

TECHNICAL UNIVERSITY OF CRETE

Department of Electronics and Computer Engineering
Telecommunications Division

Quadrature Amplitude Modulation, Synchronization and
Viterbi Equalization for experimental wireless ftp radio link

over analog FM

Supervisor: Nikolaos Sidiropoulos

Committee: Athanasios Liavas

 Alexandros Potamianos

Mpervanakis Markos

Devoted to Chaos

Abstract

This thesis is a part of team effort to implement a real-time, low cost wireless

communication system through analog FM, capable of reliable data transmission. Due

to the simple hardware, most of the signal processing is performed in software, which

makes the WFTP versatile since it allows easy integration of any digital signal

processing methods and algorithms. Consequently, the system is broken into several

modules that are assigned to each member of the team, thus team management and

smooth cooperation were key factors for the design and development of this

prototype.

TTAABBLLEE OOFF CCOONNTTEENNTTSS

1 THE WIRELESS FTP COMMUNICATION SYSTEM..1-1

1.1 INTRODUCTION..1-1
1.2 WFTP SOFTWARE FEATURES ..1-2

1.2.1 Data segmentation and assembly ..1-3
1.2.2 CRC ...1-4
1.2.3 Error Control Coding..1-4
1.2.4 Interleaving..1-5
1.2.5 Automatic Repeat Request (ARQ)..1-5
1.2.6 Modulation, Demodulation and detection ...1-6
1.2.7 Synchronization ...1-6
1.2.8 Channel Estimation and Equalization ...1-7
1.2.9 Phase Recovery..1-7

1.3 WFTP EQUIPMENT..1-8
1.4 WFTP DESIGN AND OPERATION ...1-12

1.4.1 Data link Design..1-12
1.4.2 The WFTP Packet structure...1-14
1.4.3 WFTP Software structure and operation...1-15
1.4.4 Stop and Wait ARQ..1-17
1.4.5 Audio Playback & Audio Recording..1-18
1.4.6 Handshaking..1-19

1.5 EXECUTIVE SUMMARIES ...1-20

2 QUADRATURE AMPLITUDE MODULATION ..2-22

2.1 INTRODUCTION..2-22
2.2 QAM MODULATOR...2-22

2.2.1 Mapping...2-22
2.2.2 Modulation ..2-28

2.3 QAM DEMODULATOR...2-37
2.3.1 Signal Demodulator...2-37
2.3.2 Symbol Detector ..2-40

3 VITERBI EQUALIZATION ..3-44

3.1 INTRODUCTION..3-44
3.2 CHANNEL MODEL ...3-44
3.3 MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION ..3-46
3.4 THE VITERBI ALGORITHM ...3-47
3.5 VITERBI EQUALIZER ..3-53

3.6 PERFORMANCE EVALUATION..3-54
3.6.1 Channel Estimation ...3-54
3.6.2 Viterbi Equalizer..3-55

4 SYNCHRONIZATION ...4-61

4.1 INTRODUCTION..4-61
4.2 FRAMING – PACKET DETECTION..4-61
4.3 HANDSHAKING..4-64
4.4 PERFORMANCE ANALYSIS ...4-66

TTAABBLLEE OOFF FFIIGGUURREESS

Figure 1.1: An abstract WFTP system configuration. ..1-2

Figure 1.2: Segmentation & assembly operations. ...1-3

Figure 1.3: CRC-16 generated frame check sequence. CRC covers both data information and control

bits. ..1-4

Figure 1.4: The WFTP prototype communication system...1-8

Figure 1.5: FM transmitter & radio receiver...1-8

Figure 1.6: Dual branch half wave dipole antenna schematic. ..1-9

Figure 1.7: Typical PCI soundcard...1-10

Figure 1.8: Receiver ..1-11

Figure 1.9: Transmitter ..1-11

Figure 1.10: Main software units and their sub-modules. ..1-12

Figure 1.11: Full duplex configuration. The common storage could be visualized as a binary data

packet buffer. Note also that each process is autonomous and operate in parallel.1-13

Figure 1.12: Half duplex configuration. Note that only one active process is permitted....................1-14

Figure 1.13: Binary packet fields. ..1-14

Figure 1.14: Block diagram of the WFTP system. ...1-15

Figure 2.1: Examples of Type I, II, and III QAM constellations...2-23

Figure 2.2: 16 QAM constellation. ..2-25

Figure 2.3: Bit mapping process..2-25

Figure 2.4: Binary to Gray converter...2-26

Figure 2.5: Lookup table indexing. If a binary word is 0011 then its Gray equivalent is 0010 so the

indexing is [00 10] = [-3 1] = [Amc, Ams]. ..2-26

Figure 2.6: 4-bit data mapping using the lookup table of Fig 2.5..2-27

Figure 2.7: Reordered constellation matrices, (a) is the reordered map of Fig 2.6, while (b) is the final

Gray coded, lookup table...2-28

Figure 2.8: Mapping process of data blocks. ..2-28

Figure 2.9: Standard QAM modulator...2-29

Figure 2.10: Modified QAM modulator. ...2-29

Figure 2.11: Up sampled bit mapper output for an 8-QAM modulator. The dotted line represents the in-

phase component, while the dashed line the quadrature. For the duration of each (N=20 samples), the

corresponding symbol is also noted (s1 etc…)...2-31

Figure 2.12: 8-QAM modulator output. The basis waveforms are modulated by the symbols of Fig 2.9.

The output per time interval of N=20 samples, is also annotated for ease of comparison.2-31

Figure 2.13: 32-QAM modulated signal, with sampling frequency 20 samples/ symbol, and the cropped

version that occurs due to hardware limitations. ...2-32

Figure 2.14: Normalization of a 32 QAM modulated signal. ..2-33

Figure 2.15: 4 QAM modulated and boosted signal. ...2-34

Figure 2.16: (a) Mean energy normalization to Eav=1. (b) Peak normalization to Epeak=1. (c) Automated

normalization to maximum allowed peak / mean energy. The star like marker represents the default

symbols of a 16 – QAM constellation and the dotted, the normalized. ...2-36

Figure 2.17: Correlation demodulator, where v1, v2 are the noise components.2-38

Figure 2.18: Received waveform and correlator output for simple AWGN channel.2-39

Figure 2.19: Symbol (a) and bit (b) error rates of M-ary QAM versus bit SNR.2-41

Figure 3.1: The data transmission system..3-44

Figure 3.2: Discrete-time channel model...3-45

Figure 3.3: Finite state machine (FSM) model. ...3-45

Figure 3.4: (a) State diagram of the channel h= (1, 0.5) for binary transmission. (b) One stage of the

corresponding trellis diagram. ...3-47

Figure 3.5: State transition diagram for binary transmission xm:{0,1}, for m = 0,1 and channel impulse

response ...3-48 Th =[1 0.8 0.3]

Figure 3.6: VA algorithm for channel impulse response and received

sequence ...3-49

Th =[1 0.8 0.3]

z = [0.8, 0.5, 1.2, 0.6]

Figure 3.7: PC and Map structures at the final stage of the VA of figure 3.6...............................3-50

Figure 3.8: The truncated Viterbi Algorithm with truncation depth of 2 is applied to the example of

figure 3.6, the estimated symbols are: (a) 0 1x = , (b) 1 1x = , (c) 2 0x = , (d) 3 0x =3-52

Figure 3.9: Viterbi Equalizer block diagram ...3-53

Figure 3.10: (a) Mean square error of the channel and the estimated versus the SNR for channel length

L=10. (b) Timings of LS algorithm for channel lengths up to 32 taps and sequences of 100, 1000 and

5000 4-QAM modulated symbols. ..3-55

Figure 4.1: The packet at the receiver. ...4-62

Figure 4.2: Proposed synchronizer. ..4-63

Figure 4.3: Sequence detection using matched filtering..4-64

Figure 4.4: Handshaking events representation. ...4-65

Figure 4.5: (a) depicts a chirp signal and its autocorrelation. (b) Chirp pulse of 0.01 sec and the

resulting “wake up” pulse train of 0.04 sec. ..4-66

Figure 4.6: Failure rate versus negotiation ratio. Note that the legends refer to the chirp pulse period,

therefore a pulse train burst of N periods takes N*tpulse seconds. Plots (a) and (b) refer to 44.1KHz and

ratios (N/1) and (N/2) respectively, while (c), (d) to 88.2KHz..4-67

1 The Wireless FTP Communication System

1.1 Introduction

The objective of this project was to design and develop a software modem combined

with appropriate low cost and commonly used hardware that shall be mainly used for

simple file transfer between two personal computers. The actual wireless data transfer

is achieved through an analog FM radio link using an FM transmitter and receiver

while the digital to analog (D/A) and A/D conversion is performed through PC

compatible sound cards. The remaining operations like modulation, encoding etc…

are handled by software. The lack of a single transceiver unit in both ends, due to

budget restrictions, restricts the wireless communication to be only from the

transmitter to the receiver thus, in order to develop a closed loop system an existing

wired network configuration is used. Therefore, the general components of the WFTP

communication system consist of:

• PC as server

• PC as client

• Server software

• Client software

• FM transmitter

• FM receiver

• Wired network infrastructure

The following figure (Fig 1.1) depicts a general block diagram of the WFTP

components configuration. Notice that the wired network of choice is the Ethernet

since the range of the radio link is 10 to 15 meters at most, but in case a stronger

transmitter is used, any available data communication link will suffice.

 1-1

Figure 1.1: An abstract WFTP system configuration.

The subsequent sections provide a description of the main supported features of our

system regarding the software – signal-processing capabilities, the intergraded

hardware specifications and usage, while the last section presents a complete

description of the WFTP system design and operation.

1.2 WFTP Software features

The WFTP software performs the digital signal processing routines except digital to

analog (D/A) or analog to digital (A/D) conversion. Although software implemented

systems of such scale luck in operation speed, they provide an extremely versatile and

configurable platform. The WFTP software consists of the following general sets of

procedures that are common in any digital communication system:

• Data segmentation and assembly

• Modulation, Demodulation and Detection

• Error Control Coding and Decoding

• Interleaving

• Channel Estimation and Equalization

• Cyclic Redundancy Check (CRC)

• Synchronization

• Phase Recovery

• Automatic Repeat Request (ARQ)

 1-2

The versatility of the WFTP software derives from the fact that for each discrete

procedure several schemes, algorithms or protocols can easily be integrated, swapped,

removed or modified on the fly while the extended parameterization of each unit

offers a highly configurable system. The remainder of this section presents an

overview of each stage, the functionality and the possible alternative implementations

supported by the WFTP prototype.

1.2.1 Data segmentation and assembly

In any communication system, the first stage is the processing of the input

information and its conversion to binary data streams of some fixed length referenced

as binary data segments. The inverse process, the data assembly is performed at the

last stage of the receiver after the redundant information has been removed.

The WFTP system can be used in open loop configuration, without ARQ and CRC,

for evaluation purposes or in closed loop when used for reliable file transfer (ftp).

Consequently, the binary data streams should be generated randomly, for the first

case, or originate from actual data files, for the latter. To cover both operation modes

the WFTP supports randomized binary data streams creation and simple file

decomposition.

Figure 1.2: Segmentation & assembly operations.

Furthermore, another aspect of WFTP system is the usage of training sequences for

frame alignment, symbol clock recovery, adaptive channel equalization or estimation

and phase recovery. This procedure is also supported. The binary training stream can

 1-3

either be imported or randomly generated. Note that it must be the same for every data

segment and is usually set after the system’s first initialization.

