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Abstract

Machine translation between natural languages is a very interesting problem,

to which working solutions are bound to have important social and econom-

ical implications. During the last years there has been great improvement in

the performance of such systems. Ongoing research in the field of statistical

machine translation has resulted in performance comparable to that of other

approaches which have been developed for decades. The aim of this project

is to improve the performance of such a system using state of the art tools

and methods. First, the problem of automatic translation is presented, along

with different approaches used. Then, we review the basic theory on which

statistical machine translation is based, along with the necessary steps to

build a statistical machine translation system from scratch. Afterwards, we

describe the baseline system we improved. Then, we describe the two differ-

ent approaches we used, namely, incorporation of morphological knowledge,

and usage of improved alignments. Automated, freely available tools were

used to build parts of the system, as well as to evaluate the performance

of the resulting system. These tools are explained in detail. We conclude

with the evaluation of the results and suggestions for further improvements.

In the appendix are listed example tranlsations using the baseline and the

improved system.
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Chapter 1

INTRODUCTION

Machine Translation is the automated process of translating a document from
one natural language into another natural language. Machine translation
is one of the hardest problems of artificial intelligence because in order to
translate a natural language we need to understand the meaning of the source
text, the syntax restrictions of every language and other information so as
to be able to resolve the ambiguities of natural languages. There have been
different approaches to this problem, the most important being the following:

• interlingua

• transfer based

• example based

• statistical

Interlingua This approach, also called knowledge-based, tries to imitate the
way a human translates. That is, after reading the sentence it uses syn-
tactic and semantic knowledge about the language as well as the mean-
ing of the sentence so as to transform them into information regarding
the syntactic and semantic knowledge about the other language. This
approach faces many problems representing all this knowledge.

Transfer-based Transfer-based is similar to knowledge-based, however in-
formation is not represented in interlingua form. Instead complex rules
that match the syntactic and semantic structures of the two languages
are created. As a result this approach requires knowledge of the com-
parison of the grammars of the languages, that is the differences and
how they are solved. The rules are created manually, and are language
depended.
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Example-based In this approach the system learns to translate from par-
allel corpora in various languages. In its simplest form the sentence
to be translated is compared to a set of sentences whose translation
is known and one of these translations is selected for the sentence in
hand.

Statistical Statistical machine translation, which is the approach used in
this project, can be seen as a somewhat more complicate example-
based where the selection criteria are based on probabilistic methods.
Its advantage is that it solves the problem of representing concepts of
natural language, since knowledge is not represented but is automati-
cally mined from a parallel corpus. The resulting translation quality is
good when dealing with texts containing economic, political, technical
and business terms.

1.1 Statistical Machine Translation

1.1.1 Introduction

Statistical Machine Translation (SMT) means automated translation from
one natural language into another, using statistical methods. The usage of
statistical methods for automatic translation was first proposed by Waren
Weaver in 1949. The idea was abandoned due to various reasons, one of
which was the small computational power available at the time. Today,
however, the study, implementation and utilization of a statistical machine
translation system is possible using a modern computer.

1.1.2 Problem Presentation

The techniques used in automatic translation are basically the same that have
been successfully employed by the field of Speech Recognition. The basic idea
of these techniques is the notion of Language Model and Translation Model.

Suppose a sentence f in the foreign language and we are searching for a
sentence n in the native language which maximizes the probability P (n|f),
that is, we are searching for the most probable translation of sentence f to
the native language. This is formulated as

n̂ = arg max
n

P (n|f) (1.1)

Using Bayes rule

P (n|f) =
P (n)P (f |n)

P (f)
(1.2)
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(1.1) becomes

n̂ = arg max
n

P (n)P (f |n)

P (f)
(1.3)

The term P (f) in 1.3 is ignored, since it is the same for all possible sentences
n. The above transform enables us to use the Noisy Channel technique which
works as follows. We imagine that someone thinks of sentence n, but by the
time n gets to the printed page it is corrupted by noise and becomes f . To
recover the most likely sentence n, we ask the following:

1. What kind of sentences is used in the native language?

2. How native sentences are transformed into foreign?

As a result now we have to compute two terms P (n) and P (f |n), while
initially we only had to compute P (n|f). This might seem like a setback
but it is not. If we only depend on P (n|f), we need to have very accurate
probabilities, which is not easy. For example, it is possible that high values
are given to sentence pairs where words in f are translations of words in n,
but the words in n are arbitrarily ordered. Obviously, such a model would
not produce quality translations. The problem arises from trying to keep too
much information in one model. However, using the noisy channel technique,
we solve this problem. We use P (f |n) to be able to tell whether the words in
n are good translations of the words in f. It is not important if the ordering
of the words in n is correct1. P (n) is used to verify this. As a result it is
easier to train each model (P (n) is called the language model and P (f |n) is
called the translation model).

In order to achieve good performance, it is important to use a big corpus
to compute P (n) and P (f |n). In this project, we have used the European
parliament records [11]. Below this abstract level there are many details. It is
possible to use different approaches so as to improve the resulting translation
quality. For example, the way the translation model is built is quite complex
and very important. As a result there exists space for different techniques.
Also, one might think of using the stems of the words instead of the words
themselves to train the model, when the corpus available for training is not
enough. In this project, we have used a baseline statistical machine transla-
tion system created by Fanouris Moraitis [1] and explored different ways of
improving its performance.

1This is not always the case. For example the words in John loves Mary can be re-
ordered to Mary loves John. Both sentences are grammatically and syntactically correct,
however the meaning is completely different. So, it might be useful to store some infor-
mation about word ordering in P (f |n).
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The creation of a baseline statistical machine translation system is de-
scribed in chapter 2. In chapter 3 we discuss morphology, and investigate
the incorporation of morphological knowledge into statistical machine trans-
lation systems. In chapter 4 we present the modifications used to enhance
the performance of the baseline system. The experimental setup and results
are presented in chapter 5. Finally, we conclude our work in chapter 6.
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Chapter 2

BASELINE SYSTEM

2.1 Sentence boundary detection

2.1.1 Introduction

In order to align bilingual sentences, we first have to detect sentence bound-
aries. Generally speaking, a sentence ends with a punctuation mark like .
? ! ;. However, a punctuation mark does not always denote the end of a
sentence, since it can appear in abbreviations like ”i.e.”.

2.1.2 Method for sentence boundary detection

In order to solve this problem the text is divided into tokens, token being
any sequence of characters between spaces. Any possible sentence boundary,
that is, token having at least one punctuation mark, is split into the following
parts.

• Prefix

• Candidate (one of ! : ; .)

• Suffix

For example, in the sentence Do you agree? Prefix=agree Candidate=? Suf-
fix=NULL. In addition to that, it is checked if the token is an abbreviation
or honorific and if the next token starts with an uppercase or lowercase let-
ter. The lists for abbreviations and honorifics were taken from dictionaries.
However, because such lists can not be complete, a probabilistic model1 was

1The same model was used to evaluate the algorithm
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applied on the training corpus which checks if a token could be abbrevia-
tion or honorific. As a result we introduce a feedback that improves the
performance of the algorithm.

2.1.3 Results evaluation

The method described above was applied on 111408 English and 112756
Greek sentences, and the results were evaluated by a human judge. The
errors are divided into the following two categories.

False negative Failure to identify a sentence boundary

False positive Mistaken identification of sentence boundary

The results are displayed in Table 2.1. As far as false negatives are concerned,
it can be noted that:

• Most mistakes are caused by typographic mistakes in the text.

• The rest of the mistakes were abbreviations that were sentence bound-
aries.

Greek English
Sentences 112756 111408
Candidate Punctuation Marks 120225 113207
False Positives 0 0
False Negatives 205 175
total error 0.17% 0.15%

Table 2.1: Results

2.2 Sentence aligning

2.2.1 Introduction

In order to train the machine translation system , we first have to identify the
pairs of translated sentences, process known as Bilingual Sentence Alignment.
Before aligning the sentences, the paragraphs must be aligned, but that is
not difficult as paragraphs have well defined limits. Aligning the sentences,
however, is a more difficult problem.
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2.2.2 Method for aligning sentences

It is generally true that long sentences2 tend to be translated into long sen-
tences, while short sentences are translated into short ones. A simple proba-
bilistic model uses the ratio of the two sentences length, and assigns a value
to this pair of sentences. This value is then given as input to a dynamic pro-
gramming algorithm that searches for the maximum likelyhood alignment.
The distance between two sentences is defined as − log Prob(match|δ) where
δ is a random variable that depends on the length l1, l2 of the sentences in
hand.

Variables l1, l2 are supposed to be independent, and normally distributed.
Such a model is defined by mean value c and distribution s2. Mean value
actually represents the expected number of characters in one language per
character of the other language, and s2 the dispersion of the mean value per
character. Both values are computed empirically3. δ is calculated using the
following formula,

δ =
l1 − l2c√

l1s2
(2.1)

having mean value zero and standard deviation one4.
Now we want to compute Prob(match|δ), that is the possibility that a

sentence is translated into another, given δ. Using Bayes rule we have

Prob(match|δ) =
Prob(match, δ

)
Prob(δ) =

Prob(δ|match)Prob(match)

Prob(δ)
(2.2)

Prob(δ) is ignored since it is the same for all possible matching pairs, while
Prob(match) is given as prior probability from Table 2.2.

Category Prob(match)
1-1 0.89
1-0 or 0-1 0.005
1-2 or 2-1 0.0445

Table 2.2: Prior Probabilities

Since δ follows the normal distribution with mean value zero and standard
deviation 1 (at least for matching sentences) we can suppose Prob(δ|match) ≈

2The legnth is the number of characters
3For example to find the mean value, we count the length of language a paragraphs

divided by the respective figure for language b
4At least for sentences that are translations of each other
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Prob(δ). Supposing there exists a match in [−δo...δo]

Prob(δ|match) = Prob(−δo < δ < δo) (2.3)

Using the cumulative distribution function[3]

Prob(−δo < δ < δo) = 2(1− Prob(δ < δo)) (2.4)

where

Prob(δ < δo) =
1√
2π

∫ δo

−∞
e

δ2

2 dδ (2.5)

it is possible to compute

Prob(match|δ) = Prob(match)(2(1− Prob(δ < δo))) (2.6)

The distance computed, is then used by the dynamic programming algo-
rithm as the cost of every change. Allowed changes are:

(1-1) One sentence matches exactly one sentence.

