with few exceptions.

The branched samples from the work of Gotsis et al. [5, 6], were obtained by
two methods. Firstly, several linear polypropylene grades were used as precursors
and they were modified reactively using peroxydicarbonates (PODIC’s). Long chain
branched samples were the products of this modification. The precursors used, as well
as the modified branched samples obtained through this chemical cross-linking, are
summarised in Table 3.7. The cross-linking agent, was a myristryl-peroxydicarbonate
(P-26), by Akzo Nobel. Secondly, blends of the commercial linear precursor B, with
a commercial branched polypropylene, PF, were prepared and the results for differ-
ent amounts of PF blended with the linear sample B, are summarised in Table 3.8.
The molecular weights and the degrees of branching of the modified samples and the
blends, were measured using a triple sensor, high temperature SEC at Akzo Nobel Re-
search, Arnhem, The Netherlands. The theory of Zimm and Stockmayer [8] was used
to extract the branching number, B,,, from the intrinsic viscosity of the modified sam-
ples and its difference from that of the linear polymer. Further details can be found in
the publications by Gotsis et al. [5, 6], in the Diploma thesis of Rob Lagendijk [60] and
in the corresponding publication from Lagendijk et al. [61].

The transient extensional viscosity of the melts, was measured at a constant tem-
perature, T=190°C, in an RME rheometer from Rheometric Scientific. The extensional
viscosity of the tested PP mets initially shows simple monotonic growth as a function
of strain. However, some of the curves show an increase in their slope (as the growth
of viscosity accelerates) beyond deformation of around 1.0 s.u.; this is the region of
strain hardening and is considered to be a useful feature of polymers subjected in pro-
cessing operations, such as film blowing, blow molding and thermoforming. The elon-
gational viscosity of the linear PP grades, were essentially non strain hardening. Long
chain branches added on these linear precursors during peroxide modification, how-
ever, increased temporary network connectivity in the melt and reduced the rate of
disentanglement. Thus, the new polymers showed enhanced strain hardening of their
viscosities in uniaxial elongational flow. In general, the more branches added on the
chains and the longer these branches, the steeper the stress growth at strains above
1.0 s.u. The viscosity growth curve of the highly branched PF melt was also strongly
strain hardening.

For the series of peroxydicarbonate modified polypropylenes (PP) tested under
uniaxial elongation, with B,, values from 0 to 1, the experiments by Gotsis et al. in-
dicate that o, = 2.9. On the other hand, when a B,, variation (0 < B,, < 5)is
established by blending under different proportions a commercially branched PP with
a linear cousin, «,, = 1.5. The conclusion is that «,, is not a universal constant but
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Table 3.7: Properties of commercial polypropylenes of linear molecular architecture, with ini-
tially different molecular weights modified using varying amounts (mmol/100 gr PP) of P-26
(dimyristyl peroxydicarbonate). All rheological measurements except for the melt flow index
were carried out at T=190°C [5, 6].

Sample P-26 M., (M,/M,,)) B, I} MFI SHI
(mmol) (Kg/mol) (230/2.16)
0 422 6.2 0 1 2.3 2
1 575 7.8 0.4 0.3 1.1 8
B 2 574 7.6 0.6 0.2 0.6 10.5
3 581 8.6 0.7 0.1 0.6 28
5 571 8.9 0.8 0 0.6 -
0 333 5.8 0 1.8 6 1.25
1 381 7.1 0.2 0.4 3.4 6
F93 2 413 7.8 0.4 0.25 2.5 15
3 456 7.9 0.5 0.15 2 16
5 458 7.7 0.6 0.2 1.8 19
0 314 7 0 0.7 12.2 2
1 363 8.1 0.1 0.5 8 4.2
F96 2 389 9.3 0.3 0.3 5.8 6.5
3 407 9.2 0.5 0.15 4.2 7.5
5 414 8.6 0.7 0.1 3.1 10

Table 3.8: Molecular data of melts of B/PF blends. The PF grade, is a commercial branched PP.
All rheological measurements except for the melt flow index were carried out at T=190°C [5, 6].

PF M., (M,/M,)) B, 8 MFI SHI
(%)  (Kg/mol) (230/2.16)

0 422 6.2 0 1 2.3 2
125 388 6.3 02 08 3.2 2.7
25 400 6.4 04 04 3.0 3
50 485 8 1.7 03 2.7 6.4
75 569 7.9 33 0.2 3.2 9.6

100 629 9.5 5 02 4.6 14.7
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Figure 3.6: Branching number, B,, as a function of the strain sensitivity parameter, 5 of the
power-law damping function (Egs. 3.65-3.66) for the materials listed in Table 3.7.
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Branching number, B

A A ; i ; A
0.0 0.2 0.4 0.6 0.8 1.0

Strain sensitivity parameter,

Figure 3.7: Branching number, B,, as a function of the strain sensitivity parameter, 5 of the
power-law damping function (Egs. 3.65-3.66) for the materials listed in Table 3.8.
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Figure 3.8: The S H I defined by Gotsis et al. [4, 5, 6] plotted against the B,, for several branched
PP samples resulting from modifications of three different linear precursors (see Table 3.7) at
constant T=190°C.

depends on the MWD breadth and the details of branching. Furthermore, if one could
extrapolate the data from Table 3.8, then all melts that have more than 0.8 long chain
branches per molecule (in the melt), would be able to fit the original Lodge model
without the need of a damping function (3 = 0) and would behave as neo-Hookean
solids, even at large deformations.

The strain hardening index, SHI of the melts has been introduced by Gotsis et al.
[4, 5, 6] as a simple way to characterise the strain hardening of a melt through a com-
parison of the value of the elongational viscosity at two different strains: one before
the point where the upward change of the slope of the viscosity growth curve takes
place and one after that point. Gotsis et al. chose the strains of 0.3 and 3.0 and the
ratio of the values of the elongational viscosity at these two strains is defined as the
strain hardening index (SHI)

op(e=3.0)

SHI = .
op(e =0.3)

(3.67)

The relation between the S H I and the B,, is shown in Fig. 3.8 for several branched
PP samples resulting from modifications of three different linear precursors. Even
though the modification results in approximately the same number of branches per
chain on the two different precursors, F93 and F96, the effect of these branches on
the strain hardening of the melts is different. The samples resulting from precursor
F96 show consistently lower values of SHI than the ones resulting from F93 which has
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lower molecular weight than F96. Obviously the relation between SH I and B,, is not
so simple or absolute. Nor can they be generalised easily to all polymers. The degree of
strain hardening of the elongational viscosity as well as various other parameters that
can characterise the melt, such as the melt strength, MS also depend on the molecular
weight and the molecular weight distribution of the modified polymer, the length of
the branches, the distribution of these lengths, the tacticity of the branches and the
distribution of the branches on the main chains with different lengths.

3.6 Reptative Dynamics for Entangled Polymer Melts

In non-dilute polymer solutions and melts, the polymer coils interpenetrate enough
that the molecular motions of one chain are greatly slowed by the interfering effects
of other chains. These interferences are attributed to intermolecular entanglements.
Despite the complications produced by entanglements, melts and concentrated solu-
tions are free of a couple of complications that exist in dilute solutions, namely [57]:

1. In the melt, flexible polymer chains, are ideal; that is, their configuration dis-
tribution is Gaussian. This is because the excluded-volume effect present when
the chainisimmersed in a small-molecule solvent is screened by the surrounding
chains.

2. In the melt, experiments show that hydrodynamic interaction is also screened
out so that the drag on one part of the chain does not influence the drag on a
remote part of the same chain. The great complicating feature of melts is that
the motion of each chain is affected by entanglements with the surrounding
chains.

An illustrative representation of the effect of entanglements on the rheological
behaviour of polymeric melts has been published by Onogi et al. [63] who compares
the rheological behaviour between nearly monodisperse polystyrene melts of vary-
ing molecular weight. The change in the slope of the storage and loss moduli (and
consequently the relaxation modulus) with varying molecular weight is characteristic
of the effect of an increasing amount of entanglements (proportional to the molecu-
lar weight) on the rheological behaviour of polymers in the melt state. The plateau
in the storage modulus, G’ (w) or, equivalently, in the relaxation modulus, G(t) the
width of which grows as the molecular weight increases, is the entanglement plateau
modulus, GS’V. The molecular weight at which the plateau first appears corresponds
roughly to M¢, the molecular weight at which the zero shear viscosity, 1y begins to
rise oc M3%. The terminal, or longest relaxation time, 7, of these melts increases with
molecular weight with the same power law « M?34. In the frequency range of the
plateau the melt acts like a cross-linked elastic rubber because G'(w) is nearly con-
stant. The plateau modulus, G%,, can be related to the density of entanglements or
the density of effective crosslinks, v by

4
G = gVkBT . (3.68)
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From v and the bulk density, p of the polymer one can obtain the molecular weight
between entanglements, M., from [35, 58]:

pPNa _ 4 pNaksT

Me = )
v 5 G%

(3.69)

which is only about 0.2 to 0.5 as large as M.

On the other hand, if the molecules are rather short (M < Mc¢) they remain
unentangled in the melt and the rheological behaviour of such melts is quantitatively
and qualitatively much different than what has already been described for entangled
melts of high molecular weights [57].

An explanation for the slowdown of relaxation for melts with M > M was given
by de Gennes. He considered a simpler problem, that of a single long polymer chain
in a cross-linked rubber network, but since entangled chains in melts form a random
mesh-like structure, the results of this analysis can qualitatively be applied to a chain
moving in a mesh of other chains. The motion of an individual macromolecule across
such a network structure is anisotropic since lateral displacements are restricted by
the surrounding mesh. Large scale configurational rearrangements are therefore as-
sumed to proceed mainly due to snake-like motions of the chain parallel to its own
contour, as if the chain was confined in a tube-like cage. De Gennes called this mo-
tion, reptation. The chain changes its conformation by sliding back and forth along the
tube. Those portions of the chain that escape from the ends of the tube are free to
take on random orientations and the portions of the tube that are vacated are forgot-
ten; a new conformation diffuses from the end of the chain inward at every instant of
the reptation process. The longest relaxation time, 7; = 74 is predicted to be o< M3,
not too different from the measured scaling law, where 7 o M3-4+0-1,

3.7 The Doi-Edwards Constitutive Equation

A more quantitative description of reptative dynamics for polymers, was put forward
by Doi and Edwards in the form of a simple mathematical model. In this model the
contour length, L, of the chain consisting of Ny monomers of bond length, b each, is
subdivided into IV independently directed steps of equilibrium length, o,

L=Nao (3.70)

Each step consists of N, mers, (N. = Ny/N) and it is assumed to be long enough to
behave as a random coil and to contribute independently to the stress. The magnitude
of IV is equal to the ratio of the molecular weight of the polymer to that between
entanglements, N = M /M., and N, is equal to the ratio of the molecular weight
between entanglements to that of a monomer (N. = M. /M,). Both the primitive
path and the chain are assumed to be random walks with coinciding ends, that is,

Naj = Nob* = (R?) (3.71)

where (R?) is the mean-square end-to-end distance of the macromolecular chain.
On application of an instantaneous deformation to the material, it is assumed that
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Figure 3.9: A polymer chain, its primitive path (solid line with N=4) and its neighbours con-
fining it like in a tube (dashed lines). This illustration is a simplification of the physical picture
since in reality more than two constraints are needed to define a primitive step. Redrawn from
Tsenoglou [9].

the tube together with the chain changes shape affinely, that is, in accord with the
macroscopic deformation. Similar behaviour is expected from permanent networks
(i.e. crosslinked rubbers, gels, etc.), which means that the components of the extra
stress tensor, o;;, can be obtained from the classical theory of rubber elasticity

(rirj)
045 = 3V]€BTN<(Neb]2)> 5 (3.72)

which in this particular case reduces to
0ij(t =0) = 3vkgTNR;;(E) , (3.73)
with R;;(E) is a function of the displacement gradient, £:

Rij(E) = (E-u)i(E - w);) (3.74)

and r is the end-to-end distance of the primitive step with initial step r, stretched due
to E
r=E-ry=E-ou. (3.75)

In these expression, the (... ), means an average over all directions of the unit vector,

u, thatis,
2r W

1 .
(...)= E//sm fdode , (3.76)
00
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where the components of the unit vector, w in the spherical coordinate system assume
the form

U1 sin  cos ¢
ug | = |[sinfsing| . (3.77)
us cos 6

In this stage the contour length of the path has increased by a factor (|£ - u[). The
disturbance to the liquid caused by the deformation relaxes in two major stages:

1. A swift motion of the chain within its distorted tube, until the primitive path of
the chain equilibrates to its original length;

2. disengagement of the chain out of its original tube by reptation.

