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Global Exponential Stability for Discrete-Time
Networks with Applications to Traffic Networks

lasson Karafyllis and Markos Papageorgiou

Abstract—This paper provides sufficient conditions for
global asymptotic stability and global exponential stability,
which can be applied to nonlinear, large-scale, uncertain
discrete-time networks. The conditions are derived by means
of vector Lyapunov functions. The obtained results are applied
to traffic networks for the derivation of sufficient conditions of
global exponential stability of the uncongested equilibrium
point of the network. Specific results and algorithms are
provided for freeway traffic models. Various examples
illustrate the applicability of the obtained results.

Index Terms- Nonlinear systems, discrete-time systems, traffic
networks.

I. INTRODUCTION

xponential stability is a very useful property for the
equilibrium point of a given network. The purpose of
the present paper is three-fold:
e to provide sufficient conditions for Global Asymptotic
Stability (GAS) and Global Exponential Stability (GES),
which can be easily applied to nonlinear, large-scale,
uncertain discrete-time networks;
e to apply the aforementioned sufficient conditions to
traffic networks and obtain conditions, which guarantee the
GES of the uncongested equilibrium point;
o to study the stability properties of freeway traffic models
and obtain easily checkable conditions which guarantee the
GES of the uncongested equilibrium point.

Vector Lyapunov functions are useful to large-scale
discrete-time systems. Sufficient stability conditions by
means of vector Lyapunov functions have been proposed in
[11] (pages 792-798). More recently, small-gain conditions
have been proposed in [22], which can be expressed by
means of a vector Lyapunov function formulation (as
shown in [13], Chapter 5). In this work, we propose a set of
conditions expressed by means of vector Lyapunov
functions, which guarantee GAS and GES (Theorem 2.3)
and can be applied easily to nonlinear, large-scale,
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uncertain  discrete-time systems. The basis for the
applicability is the expression of the stability condition by
means of a condition on the spectral radius of a nonnegative
matrix. Therefore, we can apply recent results on
nonnegative matrices that provide upper bounds for the
spectral radius (see [3]; Chapter 2). The stability notions
used in this work are the standard stability notions for
discrete-time systems used in [11] (Chapter 13), [12], [13]
(Chapter 2) and [16] (Chapter 4), but we also allow the
discrete-time, uncertain system to be defined on a subset of
a finite-dimensional space. Discrete-time systems defined
on a subset of a finite-dimensional space were studied in
[28] (Chapter 1).

The conservatism of the obtained stability conditions can
be reduced significantly if we have an accurate description
of a trapping region of the system: this feature is exploited
throughout the present work. A nonlinear system with a
trapping region is a system for which all solutions enter a
specific set after an initial transient period (for continuous-
time systems without inputs the name “global uniform
ultimate boundedness” is used in [14] (page 211) when the
corresponding set is compact; the term “dissipative system”
is used in the literature of continuous-time systems with
compact corresponding sets; see [28], page 180).

The obtained stability results are applied to traffic
networks (Section 3). More specifically, we develop a
general model for traffic networks, which consists of an
arbitrary number of elementary components. The
components can be interconnected to form any two-
dimensional structure for the overall traffic network. This
general formulation allows for a plethora of diverse traffic
network infrastructures to be addressed on the basis of a
unifying modeling approach; specific instances of the
proposed general model may result in systems which are
similar to other models in the literature (see for example [6,
8, 25]). In particular, the traffic network structures and
problems that can be considered as special cases of the
proposed network model include: urban road networks
consisting of interconnected links which are modelled as
store-and-forward components [1] or cell-transmission links
[4]; large wurban networks consisting of smaller
homogeneous sub-networks [2]; freeway stretches or
networks consisting of series of links which are modelled
via the discretized LWR (Lighthill-Whitham-Richards)
model [17] or its simplified CTM (Cell Transmission
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Model) version [7]; large mixed (corridor) networks
consisting of urban and freeway links [24]. As a matter of
fact, the same generic approach may also be used for
modeling water networks consisting of interconnected links
which are modelled by discretized versions of the Lighthill-
Whitham model [21], see [5, 23]. Our main related result
(Theorem 3.1) provides explicit formulas for the elements
of a specific nonnegative matrix whose spectral radius is
critical for the GES of the uncongested equilibrium point of
the traffic network. Therefore, our results can be used for
the determination of the stability properties in a given
traffic network within this framework (see Example 3.3).
The obtained results are specialized to the case of a
freeway stretch (Section 4). The overall model in this
specific constellation consists of a series of subsequent cells
and is similar to the known first-order discrete Godunov
approximations (see [9]) to the kinematic-wave partial
differential equation of the LWR-model (see [21, 26]) with
nonlinear ([17]) or piecewise linear (CTM, [7]) outflow
functions. However, the presented framework can also
accommodate recent modifications of the LWR-model as in
[18] to reflect the so-called capacity drop phenomenon. Our
main related result (Corollary 4.3) provides an easily
implementable algorithm for the determination of the
stability properties of the uncongested equilibrium point of
the freeway stretch. The results are different from other
results in the literature on the CTM (see [6, 10]), since our
methodology is different from the methodology used in [6,
10]. More specifically, in [10] the dynamical analysis is
based on monotone systems theory and in [6] the results
concerning the uncongested equilibrium point are local. On
the other hand, in this work we provide global stability
results based on a vector Lyapunov function analysis.

Notation.
S — n o_

* R, =[0,+0) . For every set S, S _Sx.j.><S for every

n times

positive integer n. R” :=(R,)". For every xe R, [x]
denotes the integer part of x € R .