(1-0) One sentence in one language has no corresponding in the other lan-
guage (deletion).

(0-1) Insertion of a sentence.

(1-2) or (2-1) Two sentences in one language correspond to one sentence
in the other language, or vice versa.

The algorithm described above described is an implementation of the William
A. Gale & Kenneth W. Church algorithm[2].

2.2.3 Results evaluation

The method described above was tested on a 2051 alignments corpus, and
the results were evaluated by a human judge. There were 31 mistakes, so the
error was on the order of 1,5%. 1-1 alignments had the smallest error per-
centage, while in 2-1 and 1-2 this percentage increased. 1-0 o 0-1 alignments
were always wrong, but that was caused by a wrong 1-2 or 2-1 preceeding
alignment. The results are shown in Table 2.3.
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Category total count mistake count Percentage of errors
1-1 1912 19 0.99
1-0 or 0-1 3 3 100
1-2 or 2-1 139 9 6.1

Table 2.3: Alignment evaluation

2.3 Language modelling

2.3.1 Introduction

Using the noisy channel technique, the initial problem is divided into two
smaller problems, one of which is the calculation of P (n), namely the lan-
guage model. Qualitatively the language model represents the probability of
using phrase n in a natural languageage. As a result, it assigns small proba-
bility5 to syntactically or grammatically wrong sentences, as such phrases are
rarely used. For example it is much more probable to encounter the phrase
Today is Monday than Monday today is. In other words, the language model
contains the information of how correct or not is a sentence, making it easier
to build the translation model.

2.3.2 Language model training

Language model training can be defined as the calculation of the prior pos-
sibility of a word or phrase. Phrases are represented using ngrams. Ngrams
are phrases of n words. For n=1, n=2, n=3 they are called unigram, bigram
and trigram respectively. For example consider the bigram Mary did, and the
probability P (did|Mary). To calculate this possibility we divide the number
of observations of Mary did by the number of observations of Mary, as seen
in the following equation.

P (did|Mary) =
#(Mary did)

#(Mary)
(2.7)

Generally we can find Mary did not slap the green witch by deduction, as
seen in figure 2.1. Several tools exist that train language models, like CMU
Toolkit[7], HTK Lattice Toolkit[8] and SRILM Toolkit[9, 10]. The SRILM
Toolkit was used to build the language model, which is freely available for
noncommercial purposes under the Open Source Community License. The

5We assign non-zero probabilities because wrong sentenences are possible in real-life
documents.
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Figure 2.1: Calculation of P (Mary did not slap the green witch) using
trigrams

SRILM Tookit is a collection of C++ libraries, executable programs and
helper scripts that allow both production and experimentation with statisti-
cal language model that can be used in statistical machine translation sys-
tems, speech recognition and other applications.

Using only base functionality, we create the language model with this
command ngram-count -order 4 -text corpus -lm lm.srilm . With the
order option we specify the rank of ngrams used, in this case fourgrams.
The text specifies the corpus used to train the model, which must have one
sentence per line. Finally using lm we train the backoff ngram model, and
write it to file lm.srilm. The output is in ARPA format.

2.4 Translation modelling

2.4.1 Introduction

By translation modeling we mean the calculation of the probability that we
have sentence f given sentence n, P (f |n). We will use a Phrase-Based Trans-
lation model which uses the results of a Word-Based Translation model.
As the names imply Word-Based Translation establishes correspondence be-
tween words, while Phrase-Based Translation uses phrases.
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2.4.2 Word to word based translation modeling

There exist many techniques to calculate the probabilities for a Word-Based
Translation model[3]. One way is to use an interlingua representation of
the sentence; sentence n is transformed into predicate logic, or a conjunc-
tion of atomic logical assertions. For example sentence John must not go is
transformed into OBLIGATORY(NOT(GO(JOHN))) and then into the cor-
responding sentence of another natural language. A different approach tries
to build the syntactic tree for sentence n and then using predefined rules
the tree is transformed into the corresponding syntactic tree for the foreign
language.

The technique we used translates the words of sentence n into the foreign
language and then reorders the words. However before discussing the details,
first we have to define some parameters. t(fi|ni) is the probability of translat-
ing word ni into fi. n(k|ni), called fertility, is the probability that word ni will
be translated into k words in the foreign language. d(pf |pn, lengthn, lengthf ),
distortion, is the probability that word in position pn in sentence n of length
lengthn will produce a word in position pf in sentence f of length lengthf .
In addition, we assume that in position zero of each sentence n is the word
NULL which can give words (spurious) in sentence f with probability p1.
After assigning fertilities to all words in n we will have created x words in f.

We are now ready to review the process of transforming sentence n into
sentence f. Suppose that the native sentence is
Mary did not slap the green witch
using English as native Language. Then we choose the fertilities for each
word.
Mary not slap slap slap the green witch
As we see word slap has fertility three while word did has fertility zero. Then
we insert spurious words.
Mary not slap slap slap NULL the green witch
Finally we replace English words with foreign words, in this case Spanish.
Mary no daba una botefada a la verde bruja
Finally we reorder the words, using the distortion probabilities.
Mary no daba una botefada a la bruja verde

The word alignment produced, can be represented as a vector. For this
example the vector is [1 3 4 4 4 0 5 7 6], which means that the first Spanish is
derived from the first English word, the second Spanish word is derived from
the third English and so on. Note that the sixth Spanish word is derived from
the word NULL. One should also note that the way we translated the sentence
we have introduced an 1-N restriction because one English word can produce
many Spanish words, but it is impossible more than one English words to
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produce one Spanish word.
This method is described by Brown et al.[3], and is named IBM Model

36. This model calculates the parameters d(pf |pn, lengthn, lengthf ), t(fi|ni),
n(k|ni), p1 in order to find the best alignment for every phrase pair. Next we
will see how these parameters are calculated using word to word alignments,
how we calculate the probability of every word alignment and how these
associate with the initial problem, the calculation of P (f |n).

2.4.3 Parameter estimation

If we knew beforehand which of the possible alignments is the right we could
easily find the values for the parameters. However in the beginning every
alignment is possible. For example, suppose we have a two word sentence n
which is translated into a two word sentence f. Ignoring NULL, the possible
alignments are the following.

n1

��

n2

��
f1 f2

n1

  A
AA

AA
AA

A n2

~~}}
}}

}}
}}

f1 f2

n1

��   A
AA

AA
AA

A n2

f1 f2

n1 n2

��~~}}
}}

}}
}}

f1 f2

Suppose the first alignment has probability 0.3, the second 0.1, the third 0.4
and the fourth 0.2 and that we want to calculate n(1|n1). We observe that n1

has fertility 1 in the first and second alignment, so it is observed 0.3+0.1=0.4
times and nc(1|n1) = 0.4 and in the same manner we find nc(0|n1) = 0.2 and

6In order to produce we actually use IBM Model 4, however we refer to IBM Model 3
for simplicity’ s sake.
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nc(2|n1) = 0.4. nc is called fractional count. Now n(1|n1) can be calculated
from the following equation

n(1|n1) =
nc(1|n1)

nc(1|n1) + nc(2|n1) + nc(0|n1)
(2.8)

So knowing the alignment probabilities, which are formulated as P (a|n, f)
we can calculate the model parameters. However, the problem is to calculate
these probabilities. Let us examine the following transformation.

P (a|n, f) =
P (a, n, f)

P (n, f)
=

P (a, f |n)P (n)

P (f |n)P (n)
=

P (a, f |n)

P (f |n)
(2.9)

To find the alignment probabilities we need to know two things, P (a, f |n)
and P (f |n). Since there are many ways to get to f from n and each way
corresponds to one alignment, we can write

P (f |n) =
∑

a

P (a, f |n) (2.10)

so finding the alignment probabilities ends to

P (a|n, f) =
P (a, f |n)∑

a P (f |n)
(2.11)

The problem now is to compute P (a, f |n). However P (a, f |n) is the result of
IBM Model 3. For example to find the probability of producing the following
alignment

Mary

��

not

��

slap

��

NULL

��

the

��

green

$$I
IIIIIIIII witch

zzuuuuuuuuu

Maria no daba una bote fada a la bruja verde

we have to find the probability of slap having fertility 3, not being translated
into no etc. In other words the alignment probability is the product of the
parameters calculated by IBM Model 3, as seen in the next formula.

P (a, f |n) =
I∏

i=1

n(φi|ni)
K∏

j=1

t(fj |ni)
K∏

j=1

d(pfj |pnj , I,K)
(

K − φ0

φ0

)
pK−2φ0
0 pφ0

1

I∏
i=0

φi!
1

φ0!

(2.12)
In the above formula I is the length of sentence n and K of sentence f. Term(

K−φ0

φ0

)
represents the number of ways it is possible to create spurious words.

pK−2φ0

0 and pφ0

1 express the possibility of adding or not spurious words. 1
φ0

!
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expresses the possibility of reordering of spurious words. Also, in case of a
word with fertility bigger than one where it produces,for example, f1, f2, f3

we do not know if the words are produced in this order or they appear in
this order after reordering, so since this information is lost we multiply the
alignment probability by

∏I
i=0 φi!.

2.4.4 Expectation maximization

We have up to now shown that if we know the model parameters we can
compute P (f |n) since P (f |n) =

∑
a P (a, f |n). Problem is, to find P (a, f |n)

we need to know the parameters. To solve this problem we need to use,
arbitrary, initial values. We generally choose uniform values, so if language f
had 20000 words, then t(fj|ni) = 1

20000
. Using the Expectation Maximization

algorithm[4], in every step the values of the parameters are improved, as will
be seen in the following example.