The corresponding times needed for each stage to conclude assume the following re-

lation [39]
-
Te d

2 3N )
where 7. is the time of path equilibration and 7, is the disengagement time. The ex-
pression for the equilibration time corresponds to the Rouse relaxation time of the
whole chain within its distorted tube, since Rouse dynamics are assumed to apply
within the tube. Both these processes contribute to the decay of the initial stress.
However, the nonlinear viscoelastic behaviour is explained by the molecular rearrange-
ments taking place during the length equilibration. The lack of permanent cross-links
with its neighbors obliges the polymer to snap back along its path reducing the contour
length of its path from L{| E - u|} to its equilibrium value, L. The retracting motion of
the chain takes place while the surrounding tube remains affinely deformed and stops
when the monomer density per unit arc length of the path is restored to its equilib-
rium value, N./ay. This fact predetermines the size of the surviving steps, N/, and
consequently their number, N':

(3.78)

L — & (3 79)
(arlE-ul) ~ o '
7 NO o N
NEwnTIE G (3:80)

The resulting stress at the end of the equilibration period is calculated through Eq.
3.73 with the new values for interentanglement distance and population

0ij(t =7e) = vkpTNQi;(E) , (3.81)
where
_ 1 (E-uw)i(E - u);
Qi (E) = (|E£-ul) < |E - ul > (3.82)

is commonly referred to as Doi-Edwards universal strain tensor. Over longer times the
chain completely disengages itself from the original tube by reptation. At any time,
t > 7., the fraction of the original tube that remains unvacated is given by

8 —i2
Pty= Y 7T22,Qexp< ;j) , (3.83)

i=1,3,5...
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(a)

(c)

(e)

(f)

(8)

Figure 3.10: Non-equilibrium chain and path dynamics (a) before deformation, (b) after defor-
mation, (c) after equilibration (¢ = 7.) with N /N’ = 2, (d)-(f) path disengagement by reptation
(t > Te) until (g) equilibration in undistorted configuration. Dashed lines signify abandoned
paths. Redrawn from Tsenoglou [9].
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which corresponds to diffusion of chains out of their original tubes. The resulting stress
can be calculated through

Oij (t > Te) = 3VkBTNQij (Q)P(t) . (3.84)

Therefore, the separability of the memory function into pure time and strain com-
ponents finds a rational justification. The equation for stress relaxation is valid for
any deformation geometry by introducing the appropriate deformation gradient ten-
sor, E. In a step-in shear strain experiment a factor of 15/4 is introduced in order to
achieve the correct linear viscoelastic limit and a strain measure is then defined as

15
Spr = ZQM(VU) (3.85)
giving the corrected expression for the relaxing stress
o12(t > 7.) = NGYP(t)&pE (3.86)

in which G is the plateau modulus defined in Eq. 3.68. The strain measure, & is called
the second-order orientation tensor after Larson [74]. The expression for chain diffu-
sion, P(t) (see Eq. 3.83) of the Doi-Edwards model may be translated to a multimode
relaxation spectrum analogous to the classical Maxwell model through

G(t):. > Giexp (;f) , (3.87)

where G; = (8G%)/(7?%i%) and 7; = (74)/(i?). The storage and loss moduli are ob-
tained through a Fourier transform integral of the linear relaxation modulus, G(t) and
are given by Egs. 3.21. The damping function in step-shear stress relaxation experi-
ments is expressed by the ratio of the strain measure, & pr over the magnitude of
shear strain, g

Spe _ 15Q12(70)

h = (3.88)
o5 (%) Yo 4
Primary and secondary normal stress differences can be calculated through
Q11(70) — Q22(70)

Ny (t, ) = o1a(t, 3.89

1( ’VO) Q12(’YO) 12( ’YO) ( )

Nat, o) = 22000 Qss00) . (3.90)

Q12(70)

3.7.1 The Independent Alignment Approximation (I1AA)

In the original Doi-Edwards theory, the tube prevents lateral motion of the macro-
molecular chain but it does not stop the molecule from retracting along its tube con-
tour. Since retraction does not violate the tube constraints it occurs quickly compared
to reptation. The idea behind retraction is that it moves a strand from one part of
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the tube to another hence the strand’s orientation is determined not by the orienta-
tion of the tube it originally occupied, but by the orientation of the part of the tube
into which it moves. In order to simplify the problem Doi and Edwards invoked the
Independent Alignment Approximation which assumes that after retraction and be-
fore reptation occurs each strand is oriented independently of the others, that is, the
chain contracts preserving the initial orientation as if there were no constraints due
to entanglements. In this simplified context, the corresponding Doi-Edwards universal
strain tensor assumes the following form

o JEwE )\ EwEw,
Qz](é)* <|£Q|> < |£Q| >"‘< |£Q|2 > . (3.91)

Similar to the exact expression for the orientation tensor in step-strain shear relaxation
experiments, a correction factor is introduced as well, in order to achieve the correct
linear viscoelastic limit. The corresponding strain measure is defined, then, as

S35 = 5Q12(70) - (3.92)
The relaxing stress assumes the form
a1a(t > 7.) = NGYP(H)SFE' (3.93)

where the plateau modulus, G%; = (3/5)vkpT, deviates from the exact expression
by a factor of 1/5. The associated damping function is defined as

_ 65K _ 5Qu2(%)
70 Y0

For uniaxial and biaxial step-strain deformations analytical expressions have been ob-

tained by Urakawa et al. [50] both for the rigorous and the IAA versions of the theory.

Yet another useful approximation for the damping function in step-strain in shear de-
formation has been published in the form

hpE (10) (3.94)

1
1+ 2927

%

hpe (o) (3.95)

which seems to be helpful during calculations.

3.7.2 The History Integral

So far, the Doi-Edwards theory has been formulated mathematically for step-strain
deformations, that is, rapid strains followed by stress relaxation. In this context the
deformation is rapid and, thus, occurs before reptation. However, if the strain is im-
posed gradually, which is the usual case of inception of steady shear flow (or any other
deformation such as uniaxial and biaxial extension), then reptation occurs during the
deformation. Then the stress, is given by a history integral, analogous to the Lodge
equation. This history integral is the Doi-Edwards constitutive equation

t
o= / p(t =8 L (t,t') dt’ (3.96)

— 00
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in the case of the rigorous approach or

t
g:/ p(t — t)SA(t, ) dt! (3.97)

— 00

if the 1A approximation is invoked.

3.7.3 Predictions of Reptation Theories

At high shear rates the uniaxial extensional and shear viscosity scale as g o ¢!

and
N2 o< 41 respectively. The first and second normal stress difference coefficients
at high shear rates scale as ¥; oc 472 and ¥y oc 42 respectively. With increasing
shear rate the shear stress, 1127 is predicted to pass through a maximum and then
decrease with further increase in 4. Experimentally it has been reported that 112 «
47982 and ¥y oc 41 at large 7 [57].

The ratio between the two normal stress difference coefficients is predicted by the
theory to be Uy /¥ = —0.286 at low shear rates. This changes to ¥o /¥, = —0.143
when the IAA is dropped. The ratio is predicted to decrease towards zero as the shear
rate increases. In melts of molecular weight low enough that the molecules are unen-
tangled, both experiments and molecular dynamics simulations predict — ¥ /W;=0.15
- 0.45 at low shear rates [57].

further, an overshoot is predicted in the curve of the shear stress as a function of
time after inception of steady shearing flow but no overshoot in the first normal stress
difference. For monodisperse melts the shear stress maximum is predicted to occur at
a shear strain 4t = 7, = 2 roughly independent of the shear rate. For low strain rates
the experimental maximum is 7, ~ 2, whereas for high strain rates it shifts to higher
strains. Experiments show an overshoot in the first normal stress difference at y, ~ 5
for low shear rates [57].

Finally, it has been suggested that disagreements between the predictions of the
Doi-Edwards theory and the experimental results may be resolved by incorporating
into the theory microstructural mechanisms such as convective constraint release and
tube stretching.

3.7.4 The Effect of Polydispersity on the Rheology of Entangled Melts

Most polymeric fluids that are of commercial importance are highly polydisperse (val-
ues of M,,/M,, of 2 or more); and some, such as LDPE, have long chain branching. It
is important for many applications that these effects be accounted for in the constitu-
tive equation. A simple way to account for continuous molecular weight distributions
has been proposed by Tsenoglou [11, 10], des Cloizeaux [17, 18] and Tuminello [75],
using a semiempirical scheme called double reptation. The double-reptation scheme
allows accurate prediction of G’ and G” from a specified molecular weight distribution
[67, 68]. The formula for a blend containing a continuous weight distribution, W (M)
of components is

1/2 [eS)
(sz%d(t)> _ / W(M)F(t, M) dM | (3.98)
G 0
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where F(t, M) is the relaxation function, G(t)/G%;, of a monodisperse melt with
molecular weight, M and G?V is the plateau modulus. The double-reptation scheme
can also be applied in reverse to infer a molecular weight distribution from measure-
ments of the linear modulus. Since the rheology of a melt is often easier to measure
than its molecular weight distribution, this method of estimating molecular weight
distributions from rheological data is a very useful tool.

3.7.5 The Effect of Long-Chain Branching on the Rheology of Entan-
gled Melts

The Doi-Edwards theory attributes the nonlinearity of the stress in flexible polymers to
the equilibration stage of the chain response to a sudden strain; that is, the stage when
the deformed molecule restores the monomer density along its primitive path to an
equilibrium value. The milder nonlinear viscoelastic behaviour observed in polymers
with complex branching (see Fig. 3.17) is attributed to their molecular structure which,
on a local scale, is reminiscent of a crosslinked network [9].

A polymeric liquid composed of linear chains of arc length, L, whose primitive
path is formed by N steps of N, mers each, equilibrates after the sudden imposition
of a strain which stretched it (|E - u|) times. In this system equilibration is achieved
through a spontaneous unstretching motion of the free chain until its arc length returns
to its initial value, L. Since the surroundings remain affinely deformed, the segmental
components of the surviving path are fewer in number but larger in size,

(V). N
(wE-ul), o (3.99)

, Ny N
M T B 13:100)
where primes identify post-equilibration values, the number 1 as a subscript signifies
steps on chains with at least one free end and 2 steps with both ends linked to branched
points; k = 1,2... Nj.

On the other hand, in the case of elastomers under strain, permanent crosslinks at
the ends of the chains prevent unstretching and the monomer density per arc length
remains low, as long as the strain persists. Equilibration is achieved by a modest chain
rearrangement, without causing any step loss,

(Nea)y — _ _ Ne

— : 3.101

(@lE ), ~ o(E u) (3.101)
LN N

N. = N 3.102

2= Ny~ (E-u) (3.102)

where k =1,2... NJ.

In systems composed of branched polymers, the size of segments between succes-
sive interchain entanglements remains the same as in systems of free, linear chains of
the same chemical structure and concentration. However, part of these segments
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\\

(c)

Figure 3.11: Chain and path dynamics during the length equilibration stage of a branched
polymer (a) at rest, (b) just after deformation and (c) just after equilibration. Redrawn from
Tsenoglou [9].
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are now defined by permanent branching points instead of temporary entanglements
alone. This introduces an elastomeric character to the network. External branches
dangling in the periphery of randomly branched polymers equilibrate like free chains,
while internal branches rearrange like elastomeric strands. The ratio between seg-
mental populations equilibrating with both mechanisms can be approximated as a con-
stant, independent of the intensity of the deformation but directly associated with the
ratio between the number of internal and external branches in the molecule. Based
on these assumptions, the average post-equilibration interentanglement distance in a
system composed of randomly branched polymers, with a fraction z,, of their chain
length belonging to internal branches is

<Né> =(1- mn)Nél + ané2 = Ne{mn + (1 - wn)(\éﬂlﬂ . (3.103)

This weighted averaging implicitly accommodates the case of the collapse of the
network structure for sufficiently large strains and properly bounds the stress responses
of the liquid to finite values. The individual steps rearrange during deformation so that
the more they point in the direction of the maximum macroscopic elongation, the big-
ger they are,

(NOIE - uly
(N{)k = — (3.104)
‘ (IE- ul)
where k = 1,2...N’. Since the number of monomers per chain, Ny, does not
change, the number of surviving steps can also be calculated
N, N
N =2 - (3.105)

The strain dependence of the stress response can now be estimated using Eq. 3.73
and the new values of the interentanglement distance and population

Qi (E)

0ij(t > 1) = 3vkgTN
2 (1 = 2n) + 7]

SP(t) (3.106)

where P(t) is the time dependent part of the stress decay. In this case it is controlled
by constraint releasing and path fluctuating relaxation mechanisms [77]. For the par-
ticular case of a step in shear deformation, the strain dependent part of the relaxation
modulus takes the form

B EQM(’YO) 1
hpe(vo) = ( 1 > (1 —2n) + <|§-'L|>]2

(3.107)

The physical significance of this result is that, for branched polymers, surviving
chain stretching, in addition to preservation of distorted orientations, contributes to
the stress formation. Furthermore the stress is now dependent on the material mi-
crostructure, through the non-linear viscoelastic parameter, z,,, since for tree-like
molecules, although not affected by the molecular size or degree of branching, z,,
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Table 3.9: Physical properties of the branched LDPEs used in step-strain shear relaxation exper-
iments. The molecular weights, polydispersity indices and experimental temperatures for these
samples are listed in Table 3.3. Data from Tsenoglou [9].

Sample M, b Js B, =z, n9(150°C)
(kg/mol)  (10%) 103(Pa - s)
LDPE.A2 2.83 1.77 0.117 80 0.76 234.4
LDPE.A4 2.35 240 0.136 73 0.83 19.95
LDPE.A7 1.92 261 0.128 70 0.77 7.24
LDPE.B2 4.17 1.20 0.296 17 0.74 69.2
LDPE.C2 3.68 0.78 0.427 54 0.75 19.06

LDPE IUPACA 4.85 1.03 0.261 24 0.65 478.6

should change with the branch point functionality, f, which alters the ratio between
the internal and the external branches through

~ 3.108
This is the case for ideally structured tree-like macromolecules; in real systems struc-
tural imperfections and the presence of free chains decrease the elastomeric character
of the network and consequently the value of the non-linear viscoelastic parameter,
x,, While persistent entanglements resisting disengagement during equilibration in-
crease its value. The x,, values that best fit the experimental data are presented in
Table 3.9. A graphical representation of these results is provided in Figs. 3.12 and
3.13. As expected for materials of the same chemical structure and composition these
parameters are roughly equal in magnitude, x,, ~ 3/4. This value is larger than 1/2
which is predicted by Eq. 3.108 for 3-functional branching. The conclusion based on
the experimental evidence, thus, is that increasing the external branches as opposed to
internal ones seems to accentuate the nonlinear strain dependence bringing it closer
to the DE predictions.

The rest of the physical parameters listed in Table 3.9, as well as those listed in
Table 3.3, were inferred from experimental characterisation of the samples through a
combination of Gel Permeation Chromatography, (GPC'), along with intrinsic viscos-
ity measurements [9]. The molecular size ratio, gs, was used along with Eq. 2.15 to
evaluate the branching content of the samples. The rest of the physical parameters of
Table 3.9 were evaluated using analytical expressions listed in Section 2.1.4.

3.7.6 The Effect of Strain-Induced Crystallisation on the Rheology of
Entangled Melts

Representative examples of a series of step-strain shear relaxation measurements on
commercial polyethylenes are reproduced from the work of Tsenoglou [9]. Extensive
details on the experimental procedure are also provided in that work. Physical prop-
erties of the materials are given in Table 3.10.
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Figure 3.12: Dependence of (a) the strain component of the relaxation function (eq. 3.107) and
(b) the strain component of the stress (eq. 3.106) on the shear deformation for the branched
LDPEs listed in Table 3.9. Solid lines with x,, = 0 correspond to the DE theory while for z,, = 1
there is no damping. Replotted from Tsenoglou [9].
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Figure 3.13: Same as Fig. 3.12 but for the branched LDPEs A7 and IUPAC A, demonstrating the

temperature invariance of the damping function. Data from Tsenoglou [9].
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Table 3.10: Physical properties of three commercial HDPE’s and a Linear LDPE used in step-strain
shear relaxation experiments. The Melt Flow Index (MFI), provided for the HDPE’s, is an inverse
measure of their average molecular weight. Data from Tsenoglou [9].

Sample M, (M., /M,) MFI Density, p T(°C)
(Kg/mol) (190/2.16)  (25°C) (gr/cm?)

HDPE.A 181 13.7 0.03 0.952 140,150,170

HDPE.B 118 6.1 0.25 0.955 140,150

HDPE.C 113 11.2 0.80 0.964 140

LLDPE 0.15 0.920 150

The strain-time superposition assumption has been verified for these polyethylenes.
The non-linear strain dependence of the stress (proportional to yh () from eq. 3.86
and 3.88) for the HDPEs is illustrated in Figs. 3.14, 3.15, 3.16 and 3.17. Initially, the vis-
coelastic nonlinearity closely follows the Doi-Edwards theory predictions, i.e. the curve
with z,, = 0 (eq. 3.107). Then, at around ¢ = 1.5, the stress becomes strain insensi-
tive, as if it hesitates to follow the simple Doi-Edwards curve (x,, = 0) or a rubber-like
curve (no damping, or x,, = 1). For flows at lower temperatures the stress starts
increasing again at higher strains. This particular behaviour is expected for polymers
that show strain induced crystallisation [51, 2]. At higher temperatures the deviation
from the lower curve is less, as strain induced crystallisation occurs later, if at all.