1.2.2 CRC

The Cyclic Redundancy Check is a powerful error detection algorithm. The WFTP

system uses the CRC-16. It is applied on the binary data stream producing a 16-bit

frame check sequence (FCS) witch is concatenated at the end of the data stream (fig.

1.3). From this stage on, the data segment is enriched with additional information

until it forms a possibly much larger sequence, referenced as data packet. The receiver

applies the CRC to the received data packet, after it has been converted to binary

form, decoded and de-interleaved, producing a 16-bit binary sequence. The new FCS

is then compared with the encapsulated FCS within the packet. If they differ then the

packet is considered corrupted and is discarded.

Figure 1.3: CRC-16 generated frame check sequence. CRC covers both data information and

control bits.

Use of CRC is optional for the open loop system configuration but it is necessary for a

closed loop system.

1.2.3 Error Control Coding

Error control coding, or widely referenced as Forward Error Correcting codes

(FECC), is a method of real time error correction or error reduction at the far end

receiver, while no return channel is required as in the case of CRC. The concept is

based on adding systematic redundancy at the transmit end of a link such that errors

caused by the transmission medium can be corrected at the receiver end by means of a

decoding algorithm. The amount of redundancy is dependent on the type of code

selected and the level of error correction capability desired.

Forward error correction uses channel coding which can be broken down into two

broad categories of codes: convolutional codes and block codes. The WFTP software

 1-4

includes non-systematic convolutional coders paired with hard decision Viterbi

decoder with available code rates ranging from ¼ to ¾, while for the second category;

BCH, Reed Solomon and Hamming coding are also available. Finally, FEC is applied

on the data packet including the control information bits and the CRC checksum

(FCS). The use of FECC is optional.

1.2.4 Interleaving

Interleaving is the process of systematic reshuffling of the binary data stream,

encoded or not. The data packet is partitioned in blocks and then it is rearranged.

Interleaving is especially useful when burst errors occur which limit or prohibit the

error correction process. Since consecutive blocks are separated, the bit errors can be

considered independent at the receiver and the burst errors do not propagate to the

neighboring symbols. Thus, using FECC it is possible to correct a long error burst,

which might have destroyed all the information in the original block, at the expense of

additional delay of the deinterleaving process. Although there is a great range of

interleaving algorithms the WFTP supports random and matrix block interleaving of

variable block length. Interleaving is also optional, but in any case is highly

recommended.

1.2.5 Automatic Repeat Request (ARQ)

ARQ is another error correction scheme such as FEC but its operation relies on the

request of retransmission of a corrupted packet. An error detection algorithm is

necessary. There are three variants of ARQ:

• Stop and wait ARQ

• Continuous or selective ARQ

• Go Back N ARQ

The last two schemes require a pipelined infrastructure, or full duplex operation,

which in our case is unrealizable due to the Matlab platform and the nature of the

sound card handlers. Therefore, the only possible solution provided is the Stop ‘n wait

ARQ. Finally, the ARQ is implemented over an Ethernet link utilizing the UDP

protocol.

 1-5

1.2.6 Modulation, Demodulation and detection

The modulation is the last stage of the transmitter where the resulting packet from the

previous stages and the addition of a training sequence, is converted into waveforms –

symbols that convey the binary information. Note that the modulated symbols are

sampled sequences of baseband analog carriers. The actual digital to analog

conversion is performed through the PC sound card and it is fed to the FM transmitter

through the line out port.

The detection (or correlation detection) is the second stage of the receiver processor,

where the sampled received data, from the PC sound cards Line in port, is converted

into a sequence of complex symbols. Also, note that the training sequence is separated

from the data frame. The received frame after this stage is further processed

(equalized etc…), and is fed into the demodulator that will convert it into binary form.

The modulation/ demodulation schemes supported by the WFTP include:

• M-ary Quadrature Amplitude Modulation (M-QAM)

• M-ary Phase Shift Keying (M-PSK)

• M-ary Pulse Position Modulation (M-PPM).

The QAM modulation scheme is also covered in depth in chapter 2.

1.2.7 Synchronization

The synchronization unit of the WFTP system is the interface between the hardware

and the software part of the receiver. Usually synchronization is used for symbol

clock recovery; however, for the WFTP system its function is twofold. The first role

is channel activity detection and handshaking, necessary to establish a communication

attempt or data reception. The second role is to isolate the received frame, which in

fact is symbol clock recovery. This process is also referred to as framing.

Nevertheless both operations rely on the same principles; the use of known sequences

at the transmitter and receiver, pattern matching and thresholding, so it is reasonable

to share the same structure. The synchronization is covered thoroughly in chapter 4.

 1-6

Handshaking can also be performed through the ARQ where the transmitter informs

the receiver though simple UDP messaging but the incurred delays are unpredictable

due to the nature of UDP. However, it remains as an option.

1.2.8 Channel Estimation and Equalization

The communication systems channel impulse response is time varying. In order to

combat the channel distortion adaptive structures are the best choice. Channel

equalizers depend on estimating an inverse channel impulse response or the channel

itself. WFTP supports the following linear recursive equalizers:

• Least Mean Squares (LMS)

• Recursive Least Squares (RLS)

• Constant Modulus Algorithm (CMA)

LMS and RLS are initialized using the training sequence to readapt to the varying

channel response while the CMA belongs to the family of blind equalizers.

In addition, WFTP also supports the non-linear MMSE Viterbi Equalizer based on the

Viterbi algorithm (VA). Unlike the LMS and RLS, the VE needs an estimation of the

channel impulse response, provided by the Least Squares solution, as referenced in

Chapter 3.

1.2.9 Phase Recovery

Phase recovery uses the training sequence to apply a linear transformation on the

received data frame. In a constellation diagram, the added phase results in a rotation

and as a result simple geometric N-dimensional transformation can restore the

original phase. Phase recovery is also optional.

 1-7

1.3 WFTP Equipment

The equipment of the WFTP communication system consists mainly of two personal

computers, a low power FM transmitter, a radio receiver and a dipole antenna.

Figure 1.4: The WFTP prototype communication system

Figure 1.5: FM transmitter & radio receiver

The FM transmitter and the antenna are built from members of the team, while the

wide band communications receiver (ALINCO Dj-X3) was recommended by out

advisor, Mr. N. Sidiropoulos.

FM transmitter specifications:

• Power supply voltage: DC4.5 V ~ DC12 V

• Frequency Range: 88 MHz ~ 108 MHz

• Output power 1 W @ 12V

• Half wave dipole antenna (also see fig.1.6).

 1-8

Remark: The casing of the transmitter should consist of a conductive metal or grid to

provide a faraday globe. In addition, the casing, the transmitter and the antenna must

be grounded. Often the casing acts as a common ground contact.

Figure 1.6: Dual branch half wave dipole antenna schematic.

The dipole antenna schematic is depicted in figure 1.6. Note that a single branch is

sufficient, but a generic 2 branch setup emphasized the requirements and

specifications. In addition the antenna metrics are configured at the minimum 66cm

for transmission at 107.9 MHz but with larger lengths the transmitter is tuned at lower

frequencies. Consideration should also be given at the cable fastening on the antenna

branches where it should be in direct contact with the aluminum dipoles.

Wide Band Communications Receiver specifications:

• RX frequency range: 0.1 ~ 1300MHz

• Antenna impedance: 50Ω

• Battery voltage: DC3.6V ~ DC6V

• External power source: DC4.5V ~ 16V

• Freq. stability: ± 5PPM (-10oC ~ +60oC)

 1-9

• RX sensitivity: less than 0db @ [FM] 30~500 MHz

• Stereo output

The last major component is the sound card, which is usually part of any personal

computer. However, it is useful to post a set of specifications for this hardware as

well.

Sound card specifications:

• 24-bit Analog-to-Digital conversion of analog inputs at 96KHz sample rate

• 24-bit Digital-to-Analog conversion of digital sources at 96KHz

• 16-bit and 24-bit recording with sample rates of 8~96KHz

• Line level out (Front/ Side/ Rear/ Center/ Subwoofer)

• Line In

• AC97 compliant

• Signal-to-noise Ratio < 100dB

• Frequency Response at -3dB <50Hz ~ 40KHz

Figure 1.7: Typical PCI soundcard.

Note that in case the sound card supports multi-channel output only the Front line out

port is connected to the FM transmitter audio signal port (fig 1.5). In addition, Line In

port or auxiliary (Aux) Line In is necessary for stereo recording from a radio receiver.

Figures 1.8 and 1.9 illustrate the receiver and transmitter as well as the system

assembly. Notice, though, that the selected power supply of the FM transmitter is

provided by batteries instead of a transformer. The reason is that the transformer

introduces scramble hum due to the frequency (50Hz ~ 60Hz) of the AC current.

 1-10

Figure 1.8: Receiver

Figure 1.9: Transmitter

 1-11

1.4 WFTP Design and Operation

The scope of this section is to provide a complete presentation of the WFTP

communication system architecture, involving both hardware and software

configuration and system operation.

1.4.1 Data link Design

Recall, from the introductory section, that the major components of the WFTP are the

radio hardware, the personal computers and the related software. In particular, since

the hardware setup is self-explanatory, we are interested in the software. To begin

with, the software sub-modules at the receiver and the transmitter are grouped into

four main modules witch run as processes using the Matlab platform. These are the:

• Transmitter Unit

• Transmitter Server

• Receiver Unit

• Processor Unit

The Transmitter Unit module incorporates all the sub-processes that operate on the

data from the packet creation to data modulation and transmission through the sound

card. The transmitter server is the UDP based Stop and Wait ARQ interface. The

Receiver Unit consists of the sub-modules that handle negotiation and

synchronization operations as well as the implementation of the ARQ interface at the

receiver, while the Processor Unit is responsible for filtering, demodulation etc… of

the received packet. The implementation of these modules defines the data link

architecture and, subsequently, the communication system architecture. To be more

specific, we are faced with two scenarios regarding the main processes interaction, the

full and half duplex data link operation.

Figure 1.10: Main software units and their sub-modules.

 1-12

1.4.1.1 Full Duplex design

Figure 1.11: Full duplex configuration. The common storage could be visualized as a binary data

packet buffer. Note also that each process is autonomous and operate in parallel.

In the first scenario, depicted in figure 1.11, the Receiver Unit and the Processor Unit

become two different processes sharing common memory. With this configuration,

the system becomes pipelined or full duplex meaning that while the receiver accepts

incoming packets, the processor will also operate on the previously received packets.

In this manner, Go Back N or Selective ARQ can be applied. This also means that the

transmitter will also operate continuously and its processes must run in parallel.

Therefore, both options require multiple instances of the Matlab platform to be active

in each PC. However, due to the intensity of the digital signal processing operations

as well as the audio operations are CPU and memory intensive and a single processor

cannot handle that load. The solution of course is to use multi processor machines or

PC clusters, which we lacked.

1.4.1.2 Half-Duplex Design

Since a full duplex data link cannot be applied, the remaining solution is to use half-

duplex link, illustrated in figure 1.12, where both main functions of the receiver and

the transmitter execute in series. Under these limitations, the applicable ARQ is the

Stop and Wait that may be simple, but inefficient due to the long dead timing periods

where the receiver and the transmitter remain inactive.

 1-13

Figure 1.12: Half duplex configuration. Note that only one active process is permitted.

1.4.2 The WFTP Packet structure

The WFTP communication is packet based. A packet is the package where the

exchanged information is encapsulated, enriched with redundant information used by

the receiver to identify, extract, reconstruct and deliver the transmitted information. A

WFTP binary data packet, illustrated in figure 1.13, consists of four fields:

• Data segment: The original information is partitioned in blocks of binary

data, the useful information, which can be encoded or/and interleaved. It

includes the CRC sequence.