* We say that an increasing function p € C*(R HR,) isof
class K, if p(0)=0 and lim p(s)=+w. By KL we

§—>+00

denote the set of functions o e C*(R, xR, ;R,) with
the properties: (i) for each >0 the mapping o(-,t) is
increasing with o(0,¢)=0; (ii) for each s>0, the

mapping o(s,-) is non-increasing with lim o(s,#)=0.
t—+o0
* Let x,yeR". We say that x<y iff (y—x)eR}. By
|x| we denote the Euclidean norm of xeR". Let
AeR™" be areal matrix. By |A| we denote the induced

matrix norm. The spectral radius of 4 e R™" is denoted
by po(A4). When all elements of 4 are non-negative, then

nxn

we say that A is non-negative and we write 4 € R’

II. VECTOR LYAPUNOV STABILITY CRITERIA FOR DISCRETE-
TIME NETWORKS
Consider the discrete-time system:

x"=F(d,x),xeScR",deD 2.1
where S < R" is a non-empty closed set with x" €S,
DcR' isa non-empty, compact set, F:DxS—>S§ is a
locally bounded mapping, being continuous on the set
Dx{x"} with F(d,x")=x" for all deD. We suppose

that {xeS:O<‘x—x* S5}¢® for every 6 > 0.

In order to develop the Vector Lyapunov Stability criteria
we need the notion of a Trapping Region (TR). A nonlinear
system with a Trapping Region is a system for which all
solutions enter a specific set after an initial transient period.
Definition 2.1: 4 Trapping Region (TR) for system (2.1) is
a set AC S for which there exists an integer m >0 such

that for every x, €S, {d, eD}z:O’

the solution x(t) of
(2.1) with initial condition x(0)=x, corresponding to
input {d,- € D}?O:O satisfies x(t)ye A forall t>m.

A direct consequence of Definition 2.1 is that every TR
for (2.1) must contain all equilibrium points. We next
define the robust stability notions used for (2.1).

Definition 2.2: We say that x* €S is Robustly Globally
Asymptotically Stable (RGAS) for system (2.1), if there
exists a function o€ KL such that for every x,€S,

{dl« eD}EfO the solution x(t) of (2.1) with x(0)=x,

=0’
corresponding to {d ; € D};io satisfies

‘x(t)—x*‘ < U(‘xo —x*‘,t )for all t>0. Wesay that x" € S
is Robustly Globally Exponentially Stable (RGES) for
system (2.1) if there exist constants M ,o >0 such that for
every xy, €S, {d,- € D}ZO, the solution x(t) of (2.1) with

x(0)=x, corresponding to {d ;€ D}ziO satisfies

‘x(t) —x*‘ < Mexp(—atjxo —x*‘ forall t>0.

We are now ready to state the main result of the section.
Theorem 2.3: Consider (2.1) and suppose that A S is a
TR for (2.1). Moreover, suppose that there exist functions
a;,a, € K, with a,(s)<a,(s) forall s20, V,:4—>NR,

(i=L..,0) and a matrix T = {71',] >0,i,j=1,..,1 }e ‘.Rixz

such that the following inequalities hold for all
xeA,deD and i=1,..,1:
a Qx—x*‘)ﬁ max[(Vi(x))S a, Qx—x* ) 2.2)
i=l,...,
!
V(F(d0)< D 7,V 2.3)

j=1
Moreover, suppose that the spectral radius p(F) of the

matrix T is less than 1. Then x" €S is RGAS for (2.1).
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Moreover, if there exist constants L>0, 0<K, <K,,

p>0 such that supﬂF(d,x)—x* :deD}SL‘x—x*‘ for

all xeS\A and if a,(s)=K,;s” (i=12) for all s>0

then x* €S is RGES for (2.1).

Since the matrix I' is non-negative, there are effective tools
for the computation of its spectral radius ([3]; Chapter 2).
For example, if there exists &£ >0 such that

n n

; E (5+7i,_/)§ (e+7;%)
Jj=1 k=1

max 7;: | <1 or max <1

. LJ : n

i=l,...,n i=l,...,n

then the spectral radius of I' is less than 1. The above
conditions can be used for large-scale systems easily.

It should be emphasized that the novelty of Theorem 2.3
with respect to existing results lies in the presence of
deterministic uncertainty and the exploitation of the TR.

Proof: Let x, €S, {dl- € D};io be given and consider the
solution x(¢) of (2.1) with x(0)=x, corresponding to
{dl- € D}jio. Let m >0 be the integer in Definition 2.1. Let
j €10,...,m} be the smallest integer for which it holds that
x(t)e A for all t>j (the fact that j exists and satisfies
j €10,...,m} is a consequence of the fact that 4 isa TR for
(2.1)). We next show that there exists b € K, such that

max ‘x(k) —x*‘ < quo —x*U (2.4)
k=0,....;
Indeed, if there exists a constant L >0 such that

max{‘F(d,x)—x*‘:d eD }s L‘x—x*‘ forall xe S\ 4, then

we may define b(s):=max(l,L")s for all s>0. The fact
that (2.4) holds is a consequence of the fact that j<m,
(2.1) and the inequality
‘x(t+1)—x*‘ < max(l,L]x(t)—x*‘ which holds for all
t=0,...,j—1, for the case that j>1.

equation resulting

For the general case, we define F(d,x)=x" for all
deD,xeR"\S and
als) = sup{‘F(d,x)—x*‘:(d,x)eriR”, <s } 2.5)
Clearly, a(s) is well-defined by (2.5) for all s >0, since
F is a locally bounded mapping. Continuity of F on the

*
X—X

set Dx{x"} in conjunction with the fact that D c R isa

compact set with F(d,x")=x" forall d € D implies that
lim a(s) = a(0)=0. (2.6)
s—0"

By virtue of Lemma 2.4 on page 65 in [13] there exists

a € K, such that s+a(s)<a(s) forall s>0. We define:
2.7)

b=go...0q
—

m times

Definition (2.7) shows that b€ K, . Using the fact that
< E(‘x(l) —x*|) which holds
for all +=0,...,j—1 (a consequence of (2.5) and (2.1)) for
the case that j>1 and definition (2.7), we obtain (2.4).
When j =0, then (2.4) holds automatically.