Suppose we have two sentence pairs (n1n2)(f1f2) and (n1)(f2). If we
ignore the NULL word, require every word to have fertility 1, and ignore the
distortion probabilities, the only possible alignments are the following.

n1

��

n2

��
f1 f2

n1

  A
AA

AA
AA

A n2

~~}}
}}

}}
}}

f1 f2

n1

��
f2

Given our simplifications the only things that bear on the alignment prob-
abilities are the word translation parameter values. As a result P (a, f |n) =∏K

j=1 t(fj|ni)
7.

Step 1 Set parameter values uniformly.
t(f1|n1) = 1

2

t(f2|n1) = 1
2

t(f1|n2) = 1
2

t(f2|n2) = 1
2

7IBM Model 1
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Step 2 Compute P (a, f |n) for all alignments.

n1

��

n2

��
f1 f2

P (a, f |n) =
1

4

n1

  A
AA

AA
AA

A n2

~~}}
}}

}}
}}

f1 f2

P (a, f |n) =
1

4

n1

��
f2

P (a, f |n) =
1

2

Step 3 Normalize P (a, f |n) to yield P (a|e, f) values.

n1

��

n2

��
f1 f2

P (a|f, n) =
1
4

1
4

+ 1
4

=
1

2

n1

  A
AA

AA
AA

A n2

~~}}
}}

}}
}}

f1 f2

P (a|f, n) =
1
4
2
4

=
1

2

n1

��
f2

P (a|f, n) =
1
2
1
2

= 1

Step 4 Collect fractional counts.
tc(f1|n1) = 1

2

tc(f2|n1) = 1
2

+ 1 = 3
2

tc(f1|n2) = 1
2

tc(f2|n2) = 1
2

Step 5 Normalize fractional counts to get revised parameter values.

t(f1|n1) =
1
2
4
2

= 1
4
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t(f2|n1) =
3
2
4
2

= 3
4

t(f1|n2) =
1
2

1
= 1

2

t(f2|n2) =
1
2

1
= 1

2

Repeating steps 2-5 many times yields:
t(f1|n1) = 0.0001
t(f2|n1) = 0.9999
t(f1|n2) = 0.9999
t(f2|n2) = 0.0001
The new values of the parameters are different from the initial. For example
the probability of n1 translated into f2 is boosted because of the second
sentence pair, while the translation of n1 into f2 is highly unlikely. Generally
speaking, EM, which only optimizes numbers and knows nothing of natural
language translation, is efficient in computing the parameter values.

2.4.5 GIZA++

In order to produce the alignments we have used GIZA++. GIZA++ is an
extension of GIZA which is part of the EGYPT Statistical Machine Trans-
lation Toolkit,which was developed during the 1999 John Hopkins Language
and Speech Processing summer workshop.

The toolkit is used to train statistical word based translation models [3,
5, 6]. Providing as input senetence level aligned bilingual corpus, it outputs,
among other things, a file with the word alignment between sentences. The
format of this file is:
Tomorrow morning
NULL ( ) Maniana ( 1 ) por ( 2 ) la ( 2 ) maniana ( 2 )
We used the predefined parameters, five iterations to train IBM Model 3 and
IBM Model 4 and p0 = 0.02, that is 2% possibility of creating a spurious
word after each regular word. It should be noted that since we have used
the noisy channel technique to devide the initial problem into two smaller,
when we want to tranlsate from English to Greek we will use Greek as source
language and English as target language.

2.4.6 Phrase-Based Translation modeling

Several researchers have recently demonstrated [6] improved performance
using phrase to phrase, rather than word to word models. Current state of the
art machine translation systems like CMU [7] use phrase-based translation
models. The biggest, maybe, problem of word-based translation models is
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that they ignore context information, since they translate one word at a time,
in a context free manner. On the other hand, it is clear that the translation
of a word depends heavily on the context. This information is lost, and the
only way to reconcile is to use a language model, which stores information
regarding the most probable sequence of words. However, as seen in Table
2.4, it does not help much, since it is trained separately for each language.
The way to overcome this problem is to train the translation model using
phrases rather than words.

FOREIGN was Halten Sie vom Hotel Gewandhaus?
NATIVE what do you think about the hotel Gewandhaus?

Word to Word what do you from the hotel Gewandhaus?
Phrase to Phrase what do you think of the hotel Gewandhaus

Table 2.4: Comparison of Word-Based and Phrase-Based translation

2.4.7 Bilingual phrases-model building

In order to build the translation model we need to extract the bilingual
phrases from the alignments provided by GIZA++. Basically, a bilingual
phrase is a pair of m source words and n target words. For extraction from
a bilingual word aligned training corpus, we pose two additional constraints:

• The words are consecutive

• They are consistent with the word alignment matrix, but there is an
additional rule to add words to phrases.

The consistency means that the m source words are aligned only to the
n target words and vice versa. The following criterion defines the set of
bilingual phrases BP of the sentence pair (fJ

j ; eI
i ) that is consistent with the

word alignment matrix A:

BP (fJ
1 , eI

1, A) =
{(

f j+m
j , em+n

i

)
: ∀(i′ , j ′) ∈ A : j ≤ j

′ ≤ j+m ↔ i ≤ i
′ ≤ i+n

}
(2.13)

We have already mentioned that bilingual phrases must be consecutive
and consistent with the alignment. In many alignments however, GIZA++
aligns one word with a sequence of words that are not consecutive. To deal
with this situation an additional rule has been added; words are separated
into groups of consecutive words and then we select the maximum from
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every group8 and compare it with the position of the word in the source
sentence with which it is aligned. The maximum which is closest to the
source word defines the phrase to be aligned to the word. Phrases or words
that are rejected are not ignored, but are regarded as being created from
NULL. These words are treated as wildcards, and are put were suitable. For
example, the alignment
NULL ( 5 ) Mary ( 1 ) did ( ) not ( 2 ) slap ( 3 4 ) the ( 6 7 ) green
( 9 ) witch ( 8 )
would be transformed into
Mary ( 1 ) did ( ) not ( 2 ) slap ( 3 4 5 ) the ( 6 7 ) green ( 9 )
witch ( 8 )
As we see the word created from NULL is added to the first phrase which
does not become inconsistent.

The resulting file, containing the bilingual phrases can be very big9. It
is, however, known that bilingual phrases need not be longer than three
words.[6] As a result we can ignore longer phrases, reducing the file’s size
down to one tenth of the original size. After rejecting bilingual phrases that
appear only once, the size of the file reduces to a size manageable by the
computer on which the experiments are run.

Having created the bilingual phrases we are now ready to calculate the
translation probability for every phrase, using the following formula

Prob(f̄ |n̄) =
count(f̄ , n̄)∑
f̄ count(f̄ , n̄)

(2.14)

2.5 Decoding

Having trained both the language and the translation model, it is now pos-
sible to translate a foreign sentence f using decoding to solve find n̂best from
the formula

n̂best = arg max
n

P (n)P (f |n) (2.15)

Since we have created a phrase based translation model, during decoding the
foreign input sentence f is segmented into a sequence of I phrases f I . We
assume a uniform probability distribution over all possible segmentations.

Each foreign phrase fi in f I is translated into a native phrase ni. The
native phrases may be reordered. Phrase translation is modeled by a proba-
bility distribution φ(fi|ni). Recall that due to the Bayes rule, the translation
direction is inverted from a modeling standpoint.

8Regarding each word’s position in the target sentence
9Around 12 GB for 600000 sentences
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Reordering of the native output phrases is modeled by a relative distortion
probability distribution d(ai − bi−1), where ai denotes the start position of
the foreign phrase that was translated into the ith native phrase, and bi−1

denotes the end position of the foreign phrase that was translated into the
(i− 1th native phrase.

We use a simple distortion model d(ai − bi−1) = a|ai−bi−1−1| with an ap-
propriate value for the parameter a.

In order to calibrate the output length, we introduce a factor ω (called
word cost) for each generated native word, in addition to the language model
P (n). This is a simple means to optimize performance. Usually this factor
is larger than 1, biasing towards larger output.

In summary, the best native output sequence ˆnbest for a given foreign
input sequence f is

n̂best = arg max
n

P (n)P (f |n)ωlength(n) (2.16)

where P (f |n) is decomposed into

P (f |n) = P (f I |nI) =
I∏

i=1

φ(fi|ni)d(ai − bi−1) (2.17)

The decoder used, which implements the above, is Pharaoh[12]. Pharaoh is
a beam search decoder for phrase to phrase statistical machine translation
which was developed by Philipp Koehn, as part of his Phd thesis[14].
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Chapter 3

MORPHOLOGY

3.1 Introduction

In natural languages, instead of using a totally different word for each and
every possible meaning, words that convey similar meaning are similar the-
selves, usually differing in some parts of them (e.g. their endings). This is
the basic concept that constitutes the notion of the morphology of a natural
language.

In today’s world, morphological analysis is an essential component in
language engineering applications ranging from spelling error correction to
machine translation. Morphology is the study of the way words are built
from smaller meaning-bearing units which are called morphemes. In the in-
formation retrieval domain, the similar, but not identical, problem is called
stemming, which usually deals with removing endings from words, leaving
the stem (root) of the word. However, a full morphological analysis is more
than that, and is usually regarded as a segmentation of the word into mor-
phemes combined with an analysis of the interaction of these morphemes
that determine the syntactic class of the word form as a whole.

In this chapter we will mention different approaches to the problem of
building a morphology for a natural language and describe especially Lin-
guistica, which will be used in conjunction with some heuristics we propose
in order to build a morphological analysis used by a statistical machine trans-
lation system[20].

22



3.2 Essential background on morphology

3.2.1 Morphemes and the kinds of morphologies

Morphemes are defined as the minimal meaning-bearing units in a language.
Apart from the stem of a word, a morpheme can be an affix, which usu-
ally provides additional meaning of some kind to the main concept that is
provided by the stem. An affix may be a prefix, suffix, circumfix or infix,
whether it precedes the stem, follows it, does both or is being inserted in it,
accordingly. Prefixes and suffixes (and circumfixes as well, since they may
be viewed as a combination of a prefix and a suffix) are often called con-
catenative morphology, since a word is composed of a number of morphemes
concatenated together. In some languages, morphemes are combined in com-
plex ways, using what is called nonconcatenative morphology. Another kind
of this type is the templatic morphology that is very common in languages
like Arabic, Hebrew etc. and uses root words and templates that transform
them

There are two broad classes of ways to form words from morphemes:
inflection and derivation and thus we speak of inflectional or derivational
morphology. These two are partially overlapping, since the borders between
them are usually not absolutely clear. Inflection mostly deals with the usage
of affixes, while derivation is the combination of a word stem with a gram-
matical morpheme usually resulting in a word of a different class, often with
a meaning hard to predict exactly.