• Header: Contains information about the sender and the recipient, such us IP

address, the packet number, the binary stream and position the data segment

belongs etc. However, Stop and Wait ARQ delivers in order and only one

acknowledged packet at a time, thus packet numbering is unnecessary. In

addition, the current WFTP does not support multi-user communication so the

IP addresses are fixed. Under these conditions, the Header can be omitted.

Training
sequence CRCData segmentHeader

Figure 1.13: Binary packet fields.

• CRC segment: 16-bit checksum (FCS) of the current data partition (prior

encoding or interleaving).

 1-14

• Training sequence: Predefined sequence, known at the receiver and

transmitter, used for synchronization, equalization and phase recovery. It does

not undergo any operation other that modulation prior transmission.

1.4.3 WFTP Software structure and operation

The main software modules presented in the preceding section 1.4.1, consist of sub-

modules or sub-processes, each implementing a specific stage of the software defined

WFTP modem. The system configuration is controlled by a main unit, the

SystemSetup module. Instead of module-by-module description, a schematic

representation is much more helpful. Figure 1.14, illustrates the entire modem

structure and the configurable parameters regarding each part of the WFTP system.

Figure 1.14: Block diagram of the WFTP system.

 1-15

When the WFTP is used for file transfer, the first stage is to load the selected file and

convert it to set of binary streams. Note that the number of resulting blocks from the

file segmentation equals the number of packets eventually transmitted. Keep in mind

that the training sequence, independent of the data stream, is generated at the same

stage at the first initialization of the system or when the length is reset. Each data

segment is stored in memory, which, in our case, is a structured file. The CRC stage

operates on the data stream generating a 16-bit checksum (FCS), appended in the data

sequence. The new binary sequence (data and FCS), goes through the Encoder

module. Depending from the system configuration related with this stage, the

resulting encoded sequence is much larger since it contains redundant information for

error correction. The following Interleaver does not affect the packet length, just

“reshuffles” the input stream. The last stage at the transmitter software is the

Modulator. Prior the reforming of the binary data to symbols, the training sequence is

concatenated at the head of the data stream, shaping the packet. The final form of the

modulated sequence consists of digital waveforms of duration TS samples. These steps

cover the creation of the transmitted packet. For convenience, all the packets are

precomputed and stored. Prior each transmission the corresponding packet is simply

loaded from a database and then outputted through the line out port of the sound card.

The output of the sound card is fed into the FM transmitter who handles the

frequency up conversion and analog FM modulation. Down conversion and FM

demodulation are achieved by the radio receiver who also feeds the received analog

signal in the corresponding sound card line in port. The sound card records, samples,

and quantizes the input signal with the same frequency used in the transmitter, Fs.

The data transmission, explained so far, is a simple process; when the packet is ready,

it is driven into the sound card interface. In the same manner, the receiver initiates a

data reception session, but since the transmitter and receiver are independent, the

latter must be notified of any data activity. The problem is solved through negotiation.

The interface between the sound card and the software, at the receiver end, is the

Synchronizer unit. The synchronizer controls the recording process, initiating data

reception after a successful negotiation or handshake (see chapter 4), and isolates the

transmitted packet, the part of the signal that carries the useful information, from the

recorded sequence. The frame detection is achieved using the training sequence,

known at both ends also at the Synchronizer. The isolated frame is then passed

 1-16

through a signal demodulator who converts the sampled signal into complex

representation regardless the modulation scheme used at the transmitter (except

PPM). The Equalizer Unit filters the detected sequence to invert the distortion

introduced by the systems channel while the phase shifting that can also occur is

removed though a linear transformation at the Phase Recovery unit. The filtered data

packet, without the training sequence, is then demodulated (symbol detector –

Demodulator Unit) to produce a binary data stream. The binary data packet must be

deinterleaved (Deinterleaver unit) and decoded (Decoder unit). The resulting bit

stream contains the transmitted data bit stream and the 16-bit CRC checksum. Even

though decoding performs error correction, the result is not guaranteed to be error

free. A possibly corrupted packet is identified by the CRC unit.

The above short description summarizes the main operation of the WFTP software

defined radio. The subsequent sections refer to specific parts of the WFTP

communication system that could be considered as transparent concerning the

software operation.

1.4.4 Stop and Wait ARQ

The implemented ARQ relies on the CRC error detection and simple messaging using

the UDP protocol over Ethernet. The operation of the stop ‘n wait ARQ is

summarized in some simple steps:

1. Packet and acknowledgement numbering requires only one bit (0/1).

2. The transmitter (Transmitter Unit) sends PACK0 and enters the server mode

for a specific amount of time – the timeout period. During this state the

transmitter waits for a reply from the receiver (Receiver Unit) with the same

number (ACK/NACK0). If a timeout occurs or a NACK message is received

then the same packet is retransmitted. If a positive acknowledgement is

received (ACK0) with the same numbering, then it loads and transmits the

next packet PACK1.

3. The receiver checks each packet (Processor Unit - CRC) and transmits a

corresponding message through UDP (as a client) with the same numbering

ACK0/1 for correct packet or NACK0/1 for corrupted one.

4. Duplicate packets or responses are discarded.

 1-17

1.4.5 Audio Playback & Audio Recording

The hardware interface between the receiver and transmitter software is the sound

card that performs analog to digital and digital to analog conversions respectively. In

practice the transmission is performed with audio playback using the wavplay matlab

function while the reception though audio recording and the wavrecord function. The

input and output is a baseband sampled waveform, as described in section 1.4.3. Even

though this selection substantially limits the overall hardware complexity, however it

has some serious drawbacks.

The sound card, as a digital device, accepts (playback) and outputs (recording) vectors

with amplitudes limited in the range of [-1, 1]. If the modulated signal exceeds these

limits it is simple chopped, thus normalization should be performed prior

transmission. The side effect is that it limits the symbol energy or the signals power

degrading the noise immunity capabilities of our system.

Another significant drawback is that the maximum playback and recording sampling

frequency is limited to 96 KHz at maximum supported by only modern sound cards.

This implies that we the minimum propagation delay is approximately 96msec. To

emphasize on the transfer time (playback time) consider the transmission of a packet

of 10kbits modulated with 4-PSK (M=4), symbol period Ts=10 samples and playback

frequency Fs=96 KHz. The transfer time is given as the ratio of the samples of the

modulated packet and the Fs:

10000*10. 0
log 2(). 2*96000

bits
transfer S

S

Nt T
M F

= = ≈ .5sec

The transfer time is also associated with the recording timing period at the receiver;

witch is adjusted dynamically based on the previous relation. Unfortunately these

operations import random delays during their initiation due to memory and resources

management of the operating system. Therefore the recording period during

transmission is set as where ttransfer safet t+ safe is a timing constant ranging from 0.1 to

0.5 seconds depending on the handshaking configuration.

 1-18

1.4.6 Handshaking

Handshaking informs the receiver that a communication session has initiated or

terminated. Since both ends are independent the receiver must know when to start

recording. This is achieved by the transmission of a wake up signal prior each packet.

The Receiver Unit monitors the channel for small periods for this pattern. When the

receiver accepts this specific pattern, starts to record for a specific amount of time

which is dynamically configured based on the system settings. The termination of the

session is performed though a UDP message transmitted from the Transmitter Unit

notifying the Receiver Unit that the last packet was transmitted. Note that

implemented WFTP protocol is connectionless thus, a session must be set for each

transmission.

 1-19

1.5 Executive Summaries

The design and development of the WFTP communication system prototype was a

team effort where each member was assigned with the development and evaluation of

one or more specific modules. The team members and their associated contribution

are:

Iliakis Evangellos. Vangelis was assigned primarily with the development and

evaluation of the convolutional coding and Viterbi decoding. In addition he

implemented the modules for CRC and PSK modulation as well as the UDP based

Stop and Wait ARQ.

Kardaras Georgios. His primary responsibility was the implementation of the Block

Coding modules and the PPM modulation scheme. He also contributed the Block

Interleaving/ Deinterleaving modules.

Kokkinakis Chris. He was assigned with the implementation and evaluation of the

RLS, LMS and CMA equalizers.

Mpervanakis Markos. Mark was assigned with the development of the Viterbi

Equalization and QAM modulation scheme. Moreover he implemented the Frame

Synchronization and Handshaking modules. He also contributed to the overall system

structure design and assembly of the software modules developed by the team to a

completely operating and highly configurable application.

The WFTP Team. The team as a collective contributed with brainstorming and

solutions to overcome the obstacles that emerged. However, the most important part

was the support we all needed at difficult times.

 1-20

 21

2 Quadrature Amplitude Modulation

2.1 Introduction

This chapter is concerned with the M-ary QAM modulation; and its counterpart, the

demodulation scheme, as is implemented and integrated in our communication system

referred to as the FM wireless FTP prototype. To begin with, a theoretical perspective

of QAM is presented followed by practical implementations in order to make the

transition from theory to practice as smooth as possible. Finally, experimental results

are presented through real time simulation of the prototype using the current

modulation scheme.

2.2 QAM Modulator

As indicated, briefly, in the previous chapter; the modulator is the interface that maps

a sequence of binary data into a set of corresponding signal waveforms suitable for

transmission through a communication system. The QA modulator consists of several

distinct parts – processes that handle the mapping from bits to symbols, energy

normalization of the constellation and finally the generation of suitable waveforms

which will be transmitted through a sound card to an FM transmitter.

2.2.1 Mapping

2.2.1.1 Background

M-QAM signals are obtained by simultaneously impressing two separate k-bit

symbols, on two quadrature carriers, cos2πft and sin2πft. The corresponding signal

waveforms may be expressed as:

2() Re[() ()], 1,2,..., ,0

() cos 2 ()sin 2

cj f t
m mc ms T

mc T c ms T c

s t A jA g t e m M t T
A g t f t A g t f t

π

π π
= + = ≤
= +

≤
 (2.1)

where Amc and Ams are the information bearing amplitudes of the quadrature carriers

and gT(t) the is signal pulse [6 pg. 400].

It’s obvious from the above equation that until the signal is to be transmitted we need

not consider with neither pulse shaping nor carrier multiplexing. It’s also apparent

that the baseband equivalent signal-space representation can be expressed as complex

or Cartesian coordinates of 2 independent quadrature components, in-phase (I) and

quadrature (Q) corresponding to x and y axis, respectively:

 , 1, 2...,m mc mss A jA m M= + = (2.2)

Several constellation diagrams have been proposed for QAM transmission over

Gaussian channels. However, the three constellations shown in figure 2.1 are often

preferred. The essential problem is to maintain a high minimum distance between

points whilst keeping the average power required for the constellation to a minimum.

Calculation of minimum distance and average power is a straightforward geometric

procedure and has been performed by Proakis [6] on a range of constellations. The

results show that the square constellation is optimal for Gaussian channels. For the

remaining of this chapter the discussion will be restricted to square and generally

orthogonal constellations.

Figure 2.1: Examples of Type I, II, and III QAM constellations.