The strain induced crystallisation contributes to an improvement of the connectiv-
ity of the network since newly formed nuclei act as additional chain junctions. This net-
work strengthening mechanism competes with the disentanglement process during
the length equilibration in the tube and includes in some persistent segmental stretch-
ing and orientation. As a result, the value of x,, of the polymer increases. At larger
strains and lower temperatures, the crystal nuclei acting as additional chain junctions
are now created at a rate which overcompensates the loss of entanglements due to
chain equilibration, resulting in a net strengthening of the network formation and a
recurrent rubber-like behaviour without damping.

The effect of varying the average molecular weight for the HDPEs examined is illus-
trated in Fig. 3.16. Under moderate deformations the two polymers with the highest
melt index (MFI) (i.e. HDPE.B and HDPE.C) and, therefore, the lowest average molec-
ular size show an identical strain dependence and a slightly milder nonlinearity than
HDPE.A. On the other hand, under larger strains, a recurrence of the rubber-like be-
haviour is stronger for the samples with the lowest MFI (i.e. HDPE.A and HDPE.B); this
means that the extent of the shear induced crystallisation is larger in systems with
higher molecular weight.

The comparison of linear and branched chains is presented in Fig. 3.17. The figure
shows the HDPE.C as above (linear chain), a LLDPE (short branches) and the LDPE.B (ex-
tensive long chain branching. The linear low density material has a molecular architec-
ture which is an intermediate between the other two polymers. It can be easily seenin
Fig. 3.17 that the long chain branched polymer follows eq. 3.107 with x,, = 0.8 for all
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Figure 3.14: Dependence of the strain component of the stress, voh (7o), on the shear defor-
mation for HDPE.A at several isothermal conditions. The line with x,, = 0 is the simple DE

prediction while for x,, = 1 there is no damping . Replotted from Tsenoglou [9].

Figure 3.15: Dependence of the strain component of the stress, 70/ (7o), on the shear defor-
mation for HDPE.B at several isothermal conditions. Replotted from Tsenoglou [9].
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Figure 3.16: Dependence of the strain component of the stress, voh(70), on the shear defor-
mation for the three HDPE’s examined at 7'=140°C. Replotted from Tsenoglou [9].
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Figure 3.17: Dependence of the strain component of the stress, v0h(7o), on the shear deforma-

tion for the branched LDPE.B, the HDPE.C and the linear LDPE at the corresponding isothermal
conditions. Replotted from Tsenoglou [9].
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strains. The linear polymer with the short chains also follows eq. 3.107 with x,, = 0.2
for all strains. The linear HDPE shows the behaviour described above. Therefore, it
seems that only linear chains can undergo strain induced crystallisation in shear flow
under these conditions. This happens at high strains and depends on the tempera-
ture in the flow. The presence of branches on the main chain makes strain induced
crystallisation in shear flow much more difficult.

3.8 Maxwell-Type Differential Constitutive Equations

The concept of linear viscoelasticity can also be written in a differential form

Lol (3.109)
oc+T— = .
o =7

where 1 = Go7. This is known as the Maxwell model and it is equivalent to Eq. 3.10.
It is often represented as a series combination of springs (elastic elements) and dash-
pots (viscous elements). Most of, if not all of the constitutive equations that exist in
differential form have their basis on the Maxwell model.

3.8.1 The Upper-Convected Maxwell Differential Equation

A simple way to combine time-dependent phenomena and rheological nonlinearity is
to incorporate nonlinearity into the Maxwell model. This can be done by replacing the
substantial time derivative in the model with the upper-convected time derivative of
o, thatis,

o+73=2nD, (3.110)
where
no = GoT (3.111)
and
o= %g+y~Vg—(Vy)T-g—g-Vy. (3.112)

The upper-convected time derivative is a time derivative in a special coordinate sys-
tem whose base coordinate vectors stretch and rotate with material lines. With this
definition stresses are produced only when material elements are deformed; mere ro-
tation produces no stress. For small strain amplitudes the nonlinear terms disappear
and the upper-convected time derivative reduces to the substantial time derivative.
On the other hand, at steady flow steady and small strain rates ¢ is negligible and
Newtonian behaviour is recovered. The upper-convected Maxwell equation is the dif-
ferential equivalent to the Lodge integral equation and, in an analogous way to the
latter, it can be extended to include multiple relaxation modes. The predictions of the
UCM equation are the same as those obtained when one uses the integral version.
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(b)

Figure 3.18: The structure of a Pom-Pom polymer with a backbone within its confining tube
and 2q, dangling arms, with g,=3 arms attached on each side of the pom-pom. The polymer is
depicted in (a) undeformed configuration; and (b) deformed configuration with arm withdrawal
into the stretched tube.

3.8.2 The eXtended Pom-Pom Model

The K-BKZ and other integral constitutive equations can be regarded as generalisations
of the Lodge integral equation. The UCM equation can also be generalised to obtain
more realistic predictions of nonlinear phenomena [15]. A more recent proposal [76]
is the XPP model, which is based on the molecular background of the original Pom-Pom
model introduced by McLeish and Larson [72, 47].

The Pom-Pom model uses on the concept shown in Fig. 3.18. The branched poly-
mer is approximated by the molecular structure shown in this figure. The reptation
idea of De Gennes and Doi, Edwards are used to find the deformation dynamics of such
a molecule constrained in a tube. The viscoelastic stress in the XPP model is given by

0; +7(0s) loy = 2GiD (3.113)
where
o) = — [a% f(oz)_ll+G7[f(a7)_11]071} (3.114)
= Tov,i | Gi = = = = =

is the relaxation time tensor and

X _ xilaq,‘m,
(o) = 2exp{vyi(A—1)} (1_ 1) 41 (1_ e ) (3.115)

Tobi — T0s,i
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is an extra function. Within this set of equations, the basic features of the XPP model
are illustrated, that is the backbone tube stretch

I,
A=([14+ = 3.116
+3GZ~ ( )

defined as the length of the backbone tube divided by its length at equilibrium and the
corresponding backbone stretch relaxation times

"L exp {—vpi(A - 1)} . (3.117)

T0s,i

The subscript ¢ indicates the i*" relaxation mode. G; is the corresponding relaxation
modulus, 7, ; are the sets of backbone orientation relaxation times taken as the mode
relaxation times in the relaxation spectrum obtained from linear rheology. Also I,;, =
tr(o;) and I,,.,, = tr(o; - 0;). The parameter v, ; = 2/q, ; is related to the number
ofc;ms, qutEched at the end of a backbone chain. The scalar parameter, oy ; is an
anisotropy parameter. Finally, the net deviatoric stress is given by g = Zi ;.

The physical process that follows the deformation of the pom-pom molecule is
based on molecular arguments introduced in the DE theory with the complication of
the pom-poms at the end of the backbone chain (Fig. 3.18). The backbone stretch
relaxation times, 7, ;, correspond to the time scale for retraction of the pom-pom
molecules following a deformation of given magnitude, that is, the time scale needed
for the stretched contour lengths of the pom-poms to contract to their equilibrium
length. This is a fast process compared to the backbone orientation relaxation times,
Tov,i» Which correspond to the time scale needed for the relaxation of the orientational
anisotropy that occurred in the melt after the end of the equilibration period.

Start-Up of Uniaxial Extension

In the case of start-up of steady uniaxial extensional flow the upper-convected time
derivative of the stress tensor reduces to

20116 0 0

g (o 00 51 |

o=|0 b 0 |—| | 022 i | (3.118)
0 0 o33 33

while the rate of deformation tensor for this type of flow is

2 0 0
2D=|0 —¢ 0 (3.119)
0 0 —¢

Substituting the above expressions into the constitutive relation Eq. 3.113 provides a
system of three distinct ordinary differential equations of the first order that can be
solved numerically in order to provide the values of stress components with respect
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to time. The appropriate initial conditions for the system of differential equations is
011 = 099 = 033 = 0att = 0. If a multiple mode relaxation spectrum is used instead,
the stresses must be computed for each mode separately and finally added together
in order to provide the net deviatoric stress. The uniaxial extensional viscosity is then
computed from Eq. 3.29.

3.8.3 The Rolie-Poly Constitutive Equation for Linear Polymer Melts

A simple constitutive equation in differential form, also based on the reptation idea of
de Gennes, has been proposed by Likhtman and Graham [7, 62]. Its aim is to describe
the rheology observed in monodisperse linear polymeric materials. Its theoretical ba-
sis is literally that of the tube model of Doi and Edwards. The main mechanism of
stress relaxation in the linear regime is assumed to be reptation. In non-linear flows
or large step strain experiments the mechanism of convective constraint release, CCR,
which was introduced by Marrucci [21], plays an important role in stress relaxation.
The Rolie-Poly constitutive equation has the form

2(1— %) tro; Srp
3 Lo — V" Vt‘{gﬁgrp(m) (@_1)} . (3.120)

Tdi — Trji 3

where 74 ; and 7, ; are the reptation and Rouse relaxation times, respectively, of the
i*" relaxation mode; Brp is the CCR coefficient; and d,,, is a fitting parameter. It has
to be emphasised that the stretch becomes unbounded in this model, that is, finite
extensibility of the chains is not accounted for.

In the case of the start-up of steady uniaxial extensional flow the upper-convected
time derivative of the stress tensor reduces to that of Eq. 3.118. The stress tensor
is found by solving Eq. 3.120 using this terms. The appropriate initial conditions for
the differential equations (011 = 095 = 033=0 att = 0) lead to singularities due
to the tro; parameter being in the denominator below the square root. This is easily
bypassed by setting the initial conditions for the stress components to a very small
number. The uniaxial extensional viscosity is then computed from Eq.3.29.



Chapter 4

Experimental

4.1 Introduction

Rheological measurements were contacted in order to investigate differences between
commercial resins of branched and linear architecture, with respect to their physi-
cal and mechanical response. Two samples were used, a tubular reactor produced
LDPE, consisting of long-chain branched macromolecules, and a linear HDPE-hexene
copolymer. Both polymers contained antioxidants and were provided by Eni S.p.A.
Their physical properties and molecular characteristics are provided in Table 4.1. The
rheological response of these melts was investigated in terms of shearing and exten-
sional flows. Regarding shear flow, dynamic mechanical analysis (DMA) and single
step-strain measurements were conducted, whereas the shear-free flow response was
investigated through uniaxial extensional deformation.

4.2 Shear Flows

In general, shearing flows are imposed through simple geometries. A review of the ba-
sic geometries used to impose shearing flows is given in textbooks, such as the books
of Macosko [15], Larson [57], Bird et al. [55] etc. Depending on the geometry used,
either drag or pressure flow is imposed. For the samples used in the experimental sec-
tion of the current thesis, only drag flows where investigated. The Ares-11°rheometer
from Rheometric Scientific (TA Instruments) with a resolution of 2 - 2000 mMNm was
used for all shearing flows and for both samples.

Samples were prepared by compression moulding of polymer pellets between flat
steel plates at a temperature not exceeding 180°C". Sample thickness was controlled
by using thin flat window frame moulds of uniform gage, sandwiched between the flat
steel panels. A thin sheet of PTFE oil was spread over the inner surface of the panels
and the moulds in order to facilitate the removal of the solid plastic sample after it had
cooled down. The total time of heating did not exceed 5 - 8 min to prevent thermal
degradation of the polymer. The maximum pressure applied during heating did not
exceed 10 MPa. The cooling procedure at room temperature took less than 20 - 30

107
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min. Finally, circular samples of 25 mm in diameter and thicknesses in the range of 0.5
- 1.0 mm were cut from the solid by means of sharp scissors.

4.2.1 Cone and plate geometry

A cone and plate geometry was used for the single step-strain measurements. A single
plate diameter of 25.0 mm was used with a cone angle of 0.1 radians. The invariance
of the rheological response with respect to different plate diameters and cone angles
has been investigated by Tsenoglou and his results were presented in the previous
chapter. Besides the small cone angle assumption, edge effects were also considered.
Extra care was taken in order to clean the excess of liquid around the cone and plate in
order to avoid a drowned edge and to maintain the spherical edge surface assumption
throughout the measurements. Thus, in terms of edge effects, the results are assumed
to be valid.

Various magnitudes of shear strain in the range of 0.01 - 2.0 s.u. were imposed to
the samples and the resulting stress growth and relaxation was recorded with respect
to time. The maximum strain imposed was limited by the resolution of the rheometer.
Consecutive measurements were conducted with a 2-3 min break between each im-
posed strain magnitude, in order for the sample to relax and discard remaining stresses
and, therefore, to maintain the single step-strain assumption. In terms of the rheolog-
ical formalism, the shear strain imposed is given by

Yo = % ) (41)

where ¢ is the angle of rotation of the plate with respect to the stationary cone, and
B is the cone angle. The shear stress is then given by

3M;

= — 4.2
3o F (4.2)

012

where M, is the resulting torque and R, is the plate radius.

4.2.2 Parallel disk geometry

A parallel disk geometry was used for the dynamic mechanical analysis. A disk diam-
eter of 25 mm was used with a gap between plates not exceeding a maximum of 1.0 -
1.5 mm. Extra care was taken in order to avoid the drowned edge effect and maintain
the spherical surface assumption at the edge. The linear viscoelastic regime (LVE) was
determined by means of a strain sweep at a constant rotational frequency of 1.0 rad/s.
A fresh sample was used for each isothermal condition in order to prevent the melt
from thermal and/or oxidative degradation due to excessive periods of heating.

The results of the strain sweep are provided in Fig. 4.1 for both samples. From
these figures the LVE limit for both melts was determined to be ~ 0.05 - 0.1 s.u. Notice
that the difference between the two melts is that at the same rotational frequency
the LDPE shows a liquid-like behaviour (G’ < G”), whereas the HDPE shows a solid-like
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Table 4.1: Physical properties and molecular characteristics of the commercial resins investi-
gated. The g’ value for the LDPE FF20 sample was provided by the supplier. The g; value is
estimated from Eq. 2.12 and the branching content from Egs. 2.13 or 2.14.