Since p(I')<1 there exist M >1, ¢ >0 such that
| < M exp(-ot), for all integers 7> 0
(see [27], page 212 and page 231). Next define:
E@) =N (x@+ ))), Vi(x(t+ )))) € “.Ri forall £>0.(2.9)

Equation (2.1) in conjunction with inequalities (2.3) imply
that the following recursive relation holds for all #>0:

E+1)STE(@) (2.10)
Using the fact that I' is a non-negative matrix (and
consequently satisfies I'x <I'y for all vectors x,ye R
with x < y), we obtain from (2.10):

E(@)<T'&(0), forall >0
Using (2.8), (2.11), definition (2.9) and (2.2), we get:
a x(j+t)—x*‘ < Mexp(—mWaQQx(j)—x* ),

forall £>0 (2.12)
Using (2.4) and (2.12), we get: ))
(2.13)

aIQx(j+t)—x*‘)S Mexp(—oT la, (quo -X
forall £1>0
Since a,(s) <a,(s) forall s >0, and since M 21, j<m,
it follows from (2.4), (2.13) that the following estimate
holds forall £>0:

a Qx(t) -x" ‘)S M exp(— o(t— m))\ﬁ a, (quo -x"
(2.14) that the
k() —x"|<olfxy~x"|.¢) holds for all 20 with

o(s,t)=a; 1(M exp(—o(t —m))\ﬁa2 (b(s))) (notice  that
o eKL) and consequently x* €S is RGAS for system
(2.1). If there exist constants L>0, 0<K,<K,, p>0

Jj <m , inequality ‘x(t +1)-x"

(2.8)

@2.11)

*

) @14

estimate

Inequality shows

such that max{‘F(d,x) —x*‘:d eD }S L‘x—x*‘ for all
xeS\A4 and if a;(s)=K;s? (i=12) for all s>0 then
inequality (2.13) implies that
"< M\/?KZ exp(—ot) max(l,me ]xo —x* ,
forall 120 (2.15)
Here we have used the fact that (2.4) holds with
b(s):=max(l,L")s for all s>0. It follows from (2.15),
(2.4) with b(s):=max(l,L")s and the facts that j<m,
0 <K, <K, that the following estimate holds for all >0

Kl‘x(j+t)—x*

Kl‘x(t) —x*‘p < MVl K, exptott—my)ma. LP’”]xO —x*‘p

which directly implies that x* €S is RGES for system
(2.1). The proof is complete. <
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III. GLOBAL STABILITY RESULTS FOR TRAFFIC NETWORKS

This section is devoted to the derivation of sufficient
conditions that guarantee RGES for the equilibrium point of
a traffic network. We consider a generic traffic network
which consists of n components (see Section I for several
specific instances of the generic model). The number of
vehicles at time >0 in component i € {l,...,n} is denoted

by x;(¢). The outflow and the inflow of vehicles of the
component ie{l,..,n} at time ¢>0 are denoted by
q;(t)=0 and F;(t) =0, respectively. All flows during a

time interval are measured in [veh]. Consequently, the
balance of vehicles for each component i € {1,...,n} gives:

x;t+)=x,)-q;(O)+F; @), i=1l..,n,t20. (3.1)
Each component of the network has storage capacity
a; >0 (i=L..,n). Our first assumption states that the

inflow of vehicles at the cell ie{l,...,n} at time >0,
denoted by F;(t)>=0, cannot exceed the number of free
positions for vehicles of cell i € {l,...,n} attime >0, i.e.,

Fy(t) = minlc,(a; —x,(0).Fy (1)), i =1ooun, 120 (3.2)
where I?‘l-(t) >0 is the attempted inflow of vehicles at the
iedl,...,n} t>0 c; €(0,1]
(i =1,...,n) are constants.

Our second assumption is dealing with the attempted
outflows and inflows. We assume that there exist functions

f[eCO(Dx[O,ai];‘JL) with  f;(d,x;)<x; for all
(d,x;) e Dx[0,q,], DcR' s
compact set, constants p; ; 20, i,j=L...n, with p;; =0

component at time and

where a non-empty,

for i=1,...,n,and constants Q; 20, i=1,...,n so that:

attempted flow of vehicles
. . =pi,jfi(d7xi)v

from component i to component j
for i, j=1,..,n 3.3)

attempted flow of vehicles from

. . =0,/,(d,x;),
component i to regions out of the network
for i=1,.,n 3.4
We also assume that:

(3.5)

Z p;;+0;,=1.
j=1

Some explanations are needed at this point. The function
Ji :Dx[0,a;]—> R, is what in the specialized literature of
Traffic Engineering is called the demand-part of the
fundamental diagram of the 7 -th cell, i.e. the flow that will
exit the cell if there is sufficient space in the downstream
cells; while p; ; are turning rates and Q; are exit rates. The

uncertainty d €D has been introduced in order to
accommodate the uncertain nature of the fundamental
diagram. Finally, equation (3.5) implies that the total

attempted outflow from the i -th cell is exactly equal to the
demand-part of the fundamental diagram, f;(d,x;) .