 2-23

2.2.1.2 Orthogonal Constellations

The most obvious constellation diagrams are the orthogonal, if each symbol carries

odd number of bits, and the square, provided an even number of bits. Orthogonal

constellations are implemented by keeping the minimum Euclidean distance, between

each message point, constant. To design the constellation, the first step is to

implement a lookup table –matrix that directly maps k bits into symbols. Recall from

the previous paragraph, that a symbol can be represented as

 (,IQ mc mss A A)= (2.3)

So the first step is to define a set of discrete values –amplitudes, for each of the in-

phase (Amc) & quadrature (Ams) components. The k bits are distributed independently

to each symbol component (Amc, Ams) to k1 & k2 bits respectively providing L1=2k1

and L2=2k2 possible values. The range of each component, then, is defined as:

 (2.4) 1 1 1

2 2 2

{(2 1), 1,2..., }
{(2 1), 1,2..., }

mc

ms

A m L m
A m L m L

= − − =

= − − =
1

2

L

where

2

1

2

1

1 2

1 2

2

2

2

k

k

k

L

L
k k k

M L L

=

=
+ =

= =

 (2.5)

The resulting L1xL2 of the (Amc, Ams) element matrix is then:

1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

(1, 1) (3, 1) (1, 1)
(1, 3) (3, 3) (1, 3)

(,)

(1, 1) (3, 1) (1, 1)

ij ic js

L xL

L L L L L L
L L L L L L

s A A

L L L L L L

− + − − + − − −⎡ ⎤
⎢ ⎥− + − − + − − −⎢ ⎥= =
⎢ ⎥
⎢ ⎥− + − + − + + − − +⎣ ⎦

 (2.6).

For example the constellation matrix of a 16-QAM is:

4 4

(3,3) (1,3) (1,3) (3,3)
(3,1) (1,1) (1,1) (3,1)

(,)
(3, 1) (1, 1) (1, 1) (3, 1)
(3, 3) (1, 3) (1, 3) (3, 3) x

x y

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− − − − − −
⎢ ⎥− − − − − −⎣ ⎦

 2-24

The resulting square constellation is depicted in the scatter plot of figure 2.2.

Figure 2.2: 16 QAM constellation.

2.2.1.3 Bit Mapping

Having created the constellation matrix, or in other words, specified the signal

amplitudes discrete range, remains the mapping of binary data to symbols. This

procedure requires 3 steps (Fig. 2.3); a serial to parallel bit-stream conversion, coding

(specifically Gray coding) witch is optional and finally the corresponding symbol

assignment through the lookup table (constellation matrix).

Figure 2.3: Bit mapping process.

The incoming binary data stream is passed through a parallel converter of appropriate

width (k or log2 (M) bits where M is the QAM size). The data are then passed through

an optional logic block which converts them to the equivalent gray coded codeword.

 2-25

This is achieved using the following logic equations or the equivalent logic circuit of

fig. 2.4:

1 1

2 1 2

1 2

1 2 2

1

...

:[...]
: ()
: ()

N

N N

N N N

N N N

N

F MSB
F MSB XOR Bit
F Bit XOR Bit

F Bit XOR LSB
where
word Bit Bit Bit Bit Bit
Bit MSB most significant bit
Bit LSB less significant bit

− −

− − −

− −

=
=

=

=

1

 (2.7)

Figure 2.4: Binary to Gray converter

The gray coded word is then split, assigning k1 bits as index to the first dimension of

the lookup table, and k2 bits for the second. For example, consider the previous

example of the 16-QAM. The parallel converter will buffer 4 bits and then feed a 4bit

codeword to the Gray converter. The result is also a 4 bits wide binary word which is

split to half, assigning the 2 MSB bits as the Amc index and the remaining 2 LSB bits

to the Ams or vice versa. It’s easier to understand the indexing process by converting

the binary indexes (00, 10 etc.) to their decimal equivalent value. Figure 2.5 displays

both binary and decimal indexing while figure 2.6 shows the resulting mapping of

4bit words to symbols. Of course the indexing method analyzed so far is the same

whether Gray coding is used or not.

00 01 10 11

00 (3,3) (1,3) (1,3) (3,3)
01 (3,1) (1,1) (1,1) (3,1)
10 (3, 1) (1, 1) (1, 1) (3, 1)
11 (

0 1 2 3
0
1
2
3 3, 3) (1, 3) (1, 3) (3, 3)

mc

ms decimal
binary A
A

⇔⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − − − − −
⎢ ⎥

− − − − − −⎢ ⎥⎣ ⎦

Figure 2.5: Lookup table indexing. If a binary word is 0011 then
its Gray equivalent is 0010 so the indexing is [00 10] = [-3 1] =

[Amc, Ams].

 2-26

-3 -1 1 30

-3

-2

-1

0

1

2

3

Q
ua

dr
at

ur
e

In-phase

16-QAM Gray code constellation

0000

0001

0011

0010

0100

0101

0111

0110

1100

1101

1111

1110

1000

1001

1011

1010

Figure 2.6: 4-bit data mapping using the lookup table of Fig 2.5.

2.2.1.4 Implementation

The most important and complicated unit of the Mapper is the constellation matrix.

The process of converting each binary word to its equivalent gray code could be an

easy task in hardware but from a programming style approach; it’s redundant since it

can be integrated with the lookup table. Prior the implementation analysis let’s set

some definitions which shall be used throughout this section (also see equation 2.5):

• Nb: number of bits.

• ND: number of symbols ND=Nb/k.

• : Constellation matrix of size LC 1xL2.

• : In-phase components vector of size Ni Dx1.

• : Quadrature components vector of size Nq Dx1.

The concept of integrating the Gray mapping process is to achieve the same results

through immediate indexing. Reordering the lookup table in a consistent way will

provide the solution. For example, interchanging the last 2 columns & rows of the

matrix depicted in Fig.2.5 will result in a gray coded matrix (Fig 2.7) that provides the

same results. Borrowing a term from digital design the resulted matrix is a Karnaugh

 2-27

map [7 pg. 325]. The invert process of retrieving the binary word using the symbols is

just a matter of reconfiguring the look up table.

00 01 11 10

00 (3,3) (1,3) (3,3) (1,3)
01 (3,1) (1,1) (3,1) (1,1)
11 (3, 3) (1, 3) (3, 3) (1, 3)
10 (3, 1) (1, 1) (

0 1 3 2
0

3, 1) (1,

1
3
2 1)

()

decimal
binary

a

⎡ ⎤
⎢ ⎥

⎥⎢
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − − − − −
⎢ ⎥

− − − − − −⎢ ⎥⎣ ⎦

00 01

00 (3,3) (1,3) (3,3) (1,3)
01 (3,1) (1,1) (3,1) (1,1)

(3, 3) (1, 3) (3, 3) (1, 3)
(

0 1 2 3
0
1

3, 1) (1, 1) (3, 1) (1,

10 11

10 2
11 3 1)

()

decimal
binary

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − − − − −
⎢ ⎥

− − − − − −⎢ ⎥⎣ ⎦

Figure 2.7: Reordered constellation matrices, (a) is the reordered map of Fig 2.6, while (b) is the
final Gray coded, lookup table.

The operations described so far are applied to blocks of data, in a “packaging” fashion

so it’s most appropriate to express the Bit mapping process likewise. From figure 2.3,

a data stream (packet) of Nb bits enters a converter that splits the stream into chunks

of k bits each. The latter are used as indexes of a lookup table which, in the end,

outputs the corresponding symbols.

(1) (1)

() ()

2

0111...
[100101...110]

...1001
b

D D

D D

serial
to mc mskbit
words indexing

N
N N

mc msN xk lookuptable N x

A A

A A

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥⎯⎯⎯→ ⎯⎯⎯→ ⇒⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

Figure 2.8: Mapping process of data blocks.

2.2.2 Modulation

Recall from the previous chapter that the output port is the Line Out of a PC sound

card. This imports two restrictions; first the output modulated data must be a

waveform (sampled signal), and last but not least the waveforms amplitude must be

bounded within the range of [-1, 1].

 A typical digital QAM modulator is depicted in fig. 2.9. After the modulation

amplitudes have been generated through the bit mapping process, digital to analog

conversion is required followed by pulse shaping prior the frequency up conversion.

 2-28

Figure 2.9: Standard QAM modulator.

Let’s ignore the pulse shaping and frequency change for now and concentrate on the

fact that QAM modulated signals consist of two orthogonal components. Since the

frequency change is handled by the FM transmitter, the only consideration is to create

a sampled equivalent waveform witch can be transmitted through the sound card.

Under these assumptions the entire process of the QAM modulation can be integrated

with the pulse shaping by selecting two orthogonal pulses reaching the modified

modulator of fig. 2.10 that happens to be the same for the PSK module.

Figure 2.10: Modified QAM modulator.

2.2.2.1 Implementation

The mapping process, as implemented in the previous section, provides the symbols

that carry the information bits. Since the information data are processed by blocks the

output consist of two vectors I and Q of the consecutive components (Aic, Ais) of each

symbol Si, respectively. Prior the analysis of the implementation it’s useful to set

some definitions:

• ND: number of bits per information block.

 2-29

• N: number of samples per basis function ()y n .

• M: QAM size.

• Ns: number of symbols. 2/ log ()S DN N M=

• S: information bearing symbol. []m mc ms mc msS A jA or S A A= + = .

• Amc: in phase component of symbol at time m.

• Ams: quadrature component.

• 1 2,y y : sampled orthogonal (1 2 0T =y y) basis functions of size Nx1.

• :vector of in-phase components, 1DN xi 1 2[..., ...,]
D

T
c c mc N cA A A A=i

• :vector of in-phase components, 1DN xq 1 2[..., ...,]
D

T
s s ms N sA A A A=q

A single modulated waveform (also transmitted) at time m is defined as:

 (2.8) 1 2() () () , 1,2...,m mc mstr n A y n A y n n N= + =

Relation (2.8) is expressed in vector notation as:

 (2.9)
S

T
N xN = +1Tr iy qy T

2

Note that the basis functions are produced using the Gram – Schmidt procedure [6].

Each row of the matrix Tr is a modulated waveform, of N samples, that can finally be

transmitted. The following figures (2.11, 2.12) represent the modulation process of a

15 bits data stream using 8-QAM and 20 samples per symbol. The output of the

mapper module consists of 5 symbols, each bearing 3 bits of information. The second

figure depicts the modulator output using as basis functions y1, y2:

1
1

2
2

2

1

1 2, () sin(), 1, 2...,

1 , () sin (), 1, 2...,

() .

f

f

N
T

fi i
n

where

where

nf n n
NE

n

N

f n n
NE

E f n

N

π

π

=

= =

= =

= =∑

11

22

i i

y f

y f

f f

=

= (2.10)

 2-30

0 20 40 60 80 100
-4

-2

0

2

4

samples

A
m

p
li

tu
d

e

Aic or inphase

Ais or quadrature

s1=[-1 -1]
s2=[3 1] s3=[3 -1]

s4=[3 -1]
s5=[1 1]

Figure 2.11: Up sampled bit mapper output for an 8-QAM modulator. The dotted line represents

the in-phase component, while the dashed line the quadrature. For the duration of each (N=20
samples), the corresponding symbol is also noted (s1 etc…).

0 20 40 60 80 100
-1.5

-1.3

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

samples

A
m

p
li

tu
d

e

Tr(20) Tr(40) Tr(60) Tr(80) Tr(100)

Figure 2.12: 8-QAM modulator output. The basis waveforms are modulated by the symbols of
Fig 2.9. The output per time interval of N=20 samples, is also annotated for ease of comparison.

 2-31

2.2.2.2 Energy Normalization

The previous section provided a compatible way to transmit the modulated data.

Recall that the second restriction of this system is that the output must remain

bounded at [-1 1] amplitudes. Levels above these values are literally chopped witch

means immediate loss of information. Another problem that could occur, is when the

peak amplitude levels are too low, for example [-0.2 0.2], resulting to a faint signal

more acceptable to noise or other distortions. Both cases are dealt through means of

waveform scaling, or energy normalization as will be made clear shortly.