LDPE Riblene FF20 HDPE Eraclene FA506

MFI (2.16/190) (gr/10 min) 0.8 -
MFI (5/190) (gr/10 min) - 0.6
MFI (21.6/190) (gr/10 min) - 15
Density (25°C)(gr/cm3) 0.921 0.939
Melting Point (°C) 112 129
M, (kg/mol) 13.4 12.3
M,,(kg/mol) 160.3 196.6
M, (kg/mol) 841.1 1536.0
M,/ M, 12.0 16.0
q. 0.612 -
s 0.612 -
B, 8.8 -
behaviour (G’ > G”). The shear rate is determined by
. wR,
¥ = B (4.3)

where R, is the plate radius, w is the rotational frequency and h,, is the gap between
the parallel plates. Then the resulting shear stress at the edge of the plate is considered
homogenous and equal to

(4.4)

Mt |: dIn Mt:|
g12 )

T 2R3 din

where M, is the resulting torque. The simplification of d In M /dIn+ = 1 is only valid
for Newtonian liquids. The frequencies examined span from 0.1 s~ ! to 100 s—! and
for both samples the isothermal test temperatures were 120 °C - 190 °C for the LDPE
and 150 °C - 200 °C for the HDPE.

4.3 Extensional Flow

Shear-free flow was examined for both resins through uniaxial extensional measure-
ments. An RME’elongational rheometer from Rheometrics with a resolution of 1 -
2000 mN and an accuracy of &~ 1 mN was used to contact the experiments [66, 29].
Samples from both resins were prepared with the same procedure followed for the
shearing experiments. The solid plastic was cut into rectangular bars of approximate
dimensions 60 x 10 x 1.5 mm (L x W x H) with a sharp knife. The test conditions were
isothermal at 150°C for the LDPE and at 170°C for the HDPE.
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Figure 4.1: Strain sweep with a parallel disk geometry for (a) LDPE at 7=150°C, d=25 mm,
h=1.43 mm and (b) HDPE at 7'=160°C, d=25mm, h=1.482 mm.
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After calibrating the force transducer with a single weight of 200 g (as suggested
by the manufacturer) an isothermal condition had to be maintained inside the cham-
ber. The rectangular bars were placed on the lower belts and left there for not more
than 5 min in order for the stresses inside the material to relax completely. It is impor-
tant to notice that the sample should relax on the lower belts only. Otherwise if one
lowers the upper belts then the sample gets confined between the belts and thermal
expansion during melting results in a distorted sample. Yet another important detail
that should be noticed is that the rheometer bank vertical position should be checked
in order to avoid sliding of the melted samples and thus distortion of the uniformity
of the rectangular geometry of the sample. Cylindrical metal pins where also used, as
suggested, on both edges of the sample in order to prevent excessive squeezing of the
samples.

After relaxation and when thermal expansion of the samples had ended, the upper
belts were lowered and the actual measurement took place. A constant distance be-
tween the clamps of 50 mm was used and a value of 5 mm for the tongue length. The
distance between the clamps is important because it defines the speed with which the
clamps rotate, thus controlling the actual strain rate.

During experimentation it was observed that the LDPE samples did not deform
enough up to the end of each measurement. This fact was carefully examined and the
conclusion was that the LDPE samples adhered too well at the tongues of the belts
so that the belts themselves were glued together by the sample and were prevented
to complete their rotation and stretch the sample all the way to the set deformation.
A thin sheet of wax thus was spread on the lower belts before each measurement in
order to prevent stick. This resulted in uniform extension of the samples until break
without introducing any slip, as it is found in the process below for the evaluation of
the true strain rate.

In order to establish the deviations from the nominal strain rate [65] for every de-
formation rate, a video camera was used to record the deforming sample until break.
Then a series of snapshots at regular time intervals were obtained from the video for
each sample and the width of the sample was recorded during elongation. Three mea-
surements of the width were performed at each snapshot, one at each edge and one
at the middle, thus the mean value of the sample width was constantly recorded. An
example of a series of pictures taken for this particular reason during elongation is
shown in Fig. 4.3 for the LDPE resin at 150°C with nominal strain rate of 2.0 s~ ! and
true strain rate of 1.61 s~ 1.

The basic equations of uniaxial extensional flow of rectangular bars at constant
elongation rate read as [66, 29]

L(t) = Lo exp (ét) (4.5)
W(t) = Wyexp (Z) (4.6)
H(t) = Hyexp (—;t) , (4.7)

where € is the strain rate and t is the time. Assuming the stretch of the sample in terms
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N,

Figure 4.2: Schematic representation of the RME setup for uniaxial extensional measurements
of polymer melts. The values of Lo along with the set strain rate, ¢ are used in order to set the
speed of the belts, v = (éLo/2) = cnst [65].

£, =1.61 g, =3.22

Figure 4.3: A series of snapshots taken at the corresponding Hencky strains during uniaxial
elongation of the LDPE Riblene melt at T'=150°C with true strain rate of 1.61 s~ 1.
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samples at the corresponding isothermal conditions.



114 CHAPTER 4. EXPERIMENTAL

of its initial and final length, then the principal stretch ratio is defined as

Ly

A= —
Lo

(4.8)

and the strain measure is defined as the natural logarithm of the principal stretch ratio

LrdL L
f
€y = — =In(=)=1In\. (4.9)
/LO L (Lo)
This is called the Hencky strain and is equal to
€ =€t . (4.10)

For a uniaxial extensional deformation at constant strain rate the dimensions of the
sample change proportionally. Thus, a uniform extension along the principal axis of
deformation results in a uniform reduction of the sample width and height. From the
change in width during elongation and through a combination of Egs. 4.9 and 4.10 one
obtains the true strain rate from the slope of the linear fitting of the natural logarithm
of the normalized width against time [65, 29]. This is demonstrated in Fig. 4.4 for both
resins. For all samples tested the fit of the straight lines are good (r? > 0.993 always)
indicating that no slippage occurs during elongation. The deviations from the nominal
strain rate are given in Table 4.2. These are in good agreement with published values
obtained under different test conditions [65].

While the force during elongation is constantly measured, the resulting stress in
the sample is computed from

F(t) F(t)
t) = = . 4.11
o(t) A(t)  Apexp(—€t) (4.11)
The elongational viscosity, then, is given by
o(t
ne(t) = Q : (4.12)

An important correction to the results comes from the change in density, p, or
equivalently the specific volume, v, of the samples resulting from the melting [66, 29].
The change in the initial dimensions of the samples due to thermal expansion has also
to be accounted for in the calculations of the stress and the viscosity. These corrections
are calculated from

2/3 2/3
“S(T)] = HoWo[-2 ]/ (4.13)

Ay = HoW,
0 = HoWo[ =7~ o(T)

where v, designates the specific volume of the fluid. The density of LDPE at 150°C
was determined to be 0.782 gr/cm® and that of HDPE at 170°C to be 0.772 gr/cm3
[55]. The corrected dimensions of all samples tested were used for the calculations.
A less important correction comes from the inclusion of the sample surface tension
in the calculation of the elongational stress [66, 71]. It is assumed that a small portion
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Table 4.2: Set strain rate and true strain rate determined for the LDPE and HDPE resins in uniaxial
extensional flow.

LDPE Riblene FF20 HDPE Eraclene FA506

Set strain rate (s~ 1) True strain rate (s 1)

0.05 0.048
0.1 0.081 0.083
0.3 0.26

0.4 0.34
0.5 0.41 0.46
0.7 0.56

1.0 0.80 0.86
1.5 1.18 1.43
1.7 1.40

2.0 1.61 1.86

of the force required to extend the sample is used for the increase of the surface of the
sample due to the surface tension and must be subtracted from the recorded stress.
For PEs in the current thesis, a surface tension of 0.025 N/m [48] is considered rea-
sonable. After calculating the resulting stress, the relative error introduced for not
including this correction is always < 1.0 % Thus this correction was deemed insignifi-
cant and was not included in the results.
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Chapter 5

Results

The results from shear and extensional flows for the examined resins are presented in
detail in the present chapter. The results from the dynamic mechanical analysis are of
primary concern and are presented first, as they form the basis for the impending anal-
ysis of all the data gathered. A series of step-strain in shear and uniaxial elongational
measurements then follow to complete the experimental investigation.

5.1 Dynamic Measurements

The results of the dynamic mechanical analysis for both resins are provided in Figs. 5.1
and 5.2. The time - temperature superposition principle was applied to both materials
with a reference temperature of 150°C for the LDPE and 170°C for the HDPE. What
this principle states, is that the resulting storage and loss moduli at every temperature
can be shifted horizontally and vertically with respect to a given temperature in order
to produce a master curve at that reference temperature. The resulting master curves
are provided in Fig. 5.3 for the LDPE and Fig. 5.4 for the HDPE.

In order for the superpositions to be successful it is often preferred to evaluate
the shift factors from the corresponding dynamic viscosity curves, *(w), rather than
the moduli. The complex viscosity curve at each temperature is computed from the
storage and loss moduli using Egs. 3.21 and Eqgs. 2.54, 2.55 along with Eq. 2.56. The
results of these calculations are shown in Fig. 5.5 and 5.6 for the LDPE and the HDPE
respectively. The lines in these figures are fits of the Cross viscosity model from Eq.
2.40. The values of the zero shear viscosities, 775 and the two parameter of the Cross
model for the polymers at each temperature are provided in Table 5.1.

When the viscosity curves are shifted horizontally and vertically the resulting vis-
cosity master curves are shown in Fig. 5.7 and 5.8. The amount of horizontal shifting
for each temperature is the time shift factor, o at that temperature. The amount of
the vertical shift , 81, corresponds to changes in the density of the material:

pT
Br = (5.1)
T poTo

apfr =
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Figure 5.1: (a) Storage, G’, and (b) loss , G”, moduli measured at dynamic mechanical analysis
of the LDPE Riblene melt at a wide range of isothermal conditions.
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Figure 5.2: (a) Storage, G’, and (b) loss , G”/, moduli measured at dynamic mechanical analysis
of the HDPE Eraclene melt at a wide range of isothermal conditions.
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Figure 5.3: Storage and loss moduli for the LDPE Riblene melt taken at several isothermal con-
ditions, superimposed at T=150°C.
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Figure 5.4: Storage and loss moduli for the HDPE Eraclene melt taken at several isothermal
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Figure 5.5: Complex shear viscosity for the LDPE Riblene melt at several isothermal conditions.
Lines are fits of the Cross viscosity model (Eq. 2.40) at the corresponding temperatures.
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Figure 5.6: Complex shear viscosity for the HDPE Eraclene melt at several isothermal conditions.
Lines are fits of the Cross viscosity model (Eq. 2.40) at the corresponding temperatures.
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Table 5.1: Cross viscosity model parameters for the LDPE and HDPE at various isothermal con-
ditions.

LDPE Riblene FF20 HDPE Eraclene FA506

T (OC) o (Pa : S) Ke Ne T (OC) o (Pa i S) Ke Ne
120 272052 389 0.37 150 479939 153.1 0.45
130 172967 31.2 0.38 160 427459 1439 0.45
140 128149 22,5 039 170 377281 138.3 0.46
150 98396 20.9 0.41 180 327755 131.1 0.46
160 66147 17.2 0.42 190 294080 128.3 0.47
190 42488 17.3 045 200 259917 124.1 0.47

Table 5.2: Time shift factors, ar for both resins with respect to the reference temperature at
various isothermal conditions.

LDPE Riblene FF20 HDPE Eraclene FA506
T=150°C T=170°C
T(OC) aT T(OC) aT
120 3.3221 150 1.4831
130 1.7852 160 1.2164
140 1.4514 170 1.0000
150 1.0000 180 0.7843
160 0.6084 190 0.6803
190 0.3137 200 0.5638

where Ty is the reference temperature and p is the density of the material at temper-
ature T'. The values of the shift factors are shown in Table 5.2. These master curves
(Figs. 5.7 and 5.8) show that the complex viscosity curves are smooth and continu-
ous for both melts. The time shift factors evaluated in this manner are applied to the
storage and loss moduli to produce the master curves in Fig. 5.3 and 5.4.

The magnitude of the zero shear viscosity, as well as the values of the dymanic
moduli at a given frequency decrease as the temperature increases. The reduction is
reflected to the change of the time shift factor, a(T'), with temperature. This function
should have the form of an Arrhenius relation:

ar(T) = exp [’; (; - Tloﬂ , (5.2)

where Ty is the reference temperature, F, is the flow activation energy and R is the
universal gas constant. Thus, by plotting In cr vs. 1/T one should get a straight line,
the slope of which gives the flow activation energy at the reference temperature (Fig.
5.9). For the LDPE melt it was found that E,, = 50.4 + 3.4 kJ/mol for T = 150 °C, while
for HDPE E,=32.5 + 0.8 kJ/mol for T, = 170 °C.
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Figure 5.7: Steady state shear viscosity for the LDPE Riblene melt at several isothermal condi-
tions, superimposed at T=150°C. Solid line is the prediction of the shear thinning response (see
Eq. 3.53) according to the modified rubber-like liquid theory with n=0.25.
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Figure 5.8: Steady state shear viscosity for the HDPE Eraclene melt at several isothermal condi-
tions, superimposed at T=170°C. Solid line is the prediction of the shear thinning response (see
Eg. 3.53) according to the modified rubber-like liquid theory with n=0.28.
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Table 5.3: Relaxation spectra for the LDPE and HDPE melts at the reference temperature.

LDPE Riblene FF20 HDPE Eraclene FA506

T=150°C T=170°C
Mode Number,i 7;(s) G, (Pa) 7 (s) G, (Pa)
10°  6.45-10° 102 1.90-10°
10! 3.00-10° 10! 5.68-10°
100 12.87-10° 10°  2.02-10%
10-! 3.00-10* 10-! 577.10*
10~2 5.98.10% 10~2 1.50-10°
10~3  1.37-10° 10~3  2.90-10°

o wWwNER

The master curves were fitted by a 6-mode discrete Maxwell relaxation spectrum
(Egs. 3.21). The resulting curve seems to describe well the rheological behaviour of the
melts with respect to the frequency of the shear deformation. The fitting procedure
gave a set of relaxation times, 7;, along with the corresponding moduli, G;. These are
provided in Table 5.3. The fit of the Maxwell model is also shown as a continuous line
in Fig. 5.3 for the LDPE and Fig. 5.4 for the HDPE melt.

Steady state viscosity, 17(y) measurements were not conducted for our polymers.
Instead, the Cox-Merz rule was employed to estimate 7)(%) from the dynamic viscosity
aty = w:

" (W) = n()]s = (53)

In order to account for the shear thinning in the steady state shear viscosity curves,
the temporary network model theory and the Wagner-I single exponential damping
function was used. An exponent n = (.25 was found to be adequate to fit the steady
state curve of the LDPE at 150°C using Eq. 3.53. This fit is seen in Fig. 5.7. Additionally,
an exponent n = 0.28 was found to fit the steady state viscosity data for the HDPE at
170°C. This fit is seen in Fig. 5.8.

Another interesting feature of the dynamic data is the characteristic crossover fre-
quency, we,. At low frequencies the storage modulus, G’(w), has lower values than
the loss modulus, G”(w). However, the slope of the curve of the former is 2, while
the slope of the latter is 1. Thus, at w = w,, the storage modulus crosses over the
loss modulus. This characteristic frequency is related to the characteristic relaxation
time for the polymer, 7., = 1/w,, and it is an intrinsic property of the material. The
crossover frequencies and the corresponding relaxation times at each temperature are
provided in Table 5.4.