Let v; >0 (i=L,...,n) denote the attempted inflow to
component i € {l,...,n} from the region out of the network.
Our assumptions lead us to the following equations:

F(t)=v, + Zn:pjﬂifj(d(t),xj ), i=l,.,n, t20.(3.6)
j=1

Equations (3.2) and (3.6) imply that the percentage of the
attempted inflow of vehicles at cell i at time ¢ >0, which
becomes actual inflow of vehicles at cell i at time >0,
denoted by s,(¢) €[0,1] for i =1,...,n, 20 is given by:

min| ¢;(a; —x;(1)),v; +ij,,-f,-(d(t),x (1))
s; (1) = =

v+ p i fd(©),x,(0)
j=1

Our final assumption relates the actual inflows with the
outflows. Many rules for the outflows of road links have
been proposed in the literature; see for example [6, 15, 19,
20]. Here we employ a similar rule to the so-called
proportional priority, first-in-first-out (PP/FIFO) rule for
junctions (see [6, 15]). We assume that, if cell i cannot
accommodate all inflows, then the actual inflows from other
cells of the network (or from regions out of the network) to
cell i are equal percentages of the attempted inflows, i.e.

( actual flow of vehicles ]

(3.7)

from component j to component i

s-(t)( attempted  flow of vehicles ]
! from component j to component i
(3.8)
Other assumptions could be accommodated in this
modeling framework if required. Combining (3.3) with
(3.8) we get:

( actual flow of vehicles

from component j to component i

iLj=1..,n.

J:Si(t)p_/,ifj(d»xj)n

3.9
Moreover, we assume that the actual flow of vehicles
from cell i €{l,...,n} to regions out of the network is equal

i,j=1...,n.

to the corresponding attempted flow of vehicles. Thus, the
outflow ¢;(#)=0 fromcell i e {l,...,n} is:

‘Ii(f)z{Qi+ZSj(t)Pi,j]f}(d(t)axi(t)) (3.10)
=

Combining equations (3.1), (3.2), (3.6), (3.7) and (3.10) we
obtain the following discrete-time dynamical system:

X =X +Si[vi +ij,ifj(dsxj)]_{gi +Zs»fpi’/J‘/;(d’xi) >
=1 =1

for i=1,..,n 3.11)
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Define S =[0,a,]x...x[0,a,]. Since the functions f;
satisfy f;(d,x;)<x; for all (d,x;)e Dx[0,q;],
that (3.11) is an (uncertain) dynamical system on S .

A component i€ {l,..,n} of the traffic network (3.11) is
said to  be

it follows

“congested” at  time t if

ci(a; = x,(0)<v,+ Y p, . f;(d(@),x,(0) (or, equivalently, if
j=1

s;(t)<1). In this case, the actual inflow to component
ie{l,..,n}
assume next that there exists an equilibrium point for which
no congestion phenomena are present: the uncongested
equilibrium point of the network.

(H) The  matrix P= {pi’j 0, j = 1,...,n}
det([—P');& 0. There exists a point x* =(x{,..,x,) €S
that satisfies the following for all d € D and i =1,...,n

is less than the attempted inflow. We will

satisfies

vi+cix;k+ij,ifj(d,x;)ﬁciai (3.12)
j=1
* ! *
@)= f=vi+ Y pfdx)  (3.13)

j=1
We are now in a position to prove the following theorem.
Theorem 3.1: Consider system (3.7), (3.11) under
assumption (H). Assume that there exist constants L>0,

0<b, <b <a, 4,120, o €[x;,a;) (i=l,..,n) such
that the set A:[lzl,gl]x...x[l_)n,z,,] is a TR for system

(3.7), (3.11) and such that the following inequalities hold
forall i=1,..n:

|ﬁ(d,xi)—ﬁ*|SL|x,.—xj forall (d,x,)e Dx[0,a,] (3.14)

X =X =G0, fi(d,x)) fi(d, ;) + mi'{ci (@ =x;),v; +ipj,if7J
j=1

>

< ‘xl»—x;-k
forall (d,x;) e Dx[b;,bi], 0=(6,...0,) €[O1]" i =1,....n
(3.15)
> X S:ui‘xi_x;"
forall (d,x;) e Dx[b,,b;] and i=1,..,n. (3.16)

., mi{cj(aj —@@),vj +pl-’jy+2pk,jf,:J

ket

where G(0,y): Q+; » +pi,jy+2pk,jf; D

ket

Define F, max{f (d,s):s e[b,,
assume that

f; +pi,j(Fi _f;*) <c;a

Define the matrix T = {}/i’j 0, j= 1,...,n} by:

bil.d €D} (i=1,..n) and

;forall i, j=1,...,n (3.17)

5
g=A, fori=1L..,n (3.18)
Vo= sz/c maxobj a)) lplkp/k
N (f +p1/(F f )lb/ x +pl l z
for i, j=1,..,n w1th i#]J. (3.19)

pr(l") is less than 1, then x" is RGES for (3.11).

Remark 3.2:
(a) Assumption (3.17) is not restrictive: since we are
studying the properties of the uncongested equilibrium

point, the equilibrium flow values f;* for i=1,...,n are far
smaller than the quantities c;a;, and condition (3.17) holds.