Three general classes of linguistic knowledge are needed in order to build
a morphological parser:

Lexicon The list of stems and affixes, together with basic information about
them.

Morphotactics The model of morpheme ordering that explains which classes
of morphemes can follow the other classes of morphemes inside a word.

Orthographic rules Spelling changes that occur due to morpheme attach-
ment.

3.2.2 Learning a morphology

In recent years, there has been much interest in computational models that
learn aspects of the morphology of a natural language from raw or structured
data. These models are of great practical interest, minimizing the expert
resources or need of linguistics ion order to develop stemmers and analyzers.

There are three distinct ways of learning a language’ s morphology:
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Supervised learning The data consists of a set of pair of words.

Unsupervised learning The data consists of a single set of all the words
in the corpus.

Partially supervised learning The data consists of two sets of words,
without any indication of the relationship between the individual words.

We will mostly deal with unsupervised learning, since such methods may be
used with untagged corpus which is often the case, performing morphological
analysis based only on a corpus. This can be a valuable tool that may be
used in statistical machine translation, where the system is being trained
using such untagged corpora.

3.3 Different approaches

3.3.1 Introduction

In this section, the most important approaches of (mostly) unsupervised
morphology learning are presented. One way to categorize the existing ap-
proaches on this matter is by evaluating whether human input is provided
in the process of deriving the morphology and whether the goal is to only
obtain affixes or to perform a complete morphological analysis. According
to this categorization, we may therefore cluster the various approaches and
techniques as follows:

• Bootstrapping using a knowledge source

• Obtaining affix inventories

• Performing a complete morphological analysis

For the first two categories we will provide short descriptions, while for
the third one we will describe in detail an example application.

3.3.2 Bootstrapping using a knowledge source

A first approach in obtaining morphologies is to begin with some initial hu-
manlabeled source from which to induce other morphological components.
Although their work may be more suited to information retrieval (IR), Xu
and Croft[15] are proposing a technique that is an example to this case.
They are basing their work around the hypothesis that the word forms that
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should be conflated for a given corpus will co-occur in documents from that
corpus. They use a co-occurrence measure to modify an initial set of confla-
tion classes generated by a stemmer, refining the output of the well known
Porter stemmer. This corpus-based stemming automatically modifies the
equivalence classes (conflation sets) to suit the characteristics of a given text
corpus. They perform experiments in English and Spanish, but they do agree
that generating the initial conflation classes in languages with more complex
morphologies may be a problem.

3.3.3 Obtaining affix inventories

A second, knowledge free category of research has focused on obtaining affix
inventories. DeJean[16] is inspired by the works of Zellig Harris[17], a dis-
tributional approach where the distribution of an element is the set of the
environments in which it occurs. His work uses untagged and non artificial
corpora without specific knowledge about the studied language. The algo-
rithm is divided into three steps: the first step computes the list of the most
frequent morphemes, which is being extended in the second step by segment-
ing words with the help of the morphemes already generated, while the third
step consists in the segmentation of all the words with the morphemes ob-
tained at the second step. A symmetric procedure can be used to identify
prefixes; the letters of the words are just reversed. Morpheme boundaries for
the most frequent morphemes are discovered when the number of different
letters that are found to follow some sequence of letters is higher than a
threshold.

3.4 Performing a complete morphological analysis-

Linguistica

3.4.1 Introduction

Although the work presented in section 3.3 does induce some information
about a language’s morphology, finding just the affixes of a language is
not a complete morphological analysis of the specific language. Another
knowledge-free category of research attempts to induce a complete analysis
of the morphology for each word of a corpus. In this section we will de-
scribe such an approach, Linguistica, based on Minimum Description Length
analysis, which we have used in this project.
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3.4.2 Minimum Description Length Model

The central idea of minimum description length (MDL) analysis[19] is com-
posed of four parts:

1. A model of a set of data assigns a probability distribution to the sample
space from which the data is assumed to be drawn.

2. The model can then be used to assign a compress length to the data,
using familiar information-theoretic notions.

3. The model can itself be assigned a length.

4. The optimal analysis of the data is the one for which the sum of the
length of the compressed data and the length of the model is the small-
est.

In other words, we seek a minimally compact specification for both the model
and the data. Linguistica tries to analyze words into morphemes, using MDL
as guideline. In order to provide a morphology to evaluate using MDL, first
bootstrapping heuristics are needed that provide an initial morphology.

3.4.3 Heuristics for word segmentation

Two heuristics are used to produce an initial morphology analysis.

• The first one (called take-all-splits), considers for each word of length
of length l all the possible cuts into w1,i +wi + 1, l, 1 ≤ i < l. For each
cut

H(w1,i, wi+1,l) = −(ilogfreq(stem = w1,i)+(1−i)logfreq(suffix = wi+1,l))
(3.1)

is computed; then it is used in the following formula to assign a prob-
ability to the cut of w into w1,i + wi + 1, l.

prob(w = w1,i + wi + 1, l) =
1

Z
e−H(w1,i+wi+1,l) (3.2)

where

Z =
n−1∑
i=1

H(w1,i + wi + 1, l) (3.3)

For each word the best parse is noted, and then we iterate until no
word changes, which typical takes less than five iterations.
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• Using the convention that each word ends with an end-of-word symbol
we compute the counts of all n-counts between two and six letters
(including the end of word). Then for each ngram [n1n1 . . . nk] we
compute

[n1n1 . . . nk]

total count ofngrams
log

[n1n2 . . . nk]

[n1][n2] . . . [nk]′
(3.4)

The top 100 ngrams on the basis of this measure are chosen as candidate
suffixes. Then all words are parsed into stem plus suffix, if possible,
using a parse from the candidate set. For those words that more than
one parsing are possible, we keep the most probable, according to the
previous heuristic.

Consequently, for each stem we make a list of all the suffixes which appear
with it, called a signature. Stems having the same signatures are merged.
Initially all signatures with only one stem (which account for about 90% of
the initial signatures) are removed, as well as those with only one stem. The
remaining are called regular signatures. The resulting signatures are of the
form 

stem1

stem2

stem3


{

suffix1

suffix2

}
(3.5)

Variations of the resulting grammar are considered and adopted only if
they reduce the description length of the grammar and the corpus. First
each suffix is tested to see if it is a concatenation of two independent suffixes.
Then suffixes in the same signature are tested to see if they begin with the
same letter or sequence of letters, so that these letters can be considered part
of the preceding stems. Finally signatures with only a small number of stems
are checked to see if they are worth keeping, or discarding them leads to a
better model.

3.5 Heuristics proposed

3.5.1 Introduction

Using Linguistica on a corpus we can have a morphological analysis. It is
possible, however, especially when the available corpus is small1 that the
produced morphology will not be very good, both in terms of precision and

1Even worse when dealing with a language with rich morphology
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recall. Linguistica offers the chance of adjusting some parameters, to influ-
ence the resulting morphology. However, to use them one must take into
account the way the morphology is built. We have tried to offer a simple and
cheap (both in terms of time and computational power needed) way of in-
creasing the precision of the resulting morphological analysis, on the expense
of recall.

3.5.2 Heuristic proposed

Examination of the resulting morphological analysis provided by Linguistica
easily leads to an observation. In most words mistakenly analyzed, the error
is assigning stem characters to the suffix. The opposite error, assigning suffix
characters to the stem is not so important since it is more easy to identify
a stem with extra characters in the end than a chopped stem. The problem
of false identification is even more important when dealing with short words,
where removal of the suffix usually leaves a very short stem (maybe two
or three characters long), which is possibly useless for training a statistical
machine translation system. To overcome these problems we use a heuristic
rule which uses two parameters

• The length of the words l.

• The ratio r of the length of the suffix divided by the length of the whole
word.

We examine every word analyzed by Linguistica. We adopt the analysis only
for words that have lword > l0 and rword < r0, or else discard it.

3.5.3 Results-evaluation

In order to be able to choose values for r0 and l0 we carried out a simple
experiment. We used Lingustica to provide morphological analysis based on
a 1M token Greek corpus. Then we randomly picked 1k words (2k tokens)
for which Linguistica had produced morphological analysis. To evaluate the
performance of the heuristic, a human judge decided for each word if the
analysis was correct or mistaken. The results, using different values for r0

and l0 are shown in Table 3.1.

28



r0 l0 Precision(%)
1 0 79

0.2 0 89
0.2 4 89
0.2 5 89
0.2 6 93
0.3 0 84
0.3 4 84
0.3 5 90
0.3 6 94

Table 3.1: Results

3.6 Using morphology in SMT

In statistical machine translation, the translation problem is posed as a pos-
terior probability maximization problem.2 If we consider Ws and Wt to be
word sequences for the source and target languages respectively, then the
problem can be formulated as:

Ŵt = arg max
Wt

P (Wt|Ws) (3.6)

where Ŵt is the translated sequence of words in the target language.
Using the algorithms described in Sections 3.4.3, 3.5, we come up with

knowledge about the morphology of both the source and target languages.
This knowledge can be represented as a (deterministic or statistical) mapping
from a sequence of words W to a sequence of stems S. These stems may
be extracted in general by the use of a statistical morphological analyzer
(stemmer) that computes the probabilities P (S|W ). Also, a morphological
generator is defined as the model that computes the reverse probabilities
P (W |S).