It has to be emphasised that longer 7., (lower w,.,.) indicates higher elasticity and,
indirectly, higher levels of long chain branching [4]. For the melts under consideration
it should be pointed out that the higher the temperature the more viscous or liquid-like
the polymer melt becomes, thus decreasing the critical relaxation time, 7.
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Figure 5.9: Linear least squares fit of the linearized version of Eq. 5.2 for (a) LDPE Riblene at
T=150°C and (b) HDPE Eraclene at T=170°C.
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Table 5.4: Crossover frequencies and corresponding relaxation times for both resins at various
isothermal conditions.

LDPE Riblene FF20 HDPE Eraclene FA506
T(°C) Wer=1/Ter  Ter=lfwe, T (°C) Wer=1/Ter  Ter=1/wer
(rad/s) () (rad/s) (s)
120 0.24 4.17 150 0.64 1.56
130 0.40 2.50 160 1.00 1.00
140 0.69 1.45 170 1.27 0.79
150 1.07 0.93 180 1.59 0.63
160 1.95 0.51 190 2.00 0.50
190 3.65 0.27 200 3.99 0.25

Table 5.5: Damping function values for the LDPE Riblene melt at corresponding magnitudes of
shear strain.

LDPE Riblene FF20

T=150°C
Strain 001 005 0.1 02 05 10 20
h(yo) 1.00 1.00 1.00 1.00 099 091 0.71

5.2 Step-Strain Tests

The results for the LDPE Riblene melt of the step-strain in shear experiments at T=150°C
are shown in Fig. 5.10, along with the vertical shift (superposition). Values of the ver-
tical shift at the corresponding magnitudes of shear strain are given in Table 5.5 and
the resulting Wagner-I single exponential damping function is given in Fig. 5.11. The
exponent from the linear fit of the single exponential was found to be n = 0.23 some-
what lower than the value of n = 0.25 found from the dynamic viscosity data at the
same temperature.

5.3 Uniaxial Elongation

Both polymers were measured in uniaxial extensional flow at the same reference tem-
perature as the shear flows to facilitate the direct comparison between the rheologi-
cal responses of the melts in different flows. The growth of the extensional viscosity
is usually shown in log-log plots as a function on time. It can also be shown in a semi
log plot as a function of strain. The power-law damping function (Eq. 3.60) was used
to model both melts in extensional flow. The results along with the predictions of the
modified rubber-like liquid theory are shown in Figs. 5.12 and 5.13 for the LDPE and
Figs. 5.14 and 5.15 for the HDPE both in log-log and semi-log plots.
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Figure 5.10: Results in (a) from the step-strain experiment for the LDPE Riblene and (b) super-
imposed data for the same melt. The solid line in (b) is the linear relaxation modulus, G(t) of the
6-mode Mawsxell spectrum (see Table 5.3).
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Figure 5.11: Damping function for the LDPE Riblene melt in a log-linear plot. Solid line is the
single exponential damping function, with n=0.23.
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Figure 5.12: Transient uniaxial extensional viscosity as a function of time for the LDPE Riblene
melt at T'=150°C and for various strain rates (as indicated in the legend). Lines are fits of the
modified rubber-like liquid theory with the power-law damping function (see Eqgs. 3.65 and 3.66)
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Figure 5.13: Same as in Fig. 5.12 but with respect to the Hencky strain.
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Figure 5.14: Transient uniaxial extensional viscosity as a function of time for the HDPE Eraclene
melt at 7'=170°C and for various strain rates (as indicated in the legend). Lines are fits of the
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It can be seen in these figures that the LDPE shows strong strain hardening in its
elongational viscosity. The HDPE shows much less strain hardening. This is, of course,
due to the extended branching structure of LDPE. The small strain hardening of the ba-
sically linear HDPE can be due to its broad molecular weight distribution and to some
small degree of branching that was not reported by the manufacturer. The strain hard-
ening index, SHI of the Riblene melt was determined from the uniaxial extensional vis-
cosity curve at £=0.081 s~ ! and was found to be ~ 10.2, whereas for HDPE this could
not be calculated since for ¢ < 1 the sample broke shortly before reaching €5 =3.

The damping function in extensional flow was determined graphically from these
experiments by recording the deviation of the experimental data from Lodge’s rubber-
like liquid theory predictions (using the 6-mode relaxation spectrum defined from shear
experiments) for every strain rate at regular time intervals. The results are provided
in Fig. 5.16 for both melts. The lines in the graphs were determined through a linear
least squares fitting of the damping function values obtained from the experiment.
The power-law exponent was determined to be 3=0.25 for the LDPE and [3=0.40 for
the HDPE.

Besides Lodge’s rubber-like liquid with a damping function, the XPP model was also
tested against the data. The 6-mode Maxwell relaxation spectrum derived from the
LVE analysis was used to model the backbone orientation relaxation times, 7o ;. The
additional sets of stretch relaxation times, 7y, ; and the rest of the nonlinear parame-
ters of the model were obtained by trial and error fitting of the experimental data in
uniaxial flow. The parameters thus found to best fit the data are provided in Tables 5.6
and 5.7 for the the LDPE and HDPE melts respectively. The corresponding plots are
given in Figs. 5.17-5.18 for the LDPE and Figs. 5.19-5.20 for the HDPE.

Some explanatory details regarding the manual fitting of the various parameters of
the XPP model are provided here. In the case of a branched molecule, going from the
free ends inwards an increasing number of arms is attached to every backbone of the
representative pom-pom. The relaxation time of a backbone segment is determined
by its distance to the nearest free end, which can be released from its tube constraint
by retraction. Towards the middle of a complex molecule the relaxation time increases
exponentially. Thus, the g, ; parameters and the orientation relaxation times of the
backbone, T, ;, increase towards the centre of the molecule. The stretch relaxation
times are physically bounded in the region 703 ;1 < Tos,i < Top,i. TO evaluate the
anisotropy parameter «, ; it is advised to use second normal stress difference or sec-
ond planar viscosity data. In the absence of such data the value for the parameter o ;
could be chosen as 0.1/q ;, since the number of arms attached to the branch points
increase while going towards the centre of the molecule and, thus, o, ; decreases.

The Rolie-Poly constitutive equation was used to model the rheology of the HDPE
Eraclene melt. The reptation and Rouse relaxation times that have been used were
those computed for the XPP model and are provided in Table 5.7. The fit of the model
is given in Figs. 5.21 and 5.22. The predictions of the Rolie-Poly constitutive equation
are obtained in units of the relaxation moduli, G; for each mode of the corresponding
strain rate. The predicted viscosity growth curves have to be multiplied by the corre-
sponding moduli of the Maxwell spectrum before computing the values of the uniaxial
extensional viscosity. The CCR coefficient, 3., has been found to have no implication
on the predictions of the uniaxial extensional viscosity whether it was set to zero or
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Figure 5.16: Damping function in extensional flow for (a) LDPE Riblene and (b) HDPE Eraclene
melts at the corresponding temperatures. The power-law exponent assumes a value of 5=0.25
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Figure 5.17: Transient uniaxial extensional viscosity as a function of time for the LDPE Riblene
melt at T=150°C and for various strain rates (as indicated in the legend). Lines are fits of the XPP
model with parameters given in Table 5.6.
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Figure 5.19: Transient uniaxial extensional viscosity as a function of time for the HDPE Eraclene
melt at T=170°C and for various strain rates (as indicated in the legend). Lines are fits of the XPP
model with parameters given in Table 5.7.
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Figure 5.20: Same as in Fig. 5.19 but with respect to the Hencky strain.
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Table 5.6: XPP parameters for fitting the LDPE Riblene melt, T=150°C, M,,=160.3 (kg/mol),

(M/M,,)=12, E,=50.4 (kJ/mol)

Maxwell parameters XPP model
i Topi(S)  Gi(Pa)  Qwi  T0si(S)  Tobi/Tosi Qi Ve
1 0.001 137370 1 0.0002 5 0.1 2
2 0.01 59813 1 0.0025 4 0.1 2
3 0.1 30000 2 0.03 3.33 0.05 1
4 1 12869 2 0.53 1.9 0.05 1
5 10 3000 6 7.3 1.4 0.016 0.33
6 100 645 6 74.1 1.35 0.016 0.33

Table 5.7: XPP parameters for fitting the HDPE Eraclene melt, T=170°C, M,,=196.6 (kg/mol),

Mw/Mn:16, E,=32.5 (kJ/moI)

Maxwell parameters XPP model
i Top, (S) G; (Pa) Gz T0s,i(S)  Tobi/Tosi  Owi  Vas
1 0.001 290000 1 0.0002 5 0.1 2
2 0.01 150000 1 0.002 5 0.1 2
3 0.1 57721 1 0.025 4 0.1 2
4 1 20178 1 0.33 3 0.1 2
5 10 5683 1 3.6 2.8 0.1 2
6 100 1900 2 41.7 2.4 0.05 1

anywhere between 0 and 1. The value of the parameter §,., was always set to -0.5. In
addition, a change of the §,., parameter from -0.5 to 0 was found to have no implica-
tions on the predictions of the uniaxial extensional viscosity.
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Figure 5.21: Transient uniaxial extensional viscosity as a function of time for the HDPE Eraclene
melt at T=170°C and for various strain rates (as indicated in the legend). Lines are fits of the
Rolie-Poly constitutive equation with the Maxwell spectrum of Table 5.7.
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Chapter 6

Discussion

6.1 The Relaxation Spectrum

Strain damping does not occur in the small angle oscillatory shear measurements, as
they are performed within the linear viscoelastic regime (LVE). Thus, the dynamic me-
chanical analysis provides information purely on the linear viscoelastic response of
the melt. A relaxation spectrum with 6 Maxwell elements (G;, ;) was determined for
each melt. A limited number of modes was decided in order to facilitate the calcula-
tions and to reduce computational time. The zero shear viscosity evaluated from these
relaxation spectra

6
no = ZTiGi (6.1)
i=1

was estimated to be ~ 1,1-10° (Pa-s) in the case of the LDPE Riblene and ~ 2,7-10°
(Pa-s) in the case of the HDPE Eraclene melt. These predictions deviate from the values
estimated using the empirical Cross viscosity model (see Table 5.1) at the same tem-
perature for each sample by 12.9% and 27.2% respectively. These deviations may be
due to the limited number of relaxation modes used to describe the linear viscoelastic
behaviour of the melts or the empirical nature of Cross’s model. Adding more modes
may provide a better estimate of the value of the zero shear viscosity. However, even
the addition of more modes may not improve the results because rheological data at
low enough frequencies were not obtained and the curvature of the viscosity curve at
the onset of the Newtonian plateau was not determined experimentally with accuracy.

An average relaxation or disengagement time may be calculated for the two melts
through

6
_ >io1 Gt}
==L .
Zi:l GiTi
This averaged relaxation time corresponds roughly to the longest relaxation time for

reptation of the chains out of their confining tubes. For the Riblene melt this was found
to be 79=60.9 s, lower than 7(=71.3 s for the Eraclene melt.

) (62)

137
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6.2 Thermorheological Complexity of Commercial PEs

Useful information about the microstructure of the polymeric melts can be derived
from dynamic mechanical analysis data. The shape of the curve of the loss angle,
0 = arctan(G”/G’) as a function of the reduced angular frequency, and the rela-
tive values at low and high frequencies provide information about the polydispersity
and the existence of long chain branching in the melts [4].

The curves of § vs. wa are shown in Fig. 6.1 for both the LDPE and HDPE melts.
When the polydispersity of the polymer increases, the loss angle at low frequencies lies
relatively low (lower than 90°). Thus, the values of § at low frequencies for both melts
in Fig. 6.1 indicate relatively high polydispersity in the molecular weight distribution of
the two polymers, with HDPE being more polydisperse.

The shape of the curve in Fig. 6.1 (whether it is concave or convex and whether in-
flection points exist) can give some information on the structure of the macromolecu-
lar chains. The concave shape of the curve of LDPE is characteristic of a highly branched
polymer. This plateau appearing at moderate frequencies indicates the formation of
a physical gel. The relaxation behaviour of this physical gel is bounded by two charac-
teristic relaxation times (the two inflection points that define the limits of the plateau)
corresponding to the crossover to different relaxation mechanisms. This probably has
to do with the non-permanent nature of the gel formed, which is essentially based on
the entanglements involving the branches [4]. On the other hand, the curve of the
HDPE is mostly convex. This is an indication of linear chains. The inflection point at
war ~0.2 rad/s, however, may indicate that there are also a few long chain branches
in this polymer. A wider frequency range at the corresponding temperatures could
provide a clearer view of the behaviour of the polymers and clearer indications for
their polydispersity and molecular structure.

Polymers with complicated molecular structure, such as long chain branching, are
not thermorheologically simple materials. Thus, the time-temperature superposition
of their dynamic moduli curves may not be very succesful. The degree to which su-
perposition is successful is rarely judged on the basis of an objective criterion [32].
Wood-Adams and Costeux [52] proposed the use of linear scales to detect the ther-
morheological complexity of polymer melts. Such plots are provided in Fig. 6.2 for the
two polymers. The horizontal shift factors for these plots were the zero shear viscos-
ity at each temperature evaluated from the complex viscosity data fitted to the Cross
viscosity model.

Wood-Adams and Costeux showed that for a linear polymer the corresponding
curves should superpose exactly. This is obviously not the case for the LDPE melt.
The curves corresponding to 130°C and 190°C deviate significantly from the rest with
increasing frequency. In the case of the HDPE melt, the curve corresponding to 150°C
also deviates from the rest, although not in such an extreme manner as in the case
of the LDPE melt. However, this is the case of thermorheological complexity and as
mentioned in Wood-Adams and Costeux [52] it is indicative of the presence of long-
chain branching in the melt. On the other hand, short-chain branching (SCB) has been
experimentally verified not to alter the behaviour of the loss angle against frequency
[53].

Another simple and direct technique for detecting complexity is the use of van
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Figure 6.3: Van Gurp-Palmen plot for the two PE resins examined at the corresponding isother-
mal conditions.

Gurp-Palmen plots [73]. These are parametric graphs that show the loss angle, §(w)
plotted against the magnitude of the complex modulus, |G*(w)|, with frequency as
the parameter. The resulting curves, thus, show the relative elasticity of the material
normalised by its modulus at a wide frequency range. This plot is provided for both
resins in Fig. 6.3.