A first example of a waveform that exceeds the maximum amplitude level constraint

is that of Fig 2.12, higher QAM levels can have more severe loss at the Line Out port,

as Fig 2.13 demonstrates.

0 20 40 60 80 100 120 140 160 180 200

-3

-2

-1

0

1

2

3

samples

A
m

p
li

tu
d

e

modulator output
cropped

Figure 2.13: 32-QAM modulated signal, with sampling frequency 20 samples/ symbol,

and the cropped version that occurs due to hardware limitations.

 To circumvent this issue, the obvious solution is to scale the waveform amplitudes to

acceptable levels. In addition, since the symbols of the orthogonal constellations must

have equal minimum distances, the scaling should be uniform. Removing the last

constrain could offer better performance but at a higher complexity to both transmitter

and receiver. Considering the uniform case, the scaling factor is:

 2-32

 max_ limit 1
| _ | | _

scale
|peak level peak level

= = (2.11)

where max_limit the maximum output amplitude and peak_level the absolute

maximum modulated signal amplitude. Due to symmetry peak positive and negative

levels are equal in absolute value. Applying the scaling factor, the equivalent

modulated and scaled signal (depicted in Fig 2.14) is:

 1 2

1 2

. []. , 1,2...,
(.) (.)

m mc ms

mc ms

scale A A scale for m N
A scale A scale

S= + =

= +

tr y y
y y

 (2.12)

0 20 40 60 80 100 120

-3

-2

-1

0

1

2

3

samples

A
m

p
li

tu
d

e

initial
normalized

Figure 2.14: Normalization of a 32 QAM modulated signal.

Scaling can also be useful when the signal is weak. This case occurs for high

sampling frequencies due to normalization side effects of the Gram – Schmidt

method. Higher sampling frequencies downgrade the transfer rate performance, since

they increase the transmission time, but never the less, can be useful due to the

increased resolution of the transmitted symbols. Figure 2.15 represents this case for

N=100 samples using 4 - QAM. The procedure is the exact but with the difference

that the signal is in fact amplified.

 2-33

The result (2.12) allows the scaling to be implemented along with the construction of

the constellation, in other words in the bit mapping module. So a revised form of the

equation (2.4) that will also consider the output normalization is:

1 1 1 1

2 2 2 2

:

{(2 1) , 1,2..., }
{(2 1) , 1,2..., }

m c

m s

d scaling factor

1

2

A m L d m L
A m L d m L

= − − =
= − − = (2.13)

The average energy of the constellation is:

2

2 2

1 1

1 || || || || , 1, 2...,
M M

av m m
m m

dE ds s m
M M= =

= = =∑ ∑ M (2.14)

Eventually, scaling results to symbol energy normalization, either increasing the

transmitted energy, when d>1 or the opposite, when d<1. Further references to the

effects of the energy normalization are left to the demodulation section of this chapter.

0 500 1000 1500
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

samples

A
m

p
li

tu
d

e

Ampified
initial

Figure 2.15: 4 QAM modulated and boosted signal.

 2-34

2.2.2.3 Implementation

Currently the system supports 3 different ways of normalization:

 Average energy normalization:

If the desired mean energy output is Ed then the scaling factor (d) is

d

av

Ed
E

= (2.15)

 Peak energy or peak power normalization:

Defines the maximum symbol energy Epeak:

 2arg max {|| || }
peak

m m

E
d

s
= (2.16)

 Automated:

The automated normalizing method implements the process discussed at the

previous paragraphs and does not require user input. A necessary step is to

calculate a priori the maximum possible amplitude of a generated modulated

signal.

Define the matrix IQ as [] 2Mx
=IQ Ac As and peak_level the peak amplitude

of all possible modulated waveforms. Then:

2

_ max .
xN

peak level
⎧ ⎫⎡ ⎤⎪ ⎪= ⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

1

2

y
IQ

y
 (2.17)

where M the QAM size , y1, y2 the basis functions and N the number of

samples of the basis functions. It actually implements all possible occurrences

of equation (1.8). The scaling factor then is d=1/peak_level. The resulting

peak level depends on three factors, as can be observed from relation (1.17);

the constellation or QAM size (M), the basis functions (y1, y2) and the

sampling frequency (N) used to generate the discrete set of basis functions.

Note that the third method optimizes mean and peak energy in to a maximum

allowed limit as mentioned previously.

 2-35

If the constellation matrix (1.6) is defined as C, then the scaling is straightforward as

Cn = d*C, where Cn the new elements matrix or lookup table. Figures 2.16 present

the resulted constellations for each operation.

0

0

Q
u

ad
ra

tu
re

In-Phase

(a)

0

0

Q
u

ad
ra

tu
re

In-Phase

(b)

0

Q
u

ad
ra

tu
re

In-Phase

(c)

Figure 2.16: (a) Mean energy normalization to Eav=1.
(b) Peak normalization to Epeak=1. (c) Automated
normalization to maximum allowed peak / mean
energy. The star like marker represents the default
symbols of a 16 – QAM constellation and the dotted,
the normalized.

 2-36

2.3 QAM Demodulator

The demodulator is, as its name implies, the inverse process of the modulator. Prior

this stage the sampled received signal goes through the FM receiver, the sound cards

Line in port, frame synchronization and possibly, equalization. For the purposes of

this section, it’s assumed that the communication channel is simply AWGN, meaning

that the previous stages are performing perfectly. It consists of two discrete parts or

modules. These are, in order, the signal demodulator and the symbol detector. The

demapper is implemented within the symbol detector and is the invert process of

mapping thus it shall not be treated as a discrete process.

2.3.1 Signal Demodulator

2.3.1.1 Case 1: AWGN channel

The signal demodulator module, simply extracts the information from the carrier

signal which for this first step is a symbol, as defined previously. To conform to the

previously used notation, one instance (x) of the received signal Rx shall be:

() () () , 1, 2... : /

(.):
Rx n Tx n v n n N and N samples T
v white gaussian noise

= + =
 (2.18)

For this stage, there are 2 implementations thought the literature, the correlation

demodulator and the matched filter demodulator. Although they are equivalent, our

implementation matches the design of the correlation demodulator [5&10].

Recall that the transmitted signal Rx is in fact a linearly weighed sum of the

orthogonal basis functions ,1 2y y . In fact each instance of the received signal goes

through a bank of cross-correlators that compute the projection of Rx(n) onto the basis

functions, as illustrated in fig. 2.17. The result of each correlator is a noisy estimate of

the in-phase and quadrature components (see Fig 2.19 below).

 2-37

1

N

n =
∑

1

N

n =
∑

Figure 2.17: Correlation demodulator, where v1, v2 are the noise components.

2.3.1.2 Case 2: ISI

Previously, was assumed that the signal has already been equalized prior the

correlation, but that is not always the case. In fact, due to speed problems of the LMS

and RLS equalizers for large packets, i.e. 100KB, the correlators precede the

equalization stage, therefore reducing substantially the execution and convergence

timing requirements. Considering the channel (joint responses of sound card, FM

transmitter, RF channel, FM receiver and sound card input) as linear FIR of L length

then the received signal is:

 1
0

1

0
1

() ()* () () , 1, 2...

:{ }

,

x x

L
k k

L

x x k x k x x Ix Qx
k

R n T n h n v n n N
or
h h

r h s h s v where r r jr

−
=

−

−
=

= + =

= + + = +∑

 (2.19)

The last relation is the output from the correlator where each component is a weighted

sum of previous transmitted symbols –short termed ISI.

2.3.1.3 Implementation

Consider that the received signal is in fact a sequence of ND noisy transmitted

modulated waveforms:

 () () (), 1, 2..., 1, 2...,x x DR n T n v n for x N and n N= + = = (2.20)

 2-38

The process of correlation with a bank of basis functions that “extracts” the noisy

components:

 (2.21)
1

() (), 1, 2
N

xk xk k k x
n

r s v y n R n k
=

= + = =∑

Using vector notation:

 1 2[() () ()]
DNxN ND

R n R n R n=R (2.22)

 1 1 2D

T
xN j= +r Ty R y R (2.23)

So the resulting vector is the complex representation of each received symbol.

Figure 2.18 illustrates a part of a 4 QAM modulated signal, transmitted trough an

AWGN channel and the correlator outputs. Note that the process is the same for the

2

Tr

nd case of ISI presence, although the results will differ (Fig. 2.19) until ISI is

removed.

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

samples

A
m

p
li

tu
d

e

Rx
Tx

0

0

In phase

Q
u

ad
ra

tu
re

transmitted
received

Figure 2.18: Received waveform and correlator output for simple AWGN channel.

 2-39

2.3.2 Symbol Detector

Symbol detection sums up the process of estimating the transmitted symbol based on

the observation vector r (eq. 2.23). For the case of simple AWGN channel or when

the ISI is removed through equalization, therefore memoryless modulation signals, the

optimum detector is the symbol by symbol detector. In the presence of memory the

optimum detector is the Maximum Likelihood Sequence Estimator. The latter is

examined in Chapter 3, under the scope of the Viterbi equalizer.

The decision rule is based upon finding the symbol that is closest in distance to the

received vector r, referred to as minimum Euclidean distance detection. The distance

metrics for any orthogonal modulation scheme are:

 (2.24)
2

2

1
(,) () , 1, 2...,m k mk

k
D r s m

=

= − =∑r s M

which divide the constellation into decision regions making the process of estimation

quite straightforward.

The resulting error probability for m-ary QAM modulation schemes:

2

2

,

/ 21

2

311 1 2 1 ,
(1)

()

av
M av bit av

o

t

x

EP Q E
M NM

Q x dte
π

−

⎡ ⎤⎛ ⎞⎛ ⎞= − − − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎢ ⎝ ⎠⎣

= ∫

kE
⎥⎦ (2.25)

In the case of Gray coded modulation, assuming that only one bit error occurs per

symbol, which is the most likely form of error, the probability of bit error:

 ,
1 , log (M biterr MP P k
k

= = 2)M (2.26)

 2-40

(a)

(b)

Figure 2.19: Symbol (a) and bit (b) error rates of M-ary QAM versus bit SNR.

2.3.2.1 Implementation

The detector is implemented in block form, performing estimation per packets.

Therefore, to be consistent with the previous stage, the input to the detector is a vector

of all received symbols (r) for each transmitted packet. Then the metrics are

calculated using the matrix(S) and the symbol which gives the minimum distance is

considered the most probable.

1 1

D D

I q

T
xI xq

N I N q

r jr

r jr

r jr

⎡ ⎤+
⎢ ⎥
⎢ ⎥
⎢ ⎥= +⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

r ,
1 1

1 1

1 1

...

D

c s Mc Ms

c s Mc Ms

c s Mc Ms N xM

A jA A jA
A jA A jA

A jA A jA

+ +⎡ ⎤
⎢ ⎥+ +⎢ ⎥=
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

S

where x denotes t the xth transmitted symbol and S is formed from the set of all

possible symbols {Amc+jAms}, m=1,2…M.

Each element of the distance vector D of size NDxM:

2 1 2 2 2

1 1 1 1 1

2 2 2
2 1 2 1 2 2

2 2
1

2 2 2 2
1 1 1 1

() () () ()...
() () () ()...