Let us consider Ss and St to be sequences of stems for the source and tar-
get languages respectively. Then a stem-to-stem machine translation system
can be formulated as:

Ŝt = arg max
St

P (St|Ss) (3.7)

Using the statistical models for the morphological analyzer P (Ss|Ws) and
morphological generator P (Wt|St) for the source and target languages re-
spectively, as well as the stem-to-stem translation model P (St|Ss) we may

2The method described in this section is work of Karageorgakis et.al. presented in [20].
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write
Ŵt = arg max P (Wt|Ws)

= arg max
Wt

∑
St,Ss

P (Wt, St, Ss|Ws)

= arg max
Wt

∑
St,Ss

P (Wt|St, Ss, Ws)P (St|Ss, Ws)P (Ss|Ws)

= arg max
Wt

∑
St,Ss

P (Wt|St)P (St|Ss)P (Ss|Ws) (3.8)

provided that Wt, Ss are conditionally independent given St; Wt, Ws are con-
ditionally independent given St, Ss; and Ws,St are conditionally independent
given Ss. This equation corresponds to a word-to-word translation model;
however, in this system word to word translation is performed via the stem
to stem system, i.e., Ws → Ss → St → Wt.

Eq. (3.8) can be further simplified as follows: the mapping S → W is a
many to one mapping and P (Ss|Ws) = 1, because the mapping Ws → Ss

is deterministic, so the double summation at Eq. (3.8) becomes a single
summation over St only, as follows:

Ŵt = arg max
Wt

∑
St

P (Wt|St)P (St|Ss) (3.9)

We refer to this system as the morphological or stem-based SMT system.
Once we have built the morphological SMT system, we need to combine

it with the traditional lexical SMT system. This combination can be done
by assuming that each SMT system computes probabilities independently of
each other, i.e.,

Ŵt = arg max
Wt

[P (Wt|Ws)]
w0 [

∑
St

P (Wt|St)P (St|Ss)]
w1 (3.10)

where w0 and w1 are weights that model the “confidence” we have in each
translation, the lexical and the morphological SMT models. By combining
these two SMT systems we hope that we overcome the weakness of the con-
ditional independence assumptions of Eq. (3.8). This combination may be
implemented at an early or at a late stage (e.g., word lattice combination).

3.6.1 Combined Lexical-Morphological system imple-
mentation

The combined lexical and morphological SMT system is implemented using
late integration and lattice re-scoring according to the following steps:
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1. The lexical SMT system that computes the probabilities P (Wt|Ws) is
built.

2. The training corpus is stemmed using the unsupervised rules derived
from the Linguistica system.

3. The stemmed corpus is used to derive the morphological (stem) SMT
system that computes the probabilities P (St|Ss).

4. Every sentence in the evaluation corpus is decoded using the lexical
SMT system producing a lattice of possible word-level translations.
This lattice is then represented as a finite state acceptor FW .

5. Every sentence in the evaluation corpus is stemmed and then decoded
using the morphological SMT system. The resulting lattice contains
all possible stem-level translations and is represented as a finite state
acceptor FS.

6. The stem to word model P (Wt|St) in the target language is constructed
by running the Linguistica system on the target language corpus and
obtaining the morphological signature. The stem to word model is
represented as a unweighted (costless) finite state transducer TSW , i.e.,
in our case, we assume that all possible words that can be generated
from a stem are equiprobable 3.

7. The stem acceptor FS and the stem to word transducer TSW are com-
posed to obtain a stem to word mapping; the resulting transducer is
projected to its output symbols to obtain the finite state acceptor FW ′ .

8. FW and FW ′ acceptors are re-weighted (weights multiplied) by the fac-
tors w0 and w1 as discussed above (in practice, we don’t weight FW

and w0 is always 1.).

9. The weighted acceptors FW and FW ′ are intersected and the best path
of the intersection is found using Viterbi decoding. The best path
T ′ represents the translated sentence of the combined lexical-morpho-
logical SMT system.

The process that has been described above can be formulated as follows:

T ′ = bestpath{([FS ◦ TSW ]2 ∗ w1) ∩ FW}
3In order to guarantee non-empty composition in the next step, all words contained in

FW and FS were added as identity mappings in TSW and then Kleene closure was applied
to TSW .

31



where ◦ represents composition, ∩ intersection, ∗ weighting and 2 projection
to the output symbols; T ′, FS, TSW , FW and w1 are defined above.
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Chapter 4

IMPROVEMENTS ON
BASELINE SYSTEM

4.1 Introduction

The baseline system uses Giza++ to align a bilingual corpus. In order to
translate from a native to a foreign language, the foreign to native alignment
is used to extract bilingual phrases and build translation models. However
the 1-N restriction between native and foreign words, can seriously degrade
the performance of the system, especially when dealing with highly inflective
languages. Furthermore, using only one alignment implies information loss,
which may be significant when training resources are sparse. The modifica-
tions introduced to the baseline system are the following:

• Algorithm for bilingual phrase extraction

• Alignments used for bilingual phrase extraction

4.2 Bilingual phrase extraction

The procedure used to extract bilingual phrases is described in Zens et. al.[5].
It is essentially the same with the one used by the baseline system, described
in section 2.4.7 on page 19. The only difference is that there is no additional
rule in the second constraint for extracting bilingual phrases. The algorithm
in Figure4.1 computes the set of bilingual phrases BP with the assumption
that the alignment is a function A : {1, . . . , J} → {1, . . . , I}
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Figure 4.1: Algorithm for extracting bilingual phrases

4.3 Heuristics proposed

The word alignment produced by Giza++ only allows one target word to be
aligned with exactly one source word. In order to overcome this restriction,
the corpus is aligned bidirectionally. That is, Giza++ is run two times, using
initially the foreign language as source and the native as target (baseline
system), and then exchanging the two languages. The result is that now
we have two alignments. Intersecting these alignments, results in a high
precision/low recall alignment. On the opposite hand the union is a high
recall/low precision alignment.

4.3.1 diag and

Our approach, based on Koehn et.al.[6], is to explore the space between these
two alignments, trying to keep precision near intersection levels and recall
near union levels. Starting from the intersection alignment, we add points
that exist in the union alignment, using the following heuristic (which we
will call diag and):

1. First we expand to only directly adjacent points (meaning points that
connect to an already adjacent point) under the constraint that the
new alignment point connects at least one previously unaligned word.
This is done iteratively until no new alignment points can be added.
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2. Finally non-adjacent points are added, with otherwise the same re-
quirements.

This heuristic is called diag and. As an example, in Figure 4.2 we can see
the two alignments produced by GIZA++ and in Figure 4.3 the resulting
alignment, where the points added are marked with arrows.

Figure 4.2: Intersection of alignments (from Pharaoh manual[13])

4.3.2 weight

A possible refinement to diag and is weight. While in diag and every
alignment has equal weight (unary), in weight each alignment is assigned
a weight according to its similarity to the intersection. If we define the
alignment as a function

F (i, j) =

{
1 point (i, j) belongs to alignment
0 else

1 ≤ i ≤ I, 1 ≤ j ≤ J

(4.1)
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Figure 4.3: Alignment used by diag and (from Pharaoh manual[13])

where I is the length of the source sentence and is J the length of the
target sentence, then for each alignment we can compute the metric

R(I, W ) =

∑
i,j I(i, j)∑

i,j W (i, j)
(4.2)

where I(i, j) denotes the intersection alignment and W (i, j) the resulting
alignment. The distribution of R(I,W ) for a set of 358887 sentences is
shown in figures 4.4, 4.5. In figure 4.6 is shown the mean value of R(I,W )
for every sentence length.

Then, a weight is assigned to every alignment, according to R(I, W ). By
intuition, alignments with larger values for R(I, W ) are better than others
with small values, because that means there is bigger similarity between the
two alignments. It seems, then, logical to emphasize more on such align-
ments. Several different weight schemes were implemented.They can be split
into two categories:

• Discrete weights

• Continuous weights

In the first category we have implemented four different schemes; the weight
is assigned using equations 4.3, 4.4, 4.5, 4.6 respectively. On the other hand,
we can use a continuous function of R(I, W ) to assign a weight. Functions
used are R, 10R, 100R2, eR, R2, 1

1.0001−R
, R3, R4, R5, R6, eR2

, e2R, e5R, e10R,
R7, R8, R9, R10.
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Figure 4.4: R(I, W ) distribution
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Figure 4.5: R(I, W ) distribution
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Figure 4.6: R(length) distribution

weight(R) =



1 R < 0.6
1.2 0.6 ≤ R < 0.7
2 0.7 ≤ R < 0.8
9 0.8 < R < 0.9
24 0.9 ≤ R < 1
30 R = 1

(4.3)

weight(R) =



0.5 R < 0.6
1 0.6 ≤ R < 0.7
2 0.7 ≤ R < 0.8
3 0.8 ≤ R < 0.9
4 0.9 < leqR < 1
8 R = 1

(4.4)

weight(R) =



0.5 R < 0.6
1 0.6 ≤ R < 0.7
4 0.7 ≤ R < 0.8
8 0.8 ≤ R < 0.9
16 0.9 ≤ R < 1
32 R = 1

(4.5)
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weight(R) =



0.5 R < 0.6
2 0.6 ≤ R < 0.7
5 0.7 ≤ R < 0.8
10 0.8 ≤ R < 0.9
15 0.9 ≤ R ≤ 1
30 R = 1

(4.6)

4.3.3 exact

Exact is very similar to weight. Instead of applying the same weight to
every alignment point, every alignment point gets a weight depending solely
on its existence in the intersection alignment, as shown in equation (4.7).
That is, if a point exists in the intersection alignment its weight is 2, else
1. Then for every native word j the weights of its points are summed and
divided by their count, as shown in equation (4.8).The result is the weight
of the word. The distribution of the weight of the word w for a set of 358887
sentences is shown in figure (4.7). When making the translation rule, we add
each word’s weight and divide by their count. Using the result in equation
(4.9) we get the weight of the translation rule.