If the frequency range examined is wide enough, the curve decreases with |G*(w)|,
reaches a minimum at a value of |G* (w)| that is approximately equal to G%;, and then
increases again. In the case of the HDPE Eraclene the van Gurp-Palmen plot shows
the typical behaviour of a linear HDPE with increased polydispersity [64], whereas the
LDPE Riblene melt shows the curve of a long-chain branched polymer [19, 20]. How-
ever, the frequency range of the experimental investigation has to be much wider for
a meaningful comparison with published data and to extract safe conclusions about
the molecular nature of the melts. To conclude, within the limits of the current ex-
perimental investigation, the technique proposed by Wood-Adams and Costeux is the
most distinctive when it comes to the molecular architecture of the melts.

The presence of LCB in commercial linear polymers such as the HDPE melt exam-
ined in this work, is not surprising. Vega et al. [31] have also reported a lot of com-
mercial metallocene-catalysed HDPE-hexene copolymers containing or suspected to
contain long chain branches. The flow activation energy of the HDPE Eraclene agrees
well with the values of these copolymers with comparable molecular weight and poly-
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dispersity. Further, the increased flow activation energy calculated for the LDPE Rib-
lene agrees with what should expect from the increased polydispersity and long chain
branching content of the polymer.

6.3 The Damping Function

The “memory loss” that is related to large strains was quantified for both resins through
the exponential damping function, h(~g)=exp(-n~y) for shear deformation and h(e g )=exp(-
me g ) for extensional flow. The latter is equivalent to the form proposed by Tsenoglou,
h(\)=A% for m=3.

The two adjustable parameters, n and m (or 3) were evaluated using three differ-
ent methods :

1. From step-strain experiments in shear.

2. From the complex viscosity master curves evaluated from small angle oscillatory
shear measurements.

3. From uniaxial extensional flow measurements using the method proposed by
Wagner [44].

These parameters may differ in their values at different types of flow (shear or
elongational). According to the temporary network model this is attributed to the rel-
ative amount of permanent network destruction achieved for the same deformation
under different flows.

6.3.1 Damping Function from Shear Flow Measurements

The experimentally determined values of the damping function for the LDPE Riblene
evaluated from single step-strain in shear measurements are provided in Table 5.5.
A graphical representation of the data along with the corresponding fit of the single
exponential damping function is given in Fig. 5.11. A value of n = 0.23 for this expo-
nential form was found to fit the data at higher strains, while n = 0.25 was the value
that best fits the complex viscosity master curve at the same temperature, according to
the predictions of the temporary network model (using Eq. 3.53 and shown graphically
in Fig. 5.7). These values seem close to each other, given the uncertainties inherent in
the curve fitting procedures. The small difference is probably due to the estimation of
the exponent from the step-strain measurements, which were limited to relatively low
strains (< 2 s.u.). On the other hand, the single exponential damping function in shear
is valid up to ~10 s.u. thus a better estimate of the exponent should be obtained if
higher strain magnitudes were included. It should be noticed that such a problem was
not encountered during the evaluation of the damping function exponent from the
uniaxial elongational experiments for both resins since the single exponential damp-
ing function in the latter case is considered to be valid up to &2 s.u. while the total
elongation achieved was always more than that.

A comparison between the values of the exponent of Wagner’s damping function
obtained for the LCB and linear PEs from Tsenoglou (see Table 3.3) and those obtained
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for the two commercial polymers that were examined in this work verifies the general
expectation that LCB polymers show much less damping in shear than do melts com-
posed of mostly linear chains. The corresponding values of the exponential damping
function of the LCB melts remain lower than those obtained for linear polymers. The
value of n = 0.25 for the LDPE Riblene melt is much higher than the values tabulated
in Table 3.3 for LCB melts, while it is still lower than the lowest value of n = 0.28
obtained for the commercial HDPEs (from the same work). On the other hand the
n = 0.28 value obtained for the HDPE Eraclene melt lies within the region of values
obtained for the commercial HDPEs.

6.3.2 Damping Function from Extensional Flow Measurements

The results for the damping function of the LDPE Riblene and HDPE Eraclene melts
are provided in Tables C.3 and C.4 of Appendix C, respectively, and graphically in Fig.
5.16. The power-law exponent of h(\) was determined to be 3=0.25 for the LDPE and
(3=0.40 for the HDPE melt.

A comparison between [ for the HDPE Eraclene melt and the values obtained
for the melts of Table 3.6 reveals that linear polymer melts, such as the PS.50124,
PS.606, PS.I and HDPE.S, have values of 3 in the range 0.66 - 0.96, whereas for
the HDPE Eraclene it is lower, 3=0.40, even lower than the IUPAC.A melt, which is a
highly branched LDPE. In general, linear polymer melts with low polydispersity should
have 8 > 1in uniaxial extension. These melts seem to break the rule because of the in-
creased molecular weight polydispersity or the possible presence of sparse long-chain
branching.

A comparison between the power-law and Wagner’s damping function in elonga-
tion reveals major differences between the two. Wagner’s model includes the param-
eter, « in the damping function (see Egs. 3.56 and 3.57) and provides a different fit to
the data. Wagner’s damping function is not followed by an microstructural explanation
of the adjustable parameters, m and « and is considered to be a phenomenological
description of the rheological behaviour of the melt. The power-law damping function
is also an empirical model but the values of 3 have been related with the long chain
structure (B,,) through the studies of Gotsis et al. [14, 5, 6]. Furthermore the incorpo-
ration of the parameter « into Wagner’s single exponential approximation predeter-
mines that a steady state is reached (see Fig. 3.5), while the unattainability of a steady
state has been observed for several melts. The difference between the two damping
functions in elongation is clear and the power-law provides an advantageous starting
point for describing rheological data in the context of rubber-like liquid theories and
their extensions.

The uniaxial extensional data were finally used to test the predicting capabilities
of the Doi-Edwards constitutive equation ,as well as the modified version of the theory
that has been proposed by Tsenoglou for commercial long-chain branched polyethylenes.
The Doi-Edwards universal orientation tensor in the case of uniaxial extension has been
provided in analytical form by [50, 22, 39]

0 () B2 () (- (D)) o
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where
B sinh~1y/A3 — 1
A3(A3 —1)

and A\ = exp eg. In the case of the modified version the above relations translate to

AN (6.4)

t / 1 ,
QZ/ pu(t =) f(A) TR dt’ (6.5)

e (IE-ul)

where 1
(E£-ul) = SA1+AR)) . (6.6)

These forms correspond to the rigorous approach, whereas the IAA is also provided in
analytical form [50, 22, 39] and an analogous procedure is then followed if one wants
to use the modified version instead. The tensile stress in the rigorous approach is
evaluated from

or = o11(t,€) — oas(t, &) = G(t) f(t) + /0 () £(s) ds (6.7)

with s = t — ¢/. The integral may be solved numerically using a simple trapezoid
integration routine and the corresponding viscosity growth values are computed for
each strain rate by dividing the resulting tensile stress values with the corresponding
strain rate.

The predictions of the theory with respect to the damping function in uniaxial elon-
gation assume the form

) A
hDE(EH) = f()\) (/\3_1> 5 (6.8)
whereas for the modified version this result translates to
A 1
h er) = f(\ . (6.9)
prlen) =1 (AB - 1) (1 —20) + 2 )

The predictions of both the DE model and the modified version are provided for both
melts in Fig. 6.4. The corresponding predictions for the tensile viscosity growth are
provided in Fig. 6.5,6.6,6.7 and6.8 with respect to time and Hencky strain.

Regarding the interpretation of the experimental results under the Doi and Ed-
wards theoretical scheme, it should be mentioned that the milder nonlinear behaviour
of the LDPE Riblene melt (see Fig. 6.4-(a)) is attributed to the presence of long chain
branches in the melt. On the other hand, if milder nonlinear behaviour is seen for
HDPE melts, it is usually attributed to the strain induced crystallisation of the melt in
the elongational flow that enhances the melt strength and increases its elasticity [2].
The milder nonlinear behaviour of the HDPE-hexene copolymer studied in this work
(see Fig. 6.4-(b)), however, cannot be attributed to crystallisation. Orientation of the
coiled macromolecules for this type of melt is rather hindered due to the presence of
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the hexene sidearms on the backbone of the linear chain. The milder nonlinear be-
haviour should rather be attributed to the presence of some long chain branching and
to the increased polydispersity of the melt. It seems, thus, reasonable to apply the
modified version of the Doi-Edwards theory to the experimental results of this melt
and obtain a value of the nonlinear viscoelastic parameter, z,, = 0.79.

6.4 LCB and Rheology

Various methods of detecting LCB content in commercial polymer melts have been
suggested in Section 6.2. In addition, the determination of the branching content using
rheological data only, is also suggested in the foregoing sections.

6.4.1 Estimating 5,, from Rheological Data

Estimation of the branching content, B,, of the LDPE Riblene melt, within the theo-
retical context of the power-law damping function, is not possible as the parameter
a,, is not known. However, rheological models such as the “pom-pom” model may be
able to achieve this goal. The eXtended Pom-Pom (XPP) model was used to fit the uni-
axial extensional data of the commercial LDPE Riblene and HDPE Eraclene melts. The
fit of the model is provided in Figs. 5.17-5.18 for the LDPE and Figs. 5.19-5.20 for the
HDPE. The fitting parameters are given in Tables 5.6 and 5.7 respectively. The number
of dangling arms, ¢ ; at the periphery of the pom-pom molecule provide an indirect
measure of branching in the melt. In the case of the LDPE, depending on how one
places the arms in each mode, a branching content of 10 < B,, < 12 is assigned on
average in every molecule in the melt. These values correlate well with the estimated
value of 8.8 from Table 4.1. Besides, the B,, estimate from the GPC measurements
may also be subject to small variations depending on how one correlates the value of
the g, parameter with the value of the ¢/, through Eq. 2.12.

Further, fitting the uniaxial extensional data of the HDPE melt with the XPP model
reveals the presence of some long chain branching in this melt because the ¢, ¢ pa-
rameter of the model (see Table 5.7) is # 1. However, it is not possible for the model
to estimate LCB content with B,, < 2 and a good estimate of the LCB content of the
HDPE melt is not possible.

The influence of the anisotropy parameter, a,. on the predictions of the XPP model
where investigated by Verbeeten et al. [76]. It was found that the influence of «,
on the viscosity, 7, is rather small. The parameter o, mostly influences the second
normal stress coefficient, ¥5: o, = 0 = Wy = 0. Furthermore, the parameter «,
has almost no influence on the first planar viscosity, but a significant influence on the
second planar viscosity. In the absence of normal stress difference or planar viscosity
data, the value of the parameter, o, was set to the default value, O.I/qw;. One can
avoid the use of this parameter in the expense of not predicting a second normal stress
coefficient, 5. Furthermore, as it has already been mentioned, the influence of this
parameter in the predictions of the model is rather small, thus, the calculations of
Tables 5.6 and 5.7 are considered to be valid.
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(a)

(b)

Figure 6.9: Demonstration of one possible distribution of the dangling arms on the periphery
of the pom-pom molecule for the (a) LDPE Riblene with B;,, = 12 and (b) HDPE Eraclene with
B, =2.

6.4.2 Correlation between B,, and z,,

Inarecent publication, Tsenoglou et al. [13, 12] suggested that the nonlinear viscoelas-
tic parameter, x,,, in eq. 3.107 of the modified DE theory (which is actually a measure
of the internal branching of the melt) should correlate with the branching content of
the melt. Thus, merging the available data for commercial LDPEs from Tsenoglou with
those reported from Kasehagen in Table 3.5 for commercial PBs of varied branching
content, one ends up with a plot that shows a pattern relating the amount of internal
branching and the actual branching content (measured independently, i.e. from GPC)
shown in Fig. 6.10. This pattern spans the range of branching from as low as 0.1 to as
high as 80 branches on average per molecule.

In addition, all the available rheological data of the modified LCB PPs (see Tables 3.7
and 3.8) may be translated (with a grain of salt) into the nonlinear viscoelastic param-
eter, x,,. This is mostly because the power-law damping function is of an exponential
form, whereas the modified DE damping function is of a sigmoidal form. This in turn
gives accurate results when 3 < 0.5 but may result in small errors (of the order of not
more than 20%) when 3 > 0.5. The result is shown in Fig. 6.11.

The values of the nonlinear viscoelastic parameter, x,, that correspond to each
sample of those in Figs. 6.10 and 6.11 are provided in Tables 3.9, 6.2 and 6.3. A com-
parison between all samples is made in Fig. 6.12 by adjoining the data from Figs. 6.10
and 6.11. It is obvious from this plot that in the case of the PP samples the x,, pa-
rameter changes in a very abrupt way with the branching content and saturates at
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Table 6.1: Molecular data for melts of B/EHP blends from Lagendijk et al. [61]. The commercial
linear precursor B was modified using varying amounts (mmol/100 gr PP) of EHP peroxydicar-

bonate.

Sample EHP Mw (Mw/Mn) By ﬂ
(mmol) (Kg/mol)
0 410 5.5 0 1.1
0.5 400 5.7 0.03 0.95
B 1 410 6.6 0.15 0.75
2 460 6.8 0.23 0.6
3 485 6.8 0.36 0.45

Table 6.2: PB samples from Kasehagen et al. and the corresponding x,, values for each sample.

Sample B, o T,
0 3.9 0

PR 0.11 6.5 0.29

0.30 80 0.38

0.49 145 0.56

Table 6.3: PP samples from Gotsis et al. and the corresponding x,, values for each sample.

Sample B, I6] Tn Sample B, 8 Ty
0 1.0 ~0 1.8 -
0.4 0.3 0.86 0.2 04 0.78
B+P26 0.6 0.2 0.92 F93+P26 0.4 0.25 0.89
0.7 0.1 0.97 0.5 0.15 0.95
0.8 0.0 - 0.6 0.20 0.92
0 1.1 ~0 0 0.7 -
0.03 095 =0 0.1 0.5 0.69
B+EHP 0.15 0.75 0.35 F96+P26 0.3 0.3 0.86
0.23 0.6 0.57 0.5 0.15 0.95
0.36 0.45 0.74 0.7 0.1 0.97
0 1.0 ~0
0.2 0.8 0.26
0.4 0.4 0.78
BHPF 17 03 0386
3.3 0.2 0.92
5.0 0.2 0.92
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Figure 6.12: The nonlinear viscoelastic parameter, x,, as a function of the branching number,
B, for the melts of Figs. 6.10 and 6.11.

B,, < 10. On the other hand, in the case of the PB and LDPE samples, the form of
x,(By) is more gradual at B,, < 10 and saturates at lower values of z,, for B,, > 10.
It is not clear though, if this difference is due to the type of flow, the type of the poly-
mer, the branching architecture or the experimental method that was used in order
to produce the branching structure etc.