(b) It should be pointed out that Theorem 3.1 is based on
the estimation of the constants 4,,4; 20 (i=1,...,n) which
satisfy inequalities (3.15), (3.16). The numerical evaluation
of the magnitude of the constants A,,4; 20 (i=1,...,n) can
be performed independently for each cell, no matter how
many interconnections are present. This implies that the
computational complexity for the evaluation of the
constants A;,4; 20 (i=1,..,n) is of order n and is
independent of the number of interconnections. This feature
is important for the analysis of large-scale networks.
Proof of Theorem 3.1: We use Theorem 2.3 for

V(x) = ‘x,.—x;" (i=l..n) (3.0

and the dynamical system (3.7), (3.11). Since the inequality

x— x‘< max(V(x)) ‘x x‘

s

holds for all xe€ 4 and since (3.14) implies the condition
max{‘F(d,x)—x*‘:d eD }S Z‘x—x*‘ for all xeS§, for

certain constant L> 0, where
F(d,x) = (F{(d,X),..., F,(d,x)) € R" and
Fi(d,x) = x, +s{vi +Z pj,if_/(d,x_/)J
j=1
_{Qi +zsjpi,iji(daxj)
j=1
it suffices to show that (2.3) holds forall xe 4, i=1,...,n

The rest part of proof is devoted to the proof of (2.3).
Indeed, using (3.7), (3.20) we get for all (d,x)e DxA4,

0<[0,1]" and i=1,...n

Vi(F(d,x)) =

+ *
Xi =X

< fi(d,x; )i Dij |Wi,j|
j=1

+|xi -x =G0, f:(d,x,)) f,-(d,xi)+min(ci (a; —x;), f]

s{vl. +Zn:pj,ifj(d,x‘)J—min(ci(ai —xl-),fl-**

J=1

+

(3.21)
where
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mm{c (a;—x;)v, +zpk,fk(d xk)]

Wij =

P+ f (d’ )
Y Z‘p o TR Tk (3.22)

min(cj(aj —Hja)j),v-+pi,jﬁ(d,x,«)+zpk,jf}€*J
k#i
v; +pi,jfi(d’xi)+zpk,jfk*

k#i

(3.15), (3.16) and the fact that
|min(a,x) —min(a,y)| < |x - y| for all a,x,y € R, we obtain

from (3.21) for all (d,x)e DxA4, 0€[0,1]" and i =1,...,n

n n
3k
+f,~(d’xl~)§ ,pi,j|wi,j|+§ ‘,pj,,»ﬂj|xj ‘xj| :
j1 j=1

(3.23)
We next show that for every (d,x)e DxA and i=1,..,n

Using

Vi(F () < Al =]

we can select 6; €[0,1] in a way so that we can minimize

the values of |wi’ j| (j=L...,n). Continuity of the mapping

c(a:—60. 0. : :
[0,1]15 6, — min ja;-0,0, . implies
‘ Vj*l’[,/fi(dyxi)+z Pr,j Sk
k=i

the existence of &, €[0,1] with w; ; =0, provided that:

min cjla;=@;) | < s
v+ pi i fild,x;)+ Z Pi,j Sk
ki (3.24)
< min £ 1
vV +p1]f(dx)+z pk/fk*
k#i
where s; is defined in (3.7). If (3.24) does not hold, then
. ci(a;,—w;) .
min I J1|>s;- This follows from
v+ p i fild,x;)+ zpk,jfk
k#i
min €4 1|=1 (a consequence of
v; +pi,jfi(daxi)+zpk,jfk*
k#i

(3.13), (3.17)) and s, <1. Consequently, (3.22) implies

»xi)+zpk,jfk*J

k#i

min[cj (aj -, ), v+ pi,jfl-(d

|Wiqj| ) v+ pfild,x;)+ Z pk,jfk*

k#i

mm[c (a;—x;),v; +Zpkjfk(d xk)}

v; +zpk,jfk(d’xk)
k=1

6
when (3.24) does not hold. Moreover, since
min(cj (@ =x)v;+ > il (d,xk)J
s; = - k=1 <1, we get
v+ i fildx)
k=1
cila;—x;)<v; +Zpk’jfk(d,xk) and consequently,
k=1
min[cj (aj -, ) v+ pi,jfi (d,x;)+ z pk,_/fk*J
k#i
Wi,' = "
| J| vj+pi,jfi(d7xi)+zpk,jfk
k#i
c; (aj - xj)
v +Zpk,jfk(d’xk)
k=1
(3.25)

provided that (3.24) does not hold.
Hence, when (3.24) does not hold, we have from (3.25),
(3.16) and (3.24):

|wj|[v +p; i, x)+Zpkjfk +Zpk/ﬂk|xk ka

k#i

mi{cf("-f“"-f>’vf+puﬁ<d Y ,fJ o))

ki

mi‘{cj(aj —@;)v;+p; i fidx)+ E Prifx

k#i sz 4 |x x*|
e, j Ee | Xk — Xk
v;+p; i fild,x;)+ E Pk,jfk* ki

k#i

Using (3.13), the inequalities x; —@; <max(0,x; —®;) and

mi'Ecj(aj ~@),v; +pi’jﬁ(d,xi)+2pk,jf,:} <c,(a;~w;), we get:
i

0 £
c;max(0,x; —@;)+ > pp 1| X —%;

k#i

) Zpkj/uk‘xk Xk‘

<
17+ plhidox)
k#i

The above inequality holds when (3.24) holds as well.
Using the above inequality in conjunction with (3.23), we
obtain for all (d,x)e DxA and i=1,...,n

|Ww'|

V,(F(d,x)) < /1,-|xi —x;| +ipj,iluj|xj _x;|
=1

0 *
¢; max(0,x; —60,-)+Zpk,jﬂk X ™ Xk

i(d» i) N o k#i
i ;p,/ f;+Zpk,j:uk|xk_xZ|+pi,j(f;'(d>x[)_f;'*)

k#i

(3.26)
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Using the facts that x; €[b j,B j] and @; 2 x;, we obtain
max(O,Z/ —;) N

max(0,x; —®;) Sf‘xj —x/‘. Therefore, we
i~ by - «

obtain from (3.26) for all (d,x)e DxA and i=1,...,n
VF () < Al =i+ py oty ey~
j=1