W (i, j) = I(i, j) + A(i, j) (4.7)

where I(i, j)is the alignment of the intersection between the outputs of
Giza++ and A(i, j)is the alignment used

w(j) =

∑
i W (i, j)∑
i A(i, j)

(4.8)

weight(w) =



1 w < 1.75
2 1.75 ≤ w < 1.8
3 1.8 ≤ w < 1.85
4 1.85 ≤ w < 1.9
5 1.9 ≤ w < 1.95
6 1.95 ≤ w ≤ 2

(4.9)

4.3.4 lenwe

The bilingual phrase distribution versus their size is shown in figure (4.8).
Since bigger bilingual phrases are fewer than the smaller ones but probably
offer better translations, each bilingual phrase is given a weight according to
its size, as shown in equation (4.10).
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Figure 4.7: w distribution

W (BP ) =


3.73154 w = 1
4.13777 w = 2
5.11651 w = 3
6.23713 w = 4
7.43149 w = 5

(4.10)

4.3.5 cor icor

Instead of applying a heuristic rule to create a new alignment using the
output of GIZA++, it is possible to use both alignments separately. Since,
as the results suggest, the base alignment outperforms the inverse alignment,
we assign a weight to each alignment, depending on where it belongs; base
or inverse. We have used seven weighting schemes, described in Table4.1.

4.3.6 int

int is the model created using the intersection of the two alignments. If
F2N(i, j) is the foreign to native alignment and N2F (i, j) is the native to
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weight scheme 1 2 3 4 5 6 7

base weight 2 3 1 1 4 5 6
inverse weight 1 1 0.2 1 1 1 1

Table 4.1: Weight schemes for cor icor
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foreign alignment, then the intersection alignment is given by the formula
INT (i, j) = F2N(i, j) ∧N2F (i, j)

4.3.7 uni

uni is the model created using the union of the two alignments.If F2N(i, j)
is the foreign to native alignment and N2F (i, j) is the native to foreign align-
ment, then the intersection alignment is given by the formula INT (i, j) =
F2N(i, j) ∨N2F (i, j)

4.3.8 icor

icor is the model created using only the inverse (native to foreign) alignment.
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Chapter 5

RESULTS - EVALUATION

5.1 Introduction

Human evaluations of machine translation are extensive but expensive. Hu-
man evaluations can take months to finish and involve human labor that can
not be reused. This fact poses a great problem in the development of machine
translation systems, were the impact of different methods must be appreci-
ated quickly and and cost-effectively. As a result quick, cheap and reliable
evaluation of the resulting translation quality can improve the performance
and reduce the development time and cost. Consequently, many machine
translation evaluation techniques have been proposed in the past[21]. The
evaluation techniques used in this project, BLEU[22] and NIST[23], which are
described in the next sections, are inexpensive, quick, language-independent
and correlate highly with human evaluation.

5.2 BLEU

BLEU is based on the idea that the closer a machine translation is to a
professional human translation, the better it is. Typically, there are many
”perfect” translations of a given source sentence. These translations may
vary in word choice or in word order even when they use the same words.
And yet humans can clearly distinguish a good translation from a bad one.
For example, consider these two candidate translations of a Chinese source
sentence:

Candidate 1 It is a guide to action which ensures that the military always
obeys the commands of the party.
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Candidate 2 It is to insure the troops forever hearing the activity guide-
book that party direct.

Although they appear to be on the same subject, they differ markedly in
quality. For comparison, we provide three reference human translations of
the same sentence below.

Reference 1 It is a guide to action that ensures that the military will forever
heed Party commands.

Reference 2 It is the guiding principle which guarantees the military forces
always being under the command of the Party.

Reference 3 It is the practical guide for the army always to heed the direc-
tions of the party.

It is clear that the good translation, Candidate 1, shares many words and
phrases (in other words ngrams) with these three reference translations,
while Candidate 2 does not. The cornerstone of BLEU is the modified pre-
cision meter. To compute this, one first counts the maximum number of
times a ngram appears in any single reference translation. Next, one clips
(Countclip = min(Count, Max Ref Count)) the total count of each candi-
date word by its maximum reference count, adds these clipped counts up,
and divides by the total (unclipped) number of candidate words. The above
procedure is formulated as

pn =

∑
C ∈ {Candidates}

∑
ngram ∈ C Countclip(ngram)∑

C′ ∈ {Candidates}
∑

ngram′ ∈ C′ Countclip(ngram′)
(5.1)

Modified precision meter gives high scores to sentences that match the ref-
erence sentence in word choice and word order. By definition it penalizes
sentences longer than the references, however it does not penalize shorter
sentences. To overcome this restriction a brevity penalty is introduced; it is
defined by the following equation

BP =

{
1 if c > r
e(1−r/c) if c ≤ r

(5.2)

where c is the candidate of the candidate translation and r the effective
reference corpus length1. Then

BLEU = BP · exp

( N∑
n=1

wnlogpn

)
(5.3)

where N = 4 and wn = 1/N .

1Sum of the best match length(closest length of corresponding reference phrases) for
each candidate sentence in the corpus
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5.3 NIST

NIST is an alternative statistical machine translation quality automated eval-
uation technique. Building and using NIST is motivated by two characteris-
tics of BLEU.

• First, the IBM BLEU formulation uses a geometric mean of co-occurrences
over N (rank of ngrams). This makes the score equally sensitive to pro-
portional differences in co-occurrence for all N. As a result, there exists
the potential of counterproductive variance due to low co-occurrences
for the larger values of N. An alternative would be to use an arithmetic
average of N-gram counts rather than a geometric average.

• Second, note that it might be better to weight more heavily those N-
grams that are more informative • i.e., to weight more heavily those N-
grams that occur less frequently, according to their information value.
This would, in addition, help to combat possible gaming of the scoring
algorithm, since those N-grams that are most likely to (co-)occur would
add less to the score than less likely N-grams

Information weights were computed using Ngram counts set of reference
translations, according to the following equation:

Info(w1 . . . wn) = log2

(the # of occurrences w1 . . . wn−1

the # of occurrences w1 . . . wn

)
(5.4)

Using the information weights, a modification of IBM’s formulation of the
score was chosen as the evaluation measure that NIST uses to provide au-
tomatic evaluation to support machine translation research. NIST’s formula
for calculation the score is

Score =
N∑

m=1

{ ∑
all w1...wn

that co−occur

Info( w1 . . . wn)

/ ∑
all w1...wn

in sys output

(1)

}
exp

{
βlog2

[
min

(
Lsys

L̄ref
, 1

)]}
(5.5)

where β is chosen to make the brevity penalty factor 0.5 when the number
of words in the system output is 2/3rds of the average number of words in
the reference translation, L̄ref is the aveage number of words in a reference
translation, averaged over all reference translation andLsys is the number of
words in the translation being scored.

Notice that, in addition to the calculation of the co-occurrence score it-
self, a change was also made to the brevity penalty. This change was made to
minimize the impact on the score of small variations in the length of a trans-
lation. This preserves the original motivation of including a brevity penalty

45



(which is to help prevent gaming the evaluation measure) while reducing the
contributions of length variations to the score for small variations. Figure
5.1 gives a comparison of the two brevity penalty factors.

Figure 5.1: Comparison of the BLEU and NIST brevity penalty factor (From
NIST[23])

In order to evaluate the difference between NIST and BLEU the F-ratio
is introduced.F-ratio is the between system score variance divided by within-
system variance. The between system variance is the variance of the average
system scores across different systems, and the within-system variance is the
variance of document scores for a given system, computed across different
documents an different reference translation and then pooled over all systems.
The NIST evaluation score is compared with IBM’s original BLEU score in
Figure 5.2 and Figure 5.3.Is is demonstrated that, for human judgments of
Adequacy2, the NIST score correlates better than the BLEU score on all of
the corpora. For Fluency3 the judgments, however, the NIST score correlates
better than the BLEU score only on the Chinese corpus. This may be a mere
random statistical difference between corpora. Or alternatively, this may be
a consequence of different human judgment criteria or procedures. (The

2Each segment is scored according to how well the meaning conveyed by the reference
translation is also conveyed by the evaluated segment.

3How fluent the evaluated translation is.
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Figure 5.2: F-ratio comparison of the correlation of BLEU and NIST scores
for document variance for four corpora (From NIST[23])

Figure 5.3: Comparison of the correlation of BLEU and NIST scores with
human judgments for four corpora (From NIST[23])
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Chinese-to-English translations were judged using a different procedure than
that used for the other corpora).

5.4 Results for system incorporating morpho-

logical knowledge

We provided both systems with an initial test data of approximately 26k
sentences. For the 1M corpus, system B yielded approximately 11k sentences
that were different compared to those of system A. For the 4M corpus, the
different sentences were found to be about 6k. This number of different
sentences, is a function of the size of the lattices used by the SMT system,
thus enlarging these lattices could produce more different translations.

Table 5.1 summarizes this information; for every training corpus size
(TCs), the number of different sentences that formed the evaluation set are
displayed (Ds), as well as the ratio (Dsr) of the different sentences compared
to the total 26k sentences of the test set.

TCs Ds Dsr

1M 10669 40.57%
4M 6322 24.04%

Table 5.1: Training and evaluation set sizes

For every training corpus size, we performed several experiments by chang-
ing the weight w1 of the FSM containing the morphological information. In
order to focus on the real improvement of the new system, our evaluation
set does not consist of all the sentences that form the test data, but those
that resulted in different translations between the two systems. The results
of these experiments are shown in Tables 5.2 and 5.3.

The best score improvement achieved was 0.4326 for the NIST scores and
0.0089 for the BLEU evaluation metrics, which correspond to 14.30% and
14.74% relative score improvement respectively compared to the lexical sys-
tem. The tables show that smaller weights w1 provide bigger improvements,
i.e., the FSM containing the morphological information should be weighted
more. This is probably due to the fact that the statistics of the word stems
are better trained than the statistics of the words for training sets of the same
size, i.e., the stem model is better trained than the word model. It can also
be seen that the incorporation of morphological information provides more
improvement for systems that have been trained with smaller data sets, since
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TCs w1 NA NB NB-NA Improvem.
1M 0.05 3.0253 3.4579 0.4326 14.30%
1M 0.1 3.0538 3.4618 0.4080 13.36%
1M 0.2 3.1144 3.4663 0.3519 11.30%
1M 0.3 3.1539 3.4453 0.2914 9.24%
4M 0.1 4.2391 4.4139 0.1748 4.12%

Table 5.2: NIST scores for systems A and B for various combination weights
and training corpus sizes

TCS w1 BA BB BB-BA Improvem.
1M 0.05 0.0604 0.0693 0.0089 14.74%
1M 0.1 0.0611 0.0697 0.0086 14.08%
1M 0.2 0.0629 0.0704 0.0075 11.92%
1M 0.3 0.0635 0.0703 0.0068 10.71%
4M 0.1 0.1006 0.1057 0.0051 5.07%

Table 5.3: BLEU scores for systems A and B for various combination weights
and training corpus sizes

the scores for the 1M training corpus are much better than those of the 4M
training corpus.