() ()

() () () (
D D D D

I c q s I Mc q Ms

I c q s I Mc q Ms

xI c xq ms

N I c N q s N I c N q s

r A r A r A r A

r A r A r A r A

r A r A

r A r A r A r A

⎡ ⎤− + − − + −
⎢ ⎥

− + − − + −⎢ ⎥
= ⎢ ⎥

− + −⎢ ⎥
⎢ ⎥− + − − + −⎢ ⎥⎣ ⎦

D
2

)

 .

 2-41

Finally the index of the minimum per row of the matrix D is retrieved and used as

pointer to a modified lookup table (inverse lookup table (LT)), like a sorted version of

the constellation matrix, to retrieve the corresponding bits.

{ : arg min ((,))}

_ _ (
x m

)x x

index m x m
binary word inverse LT index

=
=

D
 (2.27)

 2-42

 2-43

3 Viterbi Equalization

3.1 Introduction

The second chapter presented the optimum symbol-by-symbol detector, under the

scope of quadrature amplitude demodulation and memoryless signals. However, when

the communication channel induces memory, meaning that consecutive symbols are

interdependent, optimality is achieved when the decisions of the detector are based on

observations of received symbols sequences, over multiple signaling intervals.

Therefore, it is necessary to readapt the channel model, to include the intersymbol

interference (ISI). Afterwards, we present briefly the maximum likelihood sequence

detector and its implementation, the Viterbi algorithm in more depth. Finally, the

derived Viterbi equalizer structure is presented.

3.2 CHANNEL MODEL

The channel generally is the medium through the information travels until it reaches

its destination. In previous chapters, we assumed that it is simply AWGN. That is not

entirely true, although for various modulation schemes can be considered as such

since ISI effects are not severe. Recall, also, that for the purposes of this project, the

WFTP prototype, the channel impulse response is the joint responses of each

intermediate stage from the sound cards line out until the line in:

 [()* ()* ()* ()* ()]i LO tr c re LI tc f t f t f t f t f t iT== (3.1)

where T is the symbol interval.

Figure 3.1: The data transmission system.

Let us consider as the discrete time channel the combined result of each stage until the

correlators output. Then, the resulted system model is depicted below.

 3-44

Figure 3.2: Discrete-time channel model.

From now on, we concentrate on the discrete time model of figure 3.2, which satisfies

the following assumptions:

• The channel h is linear.

• W is Gaussian with zero mean and σ2 variance.

• Each source symbol ix can take one of the m integer values 0, 1…, m-1

independently with equal probability, where m is the alphabets size.

Now we can define the notation used throughout this chapter. Let h be the channel

impulse response of length L=v+1, where v is the channel memory length or

equivalently the number of interfering symbols. Let x be the source symbol sequence

of length l. Denote z and w as the received symbol sequence and noise sequence,

respectively, each of length l+v-1. Also, define y as the transmitted symbol sequence.

Besides, define x as the estimated symbol sequence and the corresponding

transmitted symbol sequence. By definition we have that z=y + w and y=h*x. Each

transmitted symbol is then:

y

1

v

i o j i
j

y h h x j−
=

= +∑ (3.2)

where the second term is the induced ISI.

Figure 3.3: Finite state machine (FSM) model.

 3-45

The above equation, allows us to describe the channel as a finite-state machine

(FSM), as shown in figure 3.3. Regarding the stored elements as the state of the FSM,

each transmitted symbol can be treated as the output due to a specific state transition.

Letting the state sequence at time i as { }is s= , where 1 2(, ...,)i i i i vs x x x− − −= then, the

transmitted symbol 1(,)i i iy s s += is solely determined by the state transition .

Also, note that the state depends on the previous state

1(,)i is s +

is 1is − and the current source

symbol ix that enters the FSM.

3.3 MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION

In the receiver, only the received sequence z can be observed. Decision on which one

of many permissible source sequences being transmitted is based on probabilistic

argument. Denote X as the set of all possible source sequences. We want to maximize

the a posteriori probability P(x|z) for all x in X. This maximum a posteriori (MAP)

rule minimizes the error probability in detecting the whole sequence, and is thus

optimum in this sense. A receiver detecting signals using the MAP rule is referred to

as a MAP receiver.

Under the condition that all source sequences are equi-probable (i.e. the a priori

probability P(x) is the same for all x in X), maximizing P(x|z) is equivalent to

maximizing P(z|x). This is termed the maximum likelihood (ML) rule. A receiver

detecting signals using the ML rule is referred to as a ML receiver or a MLSE. Note

that the MLSE can be treated as a special case of the MAP receiver. Since the source

sequence and the state sequence are one-to-one correspondent and the noise terms wi

are independent, the log likelihood function

 , (3.3) 1 1ln (|) ln (|) ln (| ,) ln ((,))i i i i i i
i i

P z x P z s P z s s P z y s s+ += = = −∑ ∑

where 1(,)i iy s s + is the transmitted symbol corresponding to the state transition

(). As the noise components are independent and Gaussian, the joint probability

density of the noise sequence w is

1,i is s +

22

2 22 2
2

1() () () ,
2

ii
ww

i
i i

p w p w e e
ι

σ σ

πσ

− −
∑

= = = Κ∏ ∏ (3.4)

 3-46

where K is a constant. Therefore, it is only needed to minimize the

, which is the Euclidean distance between the received and the

possible output of the FSM.

22 (i i
i i

w z y= −∑ ∑)i

1

]

3.4 THE VITERBI ALGORITHM

A brute force approach to the problem of MLSE is to enumerate all valid source

sequences. This would require calculations, each of squaring operations and

additions. Thus, is unacceptable as the computational time increases

exponentially with the sequence length .

m

2 −

Algorithms that are more efficient can derive through the representation of a channel

as a finite state machine. Usual representation of FSM is with state diagrams. An

alternate representation is with the trellis diagrams. For example, figures 1.4 (a) and

(b) illustrates the state and trellis diagrams respectively of a binary PAM system with

channel impulse response . Note that state is defined as (0 1[] [1 0.5Th h h= = is 1ix −)

and each transition (1,i is s +) is associated with a

weight 1 0 1 1(,) 0.5i i i i i i 1y s s h x h x x x+ −= + = + − .

(a)

(b)

Figure 3.4: (a) State diagram of the channel h= (1, 0.5) for binary transmission. (b) One stage of
the corresponding trellis diagram.

Since the trellis can be regarded as a graph, from now on, a state is called a node, a

transition from predecessor node to its successor, or generally between nodes, is

called a branch and a state sequence is called a path. The weight associated with each

branch is termed branch metric and the accumulated weight associated with a path is

termed as path metric.

 3-47

The criterion in MLSE is minimized to the calculation of the Euclidean distance

 thus, is defined as the branch metric for each branch of the

trellis. We can find the shortest path, the one with the minimum path metric, by

computing the branch metrics stage-by-stage. Each node has m incoming branches,

except a few stages in the beginning or the end of the trellis diagram, due to the

advent of a new source symbol in the FSM. Of the m incoming branches, only the one

connected with the minimum partial path metric is retained, forming the survivor

path. Partial paths associated with the other m-1 incoming branches are discarded

since the shortest path must contain the survivor path if it goes through that node.

Therefore, the number of survivor paths is the same as the number of nodes at each

stage, where v is the channels memory length. After all stages of the trellis have

gone through, the resulting shortest path corresponds to the maximum likelihood

sequence.

2
1| (,)i i iz y s s +− |

i

1(,)i is s +

vm

The details of how the VA calculates the shortest path are best demonstrated with an

example. Consider a binary transmission with channel impulse response

 of v=2 and m=2. The number of possible states is mTh =[1 0.8 0.3] v = 4, with each

state being a sequence of length v of source symbol combinations, S= {00, 01, 10,

11}. The state diagram illustrates the valid transitions, driven by the current source

symbol and the associated weights (/ix y). For the trellis diagram, assume that the

observed sequence at the receiver is z = [0.8, 0.5, 1.2, 0.6]. The starting state is

assumed to be the s0 = 00 or that 1 20, 0x x− −= = . The weight of each branch is the

branch metric and the path metric is shown inside each node. The solid lines represent

the survivors and the bold lines the resulting shortest path.

Figure 3.5: State transition diagram for binary
transmission xm:{0,1}, for m = 0,1 and channel

impulse response Th =[1 0.8 0.3]

 3-48

Figure 3.6: VA algorithm for channel impulse response and received

sequence z .

Th =[1 0.8 0.3]

 = [0.8, 0.5, 1.2, 0.6]

The process calculating the path metrics stage-by-stage is the forward evolution of the

algorithm. Having reached an end, starts the back propagation where the optimum

path and accordingly the most probable, in the ML sense, sequence is estimated. Even

though the trellis diagram could be calculated using trees; simpler but more efficient

structures avoid the costs of storing pointers and can be implemented much easier. For

the purposes of this chapter, we shall analyze two main structures / matrices used to

store only required information.

The first is a container for the path metrics. Notice, though, that at each stage only the

metrics of the previous are required. Therefore, denote the path costs matrix .

The first column stores the old metrics while the second the new. At the next stage,

the most recent calculated become the old etc..., until the end where only the new

values are needed. The PC is indexed through the states in some proper form (binary

or decimal representation), for example, using the example of figure 3.6 for the

stages and regarding as survivor the 00 state, the new

value is stored .

2vm x
PC

, 1i i + (00)(00
ioldc s= =PC ,1)

1

(00)(00,2)
i news c
+

= =PC

 3-49

Notice that we need to know during the back propagation (backward stage) the

sequences of nodes that lead to the shortest node or equivalently the nodes of the

shortest path. These nodes are of course the survivors at each stage. Therefore, denote

the survivor matrix or map, (1)vm x l−M indexed the same way as the costs matrix.

Each element is the survivor node si-1 at stage i for node si. For example, from figure

3.6 the surviving node of state is whilst for is and the matrix is

updated as M(00,2)=00 , M(00,3)=01 correspondingly. Thus, each row consists of

surviving nodes that point to states 00, 01, 10 and 11. Both matrices are depicted in

figure 3.7 with values corresponding to the trellis of figure 3.6.

(00)
2s (00)

1s
(00)
3s (01)

2s

PC (costs matrix) Map

Si OLD NEW Si i=1 i=2 i=3

00 0.62 0.52 00 00 10 01

01 0.27 1.2 01 10 11 11

10 1.22 0.52 10 00 01 01

11 1.2 1.71 11 10 10 10

 1 2

Figure 3.7: PC and Map structures at the final stage of the VA of figure 3.6.

The first step of back propagation is to select the node with the minimum path metric.

Afterwards the map is accessed in order to derive the optimum path:

,min

1,min ,min

2,min 1,min

1,min 2,min

min{ (:,)}
(, 1)
(, 2

...
(,1)

i

i i

i i

S PC NE
S M S i
S M S i

S M S

−

− −

=

= −

=

=

)

W

− (3.5)

The initial state is anyway known so it does not need to be stored or retrieved. For our

example, there are two possible estimated sequences of transmitted source

symbols (1,1,0,1) (1,1,0,0)x or= . In general, when the path metrics are equal, the

decision is taken in random.

 3-50

Let us look at the algorithms complexity. In general, there are states per stage of

totally stages. Assuming that the branch metrics are precomputed then one

multiplication, one addition and m-1 binary comparisons are needed for each node.

Thus, the time complexity of the VA is

vm

1(vO m)+ operations per detected symbol but it

is increasing linearly with rather than exponentially. Its main disadvantage though is

the huge storage it requires. Each survivor path requires bits and each

metric p bits resulting in a space complexity of bits. For large

channel memory or symbol alphabet, result to prohibitive memory requirements.

Besides, the incurred detection delay of the entire sequence could be undesirable.