,%; )¢ ; max(0, E, ;)

pifid B (3.27)
+;(f;+l7i,j(fi(d D= S )Xb,—x )|x xj|
- pi, /f (d, x;) ' ok
+;f +p”(f(dx) G )Z;Pk,,ﬂk|xk Xk|
Finally, wusing definitions (3.20), the fact that
pi,jfi(daxi) pi,jFi for all

* * S * *
1+ - 1) 1+ lF - 1)
(d,x)e Dx A, where F, =max{f;(d,s):s €[b,.bi].d D}
and the fact that p,; =0, we obtain (2.3). <

Example 3.3: Consider the traffic network shown in Figure
1, for which the matrix P = {pi’j 0, j = 1,...,5} 1s

0 p 0 0 0
0 0 p 0 p (3.28)
P=lp 0 0 7 0
O 0 0 0 o0
o 0 0 0 o0

where p,p >0 are constants with p+ p <1. The external
inflows and the capacities of the network are:
V=V =v3=v>0,v,=vs=v>0,
¢=1,a,=a>0 (i=1..5) (3.29)
where v,v,a >0 are constants. Finally, we assume that all
functions f;(i=1L1...,5) are given by:

e rx for x €[0,6] o
fi(x0)=f(x)= {r§—q(x—5) for e (6.1 (i=1,..5) (3.30)
where 5e(0,a), re(0l], gqel0,6r/(a-5)] are

constants. Note that the lower part of the right-hand side of
(3.30) allows for the modeling of capacity drop at the
outflow of congestion according to [18]. The network has
the (uncongested) equilibrium point

X" =(c,c.ek,K) (3.31)
where ¢=v/(r(1-p)), x=1-p)+pv)/(r(1-p)), which
satisfies (H) provided that ¢<¢, c(r+1)£a, k<o and

(r+1)lc£a. We next apply Theorem 3.1 under the
assumption

v+pré<a and V+pré<a (3.32)
with 4=S8=[0,a]’. Assumption (3.32) is assumption

(3.17) for the given network. The matrix I" is equal to:

Fig. 1: The traffic network of Example 3.3

A (a-w)p  pu 0 0
24 A (a-w3)p 0 (a-ws)¢
I'=|{(a-w)p pHu A (a—aw4)¢ 0
0 0 Bu A 0
0 Du 0 0 As
(3.33)
where
__ prs(-p) _ r’sp(l-p)
(pro+vlar(1-p)—v)"”  (V+proai—p)—v(1-p)-p)
4= o0 pf 6y, e[0,al,s #——\ (3.34)
r(1-p)

|rs(l p)— v|
A=1s =Supi |S—K—f(s)+m1r(a—s,ricl :
s

A; =max(u;,w;), i=123

s e[O,a],s;&K} (3.35)

(3.36)

where ew,s) = (l— p+mi1{a—a),v+p 0) pjf(s),
v+ pf(s)
lNz(a)s)::(l—]N) mln(a a)v+pf(s) )f()
’ P (s)
g(s)=s—c+min(a—s,cr), B=[0,a]\{c},
u; = sup £~ h@,5) h(a)z,s). €B
Js—¢]

" p{M 63}

Js=¢]

uzzsup{ g5)+1(5) = h(@1,5) ~h(@5,9) B}

Js -4

h0,9)= f(5)+h (0,9 =g(s). B}

Js =]
eB}

(i=123), a)l-e[/c,a) (i=4)5) are
v=04, v=04, 6=5, p=02,

h h
“r sup{ 2(5)+ ()= h(@,5) = h (@4.5).
Js =<l
and a),-e[c,a)
constants. For a=10,
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p=0.1, r=0.55, ¢=0.1, the selection o, =9.14,
w, =8.53, @3 =9.559, @, =9.37, w5 =9.329 gives:
0.7905 0.0281 0.11 0 0
0.11 0.8166 0.0281 0 0.0298
I'=1]0.0548 0.11 0.7905 0.028 0
0 0 0.055 0.7869 0
0 0.055 0 0 0.7869

,,,,,

5
ZyﬁJ}:O'9845<l’ we can conclude that
J=1

p(F)<1 and consequently, Theorem 3.1 implies that the
(uncongested) equilibrium point is GES. <

IV. GLOBAL EXPONENTIAL STABILITY FOR FREEWAYS

A freeway divided in n > 3 sections or cells is a traffic
network of the form (3.7), (3.11) with p,; =0 for all
i,j=L.,n with j#i+l. Defining p,;;,,=p; for
i=1,..,n—1 and if we further suppose that v, =0 for
i=2,.,n, p =1, fild,x;)=fi(x;) for
v; =v >0, we obtain from (3.5), (3.7) and (3.11):

i=1l,..,n,

X =x; —min(e, (ay —x,), £, (x))+min(e, (@, —x,),v)  (4.1)

X =x; —mir(cm (@1 =X, 11 (X; ))+mh{ci (a; =), fia (xi—l)) >
fori=2,.,n-1 4.2)

xt=x, - f,(x,)+min(c,(a, —x,), [, ,(x,)).  (4.3)
Again ¢, €(0,1], f eC’([0,¢,;R,) (i=1l,...,n) are
functions with f;(s) <s forall s €[0,a;]. We suppose that
there exists a vector x* = (x{,...,x, ) €[0,4,]x...[0,a,] with
fi(x)=v and ¢;x; +v<cya; (i=1,.,n). It follows that
assumption (H) holds for the equilibrium point x* e R" .
The following corollary is a direct consequence of Theorem

3.1 (although Theorem 3.1 was applied to the model (3.7),
(3.11) which required v; >0 for i =1,...,n, all arguments in

the proof of Theorem 3.1 can be repeated).
Corollary 4.1: Consider (4.1), (4.2), (4.3) with n>3.