6.4.3 Correlation Between x,, and the Branching Structure

A dendrimer is a repetitively branched compound. A tree-like polymer is a type of
dendrimer. A Cayley tree or Bethe lattice is a special type of a regular dendrimer (see
Fig. 6.13). For such a polymer we can define the number of segments, sgm in each
generation of the tree and the total number of segments in the tree (from the core to
generation g,,). The following expression may be derived using the sum of a geometric

series
1—(f-1)"
2—f ’
which is valid for g,, > 1, while sgm/(g,,)=0 for g,,=0. The total number of branching

points, B,, per branched molecule (assuming that all branching points have the same
constant functionality) is

sgm(gn) = f ( (6.10)

(6.11)

_ _1)9n—1
Bn(gn) =1+ f (1(f2_})> 5
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Figure 6.13: A Cayley-tree or Bethe lattice of constant branch point functionality, f = 3 and
generation, g,=3 . The nonlinear viscoelastic parameter for this structure is 1/2 while for com-
mercial PEs it is lower (=~ 3/4).

Table 6.4: Calculated parameter values of the Cayley-tree model for the commercial LDPE sam-
ples from Tsenoglou. The last column is the relative error between the x,, value calculated from

the model and the actual value (see Table 3.9) inferred from the experiment.

% difference

Sample B, functionality, f  sgm(g.) gn T
(from Eq. 3.108) from experiment

LDPE.A2 80 2.3 106.3 9.9 0.74 2.6

LDPE.A4 73 2.2 88.95 119 081 2.4

LDPE.A7 70 2.3 91.9 9.8 0.75 2.6

LDPE.B2 17 2.35 24 5.05 0.67 9.5

LDPE.C2 5.4 2.33 8.2 2.7 054 28
LDPEIUPACA 24 2.54 37.9 5.11 0.61 6.1
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Table 6.5: Calculated parameter values of the Cayley-tree model for the commercial LDPE sam-
ples from Tsenoglou. The last column is the relative error between the x,, value calculated from
the model and the actual value (see Table 3.9) inferred from the experiment.

Sample B, functionality, f sgm(g,) ¢gn Tn % difference
(from Eq. 6.14) from experiment
LDPE.A2 80 2.3 103.9 10.5 0.76 0
LDPE.A4 73 2.2 86.7 129 0.83 0
LDPE.A7 70 2.3 89.6 104 0.77 0
LDPE.B2 17 2.2 21.6 58 0.74 0
LDPE.C2 54 1.9 5.9 3.5 0.75 0
LDPEIUPACA 24 2.4 354 55 0.65 0

which is valid for g, > 1, while sgm = 0 for g,,=0. Multiplying both sides of Eq. 6.11
by (f — 1) and performing the appropriate calculations, it may easily be shown that

_sgm(gn) — 1
B, = T (6.12)

The fraction of chains corresponding to internal segments equals

T, =1-— (Rl Vit . (6.13)
sgm(gn)

Making use of Egs. 6.10, 6.11, 6.12 and 6.13,one may show that

T —71_3%’ or f—<1+1)<1—1) (6.14)
" (ff]-)‘i»Bln B T Bn ’ '

from which Eq. 3.108 naturally arises as an approximation.

The predictions of this model provide an illustrative way to compare between long
chain branched melts of varying branching content. The results are provided in Table
6.4.

The approximate expression Eq. 3.108 is a good approximation for large branching
numbers (B,, > 10), while it fails for smaller branching numbers, (B,, < 10). This can
be seen from the relative error introduced when comparing the experimentally deter-
mined value of the x,, parameter with the value calculated through the model for the
sample LDPE.C2. The relative error introduced for this sample is =~ 28%. However,
if Eq. 6.14 is used instead of Eq. 3.108, then, for all samples of Table 6.4, one calcu-
lates instead the values of Table 6.5. A perfect reproducibility of the experimentally
determined values of the nonlinear viscoelastic parameter, x,,, is achieved.
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Figure 6.14: The single exponential damping function in shear for both LDPE and HDPE melts
(symbols) and the modified Doi-Edwards damping function in shear (lines) for the same melts.

6.4.4 Correlation Between the Values of x,, Determined from Shear
and Uniaxial Extensional Measurements

It has been suggested that the experimentally determined nonlinear viscoelastic pa-
rameter, x,,, is a measure of internal branching for commercial polymer melts. In fact,
it is an exact measure of the ratio of internal (segments with both ends attached to
a branch point) to external segments (segments with one free end). The correspon-
dence between the experimentally determined values of the parameter, x,, and those
predicted by the model has been demonstrated for the commercial LDPE samples from
Tsenoglou (see Table 6.5).

While the parameter z,, is a measure of internal branching, it must have the same
value irrespective of the deformation type. However, in the case of the LDPE Riblene
melt, it was found that x,,=0.92 in uniaxial extensional measurements, while x,, ~0.38
in shear flow (see Fig. 6.14). In the case of the HDPE Eraclene melt, a value of x,,=0.79
best fits the uniaxial data, while x,, ~0.26 is the estimated value that best fits the
shear data. This difference has to be resolved and a good starting point is to examine
the thermodynamics of deformation within the context of the Doi-Edwards theory and
its modified version.

The free energy function within the theoretical framework of the Doi-Edwards the-
ory and for an arbitrary deformation type is given by [23]

AE) =(In|E-u) . (6.15)

In the case of a step-strain in shear deformation (assuming that the IAA is invoked in
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order to derive the results) the above expression translates to

Alv) =5 9

1 /1| (1 +7022% + /21 (0! + 470%) — 270%22 + 1
n
2 Jo

) dz, (6.16)

while an analytical expression corresponds to the uniaxial extensional deformation
(again within the IAA of the theory)

AQ) = Iny 4 reanvAt =1 (6.17)
A3 —1
Both expressions provide a dimensionless measure of the free energy change per strain
unit. A plot of both functions is provided in Fig. 6.15.

The predictions of the Doi and Edwards theory in shear and uniaxial extension are
provided graphically in Fig. 6.16-(a) (within the IAA approximation in order to compare
with Egs. 6.16 and 6.17). These predictions are then plotted against the free energy
change (that is needed in order to achieve a certain magnitude of strain) using the
data from Fig. 6.15. The result is provided in Fig. 6.16-(b). The plot shows that the
“memory loss” or the relative amount of permanent network destruction is related to
the free energy change of the melt. The free energy change with a minus sign corre-
sponds to the work done by the system (the rheometer in that case) in order to deform
(shear or elongate) the melt. Thus Fig. 6.16-(b) shows that within the Doi and Edwards
theory the “memory loss” or the relative amount of permanent network destruction
is independent of the type of deformation (shear deformation or uniaxial extension).
Consequently, the difference in the free energy change between a shear and a uniaxial
extensional deformation (see Fig. 6.15) is attributed to the different amount of per-
manent network destruction achieved between different types of deformation. This
characteristic behaviour is also predicted by the modified version of the theory with
the incorporation of the nonlinear viscoelastic parameter, z,,. The predictions of the
theory under different types of deformation are the same as long as x,, is the same
for these different types of deformation (see Fig. 6.17).

On the other hand, the predictions of the modified temporary network model
for the LDPE Riblene melt in shear and uniaxial extension are the same. This theory
suggests that the “memory loss” or the relative amount of permanent network de-
struction is the same both in shear and uniaxial extension (since for the LDPE Riblene,
n = 3 = 0.25) in contrast to the predictions of the Doi Edwards model.

Judging from the experimental results for the LDPE Riblene melt and assuming that
within experimental error there is a difference between the predicted values of the x,,
parameter in uniaxial extension and shear deformation, one unavoidably reaches to
the conclusion that the Doi Edwards theory is an over-simplification of reality. The Doi
Edwards theory assumption that the extra free energy (or work done by the system)
needed to perform 1 s.u. in uniaxial extension, rather than 1 s.u. in shear deforma-
tion is wholly attributed to the amount of permanent network destruction seems to
contradict the experimental evidence.
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Figure 6.15: The free energy function, A(E) in the Doi-Edwards theory for a step-strain in shear

and a uniaxial elongational deformation.
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Chapter 7

Conclusions and
Recommnedations

7.1 Conclusions

¢ |t was verified through comparison of experimental data with the predictions
of the Doi-Edwards theory that commercial long chain branched polyolefins un-
dergo considerable but limited strain softening when subjected to a single step-
strain in shear deformation at large magnitudes of shear strain. In addition,
these melts undergo significant strain hardening when subjected to uniaxial ex-
tensional deformation. Both these effects are mainly attributed to the presence
of long chain branching in the melt. Other parameters such as increased poly-
dispersity are assumed to play a complementary role in this behaviour. Both
these effects (reduced strain softening in shear and strong strain hardening in
elongation) do not hold, in general, for linear melts, such as HDPEs. However,
one may find several reports that show linear melts with a small amount of
strain softening in shear or strain hardening behaviour in uniaxial elongation.
In these cases, these effects have their cause either to strain induced crystalli-
sation at large magnitudes of strain or the presence of small amounts of long
chain branching. The latter is suspected in certain types of commercial nomi-
nally linear polyolefin melts, i.e. higher a-olefin copolymers. Other parameters,
such as increased polydispersity are assumed to play a complementary role in
this behaviour, as well.

¢ Several types of commercial polymer melts have been studied in this work. The
rheological behaviour of these melts was initially modelled by making use of
the modified rubber-like liquid theory. The results, based on experimental ev-
idence showed that the single exponential term of Wagner’s damping function
in shear, takes much lower values in the case of long chain branched polyolefins
than for commercial linear melts. The presence of significant amounts of long
chain branching is assumed to be the cause for these lesser values, while in-
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creased polydispersity is not excluded from playing a complementary role in this
behaviour.

When commercial melts were examined by the same procedure under uniaxial
extension, the result was that the single exponential term of Wagner’s damping
function, again takes lower values for long chain branched melts than for linear
melts. This is mostly attributed to the presence of long chain branching while
increased polydispersity is a complementary factor.

The values of the parameters of Wagner’s damping function does not lead to
insight about the physical causes of this behaviour. The single exponential term
in both cases (shear and elongation) does not provide quantitative details of the
molecular structure of the melts. On the other hand, a more recent proposal by
Tsenoglou et al. introduced a power-law damping function that provides a uni-
fied description in all shear-free flows under a simple analytical expression. The
power-law exponent has a physical basis and it interlinks the experimentally de-
termined values of its exponent with the branching content of the melts under
investigation. However, recent studies by Gotsis et al. have lead to the conclu-
sion that the power-law damping function in its present form is far too simple to
describe the complex behaviour of commercial polyolefin melts. The power-law
damping function does not account for parameters such as polydispersity and
the details of the branching architecture, i.e., the molecular weight distribution
and the length of the branches that have been found by Gotsis et al. to add sig-
nificantly to the rheological behaviour of polymer melts. Thus it has not been
possible to use the power-law damping function in order to make predictions
about the branching content of commercial melts from rheological data only.

In addition to the temporary network model, more advanced molecular theories
such as the Doi and Edwards model have been used to describe the rheological
behaviour of commercial melts. While the Doi and Edwards model has a phys-
ical basis it was found to be incapable of explaining the rheological behaviour
of commercial long chain branched polyolefins. A modification of the theory
was proposed by Tsenoglou with the incorporation of a nonlinear viscoelastic
parameter into the constitutive equation. The nonlinear viscoelastic parameter
corresponds to the amount of internal branching in the melt and, thus, provides
a rational explanation of the strain softening of these melts observed at large
magnitudes of shear strain. The modified version of the theory accounts for all
types of deformation and provides a unified description of the rheological be-
haviour of polymer melts.

Two more constitutive equations (in differential form) have been used in order to
gain insight in the physics of the rheological behaviour of commercial polyolefin
melts. The eXtended Pom-Pom model (an extension of the original Pom-Pom
model) and the Rolie-Poly constitutive equation (a simplified version of a more
complete model) are both relative recent proposals. The former essentially ap-
plies to all types of polymer melts (whether linear or long chain branched) while
the later applies only to melts that are comprised of macromolecular chains of
linear architecture.
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¢ All of the aforementioned models were used in order to simulate the rheological
behaviour of two commercial melts, the HDPE Eraclene and the LDPE Riblene.
Both of these melts are polydisperse, the former being a hexene-copolymer,
while the later having a branching content of ~8.8 branching units per backbone
chain. Both of these melts were tested in dynamic shear analysis and uniaxial
extensional deformation. The LDPE was also subjected to a single step-strain in
shear experiment.

e The thermorheological complexity of both melts was experimentally verified. A
plot of the loss angle against the rotational frequency of deformation revealed a
typical behaviour in the case of the LDPE sample, while, in the case of the HDPE
sample, it indicated the possibility of the presence of small amounts of long
chain branching. This latter assumption was verified by making use of the tech-
nique proposed by Wood-Adams and Cousteaux. The corresponding plot for the
HDPE sample indicated the presence of small amounts of long chain branching
in the melt. Finally, the Van-Gurp Palmen plots for both melts proved not to be
quiet helpful. The resulting curves could not be satisfactorily compared to pub-
lished data, since the frequency range of examination was too narrow, and the
resulting curves were only half that of the complete picture that would allow
meaningful comparisons with published data.

e Application of the modified rubber-like liquid theory into the experimental re-
sults for both melts did not reveal anything unexpected. Wagner’s single expo-
nential term, determined from the corresponding master curves of the steady
state shear viscosity, was found to be 0.25 in shear for the LDPE, slightly lower
than the 0.28 value that was attained for the HDPE. However, the single expo-
nential term fitted to the data from the step-strain in shear for the LDPE gave a
slightly lower value ~0.23. This small difference may be attributed to the rela-
tively low maximum strain attained (2 s.u. due to experimental restrictions) that
hampers the accurate determination of the slope of the damping function.

e The power-law damping function was used in order to simulate the uniaxial ex-
tensional rheology of the melts. The power-law exponent for the LDPE in this
case assumes a value of 0.25, while that for HDPE a value of 0.40. It is gener-
ally assumed that linear melts should have a power-law exponent >1. For the
commercial Eraclene melt this was not the case. Numerous commercial linear
melts, however, were found in the literature to have values of 5 much lower
than 1. This is mostly attributed to the presence of long chain branching and
to the increased polydispersity of the melt. The absolute branching content of
the LDPE could not be evaluated from the elongational data since the power-law
damping function is far too simple to make such predictions.

¢ In terms of the Doi and Edwards theory it was found that both melts deviate
from the predictions of the theory in shear as well as in uniaxial extension. In
the case of the HDPE this deviation was attributed mainly to the presence of
small amounts of long chain branching and to a lesser extend to the increased
polydispersity of this commercial melt. The formation of crystal nuclei was can-
celled out since this HDPE-hexene copolymer is assumed to have many small
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arms on the backbone of the main chain preventing any alignment of neigh-
bouring chains during strain. In the case of the LDPE, the reduced strain soft-
ening in shear was attributed to the presence of long chain branching and to
a lesser extend to the increased polydispersity of the molecular weight. These
were considered to be the main reasons for the considerable strain hardening
observed during uniaxial elongation.