Therefore, some modifications must be made in order to make VA more practical.

2log ()v m

2(log () 2)vm v m p+

A first approach is to reduce the trellis search depth to a manageable one; δ, called the

truncation depth. Applying the truncation depth, a decision on input symbols ix δ− are

made at time . After the decision path history before or at that time are discarded and

the next stage is computed. Such modified algorithm is called the truncated VA or

TVA. Note that the time complexity is not affected. The exact performance

degradation due to the truncation is analytically intractable and is normally found by

experimentation. However if δ is large enough the performance loss is negligible.

Figure 3.8 shows the TVA with truncation depth Notice that the node associated with

the shortest survivor is released and all path history at or before time is retained

without recalculation. In this way only the path information involving the last stage is

computed.

i

i

In all examples, the initial state was arbitrarily chosen to be the state 00. This usually

is not the case as the data segment follows a training sequence. Therefore, to create a

known past and to “lead”, at the same time, the first steps of the VA we inject a

sequence into the data stream to be used as a preamble, known also to the algorithm,

avoiding erroneous start-ups that could propagate. In the same manner, we also use a

terminating sequence or postamble. Usually for the sake of simplicity, the length of

both sequences is the same, ranging from 4 to 10 symbols maximum.

 3-51

(a)

(b)

Estimated
symbols

Si= 00

Si= 01

Si= 10

Si= 11

Zi

i = 2

1.6

0.58

0.2

0.18

0.25

0.25

0.04

0.64

0.09

1.2

1

1.87

0.62

0.27

1.22

1.2

0.52

1.2

0.52

1.71

0.04

0.66

0.25

0.25
0.09

0.49

0

1

0.5

0

i = 3 i = 4

(c)

(d)

Figure 3.8: The truncated Viterbi Algorithm with truncation depth of 2 is applied to the example

of figure 3.6, the estimated symbols are: (a) 0 1x = , (b) 1 1x = , (c) 2 0x = , (d) . 3 0x =

 3-52

3.5 Viterbi Equalizer

The Viterbi equalizer is in fact the combination of a channel estimator unit and the

Viterbi algorithm usually the truncated implementation depicted in figure 3.9.

()ĥ m

Figure 3.9: Viterbi Equalizer block diagram

In wireless applications the channel is time varying so the channel estimator is an

adaptive algorithm such as RLS or LMS. The estimation is based on the training

sequence ahead of the data segment performed at a symbol rate meaning that instead

of operating on the received sampled training signal, it uses the symbol outputs from

the correlator. The accuracy of the estimated channel taps, feedbacked to the VA

detector unit, depends on the length of the training data, and the channel length.

Another important issue is the speed the channel changes, since the estimation will

not be valid for all the data sequence.

However, due to that the receiver operates in a block basis the channel estimation is

performed though implementing direct LS estimation [10]. The channel coefficients

are provided by the solutions of the Least Squares equations implemented in block

form:

1 2

1 2

[...]

[, ...]

T
N

T
N

y y y received symbols vector

d d d training symbols vector

=

=

y

d

Then the least squares solution of L taps and channel estimation is:

 †()H H
LS =h A A A y (3.6)

where A is the toeplitz matrix of the training symbols:

 3-53

1

1

1 1

...

...

...

L

LxN L

N L

d d

d d
+ −

+ −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A .

The indexes H, denote the Hermitian and Penrose Moore pseudo inverse operations

respectively.

†

3.6 PERFORMANCE EVALUATION

The scope of this section is to evaluate parameters or algorithms through simulation

or experimentation. The goal is to either eliminate or limit the range of values of

involved parameters as well as to identify possible dependencies and finally to

estimate the impact each unit causes when applied to the system. For this part, the

inspection shall begin from the channel estimation units and their timing requirements

and afterwards the Viterbi Equalizer is evaluated.

3.6.1 Channel Estimation

The first part evaluates both estimators for both channel and sequence lengths versus

SNR though Monte Carlo simulation. The channel is generated randomly while the

additive noise is white Gaussian. The performance metric is the mean square error of

the estimated channel impulse response (h) and the original applied to the training

data (c):

2
2

1

1

|| ||_ :

:

Mx

Mx

c hchan mse h estimated channel
L

c channel

−
= (3.7)

The second metric comprises of the execution time for various channel and training

sequence lengths. The simulation results are illustrated in figures 3.10 (a) and (b)

respectively.

 3-54

5 10 15 20 25 30 35 40
10-6

10-5

10-4

10-3

10-2

10-1

SNR (db)

C
ha

nn
el

 E
st

im
at

io
n

M
S

E

N=100
N=200
N=500
N=1000

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
15

16

17

18

19

20

21

22

23

24

number of coefficients (M)
ex

ec
ut

io
n

tim
e

(m
se

c)

N=100
N=1000
N=5000

(b)

Figure 3.10: (a) Mean square error of the channel and the estimated versus the SNR for channel
length L=10. (b) Timings of LS algorithm for channel lengths up to 32 taps and sequences of 100,

1000 and 5000 4-QAM modulated symbols.

The simulation proves that the estimation is dependent of the training sequence

length, as always suspected; however, what remains to be seen is the equalization

performance of the VA using the estimated channel response feedback from the LS

unit. Finally, figure (b) shows that the delay the estimator adds to the receiver is quite

small, meaning that large training sequences will not cause noticeable overall

performance degradation due to processing delay of the LS estimator.

3.6.2 Viterbi Equalizer

The Viterbi equalizer is implemented using the TVA referenced previously due to

memory limitations. Therefore, the parameters under consideration are the traceback

length (Tblen), channel impulse response length (L) and the size of the training

sequence (N). The quality performance metric is the symbol error rate while the speed

performance is, as always, given by the execution time. Due to its time complexity

though, it is prudent to analyze the time delay prior the error rate for the latter results

to be of any practical usage. Figures 3.11(a), (b) translate the theoretic complexity of

VA to timing requirements relative to the application platform (Matlab). Notice that

 3-55

the alphabet is consisted of a 4-QAM constellation, thus m=4, while the sequence’s

length is measured in bits.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

data (Kbit)

eq
ua

liz
at

io
n

tim
e

(s
ec

)

L=2
L=3
L=4
L=5

(a)

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

number of coefficients (L)

eq
ua

liz
at

io
n

tim
e

(s
ec

)

20 kbits
100 kbits

(b)

Figure 3.11: (a) Time delay with respect to sequence length (in kbits) and channel length (L), for
m=4 (4-QAM) and traceback length (Tblen) 20 stages. (b) Time delay versus channel length (L).

Figure 3.11(a) illustrates the TVA’s time complexity as time delay versus the data

size and the estimated channel’s length, while 3.11(b) emphasizes the exponential

delay impact of channels with length L > 5. To keep the analysis simple we use as

common ground the resulting total number of nodes-states per stage, affected by both

estimated channel impulse response length (L) and the size of the alphabet (m), which

is a power of 2. Thus the total nodes per stage expressed likewise are:

 (3.8) 1 log2()2L
nodes

v mN m −= =

Figure 3.11(a) confirms the linear relation of VA and input sequences length and

provides the time needed for the add-compare-select and memory access operations

per node, which is approximately 1μsec with the current hardware. The choice of

trace back length theoretically does not reduce the total time of equalization of a

sequence but in a pipelined system limits the delay per symbol estimation to

seconds. Unfortunately, the receiver structure cannot operate in such

continuous mode thus we sustain the full delay of sequence equalization. Practically

610len nodesTb N −

 3-56

though, it limits the memory usage so it can be entirely performed in the much faster

physical memory (RAM), limiting the virtual memory access, providing a great

improvement over large sequences.

Figure 3.11(b) clearly states that the incurred delay for is unacceptable and

prohibits the use of Viterbi Equalization if the resulting states per stage exceed that

limit. Also, note that the maximum is 2

122nodesN >

16 nodes. Any combination of ISI length and

alphabet size beyond that limit completely depletes the memory needed to store just

each stage or requires more than 2GB of either physical or virtual space. Therefore,

we set a strict upper bound of the possible number of nodes per stage to

 (3.9) 12max 2nodesN =

To overcome, we can either select modulation schemes with small alphabets or /and

truncate the estimated channel to an acceptable length when possible.

Having defined a set of parameters to allow a realizable application of the TVA, we

can now proceed with evaluation of the equalizer. Implicated parameters are the

estimated channel, the length of ISI, the traceback length as well as the modulation

scheme.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

Sy
m

bo
l E

rr
or

 R
at

e

tblen=1
tblen=10
tblen=20
tblen=100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

Sy
m

b
ol

 E
rr

or
 R

at
e

4-QAM
8-QAM
16-QAM
4-PSK
8-PSK
16-PSK

 3-57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
10-3

10-2

10-1

100

SNR

S
ym

bo
l E

rro
r R

at
e

4-QAM
8-QAM
16-QAM
4-PSK
8-PSK
16-PSK

0 5 10 15 20 25
10

-3

10
-2

10
-1

100

4-QAM
8-QAM
16-QAM
4-PSK
8-PSK
16-PSK

 3-58

 3-59

4 Synchronization

4.1 Introduction

In a wireless communication system, there is the problem of generally detecting a

signal and some essential characteristics for reliable data transmission.

Synchronization techniques can be used for clock recovery, which attempts to

synchronize the receiver clock with the transmitter’s symbol rate clock, and for

“waking up” the receiver, causing an interrupt so that reception can be initiated.

Specifically, for this wireless prototype, transmission is achieved through playback,

while reception, through recording; therefore, there are unpredictable delays in both

operations due to the nature of these processes (memory management, threading

etc…). The following paragraphs present two techniques, implemented in this

prototype to trace the incoming activity inside a hostile environment and control the

aftermath of delay.

4.2 Framing – Packet detection

Clock recovery, in a broader sense, helps to detect the recorded sequence –packet

inside a larger sampled signal of unknown delay, by searching for a known sequence,

a specific pattern. The source of the delay is of non-importance. For this purpose,

each data stream is injected with a sounding sequence, followed by actual data. Since

it is adding a frame of symbols, the process is also referred to as framing. The receiver

scans for this sequence by performing an autocorrelation and the sampling point that

the maximum correlation occurs is deemed the correct, from which the modulated

data follow (fig. 3.1). This header is also used for training channel estimators or

equalizers, so for the rest of the chapter it will be referred to as the training sequence.

For the same reason, also, the training sequence is a fixed number of bits of multiple

time slots, randomly chosen in order to produce a strong auto correlated peak and

provide enough training information. It is important to note that no assumptions are

made regarding the channel meaning that it should perform regardless of the

distortion; it is caused either by simple additive noise or due to channel memory (ISI)

as well. Figure 3.1 illustrates a packet –the transmitted sequence, inside a larger one,

the recorded. Being able to identify where the training frame starts or ends, is the key

 4-61

to retrieving the transmitted packet and operating on it. The margins prior and after

the packet are caused by early and prolonged recording respectively, of tsafe seconds

combined. Therefore, the recorded sequence has a length of packet transmission time

plus a safety margin of tsafe seconds.

Figure 4.1: The packet at the receiver.

Let us make some definitions witch will be used throughout this chapter. The packet

prior to transmission is measured in bits while after modulation, in samples or in

symbols. It consists of three fields, the training sequence witch, as mentioned before,

is concatenated with the data stream, the data stream and finally the CRC, that is used

for error checking and is standard 16 bits wide. The notation for each field’s size in

bits is , ,train data crcB B B respectively. The sampling and transmission frequencies are

but quite often are equal, so only is used implying this equality, and the

symbol frequency

,S TF F SF

symbolF as samples per modulated symbol. Therefore if M is the

modulations size, then the size of a packet in samples is:

2 2log () log ()

data crcpacket train
packet symbol symbol

B B B BN F
M M

+ +
= = F (4.1)

The excess samples of the received frame are:

 excess S safeN F t= (4.2)

Thus, a frame is consisted of frame packets excessN N N= + samples.