In order to be certain that our test set size is large enough to guarantee
true improvement, we perform bootstrap re-sampling [24]. This method has
been used in various fields of research, including automatic speech recognition
and statistical machine translation [25, 26, 27].

TCs w1 Nd mean Nd interval NB RSD
1M 0.05 0.4325 [0.3996, 0.4654] 0.77%
1M 0.1 0.4082 [0.3751, 0.4405] 0.75%
1M 0.2 0.3520 [0.3199, 0.3836] 0.75%
1M 0.3 0.2913 [0.2600, 0,3217] 0.76%
4M 0.1 0.1748 [0.1298, 0.2204] 0.84%

Table 5.4: 95% confidence intervals for Nd scores (NIST)

Table 5.4 shows the interval mean and the 95% confidence interval for the
differences in the NIST scores between systems A and B (Nd = NB − NA).
Assuming the bootstrap hypothesis, we can say that there is 95% confidence
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that, for example, for the system with w = 0.01 the improvement of the NIST
score lies between 0.4220 and 0.4887, which corresponds to improvement
between 14.06% and 16.28%. The last column of this table also shows the
relative standard deviation for the NIST value of the morphological SMT
system (Relative Standard Deviation or RSD is defined as (100 ∗ σ/µ)%,
where µ and σ are the mean and standard deviation respectively). Clearly,
the improvements achieved by combining the lexical and the morphological
information are statistically significant.

5.5 Results for system using improved align-

ments

Both NIST and BLEU were used to score the resulting translations. In
order to evaluate the performance of each system in different conditions four
different corpora were used, with the characteristics shown in Table 5.5.
Although training of the translation model can be a time consuming task,
we decided to use four training sets, in order to appreciate the performance
of the system in different training confitions. Training set 0 provides the
opportunity to test the system when training data is not available in large.
Combined with the fact that the target language is Greek, a language with
rich morphology and much bigger lexicon than English, this training set
should give clear signs of how well each systems deals with the problem of
data sparseness. One way to appreciate how big this problem is, is to use the
ratio of words4 to tokens5 in the corpus. Obviously the bigger this figure is,
the harder it is to train efficiently the models, since more words will not be
seen enough times to estimate realistic probabilities. For test set 0 this figure
is 0.049 for Greek and 0.018 for English, while for test set 3 the respective
figures are 0.014 and 0.006. As a result the different training sets ensure
varying training conditions.

corpus 0 1 2 3
lang el en el en el en el en

tokens 1260076 1261542 2505231 2528720 4473410 4548857 8911269 9030677
words 61725 22832 63448 30835 81983 40137 124121 55373

Table 5.5: Corpora used for training

The same motive leaded to using four different test sets, as shown in Table
5.6. We used different maximum sentence length in each test set, so that we

4We use words to denote the number of distinct words in the corpus
5The size of the corpus
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test set words tokens max sentence length min sentence length sentences

1 4739 41464 12 1 5000
2 5478 50533 15 1 5000
3 5954 64530 20 3 5000
4 6724 86743 30 3 5000

Table 5.6: Test sets used

can see the performance of the systems in different environments. Another
factor was that computational time needed for decoding grows very fast with
sentence length, so it would not be practical to use very big sentences. Other
than that, the nature of the corpus is closer to spoken than written language,
so sentences tend to be relatively small. Usually long sentences are mistak-
enly two consecutive sentences recognized as one by the sentence aligning
algorithm described in Section 2.2. Note than in test sets 3 and 4 sentences
shorter than three words are discarded. The reason is that sentences longer
than twenty words are more rare than smaller ones. In order to ensure that
adequate number of longer sentences are present in the test set, we choose to
avoid using sentences smaller than three words. If we overlooked this fact,
then probably test sets 3 and 4 would not offer more information than test
sets 1 and 2.

Both NIST and BLEU need good reference translations to give reliable
ratings. Providing more than one reference translations fulfills this need.
Since it is quite difficult to hire a professional translator, we decided to use
only one reference translation, which is, however, big enough (5000 sentences
for each test set) to reconcile. The text used is part of the European Parlia-
ment records, not included in the training sets.

For the models that it was possible, we explored the possibility of using
different ways to assign weights. In order to do that we trained each variant
model using training set 0 and evaluated the resulting translation of test set 1
using both BLEU and NIST, so as to find the best scoring. While it is possible
that the differences in the results are not always statistically significant, we
believe that they are indicative of the quality of the resulting translation
model. Except for that, if we used all the training and test sets available,
we would need much more time and computational power to complete the
experiments.

Recall from section 4.3 that we used two ways to assign weights in weight.
In the first case we used equations 4.3, 4.4, 4.5 and 4.6, to find the weight.
The results are shown in Table 5.7. The best scoring is the one that uses
equation 4.3 to compute the weights, and it was selected for complete testing.
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In the following graphs this model is called weight d.

eq 4.3 eq.4.4 eq.4.5 eq.4.6
BLEU 0.23 0.23 0.229 0.228
NIST 4.66 4.611 4.612 4.589

Table 5.7: Discrete weight scores

In the second one, different functions of R were used to compute the
weight of the alignment and the results are shown in Tables 5.8, 5.9. The
best scoring function is R5, and it was selected for complete testing. In the
following graphs this model is called weight.

R 10R 100R2 eR R2 1
1.001−R R3 R4 R5

BLEU 0.230 0.231 0.231 0.230 0.231 0.229 0.231 0.232 0.231
NIST 4.621 4.626 4.632 4.619 4.632 4.59 4.637 4.641 4.643

Table 5.8: R functions

R6 eR2
e2R e5R e10R R7 R8 R9 R10

BLEU 0.223 0.231 0.231 0.231 0.23 0.229 0.23 0.229 0.2315
NIST 4.614 4.625 4.631 4.636 4.616 4.596 4.616 4.614 4.621

Table 5.9: R functions

In the model called cor icor, unlike above, there is no metric like R
which can be used to assign a weight to the alignment. Instead, to refine the
performance of the model we used another approach. We assign a weight to
each alignment depending on whether it is foreign to native (baseline system)
or native to foreign (inverse). The results for seven weight schemes are shown
in Table 5.10. The best scheme, chosen for complete testing, is 2-1.6

weight scheme 1-0.2 1-1 2-1 3-1 4-1 5-1 6-1
BLEU 0.236 0.239 0.239 0.238 0.237 0.236 0.237
NIST 4.699 4.731 4.747 4.723 4.715 4.698 4.7

Table 5.10: cor icor weight schemes evaluation

The baseline system in the graphs is called base original while the base-
line using the improved bilingual phrase extraction algorithm base. For easy
reference we have included the names of all models created along with a short
description of each in Table 5.11.

6That means weight 2 for baseline alignments and 1 for inverse alignments.
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model name description

base original baseline system
base baseline system using improved bilingual extraction algorithm

diag and model created using the diag and heuristic(Section 4.3.1)
weight model created using diag and heuristic and

weight assigned according to continuous function of
similarity of alignment to the intersection alignment(Section 4.3.2)

weight d model created using diag and heuristic
and weight assigned according to quantized function

of similarity of alignment to the intersection alignment(Section 4.3.2)
exact model created using diag and heuristic

and weight assigned according to quantized function
of similarity of alignment to the intersection alignment, based

only on the bilingual phrase(Section 4.3.3)
lenwe model created using diag and heuristic and weight assigned

according to bilingual phrase length(Section 4.3.4)
cor icor model created using both alignments(Section 4.3.5)

int model created using the intersection
of the two alignments(Section 4.3.6)

uni model created using the union of the two alignments(Section 4.3.7)
icor model created using the inverse alignment(Section 4.3.8)

Table 5.11: Short description of models tested
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Because weight, weight d, diag and, exact and lenwe all display sim-
ilar performance, and in order to improve the display of the results we have
included for reference the performance of these five models for test set 1 in
figures 5.4, 5.5. In the rest figures we have only included weight.

The scores achieved for each model and for every corpus are shown in
figures 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13.

Looking at the results, one can not fail to notice the remarkable im-
provement in performance gained using only the improved bilingual phrase
extraction algorithm. In all test and training sets the difference between
base and base original is around 15%, a very important improvement, es-
pecially when taking into account that the two models are very similar (they
use the same alignment). Other than that, we can divide the models into
two sets, which differ around 15% in performance. The first one, low scoring,
consists of int and icor. The second one includes uni, weight, base and
cor icor. icor performs better than int in all test sets, the difference being
around 2.5% in all cases. In the the high scoring set the worst performance is
achieved by uni. At no case does it succeed in providing better performance
than any of the other three models. weight performs a little better , but it
does not succeed in beating base, which is always better, except for a few
cases. Finally, cor icor displays the best performance, usually a little higher
than base, with the exception of test set 2 where it performs much better
than all competitors, scoring 15% better than base. It is interesting to note
than in this test set, while the relative order of performance is preserved and
that the difference between, for example, base and uni is around 0.1 NIST
like in other test sets, all models achieve higher scores than in other test sets.
One should also note that in all test sets, with the exception of test set 2,
the relative difference between cor icor and base is bigger when using the
models created with training set 3, the smaller one, than with other training
sets.