Assume  that there exist constants 0<b, <b;<a,

(i=1,..,n) such that the set A =[l_71,l_71]><...x[l_)n,l_7n] is a
TR for (4.1), (4.2), (4.3). Moreover, assume that there exists
L>0 such that the following inequalities hold for
i=1,..,n:

|f; () =] < L‘x—x;‘

, forall xe[0,q;]. 4.4)

Furthermore, assume that there exist constants A; >0

(i=1,...,n), H; =20 (i=1,...,n—1),
(i=2,...,n ) such that

|s—x;k _mh{cm (@ _@+1)9ﬁ(s))+milici(ai —s),v1 < iz‘|~V_)‘j| >
for se[b,,bil, i=1,.,n—1 (4.5)

@y e[xj$ai)

8
‘s—x: —min(cmam,ﬁ(s))+min(ci(al- —s),vx S/il-‘s—x;‘ ,
for s e [l_)l.,l_n] ,i=1..,n-1 (4.6)
‘s—x: —f,,(s)+min(cn(an _S)’VX <A, s—x:‘ ,
forall se[b,,ba] 4.7

 forall selb,,bi], i=1,.,n-1. (4.8)

= £l < amfs -7

Assume  that max{fl-(s):se[lgi,zi]}ﬁcmam Sfor all

i=1..,n—1. Define the tridiagonal matrix
I'= {7/1',(/ 0, j = 1,...,n}:
Vii =i, fori=L...n 4.9)
Yo = A MO =) oy 1 @a10)
’ bivi —x;
Yiia =My, for i=2,..n. 4.11)

If p(D)<1, then x* is GES for (4.1), (4.2), (4.3).

Corollary 4.1 shows that the TR is crucial for the stability
properties of the system (4.1), (4.2), (4.3). Indeed, if
; >b; for i=2,.,n then p(0)= max (%) (because in

n

.....

this case I' is lower triangular). The crudest TR that can be
used is 4=[0,q,]x...[0,a,]. However, we can generate

“smaller” TRs by means of the following proposition.
Proposition 4.2: Suppose that that there exist constants

0<b,<bi<a; (i=1,..,n) that  the  set
A=[b,,b1]x...x[b,,ba] is a TR for (4.1), (4.2), (4.3) with
n>3. Let ie{l,.,n}, o€ [O,Ei] be a constant such that

one of the following hold:
If i=1and §>x, then

min (min(c, (a, —b2), £;(s))- min(c, (a, — 5),v))> 0

O0<s<b;

and max (s - min(02 (a,—b2). f; (S))+ min(c,(a, - 5), V)) <6.

b <s<6

such

(4.12)
If ie{2,.,n—1} and 6 >x; then

min (minl,., (4,1 i), ()~ min(c; (@ —5). £, ))> 0 and

0<s<b;

max (s —min(c,,, (a,,, —bi1), /,(5))+ min(c, (@, —5),F,,))< S ,

b;<s<5

where F,_, =max)f;_(s):s E[éiil,zi—l]}. (4.13)
If i=n and & > x, then
min ( Jn(8)— min(cn (a,—9),F,, )) >0
0<s<b,
and max (s — £, (s)+min(c, (a, —5),F, ;) <5,
b,<s<6
where F, |, =max{f, (s):s [b, ;.ba]}.  (4.14)

Then the set B < A which results from the replacement of
bi by O in the formula [l_)l,l_n]x...x[lgn,l_an] is a TR for
(4.1), (4.2), (4.3).
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Proof: We consider the case i=1 (all other cases are
similar). We consider the case ¢ < b . Notice that since
A=[b,,b1]x...x[b,,bs] is a TR for (4.1), (4.2), (4.3),
there exists m >0 such that for every x, € S the solution
x(t) of (4.1), (4.2), (4.3) with x(0) = x, satisfies x(¢) € 4
for all # > m . Consequently, (4.1) implies for all t >m :
3y (E+1) < 3, (0)~mirley (@ ~b2), £ () minley (@, (0).)
(4.15)
It follows from (4.12) and (4.15) that, if x(f)<o for

t>2m then x(t+1)<o. Thus, the following

property holds:
(P): If there exists 7 > m with x;(T) < then it holds that

x(t)<o6 forall t>T.
Let &= min (minlc,(a, —b2), f;(s))-min(e, (a — 5),))> 0.

0<s<b;
We claim that the solution x(¢z) of (4.1), (4.2), (4.3) with
arbitrary initial condition x(0)=x, € S satisfies x,(¥) <o
for all 7> m+[(51 —5)/5J+1. The proof is made by

contradiction.

certain

Suppose that there exists and
t>m+ |_(l_71 —5)/ 6‘J+1 such that x,(¢f) >0 . Notice that

property (P) guarantees that x,(j)> o forall j=m,..,t. 1t

Xy €S

follows from (4.15) and definition
&= min (minlc, (a, —b2), f; (s))-min(e, (@ —5),v))>0  that
O<s<b;
the following inequality holds for all j=m,...,¢:
G+ <x(j)-e. (4.16)