Having defined some crucial parameters lets see how the position of the packet can be

determined. Correlation calculates the similarity of two sequences, possibly shifted in

time, thus it is a simple form of pattern matching. Because the known sequence shall

 4-62

be compared with a larger sequence, cross correlation will be used. Cross-correlation

in discrete time is a function of the time shift (lag) between two sequences that for our

case are the known training sequence (d) and the received (rx):

0

1() [] []
frameN

du
k

R j d k u k
T =

j= +∑ (4.3)

The cross correlation function is maximized when the most similar sequence is found.

Recall that matched filtering also produces similar results thus can also be used,

providing as filter the known training sequence but flipped:

 [] []* []trainr n u n d N n= − (4.4)

Figure 4.2: Proposed synchronizer.

In our implementation, matched filtering is used and the output is squared. The index

of the maximum outcome is considered the end of the training sequence. This is

simply the position of the training sequence inside the packet increased by a delay due

to factors previously mentioned. Figure 3.3 illustrates the synchronizer of figure 3.2 in

action. Knowing the length of the training sequence, it is a simple process to extract

the entire packet from the received frame.

 4-63

0 50 100 150 200 250 300 350 400 450
-1

-0.5

0

0.5

1

samples
A

m
pl

itu
de

(a)

0 50 100 150 200 250 300 350 400 450
0

2000

4000

6000

8000

index

(r[
n]

)2

(b)

Start of training
sequence End of training

sequence

early start

prolonged
recording
(noise)

Figure 4.3: Sequence detection using matched filtering.

4.3 Handshaking

In most communication systems, such as TCP/IP, in order to initiate a data transfer,

some kind of negotiation must take place, so that the transmitter will know the

receiver’s status and contrarily. The process of initiation a conversation among the

host and a client is referred to as handshaking. In our WFTP prototype, the transmitter

and receiver front-end is a PC sound card (line in, line out respectively). Therefore, as

mentioned before (section 1-8), both processes require a timing period prior their

initialization and furthermore, the receiver must continuously monitor for any

communication activity because there are no other means of doing so.

The nature of the recording, however, does not allow constant large chunks of info

due to resource draining (memory and CPU), thus only small timing intervals are

acceptable. Prior the transmission of a packet, the transmitter sends some pulses of

equal duration. After this step, it starts transmitting. The receiver on the other hand,

should detect this kind of activity and will start receiving or “wake up”. The rest of

the conversation, (acknowledgement etc…) is handled through wired protocols such

as UDP, discussed at Chapter 1. For the communication to succeed the receiver must

be able to recognize these patterns as a negotiation attempt; otherwise the packet will

be lost. Consequently the problem is twofold; the receiver has to be able to distinguish

the handshaking pulses from noise, otherwise will result to “false alarms”, and to

 4-64

actually record them, since each monitoring time-slot is followed by a delay due to

buffer purging, initialization and data processing.

The solution to recognizing the negotiation pulses is to use the pattern-matching

module -the synchronizer, developed before. The differences are that the used

sequences must be shorter, and thresholding is used for identification. The second

problem is treated by transmitting the same sequence multiple times, so the receiver

will identify at least some of them. Beyond a threshold of identified pulses, the

receiver will enter the state of packet reception. Unfortunately negotiating prior to

transmission imports a fixed delay, depending on the pulse train duration, and the

ratio of the transmitted versus to the required to be identified, thus leading to a

tradeoff between accuracy and delay.

Figure 4.4: Handshaking events representation.

Figure 3.4 illustrates the actions of the receiver and the transmitter. The negotiation

attempts on behalf of the transmitter consist of N identical linear swept-frequency

signal pulses of equal duration (fig. 3.5). The distinct gaps represent the system

delays mentioned before, which in general are considered as processing time slots of

duration . The receiver scans for the transmitted pulses periodically for time

slots. Finally, the ratio of transmitted vs. required is simply denoted as () and

referred to as negotiation ratio. These are the crucial parameters for this part of this

system, which are examined in the following sections in order to derive specific

guidelines and parameter settings.

pulset

proct monitort

/ reqN N

 4-65

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

samples

A
m

pl
itu

de

0 50 100 150 200 250
0

1000

2000

3000

4000

samples

M
ag

ni
tu

de

(a)

0 0.002 0.004 0.006 0.008 0.01
-1

-0.5

0

0.5

1

A
m

pl
itu

de

time (sec)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-1

-0.5

0

0.5

1

A
m

pl
itu

de

time (sec)

(b)
Figure 4.5: (a) depicts a chirp signal and its autocorrelation. (b) Chirp pulse of 0.01 sec and the

resulting “wake up” pulse train of 0.04 sec.

4.4 Performance analysis

The evaluation is limited to the negotiation sub-system since frame detection or

alignment depend on the length of the training sequence witch in turn is defined

mostly by the equalizers. Suffice to note, although, that the detection error for

sequences of 100 bits or more is smaller that 10-6 meaning that detection errors are

caused only by negotiation delays or other system malfunctions.

The performance metrics are limited to the negotiation failure (failed attempts) versus

the negotiation ratio () for various pulse periods (). Since the delays must

be kept at a minimum, at least when possible, the monitoring period is set to 0.05

seconds, as is the minimum Matlab can achieve. The experiments are performed at

sampling frequencies (Fs) 44.1 KHz and 88.2 KHz, while the threshold is the 10 to 20

percent of the squared pulse energy ().

/ reqN N pulset

2(0.1 ~ 0.2) | |pulseE

The results of the experiments depicted in figures 3.6 (a) to (d), provide with useful

deductions regarding the parameters presented through this chapter as well as useful

guidelines which are applied in the final setup of the WFTP prototype. Let us present

the derived observations in respect with the involved parameters.

 4-66

1 2 3 4 5

10-2

10-1

number of pulses per burst (N)

Fa
ilu

re
 ra

te

Failed identification Vs N
Fs: 44.1KHz, negotiation ratio: (N/1)

10 msec

40 msec

50 msec

100 msec

(a)

3 4 5 6 7 8 9 10

10-2

10
-1

number of pulses per burst (N)
Fa

ilu
re

 ra
te

Failed identification Vs N
Fs: 44.1KHz, negotiation ratio: (N/2)

10 msec
40 msec
50 msec
100 msec

(b)

1 2 3 4 5

10
-2

10
-1

number of pulses per burst (N)

Fa
ilu

re
 ra

te

Failed identification Vs N
Fs: 88.2KHz, negotiation ratio: (N/1)

10 msec
40 msec
50 msec
100 msec

(c)

3 4 5 6 7 8 9 10

10
-2

10
-1

number of pulses per burst (N)

Fa
ilu

re
 ra

te

Failed identification Vs N
Fs: 88.2KHz, negotiation ratio: (N/2)

10 msec
40 msec
50 msec
100 msec

(d)

Figure 4.6: Failure rate versus negotiation ratio. Note that the legends refer to the chirp

pulse period, therefore a pulse train burst of N periods takes N*tpulse seconds. Plots (a)
and (b) refer to 44.1KHz and ratios (N/1) and (N/2) respectively, while (c), (d) to

88.2KHz.

 4-67

Chirp period () pulset

The chirp wave period affects both the resolution of the wake up signal thus its

resilience to interference and the possibility of the receiver to record it. The

experiments reveal that period of 40msec and sampling frequency of 44 KHz provides

adequate pulses that can easily be identified. The mismatch error illustrated in figure

3.6 can easily derive from the fact that the receiver monitors periodically for 50msec

after witch follows a processing time interval. If the handshake attempt falls into this

time slot, it will be ignored or only a part of it will be recorded. Too short pulses, like

10msec, are most affected, as well as those of duration much larger than the

monitoring period, like 100msec, since a maximum of 50% at best can be recorded.

Therefore, the most reasonable solution lies within the range of 10msec to 40msec.

This conclusion can also derive from figure 3.4 in the previous section.

Negotiation Ratio () / reqN N

Recall that the negotiation ratio denotes the number of chirp signal periods

transmitted; versus the successful identifications the receiver must accomplish prior

entering the state of packet reception. Clearly the higher the ratio the most likely is to

be detected. Of course, that also affects the induced delay prior each transmission.

Therefore, more appropriate metrics for comparison would be the error rate in

conjunction with the total duration, noted in figure 3.4 where . For

ratios of (N/1), best performance is achieved with a period of 10msec and ratio 5/1

adding a maximum delay (worst case scenario) of additional 40msec. The same

applies when the playback frequency is 88.2 KHz, but with slightly worst results due

to the increased processing delay. To even lower the probability of identification

failure and that of a false alarm scenario, ratios of N/2 are best suited but at a higher

cost in delay. Consequently, from figures 3.6(b) and 3.6(d), ratios of (10/2) at 10msec

and 44.1/88.2 KHz provide best results with maximum delay of 80msec, although a

ratio (6/2) with pulse period of 40msec could also be selected at slower machines or

when the host happens to operate under heavy load. The latter is a common case

during successive transfers thus is preferred to combat unexpected system behavior

without any loss of performance.

negotiation pulset N= t

 4-68

	1 The Wireless FTP Communication System
	1.1 Introduction
	1.2 WFTP Software features
	1.2.1 Data segmentation and assembly
	1.2.2 CRC
	1.2.3 Error Control Coding
	1.2.4 Interleaving
	1.2.5 Automatic Repeat Request (ARQ)
	1.2.6 Modulation, Demodulation and detection
	1.2.7 Synchronization
	1.2.8 Channel Estimation and Equalization
	1.2.9 Phase Recovery

	1.3 WFTP Equipment
	1.4 WFTP Design and Operation
	1.4.1 Data link Design
	1.4.1.1 Full Duplex design
	1.4.1.2 Half-Duplex Design

	1.4.2 The WFTP Packet structure
	1.4.3 WFTP Software structure and operation
	1.4.4 Stop and Wait ARQ
	1.4.5 Audio Playback & Audio Recording
	1.4.6 Handshaking

	1.5 Executive Summaries
	2 Quadrature Amplitude Modulation
	2.1 Introduction
	2.2 QAM Modulator
	2.2.1 Mapping
	2.2.1.1 Background
	2.2.1.2 Orthogonal Constellations
	2.2.1.3 Bit Mapping
	2.2.1.4 Implementation

	
	2.2.2 Modulation
	2.2.2.1 Implementation
	2.2.2.2 Energy Normalization
	2.2.2.3 Implementation

	2.3 QAM Demodulator
	2.3.1 Signal Demodulator
	2.3.1.1 Case 1: AWGN channel
	2.3.1.2 Case 2: ISI
	2.3.1.3 Implementation

	2.3.2 Symbol Detector
	2.3.2.1 Implementation

	3 Viterbi Equalization
	3.1 Introduction
	3.2 Channel Model
	3.3 Maximum Likelihood Sequence Estimation
	3.4 The Viterbi Algorithm
	3.5 Viterbi Equalizer
	3.6 Performance Evaluation
	3.6.1 Channel Estimation
	3.6.2 Viterbi Equalizer

	4 Synchronization
	4.1 Introduction
	4.2 Framing – Packet detection
	4.3 Handshaking
	4.4 Performance analysis

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