All models display reduced scores when translating test sets comprising of
longer sentences, but that is normal since longer sentences are more difficult
to translate. More detailed examination of the results does not provide any
useful information, as deviations from the above remarks are not consistently
observed, so they can be attributed to statistical errors.
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Figure 5.4: test set 1 BLEU for proposed heuristics
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Figure 5.5: test set 1 NIST for proposed heuristics
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Figure 5.6: test set 1 BLEU
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Figure 5.7: test set 1 NIST
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Figure 5.8: test set 2 BLEU
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Figure 5.9: test set 2 NIST
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Figure 5.10: test set 3 BLEU
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Figure 5.11: test set 3 NIST
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Figure 5.12: test set 4 BLEU
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Figure 5.13: test set 4 NIST
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Chapter 6

CONCLUSION - FUTURE
WORK

The system described in the previous chapters is by no means perfect. There
is room for improvements in all levels. However, the experience gained from
developing it up to this point can be summarized in the following points.

• The biggest improvement from the baseline system stems from using the
improved bilingual extraction algorithm, which gives 15% improvement
in performance.

• Since int scores 15% worse than models using other alignments, it
is better to use rich alignments, that may contain redundant points,
than high precision alignments, which obviously leave out important
information.

• The alignment created by the diag and heuristic not only does it not
offer any improvement over the base alignment, but it actually slightly
degrades the system performance. None of the proposed weighting
schemes offers significant improvement in performance.

• cor icor offers slightly improved performance over the baseline system,
especially when training resources are limited.

• Incorporating morphological knowledge can significantly improve the
performance of statistical machine translation systems.

In order to improve the performance of the system, we can follow several
ways. The proposed improvements are:

• Improve the preproccesing analysis, especially the sentence aligning
process discussed Section 2.2.
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• Incorporate knowledge regarding syntax analysis, which has been used
in [28, 29].

• Maybe there is little room for improvement using different weighting
schemes than those discussed in chapter 4.

• Usage of cognates. By cognates we mean words that are similar in
spelling or phonetics and are possible translation of each other. An
example is the English word night and the German word nacht. Various
experiments [30] have proved that cognate identification can improve
the word alignment, resulting in a more accurate translation system.
For example a better sentence.

• Using word classes rather than words when building the billingual
phrases.

• Experiments with other language pairs to evaluate the robustness of
the system.

• Finally, there is room for improvement in the way morphological knowl-
edge is acquired and used.

aligning algo

6.1 Using Statistical Machine Translation for

Speech Translation

During the last years, statistical machine translation is widely used for spoken
language translation, were it performs better than other automatic trans-
lation approaches.[31] One of the differences between written and spoken
language is that in the latter is that the later uses a much more flexible
structure, often violating syntactic and grammatical rules. As a result, ap-
proaches that depend on this information suffer severely. On the other hand,
statistical machine translation does not use stringent rules about syntax or
grammar and as a result performs better in such a noisy environment. As
a result a statistical machine translation system like the one described here
can be used as an integral part of an automatic speech translation system.
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Appendix A

Tanslation Examples

Below are listed some translation exapmles from the test sets used. The
models used to translate were trained using train set 3. The source sen-
tence is printed in bold; the first translation is the one produced by the
base original system and the second one is produced by the base system.

parliament adopted the resolution
s¸ma egkrÐnei to y fisma
to s¸ma egkrÐnei to y fisma

the request is completely unexpected
h prìtash eÐnai entel¸c aprìsmenh
h prìtash eÐnai entel¸c aprìsmenh

and therefore it rejects amendment no
kai gi' autì aporrÐptei tropologÐa
kai gi' autì aporrÐptei thn tropologÐa

this is the reason why i cannot welcome this commission pro-
posal
to lìgo autì mpor¸ kalwsorÐsw thn epitrop 
gia to lìgo autì mpor¸ na qairetÐsw thn prìtash thc epitrop c

this is not acceptable
autì eÐnai apar�dekto
autì eÐnai apar�dekto

we must respect their rights
prèpei sebìmaste ta dikai¸mata
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ofeÐloume na sebìmaste ta dikai¸mat� touc
this is not only an economic problem

autì den eÐnai mìno mia oikonomik  probl matoc
den prìkeitai mìno gia èna oikonomikì prìblhma

this would mean cutting jobs
autì shmaÐnei meÐwsh jèsewn
autì shmaÐnei meÐwsh jèsewn ergasÐac

let me conclude on one final point
ja oloklhr¸sw me mia teleutaÐa parat rhsh
ja  jela na telei¸sw me èna teleutaÐo shmeÐo

but this is not the same thing
autì ìmwc den eÐnai to Ðdio
all� autì den eÐnai to Ðdio pr�gma

i do not think there are any more problems
den nomÐzw ìti eÐnai pia probl mata
pisteÔw ìti den up�rqoun pia probl mata

the strategy should provide a coherent framework for policy de-
velopment
h strathgik  prèpei parèqei èna sunektikì plaÐsio gia q�raxh politik c
h strathgik  prèpei na parèqei èna sunektikì plaÐsio gia th q�raxh politik c

this is a key element of this communication
autì eÐnai èna basikì stoiqeÐo aut c thc anakoÐnwshc
autì apoteleÐ basikì stoiqeÐo aut c thc anakoÐnwshc

mr pronk said previously that we cannot always support social
democratic proposals
kÔrie pronk anèfere prohgoumènwc ìti eÐmaste p�nta upèr sosialdhmokratikèc
prot�seic
o k pronk anèfere prohgoumènwc ìti den mporoÔme p�ntote na uposthrÐxoume
sosialdhmokratikèc prot�seic

the next point concerns the concept of lifelong learning
to epìmeno shmeÐo eÐnai h ènnoia thc di� bÐou
to epìmeno shmeÐo eÐnai h ènnoia thc dia bÐou m�jhsh
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we shall request an inquiry to find the causes of this accident
ja zht sw mia èreuna gia ta aÐtia tou atuq matoc
ja zht sw mia èreuna gia na broÔme tic aitÐec aut c thc dustuq matoc

it is just a question of attitudes
den eÐnai mìno z thma nootropÐec
eÐnai apl� jèma nootropÐec

are we to vote for your amendments tomorrow or the day after
prìkeitai na yhfÐsoume gia tic tropologÐec aÔrio   thn epomènh
prèpei �rage na uperyhfÐsoun tic tropologÐec sac aÔrio   mejaÔrio

i see now the sense in the strategy that she is adopting
blèpw ìmwc h ènnoia thc strathgik c pou èqei uiojet sei
antilamb�nomai t¸ra to nìhma thc strathgik c pou èqei uiojet sei

that is of course not necessarily true
autì fusik� den isqÔei
autì fusik� den eÐnai anagkastik� swstì

the commission cannot go as fast as it would like in some issues
as we are rapidly approaching some of the proposed phaseout dates
h epitrop  na proqwr sei ìso gr gora ja  jela se orismèna jèmata ìpwc h
gorgoÔc plhsi�zei orismènec apì tic proteinìmenec hmeromhnÐec apìsurshc
h epitrop  den mporeÐ na proqwr sei ìso gr gora ja  jela se orismèna jè-
mata ìpwc h taqeÐa plhsi�zei orismènec apì tic proteinìmenec hmeromhnÐec
apìsurshc

since the author is not present question no lapses
efìson h sunt�kthc apousi�zei er¸thsh arij katapÐptei
dedomènou ìti o sunt�kthc thc apousi�zei h er¸thsh arij kajÐstatai �kurh

we ask this house under rule to accept this question as an urgent
matter
kaloÔme to koinoboÔlio kat� kanìna na apodeqjoÔme to jèma wc epeÐgon z th-
ma
zht�me apì to s¸ma b�sei tou �rjrou na apodeqjeÐ autì to jèma wc epeÐgon

can i also ask the commission what action they intend to take
against germany
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epitrèyte mou epÐshc thn epitrop  ti mètra skopeÔoun na lhfjoÔn kat� ger-
manÐac
ja  jela epÐshc na rwt sw thn epitrop  ti mètra skopeÔoun na lhfjoÔn kat�
thc germanÐac

if national systems are not effective enough the international
community ultimately has the responsibility to see that the law is
enforced
e�n ejnik� sust mata den arkeÐ h diejn c koinìthta telik� èqei thn eujÔnh
na diapist¸soume ìti h dÐkaio} gÐnetai efarmosteÐ apotelesmatik�
an ta ejnik� sust mata den eÐnai arket� apotelesmatik  h diejn c koinìthta
èqei thn eujÔnh gia to gegonìc ìti o nìmoc efarmosjeÐ telik�

sometimes they are dependent on one large customer
suqn� prìkeitai gia èna meg�lo customer
merikèc forèc eÐnai exart¸menoi apì èna meg�lo pel�th

even if the judgement had been made it would still have been
extremely difficult to complete a codecision procedure on this mat-
ter
molonìti h krÐsh eÐqe shmeiwjeÐ ìti ja  tan exairetik� dÔskolo na oloklhr¸-
sei mia sunapìfashc gia to jèma akìmh
parìlo pou h apìfash èqei lhfjeÐ akìmh ja  tan exairetik� dÔskolo na
oloklhr¸sei mia diadikasÐa thc sunapìfashc gia to jèma

it would of course have been more reasonable to have financed
the reconstruction in kosovo by means of reductions in categories
of expenditure other than that of external measures
kalì ja  tan pio logikì na qrhmatodot soume thn anoikodìmhsh kossufope-
dÐou mèsw thc meÐwshc kathgori¸n dapan¸n di�foro ekeÐnou twn exwterik¸n
dr�sewn autonìhto
ja  tan pio logikì na qrhmatodot soume thn anoikodìmhsh tou kossufope-
dÐou mèsw thc meÐwshc twn kathgori¸n dapan¸n di�foro ekeÐnou twn exw-
terik¸n dr�sewn thc qrìnw

this is a proposal without debate and we will not have any op-
portunity therefore to debate the amendments being put forward
h prìtash qwrÐc suz thsh kai den ja èqoume kamÐa eukairÐa na suzht soume
tic tropologÐec pou prot�jhkan
prìkeitai gia mia prìtash qwrÐc suz thsh kai den ja èqoume kamÐa dunatìthta
na suzht soume tic tropologÐec pou parousi�sthkan kat� sunèpeia
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as such this will not solve any problems within tajikistan
kat� sunèpeia den ja epilÔsei kanèna prìblhma se tatzikist�n
epomènwc autì den ja lÔsei ta probl mata sto tatzikist�n
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