Inequality (4.16) implies that x,(¢) < x,(m)—(¢t—m)e. The
previous inequality in conjunction with x;(f) >¢J and the
fact that x,(m)<b (t—m)e <bi—5 which
contradicts the fact that ¢ > m + l(l_n -0 )/ 5J+1 . <
Using Proposition 4.2 and Corollary 4.1, we can
construct an algorithm that provides easily checkable
sufficient conditions for the GES of x".
Corollary 4.3: Consider system (4.1), (4.2), (4.3) with
n=3. Suppose that 0<f,(s) for all se(0,a,],
0< fi(s)<cqa;, for all se(0,a;] and i=1,..,n—1.
Perform the following algorithm:

implies

Step 1: Find k, €[x,,a,) such that
. min (fn (s)- min(cn (a,-s),F,, )) >0 and
<s<a,
[nax (s —f(8)+ mir(cn (a,—s).F, )) <k,, where
<s<k,
Fn—l = max (fnfl (S)) .
s€[0,a,

Step n+1-i, where ie{2,.,n—1}: Find k, €[x,a;)

such that
kmin (min(c;1 (@41 =Ky ), £3(s))-minle; (a; —5), 1)) >0 and
i Ss<a;

9
(Kn:i‘?(s _mh{cm (@1 —kis1) J; (S)) +miI(Ci (a;—9),F )) <k,
where F, ;== max (f,_,(s)).
s€[0,a,4]
Step n: Find bi e[x],a,) such that
_min (min(c,(a, —k,), f;(s))—min(c, (@, —5),v))> 0 and

bi<s<a

max (s —min(c,(ay —ky), £;(s))+min(c, (g, —s),v)) < br.
0<s<bh;

Find b, e[x],k;]
such that
_min (min(c;,; (@1 ki), £3(s5)-minle;(; —s),F;;))> 0 and

b,‘SSSki

max(s —mitle;,y (@, —k;y ), fi(5))+mirlc;(a; —s),Fpy ) <bi

0<s<b;

where F,_, == max (f,_(s)).

Step n+i—1, where ie{2,.,n—-1}:

s€[0,bi1]

Step  2n-1: Find  b,e[x’,k,] such that
Z:gig{ n (f,(s)—min(c, (a, —5),F, ,))>0 and
Ol;n'gig (s—f, (s)+mirlc,(a, —s),F, , )) <by, where

Fn—l = max (fn—l (S))

s€[0,b5-1]
Assume that there exist A; €[0,1) (i=1,...,n ) such that
|s—xf —mir(cm (@4 —Bm),fi (s))+ mir(cl- (a; —s),vj < 27-|s—xi*| ,
for s€[0,b:], i=1,..,n—1 (4.17)

‘s -x; —min(cmam,fi (s))+min(ci (¢ —s),vx < li‘s -x;

B

for s €[0,b:], i=1,.,n—1 (4.18)
‘s—x: — £, (s)+min(c, (a, —s),vj <A ls—x |,
for all s €[0,b4] (4.19)

Finally, assume that inequalities (4.4) hold for certain
constant L>0. Then x" is GES for (4.1), (4.2), (4.3).

All steps of the algorithm can be performed since
0< f,(s) for all se(0,a,], 0< f;(s)<c;a;, for all
s€(0,q;] and i=1,...,n—1.

Example 4.4: Consider the network (4.1), (4.2), (4.3) with
n=5,c¢=1,a;=10(i=1,...5),
0.5s for s [0,5]

fi(s):f(s)::{ (i=

L...,4),
3-0.1s for s e (5,10]

0.4s for s €[0,5]
f5(s) = ,v=1
2—p(s—5) forse(5,10]
where p e[0,0.4). We have x; =2 (i=1,.,4), xi=2.5
and (H) holds. We consider the following question: “For
what values of p €[0,0.4) x* is GES?”. The algorithm of

Corollary 4.3 was performed for values of pe[0,0.4) in

(4.20)

the following way: for a given integer N >0 a grid of
points s; =ia/N (i=0,,...,N) was generated. Then b;
(i=L..,5) and k; (i=2,..,5) were chosen to be the
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smallest grid points s; = ja/N so that n}in (gta/N))>0
J<ISN

and (r)nlax(la—Nq(la/ N))< ja, where:
<I<j

o g(s)=f5(s) —min(lO—s,2.5) and F:=2.5 for ks,

e g(s)=min(10~k,,, f(s))-min(10-5,2.5),  for K
(i=432),

o g(s)= min(IO—k2 ,f(s))—min(lO—s,l) for by ,

* dlsy=midl0—ky. /() -midl0-s.F,),  Fy= max (f(9)

for b (i=273,4),
. q(s):zfs(s)—miﬁJO—s,E;) and F, = max (f(s)), for bs .

s€fU,cy

For all N >0, there exists py >0 such that the
assumptions of Corollary 4.3 hold with 4, =0.5 (i=1,....4)
and A;=0.6 for all pe[0,py]. We

Pioo =0.189, progo =0.244, pygoo =0.247 , indicating a

obtained

sequence that tends to 0.25 as N —+w. For p=0.25

there exist additional equilibria and therefore, x* cannot be
GES. The results show that the sufficient conditions of
Corollary 4.3 are virtually exact in this case. <

V. CONCLUDING REMARKS

Sufficient conditions for GAS and GES have been given,
by means of vector Lyapunov functions. The results were
applied to traffic networks for the derivation of sufficient
conditions of GES of the uncongested equilibrium point.
Specific results were provided for freeway models.

The results of the present paper can be used for different
purposes for future research:
o for the derivation of feedback laws which stabilize the
uncongested equilibrium point,
o for the study of the dynamic behavior of traffic networks
under the effect of external disturbances (varying inflows),
o for the study of complicated freeway models divided in
n >3 cells, each with one on-ramp and one off-ramp.
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