¢ The modified version of the Doi and Edwards theory was tested against the
experimental data for the LDPE Riblene as well as the HDPE Eraclene. It was
not possible to attain the same value of the nonlinear viscoelastic parameter
from shear and elongational data. In the case of the LDPE Riblene it was found
that x,, ~0.92 in uniaxial elongation while x,, ~0.38 in shear deformation. In
the case of the HDPE Eraclene it was found that x,, /~0.79 in uniaxial elonga-
tion, while x,, ~0.26 in shear deformation. A rough thermodynamic analysis of
the experimental data for the LDPE and HDPE samples revealed rather that the
present formulation of the Doi and Edwards model is far too simple to account
for complex molecular structures.

¢ A more detailed modification of the Doi and Edwards model (the eXtended Pom-
Pom model) proved capable of predicting the branching content of the LDPE
melt. The result for the XPP model was a branching content 10 < B,, < 12 not
too far from the tabulated value of 8.8 (determined from GPC). The XPP model
was also able to detect the presence of long chain branching in the HDPE sample.
However, due to the very low branching content of this polymer (B,,<1), an exact
amount of branching was not determined.

¢ The competent predictions of the Rolie-Poly constitutive equation in the case of
the HDPE sample during uniaxial elongation were not followed by an analogous
physical explanation of the adjustable parameter, §,,. The indications of this
model are that the CCR mechanism should be accounted for in the description
of the rheological behaviour of linear melts. Application of Marrucci’s nonlinear
dumbbell model into the steady state shear viscosity data of the HDPE Eraclene
melt rather suggests that the CCR parameter (analogous to the j3,,, parameter
of the Rolie-Poly constitutive equation) should be set to 0.6.

7.2 Recommendations

The present research has left a number of open questions and possibilities that merit
further investigation :

¢ The present analytical formulation of the power-law exponent based damping
function is far too simple and, consequently, this damping function is incapable
of predicting the absolute LCB content and the details of polymer melts. This is
demonstrated by the presence of the adjustable parameter, «,, in the equation
relating 3 with B,, (eq. 3.66). Parameters such as the molecular weight poly-
dispersity, distribution and the lengths of the branches (in LCB melts) should be
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included in order to reduce (if possible) the significance of the adjustable pa-
rameter, .

¢ The modified version of the Doi and Edwards theory was incapable of giving
the same value for the nonlinear viscoelastic parameter in shear and uniaxial
elongation (in the case of the LDPE Riblene). This suggests that the modifica-
tion proposed by Tsenoglou indicates that the Doi and Edwards theory is far
too simple to describe the rheological behaviour of commercial polydisperse
melts. Important parameters at large deformations or fast flows, such as strain
dependent drag forces during deformation of the sample at large deformations,
or even molecular mechanisms, such as the CCR relaxation introduced in the
Rolie-Poly constitutive equation, are not included in the constitutive scheme.
Including such parameters into the constitutive equation is expected to solve
the discrepancy and provide the value of x,, in any type of deformation. Further
experimental investigation on long chain branched polyolefins of well-control
branching content and branching architecture should lead to new modifications
and improvement in the quantitative predictions of the theory.

e The degree to which the predictions of the XPP model are valid, regarding the
exact determination of the branching content of polymer melts, should be ver-
ified under similar experimentation on well characterised polymer melts with
controlled branching branching architecture and LCB content.
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Appendix A

Fourier Transform Integrals

The single mode relaxation modulus, G(t) is given by
G(t) = Goexp(—t/m0) , (A1)

where Gy is the plateau modulus and 7y is the characteristic relaxation time of the
material under consideration. If more than a single mode is used, instead then one
gets a summation over all N modes, that is,

N
G(t) = Z Giexp (—t/Ti) , (A.2)
i=1

where G; are modulus constants and 7; are the corresponding relaxation times ob-
tained from experiment. If one wishes to express these relations in terms of the fre-
qguency of observation, w instead of time, ¢ then one has to use a Fourier transform
integral, that is,

G'(w) = Geg +w /[G(t) — Gegsin(wt) dt (A.3)
0
G"(w) = w/[G(t) — Geg] cos(wt) dt (A.4)
0

where G’ (w) and G”(w) are the storage and loss moduli respectively and G, is the
equilibration modulus obtained after a step-strain experiment which is a non-zero con-
stant for solids at low frequencies (or equivalently at long times) but is zero in the case
of liquids. In the case of a polymer melt Egs. A.3 and A.4 reduce to

G (w)=w / G(t) sin(wt) dt (A.5)
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oo
G" (w w/G ) cos(wt) dt . (A.6)
0
Substituting Eq.A.1 into these last two expressions, one gets
00
G (w) = GO/exp —t/70) sin(wt) dt (A.7)
T0 ,
00
G (w) = wf:O /exp (—t/70) cos(wt) dt . (A.8)
0

Introducing the transformation /7, = a and w = b, the corresponding integrals as-
sume the standard form

/o exp(—az)sin(bx) = a2 + b2 (A.9)
o a
/0 exp(—ax) COS(bZ‘) = m s (AlO)

with solutions tabulated in tables with special forms of integrals of the above kind.
Then the storage and loss moduli are obtained

2,2

/ W Ty
= — A.11
Cle)=Corriez (A1)

1 wWTo
—_— 12

The generalization for the multimode relaxation modulus, is given in the form of a
summation over all N modes in Egs. 3.21.



Appendix B

The Doi-Edwards Universal
Orientation Tensor

The Doi-Edwards universal orientation tensor has been formulated mathematically
through the following expression

QuaE) = — <<E'u>1<E~u>2>

(£ - ul) E-ul (8.1)

in the case of a step-in shear strain deformation. The corresponding deformation gra-

dient tensor is

Y% 0
0

&

1
=10 1 , (B.2)
0 0 1
where vy is the shear strain. The associated unit vector, u in the spherical coordinate
system, is
sinf cos ¢
u = |sinfsing (B.3)
cosf

and the (...), means an average over all directions of this unit vector

2T 7
1
(...)= E//sin 0dodeo (B.4)
0 0

The dot product of the deformation gradient tensor with the unit vector produces
a new vector (i.e. a transformed unit vector due to the imposed deformation gradient)

and the | ... | means the magnitude of this new vector after it has been transformed.
Then Eq. B.1 for a step-shear strain flow is
1 u1 + Youo)u
Q12 = < ( 02)222>, (B.5)
<\/1 + 2vourug + 'ygu§> \/1 + 2v0utug + Y5us
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where u1, us and ug are the components of the unit vector. Two double integrals rise
from this analysis, namely,

a(vo) =<\/1 + 2y0uqug + 73u5> (B.6)

1 ™ 27
— / sin 0d9/ dgb\/l + 27psin?@ sin ¢ cos ¢ + 13sin*@sin’¢ (B.7)
47 0 0

1
_ / dz (B.8)
0

1
/ dy\/l + %'yg(l —22) + (1 — 2?) sin(4dmy) — %73(1 — 2) cos(4my) ,
0
(B.9)

for which the variable transformation z = cos@ and y = ¢/2x has been introduced.
Then

I
Q12 :m§/o dx (B.10)

/1 dy (1 — 2?)sin(4my) + v0(1 — 22) — Yo (1 — 2?) cos(4nmy)
01+ $93(1 = 2) + 0(1 — #2) sin(4my) — 143(1 — 22) cos(4my)
(B.11)

These integrals can easily be solved numerically using a simple trapezoidal inte-
gration routine by first integrating the inner integral and then integrating the outer
integral. An analogous procedure is followed for the IAA integral. Sample values of
the orientation tensor, Q12 in shear with an accuracy of up to five decimal points for
both the exact and the IAA versions are provided in Table B.1 along with the corre-
sponding values obtained for the damping functions, h(7o)pz and h(vo)534 (using

Egs. 3.88 and 3.94) respectively. The associated plot is also provided in Fig. B.1.
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Table B.1: Values of the Doi-Edwards orientation tensor, Q12 in shear with an accuracy of five
decimal digits and the corresponding damping functions, h(7o) for both the exact and the IAA
versions.

Shear magnitude Q12 h(v0)DE Q12 h(v0) 53t
Yo (exact DE) (1AA)
0.1 0.02659 0.99725 0.01995 0.99765
0.3 0.07806 0.97575 0.05874 0.97903
0.5 0.12472 0.93542  0.09439 0.94391
0.7 0.16442 0.88081 0.12541 0.89581
0.9 0.19614 0.81723 0.15102 0.839
1 0.20897 0.78365 0.16173 0.80865
1.5 0.24682 0.61704 0.19621 0.65403
2 0.25376 0.4758 0.20689 0.51723
2.5 0.24526 0.36789  0.20433 0.40867
3 0.2306 0.28825 0.1956 0.32599
5 0.1708 0.1281 0.1517 0.1517
7 0.13082 0.07008 0.11914 0.0851
9 0.10501 0.04375 0.09717 0.05398
12 0.08056 0.02518 0.07571 0.03155
15 0.06517 0.01629 0.06188 0.02063
20 0.04933 0.00925 0.04736 0.01184
30 0.03312 0.00414 0.03218 0.00536

35 0.02843 0.00305 0.02773  0.00396
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Figure B.1: A log-log plot of the Doi-Edwards damping function, h(+o0), in shear for both the
exact and the IAA version. A plot of the analytical approximation (see Eq. 3.95) is also included
for comparison.



Appendix C

Tables

The present section contains tables of the values of the damping function, h (7o) calcu-
lated from the experimental data of step-strain in shear experiments for the commer-
cial long-chain branched LDPE’s and commercial HDPE’s examined by Tsenoglou [9].
Tables of the damping function, h(ey) calculated from the experimental data of uni-
axial extensional measurements for the commercial LDPE Riblene and Eraclene melts
are also included.
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Table C.1: Values of h(vo) as a function of shear strain for the commercial long-chain branched
LDPE’s examined by Tsenoglou [9].

A2 A4 A7 B2 C2 IUPACA A7 IUPACA
Strain 130 130 130 130 130 130 110 150
0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
050 098 1.00 1.00 1.00 1.00 0.98 1.00 0.98
1.00 091 098 093 091 0.95 0.89 0.89 0.89

2.00 0.87 0.76

3.00 062 074 0.66 0.63 045 0.58 0.72 0.56
5.00 0.47 051 050 045 0.36 0.52 0.35
7.50 0.35 0.32 0.29 0.33 0.28
10.00 0.28 0.33 0.27 0.25 0.23 0.16 0.27 0.16
15.00 0.14 0.16 0.14 0.14 0.19 0.08
18.75 0.12 0.15

20.00 0.09 0.10 0.05 0.05

25.00 0.07 0.10 0.06 0.06
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Table C.2: Values of h(vo) as a function of shear strain for the commercial linear HDPE’s exam-
ined by Tsenoglou [9]. The last column contains values of the damping function for a commercial
LLDPE from the same work [9].

A A A B B C LLDPE
Strain 140 150 170 140 150 140 150
0.25 1.00 1.00 1.00 1.00
032 095 0.95 1.00 1.00 1.00
0.40 1.00 0.93 1.00
0.50 0.87 0.89 1.00 1.00 0.98
0.63 0.87 0.85 091 1.00 1.00
0.79 081 0.81 0.85 0.95

1.00 069 0.71 0.76 0.79 0.87 0.87 0.87
1.26 062 0.63 0.68 0.71 0.72 0.72 0.78
1.58 048 049 0.58 0.62 0.62 0.58 0.68
200 045 040 0.45 050 0.54 0.51 0.55
250 035 035 036 042 041 0.44 0.45
3.16 0.27 0.28 030 035 0.32 0.34 0.38
4.00 0.22 0.19 0.26 0.25 0.26 0.26 0.28
5.00 0.19 0.15 0.17 0.21 0.20 0.21 0.21
6.30 0.16 0.13 0.13 0.17 0.15 0.18 0.16

8.00 0.10 0.095 0.13 0.3 0.15 0.12
10.00 0.089 0.083 0.13 0.10 0.098 0.081
12.60 0.081 0.062 0.13 0.069 0.083 0.060
15.80 0.074 0.048 0.13 0.054 0.068 0.045
20.00 0.066 0.035 0.042 0.050 0.031

25.00 0.078 0.045 0.023
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Table C.3: Values of h(eg) as a function of the Hencky strain (for each individual strain rate) for
the commercial long-chain branched LDPE Riblene melt at T=150°C.

Strain rate  Hencky strain  h(eg)

€ (S_l) €H
0.96 1.00
1.27 0.88
0.081 1.62 0.79
2.46 0.50
2.82 0.36
1.13 1.00
1.57 0.84
0.26 2.25 0.58
2.73 0.43
0.79 1.00
1.37 0.83
0.41 1.86 0.72
2.74 0.41
0.95 1.00
1.47 0.86
0.56 1.94 0.74
2.63 0.48
1.61 0.77
1.94 0.68
0.80 2.50 0.53
2.70 0.43
0.97 1.00
1.35 0.70
1.18 1.83 0.61
2.47 0.46
0.55 0.85
1.04 0.74
1.40 1.69 0.57
2.63 0.36
3.14 0.21
0.45 0.84
0.97 0.81
1.61 1.63 0.63
2.53 0.36

2.90 0.30
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Table C.4: Values of h(ex) as a function of the Hencky strain (for each individual strain rate) for
the commercial linear HDPE Eraclene melt at T=170°C.

Strain rate  Hencky strain  h(eg)

é (5_1) €q
0.39 1.00
0.72 0.88
0.048 1.11 0.72
1.75 0.47
2.06 0.36
0.35 1.00
0.59 0.97
0.083 0.88 0.90
1.30 0.70
1.93 0.43
0.63 0.95
0.87 0.81
0.34 131 0.63
2.00 0.36
0.47 0.81
0.64 0.81
0.46 1.12 0.68
1.89 0.39
0.48 0.83
0.90 0.77
0.86 1.25 0.65
1.77 0.45
0.46 0.74
0.66 0.70
1.43 0.94 0.68
2.00 0.50
2.14 0.26
0.56 0.74
0.80 0.70
1.86 1.19 0.65
1.86 0.39

2.90 0.14
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Appendix D

Graphs from the Theoretical
Section

The present section contains all the plots related to the experimental investigation
of the rheological properties of commercial long-chain branched LDPE’s in terms of
single step-strain in shear experiments. The molecular characteristics of these melts
are presented in Tables 3.3 and 3.9. From Tsenoglou’s PhD Dissertation [9].
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Figure D.1: Relaxation modulus of commercial long-chain branched LDPE A2 at T = 130°C in (a) and (b) superimposed plot with values of /(7o) as in

Table C.1.
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Figure D.3: Relaxation modulus of commercial long-chain branched LDPE A7 at 7" = 130°C'in (a) and (b) superimposed plot with values of (7o) as in
Table C.1.
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(a)

Figure D.7: Relaxation modulus of commercial long-chain branched LDPE A7 at 7" = 110°C'in (a) and (b) superimposed plot with values of (7o) as in

Table C.1.
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